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EXTENSION OF THE COMBINED MULTIPLIER-PENALTY FUNCTION
METHOD TO OPTIMAL ‘CONTROL PROBLEMS. 1!

T, Glad

ABRSTRACT.

The multiplier method of Hestenes and Powell is extended
to control problems. It is shown that the value of the
parameter ¢ which is needed to obtain a minimum is deter-
mined by a Riccati egquation. .
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i. INTRODUCTION.

An interesting method for minimizing a function of finite-
ly many variables under equality constraints

{ min £(x)
subject to g{x) =0

has been given by Hestenes (1969) and Powell (1969). The
idea is to form an augmented function

F{x,p,c) = £{x) + pTg(x) + cg(ng(x)

It can be shown, Hestenes (1969), that under fairly gene-
ral conditions there exists a p such that F(x,p,c) has a
minimum at the solution to the original problem, provided
¢ is large enough. Since the method appears to work quite
well when applied to numerical problems, Glad (1973), Glad
(1575) , it seems natural to extend it to optimal control
problems. One of the simplest versions of this problem is

T ,
Minimize J = f Li{x,u,t)dt
0

% = f{x,u,t)
subiject to
x{0) = a

7t has been suggested by Hestenes (1269) that the augmen-
ted criterion J should be formed

3

3 (x,u). = ;{mx,u,w # Pl (E(x,u,t) - &) +

(=]

T
_— c(fix,u,t)‘— i) (fixgu,t} - %}}dt.




It is proved alreéay in Hestenes (1947) that J has a mi-~
nimum with respect to arbitrary (x,u) (not necessarily
satisfying the differential eguation) 1f the parameter c
is large enough. Di Pillo et al (1974) have proved further
restilts. In this report it will be shown that J has a mi-~
nimum, by using an approach which 18 different fxom the
one used in the above refarences. This has the advantage
that one can see more explicitly what value of ¢ is the
smallest possible. It turns out that this is determined
by a certain Rlccati eguation. ’




FORMULATION OF THE OPTIMAL CONTROL PROBLEM,

*

o begin with the optimal control problem without constraints
will be studied. This is defined as follows.

:Minimize
T .
= [ L{x(t), u(t), t)at + F{x(T)]
0

where x satisgfies

% (t)

x{0)
Tt is assumed that x is continuously differentiable and u
continuous. The functions L, F and f are assumed to be
three times continuously differentiable. Furthermore it

will be assumed that the above problem has a so called
normal solution {X,u). :

£(x(t), ult), t)

it

a

Then there exists a function p(t) such that the following
conditions hold at the optimal solutions x and u.

First order necessary conditions:

)

% = £(x,,t) _
B = - Lo (%,0,t) - £ (%,4,t)p
x(0) = a |
p(T) = Fi (R4T))
| L, (X,8,t) + pru(E,ﬁ,t) =0 .

Introducing H{x,u,p,t) = Lix,u,t) + pr(x,u,t) this can be
written as




. oH %(0) = a
op
BH ' Ty
= - == p(T). = F_(x(T))
X
£ =0

1) Hy (x:0,p,t) > 0 0<t<T
(2) The Riccati equation
- e w1 e ol 7
[ P=P(E-fH H )+ (£-£H H )P+
-1 e ool.T
*AY - -~
( ) + HXX HXHHU.‘JHUX PquuufuP

P(T) = F . (x(T))

where £os fu’ Hox etc. are evaluated along (X,u), has a
solution that exists over the whole intexval ¢ < ¢t < T. A
discussion of these conditions can be found in Bryson and

Ho (1959).




THE OPTIMAL CONTROL PROBLEM AS A NON-DYMAMIC PROBLEM.

he following augmented loss function is studied

]

(%,0) = I{L(x,u,t} +-pT(f{x,u,t) ~ ij +

[

e . T oo
+ 5 (Elx,u,8) - %) (£(x,u,t) ~ g]}dt + Flx(1))

Here ¢ is a positive real number and p is the function de-
fined in the previous section. J is now regarded as a func-
tion of x and u, not necessarily satisfying the differen-
tial equation x = f{x,u,t). (Note that if the differential
equation is satisfied then J = J.) If J has a minimum .at
i,ﬁ), the original problem has been transformed into a
“non-dynamic one. To see when this occurs, J is expanded

to second order around {x,u).

‘We write x = X + h, u =14 + k. Since we only study x which
satisfy x(0) = a, we have h(0) = 0. Perturbatiens (h,k),
where h is continuously differentiable with h(D) = 0 and

k is continuous,will be called admissible. 'The norms || h ||
and || k || are defined by '

Hn ]| = sup |h(t)| + sup JR(L)]
. 0<tgT 0ct<T -
Hk || = sup |k(t)}]
0<t<T

In what follows we write H_, etc for ng[ilt); u{t), pt),
t). Since % and u are continuous, these matrices are con-
tinuous functions of time.




T .
J(x+th, utk) = I{H(x+h, utk, p, t) - pT{i+ﬁ) +
' 4

v oT -— -

k
Mo

- ﬁ)}dt + F(R(T) + h{T))

- — — T 'JII:
F(x+h, utk) = Ji{x,n) + | (H h+H k-p h)dt + F h(T) +
: 0

T
1
+ % [{h
29

T L T
Hxxh+zh quk+k Huuk)dt +

T

f(h
0

T T

i TT, e T T TP
£7¢ htk TEof kthThi2h £ k-2h" £))

G

oy BT 1. \
2k £ h)dt + 5 hT(T)F, A(T) + R(h,k)

T ¢ eme
|R(h, k)| < eth,k)f (b h+h h+k k) dt
0

and eg{h,k} » 0 as {(h,k) - 0.

From the properties of p it follows that the linear term
disappears. Then

L=

S]]

F(xth, wik) = J(x,0) + j{hT(Hxx+cf§fk)h +

o

T T W T..
+ 2h (qu+cfxfu)k + k (Huu+cfufu}k +

T

+ ch™h - 2chTf§ﬁ - ZCkaEﬁ}dt +




% h* (T)F,_h(T) + R{h%) =

= 625(h,k) + R(h,k)

n order to study 623,we transform it into a perfect square.
me do this observe that, if S{t) is a continuously diffe-
:entiable matrix function, then

{h Sh + 2h Sh}dt ~ nt {(Ms{T)h{T) =0

T T, T T
{h (B, +of £ 48)h + 2h° (H  +cf £ )k +

(o]
ll
poj
Ol

T Py ) T T, ..
+ k (Huu+0fufu)k + ¢ch™h + 2h (S-cfx)h -

Te 2 lap o 1.3.T n =
- 2ck fuh}dt +3h (T)[Fxx s (7).Jh(T) =
T
~1 iy
L ? k + Huuﬁnux+fu8)h |
0 Lg .
S fx]h

h o+ [£ Huu(HuX+fu8) + =

yy T
Huu + cfufu cfu
~cfu eI

u(HuX+qu)h
. lde
b+ [EH S +E8) + 25 - £.]n
ux u c H

uuu

T
1 Tra . ~1 _ 1 T
t 7 g hils + Hew ™ HypuHuufox ? £y quuuHux) 8+




eyl - ~1. T, _ 1.27
+ S(£ ~E B (H, ) - SEH fS - =8 Ihat +
1,7 . A
+ 5wt [F, -~ 8(T) Jh(T)

Tt is now straightforward to prove the following theorem.

Theorem 1t If ¢ > §, if Huu >0, 0 <t <T and if the Ric-

catl eguation

F— — ‘_1 - -l T -

(%) g B, = Ho HoH o+ (£ £H CH }TS
e gl _ ~1.7,1

+ S(E £ H B ) = S(EH f +2 1)S

s{(T) = FXX

~has a solution over the whole interval ¢ < t < T, then

623 > 0 for all admissible h and k not both identically

2exrQ.

Proof. We show that the matrix
T T

Huu + cfufu cfu

~cfu oI

is positive definite for all ¢ > 0. Form

Iy T
Huu + Cfufu cfu

[

[25w ] -
*cfu cX

_ T R :
= 2'H .2+ c(fuz W) {E,2 w)y > 0



Assume that equality holds. Then z = {0 and conseguently
w = 0.

gince the second and third terms of 8253 disappear we then

know that 6°3 » 0. If 6°F = 0 then

-1 Trr L
k + H_-(H +£.8)h =0

‘ -1 T, 1 _
h + (£ H (H  +E 8)428-£ )h = 0

all t, 0 < t £ T. The lower of these equations is a linear
differential equation in h with h(0} = 0. From the unique-~
ness theorem for linear differential equations it follows
that h is identically zero. The first equation then gives
that k is identically zero,

This result can easily be strengthened.

Theorem 2: Suppose the conditions of Theorem l'hold. Then
there exists a constant n > 0 such that

TeT

T . Fid
625 (h,k) > % f(h h +RTAT +k k) de
0

Proof. Study
2"‘ T T 'T‘ T
Af(h,k,n) = 6°J(h,k) - n [(h"h+h h +k"k}dt
5 A ,

where n > 0. The value of A(h,k,n) is the same as the va-
lue of 823 (h,k) with hm cfyf Jh Teplaced by h' (H_ +

T + Po . - . e | T * .
+cfxfx-—n1)h, ch™h replaced by (c-n)h"h and k (Huué-cfﬁfu)k
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eplaced by kT(Huu+cf3fu~ ni)k. It then follows £rom
Lemna A.5 in the appendix that, if n is chosen sufficient-
y small, then the Ricecati equation corresponding to A(h,
%,n) exists over the interval 0 < t < T. Since

T T
H + Cfufu nk Cfu
-cf {c~n)I

‘is still positive definite;it follows that Alh,k,n) 2 0

for all admissible h and k.

We can now give conditions for J to have a local minimum.

‘Theorem 3: Suppose the conditions of Theorem 1 are satls-
fied. Then J has a local minimum at {x,3) with respect to
all {x,u)} with x continuocusly differentiable, %(0) = a,

‘and ¢ continuous.

Proof., We have frqm Theo:em 2
F(reh, Bk) - J(X,0) = 8%T(h,k) + R(h,k} >

T.

> (n - |s(h,k)i)[(hTh+ﬁT
0

B+kk)at » O

if (h,k) is sufficiently small.

It is interesting to note that the magnitude of ¢ that is
reguired only depends on the Riccati equation (x) {provided
¢ s 0). The interesting gquestion is, of course: is there
any ¢ for which the solution of {*¥) exists over the whole
time interval? We have the following result.
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rTheorem 4: If (%) has a solution on 0 < t 2 T for ¢ = ¢y,
then it has a solution for any ¢ 2 <.

Prooff Let Gy > c1 and define

el L
_ -1.7 1
P2 = quuufu + 5—2- I

Then P; - P, 2 0. It now follows from Lemma A.2 in the
appendix that Sz(t) > Sl(t), where 8, and 8, are.the s50-
lutions corresponding to ¢, and c, respectively. Since
from Lemma A.4 in the appendix, the only way in which the
solution 8 can fail to exist, is by going off to minus in-
finity, it follows that S, exists on any interval where

Sl exists.

Corollary. There exists a nunber Ty such that § exists on
the whole interval 0 < t < T for c > = and 8§ goes off to-
wards minus infinity for some t,, 0 <ty < T when ¢ < €y

Proof. Take cy = inf{all ¢ > 0 such that 5 exists on the

whole intervall.

The connection with the sufficiency conditions of Section
2 is given by the following theorem.
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Theorem 5: Suppose that the Ricecatl equation appearing in
the sufficlency conditions for a minimum, {*¥%} has a sclu~-
tion over the whdle'interval. Then there exists a ¢4 > 0
such that (%) alsc has a solution over the interval 0 £ t <

< T, provided c > Sy,

Proof. Since the difference between the matrices qu;ifi
and (fuﬁgif§~%% T} can be made arbitrarily small the result

follows from Lemma A.5 in the appendix.
As an immediate consequence we get

Theorem 6: If the sufficiency conditions for a ninirnum,gi~
ven in Section 2,hold, then there exists & & such that J
has a local minimum at %, u for c > g

Proof. Follows from Theorems 5 and 1.

If J has a minimum at (Q,G) with respect to all (x,u),
it has obviously a minimum with respect to (x,u) satis-

fying the differential equation x = f(x,u). B8ince J{x,u)=
J(x,u) for these (x,u), the theorems of this section form

an alternative proof of the sufficiency conditions of sec-

tion 2.

So far we have shown that the existence of a solution to the
the Riccati equation implies that J has a local minimum.
We will now show that existence of the solution of the

Riccati equation is also necessary.
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Theorem 7: Suppose that J has a local minimum at (x,u).
Then the Riccati equation (%) has a solution over the in-~
texrval €6 £ t < T where ¢ > 0 is arbitrary.

Proof. For J to have a local minimum it is necessary that
§“3(h,k) > 0 for all admissible h and k. Since the solition
of the Riccati equation (%} exists on some interval t; <

< t 2 T we have

t

1
2= _ 1 T T T T
63 (h,k) = 3 £ b (0, +cf £ )h + 207 (H  +of £k +
T T 'Tc T To T
# kT(H  tef f Yk + chTh - 2chTELh 20k £ ﬁ}dt +
-1 T
o |k O+ Huu( <FE S)h ‘
+ j .
2 |, -1 T 1
1|h+ [£8 (8 +£85) +58=-£f]h
( T T
Huu + cfufu *cfu
Lﬂcfu oI
k + H.b(H_ +£o5)h
ua ux
. dat +
T 1
A+ [£H au (H, +£8) + 38 £ ]h
1.7 :
+ g 0 (k)8 (E)R (k)
Now choose
k(t) =0 _
02 t<ty
t
hit) = ¢ a

1




where a is an arbitrary vector, and

14.

! T,

ko= Huu(Hux'kfus)h'
U PR | Tay Lo . -
B = [quuu(Hux+qu_) + Lg fx]h b st T
h(tl) =g J
The result is

2
2= A N i 1.
5°F(n,k) =3 a’ [ {-—-;-2- (H, +CEfE) +c =51

0 ‘t t

1 1
t 7, 1 T )
- c 5 {fx+fx)}dt a+ 3 a s{tl)a z 0

£

a s (t,) —-'thl-i—:—%-(}{ sefif ) + S 1 -
178z a o t2 i 4 x°x 2
' 1 ' t
ok T
- =5 (fx+fx)}dt a
ty

for any vector a. Since the integra

1 exists for any il > G,

S(t) is bounded from below on t; < t < T for any £, > 0 and

the theorem is proved.

D R .
. N -

i Actually we only know that 62J >

differentiable and k continuocous.

8 for h continuously
The (h,k) given above

can, however, be approximated arbitrarily well by (h k)

which are continuously differentiable and continuocus

respectively.
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4. EXTENSION TO FIXED END POINT PROBLEMS.

We will suppose that the optimal control problem is for-
mulated as in Section 2 with the additional requirement
that certain components of x(T} are'fiﬁedi For simplicity
the components of x are assumed to be ordered so that the
first g values are fixzed.

e
i

xi(T) = bi lf sevy g

xi(T) free i = q#l, see D

Tt is also natural to assume that ¥ depends only on Y

LIS Y ] Xn.

The conditions on the multipliers p in Section 2 are then
altered to

oF .

_aﬁ l=q+lf ..;,n

ax ' 89X,

.
]
I
l‘d
P..
8
!

We still assume that such a p exists.
The second order expansion of J will be the same. The ad-
missible variations (h,k) will now, in addition to the

conditions of Section 3, have to satisfy

hy (T) = 0 =1, eees

From this it follows that the Riccati equation {*) will be
the same, except for the end point condition on 8{T)., This
will be




i6.

32F ’ i
*®x .
3xiaxj

1

q"l"l, ...,'n

q+l’ LA A n

4
i

and A and B are arbitrary.

The theorems of Section 3 are now modified as follows,

Theorem 1': If ¢ > 0, 1f H > 0 and if the Riccati equa-

. -1 -1 T
3 ok ak - = - -
( ) § =H,, - H H-H + (£, £,H uusux) S +
_ -1 . T, 1
+ S(fx quuuHux} S(fuﬂuufu*’c 1)s

has a solution over the whole interval 0 < t 5 T for some
value of A and B, then 623 > 0 for all admissible h and k
not both identically zero.

Theorem 2': Suppose the conditions of theorem 1' hold.
Then there exists a constant n > 0 such that

T

523 (h,k) » n [(hTh +5Th +x k) at
O .

Theorem 3': Suppose the conditions of theorem 1' hold.
Then J has a local minimum at (x,u) with respect to all
(x,u) with x continuously differerntiable, x{0) = a,

xi(T) = bi’ i=1, ..., g and u continuous.
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Theorem 5': Suppose that the Riccati equation appearing
in the sufficiency conditions for a minimum, (**}, with
poundary conditions - '

]

A+ B
S(T) = |wmmpo—m-
B‘I‘

1

s F
&4

has a solution over the interval 0 < t < T for some A and
B. Then there exists a Cqy > 0 such that (**x) also has a
solution over the interval 0 ¢ t g T, provided c > ¢;.

Theorem 6': If H , > 0 and the conditions of Theorem 5'
hold, then there exists a ¢, such that J has a local mini-

mum at (x,u) for ¢ > cy.

The proofs of these theorems are straightforward exten-

gions of Theorems 1-6.
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5, EXAMPLES.
To illustrate the results of the previous sections we will

glve some examples where the conditions can pe worked out
explicitly. All these examples are from Bryson and Ho (1969).

Example 1. shortest distance between a point and a great

circle on a sphere.

MERIDIAN a =a

Let the given point be at the origin O of a latitude-longi-
rude coordinate system and let the great circle be the me-
ridian o = oy {6 is latitude, ¢ is longitude) .

Then 682 = (rde)2 + {r cogs © du)2 where r is the radius of
the sphere. The problem is then to minimize

o
1 T

= f VZZ + cos?e da
0

vhere

a8 - 4 8(0) = 0

The Hamiltonian is given by
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4

H = %2 + 00526 + pu

The first order necessary conditions are

- ) ‘ u
L4
Vﬁz o+ c0529

+p=10

- _ coi 8 51n49¥ o (T)
bﬁu + cos™ 8

#
[

These are satisfled by =20, 8=0, p=0. The second or-
der gquantities are, evaluated along u, 8.

A = 1 Hyg = 0 Hog =~ 1

The Riccati equation {(*%} is then

_g'.g..—.—-l—}?z P(ﬁl)*o
Ao

with soclution

P{a)‘= - tan (o ~a)

The second order sufficlency conditions are satisfied if
0 <oy < K/2. ‘

The Riccati eguation (*} is

am 1 - 1edys? -
] (L+3)s Si{ag). = 0.

with sclution

8 = - tanVl + % (o) ~a0) 1+ i
C
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The value of y is then

Example 2. Shortest path beétween two points on a sphere.

The only difference compared with Example 1 is the bounda-
ry condition E(al) = 0, The Riccati equation is

- 25 - o - P P{al) arbltrary

with solutioq P = - tan{mo—a} where GO can be chogen ar-
bitrarily. To prolong the existence of P as far as possible
oy should be taken close to m/2 (which corresponds to tak-
ing P(al) large, as expected). The sufficiency conditions
are then satisfied on the interval 0 < a < n-& for any

& > 0,

For Riccati equation corresponding to J is

-1 - 142
- == = =1 (l-%c}s

with solution
l M
S =~ tan\fl + = (0:0"‘0{) 1 + %

The value of Cq is then
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for 0 < oy < T,

Examgle 3.
x,g

i y

Study the motion of a rocket in a constant gravitational
field. The thrust has a constant magnitude a, but the

thrust angle B is a control variable. If x, denotes the
vertical component of the velocity, the equations of mo-

tion are

)

asginp - g

We assume the following boundary conditions

it

xl{O) xz(G) =0

H

x, (7). = h x, (F) = 0

The objective is to maximize the horisontal velocity com~
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ponent at the final time T. This gives the loss’

T
J=-a [ cos B dt
5 .

The Hamiltonlan is

It

H=-acos B+ pyX, + pyla sin B - q)

The first order necessary condltion are

Py T 7 Py

sin g + p, cos g =0

This gives a control strategy of the form
tan Q = At + é

where the constants A and B are determined from thé'ﬁdundav
ry conditions. The second order terms are

Hex = 0 Hyp = O
. &
H = g cos B - ap, sin g = > 0.
BB 2 cos B .

Along the trajectory given above we have

The Riccati equation is
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I8

41
C

~-1.7
spfp

x S(fBH

ol
fo + 8f

)
t

which is satisfied by § = 0.

that any ¢ > 0 can be used and Cq = 0.

fhis means
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APPENDIX - Properties of the Riceati Equation.

Here some interesting results about the Riccati equation
are collected. Most of them can be Ffound in books about
iinear gquadratic control theory e.g. Brockett {1970) or
Anderson and Moore (1971). Another useful reference is
Mirtensson {1972). '

We will write the Riccati equation in the form
- S(t) = AT(£)S(L) + S{E)A{L) + 0 (t) - S(£)P{E)S(t)

S(T) = 0,

where A, ¢, P and QO are matrices whose elements are con-
tinuogs functionsg of t0 and QO’ Q' and P are synmetric.
It follows from standard theorems for differential egua-
tions that S({t) exists at least on a sufficiently small
interval tG < t £ T. Moreover, the only way in which 8
can fail to exist is by having some element which becomes
unboﬁnded. In what follows, M é ¥, vhere M and N are sym-
metric matrices, means that M - N is nonnegative definite
and M > N means that M ~ N is positive definite.

It is useful to rewrite the Riccati equation as an integ-

ral eguation. Introduce the fundamental matrix ¢(t,Tf sa~-
tisfying

§¢¢ﬂ;n@¢>q§mummem}
. |

¢(T,T) =1 .

Then we have

T
5(6) = [ 47 (s,6)0, ()9 (s,£)a5 + 47 (T,£) Qg (T, )
t




Lemma A.l. For the Riccati equation

& =2a"s +8A+0Q - SPS

let Sl and S2 be the solutions ccrrespondlng to S(T) é

and S{T) 92 respectively. Then if QO > Q it follows
that S,(t) 2z 8;(t) for all ¢ € {tG,T] where [tﬁ,m] is an
interval on which both solutions exist.

Proof. We have

-4 (5,-8,) = (8-ps,) T (5,-8,) + (5,78)) (A-PS;) -

dt
21
8,01 = §,(T) =95 - 0

Regarding this as a Riccati equation in §, - Sl we get,
using the integral egquation representaﬁicn above

S, = 8 = ¢ (T,t) (Q§-Qp) ${T,t)

where ¢{t,T) now is the fundamental matrix corresponding
to

1 -
A-PS ~ 3 P(s2 Si)

Lemma A.2. Let Sl and S2 be the solutions of the Riccati

egquations
. ug L

- S = A"8S + 8A + Q ~ 8P,5 S(T}. = QO
o T .

- 8§ =2a"S + 8A+ Q- SP,S 8(T) = 0,




respectively. If'?l > 7, then Sz(t) > Sl(t) for all
t E [tG,T], whersa [tﬂ,T} is any interval on which both
solutions exist.

Procf. We have
-8 (g.-8.) = (A-P_S.)T(5,~8;) + (8,-8;) (3~P,5;)
ae 2L 2"1 2 1 2 71 271
- (Sz—Sl)Pz(Szﬁsl} + Sl(Pl—Pz)Sl
S, (T) ~ 5,.(T) =0
Using the integral.equation form this can be written

T

§,(t) = 8, (k) = [ ¢ (s,£)8(P1~P,) S 6(s,£)dS

£ ey 113

Lemma A.3. Let Sl and 52 e ﬁhe solutions of the Ricecati

equations

- & = A'S + SA + Q; - 8PS S(T) = Q,
and

-4 =2a"s + 8a+ Q, -~ P8 s(T). = %

respectively. Then if Qz > Ql it follows that Sz(t) > sl(t)
t € [ty,T], where [tyrP] is any interval on which both so-
lutions exXist.




proof. We have

e +i

Sz(t) - Sl(t) =
where ¢ is the fundamental matrix corresponding to

1
A - P85, - 3 P(Sz-Sl)

1

We can now deduce the foilowing result.

lemma A.4. If P > 0 then there exigts a continuous matrix
R{t) such that §{t) < R{t) on any interval [tO,T] where S
exists. '

Proof. From Lemma A,2 it follows that s{t) < R{t} where R
is the solution to the linear differantial equation.

-~ R =ATR+ RA 4+ D R(T) = Q

From this lemma it follows that, to prove existence of
q(t) on some interval, all that is needed is a lower -bound
on & on that intexval. '

Lemma A.5. Let S be the solution of the Riccati equation

- & = aTs + SA + O - SPS S(T). = 9
and assume that § exists on the interval [£q.F]. Let g be
the golution to the Rlccatl equation where'ﬁ, B and % have

replaced A, O and P, Then there exists an g > 4 such




o~

that § also exists on Lty T1 1€ [E~afl <& Q-0 2
and ||P - 2| < ¢

proof. Since the right hand side of the Riccati equation
is a continuous function of S, A, Q and P the result fol-
lows from general results for nonlinear differential egua-

tions, ses Coddington and Levinson {1955).




