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CONVERGENCE CONCEPTS FOR ADAPITVE STRUCTURES

Lennart Ljung

ABSTRACT

When an adaptive system is working in a time invariant environment, it is
desirable that the control law converges to a limit. In this report some
techniques to establish convergence with probability one are introduced
and discussed. A self turning regulator and an automatic classifier are

used as examples.
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1. ADAPTIVE STRUCTURES
An adaptive system is defined in £8;Eas follows:

i . . . ., ; . .
An adaptive system 1s provided with a means of continuously monltoring

its own performance or optimum condition and a means of modifying its

own paraneters by closed loop action so as to approach this optimwﬂf

Adaptive control is motivated for processes which undergo large varia-

tions in their dynamics. A common example is an aeroplane[8] . It is not

possible to use the same control law for different flight conditions. An
adaptive control system solves this problem by monitoring the flight

situation and modifying its control law accordingly.

A typical element in an adaptive system is a real-time identifier, which
continuously estimates the current values of the process parameters. In E7}
several identification algorithms, capable of monitoring time-varying para-

meters are investigated.
The control law is then based on the estimates obtained in this way.

An interesting special case of an adaptive control system is when the pro-
cess parameters are known to be constant but the values are unknown. Such
situations arise in meny fields of application. One solution is fo first
identify the process parameters and then compute and Implement a suitable
control law, a scheme that must be repeated each time some change in the
process occurs. Another, more attractive solution is to use an adaptive
control: system, into which is fed the a priori information that the pro-

S n
cess parameters are constant. In glé is discussed one such control system.

=

This consists of a real time least squares estimator, the estimates of

which are used #o compute a minimum

Other examples of adaptive structures working in time invariant environment
are automatiec claSSifiers[3z. The terms self learning systems and unsuper-

vised pattern recognition are also used in the same meaning.

An automatic classifier is a system into which is fed a sequence of objects,
characterized as points in a feature space. The system then classifies the

objects into a fixed number of classes.




At each time the classifier has a rule (separating surfaces in the feature
space) how to classify a given object. Since no a priori knowledge of the
class structures is available, the classifying rule has to be continuously

updated according to the outcomes of the classification.
In iQé some specific automatic classifiers are discussed.

In these and similar cases the important question is whether the control
laws (decision rules) converge to a limit. Only after this question has
been answered it is relevant to investigate the properties of the limit
control. However, the convergence problem is in general difficult to solve,
because of the feedback structure of the adaptive system. In general a
non-linear, time-varying stochastic difference (or differential) equation

governs the behaviour of the system.

In this report some techniques to solve the convergence problem are intro-
duced and discussed. In chapter 2 is made an attempt to describe the beha-
viour of a general adaptive system. Chapter 3 is devoted to theorems that
give conditions on the adaptive systems, described as in chapter 2, that
assure convergence with probability one. Some theorems that may prove
useful when applying the technique are given in chapter 4. In chapter 5,
finally, the examples mentioned above are investigated as regards conver-

gence.




2. AN APPROACH TO GENERAL DESCRIPTION OF ADAPTIVE STRUCTURES

A schematic picture of an adaptive control system is given in fig. 2.1

Environment

Process

1

Controller

Fig. 2.1

The controller determines the input to the process from the current
output and previous inputs and outputs. We may think of the controller
as a rule how to form inputs to the process, where the rule itself is

varying and depends on old inputs and outputs.

Heuristically, the current control rule is a reflection of the current

knowledge of the system.

Tt is therefore feasible to separate the controller into two functions:

1) One part that condenses the information from old inputs and outputs

into an estimate of the current situation of the process. This part we

will call the estimator.

(O8]




2) One part that uses this estimate to determine a control rule, a
"eontrol vector" which in turn is used to determine the input to the
process. This part we will call the controller.

This structure is illustrated in fig. 2.2, which is taken from LBE.

Environment
Process —
*
—<«— Controller ——

— Estimator —

Fig. 2.2
In the examples in chapter 1 the control vector is the parameters of
the minimum variance control law and a parameter vector describing the

separating hypersurfaces in the feature space, respectively.

A more detailed description of how a specific adaptive system works




should include rules how to form estimates from input and output and
how to form inputs to the process from current and old estimates and

outputs.
These rules could be defined by giving certain algorithms.

Tnstead, we will here meke an "algorithm-free", stochastic, approach to

the description.

There are several stochastic processes (all of which may be vector

valued) connected with the system in fig. 2.2:

o The "environmental or noise process
le,s k=0, 1.}

0 The estimate process, i.e. the sequence of estimates
{% , k=0, 1...}

G The "control vector" process
{ck, k=0,1...0}

¢, is meant to be the state of the controllers the rules how to

k
form inputs from outputs, rather than the input itself.

Denote the corresponding o -algebras by

£ : The o-algebra generated by {eoee.ek}

K
) " < 3
iXk SRR
" R .
6}( {C,O RN (,k}

All those processes are of course interrelated. In fact, all processes
are generated by the noise process (and possibly the r.v.XO) in the
meaning that S and Xk belong to E\. This means that the outcomes of

¢, and Xk are known as %oon as the outcomes of eo....ek are knwon.

k
Furthermore, S belongs to Rk In fact ¢ can be taken to belong to

the c—élgebra generated by {Xk}' A complete description of the adaptive
system should thus give the rules how % and ¢y are formed from_eoe.,ek.

This would include knowledge of how the process parameters depends on

e ... .
fe) k




Such a description may, however, be unneeessary complex. In most appli-
cations Xk;and'ck depend on the noise history only via scme old values
of x and ¢. In terms of algorithms, this means that there exist recur-

sive algorithms, or stochastic difference-equations fbrugk and c In

v k-
terms of the present approach we rather consider the random variables

EX, 4 - Xklj{k) = g (xy0 %))

As mentioned above, in many cases depends only on a fixed (finite)
g, ¢°p

number of variables:

g = 8 X0 1% )
We could call the sequence of r.v's
v, =BG, - 1.,1’]() = g (5 5.0xp)

an estimator-oriented description of the adaptive system.

Similarily, the r.v's

2
- o | £
= E@:k+ c

1 K' uk) = hk(ckl"PC )

Zk 1

form a controller-oriented description. Notice that the above descrip-

tions do not require a complete knowledge of the process parameters.

Although the controller and the estimator are treated very similarly, they
do not have symmetrical structure since Cy belongs to }gk, but'xK does
not belong Lo é?

=
In case the process parameters are constant, but unknown, an alternative

approach is possible.

Suppose the information-flow A in fig. 2.2 is broken so that the controller
all the time is fed with a constant estimate X°. If the process parameters
are constant it is then reasonable to assume that the estimates converge

to some limit G(Xo), depending on %




We may call the function G(x) a long-time range, estimator-oriented

description of the adaptive system.

Similarily, assume that the flow A is disconnected when the control is
o . . .

¢’ and remains so until the estimator has converged to some value xl.

This limit estimate is then fed into the controller and a new control

vector H(®) results. The function H(¢) then forms a long-time range,

controller-oriented ‘description of the system. Although G(X) and

gk(Xk"'ﬁxk—r) (H(e) and hk(ck).,dk_r))conceptionally related, the
relationship is quantitative only for a certain class of estimators
(controllers):

Definition:
An estimator (controller) is said to belong to class A if

i) The estimate (control vector) at time m*n?xm*n (Cm%n) is a linear
combination of the estimate (control vector) at time n, and the esti-
mate (control vector) it would arrive at a time min if started up )

(if both estimator and controller are started up b at time n:
5 (n) (C(n))
m m

X = (1l -« )Xb + a X(N) 0 <« <1
mtn m,n m,n - m,n —
(Cm+n similarily)
ii) o = t, const 0<t<l, mro =" m>w
m,n
o -~ 1 m >  ¥n
m,n ,
o, - 0 n - o ¥m
m,N :

iii) If a constant estimate x € X is fed into the controller, the

estimates converge to a limit G(x) with probability one

((iii) In a constant control ¢ € C is applied, a limit estimate x is ob-
tained, which gives the new control H(c) )

*)

The start-up may require some initial values of x(c). If so, there are

to be determined in the same way as for the initial start-up.




iv) If the estimates fed into the controller (the control) vary (ies)
in a sufficently small neighbourhood of x° (&), then the obtained
estimates (control vectors) vary in an arbitrarily small neighbourhood
of 6(x) (H().

Remark 1. The lack of symmetry between estimator and controller is again
obvious. The definition of property A for a controller includes several
assumptions about the estimator but not vice versa.

Remark 2. If ¢ = hlbﬁ<) (a normal case) and the limit estimate

k
G(..) depends only on the constant control applied then

1]

G(x) g(hl(x)) for some g

and

H(C)

hl(g(c))

Tntuitively speaking, property A implies that the expected trajectories
in X~ (C-) space are straight lines when a constant control is applied.

In that case, loosely,
ZE@&+1=X}X1,,.., Xk=xo) almost equals a(x®)

(E(ey g ~ CKICT,..ckch) almost equals H(c®)

so that the long time range approach is closely related to the expected
value approach. However, in practical situations it may be easier to
determine 1limit estimates rather than study limit properties of expec-

Ted values.

Tt will be shown in chapter 5 that class A is not so small a class
of estimators as it might seem. Examples of class A-estimators in-
clude both real-time least squares (which is equivalent to Kalman
filter identification, see E7J ) and stochastic approximation. These
algorithms are the real-time identification algorithms discussed in
[71.




3. THEOREMS ON CONVERGENCE

In this chapter sufficient conditions for convergence of adaptive

structures (estimate and control vector) are given.

3.1. Heuristic approach

First, to make an intuitive approach, we consider the sequence of

estimates as a sequence of points in some estimate space.

Apparently, a crucial question for the possible convergence of the
sequence is: Suppose we all previous estimates, where do we

expect the next to come?

The question could be answered in different ways. If the expected value
of the next estimate depends only on the actual estimate and not on the
previous ones, which is the case e.g. when the estimate process is a
Markov process, then there is a uni@ue direction associated with cach
point in the estimate space. These directions also define an ordinary

differential equation.




10

We will in a theorem in this section show that the convergence

question of the process is related to stability properties of this
differential equation. However, if the expected value of the nex
estimate depends not only on the actual one but also on all previous
ones, several directions are associated with each point in the estimate
space. There are two ways to attack this problem. In all practical situ-
ations the expected value of the next estimate depends on all previous
estimates only via a fixed number of variables. Hence it is possible

to include these variables in the estimate vector and arrive at the
situation that was described first. However, this might yield an
estimate vector of an unnecessarily large dimension. A second approach
is=then to accept the multiple directions associated with each point

in the estimate space, and investigate the propeties of these 'direc-

tional cones". One theorem will be concerned with this approach.

Obviously, the relevant question is "where will the next estimate come?"
rather than "where would the limit estimate come if we fixed the control
law?". On the other hand, the second question often is more easily
answered. For class A algorithms, the expected path in estimate space

is a straight line, when the control law is held fixed. Thus the ex-
pected direction from the actual towards the next estimate coincides

with the direction towards the limit estimate for fixed control law.
For class A algorithms is it hence possible to consider limit values
rather than expected values, which might be a great simplification

in practical cases. One theorem will be concerned with this situation.

3.2. The cdase when an ODE can be associated with the convergence'problem

We will first consider the case when the expected direction towards
the next outcome of the process depends only the last one or on a

finite number of previous ones.

To this end consider a stochastic process Cﬁ(,k = 0,...), which may

be taken as either the estimate or the control vector process.

Theorem 3.1 gives necessary conditions on the random variables
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E(xk_m—xk lxo, cees Xk)

to assure convergence of X, to a limit with probability one.
THEOREM 3.1

Consider a vector valued stochastic process (X, 'k =0,...). Denote

the o-algebra generated by (XO, .. .xk) by X K
Let

E(xkﬂ—xklj{k) = o hix)

where 0y is a decreasing sequence of possible numbers such that

< o

o o
k 1 k

Assume that

{x]<+1-xk] < O‘kM almost everywhere (a.e,) for all k

Let ¥, belong to a bounded region & a.e.

Then, if the ordinary differential equation

dx  _

e h(x) (3.1)
is asymptotically stable with stationary point x°. and with domain of
attraction (see 4 ) q, where q, Caq,,

then

X, > X with probability one.




Proof

According to the converse Lyapunov theorem on global stability (see
e.g.¥rasovskij 5 ) there exists a positive definite function
v(x) in @,, with continuous partial derivatives of any order, such

that

%&-v(x) is negative definite in @4 (the time derivative is to be taken

along trajectories of (3.1)). Furthermore 0 < v(x) < 1.

M, i ~ = §
Consider Vi V(Xk).

The idea of the proof is that Vi is "almost" a supermartingale. If

vy were supermartingale it would converge to a limit a.e., and it
would not be too difficult to show that such a limit necessarily
must equal zero with probability one. Now, Vi is a supermartingale
only ourside a decreasing region around v = 0, so that it seems

reasonable to expect 1lim v = g.
}=>0

It then remains to show that %?% Vi cannot be strictly positive.

e
Intuitively, this is clear, since then Vi would have to "strive -
against the stream'" an increasing number of steps, nfinitely many

times.
More formally, consider

. o - T - £ - T
By [0 = B ()G 0] g0+ BOg 4% ) v, (8)

Uy T e 17 ]
“%P%”ik)’V%ﬁQﬂﬁ«1ﬁ<L4Q+“kK“wﬁ@W }

T °
= ak{VX(Xk)h(xk)+K(Xk’Xk+1)} = ak{v(xk)+K(xk,xk+1)} (3.2)
foc}i-c

since |K(Xk’xk+1)I < Ceop and v(x) < 0.

Furthermore, as long as §(Xk) <=pco. {v, ‘) } is a supermartinagale

G S
i.e. the leftmember of (3.2) is non-positive.

Define

A= {x]v(x) > -2Coy )

12




and
B = )S(LépAV(X)
k
Thus V() > B 2 v(x) £ =200 (3.3)

Now, oy ™ 0 implies Ay {XO}, for otherwise we could find a sequence

. 1 o} .
%03 X € Akwrr:hxk—>x 2 x andv(xk)—>0 as k =+ o,

Consequently Bk v 0

Form from Vi the new sequence of r.v's W}((n) :

1 if k<n
(n)
Wy, —

Vi ifk>n

(n)

Introduce the optimal r.v. Y

3

and the optimal variable Yp T mln(yn,k) . Ubviously Y, 18 optimal

relative to }%k Consider the stopped process

(n)
.(n)
% =W
k 'Yk
n

Fig. 3.1 shows how this is formed from vy

which takes the value k if W = < By
k

13




Zk

Fig 3.1

Zﬁn) is easily verified to be a supermartingale. It consequently a.e.
tends to a limit Z(n>
Define the set

, which is a r.v..

Bn = {wlz(n)(w) > Sﬁ} :‘ {wl’Yn = m;

Now k-1
E(Zié)_ Z(n)) - B( % (Zgn) _ Zgn))):
o) . J+1 ]
=0
k-1
sE Cz @™ - 2™ (3.4)
g Ot ]
]
Denote
(n) (n) _ A
E(zj+1 - 2 I;Zj) = dj
0if j <n
di = < Q(Xj).uj/Q ifn< < Y

0 if j > Vg




Since 0 £ Zk
numbers .

(n)

£ 1 (3.4) is thus a uniformly limited sum of non-positive

This implies that |Z E(di)! < ®

3=0

On B, d] is less equal - a. for all j.

n-j

IfP(B)>O 1m&-——E(d) § < 0 and
J7e ]

-z E(d > =L a. 8/2 =-8/2 T 0. =

j=N y I N
since Zoc_.J diverges, which is a contradiction. Consequently P(B.n ) =
That is Z(n) < By a.e. and consequently ¥n there exists with proba-
bility 1 an N, >N > n such that vy < By '
g_ » 0 then implies limv, =0 a.e.
Il "k':;:o k

Furthermore Y

is a.e. finite.

Now consider the process

EGa g | F )

e . , 2
’= ak{('V(ﬁ()th(Xk’kkH)} = oy C < 0.

Hence w, is a positive supermatingale and lim W =W exists with
, v
probability one. But lim w W = = lim Vi = 0 and

= froo

15




Hence v, = 0 with probability 1.

But vy = V(Xk) and v is positive definite. Hence X, - X~ .a.e.
0.E.D.
Coroallary

[s0]

. .o 2
Tt follows from the proof that even without the condition I O <
k=
there a.e. exists a subsequence

X, (w) ~» x°
k

Remark 1

Let x  Dbe generated by a simple stochastic approximation glgorithm:
Xepq = X+ o B0

where E(Zk) = 0 and Z_ independent of Xjs Xqs.: Xy -

k

We get

By g - * [ Ky = oy (00

The corresponding ordinary differential equation is
}.{=‘X+@
which surely is globally asymptotically stable with stationary point

Hence the convergence of ¥ - to © with probability 1 is obtained from

theorem 3.1.
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Remark 2
The function v(¥) resembles the concept of stochastic Lyapur.ov function
introduced by Kushner [6] . However, as shown in the proof, v(Xk) is

not really a supermartinagale and thus no stochastic Lyapunov function.

Neither need xk:be a Markov process.

The assumption that the expected difference
E(G 4 - XkD{k)

shall depend only on X is unnecessarily limiting. Since ¢ decreases
towards zero it is seen that any fixed number of consequtive outcomes
will come arbitrarily close to each other.

Hence, we have the following theorem:

THEOREM 3.2

Suppose the assumptions of theorem 3.1 hold, with instead

EGyq = 530 = o BOgo X gsnees %)

Assume that, with h(x) = H(x, X,...%)

[H(X, 3Xoseees X ) = DGO < Lesup|x.x| , x € @
1 e i1, .. 3041 !

Then the conclusion of theorem 3.1 holds.
PROCE
We have instead of (3.2)

< T R - -8 T
E(\,k+1 \kl“ ) = ukiv(xk) + vx(xk)f(xn,xn_q,...,x )

)}

+ K(xn, X041




where

lf(xn, Xoqoees X )| = |H(xn, X g

r

< L'iup IXj - Xn' < LeMereo

n-=y

vx(xn) is uniformly bounded, say

|vX(xn)l < P for XnE: 91

Then the right member of (3.2) is

o, *0, _ (C + PrLere1D)

rather than
2
ak C
but if we take

C' = C + PeLerM

, x_ ) - h(x)]| <
n-r n it

we can continue as in the proof of theorem 3.1.

and

0.0 < X uzwﬁ <
3773-r= 5 I

_Jo DV

Q.E.D.

18




3.3. The case when multiple directions are associated with each point

If the expected difference

7/
E(X g ™ xkl;ék)
depends on all previous Xj , there is no differential equation (3.1)
associated with the convergence problem . However, sufficient condi-
tions for convergence can be established by assuming the existence
of a "Lyapunov function" for the "directional cones'.
THEOREM 3.3
Consider a vector valued stochastic process (x,_, k=0,1,...). Denote

the o-algebra generated by (XO,...,Xk) by ;Xk'
Let

B,y = % K00 = o g X gheenX)

where o, is a decreasing sequence of positive numbers such that

k
;OL:OO aﬂd;02<oo
1 k 1 k
Assume that

|Xk+1 ~ xkl < op M a.e, for all k.

Let x belong to a bounded region 4 &.€.

Assume that there exists a twice continuously differentiable positive
definite function v(x) in an open region flys 5% cq, i.e.
v(x®) = 0

o

vix) > 0 x € 92 X # x

19
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such that
VT(X) (X,2,,7 z ) is
X hk L Rl A A ¢

negative definite in x, independently of Z., i.e.

_ e
=0 x =X Vo
< §(x) < 0 for x’€lQ2 and

x # x° for all z

vi(x)hk(x1,zq,z ,...,zk) = {

Then = > x° with probability one.

PROOYF

T e
If we denote V35X)hk(x’zl’22""zk) = v(x) the proof of theorem 3.1

can be applied with no changes.

A disadvantage of this condition is that it is not necessary one.
This is probably true for the criterion in theorem 3.1 and 3.2. If
(3.1)in some significant way fails to be globally asymptotically
stable then x_does not converge to a constant limit with probability

k
one.

We have so far only considered conditioneing with respect to ¢ -alge-
bras generated by the process itself. In practical cases it might be
easier to condition with respect to larger OJ-algebras.

Theorem 3.4 solves this problem in the spirit of theorem 3.3.

THEOREM 3.4

Consider a vector valued stochastic process (x,, k=0,1,...). Let

~§k be a sequence of o¢-algebras such that

o 5> 8
1 T Tx and x € gk



Assume that

g = ®
E(X g ™ Xklwfk) = oy Gk(zk’zk—1""’zo) hix )

where uk:is a sequence of positive numbers such that

© and ZOL}Q(<°°
1 1

™
Q
H

Assume that

le+1 - Xk‘ < Oy M a.e. for all k

let X belong to a bounded region gk]a.e.

Assume that there exists a twice continuously differentiable, positive

definite function v(x) in an open region %, , ﬁ} &, 1ie.
vG®) = 0

vix) > 0 for x 92 and x £ x°

such that

\'/;E(x) 6 (=

k’Zk—T""’Zo).h(X)

is negative definite in x i.e.

=0 forx=x"orz € Qi
T .
v%(x)Gk(zk,...,zo)h(x)

< Q 0o
0 for x € ’ and x # X and z élk
where P(QiLgfk) = 0 a.e. where ;Kk is the o-algebra generated by

(XO,..., %)

Then

% > x° with probability one.

21




PROOF
Obviously

T
EW_ (6 (Z 5 2y _15enes z h(x )| ) s wlx) <0

for X € Qp X # X

Since X, © & we get

Blv(x,,)-v(x )| X)) = BEw( v DG DI X =

= BEGL )0y = 301 G400 (€)% 019 XD

- T v
= Eloy v (536, (z,,2, _15e.es2 D000 )40 Kty O A

< o) + KO, % )

as in (3.2)

We may now proceed as in the proof of theorem 3.1 with

W(Xk) instead of v(xk)

In spite of the rather special structure of this theorem it turns out
to be useful in practical situations, as shown in ¢hapter 5.

3.4, Extensions of theorem 3.1 - 3.4

In theorems 3.1, 3.2 and 3.4 we have assumed that the function

22




L) 1

EGq,q = %] 40

does not depend on k. This restriction can be removed as follows:
EXTENSION 1 TO THEOREM 3.1 - 3.4

Assume that the right members of the conditional random variables of

n,
theorems 3.1 - 3.4 have an additional term f & (X seesX )
Assume that
n
lgk(xk,...,xo)l <L for XpsensXg € 91

and that

Then all the theorems still hold
PROCF
The additional term causes the right member in (3.2) to be

2
Cock + LBk

Still

o0 2 "
% (Cock + LBk) <

Furthermore we have

E(vk+1-vk[3{k) = ak{v(xk) + KOG % q) +

B
MRS g(x ,...,xo)}

%%

K( >+§9§-’“< )
But %1084 RS PR e

still tends to zero as k> ® son the proofs are not affected.

23




The theorems so far have been concerned with the question of conver-

gence with probability one. If the domain of attraction £, does not

ou

include 5%, we may conclude convergence with probability less than one.

EXTENSION 2 TO THEOREM 3.1 - 3.4

Assume that the domain of attraction 92 in theorem 3.1 - 3.4 does not

necessarily include ﬁ%. Then the conclusion is that

Xk4' %

with at least the same probability as % remains in any closed
2

subset § of 92.

PROOF

Consider the same stochastic process& EE before and option it with
respect to the exént that % leaves (vk> 1-68) to obtain the
stopped process Vv, . Then apply the proofs to this process bearing in
mind that the probability that it actually is not stopped is equal

Y]
to the probability that X does not leave & .

3.5. A theorem for class A-algorithms

We now turn to the long-time range approach. If the limit values for
a process ¥ for a fixed control law exist (=G6(x)) as assumed for class

A algorithms, then it is very reasonable to expect that
E(Xy,q = Xkl;gk)

either equals or tends to

-x + G(x)

as k- « .
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Hence theorem 3.1 or extension 1 of it is applicable. However, it
may practically be easier to establish the limit values without

reference to and examination of the conditional variables.

Therefore we give a separate theorem, with an independent proof for

the long-time range formulation.
THEOREM 3.5

Consider a class A-algorithm, updating the vector xk(which may be

either the estimate or the control vector).

Let the corresponding limit function be F(x). Assume that X belongs

to a bounded region Qq a.e.

If the ordinary differential equation

dx

— = +

i x + F(x) (3.6)

is asymptotically stable with stationary point x and domain of attrac-
tion 92, QH 92, then xké- x with probability one.

PROOF

The proof very much resembles the proof of theorem 3.1. As there, we
infer the existence of a Lyapuniv function w(x) and study the

vk = V(Xk) for realization of Xk. First we show that

limv_ =0
= 'n

n—>®°

Assume that limvn = 8> 0

I oo

Take a subseguence v such that v, § as k- «. Then extract another
k k ‘
subseguence 0y from this, such that Xy 7 «°, which is possible due to

k
the Bolzano- Weirstrass theorem.




The point x° has the properties

I
O

v(x")

v(:°)

Let %(t) be the solution of (3.6) with

Q:J(O) = x°
) = 22+ tFGES) - ) +o () t >0
Denote

L 4 t(FEC) - 50 = x(D)

Then
V() = vO) - 8% + o(t) £ 0 (3.7)

Tor sufficiently small t, 0 <t< to, the ordo term is less than Ls Ot

2
Now since lim v = 8= v(x)
e

we have for n'! > N (t)
‘ k o)
v > () - £6% ¥, 0 > N (D)
n‘k+m L4 m’ k o
This, together with (3.7) gives
!v(;c(t)) - vix ) > £t ¥ ,n' > N (), t< t° (3.8)

n'k+m b m’ Tk o ’ *
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The function v is Lipschitz continuous in €1 . Let the Lipschitz constant

be KL

Then from (3.8)

he(t) - >St oy ©
m

xn,k+m{ e > N (B), t<t

k

PN

or, using the definition of x(t)




Gdt O o) o)
EK; < |xm + (P& - x) - Xn’k+mw (3.9)

Since X is obtained from a class A algorithm:

!
Xt o4m Q- o o I e Xé? k)
k Tk k Tk

With this inserted in (3.9)

L iy |+ 10 |

e <X =X, |+ (X0 WXyl

MKL n Hnnk m

(n' )
+ o X KGO |
m,n, “m
Xk

Now, for a given t, we can choose

!
n'y > Nl(t).iNo(t)
such that x° is arbitrarily close to X and such that m = m(ni,t)
can be chosen so that o is arbitra%ily close to t.

b
k
Hence
(ni) o s
lx. ©-F&® ) | > 57— forn! > N, (t), m=mln, t) and
m SKL k 1
t <t (3.10)
- 0

(n)

Now for a fixed control law, corresponding to x = XO, 0

as n-> o and m = mn,t), t fired.

Furthermore according to property (iv) of a class A algorithm, if the
(n)

control law varies in a sufficiently small region, X will lie arbi-

trarily close to F(x°) for large n. But this is in contradiction to
(3.10) since a sufficiently small t guarantees that X i is suffi~

ciently close to %° and thus that K

> P(x°) a.e.
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1
x(n ) is arbitrarily close to F(x)

for large n'k.

Hence lim v, = 0
— 'k
ke

Suppose now, that

lim v, =6 > O
1 k

We will lead this into contradiction in the same way as above.

Since lim Ve =0

g

the Strip[%3 %—+ §°()1 , 8°(t) < 6/2
will be crossed in each direction infinitely many times. Let A be a

sequence of upcrossings, i.e. v, enters the strip at 8/2 and K eaves
k

. _ S o,
it for n~nk+m(nk) at 7 + S7(t1).

o

Choose a convergent subsequence x_ of x . Let x , > %~ and proceed
n n ol
k k k

as above.

Thus we arrive at the conclusion that

i%zé vy ® 0 and hence %kg Yy F .

This is true for all realizations that fulfill the class A properties.

But since these are valid with probability one also

1 = -+ - k e
i;g;‘ Vk 0 and hence Xk X - as

with probability one.
Q.E.D.
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4. CONNECTION BETWEEN CONTROLLER-ORTENTED AND ESTIMATOR-ORTENTED
DESCRIPTIONS

Tn terms of the long time range description of chapter 2, an intuitive
approach to the convergence problem could be described as follows.
Suppose that the control law & is held fixed for a long time. When
the estimates have converged a new control law is determined from

the limit estimates: this gives Cyq = H(Ck)'
Similarily for the estimates X4 C G(Xk)'

If now the "long time range algorithm' S

limit it seems reasonable to assume that also the actual algorithms

= H(ck) converges to a
converge. Such arguments are given in (1) ana f2).

In fact, theorem 3.5 shows that for certain algorithms the assertion
is correct. The criterion could also be replaced by the weatrer one,

to consider stability properties of the ODE
¢ = - c+ H)

There is in general no free choice which describtion to choose when
applying theorem 3.5. Usually it is the estimator which most easily
can be written as a class A-algorithm. On the other hand the control
vector often has lower dimension than the estimate. It would thus be

preferable to work with the controller rather than with the estimator.

In this chapter we will discuss whether and when the twc ordinary

differential equations

- x + G(x) (4.1)
~ ¢ + H(e) 4.2)

0 X
I

are equivalent with respect to stability properties.

To do so we introduce some more structure in the problem. In chapter
2 it was remarked that normally the control vector is determined from

the actual estimate, which has higher dimension:
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S f(Xk) f *R >R nZm

Furthermore the limit estimate depends only on the control chosen so
that

G(x) = g(f(x)) g 'R
Hence also
H(c) = f(gle)).

We are thus left with the problem to discuss the connection between

stability properties of

x = -x + g(£(x)) (4.3)
and
¢ = - c+ flgle)) (4.4)

Obviously, if x is a solution of (4.3) f(x) is not a solution of (L4.4).
So (4.4) does not describe how the control law is expected to develop,

even 1f (4.3) yields the expected sequence of estimates.

Nevertheless, if x is a solution of (4.3) f(x) is related to solution

of (4.4) and conversely.

The scheme of this chapter will be as follows. First possible conver-
gence points of the algorithms for estimate and control vector are

interrelated using the equation (4.3) and (4.4).

Then local stability properties of the ODE's are discussed and

finally two theorems on global stability properties are given
THEOREM 4.1

Let the estimator be of class A.

Y
Assume that the control vector . = f(Xk"'
Let f(x) = f%x,x,e.,x). Then

a) If cn-+ & as n>®

- r)’ where f is continuous.




then 1) X > g(c®) asn» =

ii) ¥ is a stationary point of (4.4)

iii) g(c®) is a stationary point of (4.3)

b) Conversely, if X x*¥ asn > e

then 1) c *—f(x*) as n >
1

ii) x*is a stationary point of (4.3)

ii1) f(x*) is a stationary point of (4.4)
PROOF

a) i) Take & > 0, since g is continuous 3 $
such that |c ~c¥| < &= |g(cn)-g(c*)| < €/2

Since S¥s c* 1 Nﬁ such that n 2 N1 x?lcn—c*] <6

Now for elass A-estimators,

(N)
X

( . C o
lim LN lim x N if existing. and (propertiy iv)
m
m-»e Mo
x 2 =M e |c.-c* <8 Zo, =1
m 1'm 1 1 1
IX(N)(C-)’g(C.)‘;;>2\fOP m >N, and |c.-c¥| <&
m 1 1 i 2 1
Hence

|xéN)—g(c*)] <z uilxéN)(ci)—g(c*)l <

<z ui{lxéﬁ)(ci)—g(ci)[ + ‘g(ci)_g(c*)‘} < e

(Nl depends only on €; N2 depends only on e)
let m»~ ,then

T x40
m
H‘[—}OO

~g(®)] g e - Tim |x-g(e®} < ed 1imx = g(c®
‘ -0 Tesc0
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.« _r\"
a)ii) c, = f(xn"'“xn—r)

The left member tends to c*. The right member tends to %(g(c*),g(c*)..):;
= flglc )) (f continuous)

Hence c* = £(g(d)) and & is a s.p. of (4.4)

a)iii) o* = flge*) g = g(fge®»)
glc ) is a s.p. of (4.3)

b-assertions follow from the part just proved.
0.E.D.

Theorem 4.1 relates possible convergence points of ) to possible
convergence points of X -
There is also a relaticnsship between all stationary points of (4.3)

and (i.4). To establish that an elementary property of linear mappings

is required.
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LEMMA 1

let Abe an x k matrix and B a k x n matrix. Suppose n > k. Then

AB has the same eigenvalues as BA and besides n-k eigenvalues = 0.
PROOF

let A be a non zero eigenvalue of BA with eigenvector e, i.e.

BAe =Ae, obviously Ae # O
Then

AB(Ae) = A(BAe) = A( e) = Ae

i.e. Ae is an eigenvector with eigenvalue of AB. Similarily any non-zero
eigenvalue of AB is also an eigenvalue of BA, and the lemma follows

Q.E.D.

THECREM 4.2

let f: R %-Rk and g: Rk + R" be continuously differentable

Consider the OLE's

bd
"

-x + g(f(x)) (4.3)

(]
il

-c + £(g(c)) (4.4)

There is then a 1-1 correspondence between stationary points of (4.3)
and (4.4).

Furthermore, the linearized ODE's around any two corresponding sta-

tionary points have identical characters.

PROOF

o . . . o o)
Let x~ be a stationary point (s.p.) of (4.3) i.e. x = g(f(x7)).
This implies £F(x°) = f(g(f(xo))) and c© = £(x°) is a s.p. of (4.4).
Similarily if cl is a s.p. of (4.4) Xt = g(cl) is a s.p. of (4.3).
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Furthermore two different s.p. of (4.3) XO, xl, correspond to different
s.p. of (4.4). If not & = £(x0) = ot = f(xl). This implies that
g(co) = g(f(xo)) = x° = g(cl) = g(f(xl)) = Xl which is a contradiction.

Now linearize around a s.p. x° and c© = £G°) respectively.

>
by
I

= (g'KXO) ofl'Xo -I) Ax

>
0
1

= (f'(g(co) o g'lco - I) Ac

But g(co) = ¥° and £(z°) = c°. Hence, according to the lemma the
linearized ODE's have the same eigenvalues (the Ax-eq. may have
sone in -1 in addition) and the theorem follows.

Q.E.D.

Although local properties thus are identical, we must consider only
special cases to establish results on global properties of (4.3) and
(4.4).

LEMMA 2

Let ¥ = f(x), where f(x) is continuously differentiable be asymp-

totically stable with domain of attraction & ” Assume that x is known to be-
long to some bounded region 209 52 C 2, . Then x = f(xty(t)) where

y(t) v 0 t»= is asymptotically stable with a domain of attraction

that includes Q.

PROOF

Let V(x) be a Lyapunov  function to % = f(x). Then V(x) is p.d.
in 2, and V(x) n.d. in %, . (The existence of V is acertained by
Zubov's theorem, see eg [4} ). Let % be a solution of

x = Flety(t))
Then
T

TG = vx = v§f<’§+y(t>> = v§f<§’> + U y(t) +6 (y(0) y(£) > 0

The first term is n.d. in 522 . The second term tends to zero as

t+ «. Denote the region in which V(x) is strictly negative with @ t



.0
Obviously Qt—* 92/{X } as tow (VX and fX are uniformly bounded).

] . v v o
This acertains that V(x) - 0 and x -» x .

Q.E.D.

THEOREM 4.3

et £: B> R"
and

g o, g

Suppose g is linear and has full rank and that x, and y belong to
bounded sets.
Then

» a
Hi

-x + g(f(x)) is glob. 'as stable if and only if

-y + f(g(y)) is glob. as. stable.

e
1

PROOF

Let g(y) = Ay where A is a linear operator
The proofs are slightly diferent for the cases
n>mand m=2 n.

i) naAm

Decompose R = V & Vi, V = range (A)

Decompose x accordingly

i
x=hzt+ty yEv z € R

We get
x=Az ty=-Az-y+ Af(AZ + y)
Az + z - f(Az+y)) +y +y = 0

But ; CZVA since y(t) CVl ¥t and V' is a linear subspace

Hence
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y+y=0
Alz+z-f(Az+y)) = 0

Since A has full rank we get

n

-y
= ~z+f(glz) +y)

Na
]

Tt remains to prove that

7z = -z + £(glz) + yoe—t) gl. as. stable ¥yo
is equivalent to

z = -z + f(g(z)) is gl. as. stable

But one way is triyial and the other follows from Lemma 2.
ii) m2 n

Decompose R = Ve Vl; V = Nullspace (A) and continue as above.

THEOREM 4.4

Let f: R'»R have the property that f(XO + t(xl - XO)) belongs to the

interval

[£(x), fGx)] for all t, 0 < < 1 x_ and x,. Thén if the one dimen-

sional ordinary differential equation

¢ = -c + flgle)) (4.5)
is globally asymptotically stable then so is the n-dimensional ODE
x = -x + g(f(x)) (4.6)
PROOF

. Then Vl(C) = (c—cog is a

lLet the stationary point of (4.5) be ¢

Lyapunov function for (4.5), i.e.

(c-c)(f(g(c)) - )4 0 for c # °
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We will show that

V0 = (FG) - &

is a Lyapunov function for (4.6)
Consider

f(xl + t(mxl + g(f(xl)))

Since this value lies between f(Xl> and
F(g(F(x1))) for all £ 0 <t <1

sign [%E{f <+ text 4 g(f(xl))}t—o} sign[(F(g(x))) - £(x))

But

%{ f% 1y t(—xl + g(f(xl))} = (Y7f(xl)\[ —Xl + g(f(xl))])
+=0

and since

9,60 = 2(EGO - NV EGD) [T =xt + g(FGEN D

we get

d

o
s VZ(X) <0 for f(x) £ cC
From theorem 4.2 (4.6) has a uniquely determined stationary point %,

The only case when a solution x(t) of (4.6) other than <° may fulfill

F(x(t))

"
0

is when X = -x +g(f(x(t))) = - x + x°,But then %(t) obviously

tends to x° = g(co). Hence the as mptotic convergence of solutions of

(4.6) towards x” follows.
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5. APPLICATIONS

In this chapter we will apply the convergence theorems of chapter 3

to investigate the convergence properties of some adaptive systems.

When faced with a specific adaptive system several ways TO prove con-
vergence are possible. If the control vector algorithm is such that
the expected value of the next outcome depends on all previous ones,
then it is natural to first try to apply thecrem 3.3 or 3.4. In case
it is difficult to find a suitable Lyapunov function, it is reason-
able to consider the estimate process and, possibly by extending the
dimension of the estimate, make theorem 3.1 or 3.2 applicable. Another
possibility, which is closely related, is to rewrite the estimate as
a class A algorithm and apply theorem 3.5. In these cases we are left
with an ordinary differential equation, the stability properties of
which yield all information needed to establish convergence or non-
conwergence (cf. remark in section 3.3) of the algorithm . Theorem
4.1 to 4.4 may be useful for the investigation of stability proper-

ties.,

We will now apply this technique to investigate convergence properties

of two specific adaptive systems.

Example 1. Self tuning regulator

In [1] is discussed a regulator for a system with unknown but constent

parameters.

The model of the system is

AlQ)y(t) = Blgiult-Xk)+rc(gqlelt)

n n-1
= + + +
where A(q) = g a,d Lo tay
n-1
= +
B(q) b%q * ... v D)
= + ...t cC
C(q) q . (*n
and where q is the forward shift operator. Parameters SEERRRC
bl""bn are estimated recursively with a real-time least squares

algorithm and then the control law
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a,y(t) + ... ahy(t~n+l) - bzu(t—l) - . - bnu(t—n+l)]

1
u(t) = =—
bl[ 1

~ PPN

is applied. (The estimates of a. and b. are denoted a. and b.).
1 1 1 1

A A ~

Consequently we may take © = [al "'anbl"'bn 1 as the control vector.
In [ 7] it is shown that the estimates © are given recursively by

0 (t+1) =0 (t) + K(t) [y(t) - ¢ (+-1) © ()] (5.1)

wt>=Puﬁ¢oelﬂ%R2+¢<t1nww¢Tcp1ﬂ'4

P(t+1) = P(t) - K(t) {R) + ¢ (t-1P(t) o7 (+-1) k(o)
o) = [-y(t) ult) - y(t-1),....-y(t-n+1)]
An identical algorithm results from the Kalthan filter approach.

To apply . theorems 3.1 to 3.4 for the control vector process we

consider
O(++1) - o (1) = K(O{ y(t) - ¢(t=1) O(t)?

The expectedvalue of this quantity given all previous values of ©,
actually depends on all these, since K(t) does. Hence only theorems

3.3 and 3.4 are applicable.

However, by a proper choice of estimates also theorems 3.1 and 3.2 can

be applied:

Choose as estimate vector

t "t

- - T
(-0)ye.. 2 (n=1), P 5(0),... T S(n-1)
uy uy u u

x(t) = [{n;(o), %;(n),{«

where r» are the covariance estimates at time t

ot ;] t
= = Tk
L (k) ralip ul(rtk)y(r)

r=1
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Then
! 1,2 (t) ’
HLO (D) - n T 0)
x(t+l)-x(t) = .
;%%I(u(t+l)u(t—n) - Pz(n"l‘

and

E(x(t+l) - x(t) Ix(t),...x(0)) = f(x(t))

so that theorem 3.1 is applicable for the estimate process.

In fact the estimate process is a class A-algorithm:
m

Property i) holds trivially with « m,n = T from which 1i) follows.

A constant estimate x gives a constant control law

FHR R -1 ry(l)
y uy
O =
R R >
y r (N
‘ yu

. . ro
(Ry, R~ and Ru are covariance matrices, se 27 1.

~5

With this control applied x converges with probability 1 to a continuous
function G(x). Property iv) follows from the continuity of x ine and of
G(x) in x.

We will now consider convergenc of the algorithm in the special case

y(t) + ay(t-1) = bu (t-1) + e(t)

Since this structure is not identifiable from closed loop data, b

is taken as an arbitrary constant, say 1.

Assume that | y(t)] <M a.e.




i) Using theorem 3.4

In this case we obtain from eq (5.1)

~

S8y - agt) = YDYDEE)

R2+y(t—l)2P(t)

where

t
”%?j‘z Z.yZ(S)
p 20

Take as the sequence of 0 -algebras

To= Iy . y-D)

Then P(t) € ?t and
By F | = (a-ba)y (t-1)

Hence

A~

2
Ty=Y (t=1)P() (a

Ea(t+l) - a(t)] F . ~ ab)
R2+y (t-1)P(t)
In terms of theorem 3.4 we can take
ak as 1/k
Take as Lyapunov function
_ 2
V(x) = (x - a/b)
Then
2 (+-1)P(D) 21
- (a-xb)” =

V'(x)G, (v, 15...,y 00(x) =
ol © R2+y2(t—l)P(t)

which is < 0 unless

b
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x = a/b

or ,

v (t-1)P(1) = 0

But, obviously

P( {y?(t=1P(H) = 0} F) =0 ace,

and hence

x(=a) a/b with probability one.

Remark.

To be true, P(t) depends also on y(t), so that taking expected values,

given y(k) only up to y(t-1), the result is not exactly P(t). It is

seen that this does not affect the arguments.

Formally:
oran o y(t—l)2
P(t) = P(t-1) - —¢ T
2 2
(2 y GNCzy &)
k=0 k=0

so that the error is D(l/t2).

(o]

Since Zl/t2 < w, extension 1 of theorem 3.4 is applicable.
1

ii) Using theorem 3.5

According to what was said above we obtain a class A algorithm if we

take as estimate vector

r (0)

U
X = v (0)
Auy

r (1)
uy

&

The control law a is formed as
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~ P (0) -1 (L)
u uy

&= T E (0)
uy

Suppose the control law is fixed a_. u(t) = aDy(t)

Then

~

r (0) »r (0)/a
uy u 0

20 » & (0) = a2/ (1-(a-ba )?)
u 0"y [} o]

~

r (1) = ar (1)
uy oy

1

2 (ba -a)/(1-(a=ba )°)
O O O

and the new control is

a2 - ag(bag—a)
a. = = a - (ba-a)
1 ao o) o)

Applying theorem 3.5, we obtain that the convergence of the algorithm
depends on the stability of the corresponding ODE:

2
. ao
X, = =%, * 5
1 "1 (aba®)?
o
e
_}‘i - -x + — (5-2)
2 2 1-(a-ba )2
o}
a (ba’-a)
Ry = uy by
1-(a-ba )
X -X
where a_ = 1 3
o X,

This is the estimator oriented ODE. The corresponding controller oriented

differential equation is
y = a-by (5.3)

The functions g and f introduced in chapter 4 are in this case

X, ~Xq
f(xl, X5 X3) =-f§;*—




n

2
S A

g (g) =~
+ l—(a.—by)2

A

g (y) =
2 l—(a—by)2

y(by-a)

g.(y) =
3 l—(a—by)2

From theorem 4.2 and the simple properties of (5.3) we have that

the only singular point of (5.2) is

- (32 2
x = (5 50

and this is an - asymptotically stable singular point if b  O.

Furthermore, in this case we can also obtain results on global stability:

*17%3

X )

Since f(Xl,Xz,Xg) =

At+B . .
- } o= 2
f(xo+t(xl XOL, ) with suitable A,B,C,D.
This function has no extrema for 0 < t < 1. Therefore global asymp-
totic stability for (5.2) follows from the same property of (5.3) and

theorem 4.4,

Hence, the convergence of x towards X and a towards a/b with probability

one is again acertained, this time from theorem 3.5.

Example 2. Automatic classifiers

In [2} is discussed some automatic classifiers for samples that belong

to one of two random variables.

In the one dimensional case they work as follows.




The sample x is compared with a decision value ¢, and is classified as
class A if greater and class B if smaller than c. The value c is
determined as

Y

m, +i
c:_,A2B+ a<\/<7A_\/§B>

where mA>is the estimated mean value of those samples classified as A

Va

a simple stochastic approximation algorithm. To apply theorem 3.1 in-

is correspondingly the estimated variance.mA} etc are updated with

troduce the estimate vector

i 1
— ! e,
E(Xk+l X %xo...xk) =) f(Xk’ ck)
Since S8 is a function of % theorem 3.1 is applicable and the corre-
sponding ODE determined. It depends on the actual distribution of the

random variables. In [2] the corresponding controller-oriented ODE

is investigated for a number of distribution functions.
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