

Time-resolved laser-induced fluorescence lifetime measurements and relativistic Hartree-Fock calculations of transition probabilities in Smll

Xu, Huailiang; Svanberg, Sune; Quinet, P; Garnir, HP; Biemont, E

Journal of Physics B: Atomic, Molecular and Optical Physics

10.1088/0953-4075/36/24/002

2003

Link to publication

Citation for published version (APA):

Xu, H., Svanberg, S., Quinet, P., Garnir, HP., & Biemont, E. (2003). Time-resolved laser-induced fluorescence lifetime measurements and relativistic Hartree-Fock calculations of transition probabilities in SmII. Journal of Physics B: Atomic, Molecular and Optical Physics, 36(24), 4773-4787. https://doi.org/10.1088/0953-4075/36/24/002

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights

- Users may download and print one copy of any publication from the public portal for the purpose of private study
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 19. Dec. 2025

Home Search Collections Journals About Contact us My IOPscience

Time-resolved laser-induced fluorescence lifetime measurements and relativistic Hartree–Fock calculations of transition probabilities in Sm II

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. B: At. Mol. Opt. Phys. 36 4773

(http://iopscience.iop.org/0953-4075/36/24/002)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 130.235.188.41

The article was downloaded on 30/06/2011 at 08:44

Please note that terms and conditions apply.

Time-resolved laser-induced fluorescence lifetime measurements and relativistic Hartree–Fock calculations of transition probabilities in Sm II

H L Xu¹, S Svanberg¹, P Quinet^{2,3}, H P Garnir³ and E Biémont^{2,3}

- ¹ Department of Physics, Lund Institute of Technology, PO Box 118, S-221 00 Lund, Sweden
- ² Astrophysique et Spectroscopie, Université de Mons-Hainaut, B-7000 Mons, Belgium
- ³ IPNAS, Université de Liège, Sart Tilman B15, B-4000 Liège, Belgium

E-mail: E.Biemont@ulg.ac.be

Received 1 July 2003 Published 21 November 2003 Online at stacks.iop.org/JPhysB/36/4773

Abstract

Radiative lifetime measurements were performed with time-resolved laser-induced fluorescence techniques for 47 levels of the astrophysically important ion Sm¹⁺ over the energy range 21 000–36 000 cm⁻¹. The new results have been compared with previous measurements but also with theoretical calculations taking configuration interactions and core-polarization effects into account, and a satisfying agreement has been found for many levels of this complex ion. New calculated transition probabilities are deduced from the experimental lifetimes and from the theoretical branching fractions for 162 transitions of astrophysical interest. These results will help astrophysicists in the quantitative investigation of the chemical composition of CP stars.

1. Introduction

It has long been recognized that singly ionized samarium (Sm II) produces emission lines in the spectra of many different stellar objects like the Ap, Am or Bp stars, the Ba stars and the C- or S-type stars (see e.g. Jaschek and Jaschek 1995, and the references therein). Samarium is also well represented in the solar spectrum: in the period from the work of Grevesse and Blanquet (1969) to that of Biémont *et al* (1989), the abundance value of Sm has decreased from 1.66 (in the usual logarithmic scale used for solar abundances) to 1.01 (in the same scale), a substantial change largely connected to the improvement of the atomic data used for the analyses. Despite this progress, it remains true that a rather small number of Sm II transitions have been identified in stellar spectra and, on the basis of the analysis of the observed profiles, large overabundances of this element are generally found when compared to the solar system value. As an example, Sm II is well represented in the spectrum of the rapidly rotating

star HD 101065 (Przybylski's star) and its abundance is several orders of magnitude larger than that found in the solar photosphere (Cowley *et al* 2000).

As a general rule, the detection of the rare-earths in numerous stellar spectra is hindered by the fact that many elements or ions have no outstanding strong lines but show a wealth of medium or weak intensity lines which, in addition, are frequently blended with contributions originating from the most astrophysically abundant elements (see e.g. Reyniers *et al* 2002). Making more reliable and more accurate abundance determinations requires the consideration, when possible, of a large number of transitions to avoid spurious identifications or analyses biased by blending problems. This in turn requires a larger set of radiative data which, for a limited number of transitions, can be obtained experimentally. In many cases however the required transition probabilities can only be deduced theoretically. But the theoretical models, in complex situations like those encountered in the lanthanide spectra, need detailed comparisons with experimental measurements in order to assess their reliability.

In the present work, we report on lifetime measurements in Sm II using a selective-laser excitation technique, and on transition probability determination in the same ion with the widely used relativistic Hartree–Fock (HFR) approach in order to expand the sample of Sm II lines usable in astrophysics for refining the chemical composition of some CP stars.

2. Levels and transition probabilities in Sm II

Samarium has 7 stable isotopes: 144 (3.1%), 147 (15.0%), 148 (11.3%), 149 (13.8%), 150 (7.4%), 152 (26.7%) and 154 (22.7%), the nuclear spin of the two odd isotopes being 7/2. In the stars, 148 Sm and 150 Sm are produced by the s process, 144 Sm by the p process, 154 Sm by the r process and 147 Sm, 149 Sm and 152 Sm are produced by both the r and s processes.

The ground state of Sm II is $4f^6(^7F)6s^8F_{1/2}$. According to the NIST compilation (Martin *et al* 1978), very few energy levels are known in this ion. In fact, 70 even levels and about 300 odd levels have been determined by Albertson (1936), Albertson and King (1936) and by spectroscopists from the Aimé Cotton laboratory (Carlier 1967, Blaise *et al* 1969, Morillon 1970, Henny-Schweighofer 1970). They belong to the $4f^6(^7F)6s$, 5d configurations and to the $4f^7$ and, possibly, to the $4f^6(^7F)6p$, $4f^5(^6H^o)5d6s$ configurations, respectively. Most of the assignments for odd parity states, however, need confirmation.

Transition probabilities or lifetime values in Sm II are still very sparse. In addition, they are very difficult to obtain both experimentally and theoretically in view of, on the one hand, the fragmentary knowledge of the spectrum and, on the other hand, its complexity originating basically from the large number of closely spaced low-excitation levels. In addition, their reliability is hard to assess and requires the use of different independent methods applied to the same levels.

Published transition probabilities and branching fractions (BF) are due to Corliss and Bozman (1962) (arc measurements), to Saffman and Whaling (1979) (BF measurements), and to Kastberg *et al* (1993) (Rabi frequencies observed via optical nutation). Radiative lifetimes have been obtained by beam-foil spectroscopy (Andersen *et al* 1975), by the delayed-coincidence technique with electron-beam excitation by Blagoev *et al* (1978) and Gorshkov and Komarovskii (1986), and by the beam-laser method (Vogel *et al* 1988).

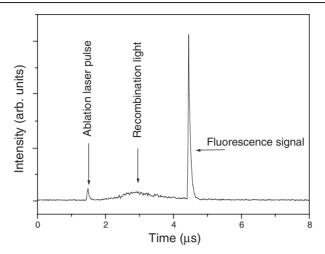
The two most extensive contributions concerning lifetime measurements in this ion are based on the use of the laser-induced fluorescence technique: they concern 35 levels up to 30 880 cm⁻¹ with lifetimes in the range 10–88 ns excited in sputtered metal vapour (Biémont *et al* 1989) and 82 levels, with lifetimes in the range 9–190 ns, excited by the beam-laser method up to 29 600 cm⁻¹ (Scholl *et al* 2002b).

Compilations of lifetimes and f-values in Sm II are due to Blagoev and Komarovskii (1994) and to Komarovskii (1991).

3. Lifetime measurements

The lifetime measurements were obtained, in the present work, by using selective excitation of the ionic levels by tunable laser radiation and time-resolved detection of the fluorescence released from the investigated levels. The Sm⁺ particle source was produced by the method of laser ablation, which has the advantage of yielding high ionic populations in ground as well as metastable states that can be used as a starting point for laser excitation. The experimental apparatus used has been described elsewhere in detail (see e.g. Dai *et al* 2003) and, therefore, only a brief description is given here.

A pure samarium foil was placed on a rotating target located in a vacuum chamber with a pressure of about 10^{-6} - 10^{-5} mbar. The ablation laser pulses, emitted from an Nd:YAG laser (Continuum Surelite) with a 532 nm wavelength, a 10 ns duration, and a variable pulse energy, normally in the range 2–10 mJ, were focused vertically onto the surface of the rotating samarium foil, from which a small plasma containing electrons, atoms and ions in various ionization stages was produced. When the plasma reached the interaction zone about 10 mm above the rotating target surface, it was crossed horizontally by an excitation laser beam with useful properties (hereafter described), which were obtained by combining the methods of stimulated Brillouin scattering (SBS) in water, and stimulated Stokes Raman scattering (SSRS) in hydrogen gas. A 532 nm laser pulse, emitted from an injection seeded and Q-switched Nd:YAG laser (Continuum NY-82) with an 8 ns pulse duration and a single pulse energy of 400 mJ, was first sent to the SBS compressor to be shortened to about 1 ns. Then the shortened laser pulse was employed to pump a dye laser (Continuum Nd-60), in which the DCM dye was operated. The radiation from the dye laser could be frequency doubled in a KDP crystal. The dye laser beam at its fundamental frequency or its second harmonic was focused into the SSRS cell with a hydrogen pressure of about 10 bars, in which different orders of stimulated Stokes and anti-Stokes Raman scattering were obtained. The different components of the laser beams from the SSRS cell were first isolated with a CaF2 Pellin-Broca prism and then the appropriate excitation light was sent into the vacuum chamber for excitation of the ions. Both Nd:YAG lasers were externally triggered by the same digital delay generator (Stanford Research Systems Model 535) and remained at a 10 Hz repetition rate. The fluorescence was collected by a fused-silica lens and focused to the entrance slit of a 1/8 m monochromator equipped with a Hamamatsu 1564U micro-channel-plate photomultiplier tube (200 ps risetime). A transient digitizer (Tektronix Model DSA 602) was used to record and average the signals. Finally the averaged time-resolved fluorescence signals were transferred to a personal computer for lifetime evaluations. The lifetimes measured and the corresponding excitation schemes are given in table 1.


In the measurements, the fluorescence signals in the different decay channels from excited upper levels to possible lower levels were checked and the strongest one was usually recorded for the lifetime evaluation. Special attention has been paid to all possible systematic effects, which can potentially affect the accuracy of the measured lifetimes, such as flight-out-of-view effects, radiation trapping and collisional effects by adjusting a variety of experimental conditions. A recording of the time-resolved signal of the laser-produced plasma and laser-induced fluorescence is shown in figure 1. The background intensity varies slowly compared with the fluorescence signal. By adjusting the experimental parameters containing the ablation laser intensity and the delay time, the background could be neglected. To check the collisional quenching and radiation trapping effects, measurements under different plasma conditions

4776 $H\;L\;Xu\;\textit{et al}$

Table 1. Levels measured in Sm II and corresponding excitation schemes.

Energy $(cm^{-1})^a$ Configuration J Confignal J Configuration J Configuratio	Table 1. Lev	eis measured in Si	II II allu	correspondi	ing excitation s	schemes.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Origin ^a	Excitation	Laser	Detection
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(cm^{-1})^a$	Configuration ^a	J	(cm^{-1})	$\lambda_{vac}\;(nm)$	mode ^b	$\lambda_{vac} \; (nm)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 702.33	4f ⁶ (⁷ F)6p?	3/2	1518.29	495.44	$\omega + A$	468
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 904.12	$4f^{6}(^{7}F)6p$?	3/2	2003.23	502.49	$\omega + A$	475
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 429.49	$4f^{6}(^{7}F)6p$?	5/2	326.64	452.43	$2\omega + 2S$	463
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 875.41	$4f^{6}(^{7}F)6p$?	7/2	838.22	453.78	$2\omega + 2S$	468
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23 177.49	$4f^{6}(^{7}F)6p$?	3/2	326.64	437.62	$2\omega + 2S$	462
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 842.20	$4f^{6}(^{7}F)6p$?	5/2	838.22	434.71	$2\omega + 2S$	458
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 962.25	$4f^{6}(^{7}F)6p$?	3/2	838.22	432.45	$2\omega + 2S$	423
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 257.37	$4f^{6}(^{7}F)6p$?	9/2	1489.16	439.21	$2\omega + 2S$	439
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 429.52	$4f^{6}(^{7}F)6p$?	3/2	838.22	423.89	$2\omega + 2S$	409
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 588.00	$4f^{6}(^{7}F)6p$?	11/2	2237.97	447.43	$2\omega + 2S$	464
25 565.97 $4f^6(^7F)6p?$ $7/2$ 2237.97 428.67 $2\omega + 2S$ 404 25 980.32 $4f^5(^6H)5d6s?$ $5/2$ 2688.69 429.34 $2\omega + 2S$ 417 26 357.90 ? $5/2$ 326.64 384.15 $2\omega + S$ 402 26 484.66 ? $3/2$ 0.0 377.58 $2\omega + S$ 408 26 599.08 ? $3/2$ 0.0 375.95 $2\omega + S$ 388 26 690.30 $4f^5$ 5d6s? $1/2$ 326.64 379.31 $2\omega + S$ 405 26 828.29 $4f^6$ (7F)6p? $11/2$ 3909.62 436.33 $2\omega + S$ 406 26 974.67 ? $7/2$ 838.22 383.14 $2\omega + S$ 400 27 063.30 $4f^5$ 5d6s? $3/2$ 0.0 369.50 $2\omega + S$ 400 27 284.69 ? $5/2$ 326.64 372.60 $2\omega + S$ 408 27 26.39.6 $4f^6$ 7s6s? $1/2$	25 178.45	$4f^{5}(^{6}H)5d6s$?	3/2	1518.29	422.65	$2\omega + 2S$	397
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 385.36	$4f^{6}(^{7}F)6p$?	11/2	2237.97	432.01	$2\omega + 2S$	432
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 565.97	$4f^{6}(^{7}F)6p$?	7/2	2237.97	428.67	$2\omega + 2S$	404
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 980.32	$4f^{5}(^{6}H)5d6s$?	5/2		429.34	$2\omega + 2S$	417
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 357.90	?	5/2	326.64	384.15	$2\omega + S$	402
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 484.66	?	3/2	0.0	377.58	$2\omega + S$	408
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 565.61	$4f^{6}(^{7}F)6p$?	9/2	3052.65	425.30	$2\omega + 2S$	399
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 599.08	?		0.0	375.95	$2\omega + S$	388
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 690.30	4f ⁵ 5d6s?	1/2	326.64	379.31	$2\omega + S$	405
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 828.29	$4f^{6}(^{7}F)6p$?	11/2	3909.62	436.33	$2\omega + 2S$	446
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 938.42	?	7/2	838.22	383.14	$2\omega + S$	393
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 974.67	?	5/2	326.64	375.26	$2\omega + S$	400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 063.30	4f ⁵ 5d6s?	3/2	0.0	369.50	$2\omega + S$	381
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 165.35	?	5/2	326.64	372.60	$2\omega + S$	408
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 210.12	?	1/2	0.0	367.51	$2\omega + S$	389
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 284.69	?	5/2	326.64	370.95	$2\omega + S$	406
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 464.20	$4f^6(^7F)6p$?	7/2	3499.12	417.27	$2\omega + 2S$	404
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 695.96	4f ⁵ 5d6s?	13/2	5317.56	446.86	$2\omega + 2S$	420
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 756.88	?	3/2	0.0	325.13	2ω	325
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 045.47	?	5/2	326.64	325.53	2ω	338
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 171.00	?	3/2	0.0	320.81	2ω	330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 774.52	?	7/2	838.22	323.24	2ω	330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 915.67	?	7/2	838.22	321.78	2ω	337
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 358.56	?	3/2	1518.29	324.25	2ω	339
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 434.70	?	9/2	1489.16	323.15	2ω	331
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 857.54	?	9/2	1489.16	318.79	2ω	327
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 935.43	?	5/2	2003.23	323.29	2ω	340
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 945.19	?	9/2	1489.16	317.90	2ω	335
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 107.10	?	5/2	2003.23	321.50	2ω	329
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 598.70	?	11/2		318.87	2ω	327
$34\ 145.44$? $13/2$ 3052.65 321.62 2ω 331 $34\ 734.70$? $9/2$ 3499.12 323.88 2ω 344 $34\ 418.95$? $11/2$ 3052.65 318.81 2ω 328 $34\ 768.41$? $13/2$ 3052.65 315.30 2ω 324	33 775.84	?		2237.97	317.08	2ω	325
$34\ 145.44$? $13/2$ 3052.65 321.62 2ω 331 $34\ 734.70$? $9/2$ 3499.12 323.88 2ω 344 $34\ 418.95$? $11/2$ 3052.65 318.81 2ω 328 $34\ 768.41$? $13/2$ 3052.65 315.30 2ω 324	33 881.94	?	7/2	2688.69	320.58	2ω	339
34418.95 ? $11/2$ 3052.65 318.81 2ω 328 34768.41 ? $13/2$ 3052.65 315.30 2ω 324	34 145.44	?		3052.65	321.62	2ω	331
34768.41 ? $13/2$ 3052.65 315.30 2ω 324	34 734.70	?	9/2	3499.12	323.88	2ω	344
		?	11/2	3052.65	318.81	2ω	328
35348.60 ? $9/2$ 4386.03 322.97 2ω 323	34 768.41	?	13/2	3052.65	315.30	2ω	324
	35 348.60	?	9/2	4386.03	322.97	2ω	323

^a From the NIST compilation (Martin *et al* 1978). ^b 2ω means the second harmonic, S and A are written for the first Stokes and anti-Stokes components of the Raman scattering.

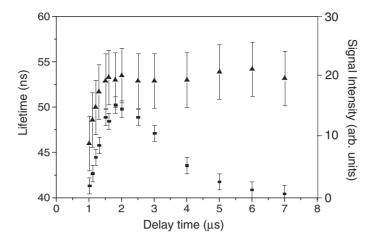
Figure 1. The detected light intensity at 400 nm as a function of time. The fluorescence is from the level of 26 974.67 cm⁻¹ and the background light from recombination between electrons and the ions.

were performed. The delay time between the ablation pulse and the excitation pulse was varied between 1 and 7 μ s.

In figure 2, the detected fluorescence intensity and the evaluated lifetime of $26\,974.67\,\mathrm{cm^{-1}}$ as a function of the delay time between ablation and excitation pulses are shown. As the delay time was changed, the detected fluorescence intensity could be modified by a factor of more than 10, but still reasonably good signals were obtained and the evaluated lifetime values for delays longer than 2 μ s were found to be well coincident. For delay times shorter than 2 μ s, shorter lifetime values were obtained due to collisional deexcitation in the dense plasma. In this experiment, a static magnetic field of about 100 G, provided by a pair of Helmholtz coils, was added and removed over the interaction zone to check for possible quantum beats in long-lived states due to the Zeeman effect. The flight-out-of-view effects have also been minimized by adjusting the position and width of the entrance slit of the monochromator and the delay times between the ablation and the excitation pulses. To ensure a linear response of the detection system, the fluorescence signals were detected with different neutral density filters inserted in the exciting laser light path.

For each level measured, about 10 fluorescence decay curves, each smoothed by averaging fluorescence photons from 1000 pulses, were recorded under different experimental conditions, and lifetimes were evaluated by a least-square exponential fitting procedure. The average lifetime value was adopted. All the experimental lifetime results are given in table 2 with their uncertainties.

4. Branching fraction calculations

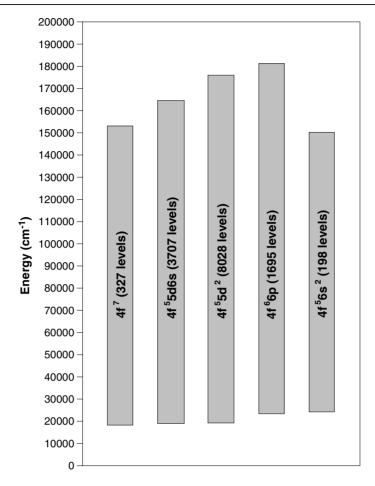

Obtaining transition rates from lifetime measurements requires the complementary determination of adequate branching fractions (BF). It has been shown in previous papers (see e.g. Biémont *et al* 2002, Dai *et al* 2003, Zhang *et al* 2002a, 2002b, 2002c) that, for heavy ions such as neutral, singly or doubly ionized lanthanides, the consideration of both intravalence and core-valence correlation is essential in atomic structure calculations. In many different situations, the HFR method, described by Cowan (1981), has appeared usable and reliable

4778 $H\;L\;Xu\;\textit{et al}$

Table 2. Experimental and theoretical radiative lifetimes for odd-parity levels in Sm II.

		This wo	ork	
$E (cm^{-1})$	J	Experiment ^a	Theory	Previous experiments ^a
21 702.33	3/2	41(3)	37.2	39(2) ^b , 40.2(2) ^c
21 904.12	3/2	65(6)	67.1	70.8(6) ^c
22 429.49	5/2	72(7)	67.7	79.4(9) ^c
22 875.41	7/2	40(3)	35.2	39.9(1) ^c
23 177.49	3/2	48(3)	53.4	48.0(4) ^c
23 842.20	5/2	35(2)		23(3) ^d , 34(2) ^b , 33.6(3) ^c
23 962.25	3/2	24.7(1.5)		22.54(6) ^c
24 257.37	9/2	47(3)	47.6	46.6(3) ^c
24 429.52	3/2	27.5(1.5)	32.8	24.7(1) ^c
24 588.00	11/2	42(3)	57.6	41.5(0.3) ^b , 40.7(5) ^c
25 178.45	3/2	25(2)		23.5(2) ^c
25 385.36	11/2	43(3)	56.3	69(4) ^d , 42(1) ^e , 38.7(2.0) ^b , 42.2(2) ^c
25 565.97	7/2	31(2)		31.1(5) ^c
25 980.32	5/2	20.0(1.0)		20(1.5) ^b , 19.9(4) ^c
26 357.90	5/2	33(2)	39.9	32.2(3) ^c
26 484.66	3/2	54(3)		
26 565.61	9/2	64(4)		65.6(4) ^c
26 599.08	3/2	20.0(1.0)		17.9(2) ^c
26 690.30	1/2	16.0(1.0)	10.9	
26 828.29	11/2	30(2)	25.2	$27.6(0.7)^{e}, 27.3(4)^{c}$
26 938.42	7/2	38(2)		36.4(0.7) ^e
26 974.67	5/2	53(4)	48.9	54.4(7) ^c
27 063.30	3/2	10.6(0.5)	11.3	
27 165.35	5/2	60(4)	66.0	64(3) ^c
27 210.12	1/2	22(2)	16.1	
27 284.69	5/2	18.4(1.0)	18.4	21.9(1.4) ^e , 17.6(0.9) ^b , 17.3(2) ^c
27 464.20	7/2	39(3)	41.8	22(2) ^d , 35(3) ^b , 36.9(8) ^c
27 695.96	13/2	24(2)	15.0	$16(4)^f$, $16(2)^d$, $24(0.6)^e$, $24.6(5)^c$
30 756.88	3/2	75(6)		
31 045.47	5/2	11.2(0.8)		
31 171.00	3/2	17.9(1.0)		
31 774.52	7/2	25(2)		
31 915.67	7/2	29(2)		
32 358.56	3/2	16.6(1.2)		
32 434.70	9/2	15.5(0.9)		
32 857.54	9/2	41(3)		
32 935.43 32 945.19	5/2 9/2	24(2) 42(3)		
32 943.19	5/2	68(6)		
33 598.70	$\frac{3}{2}$	33(2)		
33 775.84	11/2	35(2)		
33 881.94	7/2	29(2)		
34 145.44	13/2	16.0(0.9)		
34 734.70	9/2	52(4)		
34 418.95	11/2	38(2)		
34 768.41	13/2	32(2)		
35 348.60	9/2	97(9)		
	,			

^a The number between parentheses corresponds to the estimated error on the last digit.
^b Biémont *et al* (1989).
^c Scholl *et al* (2002a).
^d Gorshkov and Komarovskii (1986).
^e Vogel *et al* (1988).
^f Andersen *et al* (1975).


Figure 2. The detected fluorescence intensity (rectangles) and the evaluated lifetime values (triangles) of the Sm II level (26 974.67 cm⁻¹) as a function of delay between ablation and the excitation pulses.

(i.e. leading to lifetime values generally in agreement within a few per cent with experimental data obtained with laser spectroscopy techniques) for providing missing data.

In the case of Sm II, according to the NIST compilation (Martin *et al* 1978) and the predictions of Brewer (1971), the low-lying levels belong to the very complex configurations 4f⁷, 4f⁵5d6s, 4f⁵5d², 4f⁶6p, 4f⁵6s² in the odd parity and 4f⁶6s, 4f⁶5d, 4f⁵5d6p, 4f⁵6s6p in the even parity. These configurations exhibit a huge number of levels and, in addition, simple calculations performed with the HFR approach show that these configurations overlap in a large range of energy and, consequently, are expected to interact strongly. This is illustrated in figure 3 where the energy ranges of the odd-parity configurations are estimated through monoconfigurational calculations.

Unfortunately, the consideration of all the possible levels belonging to these 9 configurations (i.e. 13 955 levels for the even parity and 16 540 levels for the odd parity) was prevented, in the present work, by the computer limitations (too large matrix dimensions). To overcome this difficulty, we have considered a physical model in which the sizes of the energy matrices were reduced by including only a limited number of terms of the subshell f^w (w = 5, 6) in setting up quantum states for the complete configurations. More precisely, only the sextet (2S + 1 = 6) terms of $4f^5$ were retained in the calculation of $4f^5$ 5d6s, $4f^5$ 5d², $4f^5$ 6s², $4f^5$ 6dep and $4f^5$ 6s6p configurations and only the septet (2S + 1 = 7) and quintet (2S + 1 = 5) terms of $4f^6$ were retained for the configurations $4f^6$ 6p, $4f^6$ 6s and $4f^6$ 5d. This allowed us to considerably reduce the total number of energy levels from 13 955 to 1667 and from 16 540 to 1876 for the even and odd parities, respectively. In addition, it was verified that the omitted terms, i.e. the quadruplets and doublets in the case of $4f^5$ and the triplets and singlets in the case of $4f^6$, correspond to energy levels situated above 35 000 cm⁻¹, i.e. outside the energy range considered in the present work (see table 2).

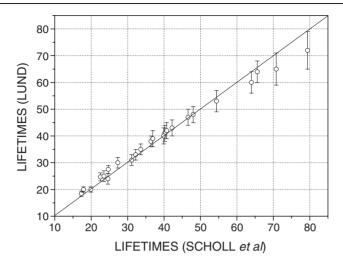

In view of the scarcity of the experimentally determined energy levels available in Sm II (see Martin *et al* 1978), no semi-empirical adjustment of the radial parameters could be seriously considered. Instead, in order to obtain a more realistic representation of the Sm II energy spectrum, all the Slater integrals were scaled down by a factor 0.75, in agreement with a suggestion made by Cowan (1981) of a factor in the range 0.75–0.85. The choice of 0.75 was dictated by the best agreement between calculated and observed energy levels for the even parity. This choice, however, was not crucial because it was verified that

Figure 3. Predicted energies and theoretical numbers of levels for the low-lying odd configurations of Sm II. The energy ranges have been obtained through monoconfigurational HFR calculations.

adopting 0.80 instead of 0.75 would lead to a change in the lifetime values of a few (<10) per cent. The average energies were adjusted to reproduce adequately the levels given in the NIST compilation (Martin *et al* 1978) or predicted by Brewer (1971) for the lowest level of each configuration, i.e. $4f^66s \, ^8F_{1/2}$ ($E=0 \, \mathrm{cm}^{-1}$), $4f^65d \, ^8H_{3/2}$ ($E=7135 \, \mathrm{cm}^{-1}$), $4f^55d6p \, ^8L_{9/2}$ ($E=44\,000\pm2000 \, \mathrm{cm}^{-1}$), $4f^56s6p \, ^8I_{5/2}$ ($E=49\,000\pm1000 \, \mathrm{cm}^{-1}$), $4f^7\, ^8S_{7/2}$ ($E=18\,289 \, \mathrm{cm}^{-1}$), $4f^55d6s \, ^8K_{7/2}$ ($E=19\,000 \, \mathrm{cm}^{-1}$), $4f^55d^2\, ^8L_{9/2}$ ($E=19\,000 \, \mathrm{cm}^{-1}$), $4f^66p \, ^8G_{1/2}$ ($E=23\,400 \, \mathrm{cm}^{-1}$), $4f^56s^2 \, ^6H_{5/2}$ ($E=24\,000\pm2000 \, \mathrm{cm}^{-1}$).

Unfortunately, due to the huge number of calculated odd-parity levels and to the strong mixing between these states, it was extremely difficult to establish an unambiguous correspondence between the calculated and the experimental values. The use of the available Landé factors was not even of great help for making the identifications more reliable. It is worth emphasizing that, according to our HFR calculations, the average purity, in LS coupling, of odd-parity levels below $23\,000\,\mathrm{cm}^{-1}$ is found to be equal to 77%, this value decreasing to 54% for the levels situated between $23\,000\,\mathrm{and}\,25\,000\,\mathrm{cm}^{-1}$ and to 32% for those located between $25\,000\,\mathrm{and}\,35\,000\,\mathrm{cm}^{-1}$. In fact, among the 47 levels for which radiative lifetimes

Figure 4. The dependence of the experimental lifetimes measured in the present work on those obtained by Scholl *et al* (2002a).

were measured in the present work (see table 2), only 19 were assigned with certainty in the calculations.

5. The radiative lifetimes

For the 19 levels mentioned in section 4, calculated lifetimes are compared in table 2 with the experimental measurements of the present work. Previous data are also quoted in the same table. For 23 levels, there were no measurements available. As it appears from the table, the new lifetime values agree quite well (within a few per cent) with the calculations for most of the levels, a situation that is encouraging in view of the complex configurations encountered in Sm II.

Our new experimental lifetime values agree, within the error bars, with the previous laser measurements of Biémont *et al* (1989) (7 levels in common). Similar considerations apply when comparing the results of the present work with the data of Scholl *et al* (2002b) (23 levels in common) with the exception of the level at 27 695.96 cm⁻¹. For this level, two groups of measurements have been published: some 'low' values (1 ns) (Andersen *et al* 1975, Gorshkov and Komarovskii 1986) and some 'high' values (24–25 ns) (Vogel *et al* 1988, Scholl *et al* 2002b, this work). The origin of this discrepancy is not clear, the theoretical value seeming to favour the 'low' results.

In a plot of the Lund results versus those of Scholl *et al* (2002b), a proportionality and good agreement were found for lifetimes less than 60 ns (see figure 4). However, a levelling off seems to be present in the figure when the lifetimes get longer than 60 ns, i.e. the Lund results are lower than those of Scholl *et al*. Although we have no reason to doubt our results, the disagreement with beam-laser measurements for this case is hard to understand since the two methods yielded very good agreement in other cases, for example, for Pr II (Scholl *et al* 2002a, Biémont *et al* 2003) and for Nd II (Pinciuc *et al* 2001, Xu *et al* 2003). Clearly a third, independent measurement would be useful for these longer values.

The delayed coincidence results of Gorshkov and Komarovskii (1986) disagree considerably from the present measurements and also from the other previous results for three

Table 3. Comparison between HFR BF as obtained in the present work and experimentally determined values (Saffman and Whaling 1979) for selected levels in Sm II.

Upper le	vel	Lower leve	el		BF	(%)
Configuration	$E (\text{cm}^{-1})$	Configuration	$E \text{ (cm}^{-1})$	λ(Å)	EXP	HFR
4f ⁵ 5d6s? ⁸ G ^o _{1/2}	26 690.30	4f ⁶ (⁷ F)6s a ⁸ F _{1/2}	0.00	3745.605	81.7	64.5
,		$4f^6(^7F)6s a ^8F_{3/2}$	326.64	3792.025	6.6	21.9
		$4f^6(^7F)6s a ^6F_{3/2}$	2 003.23	4049.584	2.8	0.8
		$4f^6(^7F)5d a ^8H_{3/2}$	7 135.06	5112.304	8.9	7.0
					100.0	94.2
4f ⁵ 5d6s? ⁸ G ^o _{3/2}	27 063.30	$4f^6(^7F)6s a ^8F_{1/2}$	0.0	3693.989	26.4	20.5
3/2		4f ⁶ (⁷ F)6s a ⁸ F _{3/2}	326.64	3739.12	50.0	49.4
		$4f^6(^7F)6s a ^8F_{5/2}$	838.22	3812.067	7.2	13.2
		$4f^6(^7F)5d a ^8H_{3/2}$	7 135.06	5016.61	2.2	1.4
		$4f^6(^7F)5d a ^8H_{5/2}$	7 524.86	5116.700	14.2	5.1
					100.0	89.6
4f ⁵ 5d6s? ? ⁰ _{13/2}	27 695.96	$4f^6(^7F)6s a ^8F_{13/2}$	3 909.62	4202.915	18.3	8.9
13/2		$4f^6(^7F)6s a ^6F_{11/2}$	5 317.56	4467.342	76.2	77.9
		4f ⁶ (⁷ F)5d a ⁸ H _{15/2}	11 094.06	6021.75	0.4	1.4
		$4f^6(^7F)5d b ^8F_{13/2}$	14 084.55	7344.76	2.1	1.2
		4f ⁶ (⁷ F)5d a ⁸ G _{15/2}	14 503.67	7578.09	3.1	2.2
		,			100.1	91.6

levels, indicating that the three lifetime values published by these authors have to be considered cautiously. For the fourth level, a good agreement is observed with our measurement.

HFR BF are compared in table 3 to measured values published by Saffman and Whaling (1979). Some discrepancies are observed between the two sets of results, not only for the weakest lines, but also for some strong transitions. They are directly related to missing branches in the experimental results whose contributions reach 5.8, 10.4 and 8.4%, respectively, according to the last column of table 3.

6. Oscillator strengths and transition probabilities

Calculated oscillator strengths (log gf) and transition probabilities (gA) as obtained in the present work are reported in table 4 for 162 transitions involving the 19 upper odd levels for which a comparison between experimental and theoretical lifetimes was possible (see section 4 and table 2). For these transitions, the combination of HFR BF with the measured lifetimes has allowed us to 'normalize' the gf- and gA-values. Although it is always hard to estimate the accuracy of a new set of f-values, the present oscillator strengths are expected to be characterized by an accuracy of a few per cent for the strongest transitions. The transition probabilities for the weaker lines could be less accurate at least for some specific transitions involving strongly perturbed levels.

According to the comparisons of table 3, we have labelled the transitions of table 4 by the letters A, B and C (last column of the table) in order to provide some information about the expected accuracy of the transition probabilities obtained in the present work: A means an accuracy $\leq 10\%$, B $\leq 30\%$ and C $\geq 30\%$.

It is anticipated that the new results obtained in the present work will help astrophysicists in a quantitative investigation of the chemical composition of some stars.

The present results will be incorporated in the database DREAM accessible at the web site http://www.umh.ac.be/~astro/dream.shtml.

Table 4. Calculated oscillator strengths (log gf) and transition probabilities (gA in s⁻¹) for selected transitions of Sm II. Only transitions with log gf_{HFR} > -2.00 are given in the table. A(B) stands for A \times 10^B.

							log of	α Λ	log of	α Δ	
λ^a	Lower level ^b		Up	per le	vel ^b	log gf HFR ^c	gA HFR ^c	log gf NORM ^d	gA NORM ^d	Notee	
3674.057	0	(e)	1/2	27 210	(o)	1/2	-1.94	6.09(6)	-2.08	4.46(6)	С
3693.989	0	(e)	1/2	27 063	(o)	3/2	-0.89	7.25(7)	-0.86	7.73(7)	В
3708.412	327	(e)	3/2	27 285	(o)	5/2	-1.19	3.48(7)	-1.19	3.48(7)	В
3724.902	327	(e)	3/2	27 165	(o)	5/2	-1.49	1.78(7)	-1.45	1.96(7)	В
3739.120	327	(e)	3/2	27 063	(o)	3/2	-0.49	1.76(8)	-0.47	1.88(8)	A
3745.615	0	(e)	1/2	26 690	(o)	1/2	-0.67	1.19(8)	-0.83	8.11(7)	В
3754.663	838	(e)	5/2	27 464	(o)	7/2	-0.88	6.40(7)	-0.85	6.86(7)	В
3792.023	327	(e)	3/2	26 690	(o)	1/2	-1.13	4.01(7)	-1.29	2.73(7)	В
3812.062	838	(e)	5/2	27 063	(o)	3/2	-1.05	4.69(7)	-1.02	5.00(7)	В
3840.446	327	(e)	3/2	26 358	(o)	5/2	-0.86	6.64(7)	-0.78	8.03(7)	В
3848.758	1489	(e)	7/2	27 464	(o)	7/2	-1.27	2.47(7)	-1.24	2.65(7)	В
3891.185	1518	(e)	1/2	27 210	(o)	1/2	-1.36	2.07(7)	-1.50	1.51(7)	В
3893.556	1489	(e)	7/2	27 165	(o)	5/2	-1.69	1.01(7)	-1.65	1.11(7)	В
3922.687	1489	(e)	7/2	26 975	(o)	5/2	-1.76	8.17(6)	-1.79	7.54(6)	C
3963.006	2238	(e)	9/2	27 464	(o)	7/2	-1.23	2.54(7)	-1.20	2.72(7)	В
3966.047	2003	(e)	3/2	27 210	(o)	1/2	-0.74	8.28(7)	-0.88	6.06(7)	В
3973.104	2003	(e)	3/2	27 165	(o)	5/2	-0.74 -1.29	2.47(7)	-0.86 -1.25	2.72(7)	В
4003.443	2003	(e)	3/2	26 975	(0)	5/2	-0.87	6.12(7)	-0.90	5.65(7)	В
4019.976	1489	(e)	7/2	26 358		5/2	-0.87 -1.48	1.44(7)	-0.90 -1.40	1.74(7)	В
			,	27 464	(0)	,				` '	
4035.104	2689	(e)	5/2		(o)	7/2	-1.24	2.42(7)	-1.21	2.59(7)	В
4064.554	2689	(e)	5/2	27 285	(o)	5/2	-0.49	1.45(8)	-0.49	1.45(8)	A
4084.372	2689	(e)	5/2	27 165	(o)	5/2	-1.74	8.28(6)	-1.70	9.11(6)	C
4092.253	0	(e)	1/2	24 430	(o)	3/2	-0.95	5.23(7)	-0.88	6.24(7)	В
4101.472	2689	(e)	5/2	27 063	(o)	3/2	-1.50	1.46(7)	-1.47	1.56(7)	В
4104.830	2003	(e)	3/2	26 358	(o)	5/2	-1.58	1.09(7)	-1.50	1.32(7)	В
4116.440	2689	(e)	5/2	26 975	(o)	5/2	-1.27	2.30(7)	-1.30	2.12(7)	В
4171.562	3499	(e)	7/2	27 464	(o)	7/2	-1.69	8.00(6)	-1.66	8.57(6)	С
4202.909	3910	(e)	13/2	27 696	(o)	13/2	-0.71	8.31(7)	-0.80	6.74(7)	В
4203.045	3499	(e)	7/2	27 285	(o)	5/2	-0.61	1.04(8)	-0.61	1.04(8)	A
4204.801	3053	(e)	11/2	26 828	(o)	11/2	-0.95	4.70(7)	-1.03	3.95(7)	В
4223.708	2689	(e)	5/2	26 358	(o)	5/2	-1.32	1.87(7)	-1.24	2.26(7)	В
4237.657	838	(e)	5/2	24 430	(o)	3/2	-1.79	7.06(6)	-1.72	8.42(6)	C
4258.552	3499	(e)	7/2	26 975	(o)	5/2	-1.59	1.01(7)	-1.63	9.32(6)	C
4318.927	2238	(e)	9/2	25 385	(o)	11/2	-0.44	1.39(8)	-0.32	1.82(8)	A
4362.029	3910	(e)	13/2	26 828	(o)	11/2	-1.47	1.33(7)	-1.54	1.12(7)	В
4374.975	327	(e)	3/2	23 177	(o)	3/2	-1.77	6.60(6)	-1.73	7.34(6)	C
4390.855	1489	(e)	7/2	24 257	(o)	9/2	-0.92	4.36(7)	-0.91	4.42(7)	В
4454.629	4386	(e)	9/2	26 828	(o)	11/2	-0.04	3.45(8)	-0.11	2.90(8)	A
4457.801	2003	(e)	3/2	24 430	(o)	3/2	-1.18	2.65(7)	-1.10	3.16(7)	В
4467.341	5318	(e)	11/2	27 696	(o)	13/2	0.28	7.30(8)	0.19	5.92(8)	A
4473.012	2238	(e)	9/2	24 588	(o)	11/2	-0.75	6.45(7)	-0.62	8.85(7)	В
4476.481	3053	(e)	11/2	25 385	(o)	11/2	-1.88	4.71(6)	-1.76	6.17(6)	C
4536.512	838	(e)	5/2	22 875	(o)	7/2	-0.64	8.21(7)	-0.70	7.22(7)	В
4540.177	2238	(e)	9/2	24 257	(o)	9/2	-0.58	8.76(7)	-0.58	8.87(7)	В
4598.352	2689	(e)	5/2	24 430	(o)	3/2	-1.78	6.29(6)	-1.70	7.50(6)	C
4606.510	0	(e)	1/2	21 702	(o)	3/2	-1.09	2.81(7)	-1.14	2.55(7)	В
4615.683	1518	(e)	1/2	23 177	(o)	3/2	-0.83	5.30(7)	-0.78	5.90(7)	В
4630.205	838	(e)	5/2	22 429	(o)	5/2	-1.11	2.66(7)	-1.14	2.50(7)	В
4633.164	327	(e)	3/2	21 904	(o)	3/2	-1.77	6.01(6)	-1.75	6.20(6)	C
4642.228	3053	(e)	11/2	24 588	(o)	11/2	-0.66	7.50(7)	-0.52	1.03(8)	A

Table 4. (Continued.)

λ^a	Lower level ^b Upper level ^b						log gf HFR ^c	gA HFR ^c	log gf NORM ^d	gA NORM ^d	Note ^e
4655.114	3 910	(e)	13/2	25 385	(o)	11/2	-1.76	5.73(6)	-1.64	7.50(6)	C
4674.593	1 489	(e)	7/2	22 875	(o)	7/2	-0.67	7.23(7)	-0.73	6.36(7)	В
4676.902	327	(e)	3/2	21 702	(o)	3/2	-0.89	4.31(7)	-0.94	3.91(7)	В
4714.612	3 053	(e)	11/2	24 257	(o)	9/2	-1.34	1.41(7)	-1.34	1.43(7)	В
4745.681	838	(e)	5/2	21 904	(0)	3/2	-1.05	2.96(7)	-1.04	3.06(7)	В
4774.139	1 489	(e)	7/2	22 429	(o)	5/2	-1.03	3.04(7)	-1.05	2.86(7)	В
4791.580	838	(e)	5/2	21 702	(o)	3/2	-1.82	4.88(6)	-1.86	4.43(6)	С
4816.016	3 499	(e)	7/2	24 257	(o)	9/2	-1.61	7.41(6)	-1.60	7.50(6)	С
4834.618	3 910	(e)	13/2	24 588	(o)	11/2	-1.79	5.12(6)	-1.65	7.02(6)	С
4844.209	2 238	(e)	9/2	22 875	(o)	7/2	-1.58	8.25(6)	-1.64	7.26(6)	С
4948.631	4 386	(e)	9/2	24 588	(0)	11/2	-1.70	5.98(6)	-1.56	8.20(6)	C
4952.370	2 689	(e)	5/2	22 875	(o)	7/2	-1.75	5.39(6)	-1.80	4.74(6)	С
4979.916	7 135	(e)	3/2	27 210	(0)	1/2	-1.84	4.30(6)	-1.97	3.15(6)	C
5016.605	7 135	(e)	3/2	27 063	(o)	3/2	-1.81	4.92(6)	-1.78	5.24(6)	C C
5090.104	7 525	(e)	5/2	27 165 26 690	(0)	5/2	-1.62	7.35(6) 1.28(7)	-1.58	8.09(6)	C
5112.294 5116.690	7 135 7 525	(e)	3/2 5/2	27 063	(0)	1/2 3/2	-1.38 -1.22	1.28(7)	-1.55 -1.20	8.72(6) 1.95(7)	В
5196.412	8 046	(e)	7/2	27 285	(0)	5/2	-1.22 -1.99	2.88(6)	-1.20 -1.99	2.88(6)	C
5281.522	8 046	(e)	7/2	26 975	(0)	5/2	-1.99 -1.88	3.45(6)	-1.99 -1.92	3.18(6)	C
5738.389	9 407	(e) (e)	11/2	26 828	(o)	11/2	-1.80	3.65(6)	-1.92 -1.88	3.18(6)	C
5784.261	10 181	(e)	7/2	27 464	(0)	7/2	-1.51 -1.52	6.21(6)	-1.86 -1.49	6.66(6)	C
5898.801	9410	(e)	5/2	26 358	(0)	5/2	-1.52 -1.67	4.39(6)	-1.49 -1.59	5.31(6)	C
5913.890	7 5 2 5	(e)	5/2	24 430	(0)	3/2	-1.07 -1.78	3.99(6)	-1.70	4.76(6)	C
6017.386	10 214	(e)	13/2	26 828	(0)	11/2	-1.78 -1.35	9.50(6)	-1.70 -1.43	7.98(6)	C
6021.739	11 094	(e)	15/2	27 696	(0)	13/2	-1.33 -1.22	1.32(7)	-1.43 -1.31	1.07(7)	В
6025.732	10 873	(e)	5/2	27 464	(o)	7/2	-1.66	4.19(6)	-1.63	4.49(6)	C
6042.522	10 5 1 9	(e)	3/2	27 063	(o)	3/2	-1.58	6.04(6)	-1.55	6.44(6)	C
6057.445	10 960	(e)	9/2	27 464	(o)	7/2	-1.58	4.95(6)	-1.55	5.31(6)	C
6125.793	10 743	(e)	1/2	27 063	(o)	3/2	-1.78	3.71(6)	-1.75	3.95(6)	C
6126.210	10 372	(e)	1/2	26 690	(o)	1/2	-1.65	5.07(6)	-1.81	3.45(6)	C
6156.921	11 047	(e)	3/2	27 285	(o)	5/2	-1.72	3.64(6)	-1.72	3.64(6)	C
6174.943	10 873	(e)	5/2	27 063	(o)	3/2	-1.48	7.30(6)	-1.45	7.78(6)	C
6179.829	10 181	(e)	7/2	26 358	(o)	5/2	-1.40	7.42(6)	-1.32	8.97(6)	C
6181.893	10 519	(e)	3/2	26 690	(o)	1/2	-1.69	4.55(6)	-1.85	3.10(6)	C
6221.519	11 395	(e)	7/2	27 464	(o)	7/2	-1.50	5.65(6)	-1.47	6.06(6)	C
6256.589	9 407	(e)	11/2	25 385	(o)	11/2	-1.70	3.70(6)	-1.59	4.84(6)	C
6284.103	8 679	(e)	9/2	24 588	(o)	11/2	-1.36	8.51(6)	-1.22	1.17(7)	В
6285.628	11 791	(e)	11/2	27 696	(o)	13/2	-1.54	5.81(6)	-1.64	4.71(6)	C
6291.807	11 395	(e)	7/2	27 285	(o)	5/2	-1.92	2.39(6)	-1.92	2.39(6)	C
6311.625	10 519	(e)	3/2	26 358	(0)	5/2	-1.94	2.10(6)		2.54(6)	C
6325.603	11 660	(e)	5/2	27 464	(o)	7/2	-1.61	4.31(6)	-1.58	4.62(6)	C
6386.937	7 525	(e)	5/2	23 177	(o)	3/2	-1.49	6.31(6)	-1.44	7.02(6)	C
6417.478	8 679	(e)	9/2	24 257	(o)	9/2	-1.05	1.52(7)	-1.05	1.54(7)	В
6455.624	11 799	(e)	5/2	27 285	(o)	5/2	-1.15	1.20(7)	-1.15	1.20(7)	В
6456.245	10 873	(e)	5/2	26 358	(o)	5/2	-1.66	3.84(6)	-1.58	4.64(6)	C
6483.700	12 045	(e)	9/2	27 464	(o)	7/2	-1.18	1.09(7)	-1.15	1.17(7)	В
6563.373	12 232	(e)	7/2	27 464	(o)	7/2	-1.72	3.08(6)	-1.69	3.30(6)	C
6576.006	11 155	(e)	3/2	26 358	(o)	5/2	-1.97	1.82(6)	-1.89	2.20(6)	C
6585.202	9 407	(e)	11/2	24 588	(o)	11/2	-1.77	2.96(6)	-1.64	4.06(6)	C
6587.502	11 799	(e)	5/2	26 975	(o)	5/2	-1.82	2.33(6)	-1.85	2.15(6)	C
6589.712	10 214	(e)	13/2	25 385	(o)	11/2	-1.02	1.59(7)	-0.91	2.08(7)	В
6648.320	11 791	(e)	11/2	26 828	(o)	11/2	-1.57	4.75(6)	-1.65	3.99(6)	C
		(-)	, -		(1)	, =		(-)		(=)	

 Table 4. (Continued.)

	Table 4. (Continued.)												
66815.09 11395 (c) 7/2 26388 (o) 5/2 -1.33 7.66(6) -1.25 9.26(6) C 6707.473 7525 (e) 5/2 22429 (o) 5/2 -1.88 2.26(6) -1.91 2.13(6) C 6731.813 9.407 (c) 11/2 24257 (o) 9/2 -0.85 2.21(7) -0.84 2.24(7) B 6741.495 8046 (c) 7/2 222875 (o) 7/2 -0.99 1.72(7) -0.105 1.51(7) B 6862.810 7.135 (e) 3/2 21702 (o) 3/2 -1.34 7.50(6) -1.38 6.80(6) C 6930.401 10.960 (e) 9/2 25.385 (o) 11/2 -1.48 5.03(6) -1.36 6.59(6) C 6950.498 8046 (e) 7/2 22429 (o) 5/2 -1.59 4.14(6) -1.161 3.89(6) C 6950.498 8046 (e) 7/2 22429 (o) 5/2 -1.59 4.14(6) -1.161 3.89(6) C 6950.498 10.214 (e) 13/2 24588 (o) 11/2 -0.72 2.98(7) -0.59 4.09(7) B 6992.629 12988 (e) 7/2 27285 (o) 5/2 -1.80 2.22(6) -1.80 2.22(6) C 7025.736 13.447 (e) 11/2 27696 (o) 13/2 -0.69 3.19(7) -0.74 2.81(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.69 3.19(7) -0.74 2.81(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.92 1.86(7) -0.96 1.69(7) B 7121.315 1279 (e) 11/2 26828 (o) 11/2 -1.70 3.09(6) -1.78 2.60(6) C 73344.754 14085 (e) 13/2 27696 (o) 13/2 -1.10 3.09(6) -1.78 2.60(6) C 73344.754 14085 (e) 13/2 27696 (o) 13/2 -1.13 1.15(7) -1.22 9.32(6) C 73734.656 10873 (e) 5/2 24430 (o) 3/2 -1.43 6.11(6) -1.35 7.29(6) C 7560.047 136.05 (e) 13/2 25828 (o) 11/2 -1.33 4.03(6) -1.14 5.28(6) C 7560.047 136.05 (e) 13/2 25828 (o) 11/2 -1.33 5.93(6) -1.41 5.28(6) C 7560.047 13605 (e) 13/2 25828 (o) 11/2 -1.33 5.93(6) -1.14 5.28(6) C 7588.09 14504 (e) 15/2 27696 (o) 13/2 -0.14 5.01(6) -1.35 7.29(6) C 7588.09 14504 (e) 15/2 277696 (o) 13/2 -0.14 1.21(6) -1.99 1.34(6) C 7588.09 14504 (e) 15/2 277696 (o) 13/2 -0.14 1.21(6) -1.99 1.34(6) C 7588.09 14504 (e) 15/2 277696 (o) 13/2 -0.14 1.24(6) -1.99 1.34(6) C 7588.09 14504 (e) 15/2 277696 (o) 13/2 -0.14 1.24(6) -1.99 1.34(6) C 7588.09 14504 (e) 15/2 277696 (o) 13/2 -0.14 1.34(6) -1.79 1.34(6) C 7588.09 14504 (e) 15/2 277696 (o) 13/2 -0.14 1.34(6) -1.79 1.34(6) C 7588.09 14504 (e) 15/2 277696 (o) 13/2 -0.14 1.34(6) -1.17 1.228(6) C 7588.15 14668 (e) 7/2 27585 (o) 5/2 -1.96 1.36(6) -1.19 1.36(6) C 81812.51 14668 (e) 7/2 27585 (o) 5/2 -1.96 1.36(6) -1.99 1.36(6)	λ^a	Lov	wer le	vel ^b	Upj	oer le	vel ^b		_		-	Note ^e	
66815.09 11395 (c) 7/2 25388 (o) 5/2 -1.33 7.66(6) -1.25 9.26(6) C C C C C C C C C	6656.164	9 4 1 0	(e)	5/2	24 430	(o)	3/2	-1.35	8.54(6)	-1.27	1.02(7)	В	
6707.473 7525 (c) 5/2 2429 (o) 5/2 -1.88 2.26(6) -1.91 2.13(6) C 6731.813 9407 (c) 11/2 24257 (o) 9/2 -0.85 2.21(7) -0.84 2.24(7) B 6741.495 8046 (c) 7/2 22875 (o) 7/2 -0.99 1.72(7) -1.05 1.51(7) B 6862.810 7135 (c) 3/2 21702 (o) 3/2 -1.34 7.50(6) -1.38 6.80(6) C 68030.401 10.90 (c) 9/2 25.385 (o) 11/2 -1.88 5.03(6) -1.36 6.59(6) C 6950.498 8046 (c) 7/2 22429 (o) 5/2 -1.59 4.14(6) -1.61 3.89(6) C 6950.498 8046 (c) 7/2 22429 (o) 5/2 -1.59 4.14(6) -1.61 3.89(6) C 6955.271 10.214 (c) 13/2 224588 (o) 11/2 -0.72 2.98(7) -0.59 4.09(7) B 6992.629 12.988 (c) 7/2 27285 (o) 5/2 -1.80 2.22(6) -1.80 2.22(6) C 7025.736 13.467 (c) 11/2 27696 (o) 13/2 -1.67 3.55(6) -1.76 2.88(6) C 7042.206 8679 (e) 9/2 22875 (o) 7/2 -0.69 3.19(7) -0.74 2.81(7) B 7042.206 8679 (e) 9/2 22875 (o) 7/2 -0.99 3.19(7) -0.74 2.81(7) B 7042.206 8679 (e) 9/2 22875 (o) 7/2 -0.99 3.19(7) -0.74 2.81(7) B 7042.206 8679 (e) 9/2 22430 (o) 3/2 -0.19 2.11(6) -1.83 2.50(6) C 7186.565 10.519 (e) 3/2 24430 (o) 3/2 -1.19 1.11(6) -1.83 2.50(6) C 73344.754 14085 (e) 13/2 27696 (o) 13/2 -1.10 3.09(6) -1.78 2.50(6) C 73344.754 14085 (e) 13/2 27696 (o) 13/2 -1.13 4.03(6) -1.41 5.28(6) C 73734.656 10.873 (e) 5/2 24430 (o) 3/2 -1.19 1.11(6) -1.83 2.52(6) C 73344.674 10.873 (e) 5/2 24430 (e) 3/2 -1.19 1.11(6) -1.35 2.26(6) C 73344.654 10.873 (e) 5/2 24430 (e) 3/2 -1.19 1.11(6) -1.35 2.26(6) C 73344.654 (e) 5/2 24430 (e) 3/2 -1.19 1.11(6) -1.35 2.26(6) C 73344.654 (e) 5/2 24430 (e) 3/2 -1.19 1.11(6) -1.35 2.26(6) C 73344.654 (e) 5/2 24430 (e) 3/2 -1.19 1.11(6) -1.35 2.26(6) C 73344.654 (e) 5/2 24430 (e) 3/2 -1.19 1.11(6) -1.35 2.26(6) C 73344.654 (e) 5/2 24430 (e) 3/2 -1.18 2.11(6) -1.18 2.28(6) C 7344.654 (e) 5/2 24430 (e) 3/2 -1.18 2.11(6) -1.18 2.28(6) C 7344.654 (e) 5/2 24430 (e) 3/2 -1.18 2.11(6) -1.18 2.28(6) C 7344.654 (e) 5/2 24430 (e) 3/2 -1.18 2.11(6) -1.18 2.28(6) C 7344.654 (e) 5/2 24430 (e) 3/2 -1.18 2.11(6) -1.18 2.28(6) C 7344.654 (e) 5/2 24430 (e) 3/2 -1.18 2.18(6) -1.14 2.28(6) C 7344.654 (e) 5/2 24430 (e) 3/2 -1.18 2.18(6) -1.18 2.28(6) C 7344.654 (e) 5/2													
6731.813 9407 (c) 11/2 24257 (o) 9/2 -0.85 2.21/7 -0.84 2.24/7 B 6741.495 8406 (c) 7/2 22875 (o) 7/2 -0.99 1.72(7) -1.05 1.51(7) B 6862.810 7.135 (e) 3/2 21702 (o) 3/2 -1.34 7.50(6) -1.38 6.80(6) C 6930.401 10960 (e) 9/2 25385 (o) 11/2 -1.48 5.03(6) -1.36 6.59(6) C 6955.271 10.214 (e) 13/2 24588 (o) 11/2 -0.72 2.98(7) -0.59 4.09(7) B 6992.629 12988 (e) 7/2 27285 (o) 5/2 -1.80 2.22(6) -1.80 2.22(6) C 7025.736 13467 (e) 11/2 27696 (o) 13/2 -0.69 3.19(7) -0.74 2.81(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.92 1.86(7) -0.96 1.69(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.92 1.86(7) -0.96 1.69(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.92 1.86(7) -0.96 1.69(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.92 1.86(7) -0.96 1.69(7) B 7051.500 7525 (e) 5/2 2430 (e) 11/2 -1.70 3.09(6) -1.78 2.50(6) C 7186.565 10.519 (e) 3/2 24430 (e) 3/2 -1.91 2.11(6) -1.83 2.52(6) C 71343.754 14085 (e) 13/2 2585 (e) 11/2 -1.53 4.03(6) -1.41 5.28(6) C 73734.656 10.873 (e) 5/2 24430 (e) 3/2 -1.13 5.13(6) -1.12 9.32(6) C 73734.656 10.873 (e) 5/2 24430 (e) 3/2 -1.13 5.93(6) -1.71 2.57(6) C 73784.09 14504 (e) 15/2 27696 (e) 13/2 -1.83 1.96(6) -1.71 2.57(6) C 73786.79 9410 (e) 5/2 22429 (e) 5/2 -1.48 2.07(7) -0.94 1.68(7) B 7586.01 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7386.621 14115 (e) 9/2 26828 (e) 11/2 -1.83 1.74(6) -1.71 2.57(6) C 7386.621 14115 (e) 9/2 26828 (e) 11/2 -1.83 1.74(6) -1.71 2.57(6) C 7393.801 14668 (e) 7/2 27165 (e) 5/2 -1.78 2.01(6) -1.78 2.01(6) C 7993.801 14668 (e) 7/2 27165 (e) 5/2 -1.78 2.01(6) -1.78 2.01(6) C 7993.801 14668 (e) 7/2 27165 (e) 5/2 -1.78 2.01(6) -1.78 2.01(6) C 7993.801 14668 (e) 7/2 2458 (e) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 8185.22 10.81 14 15 (e) 9/2 26828 (e) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 8185.22 10.81 14 15 (e) 9/2 24588 (e) 11/2 -1.83 1.74(6) -1.71 2.57(6) C 8185.22 10.81 14 15 (e) 9/2 24588 (e) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 8185.23 10.81 14 14 15 (e) 9/2 24588 (e) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 8185.23 10.81 14 14 14 14 14 14 14 14 14 14 14 14 14				,	22 429		,				2.13(6)		
6741,495 8046 ce 7/2 22875 (o) 7/2 -0.99 1,72(7) -1.05 1,51(7) B 6862,810 7135 (e) 3/2 21702 (o) 3/2 -1.34 7,50(6) -1.38 6,80(6) C 6930,401 10960 (e) 9/2 25385 (o) 11/2 -1.48 5,03(6) -1.36 6,80(6) C 6950,498 8046 (e) 7/2 22489 (o) 5/2 -1.59 4,14(6) -1.61 3,89(6) C 6950,498 8046 (e) 7/2 2785 (o) 5/2 -1.59 4,14(6) -1.61 3,89(6) C 6955,271 10,214 (e) 13/2 24588 (o) 11/2 -0.72 2,98(7) -0.59 4,09(7) B 6692,629 12988 (e) 7/2 2785 (o) 5/2 -1.80 2,22(6) -1.80 2,22(6) C 7025,736 13467 (e) 11/2 27696 (o) 13/2 -1.67 3,55(6) -1.76 2,88(6) C 7042,206 8679 (e) 9/2 22875 (o) 7/2 -0.69 3,19(7) -0.79 2,81(7) B 7051,500 7525 (e) 5/2 21702 (o) 3/2 -0.69 3,19(7) -0.74 2,81(7) B 7051,500 7525 (e) 5/2 21702 (o) 3/2 -0.92 1,86(7) -0.96 1,69(7) B 7121,315 12790 (e) 11/2 26828 (o) 11/2 -1.70 3,09(6) -1.78 2,60(6) C 73344,754 14085 (e) 13/2 24430 (o) 3/2 -1.19 2,116(6 -1.83 2,52(6) C 73344,656 10873 (e) 5/2 24430 (o) 3/2 -1.19 2,116(6 -1.83 2,52(6) C 73734,656 10873 (e) 5/2 24430 (o) 3/2 -1.43 6,116(6 -1.35 7,29(6) C 73734,656 10873 (e) 5/2 24430 (o) 3/2 -1.43 6,116(6 -1.35 7,29(6) C 7378,699 14504 (e) 15/2 27696 (e) 13/2 -0.84 2,07(7) -0.94 1,68(7) B 7678,679 9410 (e) 5/2 22429 (o) 5/2 -1.96 1,42(6) -1.99 1,34(6) C 7923,804 14668 (e) 7/2 27285 (o) 1/2 -1.83 1,74(6) -1.71 2,27(6) C 7923,804 14668 (e) 7/2 27285 (o) 1/2 -1.83 1,74(6) -1.71 2,28(6) C 7923,804 14668 (e) 7/2 27285 (o) 1/2 -1.83 1,74(6) -1.71 2,28(6) C 7993,804 14668 (e) 7/2 27285 (o) 5/2 -1.96 1,36(6) -1.79 1,34(6) C 8186,282 12045 (e) 9/2 25385 (e) 11/2 -1.83 1,74(6) -1.71 2,28(6) C 8186,282 12045 (e) 9/2 25385 (e) 11/2 -1.83 1,74(6) -1.71 2,28(6) C 8186,282 12045 (e) 9/2 25385 (e) 11/2 -1.83 1,74(6) -1.71 2,28(6) C 8186,282 12045 (e) 9/2 25385 (e) 11/2 -1.83 1,74(6) -1.71 2,28(6) C 8186,282 12045 (e) 9/2 25385 (e) 11/2 -1.83 1,74(6) -1.71 2,28(6) C 8186,282 12045 (e) 9/2 25385 (e) 11/2 -1.83 1,74(6) -1.79 1,34(6) C 8180,220 15,54(6) C 9/2 24588 (e) 11/2 -1.83 1,74(6) -1.79 1,34(6) C 8313,702 12234 (e) 9/2 25385 (e) 11/2 -1.94 1,27(6) -2.02 1,07(6) C 8313,702 1234 (e) 9/2 2				,			,				. ,		
6862.810 7135 (c) 3/2 21702 (o) 3/2 -1.34 7.50(6) -1.38 6.80(6) C 6930.401 10 960 (c) 9/2 25385 (o) 11/2 -1.48 5.03(6) -1.36 6.59(6) C 6950.498 8046 (c) 7/2 22429 (o) 5/2 -1.59 4.14(6) -1.61 3.89(6) C 6955.271 10214 (c) 13/2 24588 (o) 11/2 -0.72 2.98(7) -0.59 4.09(7) B 6992.629 12988 (c) 7/2 27285 (o) 5/2 -1.80 2.22(6) -1.80 2.22(6) C 7025.736 13 467 (c) 11/2 27696 (o) 13/2 -1.67 3.55(6) -1.76 2.88(6) C 7042.206 8679 (c) 9/2 22875 (o) 7/2 -0.69 3.19(7) -0.74 2.81(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.92 1.86(7) -0.96 1.69(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.92 1.86(7) -0.96 1.69(7) B 7121.315 12790 (e) 11/2 26828 (o) 11/2 -1.70 3.09(6) -1.78 2.60(6) C 7186.565 10519 (e) 3/2 24330 (o) 3/2 -1.19 2.11(6) -1.83 2.52(6) C 7334.4754 14085 (e) 13/2 27696 (o) 13/2 -1.12 1.15(7) -1.22 9.32(6) C 73734.656 10873 (e) 5/2 24430 (o) 3/2 -1.43 6.11(6) -1.35 7.29(6) C 73749.4081 12045 (e) 9/2 25385 (o) 11/2 -1.83 1.96(6) -1.41 5.28(6) C 75788.099 14504 (e) 15/2 27696 (o) 13/2 -0.84 2.07(7) -0.94 1.68(7) B 75788.099 14504 (e) 15/2 27696 (o) 13/2 -0.84 2.07(7) -0.94 1.68(7) B 75788.099 14504 (e) 15/2 27429 (o) 5/2 -1.96 1.42(6) -1.99 1.34(6) C 7923.804 14668 (e) 7/2 27285 (o) 5/2 -1.96 1.42(6) -1.99 1.34(6) C 7923.804 14668 (e) 7/2 27285 (o) 5/2 -1.83 1.54(6) -1.78 2.01(6) C 7999.470 14668 (e) 7/2 2785 (o) 5/2 -1.84 1.54(6) -1.99 1.34(6) C 8123.415 14668 (e) 7/2 2785 (o) 5/2 -1.84 1.54(6) -1.99 1.34(6) C 8123.415 14668 (e) 7/2 2785 (o) 5/2 -1.84 1.54(6) -1.99 1.34(6) C 8132.3415 14668 (e) 7/2 2785 (o) 5/2 -1.96 1.36(6) -1.92 1.50(6) C 8132.3415 14668 (e) 7/2 2785 (o) 5/2 -1.96 1.36(6) -1.92 1.50(6) C 8182.3415 14668 (e) 7/2 2785 (o) 5/2 -1.96 1.36(6) -1.92 1.50(6) C 8182.3415 14668 (e) 7/2 2785 (o) 5/2 -1.96 1.36(6) -1.95 1.39(6) C 8182.3415 14668 (e) 7/2 2785 (o) 5/2 -1.96 1.36(6) -1.95 1.39(6) C 8182.3415 14668 (e) 7/2 2785 (o) 5/2 -1.96 1.36(6) -1.95 1.39(6) C 8182.3415 14668 (e) 7/2 24257 (o) 9/2 -1.33 1.54(6) -1.36 1.35(6) C 8883.759 13467 (e) 11/2 24588 (e) 11/2 -1.03 1.00(7) -0.91 1.31(7) B 8473.348 12790 (e				,			,				. ,		
6930.401 10960 ce 9, 9/2 25385 (o) 11/2 -1.48 5.03(6) -1.36 6.59(6) C 6950.498 8046 (e) 7/2 22429 (o) 5/2 -1.59 4.14(6) -1.61 3.89(6) C 6955.271 10214 (e) 13/2 24588 (o) 11/2 -0.72 298(7) -0.59 4.99(7) B 6992.699 12988 (e) 7/2 27285 (o) 5/2 -1.80 2.22(6) -1.80 2.22(6) C 7042.206 8679 (e) 9/2 22875 (o) 7/2 -0.69 3.1907) -0.74 2.81(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.69 3.1907) -0.74 2.81(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.69 3.1907) -0.74 2.81(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.992 1.86(7) -0.96 1.69(7) B 7121.315 12790 (e) 11/2 26828 (o) 11/2 -1.70 3.09(6) -1.78 2.60(6) C 7186.565 10519 (e) 3/2 24430 (o) 3/2 -1.19 1.211(6) -1.83 2.52(6) C 73544.754 14085 (e) 13/2 27696 (o) 13/2 -1.19 1.15(7) -1.22 9.32(6) C 7374.656 10873 (e) 5/2 24430 (o) 3/2 -1.43 6.11(6) -1.35 7.29(6) C 7374.656 10873 (e) 5/2 24430 (o) 3/2 -1.43 6.11(6) -1.35 7.29(6) C 7374.656 10873 (e) 5/2 24430 (o) 3/2 -1.43 6.11(6) -1.35 7.29(6) C 7378.699 14504 (e) 15/2 27696 (o) 13/2 -1.83 1.96(6) -1.71 2.57(6) C 7578.099 14504 (e) 15/2 27696 (o) 13/2 -0.84 2.07(7) -0.94 1.68(7) B 7678.679 9410 (e) 5/2 22429 (o) 5/2 -1.96 1.42(6) -1.99 1.34(6) C 7993.804 14668 (e) 7/2 27285 (o) 5/2 -1.96 1.36(6) -1.71 2.28(6) C 7993.804 14668 (e) 7/2 27285 (o) 5/2 -1.96 1.36(6) -1.71 2.28(6) C 7993.804 14668 (e) 7/2 27285 (o) 5/2 -1.96 1.36(6) -1.71 2.28(6) C 7993.804 14668 (e) 7/2 27285 (o) 5/2 -1.96 1.36(6) -1.78 2.01(6) C 8123.415 14668 (e) 7/2 27285 (o) 5/2 -1.78 2.01(6) -1.78 2.01(6) C 8123.415 14668 (e) 7/2 27285 (o) 5/2 -1.78 2.01(6) -1.78 2.01(6) C 8180.220 15243 (e) 9/2 24287 (o) 5/2 -1.84 1.54(6) -1.88 1.42(6) C 8182.507 10.873 (e) 5/2 21904 (o) 3/2 -1.66 2.72(6) -1.64 2.81(6) C 8183.790 1.366 (e) 11/2 24588 (o) 11/2 -1.33 1.70(6) -1.76 2.04(6) C 8887.799 13467 (e) 11/2 24588 (o) 11/2 -1.33 1.46(6) -1.76 1.56(6) C 8852.014 14668 (e) 7/2 24257 (o) 9/2 -1.38 4.36(6) -1.37 4.56(6) C 8857.307 11.15 (e) 9/2 24257 (o) 9/2 -1.88 1.10(6) -1.70 1.86(6) C 8855.301 11/2 -1.33 4.46(6) -1.37 4.59(6) C 8857.307 11.15 (e) 9/2 24257 (o) 9/2 -1.88 1.				,									
6950.498 8 046 (e) 7/2 22429 (o) 5/2 -1.59 4.14(6) -1.61 3.89(6) C 6955.271 10214 (e) 13/2 24588 (o) 11/2 -0.72 2.98(7) -0.59 4.09(7) B 6952.699 12988 (e) 7/2 27285 (o) 5/2 -1.80 2.22(6) -1.80 2.22(6) C 7025.736 13467 (e) 11/2 27696 (o) 13/2 -1.67 3.55(6) -1.76 2.88(6) C 7042.206 8679 (e) 9/2 22875 (o) 7/2 -0.69 3.19(7) -0.74 2.81(7) B 7051.500 7.525 (e) 5/2 21702 (o) 3/2 -0.992 1.86(7) -0.96 1.69(7) B 7121.315 12790 (e) 11/2 26828 (o) 11/2 -1.70 3.09(6) -1.78 2.60(6) C 7344.754 14085 (e) 13/2 27696 (o) 13/2 -1.12 1.15(7) -1.22 9.32(6) C 7354.993 11791 (e) 11/2 25385 (o) 11/2 -1.53 4.03(6) -1.41 5.28(6) C 73734.656 10873 (e) 5/2 24430 (o) 3/2 -1.12 1.15(7) -1.22 9.32(6) C 73744.656 10873 (e) 5/2 24430 (o) 3/2 -1.43 6.11(6) -1.35 7.29(6) C 7494.081 12.045 (e) 9/2 25385 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7560.047 13605 (e) 13/2 26828 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7560.047 13605 (e) 13/2 26828 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7560.047 13605 (e) 13/2 26828 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7786.999 14504 (e) 5/2 22429 (o) 5/2 -1.96 1.42(6) -1.99 1.34(6) C 7786.399 14504 (e) 5/2 22429 (o) 5/2 -1.96 1.42(6) -1.99 1.34(6) C 7969.899 12842 (e) 9/2 25385 (o) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 7969.899 12842 (e) 9/2 25385 (o) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 7969.899 12842 (e) 9/2 25385 (o) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 7969.899 12842 (e) 9/2 25385 (o) 11/2 -1.94 1.27(6) -2.02 1.07(6) C 7969.899 12842 (e) 9/2 25385 (o) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 7969.899 12842 (e) 9/2 25385 (o) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 7969.899 12842 (e) 9/2 25385 (o) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 7969.899 12842 (e) 9/2 25385 (o) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 7969.899 12842 (e) 9/2 25385 (o) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 7969.899 12842 (e) 9/2 24257 (o) 9/2 -1.84 1.54(6) -1.99 1.34(6) C 8180.220 15243 (e) 9/2 24257 (o) 9/2 -1.84 1.54(6) -1.99 1.34(6) C 8180.220 15243 (e) 9/2 24257 (o) 9/2 -1.84 1.54(6) -1.90 1.36(6) C 8180.223 (e) 1/2 24258 (e) 1/2 24258 (e) 1/2 -1.94 1.34(6) -1.90 1.36(6) C							,				. ,		
6955.271 10 214 (e) 13/2 24588 (o) 11/2 -0.72 2.98(7) -0.59 4.09(7) B 6992.629 12988 (e) 7/2 27285 (o) 5/2 -1.80 2.22(6) -1.80 2.22(6) C 7042.206 8.679 (e) 9/2 22875 (o) 7/2 -0.69 3.19(7) -0.74 2.81(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.99 1.86(7) -0.96 1.69(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.99 1.86(7) -0.96 1.69(7) B 7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.99 1.86(7) -0.96 1.69(7) B 7051.500 7525 (e) 5/2 24430 (o) 3/2 -1.91 2.11(6) -1.83 2.52(6) C 7186.565 10 519 (e) 3/2 24430 (o) 3/2 -1.91 2.11(6) -1.83 2.52(6) C 7374.656 10.873 (e) 5/2 24430 (o) 3/2 -1.43 6.11(6) -1.83 2.52(6) C 7374.656 10.873 (e) 5/2 24430 (o) 3/2 -1.43 6.11(6) -1.35 7.29(6) C 7374.656 10.873 (e) 5/2 24430 (o) 3/2 -1.43 6.11(6) -1.35 7.29(6) C 7494.081 12.045 (e) 9/2 25.385 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7578.099 14.504 (e) 15/2 27.696 (o) 13/2 -0.84 2.07(7) -0.94 1.68(7) B 7678.679 9410 (e) 5/2 22429 (o) 5/2 -1.96 1.42(6) -1.99 1.34(6) C 7923.804 14.686 (e) 7/2 27.285 (o) 5/2 -1.96 1.42(6) -1.99 1.34(6) C 7923.804 14.668 (e) 7/2 27.285 (o) 5/2 -1.78 2.01(6) -1.78 2.01(6) C 7923.804 14.668 (e) 7/2 27.285 (o) 5/2 -1.84 1.54(6) -1.79 1.34(6) C 7999.470 14.668 (e) 7/2 27.165 (o) 5/2 -1.84 1.54(6) -1.79 1.54(6) C C 8113.715 14.668 (e) 7/2 27.165 (o) 5/2 -1.84 1.54(6) -1.79 1.54(6) C C 8113.702 1.2232 (e) 7/2 27.458 (o) 11/2 -1.83 1.74(6) -1.76 1.65(6) C C 8113.702 1.234 (e) 9/2 24257 (o) 9/2 -1.96 1.34(6) -1.79 1.34(6) C C 8113.702 1.234 (e) 9/2 24257 (o) 9/2 -1.96 1.34(6) -1.79 1.34(6) C C 8113.702 1.346 (e) 1.17 2.245(6) C C C C C C C C C				,			,				. ,		
6992.629 12988 (e) 7/2 27285 (o) 5/2 -1.80 2.22(6) -1.80 2.22(6) C 7025.736 13467 (e) 11/2 27696 (o) 13/2 -1.67 3.55(6) -1.76 2.88(6) C 7025.736 13467 (e) 11/2 2.6828 (o) 11/2 -1.70 3.99(6) -1.78 2.60(6) C 7172 7185.555 C 72 21702 (o) 3/2 -0.92 1.86(7) -0.96 1.69(7) B 7185.150 7525 (e) 5/2 21702 (o) 3/2 -0.92 1.86(7) -0.96 1.69(7) B 7185.555 C 7344.754 14.085 (e) 13/2 26828 (o) 11/2 -1.70 3.09(6) -1.78 2.60(6) C 7344.754 14.085 (e) 13/2 27696 (o) 13/2 -1.12 1.15(7) -1.22 9.32(6) C 7353.993 11791 (e) 11/2 25385 (o) 11/2 -1.53 4.03(6) -1.41 5.28(6) C 7374.656 10873 (e) 5/2 24430 (o) 3/2 -1.12 1.15(7) -1.22 9.32(6) C 7374.656 10873 (e) 5/2 24430 (o) 3/2 -1.13 1.96(6) -1.71 2.57(6) C 7374.656 10873 (e) 5/2 24430 (o) 3/2 -1.43 5.11(6) -1.35 7.29(6) C 7374.656 10873 (e) 5/2 25385 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7560.047 13.605 (e) 13/2 26828 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7560.047 13.605 (e) 13/2 26828 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7863.621 14115 (e) 9/2 26828 (o) 11/2 -1.96 1.42(6) -1.99 1.34(6) C 7863.621 14115 (e) 9/2 26828 (o) 11/2 -1.94 1.27(6) -2.02 1.07(6) C 7999.470 14668 (e) 7/2 27285 (o) 5/2 -1.96 1.36(6) -1.92 1.50(6) C 7999.470 14668 (e) 7/2 27165 (o) 5/2 -1.96 1.36(6) -1.71 2.28(6) C 7999.470 14668 (e) 7/2 27165 (o) 5/2 -1.84 1.54(6) -1.88 1.42(6) C 8123.016 C 1.54(6) -1.88 1.42(6) C 8123.016 C 1.54(6) -1.71 2.28(6) C 1.54(6) -1.71 2.28(6) C 1.54(6) -1.71 2.28(6) C 1.54(6) -1.71 2.28(6) C 2				,			,				. ,		
7025.736							,						
7042.206 8 679 (c) 9/2 22 875 (o) 7/2 -0.69 3.19(7) -0.74 2.81(7) B 7051.500 7525 (c) 5/2 21 702 (o) 3/2 -0.92 1.86(7) -0.96 1.69(7) B 7121.315 12 799 (c) 11/2 28 88 (o) 11/2 -1.70 3.09(6) -1.78 2.60(6) C 7344.754 14 085 (c) 13/2 27 696 (o) 13/2 -1.12 1.15(7) -1.22 9.32(6) C 7374.656 10 873 (c) 5/2 24 430 (o) 3/2 -1.43 6.11(6) -1.35 7.29(6) C 7494.081 12 045 (c) 13/2 26 828 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7578.099 14 504 (c) 15/2 27 696 (o) 13/2 -0.84 2.07(7) -0.94 1.68(7) B </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>` '</td> <td></td>							,				` '		
7051.500 7525 (e) 5/2 21702 (o) 3/2 -0.92 1.86(7) -0.96 1.69(7) B 7121.315 12790 (e) 11/2 26828 (o) 11/2 -1.70 3.09(6) -1.78 2.60(6) C 7184.315 12790 (e) 11/2 26828 (o) 11/2 -1.70 3.09(6) -1.78 2.60(6) C 7184.754 14085 (e) 13/2 27696 (o) 13/2 -1.11 2.11(6) -1.83 2.52(6) C 7354.4754 14085 (e) 13/2 27696 (o) 13/2 -1.12 1.15(7) -1.22 9.32(6) C 7374.656 10873 (e) 5/2 24430 (o) 3/2 -1.43 4.03(6) -1.41 5.28(6) C 7374.4081 12045 (e) 9/2 25385 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7560.047 13605 (e) 13/2 26828 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7560.047 13605 (e) 13/2 26828 (o) 11/2 -1.83 1.96(6) -1.71 2.57(6) C 7578.679 9410 (e) 5/2 22429 (o) 5/2 -1.96 1.42(6) -1.99 1.34(6) C 7863.621 14115 (e) 9/2 26828 (o) 11/2 -1.94 1.27(6) -2.02 1.07(6) C 7923.804 14668 (e) 7/2 27285 (o) 5/2 -1.96 1.42(6) -1.78 2.01(6) C 7999.899 12842 (e) 9/2 25385 (o) 11/2 -1.83 1.74(6) -1.78 2.01(6) C 7999.899 12842 (e) 9/2 25385 (o) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 7999.899 12842 (e) 9/2 25385 (o) 11/2 -1.94 1.27(6) -2.02 1.07(6) C 7923.804 14668 (e) 7/2 27285 (o) 5/2 -1.96 1.36(6) -1.99 1.34(6) C 7923.815 (o) 11/2 -1.83 1.74(6) -1.71 2.28(6) C 7963.839 12842 (e) 9/2 25385 (o) 11/2 -1.83 1.74(6) -1.78 2.01(6) C 8001.564 9410 (e) 5/2 21904 (o) 3/2 -1.66 2.72(6) -1.64 2.81(6) C 8123.415 14668 (e) 7/2 27464 (o) 5/2 -1.96 1.36(6) -1.92 1.50(6) C 8123.415 14668 (e) 7/2 22429 (o) 5/2 -1.84 1.54(6) -1.88 1.42(6) C 8180.220 15243 (e) 9/2 24257 (o) 9/2 -1.09 8.47(6) -1.76 2.04(6) C 8180.220 15243 (e) 9/2 24257 (o) 9/2 -1.09 8.47(6) -1.76 2.04(6) C 8180.220 15243 (e) 9/2 24257 (o) 9/2 -1.09 8.47(6) -1.38 4.59(6) C 8875.348 1290 (e) 11/2 24588 (o) 11/2 -1.51 3.35(6) -1.38 4.59(6) C 8875.348 1290 (e) 11/2 24588 (o) 11/2 -1.20 6.97(6) -1.06 9.56(6) C 8852.014 14668 (e) 7/2 22429 (o) 5/2 -1.73 1.92(7) -0.61 2.51(7) B 8510.908 12842 (e) 9/2 24257 (o) 9/2 -1.09 8.47(6) -1.37 1.35(6) C 8708.402 11395 (e) 7/2 22457 (o) 9/2 -1.09 8.47(6) -1.37 1.35(6) C 8708.402 11395 (e) 7/2 22457 (o) 9/2 -1.16 7.06(6) -1.39 6.4(6) C 8857.301 1135 (e) 3/2 22429 (o) 5/2 -				,			,						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,			,						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,							. ,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			,						
7353.993				,			,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				. ,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			,				` ′		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			,				. ,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			,				. ,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,					` '		` /		
8001.564 9410 (e) 5/2 21 904 (o) 3/2 -1.66 2.72(6) -1.64 2.81(6) C 8123.415 14 668 (e) 7/2 26 975 (o) 5/2 -1.84 1.54(6) -1.88 1.42(6) C 8125.078 10 873 (e) 5/2 23 177 (o) 3/2 -2.00 1.25(6) -1.95 1.39(6) C 8161.828 10 181 (e) 7/2 22 429 (o) 5/2 -1.73 2.17(6) -1.76 2.04(6) C 8180.282 12 045 (e) 9/2 24 257 (o) 9/2 -1.32 5.12(6) C 8313.702 12 232 (e) 7/2 24 257 (o) 9/2 -1.09 8.47(6) -1.08 8.58(6) C 8347.59 13 467 (e) 11/2 25 385 (o) 11/2 -1.03 1.00(7) -0.91 1.31(7) B 8473.548 12							,				. ,		
8123.415 14 668 (e) 7/2 26 975 (o) 5/2 -1.84 1.54(6) -1.88 1.42(6) C 8125.078 10 873 (e) 5/2 23 177 (o) 3/2 -2.00 1.25(6) -1.95 1.39(6) C 8161.828 10 181 (e) 7/2 22 429 (o) 5/2 -1.73 2.17(6) -1.76 2.04(6) C 8180.220 15 243 (e) 9/2 27 464 (o) 7/2 -1.79 1.54(6) -1.76 1.65(6) C 8186.282 12 045 (e) 9/2 24 257 (o) 9/2 -1.09 8.47(6) -1.08 8.58(6) C 8313.702 12 223 (e) 7/2 24 257 (o) 9/2 -1.09 8.47(6) -1.08 8.58(6) C 8387.759 13 467 (e) 11/2 25 385 (o) 11/2 -1.03 1.00(7) -0.91 1.31(7) B 8473.548 12 790 (e) 11/2 24 588 (o) 11/2				,			,				. ,		
8125.078 10 873 (e) 5/2 23 177 (o) 3/2 -2.00 1.25(6) -1.95 1.39(6) C 8161.828 10 181 (e) 7/2 22 429 (o) 5/2 -1.73 2.17(6) -1.76 2.04(6) C 8180.220 15 243 (e) 9/2 27 464 (o) 7/2 -1.79 1.54(6) -1.76 1.65(6) C 8186.282 12 045 (e) 9/2 24 257 (o) 9/2 -1.09 8.47(6) -1.08 8.58(6) C 8387.759 13 467 (e) 11/2 25 385 (o) 11/2 -1.03 1.00(7) -0.91 1.31(7) B 8473.548 12 790 (e) 11/2 25 385 (o) 11/2 -1.51 3.35(6) -1.38 4.59(6) C 8510.908 12 842 (e) 9/2 24 588 (o) 11/2 -1.20 6.97(6) -1.06 9.56(6) C <				,			,				. ,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,			,				. ,		
8180.220 15 243 (e) 9/2 27 464 (o) 7/2 -1.79 1.54(6) -1.76 1.65(6) C 8186.282 12 045 (e) 9/2 24 257 (o) 9/2 -1.32 5.06(6) -1.32 5.12(6) C 8313.702 12 232 (e) 7/2 24 257 (o) 9/2 -1.09 8.47(6) -1.08 8.58(6) C 8387.759 13 467 (e) 11/2 25 385 (o) 11/2 -1.03 1.00(7) -0.91 1.31(7) B 8473.548 12 790 (e) 11/2 24 588 (o) 11/2 -1.51 3.35(6) -1.38 4.59(6) C 8486.013 13 605 (e) 13/2 25 385 (o) 11/2 -0.73 1.92(7) -0.61 2.51(7) B 8510.908 12 842 (e) 9/2 24 588 (o) 11/2 -1.20 6.97(6) -1.06 9.56(6) C 8550.995 10 873 (e) 5/2 22 429 (o) 5/2 <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>. ,</td> <td></td>				,			,				. ,		
8186.282 12 045 (e) 9/2 24 257 (o) 9/2 -1.32 5.06(6) -1.32 5.12(6) C 8313.702 12 232 (e) 7/2 24 257 (o) 9/2 -1.09 8.47(6) -1.08 8.58(6) C 8387.759 13 467 (e) 11/2 25 385 (o) 11/2 -1.03 1.00(7) -0.91 1.31(7) B 8473.548 12 790 (e) 11/2 24 588 (o) 11/2 -1.51 3.35(6) -1.38 4.59(6) C 8486.013 13 605 (e) 13/2 25 385 (o) 11/2 -0.73 1.92(7) -0.61 2.51(7) B 8510.908 12 842 (e) 9/2 24 588 (o) 11/2 -1.20 6.97(6) -1.06 9.56(6) C 8552.014 14 668 (e) 7/2 26 358 (o) 5/2 -1.70 1.86(6) -1.62 2.25(6) C 8708.995 10 873 (e) 7/2 22 875 (o) 7/2 <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>. ,</td> <td></td>				,			,				. ,		
8313.702 12 232 (e) 7/2 24 257 (o) 9/2 -1.09 8.47(6) -1.08 8.58(6) C 8387.759 13 467 (e) 11/2 25 385 (o) 11/2 -1.03 1.00(7) -0.91 1.31(7) B 8473.548 12 790 (e) 11/2 24 588 (o) 11/2 -1.51 3.35(6) -1.38 4.59(6) C 8486.013 13 605 (e) 13/2 25 385 (o) 11/2 -0.73 1.92(7) -0.61 2.51(7) B 8510.908 12 842 (e) 9/2 24 588 (o) 11/2 -1.20 6.97(6) -1.06 9.56(6) C 8552.014 14 668 (e) 7/2 26 358 (o) 5/2 -1.70 1.86(6) -1.62 2.25(6) C 8708.995 10 873 (e) 5/2 22 429 (o) 5/2 -1.35 4.84(6) -1.37 4.55(6) C				,			,						
8387.759 13 467 (e) 11/2 25 385 (o) 11/2 -1.03 1.00(7) -0.91 1.31(7) B 8473.548 12 790 (e) 11/2 24 588 (o) 11/2 -1.51 3.35(6) -1.38 4.59(6) C 8486.013 13 605 (e) 13/2 25 385 (o) 11/2 -0.73 1.92(7) -0.61 2.51(7) B 8510.908 12 842 (e) 9/2 24 588 (o) 11/2 -1.20 6.97(6) -1.06 9.56(6) C 8552.014 14 668 (e) 7/2 26 358 (o) 5/2 -1.70 1.86(6) -1.62 2.25(6) C 8650.995 10 873 (e) 5/2 22 429 (o) 5/2 -1.35 4.84(6) -1.37 4.55(6) C 8708.402 11 395 (e) 7/2 22 875 (o) 7/2 -1.49 3.42(6) -1.55 3.01(6) C 8717.856 12 790 (e) 11/2 24 257 (o) 9/2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td>							,						
8473.548 12790 (e) 11/2 24588 (o) 11/2 -1.51 3.35(6) -1.38 4.59(6) C 8486.013 13605 (e) 13/2 25385 (o) 11/2 -0.73 1.92(7) -0.61 2.51(7) B 8510.908 12842 (e) 9/2 24588 (o) 11/2 -1.20 6.97(6) -1.06 9.56(6) C 8552.014 14668 (e) 7/2 26358 (o) 5/2 -1.70 1.86(6) -1.62 2.25(6) C 8650.995 10873 (e) 5/2 22429 (o) 5/2 -1.35 4.84(6) -1.37 4.55(6) C 8708.402 11395 (e) 7/2 22875 (o) 7/2 -1.49 3.42(6) -1.55 3.01(6) C 8717.856 12790 (e) 11/2 24257 (o) 9/2 -1.71 1.83(6) -1.70 1.85(6) C											. ,		
8486.013 13 605 (e) 13/2 25 385 (o) 11/2 -0.73 1.92(7) -0.61 2.51(7) B 8510.908 12 842 (e) 9/2 24 588 (o) 11/2 -1.20 6.97(6) -1.06 9.56(6) C 8552.014 14 668 (e) 7/2 26 358 (o) 5/2 -1.70 1.86(6) -1.62 2.25(6) C 8650.995 10 873 (e) 5/2 22 429 (o) 5/2 -1.35 4.84(6) -1.37 4.55(6) C 8708.402 11 395 (e) 7/2 22 875 (o) 7/2 -1.49 3.42(6) -1.55 3.01(6) C 8717.856 12 790 (e) 11/2 24 257 (o) 9/2 -1.71 1.83(6) -1.70 1.85(6) C 8757.407 12 842 (e) 9/2 24 257 (o) 9/2 -1.48 3.11(6) -1.47 3.15(6) C 8780.597 10 519 (e) 3/2 21 904 (o) 3/2				,			,				. ,		
8510.908 12 842 (e) 9/2 24 588 (o) 11/2 -1.20 6.97(6) -1.06 9.56(6) C 8552.014 14 668 (e) 7/2 26 358 (o) 5/2 -1.70 1.86(6) -1.62 2.25(6) C 8650.995 10 873 (e) 5/2 22 429 (o) 5/2 -1.35 4.84(6) -1.37 4.55(6) C 8708.402 11 395 (e) 7/2 22 875 (o) 7/2 -1.49 3.42(6) -1.55 3.01(6) C 8717.856 12 790 (e) 11/2 24 257 (o) 9/2 -1.71 1.83(6) -1.70 1.85(6) C 8757.407 12 842 (e) 9/2 24 257 (o) 9/2 -1.48 3.11(6) -1.47 3.15(6) C 8780.597 10 519 (e) 3/2 21 904 (o) 3/2 -1.38 4.45(6) -1.37 4.59(6) C <td></td>													
8552.014 14 668 (e) 7/2 26 358 (o) 5/2 -1.70 1.86(6) -1.62 2.25(6) C 8650.995 10 873 (e) 5/2 22 429 (o) 5/2 -1.35 4.84(6) -1.37 4.55(6) C 8708.402 11 395 (e) 7/2 22 875 (o) 7/2 -1.49 3.42(6) -1.55 3.01(6) C 8717.856 12 790 (e) 11/2 24 257 (o) 9/2 -1.71 1.83(6) -1.70 1.85(6) C 8757.407 12 842 (e) 9/2 24 257 (o) 9/2 -1.48 3.11(6) -1.70 1.85(6) C 8780.597 10 519 (e) 3/2 21 904 (o) 3/2 -1.38 4.45(6) -1.37 4.59(6) C 8867.382 11 155 (e) 3/2 22 429 (o) 5/2 -1.16 7.06(6) -1.19 6.64(6) C				,			,						
8650.995 10 873 (e) 5/2 22 429 (o) 5/2 -1.35 4.84(6) -1.37 4.55(6) C 8708.402 11 395 (e) 7/2 22 875 (o) 7/2 -1.49 3.42(6) -1.55 3.01(6) C 8717.856 12 790 (e) 11/2 24 257 (o) 9/2 -1.71 1.83(6) -1.70 1.85(6) C 8757.407 12 842 (e) 9/2 24 257 (o) 9/2 -1.48 3.11(6) -1.47 3.15(6) C 8780.597 10 519 (e) 3/2 21 904 (o) 3/2 -1.38 4.45(6) -1.37 4.59(6) C 8867.382 11 155 (e) 3/2 22 429 (o) 5/2 -1.16 7.06(6) -1.19 6.64(6) C 8913.697 11 660 (e) 5/2 22 875 (o) 7/2 -1.57 2.71(6) -1.63 2.38(6) C			` /	,			,						
8708.402 11 395 (e) 7/2 22 875 (o) 7/2 -1.49 3.42(6) -1.55 3.01(6) C 8717.856 12 790 (e) 11/2 24 257 (o) 9/2 -1.71 1.83(6) -1.70 1.85(6) C 8757.407 12 842 (e) 9/2 24 257 (o) 9/2 -1.48 3.11(6) -1.47 3.15(6) C 8780.597 10 519 (e) 3/2 21 904 (o) 3/2 -1.38 4.45(6) -1.37 4.59(6) C 8867.382 11 155 (e) 3/2 22 429 (o) 5/2 -1.16 7.06(6) -1.19 6.64(6) C 8913.697 11 660 (e) 5/2 22 875 (o) 7/2 -1.57 2.71(6) -1.63 2.38(6) C 8920.593 16 078 (e) 3/2 27 285 (o) 5/2 -1.87 1.25(6) -1.87 1.25(6) C 8957.536 10 743 (e) 1/2 21 904 (o) 3/2				,									
8717.856 12 790 (e) 11/2 24 257 (o) 9/2 -1.71 1.83(6) -1.70 1.85(6) C 8757.407 12 842 (e) 9/2 24 257 (o) 9/2 -1.48 3.11(6) -1.47 3.15(6) C 8780.597 10 519 (e) 3/2 21 904 (o) 3/2 -1.38 4.45(6) -1.37 4.59(6) C 8867.382 11 155 (e) 3/2 22 429 (o) 5/2 -1.16 7.06(6) -1.19 6.64(6) C 8913.697 11 660 (e) 5/2 22 875 (o) 7/2 -1.57 2.71(6) -1.63 2.38(6) C 8920.593 16 078 (e) 3/2 27 285 (o) 5/2 -1.87 1.25(6) -1.87 1.25(6) C 8957.536 10 743 (e) 1/2 21 904 (o) 3/2 -1.37 4.40(6) -1.36 4.54(6) C 8980.348 16 078 (e) 3/2 27 210 (o) 1/2				,							` /		
8757.407 12 842 (e) 9/2 24 257 (o) 9/2 -1.48 3.11(6) -1.47 3.15(6) C 8780.597 10 519 (e) 3/2 21 904 (o) 3/2 -1.38 4.45(6) -1.37 4.59(6) C 8867.382 11 155 (e) 3/2 22 429 (o) 5/2 -1.16 7.06(6) -1.19 6.64(6) C 8913.697 11 660 (e) 5/2 22 875 (o) 7/2 -1.57 2.71(6) -1.63 2.38(6) C 8920.593 16 078 (e) 3/2 27 285 (o) 5/2 -1.87 1.25(6) -1.87 1.25(6) C 8957.536 10 743 (e) 1/2 21 904 (o) 3/2 -1.37 4.40(6) -1.36 4.54(6) C 8980.348 16 078 (e) 3/2 27 210 (o) 1/2 -1.88 1.10(6) -2.02 8.05(5) C 8989.125 13 467 (e) 11/2 24 588 (o) 11/2													
8780.597 10 519 (e) 3/2 21 904 (o) 3/2 -1.38 4.45(6) -1.37 4.59(6) C 8867.382 11 155 (e) 3/2 22 429 (o) 5/2 -1.16 7.06(6) -1.19 6.64(6) C 8913.697 11 660 (e) 5/2 22 875 (o) 7/2 -1.57 2.71(6) -1.63 2.38(6) C 8920.593 16 078 (e) 3/2 27 285 (o) 5/2 -1.87 1.25(6) -1.87 1.25(6) C 8957.536 10 743 (e) 1/2 21 904 (o) 3/2 -1.37 4.40(6) -1.36 4.54(6) C 8980.348 16 078 (e) 3/2 27 210 (o) 1/2 -1.88 1.10(6) -2.02 8.05(5) C 8989.125 13 467 (e) 11/2 24 588 (o) 11/2 -1.40 3.91(6) -1.26 5.36(6) C 9022.419 16 616 (e) 13/2 27 696 (o) 5/2				,			,						
8867.382 11 155 (e) 3/2 22 429 (o) 5/2 -1.16 7.06(6) -1.19 6.64(6) C 8913.697 11 660 (e) 5/2 22 875 (o) 7/2 -1.57 2.71(6) -1.63 2.38(6) C 8920.593 16 078 (e) 3/2 27 285 (o) 5/2 -1.87 1.25(6) -1.87 1.25(6) C 8957.536 10 743 (e) 1/2 21 904 (o) 3/2 -1.37 4.40(6) -1.36 4.54(6) C 8980.348 16 078 (e) 3/2 27 210 (o) 1/2 -1.88 1.10(6) -2.02 8.05(5) C 8989.125 13 467 (e) 11/2 24 588 (o) 11/2 -1.40 3.91(6) -1.26 5.36(6) C 9022.419 16 616 (e) 13/2 27 696 (o) 13/2 -1.64 2.26(6) -1.73 1.83(6) C 9060.335 11 395 (e) 7/2 22 429 (o) 5/2 -1.33 4.55(6) -1.36 4.28(6) C											. ,		
8913.697 11 660 (e) 5/2 22 875 (o) 7/2 -1.57 2.71(6) -1.63 2.38(6) C 8920.593 16 078 (e) 3/2 27 285 (o) 5/2 -1.87 1.25(6) -1.87 1.25(6) C 8957.536 10 743 (e) 1/2 21 904 (o) 3/2 -1.37 4.40(6) -1.36 4.54(6) C 8980.348 16 078 (e) 3/2 27 210 (o) 1/2 -1.88 1.10(6) -2.02 8.05(5) C 8989.125 13 467 (e) 11/2 24 588 (o) 11/2 -1.40 3.91(6) -1.26 5.36(6) C 9022.419 16 616 (e) 13/2 27 696 (o) 13/2 -1.64 2.26(6) -1.73 1.83(6) C 9060.335 11 395 (e) 7/2 22 429 (o) 5/2 -1.33 4.55(6) -1.36 4.28(6) C				,			,						
8920.593 16 078 (e) 3/2 27 285 (o) 5/2 -1.87 1.25(6) -1.87 1.25(6) C 8957.536 10 743 (e) 1/2 21 904 (o) 3/2 -1.37 4.40(6) -1.36 4.54(6) C 8980.348 16 078 (e) 3/2 27 210 (o) 1/2 -1.88 1.10(6) -2.02 8.05(5) C 8989.125 13 467 (e) 11/2 24 588 (o) 11/2 -1.40 3.91(6) -1.26 5.36(6) C 9022.419 16 616 (e) 13/2 27 696 (o) 13/2 -1.64 2.26(6) -1.73 1.83(6) C 9060.335 11 395 (e) 7/2 22 429 (o) 5/2 -1.33 4.55(6) -1.36 4.28(6) C	8867.382		(e)		22 429	(o)			7.06(6)	-1.19	6.64(6)		
8957.536 10 743 (e) 1/2 21 904 (o) 3/2 -1.37 4.40(6) -1.36 4.54(6) C 8980.348 16 078 (e) 3/2 27 210 (o) 1/2 -1.88 1.10(6) -2.02 8.05(5) C 8989.125 13 467 (e) 11/2 24 588 (o) 11/2 -1.40 3.91(6) -1.26 5.36(6) C 9022.419 16 616 (e) 13/2 27 696 (o) 13/2 -1.64 2.26(6) -1.73 1.83(6) C 9060.335 11 395 (e) 7/2 22 429 (o) 5/2 -1.33 4.55(6) -1.36 4.28(6) C				,			,						
8980.348 16 078 (e) 3/2 27 210 (o) 1/2 -1.88 1.10(6) -2.02 8.05(5) C 8989.125 13 467 (e) 11/2 24 588 (o) 11/2 -1.40 3.91(6) -1.26 5.36(6) C 9022.419 16 616 (e) 13/2 27 696 (o) 13/2 -1.64 2.26(6) -1.73 1.83(6) C 9060.335 11 395 (e) 7/2 22 429 (o) 5/2 -1.33 4.55(6) -1.36 4.28(6) C			(e)			(o)							
8989.125 13 467 (e) 11/2 24 588 (o) 11/2 -1.40 3.91(6) -1.26 5.36(6) C 9022.419 16 616 (e) 13/2 27 696 (o) 13/2 -1.64 2.26(6) -1.73 1.83(6) C 9060.335 11 395 (e) 7/2 22 429 (o) 5/2 -1.33 4.55(6) -1.36 4.28(6) C			(e)			(o)							
9022.419 16 616 (e) 13/2 27 696 (o) 13/2 -1.64 2.26(6) -1.73 1.83(6) C 9060.335 11 395 (e) 7/2 22 429 (o) 5/2 -1.33 4.55(6) -1.36 4.28(6) C			(e)	,		(o)	,						
9060.335 11 395 (e) 7/2 22 429 (o) 5/2 -1.33 4.55(6) -1.36 4.28(6) C			(e)	,		(o)	,					C	
	9022.419	16616	(e)	13/2	27 696	(o)	13/2	-1.64	2.26(6)	-1.73	1.83(6)		
9063.021 10 873 (e) 5/2 21 904 (o) 3/2 -1.39 4.09(6) -1.38 4.22(6) C	9060.335	11 395	(e)	7/2	22 429	(o)	5/2	-1.33	4.55(6)	-1.36	4.28(6)	C	
	9063.021	10 873	(e)	5/2	21 904	(o)	3/2	-1.39	4.09(6)	-1.38	4.22(6)	C	

Table 4. (Continued.)

λ^a	Lower level ^b			Upper level ^b			log gf HFR ^c	gA HFR ^c	log gf NORM ^d	gA NORM ^d	Note ^e
9102.067	13 605	(e)	13/2	24 588	(o)	11/2	-1.75	1.69(6)	-1.61	2.32(6)	С
9145.993	15 898	(e)	11/2	26 828	(o)	11/2	-1.70	1.83(6)	-1.78	1.54(6)	C
9231.904	10 873	(e)	5/2	21 702	(o)	3/2	-1.60	2.37(6)	-1.64	2.15(6)	C
9282.771	11 660	(e)	5/2	22 429	(o)	5/2	-1.70	1.86(6)	-1.73	1.75(6)	C
9702.242	17 392	(e)	15/2	27 696	(o)	13/2	-0.19	5.61(7)	-0.28	4.55(7)	В
9725.536	17 005	(e)	7/2	27 285	(o)	5/2	-1.36	3.38(6)	-1.36	3.38(6)	C
9788.959	16 616	(e)	13/2	26 828	(o)	11/2	-0.45	2.89(7)	-0.52	2.43(7)	В
9844.162	17 055	(e)	1/2	27 210	(o)	1/2	-1.49	2.75(6)	-1.63	2.01(6)	C

^a Wavelengths in air are deduced from experimental energies compiled by Martin et al (1978).

Acknowledgments

This work was financially supported by the Swedish Natural Science Research Council and by the EU-TMR access to Large-Scale Facility Programme (contract HPRI-CT-1999-00041). Financial support from the Belgian FNRS is acknowledged by two of us (EB and PQ).

References

44 17

Albertson W 1936 Astrophys. J. 84 26

Albertson W and King A S 1936 Phys. Rev. 49 209

Andersen T, Poulsen O, Ramanujam P S and Petkov A P 1975 Sol. Phys. 44 257

Biémont E, Grevesse N, Hannaford P and Lowe R M 1989 Astron. Astrophys. 222 307

Biémont E, Lefèbvre PH, Quinet P, Svanberg S and XuHL 2003 Eur. Phys. J. D 27 33

Biémont E, Quinet P, Dai Z, Jiang Z, Zhang Z G, Xu H and Svanberg S 2002 *J. Phys. B: At. Mol. Opt. Phys.* **35** 4743 Blagoev K B, Burshtein M L, Verolainen Ya F, Komarovskii V A, Osherovich A L and Penkin N P 1978 *Opt. Spectrosc.*

Blagoev K B and Komarovskii V A 1994 At. Data Nucl. Data Tables 56 1

Blaise J, Morillon C, Scweighofer M G and Vergès J 1969 Spectrochim. Acta B 24 405

Brewer L 1971 J. Opt. Soc. Am. 61 1666

Carlier A 1967 Thesis (Third Cycle) University of Paris, Orsay p 128

Corliss C H and Bozman W R 1962 Monograph 53 (Washington, DC: National Bureau of Standards)

Cowan R D 1981 The Theory of Atomic Structures and Spectra (Berkeley, CA: University of California Press)

Cowley C R, Ryabchikova T, Kupka F, Bord D J, Mathys G and Bidelman W P 2000 Mon. Not. R. Astron. Soc. 317 299

Dai Z, Jiang Z, Xu H, Zhang Z G, Svanberg S, Biémont E, Lefèbvre P H and Quinet P 2003 J. Phys. B: At. Mol. Opt. Phys. 36 479

Gorshkov V N and Komarovskii V A 1986 Sov. Astron. 30 333

Grevesse N and Blanquet G 1969 Sol. Phys. 8 5

Henny-Schweighofer M G 1970 Thesis University of Paris, Orsay p 174

Jaschek C and Jaschek M 1995 The Behavior of Chemical Elements in Stars (Cambridge: Cambridge University Press)

Kastberg A, Villemoes P, Arnesen A, Heijkensjoeld F, Langereis A, Jungner P and Linnaeus S 1993 Z. Phys. D 28

Komarovskii V A 1991 Opt. Spectrosc. 71 322

^b Each level is represented by its experimental value, its parity ((o) for odd and (e) for even) and its *J*-value as compiled in the NIST tables (Martin *et al* 1978).

^c Computed using the HFR model (see text).

^d HFR values normalized using the radiative lifetimes measured in the present work.

^e The letters A, B and C represent estimated uncertainties of 10%, 30% and 50%, respectively, on the normalized gf- and gA-values.

Martin W C, Zalubas R and Hagan R 1978 Atomic energy levels, the rare earth elements *Nat. Stand. Ref. Data Ser.*, *NBS Circular no 60* (Washington, DC: US Government Printing Office) p 422

Morillon C 1970 Spectrochim. Acta B 25 513

Pinciuc C M, Rivest R C, Izawa M R, Holt R A, Rosner S D and Scholl T J 2001 Can. J. Phys. 79 1159

Reyniers M, Winckel H V, Biémont E and Quinet P 2002 Astron. Astrophys. 395 L35

Saffman L and Whaling W 1979 J. Quant. Spectrosc. Radiat. Transfer 21 93

Scholl T J, Holt R A, Masterman D, Rivest R C, Rosner S D and Sharikova A 2002a Can. J. Phys. 80 713

Scholl T J, Holt R A, Masterman D, Rivest R C, Rosner S D and Sharikova A 2002b Can. J. Phys. 80 1621

Vogel O, Edvardsson B, Wännström A, Arnesen A and Hallin R 1988 Phys. Scr. 38 567

Xu H L, Svanberg S, Cowan R D, Lefèbvre P H, Quinet P and Biémont E 2003 Mon. Not. R. Astron. Soc. at press

Zhang Z G, Somesfalean G, Svanberg S, Palmeri P, Quinet P and Biémont E 2002a Astron. Astrophys. 384 364

Zhang Z G, Svanberg S, Palmeri P, Quinet P and Biémont E 2002b Astron. Astrophys. 385 724

Zhang Z G, Svanberg S, Palmeri P, Quinet P and Biémont E 2002c Mon. Not. R. Astron. Soc. 334 1