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1. Introduction

The forces generated in the contact between the tires and the road are of
major importance for the dynamic behavior of a road vehicle. Hence, ac-
curate tire models are necessary components of complete vehicle models
aimed at analyzing or simulating vehicle motion in real driving condi-
tions. This article describes an extension to the semi-empirical tire model
presented in [2], which combines empirical models for pure braking and
cornering to derive the tire forces for simultaneous braking and cornering.

The method is based on the theory from the brush model with assump-
tion on parabolic pressure distribution, which is a standard approach to
describe tire behavior [1, 5, 9]. The brush model describes the generation
of tire forces by dividing the contact patch into regions of adhesion and
sliding. The rubber volume between the tire and the road surface is par-
titioned into infinitesimal elements in the form of elastic bristles. Each
bristle is assumed to deform independently and linearly elastic in the lon-
gitudinal and lateral directions. In the adhesion region the bristles adhere
to the road surface. Thus, the deformation force is carried by static friction.
When a bristle comes in contact with the road it is undeformed. Due to the
velocity difference between the road and the carcass the bristle deforms
during its travel through the contact patch. At a certain point, called the
break-away point xs, the deformation force exceeds the friction force and
the bristle starts to slide and carries a kinetic friction force.

Analytical expressions can be established for the force contributions, in
each direction, from the adhesive and sliding regions, depending on the
tire slip defined as

σ x =
vx − ΩRe

ΩRe
; σ y =

vy

ΩRe
; σ̄ = (σ x,σ y) (1)

where vx is the longitudinal motion of the wheel rim and vy is the lateral
motion of the wheel rim. The dynamic radius of the tire is denoted by Re
and Ω is the rotation velocity of the rim. At very low slips the resulting
tire force is proportional to the slip. The coefficient of proportion is in
the longitudinal direction called braking stiffness, Cx, and in the lateral
direction, cornering stiffness, Cy. These depend on the contact patch length,
2a, and the tire tread stiffness, cpx and cpy, as

Cx = 2cpxa2; Cy = 2cpya2 (2)

2. The Effect of Cambering on the Brush-Model

Camber denotes tilting of the tire in the x-direction, see Figure 1. The
effects from cambering are particularly important when deriving models
for motorcycles that produces a large part of the cornering force by tilting.
For cars and, in particular, trucks the cambering angles are much smaller
and in many applications their effect can be neglected. However, some sus-
pension designs make the wheels to camber when the axle load varies.
Elasticity in beams, bolts and axles can also allow cambering during cor-
nering. Cambering of a tire creates a lateral force, even though there is no
lateral slip. The developed tire force due to tilting of the tire, can with some
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Figure 1 Cambered wheel. Left: Rear view; Right: Top view with contact patch
(dashed rectangle). Note that the contact patch is greatly exaggerated in size.
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Figure 2 Schematic illustration of the contact patch showing the bristle defor-
mation due to longitudinal and lateral slip and cambering.

approximations, be explained by the brush model. In Figure 1 a cambered
tire is shown together with the orbit, an ellipse, that describes the projec-
tion on the road surface of a point on the carcass during rolling motion.
The most common sign convention of γ is that positive angles are tilting
out from the vehicle. Here, clockwise rotation around the x-axis is positive.
The deviation from the straight contact patch from a non-cambered tire is

y = − sin(γ )
(√

R2 − x2 −
√

R2 − a2
)

(3)

where R is the average wheel radius and a is half the contact length.
Figure 2 also shows the deformation of bristle element due to cambering
and lateral slip according to the brush model. Relation (3) will result in
difficult expressions when the standard parabolic pressure distribution is
employed for the brush-model. In, for example, [1] and [6] the deviation
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due to cambering is approximated as a parabolic function similar to the
assumed pressure distribution as

δ y,cam(x) = −γ k
(
a2 − x2) (4)

where k is chosen such that the average camber deflection is correct in the
contact patch

∫ a

−a
δ y,camdx =

∫ a

−a
ydx ; k � 3

4
R −

√
R2 − a2

a2 (5)

The approximation simplifies the calculations considerably. The deforma-
tion of a bristle that adheres to the road in the contact patch is then −δ y,cam
and the total bristle deformation including the effects caused by slip can
be written as

δ x(x) = −σ x(a− x); δ y(x) = −σ y(a− x) + γ k(a2 − x2) (6)

2.1 Size of the adhesive region
A fundamental idea of the brush model is the partitioning of the contact
patch into one adhesive and one sliding region. The size of the adhesive
region is determined by the amount of available static friction. A bristle
will start to slide when the force required for the deformation is larger
than the available friction force. The following condition has to be fulfilled
for adhesion (

dFax(x)
dFz(x)µsx

)2

+
(

dFay(x)
dFz(x)µsy

)2

≤ 1 (7)

where the static friction coefficient in each direction is µ sx and µsy and
the normal force acting on a bristle is dFz. The adhesive bristle forces are
derived from the deflection as

dFax = cpxδ x(x)dx; dFay = cpyδ y(x)dx (8)

where cpx and cpy are the rubber stiffnesses in respective direction. Us-
ing (4), (7) and (8) an expression for computation of the break-away point
can be derived as

√(
cpxσ x

µsx

)2

+
(

cpy (σ y + γ k(a+ xs))
µsy

)2

(a− xs) ≤ qz(xs) (9)

Assume the parabolic pressure distribution

qz(x) =
3Fz

4a

(
1−

( x
a

)2
)

(10)

and define the normalized slip, ψ , as

ψ (σ x,σ y,γ ) *= γ ○2

γ ○2 − γ 2


 σ yγ

σ ○yγ ○
+
√(

σ x

σ ○x

)2

+
(

σ y

σ ○y

)2

−
(

σ xγ
σ ○xγ ○

)2

 (11)
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Figure 3 Force generation in the contact patch due to slip and camber. The
shaded area is the force generated in the sliding region. The lower area with diag-
onal lines denotes the adhesion force generated by slip and the upper the contri-
bution due to camber. The dashed straight line indicates the sliding region in case
of zero camber.

where the limit slips, σ ○x, σ ○x, and the camber limit angle γ ○ are defined as

σ ○x
*= 3Fzµsx

2a2cpx
; σ ○y

*= 3Fzµsy

2a2cpy
; γ ○ *= 3Fzµsy

2Cyka
(12)

Then the break-away point can be written as

xs(σ x,σ y,γ ) = (2ψ (σ x,σ y,γ ) − 1) a (13)

The partitioning of the contact patch and the significance of ψ and xs is
visualized in Figure 3. It is clear that values of ψ larger than unity lack
physical interpretation. Since the bristle deformation due to cambering has
the same shape as the pressure distribution along the contact patch, ψ will
be zero as long as σ x = σ y = 0. At the camber angle γ ○ the whole contact
patch starts to slide against the road and ψ can not be computed since
the denominator reaches zero. In this case the model is not valid and if
accurate results are to be obtained a different tire model should be used.
It is pointed out that such large camber angles are not relevant for studies
on trucks and cars.

2.2 Forces
The forces generated in the contact patch are derived separately for the
adhesive and sliding regions. For small slips the force is mainly generated
by deformation of the rubber threads and for higher slip the major part
is from sliding. When ψ ≥ 1 the entire surface is sliding and there is no
adhesive-force contribution.

Adhesion The forces generated in the adhesive region is the sum of the
force contribution from each bristle. The tire forces developed by the slip
are

Fax(σ x,σ y,γ ) = −Cxσ x (1−ψ (σ x,σ y,γ ))2 (14a)
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Fay,slip(σ x,σ y,γ ) = −Cyσ y (1−ψ (σ x,σ y,γ ))2 (14b)

where Cx = 2cpxa2 and Cy = 2cpya2 are the braking and cornering stiff-
nesses. The force generated by camber can be computed as

Fcam(σ x,σ y,γ ) =
∫ a

xs(σ x ,σ y,γ )
cpyγ k(a2 − x2)dx

= 2
3

γ kaCy
(
2ψ 3(σ x,σ y,γ ) − 3ψ 2(σ x,σ y,γ ) + 1

)
(15)

The camber stiffness, Cγ is defined as

Cγ =
VFy(0, 0,γ )

Vγ

∣∣∣∣
γ =0

= 2kaCy

3
= Fzµsy

γ ○
(16)

In case of pure cambering for γ < γ ○ the lateral force is

F0cam(γ ) = Cγ γ (17)

The total adhesive lateral force is

Fay(σ x,σ y,γ ) = Fay,slip(σ x,σ y,γ ) + Fcam(σ x,σ y,γ ) (18)

Sliding The normal force acting on the sliding region at partial sliding
may be computed from (10) and (13) as

Fsz(σ x,σ y,γ ) =
∫ xs(σ x ,σ y,γ )

−a
qz(x) dx = Fzψ 2(σ x,σ y,γ ) (3− 2ψ (σ x,σ y,γ ))

(19)
In the sliding region the forces are described by sliding friction character-
istics. In the general case of anisotropic sliding friction, different methods
can be applied to derive the angle and magnitude of the resulting force.
This is further explained in [2]. Here, a method that makes the sliding-
friction force collinear with the slip velocity is used. The forces generated
in the sliding region are given by

Fsx(σ x,σ y,γ ) = − cos (β ′)µkx Fsz(σ x,σ y,γ ) (20a)
Fsy(σ x,σ y,γ ) = − sin (β ′)µky Fsz(σ x,σ y,γ ) (20b)

where
tan(β ′) = µkxσ y

µkyσ x
(21)

During the travel of a bristle through the sliding area the deformation,
δ x, δ y, changes, since the vertical force on the bristle varies according to
the parabolic pressure distribution. The rate of change of the deformation
is small and the effect on the sliding velocity is neglected. The curvature of
the bristle path resulting from cambering is small for small camber angles
and the effect on the sliding friction forces is neglected. In other words, the
only effect cambering has on the sliding force is that it changes the size of
the sliding region.
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2.3 Self-aligning torque
The self-aligning torque is the torque developed by non-symmetric bristle
deformation in the contact patch. For pure slip the torque can be calculated
in one part from the adhesion area and one part from the sliding region as

Maz(σ x,σ y,γ ) = −cpya3σ y
2
3
(1−ψ (σ x,σ y,γ ))2 (4ψ (σ x,σ y,γ ) − 1) (22)

Msz(σ x,σ y,γ ) = −3µkx sin (β )aFzψ 2(σ x,σ y,γ ) (1−ψ (σ x,σ y,γ ))2 (23)

which is further explained in [2]. At combined slip a second order effect,
due to the tire-carcass deformation, affects the torque as

Mz,add(σ x,σ y,γ ) = Fx(σ x,σ y,γ )Fy(σ x,σ y,γ )
(

1
Ccx

− 1
Ccy

)
(24)

where Ccx and Ccy are the carcass stiffness coefficients. The effect is de-
scribed more detailed in [8].

According to the conditions assumed in this report pure cambering will
not give rise to any self-aligning torque. As long as there is no sliding region
in the contact patch the bristle deformation is symmetric. A simultaneous
slip causes a sliding region and the contribution to the torque due to camber
in the adhesive region can be written as

Mz,cam =
∫ a

xs(σ x ,σ y,γ )
cpyxδ y,camdx = 2γ ka2Cyψ 2(σ x,σ y,γ ) (1−ψ (σ x,σ y,γ ))2

(25)

3. The Combined-Slip Semi-Empirical Model

The general idea of the method to derive the forces at a combined slip
(σ x,σ y,γ ) is to scale the forces from the empirical pure-slip model at certain
pure slips σ 0x(σ x,σ y,γ ) and σ 0y(σ x,σ y,γ ). The pure slips can be chosen in
various ways, but their relation to σ x, σ y and γ has to be well motivated
and different proposals are discussed below. For convenience the arguments
(σ x,σ y,γ ) for σ 0x and σ 0y are left out in the following. The scale factors
depend on the combined longitudinal and lateral slip, the camber angle,
and the relation between the used pure slip and the cambered combined
slip, also for the scale factors the arguments (σ x,σ y,γ ) will be left out.
Since the generation of forces from the adhesive and the sliding regions
are built on different physical phenomena they are treated separately. The
following equation shows the form

F̂x(σ x,σ y,γ ) = Gax F̂0x(σ 0xa) + Gsx F̂0x(σ 0xs) (26)
F̂y(σ x,σ y,γ ) = Gay F̂0y(σ 0ya) + Gsy F̂0y(σ 0ys) + Gcamy F̂0cam(γ ) (27)

where F̂0 j are the empirical pure slip models and F̂0cam is the empirical
pure cambering model, which may be as simple as the cambering stiffness,
Ĉγ , in combination with (17). If no information about the camber prop-
erties is available, then Cγ can be calculated from the cornering stiffness
using (16). The half patch length a is either assumed or derived from (46)

12



using the aligning stiffness. The tire radius R and the contact patch length
2a is used to calculate k by Equation (5).

Analogously, the combined self-aligning torque can be derived as

Mz(σ x,σ y,γ ) = G f zF̂0y(σ 0z) + GmzM̂0z(σ 0z) + GcamzF̂0cam(γ ) (28)

The scale factors Gi j are derived from the analytical expressions of the
brush model. For example

Fax(σ x,σ y,γ ) = Fax(σ x,σ y,γ )
F0x(σ 0xa)

F0x(σ 0xa) = Gax F0x(σ 0xa) � Gax F̂0x(λ0a)
(29)

and

Fay(σ x,σ y,γ ) = Fay(σ x,σ y,γ )
F0y(σ 0ya)

F0y(σ 0ya) +
Fay,cam(σ x,σ y,γ )

F0cam(γ )
F0cam(γ )

= GayF0y(σ 0ya) + Gcamy F0cam(γ ) � Gay F̂0y(σ 0ya) + Gcamy F̂0cam(γ ) (30)

3.1 Scale factors

Adhesive region The bristle deformations are the source of the adhesion
forces. Therefore, for adhesion forces it makes sense to regard pure slips
that result in the same deformation as the combined slip. The deformation
state depends on the slip, σ̄ . The pure slip is therefore constructed to
maintain σ̄ constant. Hence

σ 0x = σ x; σ 0y = σ y (31)

The scale factors Gax and Gay can now be calculated as

Gax =
3 (1−ψ (σ x,σ y,γ ))2

ϒ(σ x, 0, 0) ; Gay =
3 (1−ψ (σ x,σ y,γ ))2

ϒ(0,σ y, 0) (32)

with
ϒ(x, y, z) *=ψ 2(x, y, z) − 3ψ (x, y, z) + 3 (33)

The scale factor of the camber force is

Gcamy = 2ψ 3(σ x,σ y,γ ) − 3ψ 2(σ x,σ y,γ ) + 1 (34)

when ψ < 1, otherwise Gcamy = 0. Refer to A for the details on the compu-
tations performed here and further on.

Sliding region In the literature, slip-velocity is mentioned as a signif-
icant factor that influences the friction coefficient for a specific tire on a
certain road foundation [9]. Therefore, it is reasonable to define the pure
slip used for the sliding forces so that the slip velocity is invariant. The
respective pure slips (σ vel

0x , 0, 0) and (0,σ vel
0y , 0) at the wheel-travel velocity

v0, with

σ vel
0x =

v
√

σ 2
x +σ 2

y sgn(σ x)

v0

√
(1+σ x)2 +σ 2

y − v
√

σ 2
x +σ 2

y sgn (σ x)
(35a)
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σ vel
0y =

v
√

σ 2
x +σ 2

y sgn(σ y)
√

v2
0
(
(1+σ x)2 +σ 2

y
)
− v2(σ 2

x +σ 2
y)

(35b)

result in the same slip velocity, vs, as the combined slip (σ x,σ y,γ ) at the
wheel-travel velocity v. Note that v is the actual wheel travel velocity and
v0 the velocity at which the pure slip model is valid. The scaling factors
Gsx and Gsy are

Gsx = hcos (β ′)h ⋅ Γx; Gsy = hsin (β ′)h ⋅ Γ y (36)

with

Γx
*=





(
v0

√
(1+σ x)2 +σ 2

y − v
√

σ 2
x +σ 2

y sgn (σ x)
)

Λσ ○x sgn(σ vel
0x )

⋅
ψ (σ x,σ y,γ )(3− 2ψ (σ x,σ y,γ ))

vϒ(σ vel
0x , 0, 0)

if ψ (σ vel
0x , 0, 0) < 1

ψ 2(σ x,σ y,γ )(3− 2ψ (σ x,σ y,γ )) if ψ (σ vel
0x , 0, 0) ≥ 1

(37a)

and

Γ y
*=





(
v2

0
(
(1+σ x)2 +σ 2

y
)
− v2(σ 2

x +σ 2
y)
) 1

2 Λσ ○y sgn(σ vel
0y )

⋅
ψ (σ x,σ y,γ )(3− 2ψ (σ x,σ y,γ ))

vϒ(0,σ vel
0y , 0)

if ψ (0,σ vel
0y , 0) < 1

ψ 2(σ x,σ y,γ )(3− 2ψ (σ x,σ y,γ )) if ψ (0,σ vel
0y , 0) ≥ 1

(37b)

and

Λ *= γ ○2

γ ○2 − γ 2


sin(β )σ ○y

γ
γ ○
+
√(

cos(β )
σ ○x

)2

+
(

sin(β )
σ ○y

)2

−
(

cos(β )γ
σ ○xγ ○

)2



(38)
if ψ (σ x,σ y,γ ) < 1, otherwise

Γx
*=
{

ψ −1(σ vel
0x , 0, 0)ϒ−1(σ vel

0x , 0, 0) if ψ (σ vel
0x , 0, 0) < 1

1 if ψ (σ vel
0x , 0, 0) ≥ 1

(39a)

and

Γ y
*=





ψ −1(0,σ vel
0y , 0)ϒ−1(0,σ vel

0y , 0) if ψ (0,σ vel
0y , 0) < 1

1 if ψ (0,σ vel
0y , 0) ≥ 1

(39b)

The friction-constraint angle β ′ can be derived from

tan(β ′) = σ yΓx F̂0x(σ vel
0x )

σ xΓ y F̂0y(σ vel
0y )

(40)
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Self-aligning torque For simplicity, another pure-slip definition is used
for the self-aligning torque. The pure slips (σ reg

0x , 0, 0) and (0,σ reg
0y , 0), with

σ reg
0x = σ ○xψ (σ x,σ y,γ ) sgn(σ x) ; σ reg

0y = σ ○yψ (σ x,σ y,γ ) sgn(σ y) (41)

result in adhesion and sliding regions of the same size as the combined
slip (σ x,σ y,γ ). The self-aligning torque is derived as

Mz(σ x,σ y,γ ) = G f zF0y(σ reg
y ) + GmzM0z(σ reg

y ) + GcamzF0cam(γ ) (42)

where
Gmz = sin(β ′) (43)

and

G f z =
a
3
(4ψ − 1)(1−ψ )2

ϒ

(
sin(β )
σ ○yΛ

− sin(β ′)
)

, (44)

Gcamz = 3aψ 2(σ x,σ y,γ ) (1−ψ (σ x,σ y,γ ))2 (45)
Note that the brush model states that the contact patch length can be
derived by the relation between the cornering stiffness and the self-aligning
stiffness as

Cz = −
VMz

Vσ y

∣∣∣∣∣
σ x ,σ y=0

= cpya3 2
3
= Cy

a
3

(46)

When using the region-invariant slips the friction angle is computed from

tan(β ′) = σ y

σ x

F̂0x(σ reg
x )

F̂0y(σ reg
y )

(47)

3.2 Parameters
Four parameters are needed in the model, which all have clear physical
interpretations. The parameters σ ○x and σ ○y, describe the pure slips where
transition from partial to full sliding occur. They are needed to compute
the normalized slip, ψ (σ x,σ y,γ ). A common assumption is that these tran-
sitions occur when the tire forces obtain their maxima. Some road founda-
tions, such as gravel and snow might not provide a clear maximum point.
In any case, the parameters may simply be set to the slip values corre-
sponding to the maxima of the tire forces, F∗

0x and F∗
0y. From the brush

model it can be shown that

σ ○x �
3F∗

0x
Cx

; σ ○y �
2F∗

0y

Cx
+

F∗
0y

Cy
(48)

where the first relation is a result of (12). The lateral limit has been cor-
rected for the carcass deflection, this is further discussed in [2]. The param-
eter v0 denotes the wheel-travel velocity at which the empirical pure-slip
model is valid. The actual wheel-travel velocity v is assumed to be a model
input. If v0 is not known then v/v0 = 1 may be used, which will neglect any
velocity dependence. This is the common assumption in most other models.

The camber parameter, γ ○, is outside the cambering range that is nor-
mally measured on truck and car tires. Therefore, it is not possible to read
it directly from measurement data. Instead it can be used that (16) is well
approximated by γ ○ � F∗

0y/Cγ . The camber stiffness can either be given
from the empirical camber model or be computed from tire parameters
according to (16) using (5) and (46).
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Figure 4 Available measurement data. Left: Longitudinal force for different
wheel rotational speeds; Right: Lateral force for sweeps of α .
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Figure 5 Available measurement data. Longitudinal and lateral force for com-
bined slip at Fz=5.3/5.5 kN.

4. Results and Discussion

Empirical data, provided by NHTSA, US, for P225/75R15 Goodyear Wran-
gler RT/S, OWL, all terrain steel belted radials [7], are used for valida-
tion. The reference speed used was 45 km/h and inflation pressure 2.4
bar. The data consist of pure-slip forces and aligning moments in the slip
ranges λ = [−50, 50]% and α = [−15, 15] deg. Forces at combined slip at
α = [±2,±4] deg for sweeps of λ and forces at some camber angles were
also included. The different vertical loads for the measurements of the
pure longitudinal behavior are 1.1, 2.2, 3.3, 4.4, 5.51 kN, for the pure lat-
eral and cambering behavior 2.4, 4.2, 6.0, 7.8, 9.6 kN. For the combined slip
behaviour data was only collected at 5.5 kN (see footnote). The available
measurement data are shown in Figures 4, 5 and 6.

1It is unclear from the data whether the highest load for sweeps of λ and also the
combined slips is 5.3 kN or 5.5 kN
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Figure 6 Lateral force as a function of the camber angle (γ ) for different vertical
loads.

4.1 Validation of the Semi-Empirical Model
The measurements of the pure lateral properties were performed at a dif-
ferent test bed than the longitudinal and combined properties. The vertical
loads do not correspond between the test stands. The longitudinal pure slip
model and the combined validation data are taken at highest available load
and the lateral pure slip model at 6.0 kN. A linear correction is applied to
adjust for the different loads. In Figure 7 the forces and torque from the
model are compared to the measured values for sweeps of λ . The pure slip
models are magic formula parameterizations of the raw data, but for the
torque model interpolation of the tabular data was used. In Figure 8 only
the pure slip measurement for sweep of α is showed together with the pure
slip Magic Formula parameterization and the computed characteristics for
combined slip. Figure 9 shows the force envelopes for sweeps of λ . The
overall behavior of the model is very similar to the real measurements.
Particularly good agreement is shown at small and large slips. The largest
deviations can be found at slips around the force peak value. Since the tire
behavior is sensitive to many factors it is very important that the pure slip
empirical models are generated at the same conditions as the combined slip
measurements. Change of measurement rigg and vertical load between the
collection of data sets affects the reliability of the data and the validation.

4.2 Results of Cambering
The information about the camber properties for the tire was restricted to
a few measurement points at different loads, see Figure 6. The parameters
of interest for cambering are Cy = 1.4 kN/deg, Cz = 54 Nm/deg, and
Cγ = 26 N/deg. It can be noticed that the influence of camber on the lateral
tire force is very low for the tire, i.e. Cγ is small, and can be neglected
for any practical case. Interestingly, the camber stiffness calculated from
the cornering stiffness, as described in Section 3, is significantly larger,
Cγ = 120 N/deg. To be able to visualize the effects of camber, the computed
larger stiffness was chosen. In Figure 10 the effect of camber is shown
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Figure 7 Combined measurement data compared to model for sweeps of λ at
different slip angles.
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Figure 8 Lateral behavior for combined slip of the model. The measured data at
pure slip is also showed.

for sweeps of λ and in Figure 11 for sweeps of α . It can be seen from
the result that camber hardly affects the longitudinal force. It affects the
partitioning between sliding and adhesion, but the lower adhesions force
is compensated by a higher sliding force. In other tire models, for example
presented in [3] the camber effect is included as a shift on the lateral slip,
i.e. the lateral slip gets an additional term of Cγ γ /Cy. This much simpler
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Figure 9 The longitudinal and lateral force at combined slip for sweeps of λ .
Comparison of measured data and the proposed model (solid lines).
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Figure 10 The effect of camber on the tire forces. The dashed dotted lines are
the adhesion force and the dashed line the sliding forces. The camber effect when
included as a shift on the lateral slip is shown by the dotted line for γ = 0,−5,−10,
and −15 deg.

approach to handle the camber is plotted in the figures and the results for
pure slip cases are similar. For the combined-slip cases the results differ
significantly because the offset has an undesired influence on the sliding
velocity and hence on the sliding-force component. The self-aligning torque
does also differ between the two methods. Figure 12 shows the camber
effect on the lateral force as a function of the longitudinal tire force at
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Figure 11 Illustration of the effects of camber on the tire forces. Solid lines
are the total force and aligning torque. The dashed dotted lines are the camber
forces. For the torque the dashed dotted lines denote the additional torque from
the cambering forces. The camber effect when included as a shift on the lateral
slip is shown by the dotted lines for γ = 0,−5, and −10 deg.
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Figure 12 Illustration of the effects of camber on the lateral force as a function
of the longitudinal tire force at combined slip. The solid lines shows zero camber,
dashed lines γ = −5 deg and dashed-dotted lines γ = −10 deg. The transitions to
full sliding are marked with asterisks.

combined slip. Note that camber has a strong influence on the point of
transition to full sliding at larger lateral slip.

4.3 Discussion
The difference between the theoretical camber stiffness, Ĉ′γ calculated from
2kĈz where k is given by (5) using a = 3Ĉy/Ĉz and the measured camber
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Table 1 Comparison between measured and computed camber stiffness for differ-
ent tires and loads. Note that â is calculated as 3Ĉy/Ĉz for all tires except 185/60
R14, where it is measured. The calculation is an approximation which gives unre-
alistic values at higher vertical loads.

P225/75R15 7.60-15 [5]
Fz [kN] 2.4 4.2 6.0 7.8 9.6 2.5 4.5 6.3 8.1
R [m] 0.35 0.317
Ĉy [kN/deg] 0.75 1.2 1.4 1.4 1.4 0.7 0.8 0.9 1
Ĉz [Nm/deg] 16 33 54 75 94 20 30 50 70
â [mm] 64 83 116 161 201 86 112 167 210
Ĉγ [N/deg] 9.2 17 26 40 61 100 125 133 145
Ĉ′γ [N/deg] 40 82 135 187 235 50 75 125 175

195/65 R15 [6] 185/60 R14 [4] 315/80 R22.5 [6] 160/70ZR17 [6]
Fz 7 1.9 2.5 2.9 41 3
R 0.317 0.289 0.54 0.33
Ĉy 1 1 1.2 1.4 4 0.5
Ĉz 60 x x x 125 15
â 180 75 87 96 94 90
Ĉγ 100 30 45 50 <100 50
Ĉ′γ 150 62 87 112 312 37

stiffness, Ĉγ for six different tires is shown in Table 1. It is noticed that
the deviation between the calculated and the measured camber stiffness
is smaller for tires for personal cars and motorcycles than for tires for
heavier vehicles as trucks or the Jeep, used in the example above. A theory
that is discussed in [6] is that the assumed bristle deformation due to the
camber is most accurate for tires with a rounded shoulder. For wider and
flatter tires the camber effect might be better explained by deformation in
the tire walls and changes in the contact pressure distribution instead of
bristle deflections and carcass deformations. Such effects are, for example,
discussed in [4] and are difficult to express using the brush model.

5. Conclusions

The generation of the camber force has been described in a simple manner,
together with its influence on the partitioning of the sliding and adhesive
regions in the tire contact patch. It has been shown that camber effects can
be added to the previously published semi-empirical tire model by same au-
thors, in a physically motivated way. For pure slips it is common to intro-
duce camber by an offset on the lateral slip. However, for the self-aligning
torque and the combined slip forces the proposed model gives significantly
different result. It has also been discussed that the camber effects, with
varying accuracy, can be approximated from the lateral properties of the
tire.
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A. Appendix

The derivation of the scale factors is only performed in the lateral direction, but
the procedure for the longitudinal scale factors is similar.

A.1 Adhesive slip scale factors

Gay(σ x,σ y,γ ) = Fay,slip(σ x,σ y,γ )
F0y(σ 0ya)

= −Cyσ y(1−ψ (σ x,σ y,γ ))2
−Cyσ y(1−ψ (0,σ y, 0))2 − Fzµ y sin(β )ψ 2(0,σ y, 0) (3− 2ψ (0,σ y, 0))
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= −Cyσ y(1−ψ (σ x,σ y,γ ))2
−Cyσ y(1−ψ (0,σ y, 0))2 − Fzµ yσ ○

y
σ y
σ ○

y
ψ (0,σ y, 0) (3− 2ψ (0,σ y, 0))

=
3 (1−ψ (σ x,σ y,γ ))2

ϒ(0,σ y, 0) (49)

when ψ < 1, otherwise Gay(σ x,σ y,γ ) = 0.

ϒ(x, y, z) *=ψ 2(x, y, z) − 3ψ (x, y, z) + 3 (50)

A.2 Camber scale factor

Gcam y(σ x,σ y,γ )) = Fcam y(σ x,σ y,γ )
F0cam(γ )

= 2ψ 3(σ x,σ y,γ ) − 3ψ 2(σ x,σ y,γ ) + 1 (51)

A.3 Sliding scale factors

Gsy(σ x,σ y,γ ) = Fsy(σ x,σ y,γ )
F0y(σ 0ys)

= −Fzµ y sin(β ′)ψ 2(σ x,σ y,γ ) (3− 2ψ (σ x,σ y,γ ))
−Cyσ vel

0y (1−ψ (0,σ vel
0y , 0))2 − Fzµ yψ 2(0,σ vel

0y , 0)
(

3− 2ψ (0,σ vel
0y , 0)

)

= sin(β ′)
σ ○

y√
σ 2

x +σ 2
y sgn(σ vel

0y )
ψ 2(σ x,σ y,γ )(3− 2ψ (σ x,σ y,γ ))

ϒ(0,σ vel
0y , 0)

⋅

√√√√
(

v0

v

)2 (
(1+σ x)2 +σ 2

y
)
− (σ 2

x +σ 2
y) (52)

remark that

Λ = ψ (σ x,σ y,γ )√
σ 2

x +σ 2
y

γ ○2

γ ○2 − γ 2


sin(β )σ ○

y
γ
γ ○
+
√(

cos(β )
σ ○

x

)2

+
(

sin(β )
σ ○

y

)2

−
(

cos(β )γ
σ ○

xγ ○

)2

 (53)

using
sin(β ) = σ y√

σ 2
x +σ 2

y

; cos(β ) = σ x√
σ 2

x +σ 2
y

(54)

A.4 Scale factors for the self aligning torque

Mz(σ x,σ y,γ ) = (M0z(σ reg
y ) − t0a(0,σ reg

y , 0)Fay,slip(0,σ reg
y , 0)) sin(β ′)

+ ta(σ x,σ y,γ )Fay,slip(σ x,σ y,γ ) + Mz,cam(σ x,σ y,γ )
= Gz(σ x,σ y,γ )M0z(σ reg

y ) + G f z(σ x,σ y,γ )F0y(σ reg
y ) + Gcamz F̂0cam(γ ) (55)

where
Gmz = sin(β ′) (56)

and

G f z =
ta(σ x,σ y,γ )Fay,slip(σ x,σ y,γ )

F0y(0,σ reg
y , 0) − t0a(0,σ reg

y , 0)Fay,slip(0,σ reg
y , 0)

F0y(0,σ reg
y , 0) sin(β ′)
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= t0a(σ x,σ y,γ )
F0y(0,σ reg

y , 0)(Fay,slip(σ x,σ y,γ ) − Fay,slip(0,σ reg
y , 0) sin(β ′))

= a
3
(4ψ − 1)(1−ψ )2

ϒ

(
σ y

σ ○
yψ
− sin(β ′)

)
= a

3
(4ψ − 1)(1−ψ )2

ϒ

(
sin(β )
σ ○

yΛ
− sin(β ′)

)

(57)

where ta is the pneumatic trail for the adhesive region defined as

ta(σ x,σ y,γ ) = Maz(σ x,σ y,γ )
Fay,slip(σ x,σ y,γ ) (58)

Finally

Gcamz =
Mz,cam(σ x,σ y,γ )
Fcam(0,σ reg

y , 0) (59)

simply derived from Equation (25) and (15).

A.5 Use of slip expressed in λ and α
In many occasions the slip expressed in λ and α is more convenient to use. The
pure-slip tire forces are also mostly expressed as functions of these slips. Here
follows guidelines for necessary conversions if λ and α are preferred. Calculate
ψ (σ x,σ y,γ ) and use the following formulas

σ x =
λ

1− λ
; σ y =

tan(α )
1− λ

(60)

The
σ ○

x =
λ○

1− λ○
; σ ○

y = tan(α ○) (61)

For the adhesive force use the force given at the pure-slip

λ0a = λ (62)

α 0a = arctan

(
tan(α )
1− λ

)
(63)

λ0s =
v
v0

√
(λ cos (α ))2 + sin2 (α ) sgn (λ) (64a)

sin(α 0s) =
v
v0

√
(λ cos (α ))2 + sin2 (α ) sgn (α ) (64b)

σ reg
0x = σ ○

x

√(
λ

1− λ
1

σ ○
x

)2

+
(

tan(α )
1− λ

1
σ ○

y

)2

sgn (λ) (65a)

σ reg
0y = σ ○

y

√(
λ

1− λ
1

σ ○
x

)2

+
(

tan(α )
1− λ

1
σ ○

y

)2

sgn (α ) (65b)

tan(β ) = sin(α )
λ cos(α ) (66)
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