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Abstract 

This tutorial describes experiences with applying a 
control theoretical approach to achieving performance 
guarantees in Web servers, with emphasis on delay con- 
tml. A model for the server is formulated and trans- 
lated into a control problem formulation. Limitations of 
the control theoretic approach are identfied that arise 
due to system non-linearities and modeling inaccura- 
cies. Solutions are proposed that augment the feed- 
back control framework with elements of scheduling and 
queueing theory The theoretical results and QoS con- 
trol loops presented by the authors are implemented in 
a middleware package, called ControlWare, which pm- 
vides the sojiware mechanisms and interfaces that allow 
control of real server performance. Implementation and 
performance of ControlWare is described. 

1 Introduction 

Feedback control theory has recently been applied for 
performance control in several Web-based applications 
to achieve quality of service (QoS) guarantees. The fun- 
damental reason feedback control theory is applicable 
in the computing domain is the fact that performance of 
computing services is tightly related to the status of var- 
ious systems queues, such as the CPU scheduling queue 
and socket queues. At high load, these queues act as in- 
tegrators of (request) flows, and hence can be described 
by difference equation models amenable to a control- 
theoretical analysis. Response time and throughput are 
two of the most important performance metrics in In- 
ternet services. Acceptable performance can be dis- 
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rupted by several factors the most common of which is 
system overload. To reduce response time or increase 
throughput, the fundamental manipulated variable in the 
computing system is the allocation of resources, such 
as CPU and network bandwidth, to computing tasks. 
Resource allocation determines how fast requests are 
served at different parts of the system, which is equiv- 
alent to manipulating (request) flows. 

This paper presents a brief tutorial on the perfor- 
mance control problem in contemporary Internet ser- 
vices. Generally, server performance control problems 
can be divided into rate control problems, delay control 
problems, and ratio control problems. The former cate- 
gory is the easiest, as it typically results in linear control 
loops. In contrast, delay control loops offer nonlinear 
behavior. The non-linearity is due to the inverse rela- 
tion between flow and delay, which invariably arises in 
any control loop of a time-related metric. Nonlinearities 
also arise when the required performance is expressed in 
relative form. For example, it may be required that the 
service rate of premium clients be double that of basic 
clients in some server installation. In this case, a ratio 
appears in the control loop, which causes non-linear be- 
havior. 

In order to accommodate software non-linearities, 
feedfonvard control has been used to keep the system in 
the neighborhood of an operating point around which it 
can be linearized. Feedforward control requires a model 
that predicts the effect of system inputs on its perfor- 
mance. Several theoretic foundations can be brought to 
bear for such prediction, including real-time scheduling 
theory and queueing theory. Since the feedfonvard con- 
troller keeps the system around the operating point, a 
linearized small-deviation model becomes sufficient for 
purposes of feedback control. Moreover, the feedback 
contoller eliminates the need for accuracy in feedfor- 
ward models. This tutorial describes several examples of 
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the aforementioned synergistic use of feedforward pre- 
diction in combination with feedback control in Internet 
servers. 

In addition to modeling and control aspects, some 
practical implementation aspects must be considered in 
the design of performance control loops. An important 
practical consideration in server performance control is 
that application source code is not always available, 
which makes it difficult to instrument the application 
with performance control loops. This tutorial describes a 
non-intrusive approach that allows retrofitting feedback 
control into the software system without changing ap- 
plication code. Another practical deployment issue is 
that successful application of feedback control to soft- 
ware systems requires expertise in both control theory 
and software design. Hence, control engineers and sys- 
tem programmers must communicate to design and im- 
plement the control loop. This requirement for interdis- 
ciplinary teaming is a challenge to deployment. To solve 
this challenge, we describe a middleware service, called 
ControlWare, that allows modular composition of soft- 
ware performance control loops in a way that isolates 
the control engineer from the systems programmer. In 
this framework, the software programmer provides sen- 
sors and actuators that interface to the target application, 
while providing a standard API to the controller. The 
control engineer then designs a controller without con- 
sideration to the implementation and semantics of sen- 
sors and actuators. ControlWare provides the means for 
integrating plug-and-play sensors, actuators, and con- 
trollers into performance control loops for different soft- 
ware performance control problems. 

The rest of this paper is organized as follows. Sec- 
tion 2 describes the basic server model. Section 3 
quickly describes the simplest (linear) performance con- 
trol loop. Section 4 describes performance control 
and the use of prediction to alleviate non-linearities. 
Practical considerations in implementing the feedback 
schemes are introduced in Section 5.  Related work for 
further reading is summarised in Section 6. The paper 
concluses with Section I. 

2 Basic Server Model 

We begin the tutorial by elaborating on the basic server 
model. Consider a high-performance server, such as 
one used for hosting popular commercial web sites. 
Such a server can typically be approximated by a liq- 
uid task model in which the progress of requests through 
server queues is represented by a fluid Row. A detailed 
description of Web server internals and their control- 

theoretic model is found in [6]. Briefly, the server is 
composed of several stages of processing. The service 
rate, d N k ( t ) / d t ,  of stage k, defines the amount of flow 
through that stage, where Nk(t)  is the total number of 
requests served by this stage by time t. The server 
queues up requests in several queues, shown in Fig- 
ure l(a). These queues include the CPU ready queue, 
the socket accept queue, the disk JJO queue and network 
output queue. They can be modeled as capacities that 
accumulate the corresponding Rows. The number of re- 
quests queued at stage k ,  denoted v,, is a quantity akin 
to volume, given by Vk = J-,(Fi,, - Fk)dt ,  where 
Fk is the service rate of stage k (i.e., Fk = dNk(k(t)/dt) 
and F;, is the request arrival rate to that stage. Queues 
also offer points at which flows, Fk, can be manipulated. 
Figure l(b) depicts the server from a control perspec- 
tive where capacities are represented by water tanks. 
Observe that “valves” in Figure I(b) represent points 
of control (i.e., actuators, which manipulate the service 
rates Fk). We assume in this analogy that flow through 
the valve depends only on valve opening and not on the 
liquid level. Thus, the arrangement is perhaps more akin 
to a pump. 

A performance feedback control loop typically ma- 
nipulates one or more of the valves in Figure l(b). In 
many cases, only one of the aforementioned queues is 
the bottleneck. Hence, the system is most effectively 
controlled by manipulating the valve associated with 
that bottleneck. Manipulating the valve can typically 
be done in one of two ways. The first is to change the 
amount of resources allocated to the request Row. For 
example, a larger fraction of the CPU can be allocated 
to a particular client class using appropriate operating 
systems mechanisms. Consequently, these requests are 
served faster (i.e., F k  is increased). Alternatively, the 
server can change the amount of work needed per re- 
quest. For example, it might substitute high-resolution 
images with low-resolution ones, that take less resources 
to serve. From a modeling perspective, this actuator has 
a gain that describes the relation between actuator input 
and the corresponding flow Fk. 

To close the loop, performance sensors must be em- 
ployed. These sensors measure the actual value of the 
performance metric controlled. For example, in a loop 
controlling response-time, the server might time-stamp 
requests when they arrive and when they have been 
served completely, then average the differences over a 
window of choice. This average will constitute a de- 
lay sensor. The most important performance metrics in 
Internet servers can be categorized based on how they 
relate to time. We call them time-based, rate-based, or 
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(a) the computing model 

(b) a control-oriented representation 

Figure 1. Server architecture 

ratio based, depending on whether they are measured in 
units of time (e.g., seconds), inverse units of time (e.g., 
requests per second), or are unitless (ratio metrics). In 
the next section, we shall focus on rate and delay con- 
trol as examples, offering various options for handling 
the non-linear behavior of the delay control loop. 

3 Rate Control 

Consider a server that supports some actuation mecha- 
nism that can influence the.processing rate (referred to 
as server speed in the sequel) of the incoming web re- 
quests. Let us denote by C, the average number of re- 
source cycles required to process a typical request. The 
actual execution time of the request is then given by E, 
where p is the current server speed. Server speed can be 
changed by techniques such as dynamic voltage scaling 
(DVS), or scheduling algorithms where only a fraction 
of CPU capacity is allocated to the server. 

An example of a rate control loop is one that con- 

trols server utilization. Consider a server in which a con- 
trolled fraction of capacity must be allocated to a given 
class of clients. The objective is to control the rate at 
which clients are admitted such that the desired utiliza- 
tion is achieved for the class under consideration. This 
loop is generally linear in that the utilization is propor- 
tional to the number of admitted clients. The only dy- 
namics in this loop come from the sampling delay and 
from the accumulative effect that relates flow to utiliza- 
tion. Utilization, measured as an average load over a 
given time interval, is proportional to the integral of the 
difference between the input and output flows. A stan- 
dard P or PI controller is typically sufficient to maintain 
utilization at a desired value. This linearity and simplic- 
ity is characteristic of rate control loops in computing 
systems. These loops will thus not be covered any fur- 
ther in this tutorial. 

4 Delay Control 

Delay is inversely proportional to flow, which intro- 
duces non-linear behavior in control loops. One way 
to deal with the nonlinearity is to use feedforward con- 
trol in combination with feedback control as mentioned 
in the introduction. The purpose of feedforward control 
is to reduce system excursions away from the operat- 
ing point, hence making it possible to apply a linearized 
model in the neighborhood of the operating point. 

In addition to the standard feedback loop, a feedfor- 
ward control action, p f f ,  is computed from the refer- 
ence delay and information regarding the past arrival 
pattern. This feedforward signal is then adjusted by a 
feedback term, A@. In essence, the feedforward sig- 
nal uses a predictive model to decide how flow should 
be manipulated such that the desired delay is achieved, 
given the nonlinear delay-flow relationship in the server. 
The derivation of the feedforward predictor and the de- 
sign of the feedback controller will be described below. 

4.1 A Queueing Predictor 

Queueing theory offers expressions that relate service 
rate and server response time. These expressions can 
be used to determine the service rate, pff ,  needed for 
a particular response time to be met. For simplicity of 
explanation, assume the request stream is Poisson dis- 
tributed, with an arrival rate of A. From queueing theory, 
we know that for an M/M/1 queue with arrival rate X and 
service rate p, the long-term average queueing time (i.e. 
connection delay) for the clients is 
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The above equation can .be solved for p that achieves 
the desired delay D, given the current arrival rate A. 
This value of p is given for enforcement by the actu- 
ator. Should the resulting delay be different from D, 
an error is generated which drives a controller (e.g., a 
PI controller) to correct actuator input until the error is 
eliminated. This loop is eventually successful in bring- 
ing average server delay of each class to the desired set 
point. 

One problem with the above approach is that queue- 
ing theory describes relations between long-term aver- 
ages only. In the short term, delay may deviate from the 
set point. Also, it is hard to measure the long term aver- 
age arrival rate, A, quickly enough. Hence, if the request 
rate changes suddenly, some time may elapse before the 
queueing predictor is able to account for this change. To 
address these limitations, a different type of predictor 
can be employed that uses instantenous queue measure- 
ments instead of queueing theory equations. 

4.2 An Enhanced Feedforward Predictor 

The enhanced feedforward predictor computes the 
needed service rate from actual measurements of recent 
delay and queue length. Consider the situation at some 
arbitrary time, t,,,. At this time, there are a number 
of requests queued up waiting to be processed. Let us 
consider N of these requests and compute their average 
delay as a function of the processing speed, f i ,  The situ- 
ation is depicted in Figure 2. 

Queueing Time 

Computation time 
\ 

Figure 2. Visualization of queuing and pro- 
cessing 

Assuming that requests have an average nominal pro- 
cessing time, C, their individual processing time in next 
sample will be, C/& Let b denote the average delay 
experienced by the N requests. We will now provide a 
geometric derivation of the equation relating the average 
delay, D, and the server speed, f i .  

The total delay experienced by the N requests, N h ,  
can be computed geometrically from Figure 2 as the 
area BECF. This is given as the area of the rectan- 
gle ABCD, plus the area of the @angle BEC, minus 
the lightgray shaded area (ADFB).  Noting that the area 
ADFB is the sum of the anival times of the requests, 
we arrive at the equation 

Dividing by N ,  we get: 

- NC D = t,,, - A + - 
2fi 

(3) 

i + N - l  Now introduce Ai = zkzi Ak as the average 
arrival time, Di as the average delay, Ci as the aver- 
age computation time, and pi as the server speed for 
requests beins dequeued in the ith sample. We also see 
that t,,, - Ai = Qi is the average queuing time for the 
requests being dequeued in the ith sample. Solving for 
f i i  then gives: 

N C, 
” = 2(D, - Qi) 

(4) 

which is a predictor equation telling us how to choose 
the server speed in order to obtain an average delay, Di,  
of the next N requests. The feed-forward controller is 
invoked after each departure and computes the new pro- 
cessing speed according to Equation (4). Di is chosen 
as the current delay set-point, D,. the average queuing 
time, Q i ,  is measured exactly. The average nominal pro- 
cessing time, Ci, is estimated from past measurements. 
N will be chosen as the current queue length at each 
sampling instant. 

Figure 3 compares the aforementioned mechanisms 
in terms of ability to maintain delay guarantees in an 
Apache web server. It is seen that the delay set point is 
most closely tracked when the control loop is augmented 
with the enhanced predictor. 

5 Practical Considerations 

One challenge in implementing feedback control in web 
servers is that fact that server code does not support QoS 
guarantees. In particular, there is no mechanism to al- 
locate separate resources for different classes of clients 
sharing the same server. 
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Figure 3. Control of average delay 

Consider a common hest effort server in which one or 
more identical worker threads or processes serve incom- 
ing client requests. Connection requests to the server 
arrive on a common port (e.g., port 80 for web servers). 
These connection requests are dequeued from the server 
port, either directly by the worker threads themselves, 
or separately by a dedicated dequeue thread, which will 
pass the requests to a worker thread. We assume that 
the server is multi-instance safe. In other words, if 
we run multiple instances of the server, each instance 
should work well in presence of others. This assump- 
tion holds for many Internet server applications, such as 
web servers, mail servers, and FTP servers. 

To convert a legacy application into a QoS-aware one, 
the classifier, sensors, and actuators must he added. One 
approach is to add generic versions of these compo- 
nents as a general kernel-level mechanism. A clasifier 
seprates incoming requests in the kernel by class. Af- 
ter classification, input request traffic of each class is 
queued separately on a different, per-class, kemel port 
(socket). To the legacy server application, these ports 
look like ordinary sockets. A separate instance of the 
hest-effort server is instantiated to listen to each port. 
Hence, a separate server instance is assigned to each 
class of clients. This design greatly facilitates the design 
of resource allocation mechanisms. Namely, operating 
system support may be used to to allocate the resources 
among different servers. 

Another practical problem in applying control to 
computing services lies in the interdisciplinary nature of 
the expertise needed to close the control loop. To al- 
leviate this problem, the authors designed a middleware 
package called, ControlWare [20], which allows the user 
to express QoS specifications offline, maps these spec- 
ifications into appropriate feedback control loop sets, 
and connects loops to the right performance sensors and 
actuators in the application such that the desired QoS 
is achieved. A main novelty of this middleware lies 
in isolating the software application programmer from 

control-theoretic concerns while utilizing this theory to 
achieve the desired QoS guarantees. At the same time, 
ControlWare isolates the control engineer from the soft- 
ware task of interfacing the controller to the controlled 
software system and designing software performance 
sensors and actuators. 

ControlWare contains a library of macros written in a 
topology description language, each formulating a par- 
ticular type of QoS guarantee as a feedback control 
problem. The library is extensible in that a control engi- 
neer can transform a new guarantee type into a macro 
that describes the corresponding loop interconnection 
topology and stores that macro in the middleware's li- 
brary. Currently, the library includes macros for ahso- 
lute convergence guarantees, relative differentiated ser- 
vice guarantees, prioritization, and optimization guaran- 
tees. Each macro, like a block diagram, includes com- 
ponents such as sensors, actuators, and controllers. Con- 
trolWare contains a library of common sensors and ac- 
tuators that can he used in these software control loops. 
These sensors and actuators are written by software en- 
gineering who are familiar with the application, hut do 
not needed to understand the control-theoretic principles 
behind the feedback loop. The library is extensible in 
that it is possible for an application programmer to add 
new sensor and actuator types. A control engineer can 
therefore quickly assemble loops that connect the con- 
troller to the controlled process by virtue of the sensors 
and actuators imported. The controller is then tuned, the 
software is compiled, and run-time guarantees are en- 
forced. 

6 Related Work 

Several recent papers [4, 1,  51 presented a control the- 
oretical approach to web server resource management 
based on web content adaptation. QoS guarantees on re- 
quest rate and delivered bandwidth were achieved. In 
[19, 18, 121, control theory was used for CPU schedul- 
ing to achieve QoS guarantees on service delay. A sim- 
ilar approach was used for e-mail server queue manage- 
ment [15]. In [17], guarantees were made on power 
dissipation by applying control-theoretical techniques to 
microprocessor thermal management. At the network 
layer, control theory was applied to packet Row control 
in Internet routers [9, 71. Due to the usefulness of the 
control-theoretic approach and its versatile applications, 
middleware frameworks emerged for control-based QoS 
assurances [20]. The authors of [20, 10, 81 provided 
tools to help apply control-theoretic design techniques 
to a larger class of systems. 
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Several predictive frameworks were designed to aug- 
ment the feedback control component. In addition to 
the ones we mentioned in this paper, a theory for using 
utilization bounds was developed for predicting dead- 
line misses, when worst case latency guarantees must be 
attained. These bounds are an extension of the origi- 
nal work by Liu and Layland [ I l l .  The original bounds 
were limited to the assumption that requests arrive peri- 
odically [14, 161 or to simple extensions of the periodic 
arrival model [13]. Abdelzaher's work [Z] is the first to 
relax the periodicity assumption completely, thus gener- 
ating results that are compatible with arbitrary queuing 
systems such as web servers where requests arrive rar- 
domly with nothing known a priori on their arrival pat- 
tern. In [3], the notion of utilization bounds for schedu- 
lability of aperiodic tasks is generalized to the case of 
distributed resource services. 

7 Conclusions and Future Work 

In this paper, we demonstrated the application of con- 
trol theory to web server performance control. The use 
of prediction was described to account of the non-linear 
behavior of delay control loops. Practical issues in the 
application of performance control were described. A 
brief summary of related performance feedback control 
efforts was presented. In conclusion, with the increas- 
ing complexity of computing systems, feedhack control 
is increasingly important to provide performance assur- 
ances in the presence of growing system complexity. 
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