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1. Introduction and Status

This is a status report for the project Modeling of electricity distribution nei-
works and components, which is financed by Elforsk AB as project 3153. The
aim of the project is to develop new methods to analyze and simulate elec-
trical distribution networks. Characteristic for these systems is that they are
very complex and widespread, and contain numerous nonlinear and switching
devices.

We have developed a new method to model nonlinear distribution net-
works. The model structure implies that solving networks is a non-iterative
and fast procedure without any convergence problems. The method supporis
aggregation and reuse of results, and the parameters of the models can be ob-
tained through simulation, real measurements, or analytical calculations. The
method is outlined in Section 2. A more detailed describtion is to be found in
the previous status report, [Mdllerstedt et al., 1997b].

The more recent results include a procedure for obtaining models from real
measurements. Section 3 describes the procedure and Section 4 demonstrates
how it can be used to deduce a model for a light dimmer. The plots show that
the method gives good results.

Results have been presented at the IMACS 1997 World Congress for Math-
ematical modeling and simulation, in Berlin, [Moéllerstedt et al., 1997¢|, and
a paper is accepted for presentation at the IEEE Conference on Decision and
Control in San Diego, 1997, [Mollerstedt et al., 1997a).

The method will constitute the basis of a licentiate thesis by FErik Moller-
stedt and the thesis will be finished early 1998.




2. Description of the Method

Distribution systems for electric power are very complex. They consist of very
many components, many of which are nonlinear or switching. This means
that analysis and simulation of such systems are very complicated. Typical
configurations, like an office building or a shopping mall, consist of hundreds
of computers, fluorescent lamps, air conditioners, etc. It is impossible to model
such networks in detail. There is a need for methods to aggregate nonlinear
loads.

In distribution networks, the loads are connected in parallel, see Figure 1.
The networks are said to be radial. This means that the voltage is the same for
all loads, except for the small voltage drops caused by line losses. Furthermore,
there are norms and standards, [Friman, 1994, that limit the allowed voltage
distortion. Consequently, two observations can be made

1. The nominal voltage, v, is known (e.g., 230 V, 50 Hz),
2. The voltage distortion is limited.

The method we have developed is a variant of harmonic balance [Gilmore
and Steer, 1991; Kundert and Sangiovanni-Vincentelli, 1986}, and uses these
observations. In harmonic balance, current and voltage are described by trum-
cated Fourier series

N
i(t) = ) Ag cos kwt + By sin kwt
k=1
I=[4; ... Ay By ... By|F

¥ (1)
v(t) = Z ay, cos kwt + by, sin kwt
k=1
V=[ag ... ay b ... by]F.
As we only allow small deviation from the nominal voltage, it is reasonable

to assume a linear relationship between the Fourier coefficient vectors of the
current and the voltage

I=IL+Y(V-Y), (2)

Figure 1 In radial networks, the loads are connected in parallel.
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Figure 2 The model can be interpreted as a Norton equivalent, with an admit-
tance matrix, ¥, and a current source.

where Iy, the nominal current spectrum, contains the Fourier coeflicients of
the current when the voltage is nominal, The admittance matrix Y is a matrix
that describes how the current spectrum is affected by changes in the voltage
spectrum. FEach column in Y describes the change in the current spectrum
when a small cosine or a sine component of a certain harmonic frequency is
added to the nominal voltage. In Figure 2, it is shown how the model can be
interpreted as a Norton equivalent,

The dimensions of ¥ and I depend on how many terms that are considered
in the truncated Fourier series, that is, the integer N in equation (1). The size
can be reduced if it is known that certain frequencies are not present in a
network. In many applications it is reasonable to assume that the loads are
symmetric, thus only odd harmonics are present.

The linearization implies that aggregating loads and solving networks is a
noniterative procedure that is done with linear algebra. Long computational
times, and convergence problems are avoided. Subresults can be stored in
model libraries, and reused in other applications. The models can be obtained
through simulations, analytical calculations or through real measurements.

3. Obtaining Models from Measurements

This section describes an experimental procedure for estimating the two pa-
rameters /o and Y in the model (2). The procedure is straightforward, but
there are some problems that must be considered when treating data from
non-linear systems.

3.1 The Estimation Procedure

Assume, for simplicity, that all harmonic frequencies up to order N are consid-
ered in the model. The model parameters can be estimated with some kind of
least squares fitting of measurement data. However, as mentioned in Section 2,
the columns of Y describe how the nominal current is affected when a cosine
or sine voltage of a certain frequency is added to the nominal voltage. This
leads to a very straightforward way to estimate the model.

Let I; be a column vector that contains the Fourier coefficients of the
current when a voltage, @; cosiwt is added to the nominal voltage. Similarly,
‘TE’ is the current vector when the added voltage is b; sin iwt.




v(t) = ag cos wet - @; cos iwt
= i(t) = [coslwt cos2wt ... sinlwt sin2wt .. .][;
v(t) = ag coswyl + Ei sin wt
= i(t) = {coslwi cos2wt ... sinlwt sin2wt ...]L .

The Y-matrix is then obtained in the following way

[ dar 4 dr ]
dai das e db; dby :
— [ Ial *IO IEI —I ]

= - s T I I

The method requires that the voltage contain only the fundamental fre-
quency and one harmonic frequency:

v(t) = ag coswyt + G; cos twt.

This can be hard to achieve, especially if the loads to.be modeled are nonlinear.
If the voltage source is not stiff, and there is distortion in the current, the
voltage will become distorted too. However, if the deviations from the nominal
voltage and current spectra. Vp, and Ip, are columns in matrices, f}, and T, ;
the following relation holds

V=Vi-Vo V2a—Vo ... Van-—Vo]
T:{II'—'IU Ig-“ID IZH*IO]
T=vV

This shows that if the column vectors of V are linearly independent, then
¥ is invertible and Y can be obtained, even if the voltage cannot be shaped
according to Equation {3.1). One probiem is that the amplitudes of the voltage
deviations must be chosen large enough to get ¥ well conditioned and to
overcome measurement noise. As the element in ¥ are derivatives of the current
coefficients, and describe the local behavior in the neighborhood of the nominal
voltage, increased voltage deviations imply poorer estitnate of these derivatives
and, thus, the elements in Y. Another problem with a non-stiff voltage source
is that all frequencies that are apparent in the voltage must be considered
in the estimation experiment. This means that even though the configuration
of the network implies that, for instance, there cannot be a fifth harmonic
component in the signals, this frequency has to be considered in the model
during estimation. The model can be reduced afterwards, to exclude the fifth
harmonic, by means of model reduction techniques. However, when estimating
parameters it is necessary to have a model that includes all frequencies that
appear in the measurements. Unfortunately, more measurements are needed
since there are more parameters to estimate.

3.2 Spectral Analysis

The Fourier coeflicients of the voltages and currents are calculated from the
sampled time domain signals using the discrete Fourier transform, see Ap-
pendix A.




The choice of window for the Fourier transform depends on several factors,
for instance noise and disturbances, and also the how close to perfect period-
icity the signals are. The importance of windows to avoid spectral leakage is
obvious, as the fundamental frequency is very dominant. The amplitudes of
the harmonic frequencies are normally just a few percents of the fundamental
frequency amplitude, Thus, the spectral leakage between harmonic frequen-
cies must be much less than one percent. As multiplication of a window in the
time domain is equivalent {o a convolution with the Fourier transform of the
window in the frequency domain, this means thai the amplitude of the Fourier
transform of the window for frequencies +mfy, where n is an integer, must
be very small,

3.3 Comparison with Estimation of Linear Loads

TFrequency response analysis is often a convenient way to obtain models of lin-
ear systems, A sinusoidal signal is applied to the system, and amplitude and
phase shift is measured as a function of frequency. For nonlinear systems, a
single frequency input does not result in a single frequency output, An applied
sinusoidal signal will at steady state affect all harmonic frequencies. When lin-
earizing the system around the nominal 50 Hz component, we measure how
much a small voltage superposed to the nominal voltage affects the nominal
current spectrum. This means that we have to consider all harmonic frequen-
cies for each frequency of the added voltage. The current variation depends
on both frequency and phase of the superposed voltage.

When sampling a continuous time signal, an anti-aliasing filter must be
used to avoid aliasing problems. A filter always affects the amplitude and
the phase of the signals, When estimating linear systems, this does not cause
any problems, because both inputs and outputs are affected in the same way.
With nonlinear loads, however, the signals contain many frequencies at the
same time. As the filter effects are different for frequencies, the dynamics of
the filter must be known and compensated for.

4. An Example: A Light Dimmer

In this section, the method described in Section 3 is used to estimate the
model parameters for a light dimmer. The model is validated by applying a
perturbed voltage to the dimmer, and comparing the current predicted by the
model with the measured current. The results show that the method has great
potential. There are, however, several sources of error in the process, that have
to be dealt with for better performance.

4.1 The Process

A light dimmer is a highly non-linear component and serves as a good test
component to validate our method. Ideally, a dimmer works as an open circuit
the first part of every half period, and as a short circuit the rest of the half
period. This means that the harmonic content of the current is very high.

4.2 Shaping the voltage

A switched voltage converter was used to shape a DC voltage according to a
reference signal, which was calculated and output from a PC. The converter
switching was at 4kHz. To get rid of the high frequencies generated by the
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Figure 3 Measured current and voltage from a light dimmer.

switching, a low pass LCL-filter with a bandwidth of 3kHz was used to smooth
the volfage.

The use of a DC generator and the low pass filter resulted in a weak voltage
source. The current and the voltage, when the reference voltage is a clean 50 Hz
sinusoid, is shown in Figure 3. The plots show that there is a considerable
amount of distortion also in the voltage. However, the measurement data show
a very good periodicity, and a very low noise level. According to the discussion
in Section 3, this means that the voltage source is still suitable.

4.3 Measurement Equipment

The Dagbook Data Acquisition System from I0-tech, [IOt, 1995], was used to
measure voltage and current.

The current was measured with a current probe (LEM HEME PR 30). It
was filtered through an analog anti-aliasing filter (DBK 18 Filter Module from
I0tech, with a bandwidth of 1 kHz). The voltage was connected to a high volt-
age insulation unit in the Dagbook, to avoid damage of the equipment. The
voltage insulation unit low pass filtered the voltage, with approximately the
same bandwidth as the current. The frequency response of the two filters were
obtained using a Solatron frequency analyzer, see the Bode plots in Figure 4,
and the results were used to compensate for the filters in the estimation ex-
periments for the dimmer model.

The Dagbock samples at a maximum frequency of 100kHz and measures
up to 256 analog signals. For the experiments, a sampling rate of 23.810kHz
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Figure 4 The Bode plots from the anti-aliasing filter (left) and the insulation unit
(right}. Both are low pass filtering with a bandwidth around 1 kHz.




Figure 5 The Bode plot for the current probe.

was used, and the measurement time was 1s. The reason for the fast sampling
rate was to avoid aliasing of the voltage, which according to the documentation
of the Dagbook was not low pass filtered. By choosing a sampling frequency
that was not a multiple of the fundamental frequency of the voltage, low
frequency harmonics were not affected by frequency folding of higher frequency
harmonics. Furthermore, only certain fixed frequencies can be selected in the
Dagbook. The frequency 23.810kHz is one possible choice. As the voltage was
indeed filtered, the sampling rate was unnecessarily fast.

The Bode plot for the current probe was also obtained using the Solatron
frequency analyzer, see Figure 5. The plot shows that the bandwidth is much
higher than the frequencies we are considering, and the dynamics of the probe
is therefore neglected in our experiments. The phase is not really constant,
probably due to resonances. However, the maximum phase shift is less that 10
degrees.

4.4 Speciral Analysis

Matlab’s Signal Processing Toolbox [Krauss et al., 1993] was used to analyze
the sampled signals. The signals showed a very low noise level, and a good
periodicity. The only criterion for the choice of window, is that the spectral
leakage between harmonic frequencies shall be minimized, and the peaks de-
tected accurately. In the analysis below, two suitable windows are compared,

e o Eok -
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Figure 6 Fourier transforms of two time domain windows, The window to the left
is a Kaiser window with L == 1263 and 8 = 5.48. The right window is a Bartlett
window with L = 1900. The windows have been chosen to have minimal spectral
leakage for periodic signals.




see Figure 6. Both windows show a good performance,

The window to the left is a Kaiser window with L = 1263, and 8 = 5.48,
see Appendix A. It has been chosen so that it has dips for f = +50 Hz, and
f = £100 Hz, to avoid spectral leakage.

The window to the right is a Bartlett window with length I = 1900, It has
dips for all harmonic frequencies, f = +mf;. However, the amplitudes of the
side lobes are also much higher than for the Kaiser window, which makes it
less suitable in a noisy environment,

4.5 Estimation

As we are only investigating the steady state performance, and assume that
the solution is periodic, we only consider harmonic frequencies. If we know
that a frequency component is diminishingly small, this frequency does not
have to be considered in the estimation experiment. A typical example is that
most networks are approximately symmetric, thus only odd harmonics are of
importance.

Tigure 7 shows that the voltage contains a fair amount of odd harmonics up
to order 13. Therefore we chose to work with a model with these frequencies.

To get the V-matrix well conditioned, we chose the amplitude of the added
harmonic voltage amplitude to be 5% of the nominal voltage. The condition
number of the matrix was 6.8, which must be considered acceptable.

Two different models were estimated, one for each of the two windows.
In the validation section, the Kaiser window maodel is referred to as Model 1,
whereas Model 2 is the Bartlett window model.

4.6 Validation

To validate the models, current spectra from measurements not used in the
estimation process were compared with the current spectra, that our models
predicted. Three different measurements for the validation.

1. Measurements from the same time as the estimation experiment.
2. Measurements on the same test rig, but at another time,

3. Using the line voltage from a wall socket as the voltage source,

In the first two measurements, most of the voltage distortion is in the 7th
harmonic, but similar results are obtained from distortions of other harmonies.
For the third measurement, the stiff line voltage is used. This has a very
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Figure 7 The current and voltage spectra from measurements on the dimmer.
The spectra are obtained using a Kaiser window.




low distortion level. The deviation from the “nominal” voltage used in the
estimation process is still large, as the “nominal” voltage was very distorted.

The results from the validation of the two models are shown in a number
of figures below. In all figures there are three plots. The upper plot shows a
reconstruction of the current using the Fourier components of the odd har-
monics up to order 13. The lower left plot shows the amplitude of the Fourier
coefficients of the deviation from the nominal current. The lower right plot
shows the phase of the Fourier coefficients. The values estimated with the
models are marked with a ring, (o), and the measured values are marked with
a plus, (+).

Figures 8-10 show the validation of the model obtained with the Kaiser
window. Figure 8 shows an almost perfect match between the estimated and
measured current. The small errors in amplitude were expected, because of the
linearization of the model. The distortion in the 7th harmonic of the voltage is
about 7% of the nominal amplitude. Figure 9 shows a little larger deviations,
but still the result is very good. The difference probably comes from the power
electronics used to shape the voltage. It is thus an experimental error and not
a method error. The plots in Figure 10 show a good result from measurements
using another voliage source. The phase is perfect, and the error in amplitude
can he explained by the large voltage distortion of 8% in the fundamental
frequency.

0.0l current [A]
0.15¢
0.1t
0.05}¢
of ,_ _
0.015 0.02 0.025 8
12, amplitude [%] . phase [rad]
. 3 N ]
10} o . \
8 1
8 . of -
4 : ‘ : i
P 2 )
4 _3 "
% 200 400 sooHz o 200 400 600 Hz

Figure 8 Validation of Kalser window model using measurement 1. The upper
plot shows a reproduction of the current using Fourier coeflicients of odd harmonics
up to order 13. The estimated current is solid, the measured current is dashed,
and the nominal current is dotted. The lower plots show amplitude and phase of
the Fourier coefficients of the current. Estimated values are marked with rings, (o),
and measured values with a plus, {+). There is an almost perfect match between
estimated and measured current.
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Figure 9 Validation of Kaiser window model using measurement 2.
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Figure 10 Validation of Kaiser window model using measurement 3, There is a
voltage distortion of 8% in the amplitude of the fundamental frequency. Such a large
deviation results in a small error when using linearized models.
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The Bartlett window model is validated in Figures 11-13. The Bartlett
window has a lower spectral leakage for periodic frequencies. Thus it ought to
give a better result. In Figure 11, it is shown that this window performs better
that the Kaiser window. Figures 12, and 13 show a worse results, however. This
is probably because the signals are not completely periodic. It is then desired
to split the measurement data in many segments, to get down the variance of
the estimated parameters. The window should thus be short. For non-periodic
signals, it is also important that the window has low spectral leakage not only
for periodic frequencies. The Kaiser window would be the better choice in this
situation. In Figure 13 there seems to be a systematic error in the amplitude.
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Figure 11 Validation of Bartlett window model using measurement 1. The result
is even better than for the Kaiser window model.
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Figure 12 Validation of Bartlett window model using measurement 2. This shows
a worse behavior, Probably due to non-periodicity in the signals.
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Figure 13 Validation of Bartlett window model using measurement 3. There scem
to be a systematic error in the amplitude.
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4,7 Discussion

The experiments were made in a lab environment, with little noise and almost
periodic signals. In real applications, the results are probably dependent on
proper signals processing. To decrease the variance, the sampled signals are
split into smaller segments. The length of each segment is equal to the length
of the window. Each segment is Fourier transformed, and the mean value is
taken as the final result. The more segments there are, the smaller is the
variation. This means that it is desired to have as short windows as possible.
Short windows, however result in wide main lobes. The final choice of window
must be a compromise.

The worst source of error is probably the voltage source used in the esti-
mation process. The power electronic devices used to convert direct voltage
to the desired shape is very temperature dependent. The voltage is also weak,
which results in a considerable degree of distortion even for high harmonics.

A better way to shape the voltage in the estimation process would prob-
ably be to use the stiff line voltage, and modulate it with, for instance, a
power amplifier. This way, the voltage would be more clean, and the ¥-matrix
better conditioned, with smaller amplitudes for the harmonics that are not
considered, and thus increased accuracy.

A close look at the current plot in Figure 3 shows that the current is not
symmetric. When the dimmer is turned off, and the current is approximately
zero, the shape of the curve is not exactly the same for positive and nega-
tive voltage. This results in harmonics of even order, which have not been
considered in the model. There are also harmonics of order higher than 13.

The characteristics of a dimmer can be temperature dependent. In the
experiment, the voltage had to be turned off between the different measure-
ments. This means that the temperature, and thus the behavior of the dimmer
might have been different for different measurements. It would be preferable
to have the voltage on all the time, and just alter the distortion between
measurements.

5. Conclusions and Future Work

We have presented a new method to model nonlinear loads for steady state
analysis of distribution networks. In this report, we have shown that the pa-
rameters of the models can be obtained through real measurements, with good
accuracy.

The next step is to find applications for the model. It would be interesting
to see how the method can be of help in designing harmonic filters, that
possibly can be adaptive. It would also be interesting to use the method to
analyze large system. This could be combined with methods that guarantee
stability and periodicity.

The method will constitute the basis of a licentiate thesis by Erik Méller-
stedt. The thesis will be available early 1998.
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A. Discrete Fourier Transformation

To work with signals in the frequency domain, it is necessary to transform
sampled time domain signals to the frequency domain. This is often done by
discrete Fourier transformation, (DFT). The discrete Fourier transform, X (k),
of a sampled signal, #(n), is defined as

N-1
X(k+1)=Y s(nt 1) F"
n=0

2nkn
N,

1 N-1 .
z{n+41) = v ZX(n-l—l)ef
k=0

This appendix describes how the DFT is used for Fourier analysis of time
domain signals.

A.1 Sampling of signals

When analyzing a continuous time signal using the DFT, we first have to sam-
ple the signal. To avoid aliasing problems, the continuous time signal must be
filtered through an anti-alias filter before sampling to make sure that all fre-
quencies above the Nyquist frequency are attenuated. The Nyquist frequency
is half the sampling frequency. The filters affect the phase and amplitude of
the Fourier coefficients. This has to be compensated for, as we are considering
nonlinear loads.

A.2 The Effect of Windowing

The DFT requires a finite sampled data series, This means that we have to
pick out a small part of the often very long, or infinite signal. This is often
referred to as windowing. The effect of windowing is reduced resolution and
spectral leakage. The reduced resolution results in that peaks in the spectrum
are smeared out. It makes it hard to separate peaks that are close to each other.
With speciral leakage is meant the fact that a signal of a certain frequency
affects other frequencies in the Fourier spectrum. This is shown in Figure 14.
The frequency spectrum of constant signal has a discrete peak for zero fre-
quency. Since the signal is of finite length, the peak is no longer discrete, but
smeared out. There are also side lobes, which means that the constant signal
affect the spectrum for frequencies far from zero. The resolution is determined
by the width of the main lobe, whereas the spectral leakage is determined by
the relative amplitude of the main lobe and the side Iobes.

The window in Figure 14 is rectangular, that is all samples in the time
domain signal are weighted equally. A rectangular window results in consid-
erable side lobes, which gives severe spectral leakage. This is called Gibbs’
phenomenon. By choosing another shape of the window the amplitude of the
side lobes can be reduced. This reduces the problem with spectral leakage.

A popular window is the Kaiser window

a

L{B(1~((n—a)/a)*}'/%)
w[n]:{ (B} , Dsns M,
0, otherwise,

where o = M /2, and Iy is the zeroth-order modified Bessel function of the first
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Figure 14 A finite data series gives 1ise to reduced resolution and spectral leakage.
A rectangular time window gives very high side lobes. This is often referred to as
Gibbs’ phenomenon.
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Figure 15 A Kaiser window reduces the side lobes, and thus the spectral leakage
considerable.

kind. The window has two design parameters, the length, (M +1), and a shape
parameter J. With M you decide the width of the main lobe, and thus the
resolution. The amplitudes of the side lobes are determined by 3. Since these
two design criteria are, alimost, separated, it is very simple to design a Kaiser
window that suits your needs. In Figure 15 it is shown that the amplitude of
the side lobes can be reduced considerably, and thus the spectral leakage, by
choosing a Kaiser window.

Much been written about how to choose windows for frequency analysis.
Most of the time, the objective is to get the power spectrum for a signal.
The power spectrum is the squared amplitude of the Fourier spectrum. This
means that the phase of the spectrum is not investigated. As our method is
very phase sensitive, this is a subject that requires more consideration.

A.3 Frequency Analysis of Periodic Signals

For periodic signals, we know that we only have the nominal frequency and
harmonic overtones. This means that we do not need a high resolution, as
the frequencies of the peaks in the spectrum are separated by at least the
nominal frequency. It is, however, of major importance to correctly estimate
the maximum of the peaks.

As shown in the definition, the discrete Fourier transform results in a dis-
crete spectrum. The number of frequency samples equals the number of point
in the sampled signal, 2. The frequency samples are equally spaced up to the
Nyquist frequency. The more samples there is in the sampled signal, the denser
the spectrum is.

A problem with a large frequency interval between the samples in the spec-
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Figure 16 Zero padding the data file results in a denser spectrum, which makes
the peaks easier to estimate. The resolution is, however, unchanged.

trum is that it is hard to estimate the maximuwm of the peaks, see Figure 16.
To give the specirum a denser spacing, the data series can be zero padded.
This means that the size of the time domain series is increased by adding zeros
at the end. The effect of zero padding is shown in Figure 16. Notice that the
peaks are detected more accurately. The accuracy is, however, not increased.

An interesting aspect of the DFT is that the variance of the Fourier co-
efficients, X (&), does not decrease if the data file is longer. This only gives a
higher resolution. One way to decrease the variance is to split the data series
into smaller, non-overlapping parts and take the mean value of the Fourier
coefficients. This split reduces the resolution, as less data points are used for
each Fourier transform, but as mentioned previously, resolution is not of im-
portance for our application.
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