
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Tools for Real-Time Control Systems Co-Design

A Survey
Henriksson, Dan; Redell, Ola; El-Khoury, Jad; Törngren, Martin; Årzén, Karl-Erik

2005

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Henriksson, D., Redell, O., El-Khoury, J., Törngren, M., & Årzén, K.-E. (2005). Tools for Real-Time Control
Systems Co-Design: A Survey. (Technical Reports TFRT-7612). Department of Automatic Control, Lund Institute
of Technology, Lund University.

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/1039b39a-4727-431c-ba77-c6503e56a748


ISSN 0280–5316
ISRN LUTFD2/TFRT--7612--SE

Tools for Real-Time Control
Systems Co-Design

— A Survey

Dan Henriksson, Ola Redell, Jad El-Khoury,
Martin Törngren, and Karl-Erik Årzén

Department of Automatic Control
Lund Institute of Technology

April 2005



Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden

Document name
INTERNAL REPORT

Date of issue
April 2005

Document Number
ISRN LUTFD2/TFRT--7612--SE

Author(s)
Dan Henriksson, Ola Redell, Jad El-Khoury, Mar-
tin Törngren, and Karl-Erik Årzén

Supervisor

Sponsoring organisation
FLEXCON

Title and subtitle
Tools for Real-Time Control Systems Co-Design — A Survey

Abstract

This report presents a survey of current simulation tools in the area of integrated control and real-
time systems design. Each tool is presented with a quick overview followed by a more detailed section
describing comparative aspects of the tool. These aspects describe the context and purpose of the tool
(scenarios, development stages, activities, and qualities/constraints being addressed) and the actual tool
technology (tool architecture, inputs, outputs, modeling content, extensibility and availability).

The tools presented in the survey are the following; Jitterbug and TrueTime from the Department
of Automatic Control at Lund University, Sweden, AIDA and XILO from the Department of Machine
Design at the Royal Institute of Technology, Sweden, Ptolemy II from the Department of Electrical
Engineering and Computer Sciences at Berkeley, California, RTSIM from the RETIS Laboratory, Pisa,
Italy, and Syndex and Orccad from INRIA, France.

The survey also briefly describes some existing commercial tools related to the area of real-time control
systems.

Key words
Simulation Tools, Real-time Control, Co-design

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280–5316

ISBN

Language
English

Number of pages
54

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library, Box 134, SE-221 00 Lund, Sweden
Fax +46 46 222 42 43 E-mail lub@lub.lu.se



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 A Historical Perspective . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Tools Included . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Organization of the Comparison and the Report . . . . . . . . 6

2. AIDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Comparative Aspects . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Jitterbug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Comparative Aspects . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Orccad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Comparative Aspects . . . . . . . . . . . . . . . . . . . . . . . . 18

5. Ptolemy II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Comparative Aspects . . . . . . . . . . . . . . . . . . . . . . . . 24

6. RTSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Comparative Aspects . . . . . . . . . . . . . . . . . . . . . . . . 29

7. Syndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Comparative Aspects . . . . . . . . . . . . . . . . . . . . . . . . 33

8. TrueTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.1 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.2 Comparative Aspects . . . . . . . . . . . . . . . . . . . . . . . . 37

9. XILO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.1 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.2 Comparative Aspects . . . . . . . . . . . . . . . . . . . . . . . . 43

10. Other and Commercial Tools . . . . . . . . . . . . . . . . . . . . 49

11. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

12. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3



4



1. Introduction

1.1 Motivation
Control systems are becoming increasingly complex from the perspectives of both
control and computer science. Today, even seemingly simple embedded control
systems often contain a multitasking real-time kernel and support networking.
At the same time, the market demands that the cost of the system be kept at a
minimum. Hence, many embedded control systems are subject to resource con-
straints, manifesting itself by limited CPU speed, memory, and network band-
width of the target platform. In addition, a strong trend within industry today
is to use commercially available information technology and commercial-off-the-
shelf (COTS) components deeper and deeper in the real-time control systems.

Many computer-controlled systems are distributed systems consisting of com-
puter nodes and a communication network connecting the various systems. It is
not uncommon for the sensor, the actuator, and the control calculations to re-
side on different nodes in the system. One prominent example of this is modern
automotive systems, which contain several embedded ECUs (electronic control
units) used for various feedback control tasks, such as engine performance con-
trol, anti-lock braking, active stability control, exhaust emission reduction, and
cruise control.

Within the individual nodes in the networked control loops, the controllers are
often implemented as one or several tasks on a microprocessor with a real-time
operating system. Often the microprocessor also contains tasks for other func-
tions (e.g., communication and user interfaces). The operating system typically
uses multiprogramming to multiplex the execution of the various tasks. The CPU
time and the communication bandwidth can hence be viewed as shared resources
for which the tasks compete.

Limited resources combined with non-optimized hardware and software compo-
nents introduce nondeterminism in the real-time system. Digital control theory
normally assumes equidistant sampling intervals and a negligible or constant
control delay from sampling to actuation. However, this can seldom be achieved
in practice in a resource-constrained system. For control systems this is of par-
ticular concern. Timing variations in sampling periods and latencies degrade the
control performance and may in extreme cases lead to instability.

For optimal use of computing resources, the control algorithm and the control
software designs need to be considered at the same time. For this reason, new,
computer-based tools for real-time and control co-design are needed. The purpose
of this survey is to summarize and compare the most prominent tools currently
available for co-design of embedded real-time control systems.

1.2 A Historical Perspective
The need to support efficient digital implementation of control systems and co-
design of control systems with the main implementation technology, real-time
computer systems, became apparent during the 1970s and 1980s as micropro-
cessor technology appeared and became more mature. Early efforts on real-time
implementation environments and code generation can be found in the 1980s
in the conferences Computer Aided Control Engineering (often called Computer
Aided Control Systems Development, [Control Systems Society, 2004]).

5



As computer-aided engineering tools improved, it also became possible to develop
tool support environments. Examples of relatively early efforts which in some
way address real-time implementation of control systems include

• The Development Framework [Bass et al., 1994], which combined and to
some extent integrated control design (in Simulink) with software engi-
neering capabilities using a CASE tool (Software through Pictures)

• The GRAPE tool-set [Lauwereins et al., 1995], which although developed for
digital signal processing systems, provides similar capabilities and supports
distributed systems (allocation, scheduling, partitioning)

• Efforts by Honeywell labs including MetaH and the Parallel Scalable De-
sign Tool-set (PSDT) [Vestal, 1994; Bhatt et al., 1996]

In addition, in the real-time research community, a number of prototypical tools
have been developed for schedule simulation, timing analysis and schedule gen-
eration, [Audsley et al., 1994; Storch and Liu, 1996].

1.3 Tools Included
In order to limit the scope of this survey, we have chosen to focus on recent tools
treating various aspects of real-time computer control systems. The following
tools are included in the report

• Jitterbug and TrueTime from the Department of Automatic Control at
Lund University, Sweden

• AIDA and XILO from the Department of Machine Design at the Royal
Institute of Technology, Sweden

• Ptolemy II from the Department of Electrical Engineering and Computer
Sciences at Berkeley, California

• RTSIM from the RETIS Laboratory, Pisa, Italy

• Syndex and Orccad from INRIA, France

All tools included in the report are suitable for co-design of real-time control sys-
tems. They, however, use different approaches and levels of abstractions. Some of
the tools, such as TrueTime and XILO, are specifically tailored towards control
and real-time co-design, whereas for others, such as Ptolemy II, the real-time
control systems simulation is just one part of a larger framework. The abstrac-
tion level ranges from a very high level of abstraction of the distributed computer
system in terms of time-varying delays, jitter in periods and transient faults, to
detailed architectural models, as in TrueTime and RTSIM, that actually mimic
the operation of for example an RTOS.

1.4 Organization of the Comparison and the Report
The remainder of the report is organized as follows. Sections 2-9 describe the dif-
ferent tools mentioned above. Each tool is presented by an introductory overview
that describes the main use and intentions of the tool. Each tool is visualized by
a simple example.

6



The overview is followed by a more detailed description of various aspects of
the tool used for comparison. The comparative aspects are divided in two main
areas; the context and purpose of the tool and the actual tool technology.

The context and purpose area treats the following aspects

• Which are the intended scenarios and development stages that the tool is
supporting?

• Which specific activities are supported?

• Which qualities and constraints are addressed?

• Are there any special methodological considerations connected with the
tool?

The tool technology area treats

• Description of the tool architecture

• Which inputs does the tool require

• Which outputs are generated

• Modeling content

• Tool automation

• Extensibility

• Availability

Section 10 describes a couple of commercial tools developed in industry. The
report concludes with a summary of the survey in Section 11.

7



Figure 1 An example of an AIDA data flow diagram.

2. AIDA

2.1 Tool Overview
The Aida toolset [Redell et al., 2004] is an environment for model-based design
and analysis of real-time control systems. The most important feature of Aida is
that it allows a user to take implementation effects into consideration when an-
alyzing the performance of an automatic control system. Considered implemen-
tation effects include delays and time variations in the execution and scheduling
of control functions and communication of data. The toolset also supports timing
analysis of the real-time design such that an implemented solution can be shown
to be schedulable and meet its timing constraints.

The toolset consists of a modelling environment, Aidasign, which interfaces with
MATLAB/Simulink [The Mathworks, 2005], and a response time analysis tool,
Aidalyze. In the toolset, a controller is designed using MATLAB/Simulink, which
is an environment familiar to control engineers that supports simulation based
analysis of control performance. The real-time system design starts with the
translation of the Simulink model to a data-flow diagram (DFD) in Aidasign.
The timing aspects of the controller, such as sampling periods and delays then
constitute requirements on the real-time system design. The functions and com-
munication flows specified in the data-flow diagram form the basis for all further
modelling in Aida. Apart from being generated from Simulink models, data-flow
diagrams can be specified completely or in parts within Aida. Figure 1 shows an
example of a data-flow diagram with four functions and the related data flows
connecting them.

Another fundamental model in Aida is the hardware structure diagram (HSD),
where the hardware architecture, in terms of processors and their interconnec-
tions via communication links, is designed. In the HSD the functions and data
flows in the associated data-flow diagram(s) are mapped to processors and com-
munication links, respectively. Figure 2 shows an HSD with two processors (P-
1 and P-2) that are interconnected via a CAN-bus (CAN-1). The mapping of
functions and data flows in Figure 1 is visualised. The utilisation (U) of each
component is computed based on underlying models and the repository is used
to temporarily store functions and data-flows that have not yet been mapped to
any component.

Based on these two fundamental models and the mapping between them, a real-
time implementation is designed. The design includes specification of operating
system processes; their inter-communication in terms of messages; mapping of

8



Figure 2 An example of an AIDA hardware structure diagram.

messages to CAN-frames; and triggering of process executions.

When the real-time system design has been completed, upper and lower bounds
on the response times and release/response jitter (variations in release and
response times) of the functions, processes and inter-process communications
can be derived using the Aidalyze tool. These results can then be exported back
to the control domain in the form of a Simulink model augmented with timing
and execution order information. Hence, timing effects due to implementation
can be incorporated in the control performance analysis through simulation of
the generated Simulink diagram.

2.2 Comparative Aspects

Scenarios Supported AIDA is intended for one particular development sce-
nario, but sub-scenarios can be followed as well. The major scenario starts in
the control system design tool MATLAB/Simulink in which the data-flows in
the control system are specified. The Simulink model is then imported to the
Aida toolset in which a data-flow representation of the system is automatically
generated. The data-flow model is augmented by the user with estimates of best-
and worst-case execution times for functions and communication needs for the
data-flows. The resulting model is the base for all other models in the tool-set.

Next, a real-time implementation of the control system is described using the
models available in Aida. Given the model description of the implementation,
a response time analysis is performed producing bounds on the response times
of functions and processes. Finally, a transformed Simulink model can be gen-
erated, including delays according to the response time analysis results. The
Simulink model can be used in simulation to test the control performance given
the implementation induced delays.

Development Stages and Activities Supported The toolset can be used
on different early stages in the development, but to make use of the complete
scenario outlined above it should be used when the control system design is
close to finalized and when the implementation of it is to begin. The hardware
architecture could be fixed beforehand, or its design could also be guided by the
results of Aida simulations. Hence, the toolset could be used to for example:

• compare and evaluate hardware architectures
• compare and evaluate software architectures
• compare and evaluate control system designs

9



Figure 3 Architectural overview of the Aida toolset, highlighting the three parts: The in-
terface with MATLAB/Simulink; the real-time system modelling environment (Aidasign);
and the response time analysis tool (Aidalyze).

Qualities/Constraints Addressed As of today, the timing behaviour of an
implementation is addressed through analysis on a real-time scheduling level.
The qualities that are addressed include response time bounds and schedula-
bility. Furthermore, using the generated control models augmented with timing
information, the control system performance can be evaluated through simula-
tion.

Methodological Considerations See Scenarios.

Tool Architecture The Aida toolset consists of two major parts, Aidasign for
modelling of real-time implementations of control systems, and Aidalyze which is
a stand-alone tool for response time analysis of distributed fixed-priority sched-
uled tasks that may be precedence related forming transactions.

Aida interfaces to MATLAB/Simulink, which enables import of control system
models and export of the same models augmented with timing information. The
interfacing activities are completely controlled from Aidasign. Figure 3 gives an
overview of the tool set architecture.

Tool Inputs The user needs to provide estimates of worst (and possibly best)
case execution times of the modelled functions, when executing on the modelled
processors. Furthermore, the communication needs in each data flow (number
of bytes) must to be specified.

In order to use the tool according to the intended scenario, a control system
model made in Simulink is also needed. If such a model does not exist, the Aida
toolset can be used to bound the response times of a system completely modelled
within Aidasign. However, in that case no export to Simulink can be performed.

Tool Outputs Aidalyze produces bounds on the worst- and best-case response
times of each function, process and CAN-frame in the system. The Aida tool
computes the utilization of each processor and CAN-bus. If a Simulink model
is imported to Aida, as a base for the implementation model, a Simulink model
augmented with timing information can be generated as an output.

Modeling Content Apart from the modelling capabilities of Simulink, the
Aida toolset includes the following models:

• Data flow diagram (DFD). Functions are specified and connected by data
flow relations in the DFD. A function is parameterized by its minimum and

10



Figure 4 An example of an AIDA function timing and triggering diagram.

Figure 5 Process timing and triggering diagrams for processors P-1 (a) and P-2 (b) of
Figure 2.

maximum execution times while a data flow is simply described with the
number of bytes that it communicates. See Figure 1.

• Function timing and triggering diagram (FTTD). The FTTD is used to
describe the sequences of precedence-related functions (the control flow)
and the triggering of such sequences using periodic (time) or aperiodic
(event) triggers. Figure 4 shows an FTTD where the execution sequence of
the functions in the example application of Figure 1 have been specified.
The diagram also shows a time trigger (TT) named sensortimer used to
trigger the execution of the sample function. The parameters of the trigger
are: the period (0.01); the admissible jitter (0.002); and the name of the
source clock (CLK). The FTTD can be interpreted together with the DFD as
a way to set the requirements on the implementation and does not directly
specify any part of the implementation. FTTDs are therefore not necessary
for a complete system description.

• Hardware structure diagram (HSD). As described above, the HSD is used
to specify the hardware architecture as a network of processors intercon-
nected by CAN buses. Processors are parameterized by a speed factor, used
to scale the execution time of allocated functions. CAN buses are also as-
sociated with speed parameters, defining the communication speed on the
bus. Furthermore, functions and data-flows are mapped to processors and
buses in the HSD, as shown in Figure 2.

• Process timing and triggering diagram (PTTD). For each processor in an
HSD there is a PTTD that describes the triggering of the contained pro-
cesses’ execution. Process execution may be triggered by a precedence rela-
tionship (completion of another process); by the arrival of a CAN frame; or
by time or event triggers. The PTTD is also used to specify the processes
by mapping functions in a processor to different processes. A process is
assigned a fixed priority for scheduling. Figure 5 shows the PTTDs for the
two processors in Figure 2. The execution of the sample process is trig-
gered by a time trigger with period 0.01 while the other two processes are
triggered by arriving CAN-frames.

11



Figure 6 The process internal timing and triggering diagram of the Ref and Control
process.

Figure 7 The process structure diagram for the example system.

• Process internal timing and triggering diagram (PiTTD). The PiTTD is
used to define the execution sequence of functions within a process. It sim-
ply relates the functions included in a process in precedence order. Figure 6
shows the very simple PiTTD for the Ref and Control process executing in
processor P-1.

• Process structure diagram (PSD). The PSD is basically an implementation
version of the DFD. It defines how processes communicate via messages.
The messages are composed of data flows that are communicated between
functions in different processes. Many data flows may be included in a
single message, if these data flows have the same sending and receiving
processes. The PSD for the example application is shown in Figure 7. It
defines two inter-process messages: Message_U and Message_Y.

• Communication link diagram (CLD). In the CLD the messages that were
defined in the PSD are distributed on different CAN frames. One frame
may include more than one message, but no more than 8 bytes in total.
Figure 8 shows how the messages defined in Figure 7 are allocated to two
different CAN frames. The arrivals of these frames are used to trigger the
execution of the processes in the PTTDs in Figure 5.

Tool Automation The Simulink models are automatically transformed to
Aida data-flow models when imported, and timing-augmented Simulink models
are automatically generated from the Aida models.

The included tool Aidalyze may be used to perform response time analysis when
an implementation model has been completely specified.

A consistency check, verifying the consistency of the information that is repre-
sented in multiple different Aida models, is performed when the user invokes an
”update”-function for either model in Aidasign.

Extensibility Aidasign is completely developed in the Domain Modelling En-
vironment (DoME) from Honeywell. DoME is a tool for development of new
modelling languages in which new models are easily added. Hence, Aidasign is
easily extended with more models when needed. Furthermore, tools performing

12



Figure 8 A communication link diagram defining the CAN-frames in the system.

automated tasks on the models, such as for example mapping of functions to
processors, can easily be written in the Alter language which is an integral part
of DoME.

Aidalyze is written in C++ for performance reasons. The source code is available
and more algorithms for analysis can be added. Furthermore, other stand-alone
tools written in other languages than Alter, can easily be added and their exe-
cution controlled from Aidasign.

Availability Developed in-house KTH. Available for anyone who asks for it.

3. Jitterbug

3.1 Tool Overview
Jitterbug [Cervin et al., 2003; Lincoln and Cervin, 2002; Cervin and Lincoln,
2003] is a MATLAB-based analysis tool that makes it possible to compute a
quadratic performance criterion for a linear control system under various timing
conditions. The tool can also compute the spectral density of the signals in the
system. Using the toolbox, one can easily and quickly assert how sensitive a con-
trol system is to delay, jitter, lost samples, etc., without resorting to simulation.
The tool can also be used to investigate jitter-compensating controllers, aperi-
odic controllers, and multi-rate controllers. The main contribution of the toolbox,
which is built on well-known theory (LQG theory and jump linear systems), is to
make it easy to apply this type of stochastic analysis to a wide range of problems.

Jitterbug offers a collection of MATLAB routines that allow the user to build and
analyze simple timing models of computer-controlled systems. A control system
is built by connecting a number of continuous-time and discrete-time systems.
For each subsystem, optional noise and cost specifications may be given. In the
simplest case, the discrete-time systems are assumed to be updated in order
during the control period. For each discrete system, a random delay (described
by a discrete probability density function) can be specified that must elapse
before the next system is updated. The total cost of the system (summed over
all subsystems) is computed algebraically if the timing model system is periodic
or iteratively if the timing model is aperiodic.

3.2 Comparative Aspects

Scenarios and Development Stages Supported Jitterbug is intended mainly
as a research tool to evaluate different implementation strategies in terms of
control performance. In that scenario a linear controller has been designed for a
linear system and the tool will be used to evaluate how sensitive the closed-loop
system is to various timing conditions imposed by the implementation.

13



PSfrag replacements

11

22

3

3

4

τ1τ1

τ2

τ1< t
τ1≥ t

∑
τ < t

∑
τ ≥ t

p(2) p(3)

(a) (b)

Figure 9 Alternative execution paths in a Jitterbug execution model: (a) random choice
of path and (b) choice of path depending on the total delay from the first node.

Activities Supported Examples of timing conditions that may be evaluated
include, e.g., how sensitive a control loop is to slow sampling and constant or
random delays with jitter compensation. It is also possible to evaluate multi-rate
controllers, overrun handling strategies, sensitivity to lost samples, and more.

Qualities/Constraints Addressed The main quality being addressed is con-
trol system performance (quantified by evaluating a quadratic cost function)
under various timing conditions.

Methodological Considerations See above.

Tool Architecture Jitterbug consists of a collection of MATLAB functions that
interface to the Control Systems Toolbox. These functions provide functionality
to initialize Jitterbug, set up the timing and signal models that define a Jitterbug
system, and to calculate the performance index.

Tool Inputs In Jitterbug, a control system is described by two parallel models:
a signal model and a timing model. The signal model is given by a number of
connected, linear, continuous- and discrete-time systems. The timing model con-
sists of a number of timing nodes and describes when the different discrete-time
systems should be updated during the control period. Transitions between states
in the timing model are performed depending on a chosen delay distribution.

The same discrete-time system may be updated in several timing nodes. It is
possible to specify different update equations in the various cases. This can be
used to model a filter where the update equations look different depending on
whether or not a measurement value is available. It is also possible to make the
update equations depend on the time since the first node became active. This
can be used to model jitter-compensating controllers for example.

For some systems, it is desirable to specify alternative execution paths (and
thereby multiple next nodes). In Jitterbug, two such cases can be modeled (see
Fig. 9):

(a) A vector n of next nodes can be specified with a probability vector p. After
the delay, execution node n(i) will be activated with probability p(i). This
can be used to model a sample being lost with some probability.

14



(b) A vector n of next nodes can be specified with a time vector t. If the total
delay in the system since the node exceeds t(i), node n(i) will be acti-
vated next. This can be used to model time-outs and various compensation
schemes.

Tool Outputs A performance index that can be used for relative compari-
son between different scenarios. The performance criterion to be evaluated is
specified as a quadratic, stationary cost function.

Modeling Content As mentioned above, Jitterbug can model most timing-
related aspects of real-time control systems, such as constant and random delays,
jitter in delays and sampling periods, and network issues such as lost samples.

However, to make the performance analysis feasible, Jitterbug can only handle
a certain class of systems. The control system is built from linear systems driven
by white noise, and the performance criterion to be evaluated is specified as a
quadratic, stationary cost function. The timing delays in one period are assumed
to be independent from the delays in the previous period. Also, the delay proba-
bility density functions are discretized using a time-grain that is common to the
whole model.

Even though a quadratic cost function can hardly capture all aspects of a control
loop, it can still be useful when one wants to quickly judge several possible con-
troller implementations against each other. A higher value of the cost function
typically indicates that the closed-loop system is less stable (i.e., more oscil-
latory), and an infinite cost means that the control loop is unstable. The cost
function can easily be evaluated for a large set of design parameters and can be
used as a basis in the control and real-time design.

As an illustration, an example of a Jitterbug model is shown in Figure 10, where
a computer-controlled system is modeled by four blocks. The plant is described
by the continuous-time system G, and the controller is described by the three
discrete-time systems H1, H2, and H3. The system H1 could represent a periodic
sampler, H2 could represent the computation of the control signal, and H3 could
represent the actuator. The associated timing model says that, at the beginning
of each period, H1 should first be executed (updated). Then there is a random
delay τ1 until H2 is executed, and another random delay τ 2 until H3 is executed.
The delays could model computational delays, scheduling delays, or network
transmission delays.

The Jitterbug commands used to define the control system of Figure 10 are given
in Figure 11.

The process is modeled by the continuous-time system

G(s) = 1000
s(s+ 1) .

and the controller is a discrete-time PD-controller implemented as

H2(z) = −K
(

1+ Td
h

z− 1
z

)
,

The sampler and the actuator are described by the trivial discrete-time systems

H1(z) = H3(z) = 1,

15



PSfrag replacements

H1(z)

H1(z)

H2(z)
H2(z)

H3(z)

H3(z)

G(s)
yu

v
e 1

2

3

τ1

τ2

(a) (b)

Figure 10 A simple Jitterbug model of a computer-controlled system: (a) signal model
and (b) timing model. The process is described by the continuous-time system G(s) and
the controller is described by the three discrete-time systems H1(z), H2(z), and H3(z),
representing the sampler, the control algorithm, and the actuator. The discrete systems
are executed according to the periodic timing model.

G = 1000/(s*(s+1)); Define the process
H1 = 1; Define the sampler
H2 = -K*(1+Td/h*(z-1)/z); Define the controller
H3 = 1; Define the actuator

Ptau1 = [ ... ]; Define delay probability distribution 1
Ptau2 = [ ... ]; Define delay probability distribution 2

N = initjitterbug(delta,h); Set time-grain and period
N = addtimingnode(N,1,Ptau1,2); Define timing node 1
N = addtimingnode(N,2,Ptau2,3); Define timing node 2
N = addtimingnode(N,3); Define timing node 3

N = addcontsys(N,1,G,4,Q,R1,R2); Add plant, specify cost and noise
N = adddiscsys(N,2,H1,1,1); Add sampler to node 1
N = adddiscsys(N,3,H2,2,2); Add controller to node 2
N = adddiscsys(N,4,H3,3,3); Add actuator to node 3

N = calcdynamics(N); Calculate internal dynamics
J = calccost(N); Calculate the total cost

Figure 11 This MATLAB script shows the commands needed to compute the perfor-
mance index of the control system defined by the timing and signal models in Figure 10.

The delays in the computer system are modeled by the two (possibly random)
variables τ1 and τ2. The total delay from sampling to actuation is thus given by
τ tot = τ1 + τ2.

Using the defined Jitterbug model it is straight-forward to investigate, e.g., how
sensitive the control loop is to slow sampling and constant delays (by sweeping
over suitable ranges for these parameters), and random delays with jitter com-
pensation. For more details and other illustrative examples (including multi-rate
control, overrun handling, and notch filter implementations), see [Cervin and
Lincoln, 2003].

Tool Automation None.

16



Extensibility The use of Jitterbug assumes knowledge of sampling period and
latency distributions. This information can be difficult to obtain without access
to measurements from the true target system under implementation. Also, the
analysis cannot capture all the details and nonlinearities (especially in the real-
time scheduling) of the computer system. Therefore, the obvious extension of the
analysis provided by Jitterbug is to resort to simulation. The rest of this report
will describe current simulation tools for integrated control and real-time design.

Availability Jitterbug is available for download at

http://www.control.lth.se/~lincoln/jitterbug/

4. Orccad

4.1 Tool Overview
Orccad [Simon et al., 1993; Simon et al., 1999; Simon and Girault, 2001; Simon
et al., 1997] is a CAD system and approach aimed at the development of robotic
systems from high-level specifications down to the implementation details. It
deals with hybrid systems where continuous-time aspects relating to control
laws, must be merged with discrete-time aspects related to control switches and
exception handling. The approach taken by Orccad is based on the following
considerations:

• A robotic application may be defined as a set of robot actions, the design of
which needs expertise in several domains: knowledge in mechanics, control
theory and computer science.

• Most actions performed by robots can be solved efficiently through control
theory and the use of feedback control loops.

• The system needs to be accessible by users with different competence, from
the end-user, who is mainly concerned with application specification and
verification, to the control engineer, who is concerned with designing ac-
tions, to the computer scientist, who is concerned with implementation
details.

• Real-time mechanisms for the execution of the final system need to be
specified and verified since they influence the overall system performance.

• The object-oriented paradigm and code generation need to be used to im-
prove software reliability and reusability.

The first step in designing a control application is to identify all the necessary
elementary tasks involved. Then, for each of the tasks, issues from automatic
control (such as defining the regulation problem, control law design, design of
reactions to relevant events) and implementation (such as the decomposition of
the control law into real-time tasks, and selection of timing parameters) aspects
need to be considered. Finally, all the real-time tasks should be mapped on a
target architecture. During this design, the control engineer has a lot of degrees
of freedom to meet the end-user requirements and Orccad aims at allowing the

17



designer to exploit these degrees of freedom. Orccad promotes a controller archi-
tecture which is naturally ”open” since it allows access to every level by different
users: the ”application” layer is accessed by the end-user, the ”control” layer is
programmed by the control expert, and the ”system” layer is accessed by the
system engineer.

Orccad provides formalised control structures, which are coordinated using the
synchronous paradigm, specifically using the Esterel language (while the control
laws are periodic and can be programmed using tasks and an RTOS, the discrete-
event controller manages these control laws and handles exceptions and mode
switching). The main entities used in the Orccad framework are:

• A robot task (RT), the elementary task representing basic robotic actions
where the control aspects are predominant.

• A module task (MT), a real-time task.
• A robot procedure (RP), a hierarchical composition of RTs and other existing

RPs, forming more complex structures.

The RT characterizes continuous-time closed-loop control laws, along with their
temporal features and the management of associated events. From the appli-
cation perspective, the RT’s set of signals and associated behaviours represent
the external view of the RT, hiding all specification and implementation details
of the control laws. More complex actions, the RPs, can then be composed from
RTs and other RPs in a hierarchical fashion leading to structures of increasing
complexity. RPs can be used to fulfil a single basic goal through several potential
solutions, or to fulfil a full mission specification.

The Orccad methodology is bottom-up, starting from the design of control laws
by control engineers, to the design of more complex missions.

4.2 Comparative Aspects

Development Stages and Activities Supported Orccad can be used during
the early architectural design stages of robotics mission functionality, followed
by detailed design of the software implementing these functions. Both structural
and behavioural design activities are supported.

Qualities/Constraints Addressed Orccad is targeted towards hybrid (continuous-
time control with modes of operation) robotic activities implemented on a com-
puter system. Certain constraints are assumed:

• System functionality is assumed periodic.
• Communication is limited to 8 predefined protocols.
• Control activities can be performed using control loops.

Methodological Considerations and Scenarios Supported Orccad sug-
gests a bottom-up approach starting with specifications and followed by imple-
mentation details and more complex missions:

• The design starts from the end-user specification.

18



• The control engineer develops control laws in continuous-time that realises
the specified action, in the form of block diagrams where elementary algo-
rithmic modules are connected through input/output ports.

• Implementation aspects are taken into account by associating temporal
properties to the modules (called module tasks) constituting the control
law.

• The module tasks are distributed on a multiprocessor system architecture.

• Simulation and formal verification can be performed for validation.

Tool Architecture The Orccad toolset consists of a human-machine interface
(RP Editor) for model specification. It also contains code generators and tools for
the specification of Esterel programs at the application level.

A SIMPARC simulator is utilised for two types of system simulations: the first
one takes into account discretization aspects, while the second validates a mul-
tiprocessor implementation level.

The FC2TOOLS tools for the synchronous language Esterel allow the formal
verification of the system behaviour as well as its crucial properties, such as
liveness and safety properties.

Tool Inputs System descriptions from specification down to implementation
details are made through a specific human-machine interface.

Tool Outputs Final C code of the system is generated after the code gener-
ation stage. In addition, analysis results from the formal verification as well as
simulations can be obtained.

Modeling Content System functionality is described through

• Robot tasks which describe elementary robotic control actions

• Robot procedures describing more complex robotic actions or a complete
robotic application

The software is described through

• Module tasks for real-time tasks implementing parts of a robot task

• Observers checking conditions and generating events

• Signals used to synchronise the operations between robot tasks and robot
procedures

The following example is extracted from "The ArmX Example" given at the
Orccad homepage,
http://www.inrialpes.fr/iramr/pub/Orccad/ExempleArmX/frame-eng.html

The example shows how to design, validate, and execute a robotic application
through the simulation of a two degrees of freedom arm.

The designed application is a target-following task. When the target is in the
robot workspace, the end-effector follows the target and when it is out of the

19



Figure 12 The robotic application: a two degrees of freedom arm.

Figure 13 The ArmXjmove robot task.

robot workspace the manipulator points at this target. This application must be
safe and therefore it is performed taking into account exceptions like too high
tracking error, joint limits being reached, or required reconfiguration of the arm.
The two-link manipulator with rotational joints is shown in Figure 12.

In this application, the designer identified three control laws. These three control
laws will be embedded in three robot tasks:

• ArmXjmove : assumes movement in the joint space of the manipulator.
(Further detailed below)

• ArmXcmove : assumes movement in the Cartesian space of the manipulator.

• ArmXfmove : assumes pointing at the target when it is out of the workspace
of the manipulator.

20



Figure 14 The command module task.

Considering ArmXjmove as an example, the events which locally control this
robot task are:

• typetraj : Exception T1 to suspend the motion
• outbound : Exception T3 when joint limits are reached
• redbut : Exception T3 of emergency stop when the key ’q’ is pressed on

keyboard
• badtraj : Exception T3 when the parameter posd is out of bound
• errtrack : Exception T3 when the joint error is too high
• endtraj : Post-condition when the current position reached posd

The robot task is decomposed with algorithmical modules:

• command: to compute the torque with a proportional corrector with gravi-
tational compensation,

• error: to compute the joint error
• jtraj: to compute a joint trajectory from current position to desired position

posd
• jobs: observers to generate events from observation of the robot (limit) and

its environment (key)

Modules are the elementary entities to construct robot tasks. The design of a
robot task is achieved by connecting modules that exchange data through typed
ports. For this application we must construct:

• The module WinX of Physical Resource class to specify an interface between
robot tasks and the simulator.

21



• One module of robot task Automaton class to control the robot behavior
locally.

• Modules of the Algorithm class are used to specify the algorithms neces-
sary to compute the control law. Some modules are reused in the three
robot tasks like command and error. Each piece of code of computation is
encapsulated in these entities.

Each robot task must be independently tested by using a robot procedure. The
user can then write the robot procedure to perform the final application Appli-
ArmX. The application is specified in Maestro which directly generates Esterel
code. The application consists of a loop sequence starting with the manipulator
moving a joint (ArmXjmove) to a certain position. When this action is performed
a sequence of two actions of pointing task (ArmXfmove) when the target is out of
the workspace and a Cartesian movement when the target is in the workspace
(ArmXcmove). The Cartesian move space should be preempted by a move joint
position when the exception T2 reconf occurs.

Using the panel of Verification, you could, for example, use the criterion robot
task Level to verify if the nominal specification is correct. You could see the corre-
spondence with the textual Maestro specification and the automaton visualised.

Through the use of the last panel of Execution, the user is able to produce the
code, compile and execute the application. In the panel Trace, the user can put
spies. A simulation driver simulates the dynamics of the two-link manipulator.
The simulation is animated through a X11 window. This window is interactive
and the user can use a keyboard to give information to the robot, initialize it,
put torque, get joint position, move a target (a white square) with the mouse
and so on.

Tool Automation The automata of the robot tasks and robot procedures are
automatically translated into Esterel code, which is then further translated into
C code.

Extensibility Not supported.

Availability A single tool implementation exists by the approach developers
(currently not available).

5. Ptolemy II

5.1 Tool Overview
Ptolemy II is the third generation of software produced within the Ptolemy
project [Hylands et al., 2003; Ptolemy Project, 2004] at the University of Cal-
ifornia at Berkeley. Ptolemy II supports heterogeneous, hierarchical modeling,
simulation, and design of concurrent systems, especially embedded systems. The
focus is on complex systems mixing various technologies and operations.

Simulation models are constructed under models of computation that govern the
interaction of the components in the model. Different models of computation are

22



used for modeling different types of systems. The abstraction provided by the
model of computation also simplifies code generation from the Ptolemy models.

Ptolemy is component-based and models are constructed by connecting a set of
components and have them interact under the model of computation. Compo-
nents in Ptolemy are called actors.

An important feature of Ptolemy is its focus on heterogeneous, hierarchical mod-
eling, meaning that each system may be composed of a number of subsystems at
different levels where each subsystem can have its own model of computation.
This makes it easier to deal with complexity.

Ptolemy is Java-based and provides graphical user interfaces for model construc-
tion and result visualization. The visual editor framework of Ptolemy is called
Vergil, and an example model is shown in Figure 15.

Actor-based Design Most models of computation in Ptolemy support actor-
oriented design (one exception is finite state machines). Each actor has an in-
terface that restricts its interaction with other actors. This interface includes
ports and parameters. Ports are used for communication, whereas parameters
are used to configure the actor. Actors primarily interact by sending messages
through channels according to some messaging system. The concepts of models,
actors, ports, parameters, and channels describe the abstract syntax of actor-
based design and is often represented graphically as in Figure 15.

Models of Computation Ptolemy provides a wide variety of models of compu-
tation that deal with concurrency and time in different ways. Some of the most
important include:

• Continuous Time (CT) – used to model physical systems with linear
or nonlinear differential equation descriptions. The CT model is designed
to operate with other domains, like for example the FSM domain to form
hybrid models or the TM model for real-time control.

• Discrete-Event (DE) – used to model digital hardware (e.g. network com-
munication) and to simulate telecommunications systems.

• Finite-State Machines (FSM) – here entities represent states instead of
actors and connections represent transitions.

• Giotto – time-triggered domain with periodically triggered actors. Intended
for hard real-time systems.

Timed Multi-tasking The timed multitasking (TM) model of computation
[Liu and Lee, 2003] is intended to support deterministic design of concurrent real-
time software. It assumes an underlying priority-driven preemptive scheduler.
In TM each actor executes as a concurrent task with a fixed execution time and
deadline. Actors are activated by triggering conditions (periodically for controller
tasks) and outputs are delayed until the task has been active (has had access to
the virtual CPU) for a time equal to its execution time.

However, the TM model provides deterministic input-output latency of actors by
always delaying outputs to the deadline of the actor. This is called faster-than-
real-time computing. This way the effects of scheduling on delay and jitter is
suppressed, while on the same time an often unnecessary delay is introduced

23



Figure 15 An integrated simulation model of an inverted pendulum process in Ptolemy
II (from [Liu et al., 2002]). The top level contains actors for the pendulum process and
the controller and utilizes the continuous-time model of computation. The controller is
implemented as a task in the TM domain (here called RTOS). In addition to that, the
different states of the controller are modeled as synchronous data flows (SDF).

that reduces the performance for control tasks. The TM model supports deadline
handling to deal with the fact that the execution has not finished by the task
deadline. This is mainly intended to preserve the timing determinism of other
actors.

5.2 Comparative Aspects

Scenarios Supported Ptolemy is directed towards modeling, simulation (exe-
cutable models), and design of embedded system software. It emphasizes method-
ologies for defining and producing embedded software together with the systems
in which the software is embedded. Ptolemy aims at covering a large area of

24



scenarios by use of its hierarchical, heterogeneous modeling framework. Each
subsystem may have its own model of computation, different from the systems
at other levels in the hierarchy.

More specifically, the timed multitasking model of computation is to be used (to-
gether with, e.g., the continuous-time and discrete-event models) for integrated
design of real-time control systems. Here the performance of the real-time sys-
tem (scheduling mechanisms and communication protocols) may be analyzed
and evaluated against the applications performance.

Development Stages Supported As indicated by the simulation scenario
described above, the main aim of Ptolemy is to provide a complete modeling and
design framework which is intended to facilitate the use of Ptolemy throughout
the development process, from early conceptual models to implementation and
verification.

Activities Supported The supported activities depend mainly on the model
of computation chosen. Within the timed multitasking model, it is possible to
do scheduling analysis, change software architecture, do code generation and
hardware-in-the-loop simulation. Adding discrete-event models, it is possible to
simulate network protocols and distributed control systems.

Qualities/Constraints Addressed The timed multitasking model considers
concurrent tasks (actors), each characterized by trigger conditions, computation
times, and deadlines. Task execution is started by the trigger conditions and
outputs are not produced until the actor has have access to the CPU for a time
specified by its computation time. Overrun handling is available if the task ex-
ceeds its deadline. CPU access is granted based on the actor priority within the
simulated real-time scheduling scheme.

However, outputs are not produced until the task deadline even if they are
computed earlier. This has the benefit of guaranteeing a constant and known
input-output latency, but many applications exist for which this design choice
is undesirable. Since all task outputs are delayed one period, the effects of the
real-time scheduling are of less importance, and jitter, delay, and compensation
schemes can, consequently, not be simulated.

Methodological Considerations See above.

Tool Architecture Ptolemy is written in Java, and highly modularized. The
architecture consists of two sets of packages; one that provides generic support
for all models of computation, and one that provides more specialized support for
particular models of computation. The latter includes domains which are Java
packages that implement particular models of computation.

The packages structure is divided in core packages, UI packages, and library
packages. The core packages support abstract syntax and semantics of Ptolemy.
The UI packages contain support for the XML file format and the visual interface
for graphical model construction, called Vergil. The library packages provide
domain polymorphic actor libraries, i.e., actors that can operate in a variety of
domains. See [Hylands et al., 2003] for a more detailed architecture description.

25



Tool Inputs The simulation model is defined graphically by connecting actors
in a fashion similar to Simulink. The inputs for the timed multitasking model in-
clude trigger conditions, deadlines, execution times, and priorities of the various
tasks. Priorities can be automatically computed using schedulability analysis for
the given task parameters.

Tool Outputs Relevant outputs can be found on different levels of the simu-
lation hierarchy. Within the TM model it is possible to see the activations of the
various tasks, and within, e.g., the CT model it is possible to obtain time domain
plots of the physical processes being controlled.

Modeling Content Ptolemy is a large modeling and design framework for
embedded system design. However, the support for integrated real-time control
system design is quite limited due to the restrictions imposed by the timed mul-
titasking model of computation. It only facilitates simulation of fixed priority
scheduling of tasks with constant execution times. Also, input-output latencies
are forced to be constant and well-known.

Tool Automation Ptolemy contains many library objects that simplify the
building of models. This includes actors for continuous processes and real-time
tasks. However, no support for automatic model generation is provided.

Extensibility Being developed in Java and because of its high modular prop-
erties, it is, in theory, straight-forward to extend the Ptolemy libraries with new
actors and also new or modified models of computation.

Availability Ptolemy II 4.0 is available for download at

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII4.0/index.htm

6. RTSIM

6.1 Tool Overview
RTSIM [Palopoli et al., 2002; Lipari, 2003b] is a tool that is aimed at simulating
real-time embedded control systems. The main goal is to facilitate co-simulation
of real-time controllers and controlled plants in order to evaluate the timing
properties of the architecture in terms of control performance.

The tool consists of a collection of C++ libraries and uses the mathematical li-
brary OCTAVE [Eaton, 1998] for the continuous plant simulation. The libraries
allow the user to specify; a set of plants, the functional controller behavior, the
implementation architecture, and a mapping of functional behavior onto the ar-
chitectural components. The simulation model is constructed based on this sepa-
ration between functional behavior and the HW/SW architecture, see Figure 16.

The functional design involves controller operations such as extracting sensor
data and computing control signals. It also produces timing constraints based on
the closed-loop dynamics. The architectural design involves specifying a model of
entities such as software tasks, schedulers and network protocols. The functional
design is mapped onto the architectural design and the timing constraints are
translated into real-time constraints.

26



PSfrag replacements

Plant

Architectural

Design

Design

Functional

Mapping
Simulation

Performance

Figure 16 The design of a real-time control simulation using RTSIM.

The simulation produces results related both to the real-time performance and
the control performance. This includes the generation of execution traces, real-
time statistics (e.g., delays and jitter), and control performance metrics such as
time responses and quadratic costs.

Functional Behavior RTSIM exploits a data flow approach for the functional
modeling based on two types of functional abstractions; the computing unit and
the storage unit. Figure 17 shows an example of functional model of an inverted
pendulum control system.

Each computing unit has a number of input and output ports that must be con-
nected to storage units. The requirement on the computing units is furthermore
that they should be able to respond to three different external commands; read,
execute, and write. The execute command can implement an arbitrary control
algorithm and the computing units may also have internal states. Pre-defined
computing unit library objects are provided for many existing controller struc-
tures.

Storage units are of three types; input buffers, memory buffers, and output
buffers. Input and output buffers model I/O between computing units and the
environment and can be thought of as sensors and actuators, respectively. Mem-
ory buffers are used for communication between different computing units. No
assumptions are made in the functional model regarding hardware implementa-
tions of the I/O or how to deal with concurrent access requests.

System Architecture In the architectural model, a task is a finite or infinite
sequence of jobs (requests for execution). Each job implements some functional
behavior and may be periodic, sporadic or aperiodic. The jobs execute a sequence
of instructions, each modeled by a constant or stochastic execution time and
associated with a read, execute, or write operation of a computing unit.

Tasks are assigned to nodes, each consisting of one or more processors and a real-
time kernel. The kernel is assigned a scheduling policy and a synchronization
protocol. The state of the art scheduling algorithms as well as many aperiodic
server schemes developed in Pisa are provided by the tool.

The system may also be built up as a number of nodes connected by network
links, where the nodes communicate using real-time messages over a physical
link using a certain access protocol.

27



Figure 17 Example taken from [Palopoli et al., 2002] of a functional design for an
inverted pendulum system. Input buffers are used to model sensors and output buffers to
model actuators. Computing units exist for filtering and derivative actions and to compute
the control signal.

Figure 18 Example of an architectural design for the system from Figure 17. Here it is
assumed that the horizontal position of the cart is obtained from camera images, whereas
a potentiometer is used to acquire the angle. Therefore, the architecture uses two tasks
for the controller computations.

28



Performance Evaluation A RTSIM simulation is based on events (e.g., task
arrivals, task terminations and task deadlines). The events are associated with
situations in the architectural model and will subsequently trigger actions in the
functional model.

All events of a simulation may be recorded in a trace file and displayed using
the Java-based utility RTTracer provided in the RTSIM distribution. This is used
for classical real-time schedulability analysis of the simulation in terms of task
activations and deadline misses. It is also possible to use statistical probes to
measure, e.g., jitter and delay distributions over multiple runs.

Finally, for control performance evaluation, special buffers may be used to record
time responses of certain plant variables and to compute quadratic performance
indices.

6.2 Comparative Aspects

Scenarios Supported The main scenario intended to be supported is inte-
grated real-time control system design. The functional behavior of the system is
the result of classical control system design for the continuous-time plant based
on the specifications of the closed-loop performance. The architectural model can
be developed in complete separation and involves specifying hardware and soft-
ware components of the implementation.

The functional model is then mapped onto the architectural model and the in-
tegrated system can be simulated. Based on the simulation results it is then
possible to iteratively update the functional and/or architectural models to ob-
tain the results that best fits the requirements of the project.

Development Stages Supported As indicated by the simulation scenario
described above, the tool can be used at any time of the development process as
long as an functional and architectural model of the control system exist. This
can be anytime from early development to the verification stage. The tool is,
however, mainly used as a research tool to evaluate novel scheduling algorithms
in terms of both real-time and control performance.

Activities Supported RTSIM supports simulation of various hardware and
software aspects when implementing real-time control systems. This involves
real-time task scheduling, synchronization protocols and network communica-
tion. All these aspects may be evaluated against the control performance of the
physical plant under control.

Qualities/Constraints Addressed The RTSIM tool addresses various types
of evaluation qualities. The tool was initially a pure real-time scheduling tool
(without support for continuous-time dynamics simulation) and advanced schedul-
ing schemes may be simulated and evaluated in terms of pure timing behavior.
It contains, already implemented, most of the scheduling algorithms developed
at Retis Lab as well as many other state of the art scheduling schemes.

However, using the OCTAVE library for physical plant modeling the evalua-
tion can be taken one step further. Consequently, the main quality being ad-
dressed is that of the control performance as a result of the complete func-
tional/architectural model. This can be quantified either in terms of time re-

29



sponses such as the overshoot or rise times or using quadratic performance met-
rics. However, the plant modeling is still limited and lacks the graphical features
of, e.g., Simulink.

Methodological Considerations See above.

Tool Architecture RTSIM consists of a collection of C++ libraries that con-
tain three types of objects, namely continuous-time plants, functional compo-
nents, and architectural components.

The main package of RTSIM is RTLIB that is used to describe the architectural
components. This is based on the MetaSim [Lipari, 2003a] library for simulation
of discrete event systems. RTLIB may be used on its own (for real-time simula-
tion) or together with CTRLIB for complete real-time control systems simulation.

RTLIB models architectural entities such as real-time tasks, scheduling algo-
rithms, single- and multi-processor nodes, and network links. These will be de-
scribed in some more detail below.

CTRLIB provides a hierarchy of classes that implement various computing and
storage units.

Tool Inputs Apart from providing the functional and architectural models the
user needs to provide a number of parameters for the simulation. This includes
relative and absolute deadlines of tasks, task periods, and instruction execution
times for individual jobs. Depending on the scheduling algorithm a number of as-
sociated parameters can be set and changed between simulations. This includes,
e.g., bandwidth assignments between tasks when using the Constant Bandwidth
Server.

Tool Outputs The simulation generates execution traces and statistical timing
measures of jitter and latencies. It also returns quantities related to the control
performance, such as time responses and quadratic performance metrics.

Modeling Content In terms of scheduling the RTSIM tool is very general. It
contains library object for many existing policies and provides support for easy
modeling of schemes not provided in the libraries. It supports both single and
multiprocessor scheduling.

RTSIM also supports many existing synchronization protocols to avoid prior-
ity inversion. Again, defining and implementing your own protocol is straight-
forward.

The network support, however, is quite limited and in the current version only
Ethernet and CAN bus networks are provided. The main drawback of the tool
lies in its plant modeling environment that lacks the graphical drag-and-drop
features of Simulink. This also limits the possibilities to analyze the simulation
results on a more detailed level.

Tool Automation RTSIM contains library objects for standard control algo-
rithms (computing units), scheduling algorithms, and synchronization protocols.
This facilitates the construction of the functional and architectural models of
the system. However, no support for automatic generation of these models is
provided.

30



Extensibility Being developed in C++, the RTSIM libraries should be easily
extensible and modular. For example, it should be straightforward to use other
numerical packages for the plant modeling as well as adding more scheduling
schemes, synchronization protocols, or network protocols.

Availability RTSIM is available for download at

http://rtsim.sssup.it/

7. Syndex

7.1 Tool Overview
The Syndex tool supports rapid prototyping of reactive data-driven algorithms
implemented on distributed heterogeneous hardware architectures [Pernet and
Sorel, 2003; Grandpierre et al., 1999; Lavarenne et al., 1991; Forget et al., 2004].
Syndex lets the user specify both the algorithm and the distributed hardware
in a graphical environment, and then automates the mapping and scheduling
of functions (called operations) and communications (called transfers) on the
processors (operators) and communication buses (transformators). During the
mapping and scheduling process, the hardware architecture can be refined to
better match the algorithm needs. When a sufficiently good solution has been
found, Syndex generates executable code that can be downloaded to the target
hardware.

Algorithms are specified in Syndex as conditioned data-flow graphs that are in-
definitely repeated. The graphs are conditioned because there may be branches
that are only executed given that some condition is satisfied. The graph describes
data-dependency relations between operations and form a directed acyclic graph.
An operation can be hierarchically decomposed into sub-operations. The algo-
rithm model has formalized semantics equivalent to the synchronous language
SIGNAL and can therefore be verified with tools for this purpose.

Figure 19 shows a description of a very simple algorithm, algobasic, that con-
tains two constant blocks (cste1 and cste2) that represent constant integers. The
constants are fed into two operation blocks (add and mul) that perform opera-
tions on their inputs and produces output that is forwarded to either of the two
actuator blocks (visuadd and visumul).

The hardware architecture specification consists of components interconnected
via edges representing communication media. A component may be either an
operator, which executes operations, or a transformator, which sequences data
transfers between communication media. Figure 20 shows an example architec-
ture, biProc, that consists of two processors (root and pc1) interconnected via a
TCP transformator (link).

The automated step supported by Syndex (referred to as adequation) is per-
formed by an heuristic algorithm that both maps operations and data transfers
to operators and transformators, and schedules the operations and transfers on
their respective components. The scheduling is an off-line ordering of opera-
tions and transfers, assumed to be indivisible in their execution/transmission.
Whether or not the adequation algorithm can handle multiple algorithms with

31



Figure 19 The algorithm graph algoBasic.

Figure 20 The architecture graph biProc.

different periods (a multi-rate system) and map and schedule these successfully
on a common hardware architecture, is not clear. The result of the adequation al-
gorithm, called an implementation model, is visualized in a timing diagram that
shows the parallel execution and transmission on all components in the system.
Figure 21 shows a timing diagram of the schedule generated by the adequation
algorithm when the operation add has been constrained to execute on the root
operator and the visuadd operation has been constrained to execute on the pc1
operator. These constraints where included to force some communication via the
TCP transformator in the simple example. Note how the constants do not show
in the timing diagram since they do not need any execution.

Given the implementation model, Syndex is able to automatically generate a
distributed executive for the algorithm. The executive is built from a library of
architecture-dependent primitives that compose an execution kernel. One such

Figure 21 Timing diagram generated by the adequation algorithm.

32



kernel is needed for each supported processor type.

7.2 Comparative Aspects

Scenarios Supported Syndex is intended to be used for rapid prototyping of
computational algorithms such as control and signal processing algorithms. A
graphical interface is used to formally specify the algorithm and the distributed
hardware. Then, when the automated mapping and scheduling has been per-
formed, the user has the possibility to refine the hardware algorithm descrip-
tions to make better use of resources and reduce cost. The algorithm can also be
formally verified using other tools for that purpose. The automated mapping and
scheduling is performed after each refinement and when the implementation has
converged to a satisfactory result, executable code can be generated.

Development Stages and Activities Supported The toolset is intended to
be used in early stages when the hardware architecture has not yet been finally
selected. The tool gives good support for comparing different hardware architec-
tures for the implementation of a given algorithm. Due to the rapid prototyping
functionalities, the tool is also valuable for the implementation of early test sys-
tems in which different algorithms can be implemented and compared.

Qualities/Constraints Addressed The automated mapping and scheduling
step is mainly focused on finding a solution that optimizes the usage of available
resources, subject to the timing constraints of the algorithm that have been
specified by the user. The user may also specify constraints on the mapping of
operations and data transfers to components.

Methodological Considerations The methodology supported by Syndex is
called A3 - Algorithm Architecture Adequation - and it follows the steps outlined
above. These include: specification of the algorithm in a formal synchronous
graphical language; specification of the heterogeneous target hardware archi-
tecture; and automated specification of an implementation of the algorithm on
the architecture, using the adequation step which involves spatial mapping and
scheduling in time. Finally, an executable prototype may be generated and exe-
cuted on the target hardware.

Tool Architecture The tool uses a graphical interface in which algorithms
and architectures are described. Different types of objects can be specified and
instantiated directly as locally defined operations, operators etc. It is also possi-
ble to use and instantiate pre-defined types from libraries, including types for,
e.g., mathematical operations and TCP communication links. The adequation
(mapping and scheduling) step is performed in the same environment.

When an implementation has been fully specified, different code generators can
be used on the model. The Syndex code generator generates a file with Syndex
code that fully describes the model, which can be used to later reload the model
into the graphical interface. A postscript code generator can be used to produce
more detailed textual information than is shown in the graphical interface. Fi-
nally, an executive code generator produces code that is needed to execute the
algorithm on the modelled target hardware.

33



Tool Inputs The toolset needs the designer to describe the algorithm in terms
of a directed acyclic graph containing operations that are to be executed, and
data-transfers to be transmitted between the operations. The designer also needs
to describe the target hardware including the processors and the interconnecting
communication links. Each operation and data-transfer is given a duration (exe-
cution/transmission time) for each operator or communication medium available
in the system.

Tool Outputs The tool derives a mapping of operations and data-transfers as
well as an off-line schedule of these. Furthermore, executable code can be gener-
ated given that specific macros have been developed for the included processors.

Modeling Content The algorithm is described as a directed acyclic graph
that is executed repeatedly with a given period. The operations in the graph
have input and output ports that are typed and can represent integers, floats or
boolean variables, or arrays thereof. The ports are connected to corresponding
ports of other operations in the graph. There are two types of edges between
operations: a strong data communication and execution precedence; or execution
precedence only. Operations in a data flow graph can be hierarchically decom-
posed into sub-graphs. One operation may have many parallel sub-graphs and
the selection of the sub-graph to execute for any given invocation, is controlled
by a conditioning dependence of the operation. Hence a data flow graph can con-
ditionally execute different branches on different invocations. Furthermore, each
operation and data-transfer is associated with one duration parameter for each
possible operator or communication medium in the system.

Syndex also allows algorithm specification in SyncCharts [Pernet and Sorel,
2003], a state diagram language that is similar to Statecharts but with a stronger
semantics compliant with the deterministic real-time scheduling of Syndex. A
SyncChart diagram can be included in an algorithm by first translating it (au-
tomatically) to a Syndex data flow representation.

The architecture model is a non-directed graph of operators and communication
media interconnected by edges describing the topology of the architecture. The
communication media may be e.g. Ethernet, CAN or RS232 and the operators
may be micro-controllers, DSPs or FPGAs of various types.

Tool Automation The tool automates the mapping and scheduling of the
algorithm to the specified hardware. It also able to generate code for various
types of processors.

Extensibility The code generation can be extended to support more opera-
tor (processors and communication media) types through the inclusion of more
macro-executive source files.

Availability Syndex is available for download at

http://www-rocq.inria.fr/syndex

34



Figure 22 The TrueTime block library. The Schedule and Monitor outputs display the
allocation of common resources (CPU, monitors, network) during the simulation.

8. TrueTime

8.1 Tool Overview
TrueTime [Cervin et al., 2003; Henriksson et al., 2003; Henriksson and Cervin,
2003; Henriksson et al., 2002b] is a MATLAB/Simulink-based tool that facil-
itates simulation of the temporal behavior of a multitasking real-time kernel
executing controller tasks. The tasks are controlling processes that are modeled
as ordinary continuous-time Simulink blocks. TrueTime also makes it possible to
simulate models of standard MAC layer network protocols, and their influence
on networked control loops.

In TrueTime, kernel and network Simulink blocks are introduced, the interfaces
of which are shown in Figure 22. The kernel blocks are event-driven and execute
code that models, e.g., I/O tasks, control algorithms, and network interfaces. The
scheduling policy of the individual kernel blocks is arbitrary and decided by the
user. Likewise, in the network, messages are sent and received according to the
chosen network model.

The level of simulation detail is also chosen by the user—it is often neither
necessary nor desirable to simulate code execution on instruction level or network
transmissions on bit level. TrueTime allows the execution time of tasks and the
transmission times of messages to be modeled as constant, random, or data-
dependent. Furthermore, TrueTime allows simulation of context switching and
task synchronization using events or monitors.

In addition to the block library in Figure 22, TrueTime provides a collection of
C++ functions with corresponding MATLAB MEX-interfaces. Some functions are
used to configure the simulation by creating tasks, interrupt handlers, monitors,
timers, etc. The remaining functions are real-time primitives that are called from
the task code during execution. These include functions for A/D-D/A conversion,
changing task attributes, entering and leaving monitors, sending and receiving
network messages, and more.

TrueTime is configured in a C++ or MATLAB m-file, called an initialization
script. Likewise, task and interrupt handler code is defined by C++ functions or
MATLAB m-files according to a pre-specified format. The possibility for graphical
modeling has been avoided to make the tool more general and more connected
to the real implementation code.

35



The Kernel Block The kernel block is a MATLAB S-function that simulates
a computer with a simple but flexible real-time kernel, A/D and D/A converters,
a network interface, and external interrupt channels. The kernel executes user-
defined tasks and interrupt handlers. Internally, the kernel maintains several
data structures that are commonly found in a real-time kernel: a ready queue, a
time queue, and records for tasks, interrupt handlers, monitors and timers that
have been created for the simulation.

An arbitrary number of tasks can be created to run in the TrueTime kernel.
Tasks may also be created dynamically as the simulation progresses. Tasks are
used to simulate both periodic activities, such as controller and I/O tasks, and
aperiodic activities, such as communication tasks and event-driven controllers.
Aperiodic tasks are executed by the creation of task instances (jobs).

Each task is characterized by a number of static (e.g., relative deadline, period,
and priority) and dynamic (e.g., absolute deadline and release time) attributes.
In accordance with the Real-Time Specification for Java (RTSJ) [Bollella et al.,
2000], it is furthermore possible to attach two overrun handlers to each task:
a deadline overrun handler (triggered if the task misses its deadline) and an
execution time overrun handler (triggered if the task executes longer than its
worst-case execution time).

Interrupts may be generated in two ways: externally (associated with the exter-
nal interrupt channel of the kernel block) or internally (triggered by user-defined
timers). When an external or internal interrupt occurs, a user-defined interrupt
handler is scheduled to serve the interrupt.

The execution of tasks and interrupt handlers is defined by user-written code
functions. These functions can be written either in C++ (for speed) or as MAT-
LAB m-files (for ease of use). Control algorithms may also be defined graphically
using ordinary discrete Simulink block diagrams.

Simulated execution occurs at three distinct priority levels: the interrupt level
(highest priority), the kernel level, and the task level (lowest priority). The ex-
ecution may be preemptive or non-preemptive; this can be specified individually
for each task and interrupt handler.

At the interrupt level, interrupt handlers are scheduled according to fixed pri-
orities. At the task level, dynamic-priority scheduling may be used. At each
scheduling point, the priority of a task is given by a user-defined priority function,
which is a function of the task attributes. This makes it easy to simulate different
scheduling policies. For instance, a priority function that returns a priority num-
ber implies fixed-priority scheduling, whereas a priority function that returns
the absolute deadline implies earliest-deadline-first scheduling. Predefined pri-
ority functions exist for rate-monotonic, deadline-monotonic, fixed-priority, and
earliest-deadline-first scheduling.

The Network Block The network block is event-driven and executes when
messages enter or leave the network. When a node tries to transmit a message,
a triggering signal is sent to the network block on the corresponding input chan-
nel. When the simulated transmission of the message is finished, the network
block sends a new triggering signal on the outport channel corresponding to
the receiving node. The transmitted message is put in a buffer at the receiving
computer node.

36



A message contains information about the sending and the receiving computer
node, arbitrary user data (typically measurement signals or control signals), the
length of the message, and optional real-time attributes such as a priority or a
deadline.

The network block simulates medium access and packet transmission in a local
area network. Six simple models of networks are currently supported: CSMA/CD
(e.g. Ethernet), CSMA/AMP (e.g. CAN), Round Robin (e.g. Token Bus), FDMA,
TDMA (e.g. TTP), and Switched Ethernet. The propagation delay is ignored,
since it is typically very small in a local area network. Only packet-level simu-
lation is supported, i.e., it is assumed that higher protocol levels in the kernel
nodes have divided long messages into packets.

Configuring the network block involves specifying a number of general parame-
ters, such as transmission rate, network model, and probability for packet loss.
Protocol-specific parameters that need to be supplied include, e.g., the time slot
and cyclic schedule in the case of TDMA.

8.2 Comparative Aspects

Scenarios and Development Stages Supported The main use of TrueTime
is for simultaneous simulation of all aspects of distributed real-time control ap-
plications. By co-simulation of continuous process dynamics, task execution in
real-time kernels, and network communication, it is possible to evaluate the
performance of control loops subject to the constraints of the target system.

In a typical scenario, a controller design has been performed (without consider-
ing implementation constraints) and is about to be implemented on the target
system. In this scenario, TrueTime can be used to evaluate different real-time im-
plementations, and the effects of CPU and network scheduling, task attributes,
etc, on the control performance.

For a given implementation architecture, TrueTime may also be used to obtain
temporal statistics that can be used as constraints in the design of the controller.

In the optimal scenario, however, the controller and architectural designs are
performed at the same time. Here, TrueTime provides a convenient framework
for integrated control and real-time design.

TrueTime is also used as an experimental platform for research on flexible ap-
proaches to real-time implementation and scheduling of controller tasks. One
example is feedback scheduling [Cervin et al., 2002; Henriksson et al., 2002a]
where feedback is used in the real-time system to dynamically distribute re-
sources according to the current situation in the system.

TrueTime may be used in all stages of the development process, from the early
stages and system specifications, during the actual system construction, and
finally for testing and validation.

Activities Supported TrueTime makes it possible to simulate the temporal
behavior of the computer architecture (e.g., scheduling policies and network pro-
tocols) and its effect on the control performance. Standard scheduling policies
may be used, e.g., priority-based preemptive scheduling and earliest-deadline-
first scheduling, but it is also straight-forward to define arbitrary user-defined

37



PSfrag replacements

τ

t

Arrival, Release
hooks

Start
hook

Suspend
hook

Resume
hook

Finish
hook

Figure 23 TrueTime scheduling hooks.

policies. Task overrun strategies may be evaluated and easily implemented using
the TrueTime overrun handlers.

TrueTime can also be used as an experimental platform for research on co-design
of control algorithms and computer resource scheduling mechanism. It is pos-
sible to study dynamic compensation schemes that adjust the controller on-line
based on measurements of actual timing variations, i.e., treat the temporal un-
certainty as a disturbance and manage it with feed-forward or gain scheduling.
It is also easy to implement new more flexible approaches to dynamic scheduling,
e.g., feedback scheduling [Cervin et al., 2002] of CPU time and communication
bandwidth and quality-of-service (QoS) based scheduling, in the TrueTime CPU
kernel.

TrueTime may also be used only as a scheduling simulator, without being con-
nected to any continuous-time processes. This can be used to get information
of the timing of the real-time system, and various scheduling policies can be
evaluated in terms of deadline misses and response times.

Qualities/Constraints Addressed Being developed in Simulink, TrueTime
allows for traditional control system assessment in terms of performance, stabil-
ity and robustness. Compared to normal control system development in Simulink,
TrueTime also considers the constraints imposed by the implementation plat-
form.

Methodological Considerations See above.

Tool Architecture TrueTime is primarily intended to be used together with
MATLAB/Simulink. However, the TrueTime kernel actually implements a com-
plete event-based kernel and Simulink is only used to interface the kernel and
the tasks with the continuous-time processes.

TrueTime is written in C++ and consists of two Simulink S-functions for the
kernel and network block, and a collection of C++ functions for the initializa-
tion commands and real-time primitives. All TrueTime objects, such as tasks,
interrupt handlers, monitors, timers, and events, are defined by C++ classes.
These classes as well as the real-time primitives may easily be extended by the
user to add more functionality.

The Simulink engine is used only for timing and interfacing with the rest of
the model (the continuous dynamics). Since it is written in C++, it should thus
be easy to port the block code to other simulation environments, provided these
environments support event detection (zero-crossing detection).

38



Figure 24 The dialog of the TrueTime Network block.

Tool Inputs TrueTime is initialized in a script for each kernel block (node).
In this script, the user specifies the scheduling policy of the kernel, creates tasks
and assigns task attributes (period, priority, deadlines, etc), and creates any
other objects for the simulation (interrupt handlers, timers, monitors, mailboxes,
etc). The execution of each task and handler is defined by a code function (see
Modeling Content below) with constant or random execution time. It is also
possible to specify a simulated time associated with context switches.

Furthermore, to facilitate arbitrary dynamic scheduling mechanisms, it is possi-
ble to attach small pieces of code (hooks) to each task. These hooks are executed
at different stages during the simulation, as shown in Figure 23.

The network block is configured through the block mask dialog, see Figure 24.
The following network parameters are common to all models; number of nodes
in the network, data rate (bits/s), minimum frame size (bytes), pre- and post-
processing delay, and loss probability. Protocol-specific attributes include slot
sizes for TDMA, and buffer size and buffer type for switched Ethernet.

Tool Outputs Depending on the simulation a number of different output
graphs are generated by the TrueTime blocks. Each kernel block will produce two
graphs; a computer schedule and a monitor graph, and the network block will
produce a network schedule. The computer schedule will display the execution
trace of each task and interrupt handler during the course of the simulation. If
context switching is simulated, the graph will also display the execution of the
kernel.

39



we
A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

TrueTime Kernel

Schedule

1
s  +−12

Pendulum

Figure 25 A TrueTime computer block connected to a continuous pendulum process.

There will be one execution trace for each task and handler. If the signal is
high this means that the task is running. A medium signal indicates that the
task is ready but not running (preempted), whereas a low signal means that the
task is idle. In an analogous way the network schedule shows the transmission of
messages over the network, with the states representing sending (high), waiting
(medium), and idle (low). The monitor graph shows which tasks that have been
holding the different monitors during the simulation.

It is also possible to create logs for each tasks. These will log arbitrary task
attributes, such as response times and latencies, during the simulation and write
them to the MATLAB workspace after the simulation.

Plant and controller outputs are conveniently displayed and evaluated using the
Simulink built-in outputs. It is also possible to dynamically evaluate for example
quadratic performance functions, within Simulink.

Modeling Content The TrueTime blocks are connected with ordinary Simulink
blocks to form a real-time control system, see Figure 25.

Before a simulation can be run it is necessary to initialize the individual kernel
blocks. Initialization of a TrueTime kernel block involves specifying the number
of inputs and outputs of the block, defining the scheduling policy, and creating
tasks, interrupt handlers, events, monitors, etc for the simulation. This is done
in an initialization script for each kernel block.

The initialization code in Listing 1 shows the minimum of initialization needed
for a TrueTime simulation (e.g., corresponding to the simple simulation model
in Figure 25). The kernel is initialized by providing the number of inputs and
outputs and the scheduling policy using the function ttInitKernel. A periodic
task is then created by the function ttCreatePeriodicTask. The execution of the
task is given by the code function Pcontroller, described below.

The execution of tasks and interrupt handlers is defined by code functions. A code
function is further divided into code segments according to the execution model
in Figure 26. The code can interact with other tasks and with the environment
at the beginning of each code segment. This execution model makes it possible
to model input-output latencies, blocking when accessing shared resources, etc.
The number of segments can be chosen to simulate an arbitrary time granu-
larity of the code execution. Technically it would, e.g., be possible to simulate
very fine-grained details occurring at the machine instruction level, such as race

40



Listing 1 Example of a simple TrueTime initialization function.

function example_init

ttInitKernel(2, 1, ’prioFP’);

name = ’ctrl’;

offset = 0;

period = 0.005;

prio = 2;

data.u = 0;

data.K = 2;

ttCreatePeriodicTask(name, offset, period, prio, ’Pcontroller’, data);

1 2 3

Simulated execution time

Execution of user code

Figure 26 The execution of the code associated with tasks and interrupt handlers is
modeled by a number of code segments with different execution times. Execution of user
code occurs at the beginning of each code segment.

conditions. However, that would require a large number of code segments.

The simulated execution time of each segment is returned by the code function,
and can be modeled as constant, random, or even data-dependent. The kernel
keeps track of the current segment and calls the code functions with the proper
argument during the simulation. Execution resumes in the next segment when
the task has been running for the time associated with the previous segment.
This means that preemption by higher-priority activities and interrupts may
cause the actual delay between execution of segments to be longer than the
execution time.

Listing 2 shows an example of a code function corresponding to the time line in
Figure 26. The function implements a standard P-controller. In the first segment,
the plant is sampled and the control signal is computed. In the second segment,
the control signal is actuated and the controller states are updated. The third
segment indicates the end of execution by returning a negative execution time.

The data structure data represents the local memory of the task and is used
to store the control signal and measured variable between calls to the different
segments. A/D and D/A conversion is performed using the kernel primitives
ttAnalogIn and ttAnalogOut.

Note that the input-output latency of this controller will be at least 2 ms (i.e.,
the execution time of the first segment). However, if there is preemption from

41



Listing 2 Example of a standard code function written in MATLAB code. The local
memory of the controller task is represented by the data structure data. This stores the
controller gain and the control signal between invocations of different code segments.

function [exectime, data] = Pcontroller(segment, data)

switch segment,

case 1,

r = ttAnalogIn(1);

y = ttAnalogIn(2);

data.u = data.K*(r-y);

exectime = 0.001;

case 2,

ttAnalogOut(1, data.u);

exectime = 0.001;

case 3,

exectime = -1; % finished

end

other high-priority tasks, the actual input-output latency will be longer.

TrueTime interrupt handlers is used to model code that is executed in response
to interrupts. Interrupt handlers are scheduled with fixed priorities on a higher
priority level than tasks. Interrupt handlers may be associated with timers, the
network receive channel, external interrupt channels, or attached to tasks as
overrun handlers. Timers can be one-shot or periodic.

TrueTime monitors are used to provide mutual exclusion and synchronization
between tasks. Tasks waiting for monitor access are sorted according to their
priority under the given scheduling policy. Standard priority inheritance is im-
plemented as resource access policy. TrueTime events may be free or associated
with monitors as condition variables. The event waiting queues are also priority-
sorted.

Tool Automation MATLAB scripts can be used to run sequences of simula-
tions with different input parameters. Other than that, no automation is pro-
vided.

Extensibility Several possible extensions to the simulation environment exist.
Some important issues include

• increased support for using legacy code directly in the simulator (e.g., by
adhering to the POSIX standard and providing special wrapper functions
that translates POSIX-code to the TrueTime environment)

• extensions of the network simulation (e.g. by adding support for simulation
of wire-less and ad-hoc networks)

• connections with worst-case execution time analysis tools to come up with
reasonable code execution times

Availability TrueTime is available for download at

http://www.control.lth.se/~dan/truetime/

42



9. XILO

9.1 Tool Overview
XILO - standing for X-in-the loop simulation - is a prototypical toolset, built upon
Simulink, developed to support detailed architectural design of distributed real-
time control systems, [El-Khoury and Törngren, 2001]. The approach enables the
co-simulation of functionality, from discrete-time control to logic, together with
the controlled continuous-time processes and the behaviour of the computer sys-
tem. In particular, modelling and simulation of distributed computer control sys-
tems is supported allowing analysis of timing and control system robustness. An
emphasised feature of the tool is its multidisciplinary and integrated approach
that combines the views of control and computer engineering into one view at
an appropriate level of abstraction. The XILO toolset is composed of a number
of libraries that lets a designer configure a distributed computer control system
and to allocate and partition the functionality as desired. Along with the basic
toolset, an additional library that supports fault-injection in terms of bit-flips
in all types of blocks, signals and constants has been developed, [Norberg and
Törngren, 2003]. Some of the basic mechanisms of XILO have been reused in the
Aida toolset [Redell et al., 2004].

9.2 Comparative Aspects

Scenarios and Development Stages Supported The usage of this toolset is
similar in nature to the AIDA toolset [Redell et al., 2004] and TrueTime [Cervin
et al., 2003; Henriksson et al., 2003]. The main emphasis is on architectural de-
sign on a rather detailed level, although usage in earlier stages is also possible.
Given a control design, the resulting control performance can be evaluated for
different computer system architectures and for different mappings to the ar-
chitecture. Alternatively, it is possible to just use the simulation to get an idea
about the timing of the computer system.

In the typical usage scenario, the control system has been designed, and it is
of interest to study how it can be implemented on a single processor or in a
distributed computer system. The hardware and software architecture could be
fixed beforehand, or its design could also be guided by the results of XILO sim-
ulations. To use XILO, a new Simulink model is created, and by using the XILO
block libraries the hardware and software architectures are defined. The func-
tionality of the original control system model is then partitioned to the tasks
(in general time or event-driven activities) of the nodes, inter-thread communi-
cation is added and the whole system is configured (e.g., by adding execution
time information and priorities). Based on such a developed model in Simulink,
alternative designs can be simulated and their behaviour compared. Hence, the
toolset could be used to for example:

• compare and evaluate hardware architectures and function allocation
• compare and evaluate software architectures and task partitioning
• compare and evaluate different execution strategies, e.g. different trigger-

ing and scheduling approaches
• compare and evaluate control system designs

43



Qualities/Constraints Addressed The main qualities addressed include con-
trol system performance and robustness, and the timing behaviour of the com-
puter system.

Methodological Considerations The above described scenarios relate to and
support system design for distributed systems [Törngren and Wikander, 1996].
The modelling foundations for XILO are based on the AIDA modelling framework
[Redell, 1998; Redell and Törngren, 1998] and also inspired by the CODARTS
method [Gomaa, 1993].

Tool Architecture XILO is completely implemented within MATLAB/Simulink
[The Mathworks, 2005]. MATLAB/Simulink was chosen because of the rela-
tive ease with which it could be extended to model real-time implementations,
because of its support for the modelling of event-triggered and time-triggered
systems, and because of its wide-spread use as a control design environment.
Simulink allows for the integration of custom code into its models. Hence, it is
possible to model the control application together with any encapsulating soft-
ware.

On the other hand, there is a gap between the Simulink modelling level and the
real-time system implementation. For example, in Simulink, the execution of a
block takes zero time according to the simulation time, thus there is a need to pro-
vide a mechanism whereby durations due to execution or communication can be
modelled. Moreover, the peculiarities of embedded system platforms (including,
among other things, hardware, interrupts and real-time operating systems) need
to be appropriately modelled and ”instrumented” into Simulink to ensure that
the simulation behaves as a real-time implementation, in particular considering
scheduling and preemptions. That is, the original execution ordering undertaken
by Simulink during simulation is not sufficient [Törngren et al., 2001].
The handling of hybrid systems requires the simulator to have an event-triggered
architecture, where all the activities in the system are event-triggered, and the
Simulink triggering capabilities are used extensively. Note that this still allows
for the modelling of purely time-triggered architectures, where time is viewed as
an event. A combination of C-coded S-functions and Simulink blocks were used
in the implementation. Each of the model components in the XILO libraries
(further discussed below) is represented in the simulator as a Simulink block.

From the definition of the modelling content below it will be seen that there is
extensive data exchange between the XILO library components. Taking the tradi-
tional Simulink approach of connecting blocks to exchange data is not favourable
since this will certainly complicate the model for the simplest cases. Even worse,
confusion will occur between data exchange of the application itself and that
needed for the implementation of the underlying components. The approach
taken in the simulator is to hide all data exchanges that do not form part of
the representation model of the system. For example, although data exchange
is necessary between a scheduler and each of the tasks on its processor, these
links are not explicit in the model presentation since they do not contribute to
the understanding of the model. The user need not be concerned with these hid-
den links since each component automatically reconfigures itself based on the
presence of other blocks in the system. Also, the interface between these types
of components within a node is well defined and fixed, allowing for the inde-
pendent development of subtypes and variations in the internals of each of the
components.

44



Table 1 Explicit XILO component attributes.
Component Attributes

Communication link Link Speed
Communication Protocol

Scheduler Scheduling Algorithm
Service Provider/ Service Response Policies
Hardware Unit Internal Buffer Sizes

Elementary Function Execution Time

Tool Inputs Each of the model components in the XILO libraries is repre-
sented in the simulator as a Simulink block. The drag-and-drop approach of
blocks from libraries is used to build the models. Blocks are then customised
through a graphical user interface. There are no restrictions on the types of
standard Simulink blocks that can be used with the simulator models, except
for those imposed by Simulink itself. This ensures a well-integrated environment
with Simulink and the user does not need to learn a new tool. In order to use the
tool according to the intended scenario, a control system model made in Simulink
is needed.

Table 1 lists the explicit attributes that the user needs to specify for each of
the components in the model. In addition, components contain implicit proper-
ties that can be automatically derived from their context. For example, a task
implicitly identifies the list of elementary functions that are contained within
it. Also, each component contains a unique identifier that distinguishes it from
other components.

Tool Outputs The simulator permits the user to monitor any variable in the
system. Parameters that may be of interest for timing analysis include: task
status, the times when particular events or activities within a task occur, or
the time when a service request is serviced. Apart from these outputs, ordinary
Simulink outputs can be used to for example store or visualize the behaviour of
the controller and the controlled system.

Modeling Content At the top level, the hardware topology of the whole system
is modelled. This hardware structure consists of three types of components: the
surrounding environment, communication links, and the computer nodes.

The environment is described using standard Simulink modelling techniques
and blocks, typically to capture a model of the dynamics of a mechanical system
including sensors and actuators. It is necessary that the chosen environment
model is integrable with the rest of the hardware model, meaning that it should
be possible to actuate and sense appropriate signals of the mechanics.

A computer node connects to the system environment at various points. This
connection is performed via Hardware Units such as pulse width modulators
(PWM), analog to digital converters (ADC), and digital to analog converters
(DAC) that reside in the node. A communication link provides data exchange
facilities between computer nodes. It defines the protocols that handle the mes-
sages being sent between connected nodes. A communication link indirectly in-
teracts with each connected node through communication controllers that reside

45



in the node. The communication link performs the scheduling of messages re-
quested from connected controllers, while the controller internally schedules its
own messages. Such a setup allows for a representation of a multitude of node
and link models to be connected, as well as allowing for a node to connect to one
or more links, and vice versa. As an example, consider the implementation of the
CAN bus. Requests to send messages on the bus are received by the bus from the
controllers. These requests are only serviced if the bus is idle, and ongoing trans-
missions are not disturbed. Once the bus is idle, controllers arbitrate between
each other to gain access to the bus according to the CAN protocol. The message
transmission time depends on the bus bit rate and the message size including
any protocol overheads. Note that the arbitration within a CAN controller is
performed independently at the node level, and that this local scheduling is not
part of the CAN protocol itself.

A node consists of the following types of components:

• one or more tasks from which the system software is built (the following
section describes the task model)

• a task scheduler

• zero or more operating system Service Providers (SP) such as inter-task
communication, task synchronisation and semaphores

• zero or more hardware units such as communication controllers, timers,
ADCs and DACs

• a processor

The application functionality to be developed by the user is composed of ap-
plication tasks, with services provided by the other components comprising the
operating system. Software layers, which interface the application software to
the system hardware and operating system, can be easily modelled and designed
with this approach. For example, system tasks, belonging to the operating sys-
tem, can be developed to implement software drivers or high level network pro-
tocols.

Scheduler. A single task scheduler exists for each node in the system. The role of
the scheduler role is to, when triggered, simply choose and activate a single task
that is to run on the node processor at that time. The scheduler may be triggered
by any of the service providers installed on that node, or by a timer reaching
certain pre-defined points in time. A task list component also exists which holds
certain information on each task such as its ID, current status, priority and any
user-specific parameters. The scheduler only needs to interface to the task list in
its decision making, and different scheduler models require different information
about the tasks and hence, the task list model should be consistent with that of
the scheduler.

This model allows for the modelling of a wide range of schedulers such as
event/time triggered, static/dynamic, and off-line/on-line schedulers. Develop-
ing a new scheduler requires the implementation of the function that decides
on the next running task, as well as the design of the data structures needed
for each task in the task list. Using a particular scheduler simply requires the
inclusion of the scheduler and its accompanying task list into the node, and any

46



off-line customising is done by the user through the task list. As an illustrating
example, consider the design of a fixed-priority preemptive scheduler. The task
list stores, for each task, the user-specified static priority as well as its current
status. A task status can be one of ready, running or blocked. The scheduler in
this case is triggered every time a task changes its status in order to evaluate if a
more legitimate ready task needs to run on the processor. A scheduler triggering
may be caused by, for example, an interrupt or a service provider.

Service Provider. Examples of service providers are inter-task communication
and task synchronisation. Although they vary in their functionality, these com-
ponents have very similar features and interactions to the rest of the system.
Essentially, a service provider (SP) responds to a service request from a task
to perform certain activities. This activity may cause the calling task (or any
other task, in general) to change status due to the internal state of the SP. The
mechanism of making requests by a task and the response to these requests is
fixed across all services. What varies is the interpretation of the requests and
the way they are handled. Hence, developing new services simply requires the
definition of the internal states, and the functionality to handle the various types
of possible requests. All SPs have access to the task list and are able to trigger
the processor scheduler.

As an example, consider an inter-task communication service implemented as a
first-in/first-out, block-on-full service. When a task requests to send a message,
it simply sends the data to the specific SP. Normally, the SP places the data in
the FIFO buffer. However, if the buffer is full, the SP changes the task status to
blocked, and triggers the scheduler. When the buffer is available again, the SP
changes the task status to ready and triggers the scheduler.

Hardware Unit. Hardware units may be fully embedded in the computer node
(such as a floating point processor) and hence only interfacing with the proces-
sor, or they could lie on the border (such as an ADC) and provide an interface
between the processor and the surrounding environment. From the task perspec-
tive, the interface to a hardware unit is similar to that of a service provider in
that a request is made for a service which the unit provides. Hence, it is im-
portant to match the requests to the correct service. However, a hardware unit
differs from a service provider in that it has no direct access to the internal data
structures of the OS such as the scheduler or task list. Instead, the unit may
cause processor interrupts that tasks in the system need to handle appropriately.
This model naturally facilitates the masking of these units by developing unit
drivers (consisting of system tasks) that encapsulate the hardware units and
handle the generated interrupts. As a simple example, consider a hardware unit
implementing a CAN communication controller. A task requesting to send a mes-
sage over CAN makes a request for service by directly accessing the hardware
registers. The unit in turn communicates with the associated CAN communi-
cation link, and upon receiving a message from the link, produces a hardware
interrupt (if so configured). The CAN controller performs the local scheduling of
simultaneous transmission requests, e.g. FIFO or priority based.

A task is modelled as a single sequence of elementary functions (EF). Each EF
is assumed to take a specified non-zero amount of time to execute. We can draw
a simple task as shown in Figure 27, illustrating the precedence relationship
between the elementary functions. The EF can be either user-specific (octagonal
block representation) or an operating system service request (rectangular block).

47



1
End

SR

EF4

User
Specific

EF3

SR

EF2

SR

EF1

1
Start

1
Out

DemuxExecution
Delay Activity

Function
1
in

Trigger

Data

Figure 27 (top) The task model consisting of a sequence of elementary functions (EF).
(bottom) The internal model of an EF.

1
End

MB

User
Specific

EF3
SR

EF2

SR

EF1
1

Start

1
End

M User
Specific

EF2

SR

EF1

1
Start

Figure 28 Examples of more complex task structures such as branching (top) or looping
(bottom).

When first triggered, the task is made ready to run on the processor. During its
lifetime, and depending on the system activities and the scheduler being used, a
task runs on the processor at different time slots. The directed link between two
EFs within a task indicates passing control from the source to the destination
EF, triggering the destination EF to begin its execution. The currently activated
EF terminates once the task executes for a time period that is equivalent to the
EF execution time, since the EF was first activated. When the control is passed
to the last block, the task is terminated.

This simple model can be extended in order to provide looping and branching
of the elementary functions, as shown in Figure 28. Once triggered, the Branch
block (B) produces an output trigger in one, and only one of its outputs, based on
internal logic. The Merge block (M) produces a trigger on the output as soon as
any of its inputs is triggered. These mechanisms do not consume any processor
time, and are only intended to be used for high level modes of operations of the
application.

48



Tasks may be initially triggered as soon as the node is booted, or they may be
configured to be triggered by an interrupt. The first is typical for many appli-
cation tasks, while the latter can be used to model system interrupt handlers.
It is also necessary to have at least a single task (the system idle task) in the
system that is initiated during boot time, and that may never terminate.

Elementary Function (EF). The internal model of an EF is shown in the bot-
tom part of Figure 27. The input to an EF (either user-specific or an operating
system service request) consists of the elementary function trigger and its data.
When an EF is first triggered, the input data is captured and when its specified
execution time elapses, an output trigger is produced together with output data.
By definition, an elementary function may be preempted at any instance in its
execution. Non-preemptive EFs can be implemented as a subset of normal EFs,
by implicitly surrounding each elementary function with service requests that
disable and enable pre-emption.

Tool Automation Currently no automation is implemented in XILO (apart
from certain configuration aspects as described previously in the tool architecture
section).

Extensibility XILO is completely developed in Simulink. Given the rich API
of Simulink and possibilities to integrate custom-code there are many possibil-
ities open for extensions. For example, it would be possible to develop platform
models at different levels of abstraction, and to support different kinds of plat-
forms (e.g. different networks and unsynchronized nodes). In addition, the idea
with the toolset was to also support the definition and analysis of different ap-
proaches for error detection and handling. Such facilities have been studied but
are currently only partially implemented in the toolset. It is straightforward to
implement fault-injection in Simulink related to different fault-models, includ-
ing permanent and transient faults, and component failure modes of different
kinds, from crash to asymmetric failures. For experiences with such models in
Simulink see [Törngren et al., 2001; Norberg and Törngren, 2003]. In [Norberg
and Törngren, 2003] we describe the development of a Simulink library that mod-
els transient hardware faults, in particular single bit-flips, and its use in control
system robustness evaluation. As well as being executable, the models described
above are representative enough that the collection of task models from each
of the nodes in the system can serve as a basis for a detailed software model,
which could be translated to a more traditional and familiar form, if desired.
Sufficient level of detail is available to generate pseudo-code for each task in the
system, and configuration information indicating the services needed for each
node. Integration with commercial tools such as code generators is also possible.

Availability Developed in-house at the Division of Mechatronics at KTH;
available upon request.

10. Other and Commercial Tools
The survey in this report mainly focuses on recent tools as developed in academia.
Apart from an increasing interest in the academic communities, there are also
strong industrial needs for tools supporting a range of issues including timing,
quantization, code generation, testing and so on.

49



To further illustrate the range of tools being developed, this section provides
a glimpse of existing commercial tool efforts related to the area of real-time
control. For other surveys see [ARTIST2 Network of Excellence, 2005; Jeutter
and Heppner, 2004; Törngren and Larses, 2004].

Existing commercial tools provide a broad range of capabilities including support
for (see for example [dSPACE, 2004; ETAS, 2004; National Instruments, 2004]):

• system modeling and design where for example effects due to constant or
varying delays can be investigated in simulation

• rapid control prototyping (RCP), allowing control designs to be quickly
prototyped using general purpose controller hardware

• code generation from control system models

• RTOS configuration and integration within the design models

• analysis of quantization effects, e.g., relevant for fixed-point implementa-
tion

• testing of models, generated code, and final implementations

• calibration of target systems, e.g., over CAN

The use of code generation has increased significantly only over the last few years
in the vehicular industry. For example, Volvo cars are using Simulink models in
the design of power train controllers including simulation and rapid prototyping.
Code generated from the models is used in the final product, [Lygner, 2002]. Here
it is interesting to note that the code generator design environment acts as an
interface between control designers and implementation engineers

Although RCP tools and some testing and calibration tools can be used for dis-
tributed systems, the main effort has been on support for single processor sys-
tems.

Newer tools that are emerging have different origins and thus different empha-
sis. For example, efforts from electronics design automation are (both within
research and as commercial spin-offs) addressing architectural design of em-
bedded systems, thus for example supporting distributed system analysis and
implementation of functionality, see for example [Metropolis, 2004].

There are also efforts originating from safety- and mission-critical systems, em-
phasizing for example fault-tolerance and formal verification. This range of tools
also promise support for distributed control systems, see for example [TTTech,
2004; Sildex, 2004; TNI, 2004].

As an illustration of this functionality, the tools provided by TT-Tech support con-
figuration and off-line scheduling of fault-tolerant distributed systems (including
nodes and the communication), target downloading, testing and on-line monitor-
ing. The tools have been integrated with Simulink and available code genera-
tors. From the perspective of control and real-time implementation co-design,
the tools work with control designs and their timing requirements as inputs,
and then essentially produce as outputs a distributed fault-tolerant middle-ware
together with an off-line schedule. Apart from being one part of the distributed
RTOS configuration, the synthesized off-line schedule can be used to instrument

50



a Simulink simulation (TTP-Matlink) to investigate the control system behav-
ior subject to the expected timing of the implementation (this is similar to the
approach taken in Aida, which however in the current version supports this for
asynchronous and fixed-priority scheduled systems).

11. Summary
Designing a real-time control system is essentially a co-design problem. Choices
made in the real-time design will affect the control design and vice versa. For
instance, deciding on a particular network protocol will give rise to certain delay
distributions that must be taken into account in the controller design. On the
other hand, bandwidth requirements in the control loops will influence the choice
of CPU and network speed. The need for a co-design approach is further accen-
tuated in embedded control systems with limited computing and communication
resources.

In order to simplify the design process for this type of systems it is important
with tool support. Unfortunately the tools that allow a co-design approach are
quite few. Instead most tools specialize on a single domain, e.g., control design,
schedulability analysis or UML-type software modeling and code generation.

The aim of this survey has been to identify and summarize some of the most
important co-design tools available. The tools presented are in general specialised
on a certain aspect of the co-design problem. For example, Jitterbug support
statistical control performance analysis taking computing and communication
effects into account whereas TrueTime and RTSIM are tools for co-simulation
of networked embedded control systems. The tools AIDA, Orccad, Ptolemy II,
Syndex, and XILO all aim at providing environments for model-based developed
of real-time control systems.

What so far mainly is lacking is tools that focus on the actual design part of co-
design, i.e., which aid the designer with the development of the actual embedded
control algorithms taking the control and communication aspects into account.
The reason for the lack of this type of tool is the lack of theory and methods in
the field. Co-design of embedded control system is a fairly new area and most
of the methods and theory developed so far are aimed at analysis rather than
design and synthesis.

12. References
ARTIST2 Network of Excellence (2005): “ARTIST roadmaps, part I.”

http://www.artist-embedded.org/Roadmaps/ARTIST_Roadmaps_Y2.pdf.

Audsley, N., A. Burns, M. Richardson, and A. Wellings (1994): “STRESS—A
simulator for hard real-time systems.” Software—Practice and Experience,
24:6, pp. 543–564.

Bass, J. M., A. R. Browne, M. S. Hajji, D. G. Marriott, P. R. Croll, and P. J.
Fleming (1994): “Automating the development of distributed control soft-
ware.” IEEE Parallel and Distributed Technology: Systems and Technology,
2, pp. 9–19.

51



Bhatt, D., V. Thomas, and J. Shackleton (1996): “A methodology and toolset for
the design of parallel embedded systems.” ACM SIGPLAN OOPS Messenger,
7, pp. 5–12.

Bollella, G., B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turnbull
(2000): The Real-Time Specification for Java. Addison-Wesley.

Cervin, A., J. Eker, B. Bernhardsson, and K.-E. Årzén (2002): “Feedback-
feedforward scheduling of control tasks.” Real-Time Systems, 23:1–2, pp. 25–
53.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén (2003): “How
does control timing affect performance?” IEEE Control Systems Magazine,
23:3, pp. 16–30.

Cervin, A. and B. Lincoln (2003): “Jitterbug 1.1—Reference manual.” Technical
Report ISRN LUTFD2/TFRT--7604--SE. Department of Automatic Control,
Lund Institute of Technology, Sweden.

Control Systems Society (2004): “CACSD history.” Home page,
http://www.robotic.dlr.de/control/cacsd/cacsd/history.shtml.

dSPACE (2004): “Solutions for control.” Home page, http://www.dspace.de.

Eaton, J. W. (1998): “OCTAVE.” Home page, http://www.octave.org/.
El-Khoury, J. and M. Törngren (2001): “Towards a toolset for architectural design

of distributed real-time control systems.” In Proceedings of the 22nd IEEE
Real-Time Systems Symposium. London, England.

ETAS (2004): “Engineering products and services.” Home page,
http://www.etasgroup.com.

Forget, J., C. Lavarenne, and Y. Sorel (2004): “Syndex v6 – user manual.”
Technical Report.

Gomaa, H. (1993): Software Design Methods for Concurrent and Real-Time
Systems. Addison-Wesley.

Grandpierre, T., C. Lavarenne, and Y. Sorel (1999): “Optimized rapid prototyping
for real-time embedded heterogeneous multiprocessors.” In Proceedings of the
7th International Workshop on Hardware/Software Co-design. Rome, Italy.

Henriksson, D. and A. Cervin (2003): “TrueTime 1.1—Reference manual.”
Technical Report ISRN LUTFD2/TFRT--7605--SE. Department of Automatic
Control, Lund Institute of Technology.

Henriksson, D., A. Cervin, J. Åkesson, and K.-E. Årzén (2002a): “Feedback
scheduling of model predictive controllers.” In Proceedings of the 8th IEEE
Real-Time and Embedded Technology and Applications Symposium. San Jose,
CA.

Henriksson, D., A. Cervin, and K.-E. Årzén (2002b): “TrueTime: Simulation of
control loops under shared computer resources.” In Proceedings of the 15th
IFAC World Congress on Automatic Control. Barcelona, Spain.

Henriksson, D., A. Cervin, and K.-E. Årzén (2003): “TrueTime: Real-time control
system simulation with MATLAB/Simulink.” In Proceedings of the Nordic
MATLAB Conference. Copenhagen, Denmark.

52



Hylands, C., E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao,
and H. Zheng (2003): “Overview of the Ptolemy project.” Technical Report
UCB/ERL M03/25. Department of Electrical Engineering and Computer
Science, University of California Berkeley, CA.

Jeutter, R. and B. Heppner (2004): “Model-based system development–is it
the solution to control the expanding system complexity in the vehicle?” In
Proceedings of the SAE World Congress. Detroit, USA.

Lauwereins, R., M. Engels, M. Adé, and J. a. Peperstraete (1995): “Grape-II: A
system-level prototyping environment for dsp applications.” IEEE Computer,
28, pp. 35–43.

Lavarenne, C., O. Seghrouchni, Y. Sorel, and M. Sorine (1991): “The Syndex
software environment for real-time distributed systems design and imple-
mentation.” In Proceedings of the European Control Conference. Grenoble,
France.

Lincoln, B. and A. Cervin (2002): “Jitterbug: A tool for analysis of real-time
control performance.” In Proceedings of the 41st IEEE Conference on Decision
and Control. Las Vegas, NV.

Lipari, G. (2003a): “MetaSim.” Home page, http://metasim.sssup.it/.
Lipari, G. (2003b): “RTSIM.” Home page, http://rtsim.sssup.it/.
Liu, J., J. Eker, J. W. Janneck, and E. A. Lee (2002): “Realistic simulation of

embedded control systems.” In Proceedings of the 15th IFAC World Congress
on Automatic Control. Barcelona, Spain.

Liu, J. and E. Lee (2003): “Timed multitasking for real-time embedded software.”
IEEE Control Systems Magazine, 23:1, pp. 65–75.

Lygner, M. (2002): “Model-based development chain at Volvo Cars.” dSPACE
News, 1/2002, http://www.dspace.de.

Metropolis (2004): “Design environment for heterogeneous systems.” Home page,
http://www.gigascale.org/metropolis/.

National Instruments (2004): “Test and measurement.” Home page,
http://www.ni.com.

Norberg, J. and M. Törngren (2003): “Fault injection into control algo-
rithms.” Technical Report TRITA–MMK 2003:37, ISSN 1400–1179, ISRN
KTH/MMK/R-03/11-SE. Department of Machine Design, KTH, Sweden.

Palopoli, L., G. Lipari, G. Lamastra, and L. Abeni (2002): “An object-oriented tool
for simulating distributed real-time control systems.” Software – Practice and
Experience, 32, pp. 907–932.

Pernet, N. and Y. Sorel (2003): “Optimized implementation of distributed real-
time embedded systems mixing control and data processing.” In Proceedings
of the ISCA 16th International Conference: Computer Applications in Indus-
try and Engineering (CAINE-2003). Las Vegas, USA.

Ptolemy Project (2004): “Ptolemy II.” Home page, http://ptolemy.eecs.berkeley.edu/.
Redell, O. (1998): “Modelling of distributed real-time control systems, an ap-

proach for design and early analysis.” Licentiate thesis TRITA-MMK 1998:9,
ISSN 1400–1179, ISRN KTH/MMK–98/9–SE. Department of Machine De-
sign, KTH, Stockholm, Sweden.

53



Redell, O., J. El-Khoury, and M. Törngren (2004): “The AIDA tool-set for
design and implementation analysis of distributed real-time control systems.”
Journal of Microprocessors and Microsystems, 28:4, pp. 163–182.

Redell, O. and M. Törngren (1998): “A modelling framework for design and
analysis of distributed real-time control implementations.” In Proceedings
of the 6th UK Mechatronics Forum. Skövde, Sweden.

Sildex (2004): “An integrated toolset for systems engineering, from specification
to tested code.” Home page, http://www.tni-world.com/sildex.asp.

Simon, D., B. Espiau, E. Castillo, and K. Kapellos (1993): “Computer-aided
design of a generic robot controller handling reactivity and real-time control
issues.” IEEE Transactions on Control Systems Technology, 1:4.

Simon, D., B. Espiau, K. Kapellos, and R. Pissard-Gibollet (1997): “Orccad:
Software engineering for real-time robotics.” A Technical Insight, Robotica,
Special Issues on Languages and Software in Robotics, 15:1, pp. 111–116.

Simon, D. and A. Girault (2001): “Synchronous programming of automatic
control applications using Orccad and Esterel.” In Proceedings of the 40th
IEEE Conference on Decision and Control, CDC’01. Orlando, USA.

Simon, D., R. Pissard-Gibollet, K. Kapellos, and B. Espiau (1999): “Synchronous
composition of discretized control actions: Design, verification, and implemen-
tation with Orccad.” In Proceedings of the 6th International Conference on
Real-Time Control Systems and Applications.

Storch, M. F. and J. W.-S. Liu (1996): “DRTSS: A simulation framework for
complex real-time systems.” In Proceedings of the 2nd IEEE Real-Time
Technology and Applications Symposium, pp. 160–169.

The Mathworks (2005): “MATLAB and Simulink for technical computing.” Home
page, http://www.mathworks.com.

TNI (2004): “Object oriented design & analysis tools.” Home page,
http://www.tni-world.com.

TTTech (2004): “Time-triggered technology.” Home page, http://www.tttech.com.
Törngren, M., J. El-Khoury, M. Sanfridsson, and O. Redell (2001): “Mod-

elling and simulation of embedded computer control systems: Problem for-
mulation.” Technical Report TRITA-MMK 2001:3, ISSN 1400–1179, ISRN
KTH/MMK/R–01/3–SE. Department of Machine Design, KTH, Stockholm,
Sweden.

Törngren, M. and O. Larses (2004): “Characterization of model-based develop-
ment of embedded control systems from a mechatronic perspective – drivers,
processes, technology, and their maturity.” Technical Report TRITA-MMK
2004:23, ISSN 1400–1179, ISRN KTH/MMK/R–04/23–SE. Department of
Machine Design, KTH, Stockholm, Sweden.

Törngren, M. and J. Wikander (1996): “A decentralization methodology for real-
time control applications.” Journal of Control Engineering Practice, Special
section on the Engineering of Complex Computer Control Systems, February.

Vestal, S. (1994): “Integrating control and software views in a cace/case toolset.”
In Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided
Control System Design, pp. 353–358. Tucson, Arizona.

54


