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Optimal Single-Port Matching Impedance for

Capacity Maximization in Compact MIMO

Arrays

Yuanyuan Fei, Yijia Fan, Buon Kiong Lau, John S. Thompson

Abstract

A complete MIMO system model with compact arrays at both link ends containing arbitrary

matching networks is presented based on a Z-parameter approach. The complete channel matrix including

the coupling effect is also presented. Utilizing this system model, the optimum single-port matching

impedance for capacity maximization is derived for a 2 × 2 MIMO system with coupling at the

receivers only. A closed-form result for the optimum matching impedance in high signal-to-noise ratio

scenarios is given and proved to be equal to the input impedance of the receive end. Simulation of

ideal dipoles verifies our analytical results and demonstrates the superiority of the optimum matching to

other matching conditions in improving MIMO system performance. Experimental data for monopoles

is also presented to further confirm our numerical findings and validate the accuracy of our derivation.

I. INTRODUCTION

A. Background

The comprehensively studied multiple-input multiple-output (MIMO) systems promise signifi-

cant gains in spectrum efficiency and link reliability by deploying multiple antennas at both ends
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of a wireless link [1]–[3]. An N×N MIMO system can achieve N times capacity benefit over the

single-input single-output (SISO) if operating in an independent and identically-distributed (i.i.d.)

channel [4]. However, the i.i.d. channel may not be achieved in practice due to insufficient antenna

separation or non-uniformly distributed scatterers in the non-line-of-sight (NLOS) environment.

In particular, the integration of multiple antennas into the subscriber end is affected by the limited

design volume, which results in significant system performance degradation [2], [5], [6].

In narrowband MIMO systems, it is widely agreed that mutual coupling (MC) which becomes

significant for small antenna spacing can reduce the signal correlation by distorting the radiation

patterns of each element [7]–[9]. However, it will also induce a mismatch between the char-

acteristic impedance of the circuit and the antenna input, which is detrimental to the capacity

performance [10]. This conflicting outcome of the MC effect is one important factor which

contributes to different conclusions of its impact on MIMO capacity performance [8], [11]–[19].

Two methods in n-port theory are usually used to study compact MIMO systems. One is

S-parameter analysis [9], [16], [17] which reflects the wave transmission in an n-port electrical

network; the other is Z-parameter analysis [10]–[12], [20] which expresses the voltage and

current relations among all ports. Various matching networks can be introduced [16] to improve

the MIMO capacity performance, while more varieties of matching networks are examined in

[21]. It is proved in [9], [16] that the so-called multiport-conjugate match (MCM) can realize zero

output correlation, lossless power transfer from the antennas to the loads for any antenna spacing,

and offer significant capacity improvement for very small antenna spacings. Nevertheless, the

optimum MCM can only be achieved for a small bandwidth [22] in wideband systems. Apart from

that, the MCM is not easy to implement as it involves multiple circuit components interconnected

across the antenna ports [23]. Instead, the single-port match (SPM) [10], [20]–[22] is a practical,

if suboptimal solution, as it provides capacity improvement compared to the non-matched case

and has a broader bandwidth than the MCM.

B. Contributions of the paper

We develop a complete framework study for N ×N MIMO systems including the MC effect

at both link ends using Z-parameters, which is suitable for any kind of single-mode antennas

at the link ends with any matching networks. The framework is applicable to any propagation

channels. Then we simplify the model and show that the MIMO system studied in [10], [20] is
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a special case of our model.

We state the derivation of the optimum SPM for capacity maximization of a 2×2 MIMO system

using an upper bound of the MIMO ergodic capacity. The deviation holds for all single-mode

antennas. Furthermore, the closed-form result of the optimum SPM for capacity maximization in

high signal-to-noise ratio (SNR) scenarios is also delivered and proved to be the input impedance

of the receive antennas.

We illustrate the above derivation using ideal dipole antennas. A perfect match is shown

between analytical and simulation results. Moreover, we present the advantage of using the

optimum SPM compared to other SPM cases for MIMO system performance. To demonstrate

the practical value of our analytical study, an experimental monopole array is designed for MIMO

capacity evaluation, which further confirms our findings in previous contributions.

C. Relation between previous and current work

Received power maximization or zero output correlation can be achieved by selecting proper

SPM [24] for very close antenna spacing (d = 0.05λ), which has been confirmed by the

experimental implementation in [25]. However, it is observed in [20] that the optimum SPM

to maximize the capacity is different from the solutions that either maximize the received power

or achieve zero correlation. The analytical derivation of the optimum SPM for the capacity

maximization is delivered in this work.

The Z-parameter network presented in this paper is an improvement of the previous work

[10]–[12], [20]. In [11], the system model is approximated for multiple antennas of a fixed

length at the receiver and ignores the effect of matching networks. Although compact MIMO

receivers with various matching impedances are examined in [10], [20], no complete Z-parameter

framework analysis and analytical result for the optimal SPM are given. The author in [12] did

present a Z-parameter MIMO system but with an inappropriate channel matrix expression, which

will be further discussed in Section II, and no matching network was included in the study.

Practical amplifier noise models have recently been used to study the impact of matching

networks on diversity [26] and MIMO capacity [27], [28] performance. The minimum noise

figure match is claimed to be an optimal solution which can outperform the MCM. However,

similar to the MCM, multiport matching networks are need to achieve the minimum noise figure
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performance. In this paper, we limit our study of SPM to the simple ‘receiver noise model’

provided in [16].

The remainder of this paper is organized as follows. Section II presents the analysis framework

of the MIMO system model using Z-parameters. Section III provides the numerical deviation of

the optimum SPM for a 2×2 MIMO system, and gives closed-form results in high SNR regime.

Section IV applies the analytical results in Section III to ideal dipole antennas, and compares

with the simulation results. The superiority of the optimum SPM for compact MIMO arrays

to other matching conditions is also discussed. Results for experimental monopole antennas are

provided in Section V to support our analytical studies. Conclusions are given in Section VI.

In this paper, the superscripts T , ∗, and H represent matrix transpose, complex conjugate, and

conjugate transpose operators, respectively. IN denotes the N ×N identity matrix. The notations

Tr(A), E{A}, det(A) and (A)ij denote the trace, expectation, determinant and the (i, j)-th

element of the matrix A, respectively. The notation Re{·} is used to denote the real part of a

complex number/matrix and vec(·) is the columnwise vectorization operation of a matrix.

II. MIMO SYSTEM ANALYSIS BASED ON Z-PARAMETERS

A narrowband N ×N MIMO system is considered. For simplicity we assume that the channel

is frequency-flat, rich scattering, and without a line-of-sight (LOS) propagation component. Also

it is assumed that the transmitter and receiver arrays are linear, the array elements are of identical

polarization, the dimension of the arrays is negligible compared to the link distance, and initially

the array elements of both ends are separated by over half-a-wavelength.

According to the n-port theory, the channel transfer function between the transmit and the

receive arrays in Fig. 1 can be represented as [12]



vT

vR



 =




ZTT ZTR

ZRT ZRR








iT

iR



 (1)

where vT = [VT1, VT2, ..., VTN ]T , iT = [IT1, IT2, ..., ITN ]T are the voltage and current vectors

at the transmitter, respectively. Similarly, vR = [VR1, VR2, ..., VRN ]T , iR = [IR1, IR2, ..., IRN ]T

denote the voltages and currents at the receiver. The N ×N matrices ZTT and ZRR are antenna

impedance matrices containing the self and mutual impedances of the transmitter and receiver,

respectively. The matrix ZRT can be translated as the trans-impedance matrix [16] due to the
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impact of transmit end currents on the receive end voltages. We define ZTR = 0 to indicate that

the transmitters are blind to the conditions (or currents) at the receivers.

The transmit antennas are usually assumed to be spaced sufficiently far apart, but even

then mismatches between antennas and corresponding sources still exists. As future wireless

communication may involve peer-to-peer transmission between compact MIMO terminals (eg.

mobile cooperation [29]), MC will be an issue for both link ends. Thus, a source impedance

network ZS is inserted between the sources and transmit antennas in Fig. 1 to ensure an efficient

power transmission. The relation between the source voltage vS and transmit voltage vT is

vT = ZTT iT = ZTT (ZTT + ZS)−1
vS (2)

where vS = [VS1, VS2, ..., VSN ]T . Also the total average transmitted power is

PT = E
{
Tr
(
Re
{
ZTT iT i

H
T

})}
= E

{

Tr
(

R
1/2
T Z

−1
T+SvSv

H
S Z

−H
T+SR

1/2(H)
T

)}

(3)

where RT = Re {ZTT} and ZT+S = ZTT + ZS .

In the compact receive subsystem of Fig. 1, an impedance matching network ZL is added

after the receive antennas to compensate for the MC induced power reduction. Utilizing circuit

theory at the receive subsystem it is easy to obtain

vR = −ZLiR. (4)

Substituting (4) into (1) we find the receive voltage vR as a function of the transmit voltage vT

vR =
(
IN + ZRRZ

−1
L

)−1
ZRT Z

−1
TTvT =

HV
︷ ︸︸ ︷

ZL (ZL + ZRR)−1
ZRT (ZTT + ZS)−1

vS
︸ ︷︷ ︸

−iR

(5)

where ZL+R = ZL +ZRR and HV is the channel/voltage transfer matrix [12]. However, because

only the voltage across the resistance can be exploited by the receiver, HV has to be modified to

fulfill the power transfer requirement. We substitute iR as defined in (5), then the total average

received power of the MIMO system can be represented as

PR = E
{
Tr
(
Re
{
ZLiRi

H
R

})}

= E
{

Tr
(

R
1/2
L Z

−1
L+RZRT Z

−1
T+SvSv

H
S Z

−H
T+SZ

H
RT Z

−H
L+RR

1/2(H)
L

)}

(6)
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where RL = Re {ZL}. If only the receiver knows the channel conditions, PT can be evenly

distributed across the antennas at the transmit end. Then (6) becomes

PR = E

{

Tr

(

Hmc
P T

N
INH

H
mc

)}

(7)

where Hmc is the channel transfer matrix between the source and the receiver load including

the MC effect as represented in Fig. 1. Equation (3) can be substituted into (7) to give

PR =
1

N
E
{

Tr
(

HmcR
1/2
T Z

−1
T+SvSv

H
S Z

−H
T+SR

(1/2)(H)
T H

H
mc

)}

. (8)

Comparing (6) and (8) we have

Hmc = R
1/2
L Z

−1
L+RZRT R

−1/2
T = R

1/2
L Z

−1
L+RHR

−1/2
T . (9)

where the channel H can be any physical or statistical propagation model which properly reflects

the relation of transmitter and receiver defined by ZRT . One representative of the physical channel

H is the ’path-based’ channel models used in [16]. A similar physical channel model is adopted

in [27]. When the number of paths of the channel model in [16] increases to infinity, i.e., both

the transmitter and receiver are in rich scattering environment, the correlation of the individual

channels can be expressed statistically. Besides the MC effect, the correlation of each compact

link end can come from the propagation channel characteristics and the array configuration.If

the transmitter does not affect the spatial properties of the received signal at all, H becomes a

Kronecker model with the following covariance structure [30]

E
{

(H)ik (H)∗jl

}

= c (ΨT )kl (ΨR)ij (10)

where c is the average power gain of each channel branch (identical gain is assumed), ΨT

and ΨR are N × N transmit and receive covariance matrices, respectively [4] with

∣
∣
∣(ΨT )ij

∣
∣
∣,

∣
∣
∣(ΨR)ij

∣
∣
∣ ≤ 1 and (ΨT )ii, (ΨR)ii = 1, i, j =1, 2, ..., N . The Kronecker model has been used in

[11], [12] to express ZRT statistically. In this paper, the Kronecker channel model is assumed.

If c = 1 is assumed in (10), the MIMO channel H should be normalized to the average channel

gain of a SISO system. Consider a SISO system with both antennas self-conjugated matched, i.e.

zL = z∗11, where zL and z11 is the load and self impedance of the antenna, respectively. Utilizing

(6) and (8) we obtain the normalization factor of the MIMO channel H is 1
4r2

11

E {hh∗}, where

June 2, 2008 DRAFT
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h is the SISO channel and r11 = Re{z11}. Thus, the general MIMO system channel transfer

matrix of Fig. 1 represented in Z-parameters is

Ĥmc = 2r11R
1/2
L Z

−1
L+RΨ

1/2
R Hi.i.d.Ψ

1/2
T R

−1/2
T . (11)

We assume the major source of noise is the receiver front end [16]. The MIMO capacity with

the channel matrix given by (13) is

Cmc = log2 det
(

IN +
ρr

N
ĤmcĤ

H
mc

)

(12)

where ρr is the reference SNR.

In the following sections we focus on the compact receive end of the MIMO system with

SPM. We further assume that the transmit antennas are sufficiently separated, rich scattering,

i.e. ΨT = IN , and self-conjugate matched. For a 2× 2 MIMO system (11) can be simplified as

Ĥmc = 2
√

r11rLZ
−1
L+RΨ

1/2
R Hi.i.d. (13)

where rL = Re{zL}. Equation (13) is identical to the 2 × 2 channel matrix used in [10], [20],

which is a special case of the MIMO channel matrix in (11).

III. DERIVATION OF OPTIMAL SINGLE-PORT MATCHING IMPEDANCE

The optimal single-port matching impedance zopt = ropt + jxopt which maximizes the mean

capacity E{Cmc} of a 2 × 2 MIMO system is derived in this section. As a random channel

matrix is in (12), Jensen’s inequality and the concavity of log2det [31] are used to achieve the

upper bound Cup [32] for any fixed antenna spacing d as

E {Cmc} ≤ Cup = log2 det

(

IN +
4ρrr11rL

N
Z

−H
L+RZ

−1
L+RΨR

)

. (14)

We define the antenna self-impedance z11 = r11 + jx11, mutual-impedance z12 = r12 + jx12,

load impedance zL = rL + jxL, where the resistance components r11, r12, rL ∈ R
+ and the

reactance components x11, x12, xL ∈ R. For identical antenna elements, we have (ZRR)ij =

(ZRR)ji based on the reciprocity theorem1 [33]. Given a particular d and ρr, (14) becomes a

1We note that the reciprocity theorem is independent of the assumptions about the transmission environment. The FF pattern

of the array does change in different scenarios, i.e. the variations of the mean AOA and angular spread (AS). This effect is

reflected in the correlation matrix ΨR.
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function of variables (rL, xL). Then the matrix product Z
−H
L+RZ

−1
L+R in (14) can be simplified as

Z
−H
L+RZ

−1
L+R = ([ZRR + ZL] [ZRR + ZL]H)−1 = ([ZRR + zLIN ]

[
Z

H
RR + z∗LIN

]
)−1

= (|zL|2IN
︸ ︷︷ ︸

Z1

+ zLZ
H
RR + z∗LZRR

︸ ︷︷ ︸

Z2

+ZRRZ
H
RR

︸ ︷︷ ︸

Z3

)−1. (15)

Expanding (15) we have

Z1 =




r2
L + x2

L 0

0 r2
L + x2

L





Z2 = 2



rL ·




r11 r12

r12 r11



+ xL ·




x11 x12

x12 x11









Z3 =




r2
11 + x2

11 + r2
12 + x2

12 2(r11r12 + x11x12)

2(r11r12 + x11x12) r2
11 + x2

11 + r2
12 + x2

12



 (16)

Lemma 1: For any real symmetric Toeplitz matrix A, the singular value decomposition (SVD)

of A can be written as A = UDU
T = UDU, where

A =




a1 a2

a2 a1



 ,U =
1√
2




1 1

1 −1



 ,D =




a1 + a2 0

0 a1 − a2



 .

Proof: A is a 2 × 2 circulant matrix. Following [34], the eigenvalue solution of A is

λk = a1 + a2rk, k = 1, 2, and rk is the kth complex root of r2 = 1. The corresponding

eigenvector uk = 2−1/2[1, rk]
T . Then U = [u1, u2], and U is unitary.

Utilizing Lemma 1, the singular value decomposition (SVD) of (15) is given

Z
−H
L+RZ

−1
L+R =

(

U

(


r2
L + x2

L 0

0 r2
L + x2

L



+ 2rL ·




R1 0

0 R2





+ 2xL ·




X1 0

0 X2



+




R

2
1 + X

2
1 0

0 R
2
2 + X

2
2





)

U

)−1

=U

[

(rL + R1)
2 + (xL + X1)

2 0

0 (rL + R2)
2 + (xL + X2)

2

]−1

U = UΛ
−1

U

(17)

where R1 = r11 + r12, X1 = x11 + x12, R2 = r11 − r12, X2 = x11 − x12. Using the property

det(I + AB) = det(I + BA) [3], (14) can be rewritten as

Cup = log2 det(IN + κrL · UΛ
−1

UΨ) = log2 det(IN + κUΨUrLΛ
−1) = log2 det(Y) (18)

June 2, 2008 DRAFT
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where κ = ρr · 4r11/N . According to the monotonically increasing characteristic of log2(·), the

maximum point of det(·) is the maximum point of log2det(·). To derive the maximum point

(ropt, xopt) of det(Y), we evaluate the following derivatives

∂ det(Y)

∂rL

=κ · (R2
1 − r2

L + (xL + X1)
2) · Σ2 + (R2

2 − r2
L + (xL + X2)

2) · Σ1
((

(rL + R1)
2 + (xL + X1)

2) ((rL + R2)
2 + (xL + X2)

2))2
(19a)

∂ det(Y)

∂xL

= − 2κrL · (xL + X1) · Σ2 + (xL + X2) · Σ1
((

(rL + R1)
2 + (xL + X1)

2) ((rL + R2)
2 + (xL + X2)

2))2
(19b)

where

Σ1 =
(
(rL + R1)

2 + (xL + X1)
2
)
·
(
(1 − Re{α})

(
(rL + R1)

2 + (xL + X1)
2
)

+ (1 − |α|2)κrL

)
,

Σ2 =
(
(rL + R2)

2 + (xL + X2)
2
)
·
(
(1 + Re{α})

(
(rL + R2)

2 + (xL + X2)
2
)

+ (1 − |α|2)κrL

)
,

(20)

and α = (ΨR)12 = (ΨR)21. In (20) it can be shown that ∀Σ1,2 > 0. As the maximum point

(ropt, xopt) makes (19) equal to zero, then from (19b) we can deduce

xopt ∈ [min(−X1,−X2), max( − X1,−X2)]. (21)

Substituting (21) into (19a) we have

ropt ∈ [min(R1, R2), max(
√

R2
1 + (X1 − X2)2,

√

R2
2 + (X1 − X2)2)]. (22)

Solving (19a) and (19b) the simple relation between rL and xL can be obtained

r2
L + (xL + σ)2 = Γ. (23)

Geometrically, (ropt, xopt) is a point on the circumference of a circle with the center at (0,−σ)

and radius
√

Γ, where σ = x11 + r11r12

x12

, Γ = r2
11 + r2

12 + x2
12 +

r2

11
r2

12

x2

12

. Combined with (21) and

(22), (ropt, xopt) can be restricted to be located in an arc of the circle.

Substituting (23) into (19b), we can deduce a polynomial in xL

8∑

m=0

pmxm
L =

8∑

m=0

fm(R1, X1, R2, X2, σ, Γ, κ)xm
L =

8∑

m=0

gm(r11, x11, r12, x12, ρr)x
m
L = 0 (24)

where the coefficients pm are determined by the high order polynomials fm(R1, X1, R2, X2, σ, Γ, κ)

= gm(r11, x11, r12, x12, ρr). We summarize the derivation of zopt in following steps:

Step 1. Solving (24) to find all the roots of xL;

June 2, 2008 DRAFT
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Step 2. Filtering the results of Step 1 by (21);

Step 3. Substituting the results of Step 2 into (23) to get the corresponding roots of rL;

Step 4. Filtering the results of Step 3 by (22).

In high SNR regime, (18) can be simplified as

Cup = log2 det(κUΨUrLΛ
−1) = log2 det(Y) (25)

where det(Y) = (1−α2)
det(Λ)

. The derivatives in (19) are modified by simplifying (20) as

Σi = (rL + Ri)
2 + (xL + Xi)

2, i = 1, 2. (26)

Solving the equations we derive the closed-form of zopt = ropt + jxopt, where

ropt =

√

R1R2

(

1 +
(X1 − X2)2

(R1 + R2)2

)

=

√

r2
11 − r2

12 + x2
12 −

r2
12x

2
12

r2
11

(27a)

xopt = −R1X2 + R2X1

R1 + R2
=

r12x12

r11
− x11 (27b)

This solution of zopt is exactly the input impedance (zin) match in [22]. It is shown that in a high

SNR scenario, zopt is an exact solution only related to the array impedances and independent from

the open-circuit (OC) correlation α which provides the possibility of practical implementation.

The finding of zin = zopt in high SNR case is under prediction because from circuit theory

considerations it includes the MC effect into the matching network [35], which realizes the

maximum power transfer between the corresponding source and receiver within the SPM range.

Moreover, it gives low correlation for any antenna separation [22].

IV. SIMULATION AND ANALYSIS

A 2 × 2 MIMO system using ideal half-wavelength (λ/2) dipoles 2 equipped at both ends is

deployed to demonstrate the analytical results in Section III. The optimal single-port impedances

zopt generated by Monte Carlo simulations of the same MIMO system model for both ergodic

capacity Cmc are compared to the results simulated using the upper bound Cup as well as the

numerical results of Section III. The superiority of using zopt to other matching networks in the

MIMO system is also discussed.

2Ideal half-wavelength dipoles are adopted because their self and mutual impedances are easily computed numerically. The

impedance matrices of other kinds of antennas obtained either analytically or experimentally can be applied as well.
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The self and mutual impedances z11, z12 of the ideal λ/2 dipoles are calculated numerically

using the modified EMF method 3 [5]. Choosing a reference SNR ρr and substituting the values

of z11, z12 into polynomials gm in (24), we can get multiple solutions of xL for each antenna

spacing d. After the values of xL are filtered by the range (21) (Fig. 2(a)), the corresponding

results of rL can be computed by (23). Fig. 3 depicts the arc of possible locations for (ropt, xopt)

utilizing (23) at d = 0.05λ. The abscissa of Fig. 3 is determined by rLmin = min(R2) and rLmax

= max(
√

R2
1 + (X1 − X2)2) according to Fig. 2(b). In Fig. 3 it is obvious that xLmax = −X2 =

−17.9 Ω, therefor xL can not reach zero as in Fig. 2(a), and the lower bound of xL in Fig. 3

is modified to xLmin = min(−X1)|−X2≤−17.9. Finally, the desirable solution (ropt, xopt) can be

obtained using (22) (Fig. 2(b)). When d is fixed, the unique solution is a point on the arc, and

the position of (ropt, xopt) depends on the value of ρr.

Monte Carlo simulations for the ergodic capacity Cmc in (12) and the upper bound Cup in (14)

are used to verify the derivation in Section III. If uniform distributed power azimuth spectrum

(PAS) is assumed at the receiver, the correlation α = J0(2πd/λ) [37], where J0(·) is the zeroth

order Bessel function of the first kind. As the numerical zopt is the maximum point of Cup

rather than Cmc, the simulation results of zopt for both cases are plotted in Fig. 4. The range of

{zL = rL + jxL : rL ∈ [0, 150]Ω, xL ∈ [−100, 50]Ω} is chosen to get the zopt of each Cup. The

Cmc is simulated over 10000 random channel realizations for every zL point at each d, thereby

the range of zL is shrunk to a few ohms around the zopt of Cup to save computing time. In Fig.

4 it is apparent that the numerically derived zopt agrees well with the corresponding simulation

results of Cup and Cmc. Moreover, the zopt approaches the input impedance zin as ρr increases,

which is perfectly consistent with the derivation in Section III. Another observation is that the

xopt is hardly affected by ρr and the impact of ρr on the ropt diminishes when d > 0.2λ.

Because the numerical values of zopt match very well to the simulation results of both Cup

and Cmc cases, the precise data of zopt is presented in Table I. For the resistive component ropt,

the numerical and simulation results differ from each other for d ≤ 0.2λ with a maximum error

of less than 1Ω. The errors decrease while ρr increases. When d ≥ 0.3λ, the numerical and

simulation ropt of Cup are equal with no error. Meanwhile, the numerical ropt experiences an

3Infinite thin dipoles are assumed for the EMF calculations as the dipole diameter is usually far less than its length. Similar

self and mutual impedance results of practical dipole cases can be found in [16], [36]. As our focus is on the relative ratio of

the self and mutual impedances, ideal dipoles are selected for simplicity.
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maximum error of 0.4Ω compared to the simulation ropt of Cmc for any value of ρr. For the

reactive component xopt, the numerical xopt is equal to the simulation xopt of Cup with no error

for all values of ρr. The xopt of Cmc has an maximum error of 0.4Ω compared to the other two

cases due to the limited number of realizations of the Monte Carlo simulation. Both Fig. 4 and

Table I confirm that the analytical study in Section III can predict zopt of the Cmc correctly, as

well as yield zopt of the Cup accurately and more efficiently than the Monte Carlo Cmc. Values

of the zin are in Table I agree well with the corresponding values of zopt at ρ = 20dB, which

proves the analytical finding of the high SNR case in Section III.

To illustrate the MIMO system benefit from the zopt match, the Cmc and Cup with the

characteristic impedance match of both no coupling (z0nc) and MC (z0) cases, z11
∗, zin and

zopt matches are depicted with different values of ρr in Fig. 5. Fig. 5 illustrates using a matching

network to optimize Cup also optimizes Cmc. When ρr = 5dB (Fig. 5(a)), the performance of

the receivers without MC is always better than that with MC. However, for ρr = 20dB case

(Fig. 5(b)), the compact receiver with any matching network outperforms that without MC at

d < 0.2λ. Meanwhile, the zopt match surpasses other matching schemes when d < 0.25λ and

overlaps with the z∗11 match and zin match at d ≥ 0.25λ in both low and high SNR scenarios.

The performance of the zopt match outperforms that of the zin match only at d < 0.1λ in Fig.

5(a). With increasing SNR in Fig. 5(b), the performance of zopt and zin overlap with each other

at all antenna spacings, which again verifies the analysis in Section III. It is obvious that ropt

is the dominant factor which determines the value of Cup in Fig. 5 because Cup follows the

monotonically increasing property of ropt in Fig. 4 with all spacings. This can be explained

because ropt is the part of zopt receiving the power which contains the mutual information.

V. EXPERIMENTAL VALIDATION

We further present measured antenna impedances z11,z12 and OC correlation results α to

validate the analytical results in Section III. The experimental setup of a compact receive array

is shown in Fig. 6. Two quarter-wavelength monopoles with d = 0.05λ, 0.1λ, 0.15λ and a center

frequency of 900MHz are mounted on a 330mm × 250mm ground plane. Both brass antennas of

identical dimensions (diameter of 2mm) are soldered onto 50Ω matching network boards with the

output ports of SMA connectors soldered onto the opposite end. The z11 of a single monopole and

the z11, z12 of the monopole array are measured by a network analyzer. To calculate α addressed

June 2, 2008 DRAFT



13

in Section II, the two-dimensional (2D) FF patterns of the monopole array with OC terminations

are measured in an anechoic chamber at Perlos AB, Sweden4. An identical receive system model

is simulated in SEMCAD [38] using finite-difference time-domain (FDTD) analysis.

There are no analytical equations for the z11 and z12 of monopoles on a finite ground plane.

Fig. 7 displays the results of z11 and z12 of the monopole array from both simulation and

measurement. The simulation results are derived from the open and short-circuit impedances [6],

while the experimental results are transferred from the S-parameter data observed at the network

analyzer. Because in practice the monopoles cannot be exactly identical, the average values of

the measured z11 and z12 are shown in Fig. 7 as well. The close match of the measured results

of both monopoles ensures the validity of further experiment. The simulation and the average

of the measured results also show great consistency in Fig. 7. Meanwhile, with increasing d,

the difference between the simulation and the average of the measured results decreases. In

the following part, we focus on the antenna spacing of d = 0.05λ, where the self and mutual

impedances of the monopoles are z11 = 47.5+ j10.9Ω, z12 = 46.77− j0.57Ω in simulation, and

z11 = 46.72 + j9.39Ω, z12 = 45.31 − j2.57Ω on average in measurement. The corresponding

values of α are 0.9796 in SEMCAD and 0.959 in measurement calculated from the FF patterns.

Table II lists the ergodic capacity Cmc generated using antenna parameters from simulation

and measurement with different matching networks. The loads zA and zB are selected from the

area of optimum impedances for received power maximization, while zC and zD are picked from

the approximately zero correlation circle [25]. The z0 of 50Ω is also chosen. For the z∗11, zin

and the zopt matches, there are two sets of impedances shown based on the corresponding z11,

z12 and α obtained in simulation and measurement, respectively. The notation zn
opt in Table II

represents the numerical zopt results of Section III. We note that the same number of channel

realizations and 20dB reference SNR ρr are used in generating Cmc. The values of z∗11 of a

single monopole listed in Table II are used for power normalization of the corresponding cases,

because the z11 of an isolated antenna differs from that in the array [16], [36].

Generally, the Cmc generated using the measured resutls are about 0.5 bits/s/Hz higher than the

corresponding simulation results of each load point. Apparently, none of the impedances either

4Though the channel in the chamber is LOS, the FF patterns are measured over 2π radians. This is consistent with a MIMO

NLOS channel with uniformly distributed PAS and full AS. Thus the measured correlation can be used in this paper.
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maximizing the received power or achieving zero output correlation maximize the capacity, which

confirms the finding in [10], [20]. Among these impedances, zD offers the best performance as

it is chosen to be the load with the highest received power along the zero correlation circle, and

also because it is close to zopt. Also, the commonly used z0 and z∗11 give inferior performance to

the corresponding zin match of 0.5 bits/s/Hz. Furthermore, the numerical zopt agree well with the

corresponding simulation results, which again confirms the analytical study in Section III. The

error between the corresponding numerical and simulation results of zopt is within 1Ω, which

is caused by the deviation between z11 of the single antenna and z11 used in the array. When a

high SNR (ρr = 20dB) is assumed, both numerical and simulation results of zopt agree well with

the corresponding zin, especially in the measurement. As shown in Table I, the errors between

the numerical and simulation results of zopt as well as zin decrease when d increases, we are

confident of the validity of our derivation with larger antenna separations.

VI. CONCLUSION

This paper derives the optimal single-port matching impedance (zopt) for capacity maximiza-

tion of a 2× 2 MIMO system with coupled receiver using Z-parameters. Closed-form solutions

of zopt for the high SNR scenario is deduced and confirmed to be the input matching impedance

of the receive antenna. We have shown that the analytical and simulation results agree well with

each other through the example of ideal dipoles. By introducing zopt into a MIMO system with

two coupled dipoles, the ergodic capacity has an advantage of around 1 bit/s/Hz for antenna

spacings less than 0.25λ compared to the commonly used characteristic match when the SNR

is 20dB. An experimental setup of a monopole array is also introduced to verify the analytical

study. It is shown that a capacity benefit of 0.5 bits/s/Hz can be achieved over the commonly

used self-conjugate match for an antenna element spacing 0.05λ at 20dB SNR.

We conclude that the MIMO system performance can be significantly improved by integrating

zopt into compact arrays at close antenna separations. More research can done for compact

receivers with larger sizes and different configurations to explore the existence of zopt. The

MIMO channel matrix using Z-parameters and the method of finding zopt presented in this

paper offers a good chance to solve these problems. In later work, the same methodology used

in this paper may be applied to find optimal noise-figure loading for more realistic amplifiers

[27]. A measurement campaign involving direct MIMO channel measurements (including the
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effect of the matching network) and measured capacity evaluation is also an interesting aspect

for future work.
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Fig. 1. Diagram of a MIMO system with antenna impedance matrices and matching networks at both link ends.
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TABLE I

COMPARISON OF THE NUMERICAL AND SIMULATION RESISTANCE AND REACTANCE COMPONENTS OF THE OPTIMAL

SINGLE-PORT IMPEDANCES WITH VARIOUS ANTENNA SPACINGS AND REFERENCE SNRS

ropt(Ω)
d/λ ρr = 5dB ρr = 10dB ρr = 20dB rin(Ω)

num∗ sim†
up sim‡

m num simup simm num simup simm

0.05 1.53 1.81 1.56 4.51 4.37 4.33 14.36 14.33 14.44 14.69
0.10 23.23 23.22 22.92 27.05 27.00 26.80 28.23 28.22 28.29 28.35
0.20 51.78 51.76 51.49 52.95 52.94 53.45 53.53 53.53 53.45 53.60
0.30 72.77 72.77 72.48 73.51 73.51 73.70 73.90 73.90 73.89 73.95
0.40 81.44 81.44 81.27 81.63 81.63 81.69 81.73 81.73 81.37 81.74
0.50 78.26 78.26 78.36 77.93 77.93 78.09 77.75 77.75 77.35 77.73

xopt(Ω) xin(Ω)
0.05 -18.23 -18.23 -18.16 -18.27 -18.27 -18.16 -18.66 -18.66 -18.26 -18.68
0.10 -35.35 -35.35 -35.30 -35.49 -35.49 -35.06 -35.54 -35.54 -35.62 -35.55
0.20 -56.46 -56.46 -56.44 -56.16 -56.17 -56.62 -56.02 -56.02 -56.12 -56.00
0.30 -57.44 -57.44 -57.05 -56.72 -56.73 -56.29 -56.35 -56.35 -56.57 -56.30
0.40 -47.21 -47.21 -47.39 -46.26 -46.26 -45.88 -45.75 -45.75 -45.88 -45.69
0.50 -38.54 -38.55 -38.77 -37.81 -37.81 -38.16 -37.41 -37.41 -37.07 -37.36
∗numerical results †simulation results based on Cup

‡simulation results based on Cmc
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Fig. 5. The mean capacity and upper bound capacity with various matching networks as a function of d with different ρr .
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TABLE II

COMPARISON OF THE ERGODIC CAPACITY BETWEEN CHOSEN LOADS WITH ANTENNA PARAMETERS FROM SIMULATION

AND MEASUREMENT & CONTRAST BETWEEN NUMERICAL AND SIMULATION RESULTS OF OPTIMUM SINGLE-PORT

IMPEDANCE.

Cm (bits/s/Hz)
Impedances (Ω)

sim† mea‡

zA 70.69 - j9 7.8572 8.4699
zB 1.5 - j12.8 7.8150 8.3154
zC 4.06 + j3 5.6516 6.2921
zD 16.5 - j12 8.4068 9.1431
z0 50 7.9810 8.6913

45.6 - j20.5 (sim) 8.0201 /z∗
11 45.5 - j19.22 (mea) / 8.7579

8.29 - j11.46 (sim) 8.4517 /zin 11.41 - j11.88 (mea) / 9.2046
8.67 - j11.85 (sim) 8.5313 /zopt 11.23 - j11.6 (mea) / 9.2688
9.09 - j11.46 (sim) 8.4558 /zn

opt 11.23 - j11.89 (mea) / 9.2353
†results based on antenna parameters in simulation
‡results based on antenna parameters in measurement
nnumerical results
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