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Abstract

We construct a probabilistic model which “mimics” the behaviour of a certain number-theoretical
algorithm. This model involves study of a binary tree with randomly labelled edges, such that the labels
have different distributions, depending on their directions. A number of properties of this tree are rigorously
studied. As an application, this study could suggest what one could expect in the original algorithm.
c© 2005 Elsevier B.V. All rights reserved.
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1. Motivation

Take a positive integer x . If x is even, divide it by 2; otherwise multiply it by 5 and add 1.
This will be the new x . Call this mapping M(x). Formally,

M(x) =

{
5x + 1, if x is odd,

x/2, if x is even.
(1.1)

This mapping closely resembles the famous still unresolved 3x + 1 problem, which states that
if we replace 5 by 3 in (1.1), then for any k ∈ Z+, M (n)(k) = 1 for some n. See [5] and [4] for
ample references.
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In our case, however, from numerical computations it seems intuitively to follow that any
k ∈ Z+ (say below 108) after consecutive applications of M either converges to one of the three
cycles

• 1 → 6 → 3 → 1,
• 13 → 66 → 33 → 166 → 83 → 416 → 208 → 104 → 52 → 26 → 13 or
• 17 → 86 → 43 → 216 → 108 → 54 → 27 → 136 → 68 → 34 → 17,

or “diverges” (in our computations becomes larger than 1012).
An interesting question is how many numbers between 1 and K converge to a finite cycle (we

conjecture that there are only three cycles mentioned above) as K becomes large. Namely, what
is the asymptotic behavior of Q̃(K ) where

Q̃(K ) = card {k ∈ Z+, k ≤ K : M (n)(k) 6→ ∞}?

Numerical estimations consistently support the conjecture that Q̃(K ) ∼ K 0.68, that is Q̃(K )

grows asymptotically as some power of K . Our primary purpose is to “explain” (but not to
prove!) why this could be the case, by analyzing the corresponding probabilistic model.

First, let us show how to construct all k’s for which M (n)(k) = 1 for some n. We call this set
B1, and we will show that it has a tree structure. The root of B1 will be the vertex denoted as ‘1’.
Next vertices are defined recursively. If vertex ‘k’ ∈ B1, then vertex ‘2k’ ∈ B1 as well. Also, if
‘k’ is even and can be represented as k = 5y + 1 where y is a positive integer, then ‘y’ ∈ B1 as
well. Now construct a tree whose vertices are numbers of B1 and such that ‘k’ is a parent of either
one or two vertices: ‘2k’ (the northwest child) and perhaps ‘y’ when applicable (the northeast
child). Finally, to preserve the tree structure, we artificially remove the edge connecting ‘6’ to ‘1’.

Observe that ‘k’ “branches to the northeast” exactly on every fourth step as 16 mod 5 = 1.
Also every fifth time this happens (since 165 mod 25 = 1), the northeast child ‘y’ will be
“infertile” — divisible by 5 — and hence will never produce a “northeast” child again. Starting
from an infertile child, the subtree will be then isomorphic to Z+. See Fig. 1.

Let trees B13 and B17 be constructed in a similar fashion, starting from 13 and 17 respectively,
and prohibiting the links ‘66’ → ‘13’ and ‘86’ → ‘17’ respectively. Suppose that the
only possible cycles are the three described above; then under this assumption the union
B1

⋃
B13

⋃
B17 gives the set of all k ∈ Z+ for which the sequence M (n)(k) does not diverge to

infinity.
Consider the tree B1, and throw away all its infertile branches1 as they contribute to a

negligible fraction of vertices of B1; take two consecutive nodes of the remaining tree (=vertices
adjacent to three other vertices) and denote by ‘k’ the one which is closer to the root ‘1’. The
number at the other vertex is either ‘16k’ or ‘256k’ (the latter happens with “probability” 1/5,
because we have removed the infertile branches), whenever the other vertex is the northwest
child. If the other vertex is the northeast child, then the number there is approximately 2pk/5
where p = 1, 2, 3, 4 with equal “probability” 1/4×(1−1/5) or 256×2pk/5 where p = 1, 2, 3, 4
with equal “probability” 1/4 × 1/5. The fraction 1/5 here reminds us again that we throw
away infertile branches. Then the nodes of B1 (after throwing away all infertile branches) are
isomorphic to a binary tree with a number assigned to each vertex. See Fig. 2.

In the next section we consider a stochastic model, related to the binary tree we have just
constructed. In this model, we will consider a binary tree with the numbers assigned to its

1 In [6] this would be called a pruned tree.
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Fig. 1. Tree B1. To preserve the tree structure we “prohibit” the link from ‘6’ to ‘1’.

Fig. 2. Tree constructed of the nodes of B1.

vertices, and these numbers will correspond in some sense to the logarithms of those numbers
assigned to the nodes of B1. In this paper we study the properties of this stochastic model, as
providing a guide to the properties of the 5x + 1 iteration. We introduce a quantity Q(K ) in
the stochastic model which is intended to simulate the behavior of Q̃(K ). We are able to prove
rigorous results for the stochastic model. However, we do not attempt to answer rigorously the
number-theoretical question about the speed of growth of Q̃(K ), which appears to be a very
difficult problem.
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The idea of this paper was inspired by a talk of Yakov Sinai talk in Cambridge on the
stochastic approach to the famous 3x + 1 problem, based on [8] and [9]. Besides this, [10]
and many other papers by the same author contain similar combinatorial constructions applied
to the 3x + 1 problem. In particular, [11] is a relevant general reference for the tree of inverse
iterates, analogous to B1 above.

Finally, in [6], which is the previous work most closely related to the current paper, the authors
construct a tree (see Fig. 1, formula (3.2) on pp. 240–241) which is again essentially a 3x + 1
analog of the tree B1 constructed in our paper. The authors refer to this tree as a branching process
model, and analyze the corresponding branching process to obtain, for example, estimates of the
speed of growth of this tree. Note that, unlike [6], we will treat our tree rather as non-random but
equipped with random labels.

2. Randomly labelled binary tree

Let B be the regular binary rooted tree with the root v0, that is a tree for which each vertex
is adjacent to exactly three other vertices, with the exception of the root v0 which is adjacent
only to two vertices. For any two vertices u and v of this tree, let `(u, v) be the unique self-
avoiding path connecting u and v, let |`(u, v)| be its length, and let |v| := |`(v, v0)|. Let
Vn := {u ∈ B : |`(u, v0)| = n} ≡ {u ∈ B : |u| = n} denote the set of 2n vertices at the
distance n from the root.

Let X and Y be some random variables. To each e edge of B assign a random variable Ze
(“label”) such that {Ze} are independent, and the distribution of Ze is the same as of X (Y resp.)
when e points to the northwest (northeast resp.).

Definition 1. For a vertex v ∈ B, let T (v) be the sum of the random variables on the self-
avoiding path `(v0, v) connecting v to the root. For definiteness, consistently set T (v0) = 0.

The quantity T (v) is the analogue to the value log n where n is a label of the vertex of the tree of
inverse iterates of the 5x + 1 problem.

Definition 2. For a given number b ∈ R, let the random variable Q(b) denote the number of
elements of the (possibly disconnected) set {v : T (v) ≤ b}. The quantity can take value +∞.

The quantity Q(b) is the analogue in the stochastic model of the quantity Q̃(b) for the 5x + 1
problem. However, the stochastic model is so general that it allows Q(b) = +∞, so it becomes
an interesting question to determine conditions under which Q(b) is finite almost surely.

This question is non-trivial when E X = µx > 0, E Y = µy > 0 and yet at least one of these
two random variables, say Y , is not strictly positive. Indeed, leaving aside the degenerate case
where µxµy = 0, if at least one of µx or µy is negative, the strong law of large numbers implies
that along one of the branches of the tree all T (v), except at most finitely many, will be negative.
On the other hand, if both X > 0 a.s. and Y > 0 a.s. then for all v 6= v0T (v) > 0. Hence, from
now on we will make the following assumptions:

(H1) µx = E X > 0 and µy = E Y > 0,
(H2) P(Y < 0) > 0.

Next, let

ϕX (θ) = E eθ X , ϕY (θ) = E eθY

denote the moment generating functions of X and Y respectively. We will additionally assume
that
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(H3) the moment generating functions ϕX (θ) and ϕY (θ) exist and are finite for all θ ∈ R.

Randomly labelled trees have been extensively studied in the literature, as the are relevant to
random walks in random environment, first-passage percolation, as well as many other important
problems. The paper [7] studied a related tree model; however, our set-up is somewhat different
from theirs; also we ask different questions about the process on the tree. Yet some ideas from
[7] are applied in the present paper.

Later we will make use of the following statement.

Lemma 1 (Chernoff–Cramer). Let W be a random variable with mean µ and suppose that its
Laplace transform

ϕW (θ) = E eθW

is finite for all θ . Let Sn denote the sum of n i.i.d. copies of W . Then for any a > µ

lim
n→∞

1
n

log P[Sn ≥ na] → −γ (a)

where the rate function

γ (a) = sup
θ∈R

[aθ − log ϕW (θ)] (2.2)

is strictly positive for a > µ.

The proof of this well-known statement about large deviations can be found in various forms,
e.g. in [2] Chapter 5.11 or [3] Theorem I.4.

Now write

ϕW (θ) =
ϕX (−θ) + ϕY (−θ)

2
(2.3)

which is the Laplace transform of a random variable W equal to either −X or −Y with equal
probability.

The random variable W is relevant to studying the distribution of weights assigned to the
vertices of the tree. We set

µ := µW = E W = −
E X + E Y

2
= −

µx + µy

2
.

As will be shown below, the average expected weight T (v) of a vertex at depth n in there is −nµ.
We will be interested in vertices whose weight is significantly smaller than the mean.

Definition 3. For any real a, and fixed depth n, define the random variable

Rn(a) := |{v ∈ Vn : T (v) ≤ na}|

and

R(a) := |{v ∈ B : T (v) ≤ |v|a}| =

∞∑
n=0

Rn .

Note that for a given infinite tree the quantity Q(b) is finite if R(a) is finite for some a > 0. A
necessary condition for finiteness of R(a) is that a < −µ, as shown in the next section.

In the following section we establish a phase transition in a for the event {R(a) < ∞}.
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3. Finiteness criterion for R(a)

Theorem 1. Suppose that (H1),(H2) and (H3) hold, and additionally that a < (µx + µy)/2.
Then

(i) If γ (−a) > log 2 then R(a) < ∞ a.s.
(ii) If γ (−a) < log 2 then R(a) = ∞ a.s.

Remark 1. In the case a ≥ (µx +µy)/2 one can show R(a) = ∞ a.s. as well. This immediately
follows from the second part of Theorem 1, the fact that γ (x) → 0 as x → µ (see Proposition 1
further on in the text), and the monotonicity of R(a) in a.

Remark 2. In this paper we do not study the critical case when γ (−a) = log 2.

Proof of Theorem 1. Recall that Vn is the set of vertices at the graph-theoretical distance n from
the root. First, we obtain an upper bound on the probability

pn = P(T (v) ≤ na for some v ∈ Vn) = P(Rn(a) > 0).

If it turns out that this quantity decays exponentially, then by the Borel–Cantelli lemma T (v) ≤

na a.s. only for finitely many v, thus immediately yielding R(a) < ∞ a.s. To prove this, it is
convenient to consider the following construction, which will be used in further proofs as well.

Let Dk be a “climbing” random walk on B with D0 = v0 which goes either up left in the
northwest direction or up right in the northeast direction with equal probabilities of 1/2. Then
for any v ∈ Vn we have P(Dn = v) = 2−n . Let S̃n be the sum of the labels on the edges traversed
by the path of the random walk up to time n. Then S̃n happens to have the same distribution as
W̃1 + · · · + W̃n , where W̃i ’s are i.i.d. random variables such that W̃i equals to X with probability
1/2 and Y with probability 1/2, and the Laplace transform of Wi = −W̃i is exactly ϕW (θ) given
by (2.3). Hence setting Sn = −S̃n we obtain

pn ≤

∑
v∈Vn

P(T (v) ≤ na) = 2nP(S̃n ≤ na) = 2nP(Sn ≥ −na)

= exp
[

n

{
log 2 +

log P (Sn ≥ −na)

n

}]
which, provided γ (−a) > log 2, by Lemma 1 indeed decays exponentially for large n.

Now suppose that γ (−a) < log 2. Recall that −a > µ, and note that in this region γ (−a)

is decreasing in a. By continuity of the rate function under the assumption that it is finite
everywhere (see e.g. [3] Lemma I.14), there is an a′ < a such that still γ (−a′) < log 2. Fix
some ν ∈ (0, log 2 − γ (−a′)). Then by Lemma 1 there is a positive integer m such that

2mP(Sm ≥ −ma′) = exp
{

m

(
log 2 +

log P(Sm ≥ −ma′)

m

)}
≥ eνm .

Construct the following branching process on B. The original particle is v0. The members of
the first generation are vertices v ∈ Vm for which T (v) ≤ ma′. A vertex u ∈ V2m is a
member of the second generation if it is a descendant of some member v of the first generation,
such that T (u) − T (v) ≤ ma′. Recursively, define the members of the k-th generation as a
subset of Vkm : a vertex u ∈ Vkm belongs to this generation if its m-th ancestor v (that is
v = ancestorm(u) = V(k−1)m ∩ `(v0, u)) belongs to the (k − 1)-st generation of the branching
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process and also T (u) − T (v) ≤ ma′. Then for each member v of this branching process we
necessarily have T (v) ≤ |v|a′.

Observe that for different members of the (k − 1)-st generation the number of offsprings in
the k-th generation are i.i.d. random variables, also independent of k. Thus each member of this
branching process behaves independently of the others, and the number of children has the same
distribution. On the other hand, the average number of children per member is

E
∑
v∈Vm

1T (v)≤ma′ = 2mP(S̃m ≤ ma′) ≥ eνm > 1.

Therefore this is a supercritical branching process (see e.g. [2], p. 173) which survives with a
positive probability, say ρ > 0.

Now fix a positive integer n and for each v ∈ Vn consider a subtree Bv rooted at v. Since Bv is
a replica of B and these trees do not overlap for different v’s, the probability that the supercritical
branching process described above but started at v rather than at v0 will survive for at least one
v ∈ Vn is 1 − (1 − ρ)n . In the event of survival, the construction of the branching process would
imply that for infinitely many vertices u ∈ Bv we have T (u) − T (v) < (|u| − n)a′. This, in turn,
yields

T (u) < |u|a

as long as

|u| ≥
T (v) − na′

a − a′
,

and therefore R(a) = ∞ with probability at least 1 − (1 − ρ)n . Since the latter expression can
be made arbitrarily close to 1 by choosing n large, the second part of the Theorem follows. �

4. Cardinality of Q(b)

Recall that Q(b) = card {v : T (v) ≤ b}. In this section we obtain a criterion for finiteness of
Q(b). When the criterion holds, we will also compute the asymptotic speed of growth of E Q(b)

depending on b.
If µ > 0, then for any b, Q(b) = ∞ a.s. Indeed, by strong law of large numbers applied to the

sequence T (Dn) = S̃n where Dn is the random walk described in the proof of Theorem 1,
T (Dn)/n → −µ a.s., and also Dn must be at different vertices at different times n, since
Dn ∈ Vn . Hence T (Dn) → −∞ and thus for any b ∈ R, Q(b) is infinite a.s.

Ignoring the special case µ = 0, from now on we suppose that

(H4) µ = µW = −(E X + E Y )/2 < 0.

The next result gives a condition for Q(b) to be finite. This relates to the case a = 0 of
Theorem 1.

Theorem 2. Suppose that (H1),(H2),(H3), and (H4) hold, and let b be any non-negative
number.

(i) If γ (0) = − supθ∈R log ϕW (θ) > log 2 then Q(b) < ∞ a.s.
(ii) If γ (0) < log 2, then Q(b) = ∞ a.s.
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Proof. First, assume γ (0) > log 2. Following the lines of the first part of the proof of Theorem 1,
we obtain that

p̃n := P(T (v) ≤ b for some v ∈ Vn)

≤ exp
[

n

{
log 2 +

log P (Sn ≥ −n(b/n))

n

}]
.

By continuity of the rate function, there exists ε > 0 such that γ (−ε) > log 2. Fix ν ∈

(0, γ (−ε) − log 2). Then Lemma 1 implies that there is n0 such that

log P(Sn ≥ −nε)

n
< − log 2 − ν

as soon as n > n0. Therefore for all n > max{n0, b/ε}

log P(Sn ≥ −n(b/n))

n
<

log P(Sn ≥ −nε)

n
< − log 2 − ν

yielding p̃n < exp(−νn), which again decays exponentially and therefore by the Borel–Cantelli
lemma Q(b) is finite a.s.

When µ < log 2 the proof is much simpler. Indeed, by Theorem 1, for a = 0 we have
R(a) = ∞ a.s. On the other hand, R(0) = Q(0), and since Q(b) is monotonically increasing in
b, we conclude that Q(b) = ∞ a.s. for all b ≥ 0. �

Theorem 2 shows that the following assumption is useful for making Q(b) finite almost
surely.

(H5) γ (0) = − supθ∈R log ϕW (θ) > log 2.

In what follows, we will assume this (as well as (H1)–(H4)) and obtain a result concerning
the expected growth rate of Q(b) as b → ∞. This will be a large deviation result, and for it we
will need basic properties of the rate function, which we state next.

Proposition 1 (Lemma I.14 in [3]). Suppose that the moment generating function ϕ(θ) = E eθW

of a random variable W with mean µ is finite for all θ ∈ R. Then its rate function γ (a) =

supθ∈R(aθ − log ϕ(θ)) satisfies the following:

1. γ is lower semi-continuous and convex in R.
2. γ has compact level sets.
3. γ is continuous and strictly convex on int(D), where D = {a ∈ R : γ (a) < ∞} and int(D)

is the interior of D.
4. γ is smooth on int(D).
5. γ (a) ≥ 0 with equality if and only if a = µ.
6. γ ′′(µ) = 1/Var (W ).

The following result estimates the expected growth rate of the set Q(b) under our model
assumptions.

Theorem 3. Suppose (H1)–(H5) all hold. Then the following limit exists and is finite: there exists

β := lim
b→∞

log E Q(b)

b
.
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Furthermore, β is given in terms of the rate function γ (a) by

β = max
a∈(0,−µ]

log 2 − γ (−a)

a
(4.4)

and the minimum is attained strictly inside the interval.

Proof. We let

f (a) =
log 2 − γ (−a)

a
and β = max

a∈(0,−µ]

f (a). (4.5)

Observe that the maximum of f (·) is achieved strictly inside (a∗, −µ), where a∗
∈ (0, −µ) is

such that f (a∗) = 0. This, as well as the existence and uniqueness of a∗, follows from the fact
that f (a) is a continuous function with

lim
a↓0

f (a) = −∞,

f (−µ) =
log 2
−µ

> 0,

f ′(−µ) =
γ (−a)a − log 2 + γ (−a)

a2 |a=−µ = −
log 2

µ2 < 0.

From the proof of Theorem 1 we remember that for any uniformly randomly chosen v ∈ Vn ,
T (v) has the same distribution as S̃n = W̃1 + · · · + W̃n = −Sn . Therefore,

E Q(b) = E
∑
v∈B

1T (v)≤b =

∑
v∈B

P(T (v) ≤ b)

=

∞∑
n=0

∑
v∈Vn

P(T (v) ≤ b) =

∞∑
n=0

2nP(S̃n ≤ b)

=

∞∑
n=0

ebUn

(4.6)

where

Un :=
log 2 +

1
n log P(Sn/n ≥ −b/n)

b/n
.

From (H5) and the continuity of γ we conclude that there are ε > 0, δ > 0 and n0 = n0(ε, δ)

such that

1
n

log P(Sn/n ≥ −ε) < −(log 2 + δ)

for all n ≥ n0. Therefore, for n ≥ max{n0, b/ε} we have

Un ≤ −δn/b ⇒ ebUn ≤ e−δn .

On the other hand, by Markov’s inequality, for any θ > 0

1
n

log P(Sn/n ≥ −b/n) ≤ θ(b/n) + log ϕW (θ). (4.7)



S. Volkov / Stochastic Processes and their Applications 116 (2006) 662–674 671

Taking the infimum over θ > 0, we obtain that the LHS of (4.7) does not exceed −γ (−b/n) if
−b/n ≥ µ. Thus for n ≥ b/(−µ) we have

Un ≤
log 2 − γ (−b/n)

b/n
≤ β.

Since for n < b/(−µ) obviously

Un ≤
log 2
b/n

<
log 2
−µ

= f (−µ) ≤ β,

combining the above, we conclude that for any n,

ebUn ≤ eβb.

As a result, splitting the sum (4.6) into two parts for b sufficiently large,

∞∑
n=0

ebUn < (b/ε + 1)eβb
+ (1 − e−δ)−1

yielding

lim sup
b→∞

log E Q(b)

b
≤ β.

Secondly, since γ (µ) = 0 we can fix an a such that a∗
≤ a < −µ and γ (−a) < log 2. By

Lemma 1 for any positive δ < log 2 − γ (−a) there is an n0 = n0(a, δ) such that

log 2 +
1
n

log P(Sn ≥ −na) ≥ log 2 − γ (−a) − δ

as soon as n ≥ n0. Suppose that b is sufficiently large, namely b > n0a, then

P(Sn ≥ −b) ≥ P(Sn ≥ −na)

for n such that n0 ≤ n ≤ b/a, which yields

log 2 +
1
n

log P(Sn ≥ −b) ≥ log 2 − γ (−a) − δ.

Consequently, taking just one element of the sum (4.6), we have

E Q(b) ≥ ebUbb/ac ≥ exp{bb/ac[log 2 − γ (−a) − δ]}

where b·c denotes the integer part. Now letting δ ↓ 0 and then maximizing with respect to
a ∈ (a∗, −µ) to obtain

lim inf
b→∞

log E Q(b)

b
≥ sup

a∈(0,−µ]

log 2 − γ (−a)

a
= β

which concludes the proof. �

5. Application to 5x + 1 problem

Now we are going to link our probabilistic model to the original number-theoretic problem
to provide an insight into the asymptotic behaviour of the quantity Q̃(K ) defined at the very
beginning of the paper.
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Let

X =

{
log 16, with probability 4/5,

log 256, with probability 1/5;

Y =



log 21/5, with probability 1/5 = 1/4 × 4/5,

log 22/5, with probability 1/5,

log 23/5, with probability 1/5,

log 24/5, with probability 1/5,

log 25/5, with probability 1/20 = 1/4 × 1/5,

log 26/5, with probability 1/20,

log 27/5, with probability 1/20,

log 28/5, with probability 1/20.

Construct the tree B labelling its edges with X and Y in the manner described in Section 2.
For a positive integer n, following our notation,

Q(log(n)) = card {v : T (v) ≤ log n}

equals the number of vertices for which
∏

e∈`(v0,v) eZe ≤ n where `(v0, v) is again the set of
edges on the unique self-avoiding path connecting the root to v. Then with this choice of X and
Y , tree B with randomly assigned labels on edges “resembles” the binary tree of the nodes of B1,
obtained from tree B1 in the manner described in Section 1. Of course, it equally “resembles”
B13 and B17, but on the log scale it is sufficient to consider just one of the three trees, as well as
to ignore the vertices of B1 located between the nodes, and also infertile branches.

We conjecture that Q̃(K ), the number of k ∈ {1, 2, . . . , K } for which the mapping M
described in Section 1 is eventually periodic, behaves asymptotically as Q(log K ).

We now determine the behavior of the quantity Q(b) in our stochastic model, as given by our
earlier theorems. The first step is to show that Q(b) is finite. Indeed µ = −2.0025 · · · < 0 and

γ (0) = 0.709 · · · > 0.693 · · · = log 2,

and hence by Theorem 2 Q(b) is a.s. finite for any b > 0 and thus Q(log K ) is finite a.s. for
K > 1. Secondly, using (4.4) we compute βM , i.e. β for our particular model, which turns out
to be

βM = β ≈ 0.678

where the maximum in (4.4) is achieved for a ≈ 0.22, and Theorem 3 now yields

E Q(log K ) ∼ e0.678 log K
= K 0.678

This supports the following conjecture about the 5x + 1 problem.

Conjecture 1. Q̃(K ), the number of those positive integers k ≤ K for which the mapping M
does not iterate to ∞, behaves ∼ K 0.68, that is

lim
K→∞

log Q̃(K )

log K
= βM .

Note that the above computed βM is in surprisingly good agreement with simulated data, see
Section 5.1 (Fig. 3).
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Fig. 3. β̂(m), numerical estimates of β̃.

Remark 3. As was mentioned by the referee, in fact one can rigorously prove a lower bound
on the number of integers below K that iterate under mapping M to some fixed number N as a
power of K (see [1]).

5.1. Numerical estimates

Since one cannot establish rigorously whether M (n)(k) → ∞ from numerical calculations,
we artificially chose a threshold of T = 4.2 × 108 to represent “infinity”. An integer k < T
was called bad, if M (n)(k) > T for some n ≥ 0, and good if M (n)(k) ∈ {1, 13, 17} for some n,
while the programme did not encounter any other alternatives. For an m < T the total number of
“good” k’s in {1, 2, . . . , m} was denoted as q(m) = q(m, T ). Then we computed the value

β̂(m) =
log q(m)

log m

for various values of m. Some results are in the table below:

β̂(1000) = 0.741 β̂(10000) = 0.715 β̂(100000) = 0.694 β̂(1000000) = 0.680

(There is no point in doing this for larger values of m as it becomes to close to the threshold T
which was dictated by computational arguments).

6. Possible extensions and open problems

So far we have only conjectured but not rigorously proved almost anything about mapping M
given by (1.1). It would be interesting to obtain a rigorous proof of some properties of M , at least
to show that there are x ∈ Z+ for which M (n)(x) → ∞ as n → ∞. However, even this may be
quite hard.

The most obvious extensions of the methods described in this paper are applications to various
other number theoretical algorithms of similar type, to predict at least what kind of asymptotics
can be expected there. From a probabilistic point of view, instead of considering binary trees,
we could have considered any d−ry regular trees and obtained similar statements, with log 2
replaced by log d . The stochastic model should also be able to provide a heuristic on how many
integers below n eventually iterate to some number N , where N does not have to be 1 or even in
some cycle. The results should be identical to the ones obtained here, of course possibly with a
different power.
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Another interesting result would be if one can actually compute the limit of log Q(b)/b,
without the expectation sign.
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