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Introduction

The reheat furnace and the rolling mill can be considered two of the main
processes in a plate mill. The reheat furnace is used for heating steel
blocks, which is the raw material for the rolling mill and the rolling mill
is used for turning the steel block to a plate by making it wider, thinner
and longer.

The rolling mill and the furnace are quite different. The reheating is
a thermal process, while the rolling mill is a mechanical process. The
main items of interest in the operation of the furnace is the production
capacity, the energy consumption and the temperature distribution of the
steel blocks when they leave the furnace. The key variables of the rolling
mill are production capacity, dimensional tolerances, plate flatness, and
metallurgical parameters.

Naturally, the two processes interact. The production capacity of the
rolling mill affects the operation of the reheat furnace and vice versa
and to obtain proper flatness and thickness accuracy in the rolling mill a
proper heating quality is important. Actually the two processes have even
more in common:

• They are both large industrial processes where relatively small im-
provements of the performance can lead to large economical benefits.

• It is not feasible to measure the main variables of interest: slab
temperature and plate thickness.

• The processes are multivariable, which implies that several vari-
ables should be handled simultaneously.

• Proper operation of the processes is crucial to the product quality
and the capacity of the plate mill.

The above characteristics have made the reheat furnace and the plate
mill to two of the key processes for automatic control in the steel industry
and this is the reason for considering them in this thesis which consist of
two separate parts
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Chapter 1. Introduction

• Modeling and control of the plate thickness in a hot rolling mill.

• Modeling and control of the temperature of the steel blocks heated
in the reheat furnace.

For more information on the two processes please refer to [Pedersen,
1993], and [Pedersen, 1998]. Further details on the control of the two
processes will be given in Chapters 2, 3, and 8. Throughout the thesis
data and specifications from the rolling mill and reheat furnace no. 2 at
The Danish Steel Works Ltd. will be used in the work with the mod-
els and control algorithms. The design for the furnace control system is
furthermore implemented at The Danish Steel Works Ltd.

1.1 Problem Formulation

The modeling in this thesis is made from a control engineer’s point of
view. Normally, control engineers work with relatively simple dynamical
models for the processes. The relatively simple models make it possible to
use some more or less advanced mathematics for analysis and design. The
point of view in this work will therefore be different from the traditional
approach, where either large and complex models are use for the furnace
control or static nonlinear models typically are used for the rolling mill.

To be able to design better controllers, better models are needed. There-
fore, development of suitable models and methods to determine the pa-
rameters of these models will be a key subject. To design an advanced
control strategy we need a dynamical multivariable model. To minimize
the number of parameters of the model and to ensure a good understand-
ing, a physical model will be derived. Using the model it will be possible to
evaluate the performance of the new control strategy using computer sim-
ulations and to analyze the stability of the processes. The digital control
system on the reheat furnace makes it possible to perform experiments
with the design for this process and therefore to evaluate the result of the
design in practice.

We thus arrive at the following problem formulation:

The purpose of this thesis is to improve the performance
of the slab temperature control for a reheat furnace and the
plate thickness control for a hot rolling mill. The improvement
will done by:

• deriving dynamical multivariable models

• designing control strategies on the basis of the models

12



1.2 Outline of the Thesis

The performance of the improved control strategies will be
evaluated by computer simulations and implementation of the
slab temperature controller. The stability of the control loops
will also be investigated in connection with the controller de-
sign.

It is usually hard to find a good mathematical model for a process at the
first attempt. Process modeling therefore often is an iterative procedure.
An initial modeling is necessary to decide which input and output signals
to collect for the system identification where the parameters of the model
are found. Using the results from the identification, the model is adjusted.
Usually it is not necessary to collect new data. The controller will be
designed when the model is ready. Sometimes the model is also changed in
the controller design when the characteristics of the model are evaluated
again. Inspired by [Gustavsson, 1975] we can illustrate the modeling,
design, and implementation procedure by Figure 1.1.

1.2 Outline of the Thesis

The task of this thesis is to develop models and control strategies for
the thickness control for a hot rolling mill and for the slab temperature
control of a reheat furnace. The first part of the thesis is about thickness
control and is more or less similar to my licentiate thesis. The last part of
the thesis is about temperature control and has not been published before.
This implies that the work of the thesis is presented in chronological order.

To give a background for this, three introductory chapters are included
as an introduction to the modeling and design. The contents of the thesis
are as follows:

Chapter 2: The Thickness Control Problem. This chapter gives a ba-
sic description of the hot rolling mill and the thickness control
problem.

Chapter 3: Thickness Control of Hot Rolling Mills. Here it is de-
scribed how the plate thickness is controlled today. The state
of the art solution is analyzed and an example of where the
traditional control fails is given.

Chapter 4: Modeling of the Rolling Mill. In this chapter the new
mathematical models for the rolling mill are derived. The
models are later used for the system identification, the con-
troller design, and the computer simulations.

Chapter 5: Thickness Control—Data Collection. To find the param-
eters of the models, measurements of the input and output

13



Chapter 1. Introduction

Modeling

Data collection

Identification

Controller design

Implementation

?

?

?

?

?

�

-

Figure 1.1 Flow diagram for the work in connection with the modeling and con-
troller design. The figure illustrates the iterative nature of the modeling and design
process.

variables are needed. The measurement procedure and the
processing of the measurements are described here.

Chapter 6: Thickness Control—System Identification. The param-
eters of the model are determined. When this is done the
models are ready for controller design, and computer simu-
lations.

Chapter 7: Thickness Control—Design. The control law for the thick-
ness control is designed and performance of the controller is
evaluated using computer simulations. The stability and the
effect of the time varying material characteristics are also
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1.2 Outline of the Thesis

investigated.

Chapter 8: The Slab Temperature Control Problem. Here a basic de-
scription of the reheat furnace and the furnace control system
is given. Some basic process characteristics are also analyzed.

Chapter 9: Temperature Control—Data Collection. In this chapter
the data collection device is described and an example of the
data is given.

Chapter 10: Temperature Control—System Identification. Contains
descriptions of the models for the furnace and slab tempera-
tures and results from the system identification of the model
parameters.

Chapter 11: Temperature Control—Design. Includes design of the lin-
ear control law for the control system on the furnace at The
Danish Steel Works Ltd. and a new nonlinear control algo-
rithm for the slab temperatures.

Chapter 12: Temperature Control—Simulations. Evaluation and com-
parison of the performance of the linear and nonlinear con-
trollers designed in the previous chapter.

Chapter 13 Temperature Control—Experimental Results. Contains
a description and results from the experiments of the linear
controller at the furnace no. 2 at The Danish Steel Works
Ltd.

The conclusions on the work done in this thesis are given in Chapter 14.
The important variables used throughout the thesis are listed in the last
chapter: Notations.

15



2

The Thickness Control
Problem

In this chapter a more detailed description of the hot rolling process is
given. The description will serve as a basis for the work in the follow-
ing chapters. The main purposes are to give the reader a feeling for the
problem and to introduce the necessary concepts. It should here be noted
that this is a description of the rolling process seen from a control engi-
neer’s point of view and therefore a lot of details are left out. For more
detailed descriptions of the process the reader should read the references
as a supplement.

In the following, hot rolling is first described in general and a short
introduction to the planning of the rolling sequence is given. The function-
ality of the rolling mill, relevant for the thickness control, is also described.
After this the thickness control problem is described in more detail.

2.1 Hot Rolling of Steel Plates

The purpose of the hot rolling process is to turn preheated steel blocks
into plates, that is to make them longer and thinner. The steel blocks
are called slabs. The thickness of the slabs is reduced by pulling them
through two parallel rolls, see Figure 2.1.

Each time the plate is pulled through the rolls is called a pass and
the difference between the ingoing and outgoing thickness is called the
thickness reduction. As indicated in Figure 2.1 it is possible to change the
outgoing thickness by moving the upper roll. Due to physical limitations
the thickness reduction in one pass is limited. It is therefore necessary
with several passes before the plate has obtained the desired thickness. In
practice this is done by reversing the rolls when the pass is finished and
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2.1 Hot Rolling of Steel Plates

Rolling direction

Steel plate

Rolls Movement of upper roll

Figure 2.1 The principle of the hot rolling process. The thickness of the steel plate
is reduced by pulling it through two parallel rolls.

then rolling the plate in the other direction. The series of passes from slab
to finished plate is called a pass schedule. The above process is called hot
rolling and the equipment performing the deformation of the steel plate
is called a hot rolling mill.

The thickness of the slabs at The Danish Steel Works Ltd. are 100, 210,
or 260 mm before the rolling is started. Before rolling the slab tempera-
ture is around 1120 ○ C and after rolling the plate temperature is between
1000 ○ C and 800 ○ C. Normally the width of a finished plate is between 2 m
and 3 m, the length is between 10 m and 25 m, and the thickness is be-
tween 6 mm and 100 mm. The weight of one plate varies between 1, 000
kg and 13, 000 kg. The forces obtained during rolling are quite large, the
maximal permitted vertical force, the rolling force, is 37.3 MN. This is
equivalent to the weight of 1900 Volvo cars! To be able to handle these
large forces the hot rolling mill is quite a solid construction, it is 13 m
high, 5 m wide and the diameter of the rolls used for deforming the plate
is 1 m. Even if the equipment is large it is possible to obtain quite accu-
rate dimensions of the rolled plates, typical thickness tolerances for thin
plates are in the range of ±0.2 mm.

A schematic diagram of the rolling mill is shown in Figure 2.2. When
comparing to Figure 2.1 it is seen that a number of things are added. The
work rolls are the rolls used for deforming the steel plate, while the backup
rolls are used for supporting the work rolls. This is to prevent excessive
bending of the work rolls. The mill frame is used for holding the rolls and
the equipment used for positioning the upper roll pack, which consists of
the upper backup and work rolls. There are two ways of adjusting the
position of the upper roll pack:

• using the screws;

• using the hydraulic positioning systems.

The screws are, as the name indicates, two large screws driven by two dc-
motors while the hydraulic positioning systems are two grease cylinders

17



Chapter 2. The Thickness Control Problem

Upper backup roll

Upper work roll

Steel plate

Lower backup roll

Lower work roll

Screws

Hydraulic positioning
systems

North side South side

Rolling direction
Front viewSide view

Mill frame

Roll gap

Roll position

Figure 2.2 Principal diagrams of the rolling mill seen from the side and the front.
The main thing to note here is the functionality of the positioning systems for the
upper rolls.

placed between the screws and the upper roll pack. The screws are used
for large position changes between passes while the hydraulic systems are
used for small position changes between and during the passes. There are
screws and hydraulic systems at both sides of the rolls. The two sides are
in the thesis called the north and the south sides respectively, due to
the geographical layout at The Danish Steel Works Ltd. Note that it is
possible to adjust the position of the roll pack independently at the north
and south sides and we therefore have a multivariable system.

The main limitation of the rolling mill is the magnitude of the supply
pressure of the hydraulic systems. If the pressure due to the rolling force
exceeds this limit it is not possible for the hydraulic systems to operate
and the rolling is terminated. This has to be taken into consideration
when planning the thickness reductions of the pass schedule.

Using a minimum of time for rolling a plate has several advantages.
One is that the rolling is finished while the plate still is hot and therefore
soft. Another advantage is that the rolling mill capacity is maximized.
Careful planning of the pass schedule to ensure maximal utilization of
the rolling mill capacity is therefore an important matter. Here maximal
utilization implies that all passes should be rolled with a rolling force as
close to the limit as possible. Today the planning is handled by a computer

18



2.2 Controlling the Plate Thickness

control system which optimizes the thickness reduction in each pass to
ensure that the rolling is done as fast as possible, for a description of
a similar system see [Davies et al., 1983]. The computer control system
finds the desired set-points for the roll position, rolling force, and plate
thickness. These set-points are transferred to the thickness control sys-
tem, which operates in two modes:

• relative control, used the first 5 to 15 passes dependent on plate
length, width and thickness

• absolute control, used in the last 4 passes.

The main difference between the absolute and relative control modes is
the way the thickness reference is generated. In relative control the task
of the thickness control system is to keep the thickness close to the value
obtained without thickness control in the beginning of the pass. The goal
of the absolute control is to keep the thickness as close as possible to
the value specified by the planning system. The purpose of the relative
control is to prepare the plate for the absolute control. The absolute control
part is the one relevant for the thickness accuracy.The thickness control
algorithm is analyzed in Chapter 3.

2.2 Controlling the Plate Thickness

The reason why it is necessary to control the plate thickness during a pass
is that the vertical forces obtained in connection with the deformation of
the steel plate are sufficiently large for elastic deformation of the rolling
mill. At the maximal rolling force the deformation of the rolling mill is
7 mm, which is of the same order of magnitude as the plate thickness
for the thin plates in the final passes. Due to the elastic deformation of
the rolling mill, two different concepts for the roll gap, see Figure 2.2, are
used, the unloaded roll gap, which is the roll gap between the passes, and
the loaded roll gap, which is the roll gap during the pass.

The zero point of the unloaded roll gap varies with time. This is be-
cause of the thermal expansion of the rolls due to heating by the steel
plates and wear of the work rolls. It is therefore necessary to find the
zero point for the unloaded roll gap regularly. This can be done is by
pressing the rolls together with a large force. When the measured posi-
tion is corrected for the mill deflection we have a reliable mean value for
the zero point of the unloaded roll gap. Another thing that affects the zero
point of the unloaded roll gap is the roll eccentricity and ovalness. These
phenomena vary considerably faster with time than the wear and thermal
expansion. Therefore more advanced methods are needed to compensate
for the roll ovalness and eccentricity.

19



Chapter 2. The Thickness Control Problem

Due to the bending of the rolls the plate is always thicker at the center
than at the edges, this phenomenon is called plate crown. This results
in an unnecessary use of material. To cancel this effect, to some extent,
the work rolls are made thicker at the center than at the edges. This is
referred to as roll crown.

If the rolling force during the pass was constant it would be possible
to preset the position of the upper roll pack to ensure that the loaded roll
gap was equal to the desired plate thickness. Unfortunately, the rolling
force is hard to predict and it varies during the pass. These variations are
due to different characteristics of the steel plate along the plate length:

• variation of the ingoing plate thickness;

• variation of the plate hardness.

The variations of the ingoing plate thickness are due to imperfect thick-
ness control and the variations of the plate hardness are mainly induced
by variations of the plate temperature. The temperature variations are
due to inhomogeneous heating by the reheating furnaces and cooling by
the roller tables used for transporting the plate. As will be seen in the data
collection in Chapter 5 these disturbances have a significant influence on
the plate thickness. In general the dynamics of the hydraulic systems are
considerably slower than the dynamics of the mill stand. This is one of
the reasons why it is difficult to eliminate the high frequency variations
of the plate thickness. The steady state gain and the dynamics of the
rolling process vary with material properties, this will be investigated in
Chapter 7. Apart from the material properties the rolling force also varies
with the thickness reduction, see [Roberts, 1983].

The thickness of the steel plate is controlled by varying the position
of the hydraulic systems during the pass, that is, the hydraulic systems
are the actuators of the thickness control system. A main difficulty in
connection with the thickness control is that until now it has not been
possible to measure the plate thickness during the rolling. The reason
is that it is difficult to build reliable equipment for measuring the plate
thickness because of the heat radiation from the steel plate and the steam
from the water used for cleaning the plate surface during rolling. Since it
is not possible to measure the thickness during the the pass it is necessary
to estimate it. This estimate can then be updated using a value of the
thickness measured after the last pass, see [Ferguson et al., 1986].

The available measurements for the thickness control are:

• the positions of the screws;

• the positions of the hydraulic systems;

• the rolling forces at the north and south sides.

20



2.3 Conclusions

The rolling force is interesting because it is an internal variable which is
closely related to the plate hardness. Since it is possible to get a reliable
measurement of the rolling force it is often used for the thickness control,
see [Wood et al., 1977].

2.3 Conclusions

With the above basic description of the control problem in mind we con-
clude that the thickness control mainly is a regulator problem where the
main task of the thickness control is to eliminate the effects of process
disturbances. An additional difficulty, which makes the thickness control
problem non-standard, is that it is not possible to measure the process
output in connection with the control.

A natural question to be asked now is: How is the thickness control
problem solved today? This question will be treated in the following chap-
ter.
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3

Thickness Control of Hot
Rolling Mills

The purpose of this chapter is to describe the state of the art (1995) of
thickness control for hot rolling mills. This is done to prepare the reader
for the fundamental ideas used in the following chapters.

First a general statement of the thickness control problem is given and
a general controller structure is derived. After this one of the state-of-the-
art models is described and using this model the structure of a thickness
controller is found. The performance and stability of this control struc-
ture is then analyzed. The thickness control laws rely on a fundamental
symmetry assumption and in the last section an example is presented of
what happens if the symmetry assumption is not fulfilled. This is done to
illustrate the potential advantages of a multivariable control strategy.

3.1 What is Needed?

Inspired by Chapter 2 we formulate the thickness control problem for hot
rolling mills:

The purpose of the thickness control for a hot rolling mill is to
maintain the specified thickness despite:

• variations of the plate hardness;

• variations of the ingoing thickness.

Since the plate thickness can not be measured during rolling it
has to be estimated.

We conclude that we need a model for the controller design, a controller
able to cancel the above disturbances, and an observer for estimating the
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3.1 What is Needed?

MillController - -

-

6

Observer
�

�

6

-

xvr(t) f (t)

z(t)

ve(t)

r(t) -

v(t)

Figure 3.1 General structure of the thickness controller. Here f is the rolling force
measurement, z is the roll position measurement, v is the plate thickness, r is the
thickness reference, ve is the estimate of the plate thickness, and xvr is the control
signal for the positioning systems. The observer is necessary since it is not possible
to measure the plate thickness during rolling.

plate thickness during the rolling. Later on two models will be used. One
for the controller design and one used in the observer for estimating the
plate thickness. The reason for using two different models is that the
rolling force measurement is available when implementing the controller,
but is not of much use when designing the controller since it is just an
internal variable of the rolling mill and not an independent input of the
process. As will be seen later the rolling force is of good use when the
thickness is to be estimated, and it is therefore used as an input for the
observer.

At our disposal we have the signals, see Figure 2.2,

• the upper roll positions at the north and the south sides, which are
the sums of the screw and the hydraulic positions, zT � [ zn zs ];

• the rolling force measurements at the north and south sides,
f T � [ fn fs ].

The variables we want to control are

• the plate thickness at the north and south sides vT � [ vn vs ].
The principal structure of the thickness controller is shown in Figure 3.1.
Usually the same controller structure is used for absolute and relative
control. The controller parameters can be adjusted dependent on the mode
of operation if necessary. The controller structure is used both for the
existing control strategy and the new control strategy developed in this
report.
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Chapter 3. Thickness Control of Hot Rolling Mills

3.2 What is Done Already?

Looking at the existing thickness control strategies described in various
articles and papers we conclude that the models and observers used for
control purposes for the rolling stand are static and scalar, see for instance
[Choi et al., 1994], [Edwards, 1978], [Asada et al., 1986], [Bryant et al.,
1975], [Ferguson et al., 1986], [Ginzburg, 1984], [Atori et al., 1992], [Nak-
agawa et al., 1990], [Saito et al., 1981], [Teoh et al., 1984], and [Yamashita
et al., 1976]. The scalar models are found by using the mean values of the
variables at the north and south sides.

Normally the rolling mill is modeled as a nonlinear spring K ( f , w)
where w is the plate width f are the rolling forces. The plate is modeled
as a time varying spring am(t). Since am and K are spring constants they
are real and positive.

Assuming that the plate thickness is equal to the loaded roll gap we
find that the mean value of the deflection of the rolling mill is the differ-
ence between the mean value of the plate thickness after pass v and the
mean value of the roll positions z and ovalness o, see Figure 3.2,

v(t) − z(t) − o(t),
where z � 1

2 (zn+ zs), , and v � 1
2(vn+ vs). vn is the plate thickness at the

north edge and vs is the plate thickness at the south edge.
The deflection of the plate is equal to the thickness reduction, see

Figure 3.2

v−1(t) − v(t),
where v−1 � 1

2 (v−1n+v−1s). Here v−1n is the ingoing thickness at the north
edge and v−1s is the ingoing thickness at the south edge.

Since the rolling mill and the plate are modeled as springs we find
the mean value of the rolling force f by multiplying the deflection of the
rolling mill by the mill spring coefficient K and the deflection of the plate
by the plate hardness am. As illustrated by Figure 3.2 these two forces
are equal and we therefore arrive at the equation

f (t) � am(t)(v−1(t) − v(t)) � K ( f , w)(v(t) − z(t) − o(t)), (3.1)
where f � 1

2 ( fn+ fs). We are now able to derive the equations for the mean
value of plate thickness v after pass, where we suppress the arguments
for convenience

v � 1
K

f + z+ o (3.2)

� K
K + am

(z+ o) + am

K + am
v−1. (3.3)
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Rolling mill

Steel platea   
m

K

−1v   (t)−v(t)  
v (t)−z(t)−o(t)

Figure 3.2 One of the state-of-the-art models used for thickness control today.
The steel plate and the rolling mill are modeled as interconnected springs. am is
the spring coefficient of the material and K is the mill spring coefficient of the
mill. Note that the representation of the thickness reduction in the figure is a bit
unphysical to obtain a simpler representation in the illustration.

We now see why the mean value of the force f is used for the thickness
estimation. Using the rolling force it is possible to estimate the plate thick-
ness without knowing the plate hardness am and the ingoing thickness
v−1. The roll eccentricity and ovalness o still enters (3.2) as an unmeasur-
able disturbance. Eq. (3.2) is often referred to as the gaugemeter equation.
Note that the gain of the relation between mean value of the thickness v
and the mean value of the position z in (3.3) is time varying due to the
variations of the plate hardness am and the mill spring coefficient K .

The two hydraulic systems are usually controlled using two inner
loops, one for the south side and one for the north side, see for instance
[Huzyak and Gerber, 1984], [Ginzburg, 1984], [Saito et al., 1981], and
[Nakagawa et al., 1990]. We model the hydraulic systems as a second
order system, with unit steady state gain

zh � Ghzr � ω2
h

p2 + 2ζ hω hp+ω2
h

zr (3.4)

where zr is the reference for the positioning system from the thickness
controller and zh is the mean position of the hydraulic systems found using
Gh. For a perfect model fit we have z � zh. Here p � d

dt is the differential
operator, and Gh is the transfer function for the hydraulic system.
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Figure 3.3 The state-of-the-art thickness control. Here r is the reference for the
mean value of the plate thickness v, ve is the estimate of the mean value of the thick-
ness, zr is the reference for the position controllers, and xvr are the control signals
for the positing systems. The output signals are the roll positions z, the rolling forces
f , and the plate thicknesses v. In this solution the hydraulic positioning systems
are controlled by separate controllers.

Using (3.2) we obtain the observer for the thickness estimation

ve � 1
K

f + z+ oe,

where K is an estimate of the mean value of the mill spring coefficient
for the north and south sides, oe is an estimate of the roll eccentricity and
ovalness o, and ve is an estimate of the mean value of the thickness v.
Using this for estimating the plate thickness we have the control law

zr � Cv(p) (r − ve) � Cv(p)
(

r − 1
K

f − z− oe

)
, (3.5)

where Cv is the transfer function for the thickness controller and r is the
reference for the mean thickness v.

The structure of the control system is shown in Figure 3.3. For more
detailed descriptions of the thickness control problem, see [Middleton and
Goodwin, 1990] and [Grimble and Johnson, 1988].

3.3 Analysis of the State-of-the-Art Solution

Introducing zh for z in (3.5) and using (3.4) and (3.1) we find that

zh � GhCv

1+ GhCv

(
r − am

K
(v−1 − v) − oe

)
.
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3.3 Analysis of the State-of-the-Art Solution

Inserting this for z in (3.3) and assuming that the material hardness am

varies slowly and that the estimate of the mill spring coefficient K is kept
constant during the pass we find that

(1− ϕ Gt)v � K
am + K

Gtr + K
am + K

(o− Gtoe)

+ am

am + K

(
1− K

K
Gt

)
v−1, (3.6)

where Gt � (GhCv)/(1+ GhCv) and ϕ � (K/K)am/(am + K ). Normally
an integrator is included in the thickness controller Cv and therefore the
steady state gain of Gt will be 1.

Performance

Several things can be concluded from (3.6). If K � K we will have full
compensation for the mill deflection (v � r) at steady state, since 1−ϕ Gt

reduces to K/(am + K ) and the term on v−1 vanishes. However, if oe � 0
then the roll eccentricity and ovalness o affects the mean value of the
plate thickness v with a gain of 1 if K � K . It can be seen from (3.3) that
without the thickness control o is reduced by a factor K/(am + K ). The
thickness control therefore tends to amplify the effect of roll eccentricity
and ovalness. For a more detailed analysis of the accuracy of the thickness
control, see [Kokai et al., 1985].

It is not easy to see the dynamic effects of a change of the material
hardness am on the plate thickness v from (3.6). We only dare to conclude
that 1−ϕ Gt and hereby the closed loop dynamics of the thickness control
system will be affected by such a disturbance.

The left side of (3.6) shows that the thickness control uses positive
feedback. This stems from the fact that if the plate thickness for some
reason becomes too large it is necessary to close the roll gap which in-
creases the rolling force and thereby the plate thickness by a factor ϕ Gt.
Since ϕ < 1, for K � K the plate thickness v will, however, still be re-
duced by closing the roll gap in this case. The positive feedback can also
be seen from the fact that a too large rolling force makes it necessary
to close the roll gap which makes the force even larger—this also illus-
trates the fact that the thickness control tends to amplify the rolling force
variations.

The problem of eliminating the effects of the roll eccentricity and oval-
ness o has been given much attention. There are two main groups of
methods to reduce the impact of o

• Traditional methods, where it is exploited that o can be observed
as small periodic variations in the rolling forces f . Here band-stop
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Chapter 3. Thickness Control of Hot Rolling Mills

filters and dead-zones are used to prevent the thickness control to
react to these variations in the rolling force. These two methods only
compensate partly for the roll eccentricity. Another possibility is to
add an inner force control loop to ensure that the small variations of
the rolling are cancelled. This method is able to compensate fully for
the roll eccentricity and ovalness. For a comparison of these methods
see [Edwards, 1978].

• Advanced methods, where oe is estimated and used in the thickness
control, as in (3.5).

Quite advanced methods have been used for the last alternative, see for
instance [Kitamura et al., 1987], [Yeh et al., 1991], and [Edwards et al.,
1987].

Stability

To illustrate the stability problem we represent the characteristic polyno-
mial on the form shown in Figure 3.4. Assuming that Gt is stable, and
using the small gain theorem, see [Desoer and Vidyasagar, 1975], we find
that the closed loop will be stable if

γ 1 ≥ sup
s�jω

tGt(s)t

γ 2 ≥ sup
t
tϕ (t)t

γ 1γ 2 < 1.

Even if it by the controller design is ensured that γ 1 ≤ 1, the mill spring
coefficient K can vary approximately ±20%, which makes it necessary
to increase the value of the estimate of the mill spring coefficient K to
ensure that γ 2 < 1. Normally K is made 20% larger than K , this is
called detuning and deteriorates the performance of the thickness control
system. Note that the problem with the instability is introduced by the
fact that it is necessary to estimate the plate thickness using an observer.

3.4 What Can Be Improved?—An Example

A general comment to the way thickness control is done today could be
that the rolling mill is quite a complex structure which is modeled by a
spring which is a simple mechanical structure. Several questions about
the dynamics and multivariable structure of the process can be asked. We
concentrate on this and will therefore not look at the compensation for roll
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Figure 3.4 Standard representation of thickness control problem for using the
small gain theorem to determine the stability.

eccentricity and ovalness, since this subject is considered well developed
already.

The models described above use the mean values of the variables of the
north and south sides. The implicit assumption is that the rolling process
is symmetric around the vertical symmetry line of the rolling mill. This
symmetry can be disturbed if the plate is not centered in the mill or if
the temperature of one side of the plate deviates from the temperature of
the other side. The variations of the plate hardness is typically induced
by inhomogeneous heating by the reheating furnaces and inhomogeneous
cooling by the roller tables.

The consequence of such asymmetric effects are shown in the simula-
tions in Figure 3.5. Here the traditional thickness controller is combined
with a more advanced model derived in the following chapters. In the
simulations the plate hardness across the plate width is asymmetric. In
the simulations asymmetric conditions in the plate hardness of ±20 %
between the plate edges are introduced at t � 0.5. For more details we
refer to Chapter 7.

As seen from the figure the traditional control system does not react
properly. The reason is that the mean value of the plate thickness is not
changed. Worse is the fact that the plate length of the two sides will be
different due to the different thickness reductions—this will give the plate
an undesired curved shape.

To compensate for the hardness asymmetry we need:

• a multivariable model;

• a multivariable observer;

• a controller that can handle the multivariable case.

Due to the nonzero mass of the roll pack and the damping of the rolling
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Figure 3.5 The effect of asymmetric material hardness using the traditional thick-
ness controller. Top plot, full: roll position north side zn and dashed: roll position at
the south side zs. These curves coincide. Middle plot, full: rolling force north side
fn and dashed: rolling force at the south side fs . Bottom plot, full: plate thickness
at north edge vn and dashed: plate thickness at south edge vs . It is seen that the
thickness errors due to the asymmetric material conditions remains unaffected. The
small change in the roll position is due to a slight change of the sum of the rolling
forces.

process the rolling mill is also a dynamical system. We will thus develop
dynamical multivariable models for the rolling mill in Chapter 4.

Since we are not able to measure the plate thickness we use the princi-
ple illustrated by Figure 3.1—the main difference will be that we increase
the complexity of the observer, and the model used for the thickness con-
trol. Since we can not measure the process output we are not able to use
a standard observer. We will therefore use an open loop observer for esti-
mating the plate thickness from the roll positions z and the rolling forces
f .
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3.5 Conclusions

3.5 Conclusions

We have now described how the thickness control problem is solved today.
The state of the art is a controller and an observer based on static scalar
models. Investigating the thickness control system we find that special
stability and performance problems occur since it is necessary to estimate
the controlled output.

Since the thickness controllers today rely on a symmetry assumption,
asymmetric rolling conditions cause errors in the control of the plate thick-
ness. More complex models and controllers are necessary to handle this
case. The derivation of these models and control strategies are the pur-
poses of the work presented in the first part of this thesis.
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4

Modeling of the Rolling Mill

The purpose of this chapter is to derive physical models for the rolling
mill, which is divided into two subsystems:

• the hydraulic systems used for positioning the roll pack;

• the rolling stand used for deforming the steel plate.

The model for the hydraulic systems is more or less standard, see [Gou,
1991], while the other is developed by the author and it will therefore be
described in more detail.

In the beginning of this chapter the model for the hydraulic systems is
derived. This is done by explaining how the real systems work and which
variables we can measure and from this determine a physical model that
describes the main characteristics of interest. The nonlinear differential
equations for the hydraulic systems are found from a physical model.

A model for the controller design and an observer for the thickness
estimation are derived. The difference is that the rolling forces, which
contain important information about the material properties of the plate,
are available for the observer. A physical model is used to find energy
functions for the rolling stand. The partial differential equations for the
stand are found from the energy functions and ordinary differential equa-
tions are derived using modal truncation of the solution to the PDE.

The models for the hydraulic systems and the model for the rolling
stand are combined to a total model for the entire system in the final part
of the chapter.

Aspects connected with the system identification, such as parameteri-
zation and identifiability, will be treated later, since they depend on which
realization of the models that is appropriate for describing the real sys-
tem.
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Figure 4.1 Schematic diagram of the main parts of the hydraulic system. The
servo valve controls the oil flow to the oil cylinder. The oil cylinder is connected to
the grease cylinder by the common piston. The grease piston moves the roll pack. In
the figure zn is the position measurement, xvn is the valve glider position, A1, A2, A3,
and A4 are areas of the hydraulic system, and fn is the rolling force measurement.

4.1 Hydraulic System

The modeling of the hydraulic systems has already been done by several
authors. The suggested nonlinear models do not differ much. For applica-
tion to rolling mills see, for instance, [Ginzburg, 1984], [Paul, 1975], and
[Gou, 1991].

There are two hydraulic systems on the rolling mill, one for each side.
The two systems are identical and therefore only the north system is
considered in the following. The hydraulic system can be divided into
three main parts, see Figure 4.1:

• servo valve—controls the oil flow to the system;

• oil cylinder—positioning of common piston;

• grease cylinder—positioning of grease piston and roll pack.

Since the compressibility of grease is smaller than the compressibility of
oil it is possible to use a higher working pressure in the grease cylinder.
This makes it possible to reduce the area of the grease piston, which
increases the stability of the mechanical construction. The common piston,
which connects the oil and grease cylinders, reduces the pressure from the
grease to the oil side and works as a mechanical amplifier.

The servo valve is used for controlling the velocity of the common
piston. This is done by varying the flow “through" the oil cylinder. The
velocity of the grease piston is controlled by adjusting the level in the
grease cylinder using the common piston. To ensure a low back pressure
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Chapter 4. Modeling of the Rolling Mill

when adjusting the roll pack downwards the right side of the oil cylinder
is drained for oil. Note that since the grease system is single acting the
entire system is single acting. That the system is single acting implies
that it is only possible to push the roll pack downwards with a large
force.

The available measurements are, see Figure 4.1:

• position of valve glider of the servo valve xvn,

• position of the common piston zn,

• rolling force fn.

Note that even if it is the position of the grease piston we want to
control it is the position of the common piston that is measured. The two
positions can though easily be related by assuming that the grease is
incompressible and using the ratio of the areas of the common piston.

The measurement of the grease pressure is used as a rolling force
measurement. The load on the hydraulic system is not directly included
in the model, it enters through the north rolling force fn. The most signif-
icant part of the load is the friction between the work rolls and the mill
frame. This implies that the rolling force measurement also includes the
frictional forces from the movement of the upper roll pack, see [Zeltkalns
et al., 1977]. Generally, backlash is not a problem when the plate is in the
mill since the mechanical system is pressed together with a large force.
Furthermore, the positioning system is lubricated with grease. Backlash
and friction will therefore not be considered here.

Physical Model

To be able to derive a mathematical model we first build a physical model,
which includes the properties of the hydraulic systems we want to model,
see Figure 4.2. Since it is not possible to measure the position of the grease
piston only the oil side is included in the physical model. The mass and
friction of the rest of the hydraulic system will therefore be included in
the load. Furthermore, the function of the servo valve is not considered
since it is not essential for the functionality of the hydraulic system.

The positive direction of the flow Q1 of the left side of the oil cylinder
is into the cylinder and the positive direction of the flow Q2 of the right
side of the oil cylinder is out of the cylinder. Note the leak flow between
the piston and the cylinder wall. Note furthermore that the pressures of
the return paths of the servo valve are set to zero and the supply pressure
Ps is assumed constant.

To derive a model we need to know the pressure at both sides of the
oil piston. To model the oil compressibility it is also necessary to know
the time derivative of these pressures. Since the pressure is measured at
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Figure 4.2 The physical model for the hydraulic systems. The model illustrates
the situations when the piston is moved to the left and to the right. In the figure Q1
and Q2 are the flows into the left and right side of the cylinder respectively, p1 and
p2 are the pressures at the left and right sides of the piston respectively, Ps is the
supply pressure, and fn is the rolling force at the north side of the mill. When the
servo valve glider position xvn is positive oil flows into the left side of the cylinder
and the piston moves to the right, when the valve glider position is negative the
piston is moved to the left. Note that the right side of the cylinder is drained for oil
to reduce the pressure at the right side of the piston when it is moved to the right.

the grease side only a linear combination of the pressures at the oil side
can be measured, neglecting mass and friction of the common piston the
relation is

A3

A4
fn(t) � A1p1(t) − A2p2(t), (4.1)

where p1 and p2 are the pressures at the left and right sides of the oil
cylinder, respectively, and fn is the rolling force. A1, A2, and A3 are the
areas of the common piston corresponding to p1, p2, and fn/A4 and A4 is
the area of the grease piston.

Since the oil is drained from the right side of the oil cylinder, we have
an additional leak flow. This makes it hard to find the values of the flow
Q2 and the pressure p2. When the valve glider position xvn is positive and
the positioning system in Figure 4.2 is moving to the right there is no
flow Q2 into the right side of the cylinder and we might assume that the
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Chapter 4. Modeling of the Rolling Mill

this side is drained for oil in this case. This leads us to the assumption

A1p1(t) � A3

A4
fn(t)

A2p2(t) � 0. (4.2)

When the valve glider position xvn is negative and the positioning system
therefore moves upwards there is an oil flow into the right side of the
cylinder and we can no longer assume that it is drained for oil. We here
make the simple assumption that the pressure A2p2 � η Ps. Intuitively
the coefficient η tells us how much of the pressure at the servo valve that
is applied at the common piston. The assumptions leads to the equations

A1p1(t) � A2η Ps + A3

A4
fn(t)

A2p2(t) � A2η Ps, (4.3)

which have been shown to work well in practice.

Derivation of Model

The model is derived by combining the flow through the servo valve and
the cylinder. Using [Trostmann, 1987] and [Gou, 1991] we find that the
flows through the servo valve can be modeled as

Case 1: xvn(t) ≥ 0Q1(t) � k1xvn(t)
√

p1(t) � k1xvn(t)
√

Ps − fn(t)
Q2(t) � k1xvn(t)

√
p2(t) � 0

(4.4)

Case 2: xvn(t) < 0
Q1(t) � k1xvn(t)

√
p1(t) � k1xvn(t)

√
η Ps + fn(t)

Q2(t) � k1xvn(t)
√

p2(t) � k1xvn(t)
√

η Ps,
(4.5)

where k1 is a positive constant. The supply pressure Ps and k1 have been
transformed to equivalent constants assuming that A1 � A2. The zero
point for the valve glider is at the middle position and the positive direc-
tion of movement is from the right to the left. The two sets of equations
comes from the different flow paths depending on the position of the valve
glider. The equations are derived using Bernoulli’s laws for flow through
an orifice—which in this case is the variable opening area of the servo
valve.
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Choosing the zero point for the common piston in the lowermost (to the
right) position and the positive direction of movement to be upwards (from
the right to the left), the flow through the oil cylinder can be modeled as

Q1(t) + Q2(t) � −(A1 + A2)żn(t) + A1k2(zt − zn(t)) ḟn(t) + k3 fn(t), (4.6)

where zt is the top position of the common piston, zn is the position of
the common piston and k2 and k3 are positive constants. The first term
on the right hand side is the flow due to the movement of the piston. The
second term is due to the compressibility of the hydraulic oil which is
proportional to the volume. This explains the appearance of A1(zt − zn)
which is the volume of the left side as a function of the position zn. The
third term is the leak flow between the common piston and oil cylinder
wall, which is assumed proportional to the pressure difference between
the two sides which by (4.2) and (4.3) is proportional to the rolling force
fn.

Combining (4.4), (4.5), and (4.6) we obtain the following differential
equations for the hydraulic system, where we introduce the variable zhn

as the output of the model

Model for hydraulic system

−żhn(t) � ahn1ξ n(t) − ahn2(zt − zhn(t)) ḟn(t) − ahn3 fn(t), (4.7)

where

ξ n(t) �


xvn(t)

√
Ps − fn(t) xvn(t) ≥ 0

xvn(t)(
√

η Ps +
√

η Ps + fn(t)) xvn(t) < 0.

Inputs to the model are the valve glider position xvn and the rolling
force measurement fn and the output is the position of the common piston
zhn . For a perfect model match we have that zhn � zn.

4.2 Rolling Stand

We will now derive models for the rolling stand, which consist of the rolling
mill frame, rolls and steel plate. Inputs to this model are the positions of
the hydraulic systems and outputs are the plate thicknesses. As explained
in Chapter 3 both a model and an observer are needed for the thickness
control system. The difference between the model and the observer is that
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the rolling force measurements are available to the observer but not to
the model.

In the following we will first derive the model with the thickness pro-
file across the plate width as output. The output is then converted to a
number of normal coordinates, which are governed by a linear state space
equation. We find that the rolling force can also be found from from the
normal coordinates. This is used for deriving the observer which has an
estimate of the normal coordinates as output.

The author has found no reports in the literature that build a multi-
variable dynamical model for the rolling stand. For descriptions of sim-
pler models see, for instance, [Fujii and Saito, 1975], [Kokai et al., 1985],
[Mizuno, 19], and [Stone, 1969].

Physical Model

The rolling stand with the plate consists of three main parts:

• roll pack—used for reducing the plate thickness;

• mill frame—holds the rolls;

• steel plate.

Since the border of the model for the hydraulic system is the common
piston, the model for the rolling stand includes the grease cylinder. This
implies that the compressibility and damping of the grease will be implic-
itly included in the rolling stand model. A schematic diagram is shown in
Figure 4.3

The main characteristic of interest in the modeling of the rolling stand
is the elastic deflection of the roll pack and the mill frame and the plastic
deformation of the steel plate. The model should cover the behavior of
both the rolling stand and the steel plate. We first assume that the mill
frame only deflects in vertical direction which is supported by the fact
that vertical component of the rolling forces are dominating. The next
assumption is that the plate is always centered in the rolling mill, this is
ensured in practice by centering devices on each side of the rolling mill.
Since the work and backup rolls are pressed together with a large force
during rolling and the backup rolls work as the only support for the work
rolls the work and backup rolls are joined to one roll. As a final part of
the preparations for the modeling we set the width of the rolling stand is
equal to the plate width, this includes some of the deflection of the rolls
in the deflection of the mill frame in the model. This makes it possible
to use the mill spring coefficient K from the existing control system for
the physical model. Another advantage is that all the parameters will be
independent of the spatial variable in the width direction x, which results
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Mill frame

Mill frame

Upper roll pack Backup roll

Work roll

Backup roll

Work roll

Steel plate

North positioning
system

South positioning
system

Figure 4.3 Diagram of the main parts of the rolling stand which are the roll pack,
the mill frame, rolls, and steel plate. These are the elements we want to include in
the model.

Steel plate

Mill frame Mill frame
Roll

Roll

North positioning
system South positioning

system

Horizontal
symmetry line

Figure 4.4 Diagram of the main parts of the rolling stand, illustrating the as-
sumptions made in the modeling: the work and backup rolls behave as one roll, the
plate is always centered in the plate mill, and that the width of the rolls are equal
to the plate width.

in a simpler structure of the mathematical model. The above assumptions
make it possible to make the simplified model shown in Figure 4.4.

Considering plate halves above and below the horizontal symmetry
line we now assume the forces applied for deforming the two parts are
equal. A difference in the two forces will result in an adjustment of the
vertical position of the plate and thus reestablish the equality of the forces
after a while. Since these forces are small compared to the rolling forces
we believe that the effect of the vertical adjustments will be neglectable.
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Figure 4.5 Physical model of the rolling stand. This figure is the basis for the
energy functions and thus the mathematical model for the rolling stand. In the
figure fn and fs are the rolling forces, zd is the roll position, pd is the pressure
distribution between plate and roll, vd is the plate thickness profile, and K is the
mill deflection coefficient.

Assuming that the hardness of the plate is the same for the top and
bottom halves gives us the possibility to establish symmetry. This makes
it only necessary to model one half of the rolling stand—we here choose
to consider the top half.

Using the above assumptions and experience from the system identi-
fication the physical model shown on Figure 4.5 is developed. Here the
rolling stand is modeled as two springs and the roll pack is modeled as an
elastic beam. The mill frame springs and the roll beam are deflected when
the roll beam is subjected to the pressure distribution from the material
during rolling. Using the positioning systems the thickness of the plate
can be adjusted. Ideal plastic behavior is assumed, which implies that the
thickness profile of the finished plate is the same as the roll profile. In
the model the beam ends are built-in, this implies that the orientation of
the beam ends are fixed. This gives two of the boundary conditions for the
model derived below.

To obtain a two dimensional model it is assumed that the area of
contact between rolls and plate is a line. The thickness profile of the plate
is 1

2 vd(x, t) and pd(x, t) is the pressure distribution applied to the work
roll by the plate. Note that zd(0, t) and zd(w, t) in the figure are not the
positions of the hydraulic systems since the width of the rolling stand is
set equal to the plate width—this will be taken into consideration when
deriving the model.

The available measurements are also shown in Figure 4.5:

• positions of hydraulic systems at the plate edges zd(0, t) and zd(w, t);
• rolling forces f (t) � [ fn(t) fs(t) ]T ;

• thickness profile of the plate in the width direction 1
2 vd(x, t).
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4.2 Rolling Stand

Since we only derive a model for the top half of the plate, we work with half
the plate thickness and half the position zd. The two first measurements
are the same as for the hydraulic system while the thickness is measured
after the rolling. The output of the model is the thickness profile 1

2vd(x, t).

The Model

Deriving the model is complicated and it is therefore divided into the
following steps:

• choice of material model;

• derivation of a partial differential equation (PDE) for the rolling
stand;

• construction of an ordinary differential equation (ODE) from the
PDE.

The theoretical aspects are described during the derivation.

Material model Since the rolling force is not available in the model
we need a model for how the pressure distribution depends on the plate
thickness. This is a complex problem, but to preserve simplicity we here
assume plane strain, which implies that that the material is homogeneous
and there consequently is no material flow in the sidewise direction. The
result is that the pressure in one point only depends on the plate thickness
at that point. It is straight forward to remove the assumption that the
material is homogeneous in the sidewise direction and this is done for
test purposes in Chapter 7. The important assumption is that there is no
material flow in the sidewise direction, since this excludes shear forces
when deforming the material. A measure of the sidewise material flow is
how much wider the plate gets during rolling. In practice this amount is
small compared to the plate width, and this indicates that the sidewise
material flow can be neglected in the model.

Generally, the material characteristics include a stiffness and a damp-
ing term. The input variables are thickness reduction and roll velocity, see
[Roberts, 1983] and [Guo, 1994]. Traditionally the models are nonlinear
functions of the reduction

rd(x, t) �
1
2 vd−1(x, t) − 1

2 vd(x, t)
1
2 vd−1(x, t) ,

the strain rate (the time derivative of the reduction rd), and plate tem-
perature. Here 1

2vd−1 is the thickness profile for the ingoing thickness.
Note that the strain rate ṙd is a function of both v̇d, v̇d−1 and the work
roll speed vr.
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Chapter 4. Modeling of the Rolling Mill

To prevent waves in the length direction the computer planning system
tries to withhold a constant relative crown. This means that the shape of
the thickness profile is keep constant in the last part of the pass schedule.
This implies that we can assume that

1
2 vd(x, t) � ϖ (t) 1

2vd−1(x, t),

where ϖ always is smaller than 1.
Using a nonlinear material model will result in a nonlinear PDE as

a model for the rolling stand. This will be hard to handle and assuming
that the thickness control works properly we choose to work with a linear
material model at a working point, which is valid for small variations
of vd, v̇d, and vr. Assuming that ϖ varies slowly we postulate that the
external transverse force applied to the roll is

pd(x, t) � −am1(t)(1−ϖ (t)) 1
2vd(x, t)

− am2(t)(1−ϖ (t)) d
dt

1
2vd(x, t) + am3(t)vr(t), (4.8)

where vr is the rotational speed of the work roll and am1, am2, and am3

are positive parameters. In the following we will include the variations of
ϖ in am1 and am2. Note that the pressure profile will be a function of the
thickness profile obtained in earlier passes, this gives the rolling process
repetitive structure, see for instance [Foda and Agathoklis, 1992].

The variation of the material parameters is mainly due to the vari-
ations of the plate temperature which normally does not change much
during one pass. As seen from (4.8) the material model for the steel plate
is time varying. The system identification will be based on data from one
pass and the controller design will also be done for one pass at the time.
The main demand on the model is therefore that it should be valid for one
pass at the time and not for the entire rolling. We therefore assume that
the material parameters am1, am2, and am3 vary slowly compared to the
dynamics of the rolling stand. This will make it possible to assume that
the material parameters are constant when doing the modeling, system
identification, and controller design and we will therefore be able to use
methods for time invariant systems for these tasks.

PDE for the rolling stand Assuming that the roll packs behave as so
called slender members we can model them as Euler-Bernoulli beams, see
[Abildgaard, 1991] and [Crandall et al., 1978]. Slender members behave as
they were made of a large number of independent layers and this implies
that no shear forces are present when the beam is deflected. The bending
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4.2 Rolling Stand

moment of the roll pack is then given by

Mb � EI
�2 1

2 vd(x, t)
�x2 ,

where E is Young’s modulus of elasticity and I is the second moment of
area of the work roll, see [Pedersen, 1995b]. The roll pack is, however, not
exactly a slender member, but since the roll bending is small compared to
the roll geometry the shear strain will be small compared to the normal
strain when the roll is deformed. This justifies the assumptions.

To represent the effect of a position change on the thickness profile
1
2 vd(x, t) for all x we introduce the function

zd(x, t) �
[

1− x+ 1
2 (l−w)

l
x+ 1

2 (l−w)
l

][ 1
2 zn
1
2 zs

]
x ∈ [0, w],

where l is the width of the rolling stand. The variable zd(x, t) describes
the roll position across the plate width, see Figure 4.5.

The model for the rolling stand is found by forming the energy function
for the mechanical structure shown in Figure 4.5 and then using the
Euler-Lagrange equations on the energy functions, see [Meirovitch, 1980].
The method used here is the same as that used in optimal control, here
we introduce the performance function∫ t2

t1

Ll(t)dt�
∫ t2

t1

(Tl(t) − Vl(t))dt,

where Tl is the total kinetic energy and Vl is the total potential energy for
the system. In order to fulfill the physical laws, the system will always be
in the state minimizing the performance function Ll , see [Hansen, 1993].

The energy functions for the physical model in Figure 4.5 are found to

Tl(t) � 1
2

∫ w

0
ρ A( 1

2 v̇d(x, t))2dx

Vl(t) � 1
2

∫ w

0

(
EI( 1

2v(2)d (x, t))2 + am1
( 1

2 vd(x, t))2
)

dx

+ 1
2

2K
(( 1

2 vd(0, t) − zd(0, t))2+ ( 1
2vd(w, t) − zd(w, t))2) ,

where (i) denotes i times partial derivation with respect to x, ρ is the mass
density of steel, A is the cross sectional area of the roll pack and 2K is
the spring constant for half a leg of the mill frame, see [Pedersen, 1995b].
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Chapter 4. Modeling of the Rolling Mill

The term in Tl is the kinetic energy due to the velocity of the roll pack,
the first term in Vl are the potential energy due to the bending of the roll
pack, the second term is the potential energy used for deforming the steel
plate and the two last terms is the energy used for deforming the springs
of the sides of the rolling stand.

The original Euler-Lagrange formulation only covers conservative sys-
tems, i.e., systems without losses. To include the losses of the mate-
rial model these are represented as non-conservative virtual work, see
[Meirovitch, 1980]

δ W(t) �
∫ w

0

(−am2
1
2 v̇d(x, t) + am3vr(t)

) 1
2δ vd(x, t)dx,

and can in this way be included in the Lagrangian formulation.
Using Euler-Lagrange’s equations we obtain the PDE, see [Meirovitch,

1980]

EI 1
2v(4)d (x, t) + am1

1
2vd(x, t) +ρ A1

2 v̈d(x, t) �
− am2

1
2 v̇d(x, t) + am3vr(t), x ∈ (0, w)

with the boundary conditions

1
2 v(1)d (0, t) � 0

1
2 v(1)d (w, t) � 0

(EI/2K ) 1
2 v(3)d (0, t) + 1

2 vd(0, t) � zd(0, t)
−(EI/2K ) 1

2v(3)d (w, t) + 1
2 vd(w, t) � zd(w, t). (4.9)

Note that since we have a 4th order PDE we have four boundary condi-
tions. The first two boundary conditions state that the orientation of the
beam ends are fixed while the two last imply that the forces at the beam
ends should be equal to the force applied to the springs.

A problem is now that we have non-homogeneous boundary conditions.
This can be solved by a state transformation

u(x, t) � 1
2vd(x, t) − ε(x) 1

2 z(t), x ∈ [0, w]
� 1

2vd(x, t) − ( 1
2 + w

2l cos( π
w x)) 1

2 zn(t) −
(

1
2 − w

2l cos( π
w x)) 1

2 zs(t)
(4.10)

where zT � [zn zs], u is the new state variable, and

ε(x) �
[
(1+ cos( π

w x)) (1− cos( π
w x))

]  1− x+ 1
2 (l−w)

l 0

0
x+ 1

2 (l−w)
l

 .
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The state transformation moves the terms for the roll position zd(x, t)
from the boundary conditions to the PDE and in this way we obtain an
extra input.

Applying the state transformation we obtain the PDE

EIu(4) + am2u̇+ am1u+ρ Aü � am3vr − am1ε 1
2 z− EIε (4) 1

2 z

− am2ε 1
2 ż−ρ Aε 1

2 z̈, x ∈ (0, w), (4.11)

with the (now homogeneous) boundary conditions

u(1)(0, t) � 0

u(1)(w, t) � 0

(EI/2K )u(3)(0, t) + u(0, t) � 0

−(EI/2K )u(3)(w, t) + u(w, t) � 0.

We now have the PDE with boundary conditions on standard form and
can thus proceed with the solution of the problem.

Obtaining the ODE For the PDE we define the eigenvalue problem(
EI

�4

�x4 + am1

)
φ i(x) � λ iρ Aφ i(x). (4.12)

This equation is, in general, fulfilled for an infinite set of real eigenvalues
λ i and eigenfunctions φ i which furthermore have to fulfill the boundary
conditions. Note that the eigenfunctions must belong to the same function
space as the solution to the PDE (they both have the same number of
continuous derivatives).

It can by partial integration and use of the boundary conditions be
shown that the differential operator L is self adjoint (〈La, b〉 � 〈a, Lb〉
where 〈⋅〉 is the inner product in L2[0, w]). This implies that the eigen-
functions are orthogonal and they furthermore form a complete set. Since
the solution to the PDE also belongs to this space it can be expanded as

u(x, t) �
∞∑

i�1

φ i(x)qi(t),

where the qi’s are called normal coordinates and are continuous functions
of t.

Since it is hard to work with an infinite series it is necessary to use an
approximate method when obtaining the ODEs. The method that will be

45



Chapter 4. Modeling of the Rolling Mill

used here is Galerkin’s method. This has the advantage that it preserves
the symmetry of the system when the approximate solution is calculated.
Furthermore, the method is simple to use and it is easy to understand
the main idea.

It is first of all assumed that the approximate solution û is given by
the finite series

û(x, t) � [φ 1(x) φ 2(x) ⋅ ⋅ ⋅ φ n(x)][q1(t) q2(t) ⋅ ⋅ ⋅ qn(t)]T . (4.13)

Introducing the approximate solution for u in the PDE, premultiplying
with the eigenfunctions [φ 1 φ 2 ⋅ ⋅ ⋅ φ n]T and integrating with respect to x
from 0 to w yields a set of differential equations for the normal coordinates
qi’s.

We now proceed with finding the eigenfunctions from (4.12) and the
boundary conditions. In order to satisfy (4.12) it is necessary that

φ (4)i (x) � kφ i(x), i � 1, . . .

where k is a real constant. The solution for this differential equation is

φ i(x) � ci1 cos(β i x) + ci2 sin(β ix) + ci3 cosh(β ix) + ci4 sinh(β ix),

which also is suggested in [Meirovitch, 1980]. We thus find that λ i �
(EIβ 4

i + am1)/ρ A.
Inserting the solution in the boundary conditions results in the system

of equations
0 β i 0 β i

−β i sin(β iw) β i cos(β iw) β i sinh(β iw) β i cosh(β iw)
1 −β 3

i EI/2K 1 β 3
i EI/2K

X1 X2 X3 X4




ci1

ci2

ci3

ci4

 � 0,

where

X1 � β 3
i (EI/2K ) sin(β iw) − cos(β iw)

X2 � −β 3
i (EI/2K ) cos(β iw) − sin(β iw)

X3 � β 3
i (EI/2K ) sinh(β iw) − cosh(β iw)

X4 � β 3
i (EI/2K ) cosh(β iw) − sinh(β iw).

The coefficients (up to a scaling constant) lie in the null space of the
above matrix. For the null space to have a dimension larger than zero,
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4.2 Rolling Stand

the determinant of the system should be zero—this can be utilized to find
the β i’s. Setting the determinant equal to zero yields the equation

(8β 3
i K EI sinh(β iw) − 8K 2 cosh(β iw)) cos(β iw) +

8β 3
i K EI cosh(β iw) − 4β 6

i EI2 sinh(β iw)) sin(β iw) + 8K 2 � 0,

which is transcendental and therefore has to be solved numerically. To
ensure uniqueness of the eigenfunctions the coefficients are normalized
such that

∫ w

0
ρ Aφ 2

i (x)dx � 1, i � 1, . . . .

Inserting the values for the physical constants found in in [Pedersen,
1995b] we can find the eigenfunctions for one specific plate width w.

For us the two first eigenfunctions are the most interesting. The reason
for this is that they describe the mean value and the wedge of the roll
gap, see Figure 4.6. The eigenvalues β i are used in increasing magnitude
when finding the eigenfunctions, this implies that the variations of the
eigenfunctions as a function of x increases with i. The terms

∫ w
0 εφ idx,∫ w

0 ε (4)φ idx, and
∫ w

0 φ idx therefore decrease with increasing i. This is due
to the more and more high frequency nature of the eigenfunctions and the
fact that the mean values of all other eigenfunctions than φ 1 are zero.

Looking at the differential equation found later in this chapter we
conclude that the steady state gains of the differential equations for the
normal coordinates qi decrease with increasing i. Investing these steady
state gains from 1

2 z to q we find that they typically are of a order of mag-
nitude 10−1 for the two first eigenfunctions φ 1 and φ 2, and then decrease
by a factor 10−3 for the following eigenfunctions. The system identification
has been performed using the three first eigenfunctions, but as indicated
by the above, it was found that φ 3 had little or no importance. We there-
fore only include the two first eigenfunctions in the model for the rolling
stand.

Applying Galerkin’s method on (4.11) yields the polynomial matrix
description (PMD), see [Kailath, 1980], relating the normal coordinates q
to the roll positions z, and the work roll speed vr

(
Ip2 + am2Γ1p+ EIΓ2 + am1Γ1

)
q(t) �

am3Γ5vr(t) −
(
ρ AΓ3p2 + am2Γ3p+ am1Γ3 + EIΓ4

) 1
2 z(t),
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Figure 4.6 The first two eigenfunctions φ 1 and φ 2 for the rolling stand. They
describe the mean value and the wedge of the roll gap and are the ones that will
be considered in the following.

where

Γ1(i, j) �
∫ w

0
φ i(x)φ j(x)dx � 1

ρ A
δ ij

Γ2(i, j) �
∫ w

0
φ (4)i (x)φ j(x)dx � β 4

i

ρ A
δ ij

Γ3(i) �
∫ w

0
φ i(x)ε(x)dx

Γ4(i) �
∫ w

0
φ i(x)ε (4)(x)dx

Γ5(i) �
∫ w

0
φ i(x)dx

where (i, j) denotes the position of the i’th row and the j’th column. δ is
the Kronecker function

δ ij �
{

1, when i � j

0, otherwise

Using the state transformation yc1 � qc+ρ AΓ3
1
2 z to remove the direct

term and the methods given in [Kailath, 1980] we obtain the state space
equations
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The model

 ẏc1

ẏc2

qc

 � [ Ac Bc

Cc Dc

] yc

1
2 z

vr



�

 −am2Γ1 I 0 0

−EIΓ2 − am1Γ1 0 EI(ρ AΓ2 Γ3 − Γ4) am3Γ5

I 0 −ρ AΓ3 0




yc1

yc2

1
2 z

vr


(4.14)

The inputs are the roll positions z and the roll speed vr, and the outputs
are the normal coordinates qc. yT

c � [ yc1 yc2 ] are the states of the model.
Since several state transformations are involved when finding the above
model the state variables can not be given any direct physical interpreta-
tion. For a perfect model match we have that qc � q.

The Observer

The purpose of the observer is to estimate the states of the model (4.14)
in an appropriate way. The difference is that we here have the rolling
force measurements at our disposal.

Using the fact that the shear force is equal to the rolling force at the
beam ends we have that

−EIu(3)(x, t) � 2K u(0, t) � fn(t) (4.15)
EIu(3)(x, t) � 2K u(w, t) � fs(t). (4.16)

Note that these are also the two last boundary conditions for (4.11). It
is in this way possible to use the rolling forces f for finding the normal
coordinates q. Using the approximative relationship

u(x, t) � φ 1(x)q1(t) + φ 2(x)q2(t)
we can by (4.15) and (4.16) derive the matrix equation[

fn(t)
fs(t)

]
� 2K

[ φ 1(0) φ 2(0)
φ 1(w) φ 2(w)

] [
q1(t)
q2(t)

]
. (4.17)

Using the relationships found from (4.14) we get

qc(t) � yc1(t) −ρ AΓ3
1
2 z(t) (4.18)

ẏc1(t) � −am2Γ1 yc1(t) + yc2(t) (4.19)
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introducing the model output qc for q in (4.17), and using this equation
together with (4.18) and (4.19) it is possible to find an estimate for yc.
To simplify the structure of the observer we assume that ẏc2 is small and
obtain

The observer

ye(t) �
[

Γ6

am2Γ1Γ6

]
f (t)+

[ ρ AΓ3

am2Γ3

]
1
2 z(t) (4.20)

where

Γ6 � 1
2K

[ φ 1(0) φ 2(0)
φ 1(w) φ 2(w)

]−1

Inputs are the roll positions z, the rolling forces f . The vector ye is
the estimate of the states of the model yc. The steady state gains of the
model and the observer are the same. For perfect model match we have
ye equal to yc.

4.3 Total Model

As we have seen in (4.15) and (4.16) it is possible to find the rolling
force from the model for the rolling stand. The rolling force and its time
derivative are used in the model for the hydraulic systems. This makes it
possible to make a total model for simulation by combining the models for
the hydraulic systems and the model for the rolling stand. Using (4.17)
and inserting the output of the model qc for the normal coordinates q we
have that

fc(t) �
[

fcn(t)
fcs(t)

]
� 2K F

[
qc1(t)
qc2(t)

]
, (4.21)

where

F �
[ φ 1(0) φ 2(0)

φ 1(w) φ 2(w)
]

By the above expression we can establish a connection between the mod-
els for the hydraulic positioning systems and the model for the normal

50



4.3 Total Model

coordinates

−żhn(t) � ahn1ξ n(t) − ahn2(zt − zhn(t)) ḟn− ahn3 fn(t)
−żhs(t) � ahs1ξ s(t) − ahs2(zt− zhs(t)) ḟs− ahs3 fs(t)

where

ξ n(t) �


xvn(t)

√
Ps − fn(t) xvn(t) ≥ 0

xvn(t)(
√

η Ps +
√

η Ps + fn(t)) xvn(t) < 0

ξ s(t) �


xvs(t)

√
Ps − fs(t) xvs(t) ≥ 0

xvs(t)(
√

η Ps +
√

η Ps + fs(t)) xvs(t) < 0

where xvs is the valve glider position for the south hydraulic system, and
zhs is the output from the model of the south hydraulic system.

[
ẏc

qc

]
�

 −am2Γ1 I 0 0

−EIΓ2 − am1Γ1 0 EI(ρ AΓ2 Γ3 − Γ4) am3Γ5

I 0 −ρ AΓ3 0


 yc

1
2 zh

vr

 .

We can now substitute f and d
dt f with the rolling force model output

fc(t) � 2K Fqc(t)
d
dt fc(t) � 2K F d

dtqc(t).

Note that d
dt qc can be calculated using d

dt yc and the models for the hy-
draulic systems. A principal diagram of the model structure is shown in
Figure 4.7. By joining the two models we have a system with the valve
glider positions for the hydraulic systems xv and the roll speed vr as in-
puts and the normal coordinates qc as outputs. The complete model will
in the following be used for the simulations.

The controlled outputs, which are the thicknesses at a distance µ from
the plate edges, see Chapter 7, can in the simulations be calculated from

vc(t) �
[

vcn(t)
vcs(t)

]
� 2

[
û(µ, t)

û(w− µ, t)

]
+
[

ε(µ)zh(t)
ε(w− µ)zh(t)

]

� 2Φ

[
qc1(t)
qc2(t)

]
+
[

ε(µ)zh(t)
ε(w− µ)zh(t)

]
(4.22)
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Figure 4.7 The total model for the rolling mill made by combining the models for
the hydraulic systems and the model for the rolling stand. The rolling forces and
their derivatives are calculated using two of the boundary conditions for the PDE.

where

Φ �
[ φ 1(µ) φ 2(µ)

φ 1(w− µ) φ 2(w− µ)
]

.

In this way the plate thicknesses at the edges vc can be found using the
normal coordinates qc and the output from the model for the hydraulic
systems zh.

The observer

ye(t) �
[

Γ6

am2Γ1Γ6

]
fc(t) +

[ ρ AΓ3

am2Γ3

]
1
2 zh(t)

will be used for estimating the states yc of the model for the rolling stand
when implementing the controller in the simulations. Here the additional
force measurements are available for a better estimate of the plate thick-
ness. The estimate for the normal coordinates qc can be calculated from

qe(t) � [ I 0 ] ye(t) −ρ AΓ3
1
2 zh(t).

Again the thickness at the north and south edge ven and ves can be calcu-
lated using qe and (4.22).
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4.4 Conclusions

We have now derived models for the hydraulic systems and the rolling
stand. The model for the hydraulic systems is nonlinear with the rolling
force and servo valve glider position as inputs and the roll position as
output. The model for the rolling stand is linear and multivariable with
roll positions and rolling speed as inputs and normal coordinates for the
eigenfunctions of the rolling stand as outputs. A static observer with roll
positions and the rolling forces as inputs and the states of the model for
the rolling stand as outputs is also found.

Using the boundary conditions for the rolling stand, the rolling forces
can be calculated. This makes it possible to combine the model for the
hydraulic systems and the model for the rolling stand into a total model
for the whole rolling mill. The total model will be used for computer sim-
ulations.

The load of the hydraulic systems is included in the model for the
rolling stand. Since we in this model have a linear model for the damping
friction between the roll pack and the mill frame is indirectly modeled as
viscous friction. That this and the other assumptions in the modeling are
reasonable will be investigated in the system identification.

To find the unknown parameters of the models for the hydraulic sys-
tems and the rolling stand it is necessary to perform a system identifica-
tion. The collection and preparation of the data for the system identifica-
tion is described in Chapter 5.
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5

Thickness Control—Data
Collection

This chapter describes the data collection and the preprocessing of the
data necessary before the system identification can be performed. The
data have been collected during normal production without any extra
excitation.

It will later be seen that the excitation is not ideal—this could be
improved by injecting an external input signal. Two things can be said
against this. First of all, the bandwidths of the hydraulic systems are
small in comparison to the interesting modes of the rolling stand, and
secondly the rolling process is quite sensitive and there is a risk of de-
stroying expensive equipment. Because of this it has been chosen to collect
the data during normal operation. This also has the advantage that they
are collected under realistic conditions.

Ten plates were measured. The data shown in this chapter will all be
from the same plate, which has a nominal thickness of 10 mm, a width of
2.15 m and a length of 10.5 m. The data from this plate will also be used
for all the examples in the rest of this report. The measurements are quite
unique since much effort has been made to get all the important signals
for the rolling mill in one synchronized time series.

5.1 Measurement Equipment

From Chapter 4 we know that the relevant input and output signals for
the models are:

• The positions of the servo valve gliders xvn and xvs.

• The positions of the common pistons zn and zs.

• The rolling forces fn and fs.
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5.1 Measurement Equipment

Name Variable

North valve glider position xvn

North hydraulic position zn

North rolling force fn

Roll speed vr

South valve glider position xvs

South hydraulic position zs

South rolling force fs

Table 5.1 The variables of the models which are possible to measure as electrical
signals. See also Figure 4.1.

• The rotational speed of the upper work roll vr.

• The plate thickness at the north edge, the center and the south edge
vd(x1, t), vd(x2, t), and vd(x3, t).

The plate thickness is measured at the edges and the center since these
three measurements give us the possibility to determine the plate crown.
All variables in Table 5.1 exist as electrically measurable signals in the
rolling mill control systems, while the thickness has to be measured after
the rolling when the plate is cold.

Electrically Measurable Signals

The signals measured electrically are shown in Table 5.1. The measure-
ments are done during the last pass. The last pass is the one that the
effects the plate thickness. An example of the signals is shown in Fig-
ure 5.1. Since the measurement of the valve glider positions is quite noisy
we measure the reference signal for the valve glider position instead. The
thickness control is in absolute mode which yields the best excitation since
this gives that largest variations in force and position. Note the low fre-
quency excitation of zn and zs, furthermore, note that it is only possible
to collect data for approximately 4 s for the plate before the pass ends.

It is not possible to measure the thickness of the plate during rolling,
see Chapter 2. Furthermore, the accuracy of the existing thickness mea-
surement device, which is placed after the rolling mill, is not sufficient.
It is therefore necessary to measure the plates after the rolling when the
plate is cold. Using the data for material density for steel ρ presented in
Chapter 10 the thermal expansion from 20 ○ C to 1000 ○ C is computed to
1.4% this is considered neglectable and is therefore not considered in the
following.
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Figure 5.1 An example of the variables that are collected during one pass. Upper
left: the references for the north servo valve xvrn (full) and south servo valve xvrs
(dashed). Upper right: north position zn (full) and south position zs (dashed). Lower
left: north rolling force fn (full) and south rolling force fs (dashed). Lower right:
peripheral speed of the upper work roll vr .

It was first tried to measure the plate thickness manually with a dis-
tance of 10 cm using a micrometer screw gauge. These measurements
showed large variations and it was believed that this was due to poor
precision of the screw gauge. A measurement device with an electronic
screw gauge with serial communication interface was then constructed,
a pulse encoder for length measurement was also mounted. A constant
orientation to the plate when performing the measurements in a more
continuous way yielded a higher accuracy. The thickness measurements
were collected using a digital controller with the feature that the sampling
frequency could be controlled using the pulse encoder, see [Bengtsson,
1994].

A fundamental problem when using the data is that the electrically
measurable signals are obtained using time sampling and the thickness
measurements are obtained using spatial sampling. This problem is solved
by using the gaugemeter equation (3.2) for calculating a thickness esti-
mate from the time sampled signals and then finding the times of the
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Figure 5.2 Measured thickness v (full) and estimated thickness ve (dashed) thick-
ness, when they are not low-pass filtered. The spatial resolution of the thickness
measurements is 5 mm.

thickness measurements by minimizing the distance to the estimated
thickness, for more details please refer to [Pedersen, 1995b]. The result-
ing thickness measurement and the thickness estimate are shown in Fig-
ure 5.2. Notice the nice fit. This illustrates that the gaugemeter principle
gives a good estimate of the mean value of the plate thickness at the two
edges.

5.2 Measurements for Identification

To obtain representative results for the identification it is chosen to mea-
sure 10 plates with 5 different nominal thicknesses and 2 different widths,
the dimensions are shown in Table 5.2.

The widths of 2 and 3 m are chosen since they are close to the min-
imum and maximum of the plates rolled. The chosen thickness interval
is representative for the plate production since the thickness of 95 % of
the produced plates are in this interval. The data were collected during
normal production and additional information about plate temperature,
roll position and calculated thickness was thus available from the reports
from the control system planning the rolling, see Chapter 2.
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Chapter 5. Thickness Control—Data Collection

Thickness [mm] Small width [m] Large width [m]

6 2 3

10 2 3

20 2 3

30 2 3

40 2 3

Table 5.2 Nominal dimensions of the measured plates. The data from these ten
plates will the basis for the system identification.

5.3 Conclusions

The inputs and outputs for the model for the rolling mill have now been
collected. The data consist of the key variables for the last pass for 10
plates covering relevant thickness and width intervals.

Since the thickness measurements are found using spatial sampling
and the other variables are found using time sampling it is necessary to
align the data in some way. This is done estimating the time scale of the
thickness measurements using the gaugemeter equation.

We now have the model and the input and output data represented as
a time series. We are thus ready for the system identification which will
be carried out Chapter 6.
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6

Thickness Control—System
Identification

In this chapter the parameters of the models for the hydraulic systems,
the model for the rolling stand, and the observer for the rolling stand
will be identified. The purposes of the models are controller design and
simulation. Simplicity will be preferred to advanced structure. It will,
in general, be possible to improve the results by adding more degrees
of freedom, but this will imply lack of physical understanding and will
therefore be avoided.

Due to the lack of excitation, nonparametric methods will not be used.
Instead we will use restrictive parameterizations. This implies that all
constants known in advance will be inserted in the models before the
system identification is performed. The main advantage of this is that
one is quite sure that the model is correct if only a couple of parameters
of a physically derived structure are identified.

Much effort and time has been put into finding appropriate parame-
trizations and the problem of identifying the mill dynamics have been
reduced to finding two parameters. Furthermore, the parameter varia-
tions are correlated with key variables. In this way we find parametric
model variations which will be useful in the controller design.

The author has found no work on identification of rolling mills and the
system identification is therefore described in detail. The model for the
hydraulic systems is transformed to discrete time and a parameterization
of the model is chosen. After this, the identification method is chosen,
and the results of the identification are presented. The procedure for the
identification of the rolling stand is similar, with the exception that we
here have to find the parameters of both the model and the observer.
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Chapter 6. Thickness Control—System Identification

6.1 Hydraulic Systems

The model for the hydraulic systems was derived in Chapter 4. Here it
will be rewritten to a form appropriate for the system identification. This
implies a transformation to a suitable discrete time form. Since the model
is nonlinear we will be working with nonlinear system identification. Only
results for the model for the north hydraulic system will be shown here,
since the model for the south system is similar.

Rewriting Equations

To be able to perform the system identification it is necessary to transform
the differential equation to discrete time form. Exploiting an idea given in
[Johansson, 1993]we simply integrate the nonlinear differential equations
for the north hydraulic system, see (4.7)

−żhn(t) � ahn1ξ n(t) − ahn2(zt − zhn(t)) ḟn− ahn3 fn(t), (6.1)

where

ξ n(t) �


xvn(t)

√
Ps − fn(t) xvn(t) ≥ 0

xvn(t)(
√

η Ps +
√

η Ps + fn(t)) xvn(t) < 0.

If we furthermore divide by zt − zhn (which is always nonzero) before
integrating we save a numerical differentiation because the integrand
(zt− zhn) d

dt fn then can be evaluated analytically. The result is

yn(t1, t2) � ahn1ξ n1(t1, t2) + ahn2ξ n2(t1, t2) + ahn3ξ n3(t1, t2), (6.2)

where

yn(t1, t2) � ln
zt − zhn(t2)
zt − zhn(t1)

ξ n1(t1, t2) �



∫ t2

t1

√
Ps − fn(t)

zt − zhn(t)
dt xvn(t) ≥ 0

∫ t2

t1

(
√

η Ps + fn(t) +
√

η Ps)
zt − zhn(t)

dt xvn(t) < 0

ξ n2(t1, t2) � fn(t2) − fn(t1)

ξ n3(t1, t2) �
∫ t2

t1

fn(t)
zt − zhn(t)

dt.
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6.1 Hydraulic Systems

Note that the parameters are unaffected by the discretization and that
the system is still linear in the parameters. The integrals, which are not
possible to evaluate analytically, can be calculated numerically.

Parameterization

Different parameterizations of the hydraulic model have been investigated
and it is found that the parameterization of (6.2) works well. We thus
have the three parameters ahn1, ahn2, and ahn3 to estimate. An analysis
of the identifiability of the model for the hydraulic systems is found in
[Pedersen, 1995b].

Identification

The performance index used in the identification is

Vn �
N∑

k�1

θ 2
n(k),

where θ n(k) is the prediction error of the model. The model for the north
system is

yhn(k) � ahn1ξ1(k) + ahn2ξ2(k) + ahn3ξ3(k), (6.3)

where

ξ1(k) �



∫ k

k−h

√
Ps − fn(t)

zt − zn(t) dt xvn(t) ≥ 0

∫ k

k−h

(
√

η Ps + fn(t) +
√

η Ps)
zt − zn(t) dt xvn(t) < 0

ξ2(k) � fn(k) − fn(k− h)

ξ3(k) �
∫ k

k−h

fn(t)
zt − zn(t)dt.

The model for the south system is analogous and is therefore not shown.
For the identification it has been found that a sampling interval of h �
0.025 s is a good choice. Using this value of h some of the noise is averaged
out while the dynamics of the system is still captured. η � 0.15 is found
to give the best results.

To prevent extensive nonlinear noise transformations and to weight
the data in an appropriate frequency interval the data is filtered using
a fourth order Butterworth filter with a cut-off frequency of 100 Hz. The
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Chapter 6. Thickness Control—System Identification

relatively high cut off frequency is necessary due to the high frequency
nature of ξ2. The filtering is done using the MATLAB-function idfilt. As-
suming that the noise can be described as additive filtered white noise
implies that the model used for the identification is

yhn(k) � ahn1ξ1(k) + ahn2ξ2(k) + ahn3ξ3(k) + C(q−1)e(k),

where

C(q−1) � 1+ c1q−1+ ⋅ ⋅ ⋅+ cnq−n

and e is a white noise sequence and q is the forward shift operator. Note
that the model has the same structure as an ARMAX-model with A(q−1) �
1.

Since we have a non-standard problem we formulate the system identi-
fication as an optimization problem. Recalling that the model has ARMAX
structure we simply compute the prediction error as

θ n(k) � 1
C(q−1) (yn(k) − (ahn1ξ1(k)+ ahn2ξ2(k)+ ahn3ξ3(k))) ,

where

yn(k) � ln
zt − zn(k)

zt − zn(k− 1) .

This implies that we use the Maximum Likelihood method, see [Åström
and Eykhoff, 1971]. It is found that a third order noise polynomial is
appropriate in the system identification. The minimum of the performance
function is found using the nonlinear least squares function leastsq in
MATLAB. The integrals in the regressors are computed using the MATLAB-
function trapz.

Results

The identification is performed on the discrete time model (6.3) using the
ten data sets described in Chapter 5. Since the signal for the position of
the valve glider is very noisy the reference has been used instead. Using
spectral analysis it has been found that the dynamics of the servo valve
is neglectable compared with the dynamics of the process. The change of
variables is therefore not expected to affect the system identification.

A plot of a typical result is shown in Figure 6.1. The agreement is
quite good considering the assumptions made when deriving the model.
Furthermore, the prediction error is close to white noise which indicates
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Figure 6.1 Results of the system identification of the hydraulic systems. Left side
top: fit of the measured output yn (full) and the predicted output yhn (dashed) and
bottom: the prediction error θ n. Right side top: fit of the measured output ys (full)
and and predicted output yhs (dashed) and bottom: the prediction error θ s.

that we have an unbiased estimate of the parameters. Note that the be-
ginning and end of the passes are included in the data—the peak in the
prediction error for the north system arises when the plate enters the
mill.

An example of a simulation using the original differential equation
and the measured system response is shown in Figure 6.2. The imple-
mentation of the time derivatives when calculating d

dt f is done using the
backward difference approximation. The simulations are performed using
the MATLAB-function ode45 with the reference for the valve glider posi-
tions xvr and the rolling forces f as input signals. The parameters used in
the model are the ones identified from the data set shown. It is seen that
there is good correspondence between the two responses. This shows that
the assumption that the supply pressure Ps is constant and the assump-
tions regarding the pressures at the right and left sides of the common
piston at the oil side work well in practice.
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Figure 6.2 Simulation of the positions of the hydraulic systems using the parame-
ters obtained from identification in simulation. Upper plot, full: measured response
for north system zn and dashed: simulated response for north system zhn . Lower
plot, full: measured response for south system zs and dashed: simulated response
for north system zhs .

North South

ahn1 8.9 ⋅ 10−1± 5 ⋅ 10−2 ahs1 8.1 ⋅ 10−1± 5 ⋅ 10−2

ahn2 −7.6 ⋅ 10−4± 2 ⋅ 10−4 ahs2 −9.2 ⋅ 10−4± 4 ⋅ 10−4

ahn3 −2.6 ⋅ 10−2± 2 ⋅ 10−2 ahs3 −2.7 ⋅ 10−2± 2 ⋅ 10−2

Table 6.1 Table for nominal values of parameters with deviations for the hydraulic
systems. The parameters are found using the 10 available data sets.

Values of ahn1

8.4e−01 9.4e−01
12 34 567 8 910

Values of −ahn2

5.7e−04 9.6e−04
1 23 456 78 910

Values of −ahn3

8.5e−03 4.3e−02
12 345 67 8 910

Figure 6.3 The distribution of the parameters for the north hydraulic system. The
numbers refer to the ten data sets.
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6.1 Hydraulic Systems

Values of ahs1

7.5e−01 8.6e−01
123 45678 910

Values of −ahs2

5.2e−04 1.3e−03
1 234 56 7 8910

Values of −ahs3

1.0e−02 4.4e−02
12 34 5 67 8 910

Figure 6.4 The distribution of the parameters for the south hydraulic system. The
numbers refer to the ten data sets.

The parameters obtained from the identification of all the data sets
are shown in Table 6.1. The distribution of the parameters for the two
systems are shown in Figures 6.3 and 6.4. For the design in Chapter 7
we want to define a set of nominal parameters. The nominal parameters
are chosen to be the center of the interval of the parameter estimates.

When identifying the above parameters the regressors were scaled
to be of the same magnitude as the output—this was done to prevent
numerical problems. Generally, all the regressors are of the same order of
magnitude and we thus conclude that it is the parameters ahn1, and ahs1
that have major influence. This implies that the model for the hydraulic
systems will be close to an integrator if it is linearized. It is seen that
these parameters vary less than 10% while the other parameters all vary
within the same order of magnitude.

One could expect that the leak flows vary with the positions zn and zs

due to differences in the wear of the oil cylinders. The variations of the
parameters ahn3 and ahs3 are therefore not surprising. The compressibility
of the oil covers many phenomena and it is therefore difficult to say much
about the variations of the parameters ahn2 and ahs2. The zero point for the
servo valve for the southern system varies quite much and it has therefore
been necessary to compensate for this. Comparing with the north side the
accuracy of the parameter estimates seems to be unaffected by this.

Due to the small variations of the dominating parameters it is ex-
pected that parameter variations are of little importance. To confirm this
we simulate the differential equation using the nominal parameter val-
ues. The result is shown in Figure 6.5. It is seen that the mean value of
the simulated output drifts away, this is because the system is close to an
integrator. This implies that the model will be sensitive to offsets in the
input and since the zero point of the valve glider varies a bit this intro-
duces the above effect. We solve the above problem by simply including
an integrator when designing the controller.
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Figure 6.5 Simulation of the positions of the hydraulic systems using the nominal
parameters from Table 6.1, the data set is the same as in Figure 6.2. Upper plot,
full: measured response for north system zn and dashed: simulated response for
north system zhn . Lower plot, full: measured response for south system zs and
dashed: simulated response for north system zhs . This figure should be compared to
Figure 6.2.

6.2 Rolling Stand

The two models for the rolling stand derived in Chapter 4 are linear and
we thus have a more or less standard problem. To preserve the structure
the parameters of the model and the observer will be identified using the
original continuous time state space form. This can be done using the
System identification toolbox in MATLAB, see [Ljung, 1991].

Not considering estimation of the roll eccentricity, the only reference
on identifying rolling mill dynamics found is [Cumming, 1972]. In this
reference the parameters of scalar equations are estimated using a corre-
lator, and it is therefore a bit out of date.

Parameterization

Since we use the continuous time state space models (4.14) and (4.20) for
the system identification no model transformations are necessary here.
We thus proceed with the parameterization of the models.

The Model In the system identification it is found that the peripheral
speed of the work roll vr(t) has little or no influence on the plate thickness
and this input is therefore removed from the model. This is probably due
to the fact the the friction inside the material can be modeled well as
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6.2 Rolling Stand

static friction, which is independent of the magnitude of the deformation
speed. We thus have the model structure[

ẏc(t)
qc(t)

]
�
[

Ac Bc

Cc Dc

] [
yc(t)
1
2 z(t)

]

�

 −am2Γ1 I 0

−EIΓ2 − am1Γ1 0 EI(ρ AΓ2Γ3 − Γ4)
I 0 −ρ AΓ3

[ yc(t)
1
2 z(t)

]
,

(6.4)

where am1, am2 are unknown scalar parameters. The state space equations
are of fourth order. For an analysis of the identifiability of the model for
the rolling mill see [Pedersen, 1995b].

The Observer Since changes in roll position 1
2 z has a direct impact

on the plate thickness, it is only necessary to scale the coefficients of the
rolling force f and we thus introduce the matrix O f e. The model structure
then is

qe(t) � O f eΓ6 f (t), (6.5)

where

O f e �
[

of e1 0

0 of e2

]
.

The two unknown parameters in the observer are of e1 , and of e2 .

Identification

Since we have a multivariable problem we use the performance function

V � det

(
N∑

k�1

θ (k)θ (k)T
)

,

where θ is the prediction error. This implies that we are using multivari-
able maximum likelihood identification, see [Åström and Eykhoff, 1971].
To keep the models simple we choose not to introduce noise models and
we therefore work with the state space structure

ẏc(t) � Ac yc(t) + Bc
1
2 z(t) + e(t)

q(t) � Cc yc(t) + Dc
1
2 z(t) + e(t),
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where e is white noise and q are the normal coordinates used in the se-
ries expansion of the solution. The normal coordinates can be determined
using the thickness measurements at the three different positions across
the plate width and the equation

1
2vd(x, t) � ε(x) 1

2 z(t) +
2∑

i�1

φ i(x)qi(t), (6.6)

which is found by combining (4.10) and (4.13). Inserting the thicknesses
of the three measurement tracks at the north edge, center, and south edge
with positions x1, x2, and x3 yields

1
2 vd(x1, t)
1
2 vd(x2, t)
1
2 vd(x3, t)

 �
 ε(x1)

ε(x2)
ε(x3)

 1
2 z(t) +

 φ 1(x1) φ 2(x1)
φ 1(x2) φ 2(x2)
φ 1(x3) φ 2(x3)

[ q1(t)
q2(t)

]
. (6.7)

The above equation system is over-determined and is therefore solved in
a least squares sense in MATLAB.

To obtain a well conditioned problem, all the signals are scaled to have
amplitudes of the same order of magnitude. In the identification a fourth
order Butterworth filter with a cut-off frequency of 10 Hz is used for
filtering the position 1

2 z, the rolling force f , and the normal coordinates
q. To obtain agreement between the mean thickness calculated by the
model and the measurements, the mean value of the thickness at the
plate edges is set to the value calculated using the gaugemeter equation,
see Chapter 3. The procedure for the observer is similar to the above and
is therefore not repeated here.

Results

The identification has been performed directly on the state space structure
using pem in MATLAB. Since the sampling interval is small we can assume
that the input signals are constant between the sampling instants when
transforming the model to discrete time. Using the values found in [Ped-
ersen, 1995b] for the mill spring coefficient 2K , the stiffness of the roll
pack EI, the mass of the roll pack ρ A, and the value for the plate width w,
we calculate the eigenvalues β 1 and β 2, and the two first eigenfunctions
φ 1 and φ 2. The eigenfunctions are therefore computed in advance and are
not estimated in the system identification, where they enter through the
Γ i-matrices.

Results for the Model The identification is based on the model with
the parameterization shown in (6.4), the position of the hydraulic system
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Figure 6.6 Identification results for the model. Left side, top: measured value
of the normal coordinate q1 (full) and estimated value of the normal coordinate
qc1 (dashed), bottom: prediction error for qc1 . Right side, top: measured value of
the normal coordinate q2 (full) and estimated value for the normal coordinate qc2
(dashed), bottom: prediction error for qc2 . The results are not very good due to a
time varying parameter am1.

1
2 z and the normal coordinates q found using (6.7). We obtain the results
shown in Figure 6.6. The results are representative for all 10 data sets.

As seen from the figure, the agreement is not very good, this is be-
cause the parameter am1 is time varying. The mean values of the normal
coordinates are, however, estimated quite well. The variations of am1 are
investigated in more detail in [Pedersen, 1995b]. Note that the difference
between the thickness at the two sides is predicted quite well considering
the time varying parameter. This indicates that the plane strain assump-
tion works well in our case.

Trial and error tests show that the precise value of the damping am2

is not critical for the result of the identification. This is probably because
of the low frequency excitation of the roll positions z. We thus fix it at the
value am2 � 200, which is the mean value found in the identification. The
parameter am1 is considered to be the most important parameter since it,
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am1 1.55 ⋅ 104 −1.62 ⋅ 105

am2 2.00 ⋅ 103

Table 6.2 Parameters for the model found using all 10 data sets.

together with β 1, determines both the undamped natural frequency and
the stationary gain of the system. When identifying the parameter for the
10 data sets, we find that am1 varies one order of magnitude. Trying to
correlate it with key parameters for the rolling process we find that am1

varies systematically with the plate hardness kp, for more details please
refer to [Pedersen, 1995b].

Performing the identification on all 10 data sets we find the parameters
shown in Table 6.2. Due to variations of am1, which are well correlated
with kp, we introduce no nominal data set for the model but use the values
specified by Table 6.2 instead.

A relevant question in connection with the variation of the parameter
am1 is: How does this influence the dynamics of the rolling stand? To in-
vestigate this we have seen that the dynamics of the model for the rolling
stand can be divided into two SISO transfer functions. When transforming
from normal coordinates qc to plate thickness vc the direct term almost
disappears. Neglecting this gives the relationships

vc(t) � Gvc (p)z(t)

� φ 1(µ)ρ Aγ 31 EIβ 4
1

ρ Ap2 + am2p+ EIβ 4
1 + am1

z(t)

v̀c(t) � G̀vc (p)z̀(t)

� φ 2(µ)ρ Aγ 32 EIβ 4
2

ρ Ap2 + am2p+ EIβ 4
2 + am1

z̀(t)

where vc, v̀c is half the difference between the north and south plate
thickness vcn and vcs , z is the mean value of the north and south roll
positions zn and zs, and z̀ is half the difference between zn and zs. We
see that Gvc and G̀vc have no zeros and it therefore only is necessary to
investigate the locations of the poles of the transfer functions. Inserting
the values of am1 and am2 found in the system identification yields the
pole locations shown in Figures 6.7 and 6.8.

We see that the poles tend to become faster and less damped when
the plate hardness am1 increases. Unfortunately the steady state gain
of Gvc and G̀vc also decreases with increasing plate hardness am1 and it
can therefore not be concluded that is becomes easier to control the plate
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Figure 6.7 The pole locations for Gvc as a function of am1. The crosses corresponds
to am1 � 0 and the poles with the largest imaginary part corresponds to the maximal
value of am1. It is seen that the poles are real when am1 is small and becomes faster
and less damped when the value of am1 increases.
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Figure 6.8 The pole locations for G̀vc as a function of am1. The crosses corresponds
to am1 � 0 and the poles with the largest imaginary part corresponds to the maximal
value of am1. It is seen that the poles becomes faster and less damped when the
value of am1 increases.

thickness for the hard plates. For results of the system identification of a
time varying model please refer to [Pedersen, 1995b].

Results for the Observer Using the observer given by (6.5), the rolling
force f , and q found from (6.7) we perform the system identification for
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Figure 6.9 Identification results for the observer. Left side, top: measured value
for the normal coordinate q1 (full) and estimated value for the normal coordinate
qe1 (dashed), bottom: prediction error for qe1 . Right side, top: measured value for
the normal coordinate q2 (full) and estimated value for the normal coordinate qe2
(dashed), bottom: prediction error for qe2 .

Values of o_fe1

0.9541 1.074
12 34 567 89 10

Figure 6.10 Distribution of the parameter ofe1
for the observer. The nominal value

of the parameter is 1.

the observer. A typical result is shown in Figure 6.9. Note that we now
are able to predict the normal coordinates q quite well since we have
knowledge of the variations of the plate hardness am1 through the rolling
force measurement. The results shown are representative for all 10 data
sets.

The values of the parameter of e1 are shown in Figure 6.10. It is seen
here that of e1 � 1, as expected. Ideally the parameters of e2 should also
have the value 1, but from the system identification we find that of e2 � 0.2
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for the plate width w � 2.15 and of e2 � 0.4 for w � 3.15. The reason that
we only have data for two values of the plate width w is that the ten data
sets are from plates with only two different widths. The reason for the
plate widths being larger than specified in Chapter 5 is that the plates
are rolled a bit wider than specified and then cut to the nominal measures
after rolling.

Inspecting the force measurements we find that the boundary condi-
tions

fn(t) � 2K u(0, t) � 2K (q1(t)φ 1(0) + q2(t)φ 2(0))
fs(t) � 2K u(w, t) � 2K (q1(t)φ 1(w) + q2(t)φ 2(w))

:
f (t) � 2Kφ 1(0)q1(t) (6.8)
f̀ (t) � 2Kφ 2(0)q2(t), (6.9)

where f is the mean value of the rolling forces and, f̀ (t) is the difference
between the forces, are not fulfilled. The plots of the left and right sides
of (6.8) and (6.9) are shown in Figure 6.11. Here we see that the left and
right side of (6.8) agrees quite well but that there is a significant deviation
between the left and right side of (6.9). The amplitude of the difference of
the rolling forces f̀ is too large—this explains why of e2 becomes smaller
than 1.

One explanation to the above could be that the connection between
the two legs of the rolling stand is not included in the physical model. It
is quite possible that the above difficulty could be avoided by inserting a
spring between the two sides of the physical model. Another possibility is
that the force measurement is inaccurate. If this is found to be the case,
an improvement of the force measurements is necessary to obtain a better
agreement between model and data.

Using the results from the identification we arrive at the values for
the nominal parameters shown in Table 6.3. Since the identification is
based on a fixed value of the parameter of e2 and the variation of of e1 is
small, no simulations of the nominal model is shown, since they will be
similar to the results of Figure 6.9.

Using (6.6) the thickness predicted by the observer at the measure-
ment points can be calculated. The results are shown in Figure 6.12. We
note that now the predicted and measured thicknesses agree quite well
due to the rolling force measurement. Also for the observer the calculated
plate crown is close to its measured value.
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Figure 6.11 Illustration of that the rolling force measurements do not fulfill
the boundary conditions. Upper plot: mean value of the rolling forces f full and
2Kφ 1(0)q1 (dashed). Lower plot: difference between the rolling forces f̀ full and
2Kφ 2(0)q2 (dashed).

w � 2.15 w � 3.15

of e1 1 1

of e2 0.2 0.4

Table 6.3 Parameters of the observer as functions of the plate width w. The pa-
rameters are found using all the 10 data sets

6.3 Total Model

In Chapter 4 we derived a total model including both the hydraulic sys-
tems and the rolling stand. The models for the hydraulic systems, the
model for the rolling stand, and the observer for the rolling stand are
implemented in OMSIM using (6.1) and (6.4), see [Andersson, 1994]. This
simulation environment is well equipped for handling discrete event sys-
tems, such as the hydraulic positioning systems where the structure of
the differential equations changes at xvn � 0 and xvs � 0.

The parameters used for the simulations are the ones found from the
system identification. An exception is that the parameter of the observer
of e2 is set back to 1, for the model and the observer to match. Note that
this only affects the estimation of the states of the model.

The results of a simulation of the total model are shown in Figure 6.13.
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Figure 6.12 The thickness at the plate edges and center calculated using the
observer. Upper plot: the measured value vd(x1) (full) and the calculated value ven

(dashed) of the thickness at the northern edge. Center plot: the measured value
vd(x2) (full) and the calculated value vem (dashed) of the thickness at the center.
Lower plot: the measured value vd(x3) (full) and the calculated value ves (dashed)
of the thickness at the southern edge vs.

The input signals are chosen as

xvrn(t) �
{

10 0 ≤ t < 0.1

0 t > 0.1

xvrs(t) �
{

10 0 ≤ t < 0.2

0 t > 0.2.

where xvrn is the reference signal for the north servo valve and xvrs is
the reference signal for the south servo valve. At t � 0 the outgoing
thickness is equal to the ingoing thickness of the plate, which is 11.64
mm and the rolling force is zero. Then the hydraulic positioning systems
moves downwards, the rolling force increases and the outgoing thickness
decreases. At t � 0.1 the north system stops, but it is seen that the
rolling force and the thickness at the north side continue to change due
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Figure 6.13 Simulations of total model for rolling mill. Upper left: control signal
for valve glider positions for north xvrn (full) and south xvrs (dashed) hydraulic sys-
tem. Upper right: Positions of north hydraulic system zhn (full) and south hydraulic
system zhs (dashed). Lower left: north rolling force fcn (full) and south rolling force
fcs (dashed). Lower right, plate thickness north edge vcn (full) and plate thickness
south edge vcs (dashed).

to the movement of the position of the south system. This illustrates the
multivariable structure of the system.

It is seen that the hydraulic systems act as integrators. They move
with a slightly different speed for the same input due to the different
values of the parameters ahn1 and ahs1. The states of the model yc and
the states of the observer ye are shown in Figure 6.14. The simulation
here is the same as the one shown in Figure 6.13. It is seen that the
states of the model and the states of the observer agrees well.

6.4 Conclusions

In this chapter we have found the parameters of the model for the rolling
mill. For the hydraulic systems we have found a set of nominal parameters
and for the model for the rolling stand we have found one constant and one
time varying parameter. For the observer we have found two parameters,
one constant and one which varies with the plate width. The agreement
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Figure 6.14 Comparison of the four states of the model yc (full) and the state
estimate found by the observer ye (dashed). It is seen that the agreement between
the real and estimated value is good.

between model and data are all satisfactory, it was, however, necessary to
introduce extra parameters in the observer since two of the four boundary
conditions used for calculating the plate thickness were not fulfilled.

The models have been implemented in a suitable simulation environ-
ment and we are now ready for the controller design. This will be done in
Chapter 7.
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7

Thickness Control—Design

The purpose of this chapter is to design a thickness controller for the
rolling mill, which consists of the hydraulic positioning systems and the
rolling stand. The purpose of the controller is to ensure that the desired
plate thickness is obtained with as small deviations as possible, despite
the process disturbances.

The performance specifications of the control systems are first given,
this includes description of typical disturbances and the multivariable
nature of the system. Then the controlled outputs are chosen, the multi-
variable structure, the dynamics of the system, and the steady state gains
are analyzed.

The above forms the basis for the choice of methods for controlling
the rolling mill. The controllers are then designed using the models and
parameters found in the previous chapters. In general, time invariant
methods will be used for the controller design and we therefore assume
that the material parameters are constant during the pass in the fol-
lowing. The effects of the variations of the material parameters will be
investigated in the simulations.

In the last section of this chapter the performance of the control system
is investigated using computer simulations. Here the effects of reference
changes and typical disturbances are found and commented.

No work on multivariable thickness control of hot rolling mills has
been found. Several descriptions of the single-input single-output case
are given in [Kokai et al., 1985], [Saito et al., 1981], [Teoh et al., 1984],
[Ferguson et al., 1986] and many more. Furthermore, advanced control
and estimation methods have been used in connection with the elimina-
tion of the effects of roll eccentricity, see [Yeh et al., 1991], [Teoh et al.,
1984], and [Asada et al., 1986]. For further details see Chapter 3.
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7.1 Performance Specifications

As described in Chapters 2 and 3 the purpose of the thickness control is
to obtain a specified constant thickness, despite disturbances such as

• variations of the plate hardness;

• variations of the ingoing thickness.

The thickness control problem is thus a regulator problem, see [Åström
and Wittenmark, 1997]. A central goal of the control is to minimize the
thickness variations of the rolled plates. The quality level possible to ob-
tain depends on saturation of the control signal and the amplitude of the
variations. It might therefore be necessary to minimize the variations by
other means to obtain the desired value of the thickness variations.

The rolling process is a multivariable system, this has to be taken into
consideration when controlling the process. A natural demand is to be
able to control the thickness at the north and south edge independently
of each other. This will make it possible to handle reference changes and
control errors at one edge with minimal effect on the thickness at the
other edge. Furthermore, the controller has to be able to compensate for
asymmetric material conditions. This is not possible with the existing
control, see Chapter 3.

A third important issue is the stability of the thickness control system.
The stability is disturbed by two effects:

• variations of the material characteristics;

• the controlled variable (the thickness) has to be estimated.

This has lead to a detuning of the compensation for mill deflection in
traditional thickness control systems, see Chapter 3. An analysis of the
stability of the thickness control system is given in [Pedersen, 1995b].

In the system identification of the hydraulic systems in Chapter 6 we
found that the models of the hydraulic systems were sensitive to offsets in
the control variable. It was concluded that including an integrator in the
controller would solve this problem when controlling the roll position. We
therefore include an integrator in the controller design. It will bee seen
later that using an integrator is also a good idea in connection with the
control of the plate thickness.

The handling of the start and the end of the pass will not be discussed
in the following. Since the plate ends usually are non rectangular, the
physical model for the rolling stand does not cover this case, since the
plate will not have full width when entering the roll gap. The plate ends
furthermore tend to be colder than the rest of the plate. To ensure a proper
start up and shut down of the control it is likely that a special control
strategy is necessary to handle the beginning and end of the passes.
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7.2 Analysis of Model

The first natural question that arises is, at how many points in the width
direction is it possible to control the thickness of the plate using the two
hydraulic actuators. We study this to choose the number of outputs we
want to control. Looking at the state equations of the model we see that
in steady state we have that

ẏc(t) � 0 � Ac yc(t) + Bc
1
2 z(t)

:
yc(t) � −A−1

c Bc
1
2 z(t),

where the system matrix Ac is invertible. The above implies that we are
only able to control the state vector in stationarity within a two dimen-
sional plane. We can therefore not control more than two outputs in sta-
tionarity with the thickness control. The thickness of a plate are normally
measured at a distance µ from the plate edges. Our outputs are thus cho-
sen as[

vn(t)
vs(t)

]
�
[

vd(µ, t)
vd(w− µ, t)

]
� 2

[ φ 1(µ) φ 2(µ)
φ 1(w− µ) φ 2(w− µ)

] [
q1(t)
q2(t)

]
+
[ ε(µ)

ε(w− µ)
]

z(t).

Using our physical insight we choose the north position zn for controlling
the north thickness vn and the south position zs for controlling the south
thickness vs.

Investigating the multivariable structure of the system we apply a step
of 1 mm at the north position zn. The open-loop step response is shown
in Figure 7.1. We see that the thickness at both edges is affected by the
position change at one of the sides. Furthermore, it can be seen from the
step responses that two systems with different dynamics are involved.
This is due to the fact that the dynamics for the normal coordinates qc1 and
qc2 are different. Note the direct term, which is the result of inaccuracies
in connection with the state transforms used in the modeling. The direct
term is small compared to the steady state gain of the system and it will
be neglected in the controller design. It will though be included in the
simulations.

The multivariable effect illustrated in Figure 7.1 causes trouble when
controlling the thickness at the two sides independently. If the thickness
at the north side deviates from the specified value while the south thick-
ness does not, it is not possible to obtain the correct thickness by just
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Figure 7.1 Simulation using the total model in Section 6.3. Open-loop result of
a step change of 1 mm in the north position zn. The step is applied at t � 0. Full:
thickness at north edge vcn and dashed: thickness at south edge vcs . It is seen that
the position change at one side affects the thickness at both sides of the rolling
stand

adjusting the hydraulic position at the north side. It is thus necessary
to consider the multivariable nature of the system when designing the
controller. Ideally it should be possible to control the thickness at the two
sides independently of each other.

Looking at the mean values for position z and thickness v, and neglect-
ing the direct term, the relationship is given by the second order linear
system

v(t) � Gvc(p)z(t) �
φ 1(µ)ρ Aγ 31 EIβ 4

1

ρ Ap2 + am2p+ EIβ 4
1 + am1

z(t).

The dynamics of this transfer function varies due to the variations of am1.
A similar transfer function G̀vc can be derived for the wedge of the position
z̀ and the wedge of the thickness v̀ � 1

2 (vn−vs). Using the values obtained
from the system identification the undamped natural frequencies of the
two transfer functions ω n and ὼ n are in the intervals

ω n ∈ [200, 432] rad/s
ὼ n ∈ [342, 658] rad/s.
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The steady state gains of the rolling stand kg and k̀g are in the intervals

kg ∈ [0.136, 0.404]
k̀g ∈ [−0.0142, 0.287],

that is, they vary a factor 3. Generally, kg will lie in the interval between
zero and one. If the plate hardness is close to zero, kg will be close to
one and when the plate becomes very hard kg will be close to zero. This
illustrates why an important part of the optimization of the rolling mill
is to do the rolling in minimal time to keep the plate as hot as possible.

Since the hydraulic positioning systems are the actuators of the thick-
ness control system, they set the limits of achievable performance. The
variables that mainly affect the limitations of the positioning systems are:

• the supply pressure Ps;

• the valve glider positions xv.

This introduces limits on the values of the rolling forces f , the roll posi-
tions z and the reduction rd. The maximal mill deflection is determined by
the maximal rolling force and thus by Ps. Since this limit is smaller than
the maximal position zt it is the above limitations and not the structure
of the hydraulic systems that set the limits for the positions z.

The hydraulic systems operate under very different conditions. The
rolling force, which determines the gain of the system, varies from zero
to the value of the supply pressure Ps and this should be taken into
consideration, when designing the controller for the hydraulic systems.

Experiments show that using small closed loop step responses for the
existing hydraulic systems including PI-controllers we find that they have
a damping factor of ζ � 0.7 and a peak time tp � 0.07. This yields a
undamped natural frequency of the hydraulic systems of

ω nh � 24.6 rad/s.

We see that the dynamics of the hydraulic systems are considerably slower
than the dynamics of the mill stand. This is one of the reasons why it is
difficult to eliminate the high frequency variations of the plate thickness.
Making the hydraulic system faster is of course a question about satura-
tion of the control signal, but according to the constructor of the existing
control system it is possible to make it considerably faster when imple-
menting a digital controller.
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7.3 Choice of Control Methods

The controller design will be done in continuous time. This makes it pos-
sible to utilize the structure of the physical models we have derived and
identified in the previous chapters. It will be necessary to implement the
control strategies using digital equipment and the control strategy there-
fore has to be transformed to discrete time. This can be done using the
approximate methods described in [Åström and Wittenmark, 1997]. The
price to be paid for this procedure is that it is necessary to implement the
controller using a higher sampling frequency than if the design was done
in discrete time.

To make the hydraulic systems work well at all operating points, it is
necessary to use a non-linear control strategy. Since we only have a first
order system and all states and inputs can be measured or estimated, it is
chosen to use feedback linearization for controlling the hydraulic systems,
see [Slotine and Li, 1991].

The responses of the two sides of the rolling mill are separated using
eigenspace design described in [Harvey and Stein, 1978]. This makes it
possible to assign specified values to the eigenvectors of the closed loop
system. The additional eigenvectors and eigenvalues for which we have
no specifications are furthermore placed in a “nice" way.

The variation of the material hardness am1 changes the steady state
gain of the system and it is necessary to compensate for this in some way.
The plate thickness can, despite the parameter variations, be estimated
using the observer. Using an integrator it is possible to ensure that the
closed loop steady state gain is not affected by the parameter variations.
The variations of the plate hardness am1 will still affect the dynamics and
the stability of the system.

The parameter variations raise the question if adaptive control is
needed. It will therefore in simulations be investigated if the performance
of the chosen design strategy is satisfactory or if a truly adaptive controller
is needed.

7.4 Design of Controllers

In the following sections the controllers for the hydraulic systems and the
rolling stand will be designed. The hydraulic systems will be controlled
using feedback linearization and the rolling stand will be controlled by a
state feedback, found using eigenspace design.
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Hydraulic Systems

Since we have a first order system it is quite easy to derive a control
law that linearizes the system. Even if some of the usual assumptions
on the input function such as independence of the control variable xvn

and smoothness are not fulfilled it is still possible to do the feedback
linearization. As usual we only show the results for the north system since
the procedure of the south system is the same. To increase the number
of the degrees of freedom in the eigenspace design we give the hydraulic
systems a time constant κ when doing the feedback linearization. κ is
then used as a design parameter in the eigenspace design.

We choose the control signal as

xvrn(t) � 1
−ahn1ξ n1(t)

(−ahn2ξ n2(t) − ahn3ξ n3(t) + rln (t) −κ zhn(t)) , (7.1)

where

ξ n1(t) �


√

P̄s − fn(t) xvn(t) ≥ 0√
η Ps +

√
η Ps + fn(t) xvn(t) < 0

ξ n2(t) � (zt − zhn(t))
d
dt

fcn(t)
ξ n3(t) � fn(t).

Here rln is the control signal from the thickness controller. The north
position zn, the position of the valve glider xvn, and the north rolling
force fn can be measured directly and d

dt fcn can be estimated using the
relationship

d
dt

fcn(t) � 2K F
d
dt

qc(t),

found in Section 4.3. To determine the derivative of the normal coordi-
nates d

dt qc we can use the model for the rolling stand and the differential
equations for the hydraulic systems. This is not trivial since a good es-
timate of the plate hardness am1 is necessary to do this. An alternative
is to use approximative numerical differentiation of the rolling force f to
find d

dt f .
We note that the control strategy demands that fn < Ps. When the

pressure due to the rolling force fn gets close to the supply pressure Ps

the thickness control will in any case be switched off to prevent overload
of the hydraulic system. It is therefore not necessary to worry about the
case fn � Ps.
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Using the above strategy the model for the hydraulic system reduces
to

żhn(t) � −κ zhn(t) + rln(t)
and can thus be inserted as an extra state in the state space equations
for the rolling stand.

Thickness Controller for the Rolling Stand

We now proceed with the design of the controller for the rolling stand.
The main idea is to design a well tuned controller which can handle asym-
metric disturbances. The design will be performed on the model for the
rolling stand combined with the now linear hydraulic systems and two
additional integrator states. The main idea in the eigenspace principle is
that, in addition to the desired closed loop poles, a set of desired closed
loop eigenvectors is also specified—this is possible since we are working
with a multivariable system, see [Kailath, 1980] and [Moore, 1976].

The response of the closed loop system due to the initial conditions qco

can be written as

vc(t) �
n∑

j�1

Ccν j (ψ T
j qco)eλ j t, (7.2)

where the λ j ’s are the closed loop eigenvalues and ν j are the right closed
loop eigenvectors defined by

(Iλ j − (Ac − Bc L))ν j � 0 (7.3)

and ψ j are the left closed loop eigenvectors fulfilling ψ T
j ν j � 1, see

[Kailath, 1980] for details.
It is possible to affect the eigenvectors by the choice of the feedback

matrix L. It is here assumed that the closed loop eigenvalues are simple,
this implies that the closed loop eigenvectors all are linearly independent.
Assuming that the closed loop eigenvalues λ j 6� sp(Ac) we can rewrite
(7.3) as

ν j � (Iλ j − Ac)−1 Bcµ j (7.4)
µ j � −Lν j .

The idea of the eigenspace design is then to choose the feedback matrix
L to obtain the desired eigenvectors, if possible.

The desired closed loop eigenvalues for the new thickness controller
are chosen to give the same magnitudes of the control signals as used by
the existing control system. There are two reasons for this:
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• It is hard to say when the hydraulic positioning systems saturate
since this depends on the nature of the disturbances and the char-
acteristics of the supply equipment. It is therefore more natural to
adjust the response speed of the controller when it is implemented.

• It will be possible to compare the performance of our control system
to the performance of the existing control system.

Using the control law found in the previous section the hydraulic sys-
tems can be included as a part of the state space model. Since it is half of
the position 1

2 z that is used in the model for the rolling stand it is most
convenient to use half of the position as a state. As seen in the previous
section the steady state gain of the open loop system varies due to the
variations of the plate hardness am1. The simplest way of avoiding this
for the closed loop system is to calculate the plate thickness

vc(t) � [Φ 0 ] yc(t)

and introduce two integral states i

d
dt

i � 1
2 r(t) − vc(t)

where rT � [ rn rs ] are the references for the plate thickness. The state
space representation including the hydraulic positions and the integral
states is


ẏc(t)

1
2 żh(t)
i̇(t)

vc(t)

 �
[

Ach Bch

Cch Dch

]


yc(t)
1
2 zh(t)
i(t)
rl(t)
1
2 r(t)



�


−am2Γ1 I 0 0 0 0

−EIΓ2 − am1Γ1 0 EI(ρ AΓ2 Γ3 − Γ4) 0 0 0

0 0 −κ I 0 I 0

−Φ 0 0 0 0 I

Φ 0 0 0 0 0




yc(t)

1
2 zh(t)
i(t)
rl (t)
1
2 r(t)

 (7.5)

Using the eigenspace design approach first described in [Harvey and
Stein, 1978] and later generalized in [Stein, 1979]we find that by choosing
the weighting matrices for a LQG controller in a special way it is possible
to obtain a set of specified closed loop eigenvalues and eigenvectors. The
eigenvalues and eigenvectors are obtained asymptotically as the control

86



7.4 Design of Controllers

weight σ tends to zero. The number of design parameters are thus reduced
to one when the eigenvalues and eigenvectors are chosen. The result is
the algebraic Riccati equation with σ as design parameter

0 � PAch + AT
chP + Q+ PBch1 R−1BT

ch1
P/σ (7.6)

can be used for finding the feedback matrix

L � R−1BT
ch1

P/σ . (7.7)
The derivation of the matrices Ach, Bch1 , Bch2 , Q, R is described in [Ped-
ersen, 1995b].

Unfortunately, it is difficult to solve the Riccati equation algebraically
and we therefore have to use numerical tools for finding L. An example
of the results of the design with closed loop eigenvalues λ f � 125, a time
constant for the linearized hydraulic systems κ � 50, and a control weight
σ � 1⋅10−4 are shown in Figure 7.2. Note that the two sides are practically
decoupled. Full decoupling requires large gains of the feedback matrix.
This is not a good idea considering saturation and stability aspects.

When computing the steady state gain of the closed loop system we
find that

Cch(−Ach+ Bch1 L)−1Bch2 � I.

This indicates that the separation of the two sides has been successful
since a reference change for one of the sides does not affect the other side
in stationarity.

As stated earlier it is not possible to measure the process output, and
we can therefore not use a traditional observer. Instead we use the static
relationships found in Section 4.2 and extend it with the position mea-
surement 1

2 z and the integral states i

 ye(t)
1
2 z(t)
i(t)

 � Deh


1
2 z(t)
f (t)
i(t)

 �


ρ AΓ3 Γ6 0

am2Γ3 am2Γ1Γ6 0

I 0 0

0 0 I




1
2 z(t)
f (t)
i(t)

 . (7.8)

The advantage of this approach is that we capture the variations of am1
using the rolling force measurement.

The controller structure is shown in Figure 7.3. Note that the principal
structure is the same as the traditional one described in Chapter 3. An
investigation of the robustness shows that the system is stable for the
parameter variations found in the system identification, for details please
refer to [Pedersen, 1995b].
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Figure 7.2 Result of eigenspace design, response for step reference change of the
thickness at the north edge. Upper plot, full: north position zhn and dashed: south
position zhs . Lower plot, full: thickness at north edge vcn and dashed: thickness at
south edge vcs . Note that the south thickness is almost unaffected by the change of
the thickness at the north edge.
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Figure 7.3 The structure of the total controller, including feedback linearization,
state feedback and integrator.
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Final Form of Controller

The final form of the controller can be found from the feedback lineariza-
tion (7.1) and the state feedback (7.7).

[
xvrn(t)
xvrs(t)

]
� ∆1

∆2 − L

 ỹe(t)
1
2 z̃(t)
i(t)


 (7.9)

where

∆1 �
[− 1

ahn1ξhn1 (t) 0

0 − 1
ahs1ξhs1 (t)

]

∆2 �
[−ahn2ξ n2(t) − ahn3ξ n3(t) −κ zn(t)
−ahs2ξ s2(t) − ahs3ξ s3(t) −κ zs(t)

]
where ξ s1 , . . . ,ξ s3 are defined as ξ n1 , . . . ,ξ n3 with the variables for the
north side replaced with the variables for the south side. ỹe, and z̃ are the
deviations from the working points for the two vectors found using the
observer.

The input vector for the controller can be found from (7.8). Note that
this is a pretty simple second order nonlinear controller which will be
straight-forward to implement. We therefore conclude that despite the
tedious design the controller structure is quite simple.

7.5 Evaluation of Performance

Several questions can be asked in connection with the performance of the
thickness control. The two usual main concerns are

• response to reference changes;

• effects of typical disturbances.

Both subjects will be investigated in the following. The performance of the
new control system will be compared to the performance of the existing
control system, when possible. A central question is whether it is neces-
sary to redesign the controller and how often this should be done. This
will also be investigated below. Again we simulate the whole system in
continuous time, that is we assume that the control law is implemented
using a high sampling frequency.

The linear transfer functions for the existing controllers for the hy-
draulic systems and the thickness controller used in the computer sim-
ulations have been provided by the constructor of the control system on
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the rolling mill at The Danish Steel Works Ltd. To be able to compare the
new and existing controllers the existing control is adjusted to compen-
sate fully for the mill spring. This implies that the system is not detuned,
see Section 3.3.

The feedback linearization is implemented using the mean values of
the parameters for the north and south sides. To keep the implementation
simple d

dt f is found using d
dt qc from the model used for simulating the

rolling stand.

Simulations

To investigate the response to reference changes and the effect of typical
disturbances we will perform a number of simulations using the simu-
lation model described in Chapter 6. The dynamics, static gain, and the
decoupling of the two sides can be investigated using a step change of the
reference at one and both sides. Even if the integrator ensures that the
static gain is unity despite the variations of the plate hardness am1, the
dynamics of the system varies with this parameter. From the system iden-
tification it is found that am1 ∈ [2 ⋅ 104, 2 ⋅ 105]. The controller is designed
for am1 � 5 ⋅104. It is therefore chosen to simulate the responses for mean
values of the plate hardness am1 � {2 ⋅ 104, 5 ⋅ 104, 2 ⋅ 105} to investigate
the effects of the parameter variations on the dynamics of the closed loop
system and the decoupling of the two sides. The above values of am1 can
be considered representative for the values where it is important that the
thickness control operates well.

The simulations of changes of the thickness reference at both sides
and at one side subsequently are shown in Figures 7.4 and 7.5. Shown
are the control signals for the servo valves xvrn and xvrs, and the plate
thickness at the edges vc. The reference at both sides r is changed from
11.64 mm to 10.5 mm at t � 0 s and the reference at the north side rn is
changed from 10.5 to 10.25 at t � 0.5 s. Since it is not possible to control
the two sides independently with the existing control system, rn is not
changed at t � 0.5 in the simulations of the existing controller shown in
Figure 7.4.

From the simulations of the reference changes it is seen that the mag-
nitudes of the control signals are similar. The existing control system is
less damped and has a considerably longer settling time than the new
one. Furthermore, the integrator of the existing control is considerably
slower, which is not desirable. It should be noted here that the existing
control system is tuned on line and it might turn out that the less damped
dynamics are desirable when eliminating the force disturbances.

From Figure 7.5 it is seen that the time constant of the new control
system also varies quite much with the plate hardness am1. But in all
three cases the separation of the two sides works well when the value for
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Figure 7.4 Simulation of the existing control system. A step change of the thick-
ness references for both sides to 10.5 mm is done at t � 0. Left plots, full: control
signal for north servo valve xvrn and dash-dotted: control signal for south servo
valve xvrs. Right plots, full: the thickness at the north edge vcn and dash-dotted:
the thickness at the south edge vcs . The top plots show a simulation for a soft plate
and the lower plot a simulation for a hard plate. The plots in the middle are for
the parameter value used for the design of the eigenspace controller. Since we are
not able to change the thickness at only one side the two responses are similar and
can therefore not be distinguished. It is seen that the thickness does not reach the
desired value of 10.5 mm in the time interval shown in the figure. Since the rolling
speed is between two and four meters per second, the plots show the plate thickness
for a plate length in this interval.

am1 is used for the design. In the other cases the thickness at the south
side varies a couple of hundredths of a mm when the thickness at the
north sides is changed. The damping of the control system is satisfactory
for all three values of am1. Since the size of the control signal is the
same for all values of am1, not much will be gained from redesigning the
controller.

From the above simulations we conclude that it is not necessary to
redesign the controller because of the variations of am1 unless very hard
demands on damping and separation of the two sides are present. Note
that, because of the variation of the model parameters with the plate
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Figure 7.5 Simulation of the new control system. A step change of the thickness
references for both sides to 10.5 mm is done at t � 0, and a step change of the
thickness reference for the north side is done at t � 0.5. Left plots, full: control
signal for north servo valve xvrn and dash-dotted: control signal for south servo
valve xvrs . Right plots, full: the thickness at the north edge vcn and dash-dotted:
the thickness at the south edge vcs . The top plots show a simulation for a soft plate
and the lower plot a simulation for a hard plate. The plots in the middle are for the
parameter value used for the design of the eigenspace controller. Since the rolling
speed is between two and four meters per second, the plots show the plate thickness
for a plate length in this interval.

width w, it will only be necessary to change the controller when w changes.
Since the plate width does not change significantly during the rolling of
one plate, it will only be necessary to redesign the controller once for each
plate.

We now proceed with investigating the effects of the variations of am1
during the pass. As mentioned before these variations mainly consist of
slow variations due to cold zones from the reheat furnaces and fast vari-
ations from the cooling by the roller tables. It is here chosen to use step
changes of the plate hardness to investigate the dynamics and the steady
state characteristics of the response to the variations of the plate hardness
am1. The variations of am1 are divided into
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• changes in the mean value;

• changes in the value across the plate width.

In the first type of variations the symmetry of the rolling process is pre-
served, this is not the case for the second type of variations.

In the modeling in Chapter 5 it is assumed that material characteris-
tics are symmetric, but it is quite easy to introduce asymmetric material
conditions in the model for the rolling stand. This can be done assuming
that that the plate hardness across the plate width is

am1(x, t) � am1(t)
(

1+ τ (t)2x−w
w

)
, x ∈ [0, w].

The last term represents a linear variation of the plate hardness across
the plate width and τ is a unit step. Neglecting the influence on the
eigenvalues β i and the eigenfunctions φ i we choose to implement the
changes in Γ1 which becomes

Γ1(t) �
[ 1

ρ A τ (t) ∫w
0 φ 2(x) 2x−w

w dx

τ (t) ∫ w
0 φ 2(x) 2x−w

w dx 1
ρ A

]
.

Inserting the above in the simulation program we are able to, approxi-
mately, investigate the effects of asymmetric material conditions.

The simulations of the variations of the plate hardness am1 during the
pass are shown in Figures 7.6 and 7.7. Again the simulations are done
for mean values am1 � {2 ⋅ 104, 5 ⋅ 104, 2 ⋅ 105} to investigate the responses
for different plate hardnesses. The reference is changed from 11.64 mm
to 10.5 mm at t � 0, am1 is changed to 0.8am1 at t � 0.5 and τ is changed
from 0 to 0.2 at t � 1. The variations of mean value and the wedge of am1

are both set to 20%, this is inspired by the system identification where
we found that am1 varies ±20% in the length direction.In the traditional
controller the start value of the plate thickness differs from 10.5, this is
due to the rather slow integrator.

From the simulations we see that the impact of the hardness variations
is most significant for large plate hardnesses am1. For am1 � 2 ⋅ 104 the
effect of the variations are hardly noticeable, for am1 � 5 ⋅ 104 they have
some effects on the plate thickness, and for am1 � 2 ⋅ 105 they have a
major impact on the plate thickness. The settling time and damping of
new control is better than for the traditional control. Again similar values
of the control signal are used for the new and the existing control.

Note that the new control is able to handle the asymmetric material
conditions while the traditional controller is not. Generally, it is for the
thin, and therefore hard, plates that the most strict demands on the plate
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Figure 7.6 Simulation of the existing control system with a desired thickness of
10.5 mm. A step change of the mean value of the plate hardness am1 is done at
t � 0.5 and asymmetric hardness conditions are introduced by a step change of τ at
t � 1. Left plots, full: control signal for north servo valve xvrn and dashed: control
signal for south servo valve xvrs . Right plots, full: the thickness at the north edge
vcn and dashed: the thickness at the south edge vcs . The top plots show a simulation
for a soft plate and the lower plot a simulation for a hard plate. The plots in the
middle are for the plate hardness used for the design of the eigenspace controller.

thickness are present. The deviations shown for the traditional controller
will result in a rejection of the plate. Additional problems with different
length of the plate edges and the following problems with the plate top
view shape can also be expected.

More simulations to investigate the effects of variations of the mill
spring coefficient 2K and the roll stiffness EI could be done. The varia-
tions of these parameters do not affect the symmetry of the rolling pro-
cess. Furthermore, the variations mostly affect the estimation of the plate
thickness and the responses of the new and existing control systems will
therefore be similar. It is therefore chosen not to show the simulations of
these cases.
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Figure 7.7 Simulation of the new control system with a desired thickness of
10.5 mm. A step change of the mean value of the plate hardness am1 is done at
t � 0.5 and asymmetric hardness conditions are introduced by a step change of τ at
t � 1. Left plots, full: control signal for north servo valve xvrn and dashed: control
signal for south servo valve xvrs . Right plots, full: the thickness at the north edge
vcn and dashed: the thickness at the south edge vcs . The top plots show a simulation
for a soft plate and the lower plot a simulation for a hard plate. The plots in the
middle are for the plate hardness used for the design of the eigenspace controller.

7.6 Conclusions

We have designed new controllers for the hydraulic positioning systems
and the rolling stand. The hydraulic systems are linearized using feedback
linearization and included in the model for the rolling stand. A state
feedback for the now linear system is designed using eigenspace control.
The main objective in connection with the eigenspace design is to separate
the response of the thickness at the two sides. The dynamics of the new
control system are chosen to obtain the same magnitude of the control
signals as used by the existing controller. To ensure that the steady state
gain of the system will be unity despite the variations of the material
parameters two integral states are introduced in the controller.

The stability of the linear control system is investigated in [Pedersen,
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1995b] and it is found that it will be stable for the expected parameter
variations. The performance of the new and existing control systems are
compared using simulations. It is found that the dynamic performance of
the new control system is better than the one of the traditional control
system. The new control system is, furthermore, able to handle asymmet-
ric material conditions and differences in the thickness references for the
two sides, this is not the case with the existing control system.

96



8

The Slab Temperature
Control Problem

The purpose of this chapter is to give an introduction to the slab tempera-
ture control problem. This is done by first giving a brief description of the
reheat furnace and then defining the slab temperature control problem.
The chapter is finished by an analysis of the main characteristics of the
heating problem.

8.1 Reheat Furnaces

The main purpose of a reheat furnace is to heat slabs (steel blocks which
are raw material for the plate mill) from a temperature around 20 ○ C
to a temperature of approximately 1120 ○ C before they are processed in
the rolling mill. The reheating furnaces are typically large box shaped
structures which are heated by a large number of oil or gas burners placed
in the furnace floor, roof, or walls. The interior of the furnace is build using
special made ceramic bricks.

The fuel is mixed with a suitable amount of air in the burners before
it is combusted in the furnace, and the exhaust gases leave the furnace
through the stack. The stack is most commonly placed in the charge side of
the furnace to ensure a maximal utilization of the hot air from the burners.
Before the exhaust air is released it is passed through a recuperator where
it is used to heat the incoming air to the burners. To prevent cold air from
entering the furnace the furnace pressure is kept a small amount over
the atmospheric pressure. This is obtained by controlling the flow through
the stack. Due to formation of scale, which is a result of an oxidation of
the slab surface, it is sometimes attempted to control the oxygen content
of the furnace atmosphere. The scale formation usually consumes several
percent of the steel volume heated by the furnace.
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The slabs enter the furnace at the charge end and leave the furnace at
the discharge end. In most furnaces the slabs are transported through the
furnace by water cooled walking beams, if it is a walking beam furnace, or
pushed through the furnace on water cooled skids, if it is a pusher furnace.
The transport systems cools the slabs locally and the result is skid marks,
which are cold zones at the bottoms side of the slabs. Some furnaces
do not have a slab transport system, instead the slabs are charged and
discharged using a crane, these furnaces are called batch furnaces.

When operating the furnace temperature three things are given much
attention

• Slab temperature. This includes slab mean temperature, temper-
ature gradient in the thickness direction, and skid marks.

• Furnace throughput. This covers the number of tons per hour
heated by the furnace.

• Fuel consumption. As can be imagined the furnaces use large
amounts of energy for heating the slabs. Therefore, it is important
that the slabs are heated using as little energy as possible.

The most important thing in furnace control is to heat the slabs to the
specified temperature profile with a minimal energy consumption. The
furnace capacity is more or less given by the furnace design, but can of
course also be affected by the control system. An analysis and discussion
of the furnace characteristics with respect to capacity, slab mean tem-
perature, and energy consumption will be given in Section 8.4, while the
control systems for the slab heating are described in Section 8.2.

The example used throughout this thesis is the no. 2 reheat furnace
at The Danish Steel Works Ltd. This is a 46 m long walking hearth fur-
nace, which implies that the slabs are transported using walking beams
protected by ceramic bricks. The furnace is heated by 33 gas burners
placed in the furnace wall and roof. Under normal operation the furnace
contains approximately 60 slabs. The slabs are moved approximately 600
mm in each step which has a duration of 20 s. This implies that the slabs
are moved approximately 10% of the time. The furnace has three parallel
tracks, but in the following we will only consider one track. A schematic
diagram of the furnace is shown in Figure 8.1.
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8.1 Reheat Furnaces

The furnace is divided into 5 con-
trol zones as indicated in the fig-
ure. Zone 0 is a uncontrolled zone,
while Zone 1 is side fired. The burn-
ers are indicated by the six circles.
Zones 2, 3, and 4 are top fired and
the burners are shown by the ar-
row heads in the roof. The open ar-
rows show the main direction of the
air flow through the furnace. The
furnace temperature is measured in
nine points by thermocouples placed
in the furnace roof with one ther-
mocouple placed over each track.
This implies that there are three
thermocouples in the width direction
at each measurement point. Nor-
mally, the mean values of these three
thermocouples are used as the fur-
nace temperature measurement val-
ues. The thermocouples are the rect-
angles placed in the furnace roof.
The four thermocouples marked with
a "∗" are used for controlling the zone
temperature while the four thermo-
couples in the furnace roof with light
frames are only used for measure-
ment for the slab temperature con-
trol system. For control purposes the
furnace temperature is assumed to
be uniform throughout each zone.
The furnace temperatures are con-
trolled by an ABB FICS system. The
slab temperatures are controlled by
an ABB FOCSa system, which cal-
culates the slab temperatures from
material data, temperature readings
from the thermocouples, and the air
and gas flows to the burners.
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Figure 8.1 A schematic diagram of the reheat furnace no. 2 at The Danish Steel Works Ltd.
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8.2 Present Control Algorithms

The reheat furnace control systems are normally divided into a furnace
temperature control system and a slab temperature control system. These
systems are referred to as level I and level II systems, respectively. The
main task of the level I control system is to control the furnace tempera-
ture. The furnace temperature control is handled by dividing the burners
into a number of groups. The air and fuel flows to all burners in one
group are then controlled using the temperature measurement from one
or more thermocouples placed in the zone. The control problem is mul-
tivariable due to the flow between the zones, but the zone temperatures
are normally controlled independently of each other.

The main task of the level II systems is the control of the slab temper-
ature to ensure proper heating quality and minimal energy consumption.
The slab temperatures are controlled by varying the furnace tempera-
tures. The minimal energy consumption is achieved by heating the slabs
as late as possible to the specified temperature. The desired slab temper-
ature reference is called the heating curve and is normally dependent on
the slab position in the furnace, slab dimensions, etc. The furnace tem-
peratures are controlled to obtain the maximal heat input as far away
from the stack as possible. In this way the heat absorption of the slabs is
maximized, see [Fontana et al., 1983].

A general problem in slab temperature control is that it is not possi-
ble to obtain a proper measurement of the slab temperature. The surface
temperature of the slabs can, however, be measured using radiation py-
rometers. A disadvantage of this measurement method is that if the slab
has a large temperature gradient the surface temperature will not be a
true measure of the mean slab temperature. It is also possible to measure
the surface temperature in the rolling mill where the steel temperature
usually is more homogeneous, in this case there will be a considerable
time delay between heating and temperature measurement, see [Schurko
et al., 1987]. Given an accurate model for the temperature drop during
rolling the pyrometer measurement can be used for adapting the param-
eters of the slab temperature model.

For more details about the present furnace control algorithms, see
[Pedersen, 1998]. In that literature review it is concluded that the impor-
tance of the prediction of the slab temperature is seen from the fact that
the models normally are used only for temperature prediction. Very few
examples of controller designs based on the slab temperature models have
been found in the literature. The most common solution for determining
the furnace temperature set points are optimization algorithms using the
prediction models or PI-controllers. It is also remarkable that only two
references on system identification have been found. No other reports on
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parameter estimation of the rather complex PDE models are given than
the one in this thesis.

8.3 The Slab Temperature Control Problem

Only a few model based controller designs have been found in the litera-
ture. This indicates that the slab temperature control problem could be a
good topic of research. The fact that only a few cases of system identifica-
tion have been found confirms this choice. The remarks are relevant for
both the level I and the level II furnace control systems, but we choose
to work with the level II systems since they are the part of the control
systems working closest with the main variable of interest in the furnace
control—the slab temperature.

The central variable in the design will be the mean temperature of
the slabs, but also the temperature gradient and the furnace energy con-
sumption will be considered. Given the level I control systems described
in Section 8.2, the furnace is subdivided into a number of furnace tem-
perature control zones. In the control of the slab temperature each zone
will be considered separately, along the same lines as the arguments for
deriving the principle of optimality it can be seen that a good control of
the furnace can be accomplished by a good control of the temperature of
the slabs in each furnace control zone.

The design problem is therefore a furnace zone containing nj slabs,
see Figure 8.2. The slabs are moved through the furnace with velocity
vs by the slab transport system, and the slab temperatures of zone j,
T j

1 , . . . , T j
nj are controlled by varying the furnace temperature T j

m of the
j’th zone which influences the furnace temperature profile Tt.

8.4 Analysis of the Slab Heating

In the following we will have a look at the furnace throughput, slab tem-
perature profile, and furnace energy consumption. We start with a model
for the slab temperature profile in its most general form.

In the literature the slab temperature distribution is often described
by a one dimensional partial differential equation in the thickness di-
rection of the slab, where it is assumed that the heating is mainly due
to radiation and convection from gas, furnace walls, and roof. Using the
one dimensional model implies that it is assumed that the temperature
of the individual slab does not vary in the length or in the width direc-
tion. If there is no heat transport through the slab sides this is a valid
assumption.
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T j

m(t)

Tt(x,t)

T j
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Figure 8.2 Illustration of the slab temperature control problem. The temperatures
of the nj slabs passing through the j ’th zone with velocity vs are controlled by
varying the furnace temperature profile Tt in the zone. The coordinates x and y are
also shown in the figure.

The model can be described by the one dimensional heat equation, see
[Siegel and Howell, 1992]

hρ (T)cp(T)�T
�t
(y, t) � �

�y

(
λ (T)�T

�y
(y, t)

)
λ (T)�T

�y
(0, t) � qb(t) � λ b(T(0, t)− Tb(t))

λ (T)�T
�y
(h, t) � qt(t) � σ ε t(T4

t (t) − T4(h, t)) + λ t(Tt(t) − T(h, t))
T(y, 0) � To(y) (8.1)

where T is the temperature distribution of the slab dependent of height
y and time t. The slab thickness is denoted by h, ρ is the specific mass
of steel, cp is the specific heat capacity of steel, λ is the heat conductivity
of steel, all depend on the slab temperature T . Furthermore, σ is Boltz-
mann’s constant, and ε t is an emission factor of the slab top side. The
variable To is the initial temperature distribution dependent of y, Tb is
the temperature below the slab and Tt is the temperature over the slab.
Finally, λ t and λ b are the heat transfer coefficients for the slab top and
bottom, respectively. A simpler version of (8.1) is often used for modeling
slab temperature, see [Rixin and Baolin, 1992] and [Hollander and Zuur-
bier, 1982]. Since the slab is mainly heated from the top in furnace no. 2
the radiation term at the slab bottom is left out in the model. This is in
good agreement with the identification results presented in Chapter 10.
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In the following analysis of the slab heating process, the slab thickness
h is chosen to 260 mm which is the maximal value for the reheat furnace
no. 2. Slab with a nominal thickness of 260 mm have the longest heating
times and the largest temperature gradients and can therefore be seen as
the worst case with respect to these characteristics.

Unfortunately, (8.1) is a nonlinear partial differential equation (PDE)
and it is difficult to solve analytically, therefore a simplified analysis has
to be performed. To do this we assume that the temperature of the slab
is constant in the thickness direction, i.e. that it is independent of y and
that we only have heat conduction due to radiation which implies that
λ t and λ b are zero. This implies that we are only studying the mean
temperature. In this case (8.1) reduces to

hρ cp
dT
dt
(t) � σ ε t(T4

t − T
4(t))

T(0) � To (8.2)

where T is the mean temperature of the slab in the thickness direction.
Equation (8.2) is a nonlinear ordinary differential equation (ODE) and
can be solved if it is rewritten as a differential equation in the mean slab
temperature T

dt(T)
dT

� hρ cp

σ ε t

1

(T4
t (t) − T

4)
t(To) � 0.

Assuming that the furnace temperature Tt is constant this equation has
the solution

t(T̂) � hρ cp

2T3
t σ ε t

(
tan−1

(
T̂
)
+ tanh−1

(
T̂
))

t(T̂o) � 0 (8.3)

where T̂ � T/Tt. Equation (8.3) is a transcendental equation and T̂ can
not be isolated, but it still gives interesting qualitative information about
the heating process. Defining t0.99 as the time where the slab has reached
99% of the furnace temperature Tt we have the equation

h
t0.99

∝ 0.58
σ ε t

ρ cp
T3

t (8.4)

where ∝ means proportional to. Since the furnace throughput can be ap-
proximated by h/t0.99 and we see from (8.4) that the furnace capacity is
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proportional to T3
t if the shape of the furnace temperature as a function of

time t is kept constant. This implies that the furnace capacity increases
dramatically with increased furnace temperature. Note that an increase of
the furnace temperature Tt will result in both shorter heating times t0.99

and higher slab temperatures. A 10% increase in temperature yields a
reduction in heating time by 33%. Note that beside the reduction in heat-
ing time the slab is also heated to a 10% higher temperature. It should
be noted that we are only considering the mean temperatures of the slab.
To have proper material quality it is necessary that the slab temperature
is reasonable uniform.

The energy used for heating slabs to the specified temperature is given
by the heat capacity of the steel block and can therefore not be affected
by the furnace control system. It is on the other hand possible to affect
the heat losses from the furnace. The energy losses may be divided into
losses from the furnace structure and losses through the exhaust gases.

The heat losses will increase with increasing gas temperature every-
where in the furnace. Assuming steady state the conduction and convec-
tion losses through the furnace structure qc are proportional to

qc ∝
∫ l

0
(Tt(x) − Ts) dx

where Ts is the temperature of the surroundings and l is the furnace
length. Since Tt ≫ Ts the argument of the integral will always be positive.
To save energy we therefore want the furnace temperature to be as low
as possible.

The heat losses through the exhaust gases are proportional to

qs ∝ ṁs(0)Tt(0)

where the mass flow of the gas through the stack, ṁs, depends on posi-
tion x. We see that higher temperatures and flows in the stack increases
the energy losses of the furnace. Most reheat furnaces are counter flow
furnaces which means that the stack is placed at the charge end of the
furnace. The energy consumption can then be minimized by ensuring that
the furnace temperature in the charge end is as low as possible.

8.5 Conclusions

In this chapter we have described the reheat furnaces used in the steel
industry for heating the raw material for the rolling mills. The furnace
control systems are normally divided into level I systems for controlling
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the furnace temperature and level II systems for controlling the slab tem-
peratures. After a short presentation of the state of the art of furnace
control systems it is chosen to go on with the work of designing a con-
troller for the slab temperature.

After the definition of the control problem the slab heating is analyzed.
The main characteristics of the control problem with respect to furnace
capacity, temperature gradients, and energy consumption are derived and
it is concluded that furnace temperature and slab thickness are important
parameters of the heating process. To minimize energy consumption it is
necessary to heat the slabs as late as possible when operating the furnace.
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9

Temperature Control—Data
Collection

The purpose of this chapter is to describe the data collection of the slab
and furnace temperatures. The measurements will be used in the sys-
tem identification in Chapter 10, where the structure and parameters of
the mathematical models for the furnace and slab temperature are deter-
mined. We will start with a short description of the measurement device
and then have a closer look at a measurement series.

9.1 The Data Collection Device—The Pig

The data collection device is a Thermophil STORTM which is a portable
data collection unit made especially for measuring slab temperatures
when transported through the reheat furnace. When measuring the slab
temperature the Thermophil is put into a metal box filled with water.
The box is mounted in a special made test slab, see Figure 9.1, and trans-
ported through the furnace in the usual way. The only constraint is that
the test slab maximally can stay in the furnace until the water is evapo-
rated, which is about 7 hours. When the test slab is discharged from the
furnace, the data collection device is removed and the data are transferred
to a PC using a serial link.

The slab temperatures are measured using steel coated thermocouples
mounted in holes that go 10%, 50%, and 90% into the slab in the thickness
direction. A fourth thermocouple is used for measuring the temperature
of the furnace atmosphere on the top side of the slab.
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9.2 A Measurement Series

Figure 9.1 The data collection device mounted on a test slab. The wires going
into the slab are the steel coated thermocouples. The water box is covered heat
protective material to minimize the exposure to heat radiation.

9.2 A Measurement Series

The measurements of the slab top, center, and bottom temperatures and
the furnace atmosphere temperature are taken directly from the data
record of the pig1 run is shown in Figure 9.3.

During the pig run the FOCS system calculates the slab position in
the furnace and measures the gas, and air flows and the temperatures
from the thermocouples mounted in the roof. An example of these data is
shown in Figure 9.2. The data collection is carried out for all zones during
the pig run. All in all 9 different data sets will be used in this thesis.

The furnace temperature from the FOCS system is used as input for
the slab temperature calculation and is generated by linear interpolation
of the temperature reading from the thermocouples mounted in the roof,

1Originally the name is used for a self moving device for cleaning pipelines in both Danish
and English. Of some reason this name is also used for the slab temperature measurement
device at The Danish Steel Works Ltd. and the author has therefore taken the liberty to
translate this term to English.
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Figure 9.2 Example of FOCS data for zone 1 during a pig run. Among other
things, the FOCS system records the fuel flow F1

f , zone temperature T1
m , and slab

position x.

see Figure 8.1, using the slab and thermocouple positions. The roof tem-
perature is used as input to the slab temperature models. It is seen from
Figure 9.3 that there is a reasonable agreement between the roof and
atmosphere temperature measurements, it is, however, sometimes neces-
sary to adjust the slab position to obtain proper agreement between the
two temperature measurements, the reason for this probably being inac-
curate data from the FOCS system. In a few of the measurements no good
agreement can be obtained between the atmosphere temperature Ta and
the roof temperature Tt. One reason for this can be flame radiation from
the burners and cold air leaking into the furnace from the outside.

Two uncertainties of the furnace measurements are known to the au-
thor. The first is that, even if the pig measures the slab temperatures with
a fairly good accuracy within ±5 ○ C, the top slab temperature measure-
ment T10% can be disturbed by heat conduction along the coating of the
thermocouple. The top slab temperature should therefore be handled with
a bit more caution than the other temperature measurements. The other
uncertainty is that the slab position x obtained from the FOCS system
are not always correct, the main reason is a to early or to late detection
of the time when the pig enters the furnace.
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Figure 9.3 Measurement series from a pig run. The slab top temperature T10%,
center temperature T50%, bottom temperature T90%, and the atmosphere tempera-
tures Ta are taken directly from the data record from the pig. The roof temperatures
are generated by a linear interpolation of the roof thermocouple measurements Tt

using the slab position

9.3 Conclusions

This chapter contains a short description of the slab and furnace tem-
perature measurements. The main message is that we measure the top,
center, and bottom temperatures of the slab, the temperature of the fur-
nace roof and the atmosphere temperature on the top side of the slab.
All measurements are considered reliable, except possibly the slab top
temperature measurement and the slab position during the pig run.
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10

Temperature Control—
System Identification

The purpose of this chapter is to construct models for the furnace and slab
temperatures and identify the parameters of these models. The models
will later be used for analysis, controller design, and computer simulations
of the reheat furnace operation. We will, in general, focus on making
advanced and accurate models for the slab temperatures and try to make
the models for the furnace temperatures as simple as possible. For the
slab temperature two models will be used, a simple model for design and
analysis and an advanced model for evaluation of the design.

We will first derive a model for the furnace temperatures, which consist
of a differential equation for the zone temperature control thermocouples
and a static relation between these temperatures and the temperatures of
the other thermocouples in the zone. We will then build two models for the
slab temperatures, an ODE model for analysis and controller design, and
a PDE model for simulation and verification of the control laws designed
later. The connection of the furnace model and the ODE model for the
slab temperature is illustrated in Figure 10.1, the structure for the PDE
model for the slab temperature is similar and therefore not shown here.
Throughout this chapter j is used as zone number and i is used as the
slab number in a zone.
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Furnace Slab- - -

F j
f Tt(xj

i ) T j
i

Figure 10.1 Illustration of the models build in this chapter. The furnace model for
zone j has fuel flow Fj

f as input and a furnace temperature profile Tt for the i’th slab

in zone j with position xj
i as output. The slab model has the furnace temperature

profile as input and the slab temperature T j
i as output.

10.1 Model for Furnace Temperature

In the following we will derive models for the furnace temperatures. We
will first derive a model for the temperatures measured by the thermo-
couples used for the zone temperature control. When this is done a simple
model relating the temperatures of all thermocouples in the zone to the
measurements for zone temperature control is constructed.

Zone Temperatures

The model for the zone temperatures will be used for simulation of the
zone temperature control. Since the main purpose is the control of the slab
temperatures the model for the zone temperatures will be kept as simple
as possible, neglecting the fact that the furnace is a considerably more
complex structure than the slabs. Our goal with the modeling is therefore
to gain insight in the zone temperature dynamics and the interaction
between the furnace temperature control zones.

Inspired by [Kusters and van Ditzhuijzen, 1994] we use the physical
model shown in Figure 10.2 when constructing the model for the furnace
temperatures. As seen from the figure the slab movement also contributes
to the transport of thermal energy and we therefore add this term to the
model described in [Kusters and van Ditzhuijzen, 1994].

When deriving the model we adopt the standard assumption that the
zone temperature profile Tt is uniform throughout the zone in the length
direction, which implies that we are able to assume that it is equal to the
temperature measurement used for the zone temperature control T j

m. Fur-
thermore, we assume that the air is incompressible and that the furnace
characteristics do not vary with the zone temperature. The zone tempera-
tures T j

m are the mean value of the thermocouple readings over the three
tracks and vs is computed by differentiating the slab position recordings.

The energy balance for the zone implies that the total heat flow input
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Figure 10.2 Simplified model for furnace zone j . In the figure qj+1
f is the heat flow

received in the form of gas from the proceeding zone, qj
f is the heat flow delivered

in the form of gas to the preceding zone, qj
b is the heat flow input from the burners

in the zone, qj
l represents the heat loss to the surroundings and slabs, and qj

s is the
heat loss due to the movement of the slabs.

balance is

dEj
z

dt
� qj+1

f (t) − qj
f (t) + qj

b(t) − qj
l(t) − qj

s(t) (10.1)

where Ej
z is the zone energy content of zone j, qj+1

f represents the heat

flow received from the next zone due to the air flow, qj
f represents the

heat flow sent to the previous zone, qj
b represents the heat flow input

from the burners and qj
l represents the heat flow to the surroundings and

heat transferred to the slabs and qj
s is the heat loss due to the movement

of the slabs.
The terms in (10.1) can be represented by

qj
f(t) ∝ T j

m(t)vj
z(t)

qj
b(t) ∝ F j

f (t)

qj
l(t) ∝ (T j

m(t) − Ts(t)) +α (T j
m(t) −

1
nj

nj∑
i�1

T j
i (t)) � (1+α )T j

m(t) − β (t)

qj
s(t) ∝ vs(t)(T j

1(t) − T j
nj
(t))

where T j
m is the temperature for zone j, vj

z is the total air flow from zone j
(and into zone j−1), F j

f is the fuel flow to the burners of zone j, and vs is

the velocity of the slabs. nj is the number of slabs in the zone, T j
i is the

i’th the slab temperature of zone j, and Ts is the temperature outside the
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10.1 Model for Furnace Temperature

furnace, Note that we have implicitly assumed that the slabs are heated
by convection in qj

l , this is necessary to obtain a linear model.
A reasonable assumption is that the total air flow to and from the

zones originates from the burners in all the zones, this implies that

vj
z(t) ∝

4∑
i�j

F i
f (t). (10.2)

Since the air/fuel rate of the burners is constant this implies that the
flow of hot air from a zone is proportional to the gas flow to the burners.
The fuel flow is therefore chosen as inputs to the model.

The zone energy content is given by

dEj
z

dt
∝ d

dt
T j

m(t)

and this together with the above results (10.1) can be represented as

Ṫ j
m(t) � aj

1(vj+1
z (t)T j+1

m (t) − vj
z(t)T j

m(t)) + aj
2 F j

f(t)
+ aj

3T j
m(t) + aj

4vs(t) − aj
5 (10.3)

where aj
1, aj

2, aj
3, aj

4, and aj
5 now are unknown parameters of the furnace

model. For the representation of qj
l and qj

s to be correct it is necessary that
the average slab temperature, and the initial and final slab temperatures
T j

1 and T j
nj are constant over time. This is not always true, one example

is stops, where the slab temperatures tends to increase until the slabs
start moving again. This is especially true for zones 1 and 2, since the
variations in slab temperatures are largest here. Note that (10.3) is a
bilinear equation.

From (10.3) we construct the state space equations
Ṫ1

m

Ṫ2
m

Ṫ3
m

Ṫ4
m

 �


a1
3 − a1

1v1
z a1

1v2
z 0 0

0 a2
3 − a2

1v2
z a2

1v3
z 0

0 0 a3
3 − a3

1v3
z a3

1v4
z

0 0 0 a4
3 − a4

1v4
z




T1
m

T2
m

T3
m

T4
m



+


a1

2 0 0 0

0 a2
2 0 0

0 0 a3
2 0

0 0 0 a4
2




F1
f

F2
f

F3
f

F4
f

+


a1
4

a2
4

a3
4

a4
4

 vs −


a1

5

a2
5

a3
5

a4
5

 (10.4)
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In this equation T j
m, and vs are measurable and vj

z can be obtained from
(10.2) where a factor proportional to qj

z can be computed from F j
f . The

measurements for the system identification are taken from the FOCS
system, see Section 9.2.

Before the identification the mean values of the variables are sub-
tracted from the regressors, this implies that the identification is carried
out at a working point. Surprisingly the result is that the best model is
obtained by only using the coefficients aj

2 and aj
3. This corresponds to rep-

resenting each zone with a first order linear system. One reason for this
is probably that the quality of the data is not very good due to rare and ir-
regular sampling which makes it hard to find a good estimate for the slab
speed for this purpose. Another reason is that we do not know the slab
temperatures which are necessary for determining the energy transport
due to the slab movement which is one of the major heat transports of
the system since approximately 50% of the energy from the natural gas is
absorbed by the slabs. Most of the heat input takes place in zones 1 and
2, were the temperature difference between furnace and slabs is large.
The temperatures of the two zones are therefore affected significantly by
the temperatures of the slabs, which again are affected by the slab speed.

The lack of influence of the heat transport due to the hot gas can be
explained by the fact that zone 1 has far larger capacity compared to the
other zones, while zone 2 has the second largest capacity. The capacities
of zones 3 and 4 are small compared to the two first zones. This makes
the influence of the incoming flow to the zones small compared to the flow
from the zone itself. A typical result of simulating (10.4) on a validation
data set is shown in Figure 10.3.

In general system identification using closed loop data can give prob-
lems with the controller being identified instead of the system. Since we
are doing closed loop identification here the result of the system identifi-
cation leads to the question if the identification has given the right result.
We investigate this by inspecting the data, by looking at the causality we
first notice that it is pretty clear that it is the variations in the flows
F i

f that causes the variations in temperature T j
m. The identified model

follows this pattern and we therefore conclude that we have identified
the transfer function of the furnace and not the transfer function of the
controller.

The result of the identification is the state space equations
Ṫ1

m

Ṫ2
m

Ṫ3
m

Ṫ4
m

 �


a1
3 0 0 0

0 a2
3 0 0

0 0 a3
3 0

0 0 0 a4
3




T1
m

T2
m

T3
m

T4
m

+


a1
2 0 0 0

0 a2
2 0 0

0 0 a3
2 0

0 0 0 a4
2




F1
f

F2
f

F3
f

F4
f

 (10.5)
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Figure 10.3 Validation of the model for the furnace temperatures (10.4). Input to
the model are the fuel flows Fj

f (full) and output are the simulated zone tempera-

tures T j
m (dashed), which should be compared to the measured zone temperatures

(dash-dot). Note the good agreement for zones 3 and 4 and the not so good agree-
ment for zones 1 and 2. The deviation between measurement and output for zones 1
and 2 are believed to be caused by the influence from the energy transport due to
the slab movements. Unfortunately we do not have sufficient information to include
the slab temperatures in the model.

with the coefficients
a1

2, a1
3

a2
2, a2

3

a3
2, a3

3

a4
2, a4

3

 �


8.1 ⋅ 10−5, −1.4 ⋅ 10−3

2.7 ⋅ 10−4, −1.6 ⋅ 10−3

2.8 ⋅ 10−4, −1.4 ⋅ 10−3

1.3 ⋅ 10−3, −1.1 ⋅ 10−3


we see that the gains aj

2 and time constants aj
3 are of the same magnitude

for the four zones. The gains of the zones are proportional to the burner
capacity and inversely proportional to the heat capacity. This can explain
why zone 1 has a small gain despite its large capacity (contains many
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cold slabs) and zone 4 has a large gain despite its relatively small capacity
(contains a few hot slabs). The time constants are proportional to the heat
capacity and inversely proportional to the heat losses and they seem to
balance each other since all time constants are of the same magnitude.

The working points for the linear model are

[ F1
f F2

f F3
f F4

f ]nom � [1690 419 277 50.4 ]
[T1

m T2
m T3

m T4
m ]nom � [1550 1570 1570 1500 ]

Note that the limitations in fuel flows F j
f also yield an upper and lower

limit for the furnace temperatures T j
m. The reason for the lower limit

is energy stored in slabs and furnace construction which prevents the
temperature from falling below a certain limit.

Temperature Profiles

With (10.4) we now have a reasonable representation of the temperature
measurement used for the zone temperature control. The next question
then is how the temperatures of the rest of the thermocouples shown in
Figure 8.1 depend on the values of the zone control temperatures.

In this model we assume that the temperature profile in entire furnace
is given by

Tt(xj
i , t) � p(xj

i )T j
m(t) (10.6)

where xj
i is the position of the i’th slab in the j’th zone and p is a piecewise

linear temperature profile and T j
m is the value measured by the thermo-

couple used for the zone temperature control. This representation is also
used by [H. E. Pike and Citron, 1970]. If the zone is equipped with more
than one thermocouple these temperature measurements can be used for
finding p. Typical results of the application of (10.6) are shown in Fig-
ure 10.4. The relatively good agreement in Figure 9.3 between the atmo-
sphere temperature measurement and the temperature found by linear
interpolation of the thermocouple measurements shows that the linear
interpolation of (10.6) works well in practice.

10.2 Models for Slab Temperature

As mentioned in Section 8.4 the slabs are heated by radiation and con-
vection from the gas and furnace walls. To construct a good model it is
necessary to look further into these phenomena which are illustrated by
Figure 10.5.

The heat transport to and from the slab is due to
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Figure 10.4 Validation of equation (10.6) where the temperature of the four ther-
mocouples used for temperature control is used for predicting the temperatures of
the other four other thermocouples in the furnace. In the figures the thin lines are
the measurements and the thick lines are the predictions. The temperatures used
are the mean values of the three thermocouples over each furnace track. The tem-
peratures for zone 2 is not shown in the plot since it only contains the thermocouple
for control.

Ta(x,t)

T j
m(t)

Tt(x,t)

qt(t)

qb(t)

Figure 10.5 Illustration of the slab heating. The slab is heated by radiation and
convection from the gas from the burners and radiation from the furnace walls. In
the figure Tt is the wall temperature profile, Ta is the atmosphere temperature, T j

m
is the temperature measurement. The variable qt is the heat flux through the slab
top side and qb is the heat flux through the slab bottom.

• Radiation from furnace walls

• Radiation from gas

• Convection from gas

• Heat conduction to slab transport system

Throughout this work we assume that there is no heat transport between
the slabs. None of the results contradict this assumption.
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The heat transfer due to radiation is a complex equilibrium of reflec-
tions between wall and slab and the absorption and emission of radiation
of the gas, for more details see [Baehr and Stephan, 1996]. We will not go
into this discussion here, but pragmatically wait until the results of the
system identification appears. One thing to bear in mind is that the radi-
ation absorption and emission characteristics of the gas vary quite much
with the fuel and we can therefore not expect the coefficients obtained in
the system identification to be valid for furnaces not heated by natural
gas. The heat transfer due to heat conduction and convection is also hard
to predict due to the complex gas flow patterns in the furnace and we will
again await the results from the system identification.

The next natural question that arises is what the T j
m we measure with

the thermocouple in the furnace roof represents—is it the roof tempera-
ture Tt or is it the atmosphere temperature Ta? Again this can develop to
quite a complicated discussion, but looking at Figure 9.3 wee see that the
temperatures measured with the thermocouples in the roof and the ther-
mocouple on the pig are pretty much the same, this leads to the obvious
assumption that Ta � Tt. The results shown later in this chapter shows
that this works well in practice.

The system identification of the models for the slab temperature will be
a lot easier if we know the coefficients for the heat conduction λ , heat ca-
pacity cp, and density ρ of (8.1). These material data are found in [Leden,
1999], which again cites [Griffiths, 1953] and [Richter, 1973]. Plots of the
coefficients are shown in Figure 10.6. Knowing the material data for the
slab reduces the identification problem to determining the coefficients of
the boundary conditions.

The slab temperatures are controlled by the FOCS system and there-
fore there is a risk of feedback in the data used for the system identifi-
cation. Since the feedback is based on the furnace temperature measure-
ment, which is the input to the slab temperature estimator, it is not likely
that this will cause problems in the identification. Since the identification
will be validated by measurements from a number of pig runs there should
be little risk of wrong parameter estimates. The identification is carried
out for a limited slab thickness interval, the thinnest slab is 235 mm and
the thickest slab is 260 mm. We conclude that the model in any case will
be valid for 260 mm slabs, which will be the case treated in the controller
design in Chapter 11.

ODE for Slab Temperature

The purpose of the ODE model is analysis of and controller design for the
slab heating process. We therefore choose to make this model as simple
as possible, given that it is able to predict the output with a reasonable
accuracy.
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Figure 10.6 Material parameters for the steel type used at The Danish
Steel Works Ltd. The peak in the heat capacity cp represents the energy re-
lease/consumption in connection with a phase change of the steel.

In Section 8.3 we choose to control the slab center temperature and
we therefore use the slab center temperature measurement as output
for our model. Inspired by [Pichler and Langer, 1989], [Hollander and
Zuurbier, 1982], and [Leden, 1986] we first identify the parameters of
a model where the slab temperature is considered homogeneous. This is
obtained by considering a steel block with uniform temperature, unit area,
and thickness h. The result is

dT j
i

dt
� 1

hρ (T j
i )cp(T j

i )
(

σ ε t

(
T4

t (xj
i , t) − (T j

i (t)
)4)

+ λ t
(
Tt(xj

i , t) − T j
i (t)

)+ λ b
(
T j

i (t) − Tb
)) (10.7)

where h is the slab thickness, and ρ and cp are the material parameters
described in Section 10.2. σ is Boltzmann’s constant. The variables Tt

and Tb are the ambient temperatures of the slab top and bottom sides,
respectively. The first two terms on the right hand side of (10.7) represent
the energy flows to the slab by radiation and convection, respectively,
while the third term represents the energy losses to the slab transport
system. This term is new in the model compared to the models in the
references above.

The parameters ε t, λ t, and λ b are found by simulating (10.7) using
ode45 in MATLAB and minimizing the error between the slab center tem-
perature measurementT50% and model output T j

i using the MATLAB opti-
mization routines leastsq and fmins. During the identification it turns
out that we can use the interpolated temperatures from the roof thermo-
couples from the FOCS system as Tt, see Section 9.2, and that Tb can
be considered constant. The result of the identification is shown in Fig-
ure 10.7.

119



Chapter 10. Temperature Control—System Identification

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400
Identification data from 970603

Time h

T
em

pe
ra

tu
re

 o C

T
i
j measured

T
a

T
i
j simulated.

T
t

Figure 10.7 Results of the system identification of the ODE for the slab center
temperature T j

i � T50% (10.7). The plot shows the furnace roof temperature Tt,
the measured pig center temperature T j

i , and the simulated temperature T j
i found

using (10.7).

Eight other data sets have been used for validating the results shown
in Figure 10.7. The results of the validation are shown in Figures 10.8 and
10.9. The conclusion of the validation is that (10.7) with the identified pa-
rameters is a good model for the slab center temperature. Note that there
is a close connection between deviations between the atmosphere temper-
ature measurement Ta and the thermocouple measurement Tt and the
bad estimates of the model. This indicates that the model will give valid
predictions given the correct inputs. The most likely reason for the large
deviations between the atmosphere and the thermocouple temperatures
is an inaccurate position calculation of the pig, a wrong position will lead
to an error to the interpolation of the thermocouple temperatures and
therefore to a wrong input to the model.

The parameter values found in the system identification are

[ ε t, λ t, Tb, λ b ] � [0.52 52 305 −31 ] (10.8)
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Figure 10.8 Validation of the system identification of Figure 10.7. The line styles
used are the same as the ones in Figure 10.7. Note that the atmosphere temperature
Ta is the thin full line. The deviations of "961015" seems to be due to errors in the
measurement of the input temperature Tt due to a wrong estimate of the slab
position xj

i . Note that we have a good agreement for "970123" despite its residence
time of 7 hours. Note that the atmosphere temperature Ta is missing for this pig
run.

Assuming that Tt � Ta the resulting emission coefficient between the wall
temperature Tt and the slab can be reduced to

ε t �
(

ε sw + 0.5
ε s(ε g + Ags)

1− (1− ε s)(1− Ags)
)

see [Leden, 1985], where ε s is the emission factor for steel which normally
is around 0.8, ε sw � 0.4 is the exchange factor for radiation between slab
and wall, ε g � 0.4 is the emission factor of the gas, and Ags � 0.5 is the
absorption coefficient of the gas. The result is ε t � 0.8 which is pretty
far from the value 0.52 found in the system identification. It should here
be mentioned that the model for the furnace no. 2 at The Danish Steel
Works Ltd. implemented in the steel temperature simulation program
STEELTEMP c� heat transfer due to convection is only included in zone 0
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Figure 10.9 Validation of the system identification of Figure 10.7. The line styles
used are the same as the ones in Figure 10.7. Note again that the deviations of
"981216" and "990305" are due to a inaccurate furnace temperature Tt.

and therefore the heat input due to radiation has to be made larger in
this case compared to the model developed here.

The value of Tb is close to the temperature outside the furnace (in
Kelvin) and is therefore considered reasonable. It is hard to evaluate the
coefficients λ b and λ t, but the signs are right and they are both of the
same order of magnitude.

Computing the heat fluxes of the regressors of (10.7) shows that 80%
of the heat input is due to radiation and 20% is due to convection. The
losses to the transport is around 20% of the heat input. Note that this
shows that the analysis of the ODE in Section 8.4, where radiation was
considered the only heat source, relies on a realistic assumption.

PDE for Slab Temperature

The purpose of the PDE model is to evaluate the slab temperature control
and we can therefore allow this model to be more complex than the ODE
model described in the previous section. This time we take the model from
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Chapter 8

hρ (T)cp(T)�T
�t
(y, t) � �

�y

(
λ (T)�T

�y
(y, t)

)
λ (T)�T

�y
(0, t) � qb(t) � λ b(x)(T(0, t)− Tb(t))

λ (T)�T
�y
(h, t) � qt(t) � σ ε t(T4

t (t) − T4(h, t)) + λ t(Tt(t) − T(h, t))
T(y, 0) � To(y) (10.9)

where

λ b(x) �
{

0 for x ≤ 37 m

λ b for x > 37 m

and use it for the system identification without modifications. The iden-
tification is carried out by implementing (10.9), including the nonlinear
material data, directly in FEMLAB, which is a FEM simulation tool for
MATLAB, and use the optimization routines leastsq and fmins for deter-
mining the parameters of (10.9).

It is no surprise that it is a more difficult task to identify the coeffi-
cients of the PDE than the ODE. Several extensions such as introducing
heat transfer coefficients λ t, and λ b dependent on the fuel flow and slab
position has been tried, but the identification results did not improve sig-
nificantly. We basically end up with the same parameterization as in the
identification of the ODE, with the minor change that λ b now depends on
the slab position.

The 37 meters marks the limit between zones 3 and 4 where the slab
enters a zone with considerably lower air flow, this leads to a lower furnace
pressure and hereby to an increased leak flow of cold air.

In the identification the center temperature T50% and bottom temper-
ature T90% are used since they turn out to be the most reliable measure-
ments. The results of the identification are shown in Figure 10.10. Note
that the top temperature measurement T10% deviates from the simulation,
a likely cause is heat conduction along the metal coat of the thermocouple
as discussed in Section 9.2. Note, furthermore, that the boundary condi-
tion for heat conduction to the furnace construction seems to be simplified,
since only the mean value of the variations of the slab bottom tempera-
ture T90% are captured by the model. Despite this the overall accuracy of
the system identification is good.

From the validation results in Figures 10.8 to 10.12 it is seen that the
FEM simulations are more sensitive than the ODE simulations, but note
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Figure 10.10 Identification results for the PDE (10.9) where we now identify all
three pig temperatures T10%, T50%, and T90%. Note that the agreement for T50%, and
T90% is quite good despite the simple boundary conditions, the deviations in T10% is
believed to be caused by inaccurate measurements.

that the accuracy is good whenever the wall temperatures Tt correspond
well with the atmosphere temperature Ta.

The parameter values found in the system identification of the PDE
are

[ ε t, λ t, Tb, λ b ] � [ 0.43 77 358 −8.7 ] (10.10)

Comparing to (10.8) we see that the emission factor ε t is reduced by
20% while the top heat conduction coefficient λ t is increased by 50%. One
explanation for this could be that in the ODE model it is assumed that
the entire slab is heated simultaneously, while only the top half of the
slab has to be heated in the PDE case. This means that a more powerful
heating therefore is needed in the ODE case to obtain the same dynamics
as in the PDE case. In the system identification this is done by giving the
heating by radiation larger effect in the ODE case than in the PDE case.

In the PDE case both magnitude and exposure of the cooling by the
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Figure 10.11 Validation results for the PDE (10.9). Note the good agreement for
"960611" and "970805" where atmosphere temperature Ta , and wall temperature Tt

are in good agreement.

transport system represented by λ b and Tb is smaller than in the ODE
case. The explanation for this could be that in the FEM case the heat
transport through the slab is modeled explicitly, while this has to be done
artificially in the ODE case. This will lead to a what seems like a heat
loss to from the center in the ODE case.

125



Chapter 10. Temperature Control—System Identification

0 2 4 6
0

200

400

600

800

1000

1200

1400
Validation data from 980617

Time h

T
em

pe
ra

tu
re

 o C

0 2 4 6
0

200

400

600

800

1000

1200

1400
Validation data from 980904

Time h

T
em

pe
ra

tu
re

 o C

0 2 4 6
0

200

400

600

800

1000

1200

1400
Validation data from 981216

Time h

T
em

pe
ra

tu
re

 o C

0 2 4 6
0

200

400

600

800

1000

1200

1400
Validation data from 990305

Time h

T
em

pe
ra

tu
re

 o C

Figure 10.12 Validation results for the PDE (10.9). Note the good agreement for
"980617" and "980904" where atmosphere temperature Ta , and wall temperature Tt

are in good agreement.
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10.3 Conclusions

We are now finished building models for the slab temperature control
problem. We have found that the temperature measurements used for
zone temperature control can be represented by independent linear first
order systems with a reasonable accuracy and that the other tempera-
ture measurements in the zones can be represented as linear functions of
temperature control measurements.

Two models for the slab temperatures have been built and identified.
The first model is a nonlinear ODE which is used for modeling the slab
center temperature and the second model is a PDE which is used for
modeling the slab top, center, and bottom temperatures. In both cases good
agreement is obtained during identification and validation which has been
carried out using 9 data sets collected over several years at The Danish
Steel Works Ltd. One prerequisite for obtaining a good prediction of the
slab temperature is that the calculated furnace temperature is correct,
this is especially the case with the PDE model. The results indicate that
the furnace can be regarded as a time invariant process which was not
clear before the system identification.

The coefficients obtained from the ODE and PDE identification give
a bit different pictures of the heating process. The results of the PDE
identification is believed to be the most reliable and it is concluded that
the coefficients from the the ODE identification are biased due to the
assumptions used when deriving the model.
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11

Temperature Control—
Design

The purpose of this chapter is to design algorithms for the control of the
slab temperatures. First we will use the identification results from Chap-
ter 10 to build a nonlinear state space model for all slabs in a furnace
control zone. Then we will design a linear control law similar to that of
the FOCS system, the purpose of the design is optimization of the fur-
nace control system at The Danish Steel Works Ltd. The final part of the
chapter contains a design of a nonlinear control algorithm for the furnace
control problem—the performance of the linear and the two nonlinear
algorithms will be compared in Chapter 12 using computer simulations.

11.1 The Control Problem

We want to control the temperatures of the slabs in the reheat furnace no.
2 at The Danish Steel Works Ltd. The furnace is divided into 4 furnace
temperature control zones, see Figure 8.1, and we control the i’th slab
temperature of the j’th zone T j

i by varying the furnace temperature set
points T j

m and hereby the furnace temperature profile Tt of the control
zones, see Figure 8.2. The furnace temperatures are controlled by vary-
ing the fuel flow to the burners. The main task of control system is to
minimize the effects of the varying slab velocity vs, which can be seen as
a measurable disturbance.

As mentioned in Section 8.3 we will consider the control of the slab
temperatures separately for each zone and the problem is reduced to con-
trolling the temperatures of the nj slabs in each of the four furnace zones.

To simplify the notation in the following we assume that the material
properties and thickness of all slabs in the zone are identical, it is straight
forward to remove this assumption when necessary. Throughout this chap-
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11.1 The Control Problem

ter i � 1, ⋅ ⋅ ⋅ , nj is used for slab index in the zone and j � 1, ⋅ ⋅ ⋅ , 4 is used
as zone number.

We build the model for all slabs in a control zone using the ODE model
in Section 10.2. Assuming that the zone contains nj slabs and defining
the state vector for zone j

T j(t)T � [T j
1 (t) T j

2 (t) . . . T j
nj (t)

]
we obtain the following state space model from (10.7)

dT j

dt
� G(T j)(F(T j) + U(Tt))

dxj

dt
� 1vs(t) (11.1)

where

G(T j) �


g(T j

1 ) 0 . . . 0

0 g(T j
2 )

. . .
...

...
. . .

. . . 0

0 . . . 0 g(T j
nj )


F(T j)T � [ f (T j

1) f (T j
2) ⋅ ⋅ ⋅ f (T j

nj)
]

U(Tt)T � [u(xj
1, T j

m) u(xj
2, T j

m) ⋅ ⋅ ⋅ u(xj
nj , T j

m)
]

xj (t)T � [ xj
1(t) xj

2(t) ⋅ ⋅ ⋅ xj
nj (t)

]
1T � [1 1 ⋅ ⋅ ⋅ 1 ] (11.2)

where we have used that

Tt(x, t) � p(xj
i )T j

m(t)

where p is the linear interpolation of the thermocouple measurements
defined by (10.6), and T j

m is the furnace temperature measurement used
for controlling the furnace temperature.

In (11.1) and (11.2) vs is the velocity of the slabs, xj
i is the position of

the i’th slab in the j’th zone, see Figure 8.2. The elements of (11.2) are

f (T j
i ) � −ε tσ

(
T j

i (t)
)4 − (λ t − λ b)T j

i (t) − Tbλ b, i � 1, . . . , nj

g(T j
i ) �

1

hρ (T j
i )cp(T j

i )
u(xj

i , T j
m) � ε tσ p4(xj

i)
(
T j

m(t)
)4 + λ tp(xj

i )T j
m(t) (11.3)
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The material parameters ρ and cp are shown in Figure 10.6. Further-
more, ε t, λ t, λ b, and Tb are the parameters found in the ODE system
identification described in Section 10.2.

The mechanics of the model (11.1) are as follows: when a new slab
enters zone j it is assigned states T j

1 and xj
1, and the state numbers of

the other slabs in zone j are increased by one. When a slab leaves the
zone, the states T j

nj and xj
nj are removed from the system. Since the slabs

have different lengths these two events are independent.

11.2 Design of FOCS Controller

In the following we will go through the design of the slab temperature
controller of the FOCS system. The design has two purposes, it should be
used

• for adjustment of the parameters of the existing FOCS system at
The Danish Steel Works Ltd.

• for comparison and introduction for the nonlinear deign presented
later in this chapter

The controller structure is already given by the system at The Danish
Steel Works Ltd., see Figure 11.1. The figure illustrates that the slab tem-
perature controller C j

S for the j’th zone sets the reference to the furnace
temperature controller which again controls the fuel flow to the burners
of zone j.

The main purpose of the slab temperature control system is to mini-
mize the heating error for zone j

ej
L(t) �

nj∑
i�1

rj
L(i)(T j

i (t) − Tr(xj
i )) � rj

L T j − rj
LTr(xj)

where Tr is the heating curve, and rj
L is a vector of nonnegative weights

for the temperature deviation of zone j. The design variables of the system
are

• The heating curve Tr. The slab temperature reference Tr starts at
room temperature and ends at the desired final slab temperature.
The heating curve is a function of slab position x.

• The feedforward tables. The tables specify the furnace tempera-
ture set points as a function of the slab speed vs. This makes sense
since vs can be considered as a measurable disturbance of the slab
temperature control system.
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Figure 11.1 The controller structure for the FOCS system consists of PI con-
trollers for the weighted slab temperature rj

LT j , and furnace temperature T j
m. T j

f f

is the temperature reference from the feedforward tables, and T j
mr is the furnace

tempeature reference from the slab tempeature controller. Gj
F is the closed loop

transfer function of the furnace temperature control system of zone j , C j
S is the

transfer function of the slab temperature controller for zone j , and Pj
S is the trans-

fer function relating the furnace temperature and the weighted slab temperature
rj

L T j of zone j .

• The PI coefficients. Based on the slab temperature deviation from
the heating curve the PI-controllers C j

S determines a correction of
the furnace temperature reference from the feedforward tables.

In the following we will first determine the heating curve and feedforward
tables. We will then design the PI-controllers for the slab temperature
deviation from the heating curve.

Heating Curve and Feedforward Tables

We start the controller design with a discussion of the heating curve and
the feedforward tables, which are parts of the classical approach to the
solution of the slab temperature control problem. The heating curve is
a reference trajectory for the slab temperatures which sets the tempera-
ture reference for the slabs as they are transported through the furnace
with speed vs. The feedforward tables contain the furnace temperature
set points necessary to follow the slab heating curve, for an example see
Table 11.1. The tables assumes constant slab speed.

The reference slab center temperature Tr is normally chosen as a func-
tion of slab position xj

i instead of time t. In the case where the slabs are
moving with constant nominal speed vs0 there is no difference, but when
a stop occurs the dependence on slab position ensures that rise in temper-
ature reference is stopped and is first started when the slabs start moving
again. The dependence on x therefore prevents premature heating of the
slabs.

A natural way of choosing the heating curve is to use the stationary
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solution of the differential equation for T j
i when the slabs move through

the furnace with the nominal velocity vs0. The advantage of this approach
is that in the nominal case the furnace temperatures T j

m can be kept
constant. It is also an advantage in the linear controller design, as we
will see later on. In the case where vs � 0 the differential equation for
the heating curves reduces to a static equation which can be used for
determining the zone temperatures necessary to keep the slabs hot during
stops. In the following we only generate heating curve and feedforward
tables for the nontrivial case where vs0 > 0. As we will see later it is not
certain that the slab temperatures will stay on the heating curve during
the stops.

To generate the constant velocity solution to the differential equation
for the slab temperature T j

i we define the differential equation for the
heating curve Tr in zone j as

dTr

dt
� dTr

dx
dx
dt
� dTr

dx
vs0 � g(Tr)( f (Tr) + u(x, T j

m0))
:

dTr

dx
� 1

vs0
g(Tr)( f (Tr) + u(x, T j

m0))
dx
dt
� vs0

Tr(0) � Tin (11.4)

where Tin is the initial slab temperature, and T j
m0 is the constant furnace

temperature that ensures that the slab temperatures follow the heating
curve. The nominal slab speed vs0 is chosen corresponding to a residence
time of 6.4 hours corresponding to vs0 � 0.002 m/s. The residence time is
normally 5 hours at The Danish Steel Works Ltd. The reason for the choice
of a larger residence time for calculating the heating curve Tr is that the
furnace is operated partially as a batch furnace, for further details please
refer to the discussion in Chapter 13.

We now have to find the furnace temperature setpoints T j
m0 for the

four zones, j � 1, 2, 3, 4. To reduce the temperature gradient of the slabs
and to ensure a buffer of hot slabs when the furnace is subjected to ele-
vated speeds, we choose to keep the slab temperature T j

i at the desired
final temperatures in zones 3 and 4. The simulations of the PDE for the
slab temperature in Chapter 12 and the experiences from the implemen-
tation of the control strategy show that this is sufficient for ensuring a
satisfactory mean temperature and temperature gradient. The remaining
freedom we use for minimizing the energy losses of the furnace, which
are discussed in Section 8.4.
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11.2 Design of FOCS Controller

We choose to use the ODE model (10.7) for generating the heating
curve. The reason for not using the PDE model (10.9) is that the identi-
fication results show that the ODE gives more reliable results, and that
the ODE is easier to handle. The PDE is used for verifying the heating
quality after the heating curve is generated.

Based on this discussion we choose the performance criterion

min
T j

m0

∫ l

0
Tt(τ )dτ � min

T j
m0

4∑
j�1

∫ lj
z

0
T j

m0p

(
τ +

j−1∑
i�1

l j
z

)
dτ (11.5)

where l is the total length of the furnace and, l j
z is the length of zone j.

The criterion is used for minimizing the heat losses by convection and the
heat losses through the stack, see Section 8.4.

The constraints of the optimization problem are

dTr

dx
� 1

vs0
g(Tr)( f (Tr) + u(x, T j

m0)) (11.6)

tTr(x) − Toutt � 0, x ∈
 2∑

j�1

l j
z,

4∑
j�1

l j
z


T j

mmin
≤ T j

m0 ≤ T j
mmax

where Tout is the desired final slab temperature and Tr is the solution to
the differential equation. T j

mmin and T j
mmax are the limits for the furnace

temperatures T j
m in zone j. The limits are a result of temperature limits

for the furnace protection and the identification of the furnace tempera-
ture model in Section 10.1.

The heating curve Tr is found by solving the optimization problem
(11.5) subject to the constraints obtained from (11.6) using the function
constr in MATLAB. The result is shown in Figure 11.2. Note that the ob-
tained heating curve ensures later heating compared with the existing
one, this should ensure energy savings due to the decrease of the fur-
nace temperatures at the charge end, remember the heat losses through
the stack, see Section 8.4. This will be evaluated when looking at the
experimental results in Chapter 13.

In the FOCS system the feedforward tables are used for determining
an open loop value of the furnace temperatures dependent on the slab
velocity vs. The feedforward temperature is determined by linear interpo-
lation of the table values. The feedforward value is corrected by a feedback
control of the slab temperature, the design of the feedback control is dis-
cussed later in this section.
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Figure 11.2 New and existing heating curves Tr for the control zones of the reheat
furnace with an initial temperature Tin of 20○ C and a final temperature Tout of
1120○ C. Note that the new heating curve ensures significantly later heating than
the existing one. The heating curve is used as a slab temperature reference as a
function of the slab positions x.

It is, in general, not possible to have the same heating curves for two
different slab speeds ṽs0 and vs0 since this implies that

dTr

dx
� 1

vs0
g(Tr)( f (Tr) + u(x, T j

m0)) �
1

ṽs0
g(Tr)( f (Tr) + u(x, T̃ j

m0))
:

u(x, T̃ j
m0) �

(
ṽs0

vs0
− 1
)

f (Tr) + ṽs0

vs0
u(x, T j

m0)

which is not possible to obtain with a constant T j
m0. Given a nominal

speed different than vs0 we therefore choose the furnace temperatures
that minimizes the distance to the heating curve, this is done by solving
the optimization problem

min
T j

mi

uTr − T̃ru∞

134



11.2 Design of FOCS Controller

0 1 2 3 4 5

200

400

600

800

1000

1200

Time h

T
em

pe
ra

tu
re

 o C

v
s
 = 0.0025, ∆T = 96.6, T

avg
 = 1120

Zone 1 Zone 2 Zone 3 Zone 4

T
10%

T
50%

T
90%T
i
j

T
m

Figure 11.3 Result of finding feedforward temperatures for the nominal residence
time of 5 hours corresponding to vs � 0.0025 in the feedforward table. In the figure
∆T denotes the temperature gradient and Tavg denotes the average temperature of
the FEM simulations at the time of discharge. The FEM simulation shows that the
temperature gradient is on the high side, around 97○ C but the experiments show
that no problems occur during rolling.

subject to the constraints

dT̃r

dx
� 1

vsi
g(T̃r)( f (T̃r) + u(x, T j

mi))
T j

mmin
≤ T j

mi ≤ T j
mmax

The problem is solved for five nominal speeds vsi between 0.0017 m/s
and 0.005 m/s. Once more constr in MATLAB is used for determining the
optimal temperatures for the feedforward table. In the optimization the
temperatures of zones 3 and 4 are constrained to be larger than 1220 ○ C
and 1200 ○ C to ensure a minimal amount of flow and thereby pressure
in the last part of the furnace. The maximal temperature of zone 4 is
furthermore set to 1240 ○ C to avoid too large temperature gradients of the
slabs. The result of the optimization is presented in Figures 11.3, 11.4,
and Table 11.1. Note here that speeds over 0.0025 m/s are not feasible,
they are only included here since the appear in the tables of the FOCS
system at The Danish Steel Works Ltd. The high speeds can only be used
for 200 mm slabs.
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Figure 11.4 Results of the determination of the zone temperatures for the nominal
velocities of the feedforward tables. In the figure ∆T denotes the temperature gradi-
ent and Tavg denotes the average temperature of the FEM simulations at the time
of discharge. It is seen that the temperature gradients are not acceptable for slab
velocities over vs � 0.0025. The curve marking is the same as used in Figure 11.3.

m/s 0.0017 0.0025 0.0033 0.0042 0.0050

Zone 1 1227○ C 1320○ C 1320○ C 1320○ C 1320○ C

Zone 2 1308○ C 1330○ C 1330○ C 1330○ C 1330○ C

Zone 3 1240○ C 1220○ C 1330○ C 1330○ C 1330○ C

Zone 4 1200○ C 1227○ C 1240○ C 1240○ C 1240○ C

Table 11.1 New feedforward table with temperature setpoints for the four furnace
control zones. The setpoints are given for five different slab speeds. The feedforward
table is used for generating an open loop temperature setpoint in the FOCS system.

At zero slab velocity the furnace temperatures are lowered to values
specified by a separate table containing multiplication factors for the fur-
nace temperatures at the beginning of the stop. These tables will not be
considered here.

Finding the Controller Coefficients

When controlling the temperature of the slabs it is normally desired that
they follow the heating curve Tr which defines the control error for the i’th
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11.2 Design of FOCS Controller

slab as T j
i −Tr(xj

i ). It is natural to consider the temperature deviations of
the slabs leaving the zone more important than the other slab temperature
deviations, this is handled by introducing individual weight terms rj

L(i)
for the slab temperature deviations. We now define the error function for
zone j

ej
L(t) �

nj∑
i�1

rj
L(i)(T j

i (t) − Tr(xj
i )) (11.7)

In the FOCS system four different choices of linear weight functions are
possible. We here choose the variant that gives equal weight to all the
slabs in a zone, the reason for this is that the experiences from the exper-
iments in Chapter 13 show that the heating of the cold slabs entering are
as important as the temperature of the slabs leaving the zone. To keep the
design simple we choose the same weight function rj

L for all four control
zones

rj
L(i) �

1
nj

, i � 1, . . . , n

Note that this choice of weight function yields
∑

rj
L(i) � 1. Since the zone

always is filled with slabs this choice of weight ensures a constant gain
of the model of the slabs of a zone, as we will see later.

Looking at the control error Y j
i � T j

i −Tr(xj
i) we obtain the differential

equation from (11.1)

dY j
i

dt
� dT j

i

dt
− dTr

dt

� g(T j
i )( f (T j

i ) + u(xj
i , T j

m)) −
vs(t)
vs0

g(Tr)( f (Tr) + u(xj
i , T j

m0)) (11.8)

Linearization of this equation around the heating curve Tr yields

dY j
i

dt
� a(xj

i)Y j
i (t) + b(xj

i)(T j
m(t) − T j

m0) + k(xj
i)(vs(t) − vs0)
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where

a(xj
i) �

�

�T j
i

[
g(T j

i )( f (T j
i ) + u(xj

i , T j
m0))

]∣∣∣∣
T j

i �Tr(xj
i )

�g(Tr(xj
i))′( f (Tr(xj

i )) + u(xj
i , T j

m0))
− g(Tr(xj

i ))(4ε tσ T3
r (xj

i ) + (λ t − λ b))

b(xj
i) �

�

�T j
m

[
g(Tr(xj

i ))u(xj
i , T j

m)
]∣∣∣∣

T j
m�T j

m0

�g(Tr(xj
i))(4ε tσ p(xj

i )(T j
m0)3 + λ tp(xj

i ))

k(xj
i) �

�

�vs

[
−vs(t)

vs0
g(Tr(xj

i))( f (Tr(xj
i )) + u(xj

i , T j
m0))

]∣∣∣∣
vs�vs0

�− 1
vs0
( f (Tr(xj

i )) + u(xj
i , T j

m0)

f , g, and u are defined in (11.3). Since g is based on tables it is differen-
tiated numerically. We note that we have linearized around a trajectory
that is a stationary solution to the nonlinear differential equation for the
slab temperature T j

i . This is a classical approach in nonlinear system the-
ory. The fact that the heating curve is generated as a stationary solution
to the differential equation simplifies the linearization considerably.

Joining the linearized models for all slabs in zone j and introducing
Y j as the vector of slab temperature errors for zone j we end up with a
linear state space model of order nj .

Ẏ j (t) �Aj (xj )Y j(t) + B j (xj )(T j
m(t) − T j

m0) + K j(xj )(vs(t) − vs0)
ej

L(t) �C j Y j (t)

Aj has diagonal structure and B j , C j , and K j are vectors

Aj (xj) �


a(xj

1) 0 . . . 0

0 a(xj
2)

. . .
...

...
. . .

. . . 0

0 . . . 0 a(xj
nj )


B j (x)T � [ b(xj

1) b(xj
2) ⋅ ⋅ ⋅ b(xj

nj )
]

C j � [ rj
L(1) rj

L(2) ⋅ ⋅ ⋅ rj
L(nj)

]
K j(x)T � [ k(xj

1) k(xj
2) ⋅ ⋅ ⋅ k(xj

nj )
]
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Figure 11.5 Variation of the pole location of a linearization of the nonlinear differ-
ential equation for the slab temperature.We assume that the slab temperature T j

i
follows the temperature reference curve Tr . The pole location is shown as a function
of slab position x.

Plots of a and b are shown in Figures 11.5 and 11.6, respectively. We note
that the values of a equals the eigenvalues of Aj and they become positive
due to an internal energy release caused by the phase transformation of
the steel. Note that k is the effect of the slab movement with velocity vs

on the error Y j
i .

Looking at the plot for a in Figure 11.5 and the plot for b in Figure 11.6
we see that the eigenvalues of A and the values of B are constant for zone
4 and the system is therefore neither controllable or observable here. This
indicates that a reduction of the number of states in the linearized system
might be appropriate.

It is clear from Figures 11.5 and 11.6 that the values of a and b vary
with the position of the slab xj

i . We here cope with this problem by ap-
plication of averaging. Consider the case where the furnace speed vs is
constant and the slab lengths are identical and a multiple of the zone
length l j

z. We follow a slab through a furnace control zone and when the
slab leaves the zone its state is assigned to the new slab entering the
zone. It can be realized that the slab temperature control can be seen as
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Figure 11.6 Variation of the gain of a linearization of the nonlinear differential
equation for the slab temperature. We assume that the slab temperature T j

i follows
the temperature reference curve Tr . The variation is shown as a function of slab
position x.

a periodic problem since

a(t) � a(t+ tj)
b(t) � b(t+ tj )
k(t) � k(t+ tj )

where tj is the time it takes the slab to pass through zone j. The term k
is not used here, but the influence of the slab speed vs is included by the
feedforward tables described earlier in this section.

Inspired by averaging theory [Åström and Wittenmark, 1995] we want
to approximate the system. Introduce the averaged slab temperature error
for the i’th slab in zone j

Y
j
i �

1
tj

∫ tj

0
Y(t) dt � vs0

l j
z

∫ tj

0
Y(t) dt

and Ȳ j as the vector of averaged slab temperature errors for zone j. Set-
ting T j

m − T j
m0 � C j

S (p)C j Y
j

where C j
S (p) is the transfer function of the
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linear slab temperature controller for zone j we reformulate the differen-
tial equation to

dY
j
i

dt
� vs0

l j
z

∫ tj

0
a(t) dt Y

j
i(t) +

vs0

l j
z

∫ tj

0
b(t) dtC j

S(p) C j Y
j (t)

� 1

l j
z

∫ lj
z

0
a(x) dx Y

j
i (t) +

1

l j
z

∫ lj
z

0
b(x) dx C j

S(p)C j Y
j
i (t)

� aj Y
j
i(t) + b

j
C j

S(p)C j Y
j (t)

where l j
z is the length of zone j and p is the differential operator. The ad-

vantages of the averaging are many, we are able to cope with the positive
values of a, and as we will see in the following it is straight forward to de-
sign the PI-controllers of the FOCS system for the averaged system. Note
that the averaged parameters are not dependent on the slab velocity vs,
they are, however, only guaranteed to be relevant near the heating curve
Tr.

Representing each slab in the j’th zone by its averaged linear system
we end up with a system matrix Aj with identical eigenvalues and the
state space representations for the zones can be reduced to the first order
system

Pj
S(s) �

C j B
j

s− aj �
∑nj

1 rj
L(i)b

j

s− aj � b
j

s− aj (11.9)

where b
j

and aj are found by averaging over the zone. We can also see this
as we control the slabs temperatures of the zone as the mean temperature
of one big piece of steel. Note that due to the special choice of weight
function rj

L the slab lengths do not affect (11.9). The values found in the
averaging are


b

1

b
2

b
3

b
4

 �


2.3 ⋅ 10−4

4.0 ⋅ 10−4

3.5 ⋅ 10−4

3.7 ⋅ 10−4




a1

a2

a3

a4

 �

−1, 4 ⋅ 10−4

−2.7 ⋅ 10−4

−3.1 ⋅ 10−4

−3.1 ⋅ 10−4
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Figure 11.7 Check of validity of averaging. The original linearized system with
the time varying coefficients and the averaged equation (11.9) are simulated with
a sawtooth wave as input. We note that there is a reasonable agreement between
the responses of the original and the averaged system.

Note that all the averaged systems are stable. To verify the dynamic prop-
erties of the averaging of the system around the heating curve the orig-
inal system with the time varying coefficients and the averaged system
are simulated with a sawtooth wave as input. The result is shown in
Figure 11.7.

The controller structure of the FOCS system is shown in Figure 11.1,
it has two PI-controllers, one for the furnace temperature T j

m and one for
the weighted slab temperature rj

L T j . The averaging analysis implies that

rj
LT j � T

j
and we have the linear first order transfer function (11.9) from

the furnace temperature T j
m to the controlled variable. The disturbances

of the system—the variations of vs—enter the system through the refer-
ence Tr, see Figure 11.1. This makes the linear controller design a servo
problem, see [Åström and Wittenmark, 1997]. Note that the temperature
found using the feedforward tables T j

f f is related to a change of the ref-
erence Tr. As we will see later this gives a pretty good reaction to the
disturbances introduced by the slab movement.

An investigation of the furnace temperature control shows that the
performance of these controllers are satisfactory and we therefore choose
to keep the existing controller structure for this algorithm.
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The transfer functions of the slab and furnace temperature controllers
are given by

C j
F (s) � K j

pF + K j
iF

1
s

C j
S (s) � K j

pS + K j
iS

1
s

Neglecting dynamics of the fuel and air valves, which are considerably
faster than the system dynamics, we end up with the second order closed
loop transfer for the furnace and slab temperatures

T j
m(s) � Gj

F (s)T j
mr(s) �

aj
2(K j

pFs+ K j
iF)

s2 + (aj
2K j

pF − aj
3)s+ aj

2 K j
iF

T j
mr(s)

T
j (s) � Gj

S (s)rj
LTr(s) �

b
j (K j

pSs+ K j
iS)

s2 + (bj
K j

pS − aj )s+ b
j
K j

iS

rj
LTr(s)

where it has been assumed that the dynamics of the transfer function
for the furnace temperature Gj

F are fast compared to the dynamics of Gj
S

and therefore can be neglected in the second equation. Since the open
loop time constants of the furnace zone temperature, see Section 10.1, is
a factor 10 faster than the time constants for the slab temperature this
is considered a valid approximation.

Aiming at closed loop time constants half as long as the open loop time
constants and a damping factor of 0.7 for the slab temperature yields the
following equations for the controller coefficients.

K j
iS � −

4(aj)2
b

j

K j
pS � −

1.8aj

b
j

A simulation of a standard slab velocity disturbance, see Section 12.3, is
shown in Figure 11.8. The simulations have been carried out using the
full nonlinear model for the reheat furnace described in Chapter 12. It
is seen that the stop gives a rather large error in the slab temperatures
leaving the zone, but also that the PI-controller uses large control effort
to counteract the disturbance.

The final question in the linear design is the variation of the slab
dimensions. Since the material parameters of (11.3) are g � 1/(h̃ρ cp) we
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Figure 11.8 Response of the slab temperature control of zone 1 to a step distur-
bance in the slab velocity vs when the slab temperatures are controlled using the
PI-controller and feedforward table. The slab velocity is changed from its nominal
value 0.002 m/s to zero at t � 1, to 0.0025 m/s at t � 2 and back to the nominal
value at t � 3, see Figure 12.2. The plots show the reactions of the slab temperature
controller to the disturbance. We see that the slabs leaving the zone get approxi-
mately 100 ○ C too hot, but this is taken care of later by zones 2 to 4. The responses
are kept within the permissible limits of the fuel flow F1

f and furnace temperature
T1

m . The control error is defined by e1
L � r1

LY1 . The circles in the plot in the lower
right corner show the temperatures of the slabs leaving the zone. The bend on the
curve at t � 5.5 hours is the first slab which has entered the zone after the stop.
The horizontal lines around Y j

i � 0 marks a heating error of ±10○ C.

see that approximatively

ai ∝ 1

h̃

bi ∝ 1

h̃

which make the gain and pole of (11.9) inversely proportional to the slab
thickness h. The characteristic equation of the closed loop system becomes
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approximatively

s2 + h̃
h
(bj

KpS − aj)s+ h̃
h

b
j
KiS � 0

which is stable for all positive values of h by Routh’s stability test. The
different thicknesses are handled in the FOCS system by having a sepa-
rate heating curve for each slab thickness. Note that a different heating
curve for slabs of a different thickness might affect the result, since it will
affect the values of aj and b

j
.

11.3 Design of Nonlinear Controller

When controlling the slab heating it is natural to start thinking about the
possibility of controlling the slab energy content. Unfortunately, the slab
energy content given by hρ cpT j

i is not a monotonic function of temperature
T j

i , due to the variations of ρ , and especially cp. Instead it turns out to be
feasible to control the slab enthalpy hs which we define by

hs(T j
i ) �

∫ T j
i

0
hρ (τ )cp(τ )dτ . (11.10)

Using this variable for the slab temperature control yields, beside the
nice interpretation, a simplification of the nonlinear equations we want
to control. A plot of the enthalpy as generated on the basis of the heating
curve of Figure 11.2 is shown in Figure 11.9.

In the following we will design a nonlinear controller for controlling
(11.10), where the slabs are expected to follow the enthalpy curve in
Figure 11.9 as they are transported through the furnace. This follows
the same lines as the linear controller in Section 11.2. This concept we
call enthalpy control. In the nonlinear design we will adopt the existing
furnace temperature controller and neglect the dynamics of the furnace
temperature, as in the linear design.

Choosing the enthalpy (11.10) as output of the nonlinear state space
equation (11.1) we end up with the system

dT j

dt
� G(T j )(F(T j) + U(Tt))

ej
V (T) � 1

2

nj∑
i�1

rj
Vi
(Ej

i )2 (11.11)
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Figure 11.9 Enthalpy curve for the control zones of the reheat furnace with an
initial temperature of 20○ C and a final temperature of 1120○ C. The enthalpy curve
is based on the heating curve in Figure 11.2 and (11.10).

where rj
V is the error weight for the enthalpy controller, hs is defined by

(11.10) and

Ej
i (xj

i , T j
i ) � hs(T j

i ) − hr(xj
i).

The weights of rj
V now can be chosen freely. The enthalpy reference hr

which depends on slab position xj
i , is defined as

hr(xj
i ) �

∫ Tr(xj
i )

0
hρ (τ )cp(τ ) dτ

Many other choices of error functions than the quadratic one used in
(11.11) are possible, it is chosen here because it works well in practice
and we can use it for proving a stability result later on.

Using the nonlinear geometric methods for investigating the control-
lability and observability, see [Nijmeijer and van der Schaft, 1991], of
(11.11) is unfortunately not feasible due to the repeated differentiation of
g which is only given by numerical data. A sufficient condition for a sys-
tem to be locally controllable is that the linearized system is controllable,
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see [Nijmeijer and van der Schaft, 1991]. As seen from the discussion in
Section 11.2 this is not always the case. Using the linearized model we,
furthermore, see that a sufficient condition for lack of (state) controlla-
bility is that two slab temperatures T j

i and T j
k are equal—this can, for

instance, happen during longer stops if the furnace temperature profile p
is the same for xj

i and xj
k. This indicates that it can be difficult to control

the furnace in these situations.
Looking at the linearization in Section 11.2 we see that the linearized

system is not always observable in a neighborhood around the heating
curve and we can therefore not derive sufficient conditions for observabil-
ity either. Again we see that during stops where the slab temperatures
become equal we can get problems with the observability of the nonlinear
system.

Investigating the methods suited for nonlinear controller design it
turns out that feedback linearization is well suited for controlling the
slab temperatures. Given a reference trajectory for the slab enthalpy hr

the main idea is to make the control error behave like the linear system

d
dt

ej
V � −cj

1ej
V − cj

0

∫ t

0
ej

V (τ ) dτ (11.12)

which we choose to have the same dynamics as the linearized system of
Section 11.2. Note that we have introduced an integral state in (11.12)
which will ensure that the error ej

V converges to zero in the presence of
offsets in (11.12). This is along the same ideas as the tracking problem
described in [Isidori, 1989], but there no integrator is used and further-
more (11.11) is not affine in the input u due to the variation of p with the
slab positions xj

i . We therefore have to solve the problem by other means.
The first thing we note is that it is not possible to use the integrator in

(11.12), since ej
V ≥ 0 the value of the integral will always be increasing,

instead we introduce the equation

d
dt

ej
V � −cj

1ej
V − cj

0

nj∑
i�1

rj
Vi

Ej
i

∫ t

0
Ej

i (τ ) dτ (11.13)

and now the integrands can take positive as well as negative values, and
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(11.13) is usually still close to (11.12). Rewriting (11.13) yields

d
dt

ej
V �

nj∑
i�1

rj
Vi

2Ė j
i Ej

i � −cj
1ej

V − cj
0

nj∑
i�1

rj
Vi

Ej
i

∫ t

0
Ej

i (τ ) dτ (11.14)

: (11.15)
nj∑

i�1

rj
Vi

Ej
i

(
2Ė j

i + cj
1Ej

i + cj
0

∫ t

0
Ej

i (τ ) dτ
)
� 0

which implies that the characteristic equations of the slab enthalpy errors
Ej

i all have the characteristic equation

s2 + 1
2

cj
1s+ 1

2
cj

0 � 0

when the signs of Ej
i are the same, which typically is the case when the

system is subjected to large disturbances, when the controller action is
important. To obtain the same dynamics in the large adjustments as the
linear controller in these cases we choose cj

0 � 8aj and cj
1 � 0.707 ⋅ 8aj ,

where aj are the averaged poles of the linearized system in Section 11.2.
The differential equation for the enthalpy error Ei

j is

d
dt

Ej
i �

d
dt

hs(T j
i ) −

d
dt

hr(Tr(xj
i))

� ( f (T j
i ) + u(xj

i , T j
m)) −

vs

vs0
( f (Tr()xj

i) + u(xj
i , T j

m0)) (11.16)

Note that the material properties g are not present in (11.16), this is the
advantage of using the enthalpy hs as controlled output instead of the
temperature T j

i . Using the fact that u depends on T j
m as in (11.3) gives a

fourth order polynomial for T j
m when (11.16) and (11.13) are combined

α 1
(
T j

m(t)
)4 +α 2T j

m(t) � α 3 (11.17)
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where

α 1 �2ε tσ
nj∑

i�1

rj
Vi

p4(xj
i)Ej

i

α 2 �2λ t

nj∑
i�1

rj
Vi

p(xj
i)Ej

i

α 3 �2
nj∑

i�1

rj
Vi

Ej
i

[
− f (T j

i ) +
vs(t)
vs0

( f (Tr(xj
i )) + u(xj

i , T j
m0))

]

− cj
1ej

V − cj
0

nj∑
i�1

rj
Vi

Ej
i

∫ t

0
Ej

i (τ ) dτ

which can be done numerically by using for instance fzero in MATLAB.
Note that f in α 3 represents the temperature losses, vs/vs0( f + u) can
be seen as a feedforward from the slab speed and cj

1ej
V + cj

0

∑
rj

Vi
Ej

i
∫

Ej
i

is the feedback part of the control law. We conclude that the nonlinear
control law has the features of the linear control law, but this time they
are automatically built-in.

The next question that arises it the stability of the control law. Using
the Lyapunov function

V(Ej ,
∫

Ej ) � ej
V +

1
2

cj
0

nj∑
i�1

rj
Vi

(∫ t

0
Ej

i (τ )dτ
)2

with the time derivative

V̇ (Ej ,
∫

Ej) � ėj
V + cj

0

nj∑
i�1

rj
Vi

Ej
i

∫ t

0
Ej

i (τ )dτ (11.18)

� −cj
1ej

V (11.19)

where Ej is a vector containg the enthalpy errors Ej
i for zone j. Since

V →∞ as (Ej
i ,
∫

Ej
i ) → ∞ we have by the Global Invariant Set Theorem

in [Slotine and Li, 1991] that (Ej
i ,
∫

Ej
i ) converges to the largest invariant

set where V̇ � 0. This is given by

M � {x t (x1, . . . , xnj ) � 0, (xnj+1, . . . , x2nj ) ∈ Rnj
}

and we therefore conclude that Ej
i → 0 as t → ∞. The control system is

therefore globally asymptotically stable. Note that we only have guarantee
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for stability when (11.17) is solvable. The solvability issue investigated
in the following.

In equation (11.17) we see that α 1 and α 2 are positive and since the
left hand side is a monotonically increasing function of T j

m we conclude
that (11.17) will have a unique solution if and only if α 3 is positive. This
is introduced by the physical limitation T j

m ≥ 0—it is not possible to cool
the slabs by reducing the temperature below 0 ○ K.

The conclusion is that the system is globally asymptotically stable
when the slab temperatures T j

i are near the heating curve Tr. When too
large deviations are present it is not sure that (11.17) is solvable. The
large deviations can, for instance, happen during stops or excessive fur-
nace speeds. This is to some extent parallel to the controllability problems
of the linearized system.

The performance of the nonlinear control law (11.17) is investigated
by implementing the nonlinear state space model (11.1) and the control
law (11.17) in MATLAB. The result of a step disturbance is shown in Fig-
ure 11.10. The simulations have been carried out using the full nonlinear
model for the reheat furnace described in Chapter 12. For the nonlinear
equations we use the weight function

rj
V �

1∑nj

i�1 rj
Vi

[ 1 ⋅ ⋅ ⋅ 1 2 5 10 20 50 100 ]

Note that the final slab temperatures converges faster towards the spec-
ified value for the nonlinear controller, the price paid is somewhat larger
variations of the fuel flow F1

f . Note that the nonlinear system is within
±20 ○ C after about 4.5 hours, while the PI-controller reaches this level at
approximately 6.5 hours.

11.4 Conclusions

In this chapter we have designed both a linear and one nonlinear con-
trol law for the slab temperature control problem. The linear design in-
cludes a description of a new way of generating a heating curve, which
is the temperature reference, and the feedforward tables which are used
as feedforwards from the slab velocity. In the following section a new de-
sign method for design of a PI control law for the slab temperatures is
described. This is done by linearizing the nonlinear model for the slab
temperature around the heating curve and reducing the model order. The
linear design is based on the controller structure of the existing furnace
control system at The Danish Steel Works Ltd.
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Figure 11.10 Response of the slab temperature control of zone 1 to a step distur-
bance in the slab velocity vs when the slab temperatures are controlled using the
enthalpy controller. The slab velocity is changed from its nominal value 0.002 m/s
to zero at t � 1, to 0.0025 m/s at t � 2 and back to the nominal value at t � 3, see
Figure 12.2. The plots show the reactions of the slab temperature controller. The
responses are kept within the permissible limits of the fuel flow F1

f and furnace
temperature T1

m . e1
V is the enthalpy error for zone 1. The circles in the plot in the

lower right corner show the temperatures of the slabs leaving the zone. The hori-
zontal lines around Y j

i � 0 marks a heating error of ±10○ C. This figure should be
compared to Figure 11.8.

The nonlinear control law, which is a new control algorithm for the
slab temperature problem, is designed using feedback linearization. In the
design the slab temperature is to follow a given enthalpy reference curve
dependent on the slab position. The enthalpy reference is found using
the heating curve from the linear design. Integral control action is used
in nonlinear control law and the closed loop dynamics of the nonlinear
controller is chosen to be similar to the closed loop dynamics of the linear
design. It is shown that the nonlinear controller is globally asymptotically
stable, given the equation for determining the furnace temperatures is
solvable, and that the controller output is unique, if a solution exists.

It is interesting to note that the design of the nonlinear control law is
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straight forward while the linear controller design is requires more work.
On the other hand the linear control law is straight forward to imple-
ment while the nonlinear control law requires a solver for the nonlinear
equation (11.17). The performances of the two control laws is investi-
gated using computer simulations based on the full nonlinear model and
a standard disturbance in the slab velocity. The simulations show that the
response speed of the nonlinear controller is significantly faster than the
response speed of the linear controller, the price paid is somewhat larger
variations of the control signal.

A more complete comparison of the two controller concepts is given in
the next chapter, there more detailed simulations will be carried out and
the performance of the control systems will be investigated.
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12

Temperature Control—
Simulations

The purpose of this chapter is to evaluate and compare the performance
and robustness of the PI-controller and the enthalpy controller designed in
Chapter 11. The evaluation is done through computer simulations using
MATLAB.

We will first describe the simulation program and the cases be to sim-
ulated. This is followed by an investigation of the robustness to parameter
variations, the response to a standard disturbance, and finally a simula-
tion of the real case when the furnace does production.

12.1 Implementation of Simulation Model and Control Laws

The purpose of the simulations is verifications of the control laws and
it should therefore be possible to simulate the furnace operation with
different slab lengths (we neglect the thickness variations) and varying
slab speed. We should furthermore be able to simulate the slab heating
as the slabs are transported through the four furnace zones.

The simulations cover the center track of the three furnace tracks and
the inputs to the simulation programs are

• A vector of slab lengths. They can either be 2 m or a uniformly
distributed sequence with values in the interval [1.5, 2.5] m

• Slab speed, this is either the test function also used in the evaluation
of the controller design in Chapter 11 or time series taken from the
pig runs.

The outputs from the simulation program are the time series for

• The fuel flows F j
f for each furnace zone.
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• The furnace temperature T j
m for each furnace zone.

• The slab temperatures T j
i computed using the ODE model for all

the slabs that passes through the furnace.

• The slab temperatures T10%, T50%, and T90%, computed for a chosen
critical slab using the PDE model.

All are functions of time t. The same inputs and outputs are used for both
the PI-controller and the nonlinear controller.

The limitations of the temperature control system are the fuel flows
F j

f—they can not be smaller than zero or larger than a given limit for each
zone. Using the model derived in Section 10.1 the limitations in fuel flow
lead to upper and lower limits of the furnace temperatures T j

m. There is
furthermore given limitations for the maximal permissible furnace tem-
peratures to protect the furnace construction.

The simulation program should handle the following main tasks

• Material tracking, using the slab lengths and slab speed, the pro-
gram should keep track of the slabs in the furnace zones.

• Simulation of furnace temperature, using the linear model for the
furnace temperatures derived in Section 10.1.

• Simulation of slab temperature, using the nonlinear ODE model for
the slab temperatures derived in Section 10.2

• Control of furnace temperature, using the PI-control algorithm for
the furnace temperatures.

• Control of slab temperatures, using the PI-controller or the nonlin-
ear controller mentioned in Sections 11.2 and 11.3.

Given the slab lengths and the slab speed the simulation program first
determines at which times slabs enter and leave the four furnace zones.
The simulation for each zone is stopped and started each time a slab
enters or leaves the zone. When the simulation is stopped the important
variables are stored and the initial values are determined with the new
constellation and the simulation is restarted with the new number of slabs
in the zone. The simulation is handled by first simulating the entire run
for zone 1, and then simulating zone 2, with the final temperatures of
zone 1 as initial values etc. It is assumed that the slabs are 20 ○ C when
they enter zone 1.

The models and the controllers are described by a set of differential
equations which is solved using the built-in function ode45. When the
simulations of all zones are finished the PDE model derived in Section 10.2
is used for computing the temperatures for the slabs with the shortest
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12.1 Implementation of Simulation Model and Control Laws

residence time in the furnace. This slab is expected to have the largest
temperature gradient since there has been a short time interval available
for heat conduction through the slab. Note that the residence time is
determined by the furnace operator and it can therefore not be affected
by the controllers.

The implementation of the furnace model and the slab temperature
models (11.1) is straight forward, the only modification is the extension
of zone 1 also to include zone 0 which is the dark zone without burners
before zone 1, see Figure 8.1. This is possible since the temperatures of
zone 0 are well correlated with the temperatures of zone 1.

To maintain simplicity it is chosen to implement the controllers as
continuous time differential equations, it would, however, be straight for-
ward to convert the control algorithms to discrete time. One possibility
with the nonlinear controller would be to use a sampling time which is
short compared to the furnace time constants and to keep the furnace
temperature references constant between the sampling instants.

The implementation of the PI-controller is done by specifying the dif-
ferential equation for the controller and by introduction of tracking to
prevent integrator windup, see [Åström and Wittenmark, 1997]. The time
constant for the tracking system is chosen to the same value as the inte-
gral time. The feedforward from the slab speed is implemented as a table,
and the feedforward value is found by linear interpolation of the table
values. During stops the feedforward value is set to the lower limit for
the furnace temperature. It should be noted that this is a simplification
of the function in the FOCS system where the furnace temperatures are
ramped down from the furnace temperatures T j

m when the stop occurs us-
ing a table with multiplication factors depending on the stop time, which
in some cases might be unknown.

The equation for the nonlinear control algorithm (11.17) is solved by
first computing the sign of the left side of the equation minus the right
side at the maximal and minimal furnace temperatures. If the two expres-
sions have different signs the equation has a zero in the feasible furnace
temperature interval. In this case the solution is found using the function
fzero in MATLAB. The analysis in Chapter 11 shows us that this solution
is unique. If both expressions are negative it is not possible to obtain a
sufficiently high temperature to solve the equation and the furnace tem-
perature reference is set to the maximal permissible value. Along the
same lines the furnace temperature reference is set to the lowest possible
value if both terms are positive. A condition for solving the equation is
that t∑i Ej

i t is larger than a specified limit, this is introduced to avoid
problems with solvability of the nonlinear equation when Ej is close to
zero. In the nonlinear case the temperature reference newer gets outside
the specified interval and we here choose to block the integrator when
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saturation occurs, instead of tracking the integral part.
As mentioned in Section 11.2 the existing controller parameters are

used for controlling the furnace temperatures. The simulations indicate
that the furnace temperature controller settings do not have a major im-
pact on the slab temperature control. This is sensible since the furnace
temperature dynamics are much faster than the slab temperature dynam-
ics.

12.2 What to Investigate in Simulations?

Before carrying out the simulations it is important to realize that the
operation of the furnace is dictated by practical considerations and not
by guidelines for optimal furnace operation. This implies that the fur-
nace typically is operated at a high speed approximately 45 minutes and
then rests 15 minutes or more when slabs from furnace no. 1 are rolled.
The large variations in slab speed makes the evaluation of the dynamic
performance and the temperature gradients especially important in our
case.

The simulations presented in the following will be used for investigat-
ing the robustness and the performance of the control algorithms. Three
main cases are considered

• The robustness, what happens when the parameters of the slab tem-
perature model varies.

• The propagation of a standard disturbance, see Figure 12.2, through
the furnace, the same case used for evaluation in the controller de-
sign in Chapter 11, but now we look at all four zones.

• Doing production, here we use a recorded slab speed and different
slab lengths.

The simulation of the standard disturbance is used as an idealized in-
troduction to the simulation with the real slab speed. The advantage of
this approach is that the standard disturbance is more regular and the
consequences of the speed variation are more straight forward to analyze.

12.3 Robustness

Since it is hard to verify the robustness of the nonlinear system analyti-
cally we choose to do a simple investigation of parameter variations using
the simulation program. The parameters that can be expected to vary are
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Figure 12.1 Block diagram of controller configuration, where C j
S is the slab tem-

perature controller for zone j , Gj
F is the closed loop transfer function from the

furnace temperature reference T j
mr to the furnace temperature T j

m , and Pj
S is the

model for the slab temperatures. In the robustness test the parameters of Pj
S are

varied. The feedforward is not shown in the figure since it does not affect the sta-
bility. Note that the block diagram covers the case for the PI-controller, the block
diagram for the nonlinear controller is similar.

ε t, λ t, λ b, and Tb of the nonlinear ODE (11.1). In the simulations we vary
each parameters ±20% one at the time, see Figure 12.1.

The sensitivity to the parameter variations for the two controllers is
evaluated by looking at the responses for the control error e for zone 1
when subjected to the disturbance in slab velocity shown in Figure 12.2.
No significant impact on the dynamics is seen and we therefore conclude
that the slab temperature controllers are not sensitive to variations in the
four Specified parameters.

12.4 A Stop

The purpose of this simulation is to investigate the effect of a stop on the
slab temperatures in the four furnace zones. This is done by simulating
the complete furnace model with a constant slab length of 2 m and the
slab velocity shown in Figure 12.2. During the first hour the velocity
disturbance represents that the furnace is operated at nominal speed,
and then a stop occurs where the slab velocity is zero. After the stop the
slabs of the furnace are hotter than specified by the heating curve and it
is therefore possible to operate the furnace at a speed larger than nominal
for one hour. After this the furnace speed is reduced to its nominal level.

The fuel flows when the furnace is subjected to the the velocity distur-
bances are shown in Figures 12.3 and 12.5, while the errors in the slab
temperatures as they leave the zone are shown in Figures 12.4 and 12.6.

The simulations show that the error is largest in zone 1—the prob-
lem here is that the zone contains more than 10 slabs which all should
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Figure 12.2 Velocity disturbance used to evaluate the controller performance and
in the investigation of the sensitivity of parameter variations. Initially the slab speed
vs has the nominal value 0.0020 m/s, after 1 hour the production is stopped for 1
hour and the velocity becomes zero. After the stop the furnace speed is increased
to 0.0025 for 1 hour to partially compensate for the production loss and finally the
slab speed is set back to its nominal level.

be heated to different temperatures, the result is that the slabs get too
hot during the stop and too cold after the slabs start moving again. The
pattern for zone 2 is similar to the one for zone 1, but it is more complex
due to a temperature error in the incoming slabs from zone 1. One could
say that the error is filtered through the furnace zones. The impact on
zones 3 and 4 is smaller since all slabs in these zones should have the
same temperature and the only disturbance is therefore the temperature
error of the incoming slabs.

Comparing the performance of the two controllers we note that the
magnitudes of the errors are similar. It seems like the nonlinear controller
reacts a bit slower on the stop, but on the other hand reacts faster when
the slab movements are started again. In zone 4 the nonlinear controller
has a smaller temperature error Y j

i than the FOCS-controller when the
slabs leave the zone. The price paid for this are the larger variations of
the fuel flow in zones 3 and 4. One major difference is the response times
where the nonlinear controller is able to control the slab temperatures
to the correct value at 6.5 hours, see Figure 12.6, which is significantly
shorter faster than the FOCS-controller which reaches zero error at 8.5
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Figure 12.3 Effect of the velocity disturbance shown in Figure 12.2 on the fuel
flows Fj

f of the four zones when the slab temperatures are controlled using the
PI-controller. Note the oscillations, which are the result of cold slabs entering the
zone and hot slabs leaving the zone.

hours, see Figure 12.4.

12.5 Production

We will now investigate the controller performance with varying slab
lengths and the recorded slab velocity from the pig runs. The first step is
to take a look on the slab speed which is shown in Figure 12.7. We see
that the slab movements are close to pulses and it is difficult to use this
signal for the furnace temperature feedforward. It is therefore chosen to
filter the velocity by using a FIR-filter computing the mean velocity over
the last 30 minutes, see Figure 12.7.

Looking at the slab temperatures in Figures 12.8 and 12.12 and the
results in Table 12.1 we note that the slab temperatures becomes too large
for the FOCS-controller. The final temperatures are also more accurate
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Figure 12.4 Effect of the velocity disturbance shown in Figure 12.2 on the final
temperature errors Y j

i of the four zones when the slab temperatures are controlled
using the PI-controller. It is seen that the disturbance has large impact in zones 1
and 2, while it has smaller influence in zones 3 and 4. The horizontal lines around
Y j

i � 0 marks a heating error of ±10○ C.

for the nonlinear controller. This affects the energy consumption which is
approximated by the integral of the fuel flow to the burners

∫
F j

f dt in the
j’th zone. The energy consumption are shown in the titles of Figures 12.9
and 12.13 and we see that the energy consumptions are larger for the
FOCS-controller in zones 1,2, and 3. For zone 4 the energy consumption
is larger for the nonlinear controller. The total energy consumption for all
zones for the FOCS-controller is 1.59�108 m3 while it is 1.53�108 m3 for
the nonlinear controller, this indicates that the nonlinear controller uses
less energy for heating the slabs, probably due to the faster reaction to
disturbances.

Looking at the errors of the final temperatures in Figures 12.10 and
12.14 we see that the performance in zones 1 and 2 are similar of the two
controllers, the reason probably being that the performance is limited
by saturation. Comparing the errors of zones 3 and 4 we see that the
nonlinear controller has a significantly better performance compared to
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Figure 12.5 Effect of the velocity disturbance shown in Figure 12.2 on the fuel
flows Fj of the four zones when the slab temperatures are controlled using the
enthalpy controller. Note the oscillations, which are the result of cold slabs entering
the zone and hot slabs leaving the zone. The reason for the flow of zone 3 being zero
most of the time is that the slabs already are heated to the specified temperature
in zone 2 and the working point for the linear model for the furnace temperature.
This figure should be compared with Figure 12.3.

the FOCS-controller. The mean value of the heating error in zone 4 is
µ 4 � −8.22 for the FOCS-controller and µ 4 � 1.52 for the nonlinear
controller while the standard deviation for the nonlinear controller in
zone 4 is less than 50% compared to the standard deviation for the FOCS-
controller. The price paid is again larger variations of the fuel flows F j

f as
seen from Figures 12.9 and 12.13.

The FEM simulations of the critical slab with the shortest residence
time in the furnace are shown in Figures 12.11 and 12.15 show that the
critical slab heated using the FOCS-controller has a heating error of −6 ○ C
and a temperature gradient ∆T of 77.7 ○ C, while the critical slab heated
using the nonlinear controller has a temperature error of 7 ○ C and a tem-
perature gradient ∆T of 74.9 ○ C. We conclude that the performance in this
direction is equal for the FOCS-controller and the nonlinear controller.
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Figure 12.6 Effect of the velocity disturbance shown in Figure 12.2 on the final
temperature errors Y j

i of the four zones when the slab temperatures are controlled
using the enthalpy controller. It is seen that the disturbance has large impact in
zones 1 and 2, while it has smaller influence in zones 3 and 4. The horizontal lines
around Y j

i � 0 marks a heating error of ±10○ C. This figure should be compared
with Figure 12.4.

The temperature gradient will be discussed further in Chapter 13.It has
not been possible to detect any influence of the varying slab length, the
conclusion here is that this is handled well by the normalization of the
error weights rj

L and rj
V .
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Figure 12.7 Slab velocity vs before and after filtering. The top plot shows the
velocity before filtering and the bottom plot the velocity after filtering. The slabs
are moved forward in steps of 0.5 m and each movement takes 20 s. The filtered
velocity is obtained by computing the mean velocity over the last 30 minutes.

FOCS-controller Nonlinear controller

(µ 1, σ 1) (−73.1, 71.7) (−77.5, 68.0)
(µ 2, σ 2) (−68.4, 59.5) (−70.9, 56.6)
(µ 3, σ 3) (19.4, 14.5) (12.2, 11.0)
(µ 4, σ 4) (−8.22, 11.5) (1.52, 5.41)

Table 12.1 Table of mean values µ j and standard deviations σ j for the
FOCS-controller and the nonlinear controller of zone j . The values are for the devia-
tions of the final temperature found when simulating the furnace doing production.
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Figure 12.8 Slab temperatures T j
i controlled by the FOCS-controller as they are

transported through the furnace. Note the reactions during and right after the stop
beginning around t � 4 h.
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Figure 12.9 Fuel flows Fj
f and furnace temperatures T j

m when the slab tempera-
tures are controlled using the FOCS-controller.
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Figure 12.10 Final temperature errors Y j
i for the four zones when the slab tem-

peratures are controlled by the FOCS-controller. The mean value and the standard
deviation of the error in final temperatures are shown in Table 12.1. The horizontal
lines around Y j

i � 0 marks a heating error of ±10○ C.
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Figure 12.11 FEM simulation of the propagation of the slab temperature for
the slab with the shortest residence time in the furnace when controlled by the
FOCS-controller. In the figure T10%, T50%, and T90% are the temperatures 10%, 50%,
and 90% below the upper surface,respectively computed using the PDE model for
the slab temperature. Tt is the furnace temperature and T j

i is the slab temperature
computed using the nonlinear ODE for the slab temperature.
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Figure 12.12 Slab temperatures T j
i controlled by the nonlinear controller as they

are transported through the furnace. Note the reactions during the stop beginning
at t � 4 h. This figure should be compared with Figure 12.8.
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Figure 12.13 Fuel flows Fj
f and furnace temperatures T j

m when the slab temper-
atures are controlled using the nonlinear controller. This figure should be compared
with Figure 12.9.
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Figure 12.14 Final temperature errors Y j
i for the four zones when the slab tem-

peratures are controlled by the nonlinear controller. The mean value and the stan-
dard deviation of the error in final temperatures are shown in Table 12.1. The
horizontal lines around Y j

i � 0 marks a heating error of ±10○ C. This figure should
be compared with Figure 12.10.
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Figure 12.15 FEM simulation of the propagation of the slab temperature for the
slab with the shortest residence time in the furnace when controlled by the nonlinear
controller. In the figure T10%, T50%, and T90% are the temperatures 10%, 50%, and
90% below the upper surface,respectively computed using the PDE model for the
slab temperature. Tt is the furnace temperature and T j

i is the slab temperature
computed using the nonlinear ODE for the slab temperature. This figure should be
compared with Figure 12.11.

171



Chapter 12. Temperature Control—Simulations

Conclusions

We have now investigated the performance and robustness of the FOCS-
controller and the nonlinear controller for the slab temperatures. The
robustness is investigated by simulating the 16 cases found by varying the
four parameters of the model by ±20% for each controller. The parameter
variations do not affect the dynamics of the response significantly and we
therefore conclude that the system is not especially sensitive to parameter
variations.

The performances of the controllers are investigated by first subjecting
the four zones to the standard velocity disturbance and simulating the
system with a slab speed obtained from the pig runs. The responses to
the standard disturbance show that the slab temperature error of zones 1
and 2 are large, while the errors of zones 3 and 4 are small. The magnitude
of the errors are the same for the two controllers, but the response speed
of the nonlinear controller is superior to the response speed of the linear
controller. The price paid is larger variations of the control signal for the
nonlinear controller.

The performances of the controllers when subjected to real slab speeds
and varying slab lengths show that both controllers are able to control the
slab temperatures with good accuracy. The performances of the two con-
trollers are similar for zones 1 and 2, while the nonlinear controller is
superior for zones 3 and 4. The simulations also indicate that the en-
ergy consumption for the nonlinear controller is smaller than the energy
consumption of the FOCS-controller. The FEM simulations show that the
temperature gradients for a critical slab heated using the two control
algorithms are practically equal.
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13

Temperature Control—
Experimental Results

In this chapter the results and experiences of the redesign of the FOCS
temperature control system at The Danish Steel Works Ltd. are presented.
The parameters used for the redesign are the heating curve, feedforward
tables, and controller coefficients found in Chapter 11. To find out what to
expect from the implementation the performance of the new and existing
FOCS parameters are evaluated using the simulation program described
in Chapter 12 before the implementation.

In the following we will first use computer simulations to compare
the performance of the FOCS system with the new parameters to the
performance of the system with the old parameters. This will prepare us
for the evaluation of the experimental results. Then the experiences from
the implementation of the new parameters are described and the results
are presented. The last part of the chapter describes what remains to be
done in the redesign of the FOCS system.

13.1 Comparison of New and Existing Parameters

Before we start the implementation of the new parameters we compare
the performance of the FOCS system with the existing parameters to the
performance of the system with the new parameters shown in Chapter 12.

The main difference between the existing and the new adjustments
are

• The heating curve for the existing system specify that the slabs
should reach the specified final temperature after zone 1. The new
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Figure 13.1 Fuel flows Fj
f and furnace temperatures T j

m when the slab tempera-
tures are controlled using the PI controller with the old parameters, heating curve,
and feedforward tables. This figure should be compared with Figure 12.9.

heating curve specifies that this should happen after zone 2, see
Section 11.2.

• The existing feedforward tables specifies almost identical tempera-
tures for the different speeds. The new feedforward tables contain
significantly different zone temperatures for the specified nominal
speeds.

• Comparing the new and existing controller coefficients we see that
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Figure 13.2 Final temperature errors Y j
i for the four zones when the slab tem-

peratures are controlled by PI controller with the old parameters, heating curve and
feedforward tables. In the following we have µ j and σ j as the mean value and the
standard deviation of the error for zone j respectively. The results are µ1 � −67.2,
σ 1 � 88.0, µ2 � −69.1, σ 2 � 73.0, µ3 � −19.9, σ 3 � 27.7, µ4 � −33.2, σ 4 � 17.7.
The horizontal lines around Y j

i � 0 marks a heating error of ±10○ C. This figure
should be compared with Figure 12.10 and Table 12.1.

the new proportional gain is a factor 2 higher than the existing gains
and that the new integral gains are more than a factor 10 lower than
the existing ones.

The results of the simulations are shown in Figures 13.1 and 13.2.
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Comparing Figures 13.1 and 13.2 for the existing controller parameters
to Figures 12.9 and 12.10 for the new parameters we see that the errors for
the new parameters are significantly smaller than with the existing ones.
This is a result of the new feedforward tables and controller coefficients—
other simulations show that the existing coefficients results in a poorly
damped response. The later heating due to the new heating curve will
result in a larger temperature gradient, but the FEM simulations indi-
cate that it will only yield an increase of approximately 2 ○ C which is not
considered as a significant change. The total energy consumption of all
four zones is 1.44�108 m3 is significantly lower than the FOCS-controller
with the new parameters, but note that slab temperatures of zones 3 and
4 are significantly lower than specified for the FOCS-controller with the
old settings.

13.2 Results and Experiences

Several new experiences were gained when the new parameters were im-
plemented. First of all the heating curve is very critical. Three different
heating curves have been implemented. The two first heating curves end-
ing after zone 3 and in the middle of zone 3 was implemented before the
heating curve presented in Chapter 11 but none of them worked well. This
indicates that the present heating curve is the limit of what is feasible
for proper furnace operation.

During the experiments the author realized that the furnace was oper-
ated partially as a batch furnace. The reason for this practice is that the
furnace no. 1, a pusher furnace with smaller capacity, can only be oper-
ated 15 minutes consecutive minutes every hour, which leaves 45 minutes
to operation of furnace no. 2.

The result of this practice is that furnace no. 2 is operated at an el-
evated speed for approximately 45 minutes and then rests for approxi-
mately 15 minutes. The furnace will only be able to deliver hot slabs at
the elevated speed if the slabs of zones 3 and 4 are at the specified tem-
perature when the furnace operation starts after the break. The fact that
the capacities of zones 3 and 4 are small compared to zones 1 and 2 am-
plifies this effect. This is one of the explanations for why the old heating
curve ends after zone 1 and why the author was forced to adjust the new
heating curve to end after zone 2, in practice zones 1, 2, and 3 are used
as buffers of hot steel at high slab speeds. Zone 3 is then used as the last
resort if the slabs fail to follow the heating curve due to a too large slab
speed.

It is not possible for the furnace to heat the slabs at the average speed
as specified by either the old or the new heating curve. Actually, the heat-
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ing curve is computed using an average residence time of 6.4 hours, see
Section 11.2. This is done to ensure that a buffer of hot slabs is created
whenever the furnace is stopped.

When implementing the feedforward tables the temperatures of zones 3
and 4 were adjusted to obtain a higher furnace temperature. The adjust-
ment was done to obtain a larger furnace pressure in the end of the fur-
nace, which is an advantage according to the operators’ experience. This
is in good agreement with the heat losses from the slab bottom surface in
the last part of the furnace described in Section 10.2.

Using the latest pig runs a systematic error of −20 ○ C was found in the
final temperature of the FOCS system and the desired temperature was
therefore adjusted form 1120 ○ C to 1140 ○ C to counteract this offset. The
control algorithm was furthermore modified to use the center temperature
for temperature control instead of the mean temperature, since the pig
runs showed that the latter value is not correct in the first part of the
heating interval.

When implementing the controller parameters the author realized that
coupling between slab temperature and furnace temperature is significant
when cold slabs enter the zone. This was seen from the fact that if zone 1
reacted too late, when cold slabs entered the zone, it was not possible to
obtain a proper zone temperature even at full fuel flow. The result was
improper heating of the slabs. Since the coupling between slab tempera-
ture and zone temperature is not included in the model this problem was
not revealed by the simulations. The operators were aware of this fact
and complained about the reaction with the old settings of the control
system, which after a stop first reacted when zone 1 were half filled with
cold slabs.

The reason for the delayed response of zone 1 was that the slab temper-
ature controller was allowed to reduce the furnace temperature specified
by the feedforward tables by 100 ○ C when computing the set point for the
furnace temperature controller. Due to the batch oriented operation of
the furnace the delay temperatures are kept high to ensure heating of
the slabs during the stops. The result was that the slab temperature con-
troller reduced the furnace temperature down to its lowest permissible
limit and when cold slabs entered the zone the integral part kept down
the furnace temperature reference until the error went below zero—which
occurred when the zone was half filled with cold slabs. This is probably the
reason for the old heating curve being rather extreme, since this ensures
hot slabs despite the slow reaction of the slab temperature controller of
zone 1. The reaction of the other furnace zones are of less importance since
they are shorter and have smaller capacity, and therefore the reaction of
zone 1 is critical compared to the reaction of the other furnace zones.

When the new parameters were implemented the lower output limit of
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the slab temperature controller was adjusted form −100 ○ C to −60 ○ C and
this, together with the new controller parameters with a much smaller
integral gain and a double as large proportional gain yielded an instan-
taneous reaction of zone 1 when cold slabs entered the zone. Note that
the faster behavior of the controller was predicted by the simulations of
the furnace operation. However, for zone 3 we decreased the maximal per-
mitted adjustment from −50 ○ C to −20 ○ C and increased the integral time
from approximately 500 s to 2500 s to obtain an immediate reaction when
cold slabs entered the zone despite the other slabs in the zone being too
hot. This is similar to the desired control action of zone 1.

The faster response of the slab temperature control system made it
possible to use the new heating curve, which results in a later heating
and therefore ought to lead to a smaller energy consumption. The slab
temperatures follow the heating curve better than before and the temper-
atures after a stop are now closer to the heating curve than before. At the
same time the operators are now satisfied with the reaction of the furnace
control system and the furnace capacity is increased.

It is unfortunately hard to obtain dynamic plots from the FOCS sys-
tem, but it is possible to obtain slab temperatures, slab weight, and dis-
charge time from the production control systems. The result of the exper-
iments are shown in Figures 13.3, 13.4, and 13.5.

The plot of the slab temperatures at time for discharge in Figure 13.3
shows that the mean temperature has not been affected significantly by
the experiments, the reasons for the rather large value (approximately
1160 ○ C) is a systematic error of 20 ○ C of the slab temperature calculation
and the high furnace temperatures in zones 3 and 4 to ensure proper
furnace pressure.

The temperature gradients shown in Figure 13.4 shows that the gra-
dients has been large at two instants in February 1999. This corresponds
with the two non optimal heating curves mentioned in the beginning of
this section. Note that the temperature now are at the previous level,
despite the later heating curve.

The plot of the discharged tons per day from furnace no. 2 shows a sig-
nificant increase of discharged tons in the beginning of March 1999. Con-
sidering the transient of the filter this corresponds well with the time for
the implementation new heating curve and controller coefficients, which
took place between March 4th and March 11th. Before the adjustments
the production level is between 1350 tons/day and 1700 tons/day and af-
ter the adjustments it is increased to lie between 1550 tons/day and 1900
tons/day. Bearing in mind the short time interval for evaluation of the
performance this indicates an increase in productivity of approximately
10%.

In 1998 the average natural gas consumption was 37.3 m3/ton, in
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Figure 13.3 Mean temperature of the slabs discharged from furnace no. 2 at The
Danish Steel Works Ltd. from January 3rd to March 30 1999. The slab tempera-
tures are obtained from the temperature calculation of the FOCS system. Note the
American date format.
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Figure 13.4 Temperature gradient of the slabs discharged from furnace no. 2
at The Danish Steel Works Ltd. from January 3rd to March 30 1999. The slab
temperatures are obtained from the temperature calculation of the FOCS system.
Note the American date format.
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Figure 13.5 Slab weight per day discharged from furnace no. 2 at The Danish
Steel Works Ltd. from January 3rd to March 30 1999. The data are filtered using a
FIR filter computing the mean value over 7 days. Note the American date format.

January 1999 it was 42.2 m3/ton, in February 1999 it was 38.1 m3/ton,
and in March 1999 it was 36.3 m3/ton. The author has been warned
that the energy consumption of the furnace varies considerably and we
therefore only dare to conclude that the new settings of the FOCS system
not has caused the energy consumption to increase drastically.

13.3 What Is Left?

At the time being (April 1999) it still remains to adjust the heating strat-
egy for 200 mm slabs, which has not been discussed, the reason being
that the heating of the 260 mm slabs is the critical case with respect to
furnace capacity. The strategy with for the 200 mm slabs should be coordi-
nated with the strategy for the 260 mm slabs, to obtain a unified heating
strategy for the two slab thicknesses.

Another thing which remains to be tuned is the delay strategies. Here
the solution to the differential equation for the heating curve (11.4) for
vs0 � 0 can be used for obtaining the temperatures necessary to keep the
energy content of the slabs in a zone at a constant level during a stop. The
models for the furnace temperatures (10.5) can be used for determining
the zone temperatures for different stop times.
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13.4 Conclusions

This chapter contains a description of the implementation of the heating
curve, feedforward table and controller parameters of the FOCS system
derived in Chapter 11.

Simulation results indicate that the new parameters yields a better
control of the slab temperatures, and this is verified when implementing
the controller coefficients, feedforward tables, and heating curve. The im-
plementation, however, also shows that saturation is a problem when cold
slabs enter a zone, and this is not revealed by the simulations.

The main result of the implementation is that an increase in the re-
sponse speed of zone 1 has resulted in a larger furnace capacity and that a
more energy economical heating curve can be used. The furnace operators
are very satisfied with the new setting and investigations show that the
mean value and temperature gradient of the slabs are unaffected by the
new settings, but that the furnace capacity seems to have been increased
by approximately 10%. It does not seem like the adjustments have caused
the energy consumption of the furnace to increase.

Remaining work on the adjustment of the FOCS system consists of
design of a heating strategy for 200 mm slabs and the tuning of the delay
tables used during stops.
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Conclusions

The title of this thesis is "Modeling and Control of Plate Mill Processes"
and two such processes have been modeled and controlled, namely the
rolling mill and the reheat furnace. It is time to give the concluding re-
marks on the work done, the obtained results, and the experience gained
during the work. The chapter will be ended by suggestions for how the
work can be continued.

14.1 What Has Been Done?

The two first chapters of the thesis contain a description and analysis of
the thickness control problem. It is here concluded that the main distur-
bances of the system is hardness variations of the plates and the task of
the thickness control is to keep the plate thickness constant despite these
disturbances. The classical solution is analyzed and it is concluded that
it can’t handle asymmetric hardness variations and that the estimation
of the controlled output introduces stability problems.

In the modeling of the rolling mill a dynamical and multivariable
model for the thickness control system is derived. The model consists
of a nonlinear model for the hydraulic thickness control actuators and a
linear multivariable model for the rolling stand. Since the plate thickness
is not measured during rolling an observer is developed for estimation
of the plate thickness. The data collection is carried out by measuring
the key variables of the rolling mill during normal production and then
measuring the plate thickness afterwards using a specially designed mea-
surement device. Afterwards, the data sets are joined by formulating and
solving an optimization problem. This has given a unique set of data for
the system identification.

The parameters of the model for the rolling mill are found using the
collected data. A set of constant nominal parameters are found for the
hydraulic positioning systems, where good agreement between model and
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data is obtained. Due to variations in the plate hardness during rolling
there is poor agreement between model and data when time invariant
methods are used for the system identification. The hardness variations
are included in the extra signal available for the observer, and therefore
good agreement between model and data is obtained in this case.

The model is used for designing a nonlinear multivariable thickness
control algorithm. The algorithm is evaluated using computer simulations
and it is found that the new controller is able to handle the asymmetric
case and gives a more accurate thickness control compared to the existing
control system. The new control strategy is also found to be stable for the
relevant parameter variations. The performance is also acceptable for the
different material characteristics of the steel plate found in the system
identification.

The next part of the thesis concerning slab temperature control is
started with a description of the reheat furnace where it is concluded
that the main disturbance in the furnace operation is variations of the
slab speed. The task of the slab temperature control problem is to ensure
a high furnace throughput, and a proper heating quality while keeping
the energy consumption at a minimum.

The data collection for the modeling of the slab temperature is carried
out by the pig, which is a transportable data collection device used for
measuring the slab temperature. While the pig is transported through the
furnace the key furnace variables are collected by the slab temperature
control system. The data are used for identifying three models for the
reheat furnace: a linear model for the furnace temperatures, a nonlinear
ODE model for the slab temperature, and a nonlinear PDE model for the
slab temperature distribution. Fair agreement is obtained for the furnace
model while good agreement is obtained for the two slab temperature
models.

A new way of obtaining parameters for the slab temperature control
system at The Danish Steel Works Ltd. is described in the thesis. The
slab temperature controller design is started by generating the heating
curve, which is the slab temperature reference to be followed as the slabs
are transported through the furnace. From the heating curve and model
for the slab temperatures a feedforward table is generated. Furthermore,
a first order model for the slab temperatures is generated using lineariza-
tion and averaging. The linear model is used for finding parameters for
the PI-regulators controlling the slab temperatures. In the final part of
the controller design a nonlinear controller is designed using the nonlin-
ear ODE for the slab temperatures and it is shown that the nonlinear
controller is globally asymptotically stable.

The robustness against parameter variations and the performance of
the linear and nonlinear controller are investigated using computer simu-
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lations. The simulations show that none of the controllers are sensitive to
parameter variations and that the performance of the nonlinear controller
is superior to the performance of the linear controller. The price paid is
faster variations of the control signal.

The heating curve, feedforward tables, and the controller parameters
found in the design have been implemented in the slab temperature con-
trol system at The Danish Steel Works Ltd. The new controller parame-
ters have introduced a faster reaction of the furnace when cold slabs are
charged into the furnace after a stop, this leads to increased furnace ca-
pacity. The faster reaction also have made a later heating possible which
should give a reduction in the furnace energy consumption. The furnace
operators are very satisfied with the performance of the slab temperature
control system and the experimental results indicate a 10% increase in
furnace capacity, with unchanged mean temperatures and temperature
gradients. Data from the reheat furnace no. 2 indicate that the energy
consumption has not been increased by the adjustments.

14.2 Results

The results of the work in this thesis are models and controllers for the
rolling mill and reheat furnace derived using data from the processes at
The Danish Steel Works Ltd.

For the rolling mill the model for the hydraulic systems is nonlinear
and is more or less standard, the contribution of the work presented here
is that the model is derived using real data from a rolling mill. The model
for the mill frame and plate is new and it covers the multivariable nature
of rolling process, this model is also derived using real data from the mill.

The thickness controller is a second order multivariable nonlinear con-
trol law, able to handle the nonlinearity of the hydraulic systems and
asymmetric material conditions of the plates. The controller can be sim-
plified to PI controller for a first implementation, if necessary. To have a
multivariable controller ready for implementation better data are needed
for a more complete investigation of the multivariable nature of the rolling
process.

Three models have been derived for the reheat furnace. A simple model
for furnace temperature and two advanced models for the slab tempera-
ture. All models are derived using data from the reheat furnace at The
Danish Steel Works Ltd. The furnace model is used for the computer
simulations, and the first model for the slab temperature can be used
for evaluating the slab center temperature, while the other can be used
for evaluating the slab temperature gradients, which are important for
proper operation of the rolling mill
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For the slab temperature control problem we have two designs. The
first design is a PI-controller with the same structure as the slab tem-
perature controller at The Danish Steel Works Ltd. This design has been
verified using experiments. The second design is a nonlinear controller
based on the nonlinear model for the slab center temperature. If a model
is available this controller is easier to design and the simulations indicate
a better performance, but a nonlinear solver is required to implement the
control law.

As mentioned in Chapter 1 the reheat furnace and the rolling mill
are two quite different processes. The author has, however, experienced
several factors common for the control of the two processes

• Given proper data and the necessary time it has been possible to
derive models with few parameters that give reasonable predictions
of the process behavior. The models have been used for tuning the
control algorithms and experimental results from the furnace control
system show a performance improvement.

• Even if advanced controllers are used in this thesis it seems like
the existing PI controllers after the optimization does a job almost
equally good. This especially seems to be the case with the furnace
control system.

• The knowledge gained in the work with the modeling and control
of a process is valuable in other contexts. One example is the dis-
covery that the slabs are only cooled in the last part of the furnace
when deriving the PDE model for the slab temperature and another
example is the measurement of the thickness variations introduced
by the cold zones of the roller tables of the rolling mill.

As a final comment on the work done it should be mentioned that in the
thickness control the main effort lies in the derivation and identification
of the multivariable model for the rolling mill since these models were
not available when the work on the thickness control was started. The
initial situation for the temperature control problem was that both data
and models already were available for the slab temperature control. Since
implementation, and experiments, furthermore, were possible in this case
this is the reason for the controller design being the main subject in the
slab temperature control part of the thesis.

14.3 Future Work

If the work presented in this thesis should be continued several open
points are available for future work
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• Improvement of the rolling mill model. The crucial thing here
is to obtain data with better excitation. This could be done by spe-
cial experiments and would make a better determination of, for in-
stance, the multivariable structure and friction between roll pack
and rolling stand possible.

• Implementation of simplified thickness control law. Using the
mean value of the plate thickness the multivariable thickness algo-
rithm can be turned into a nonlinear SISO PI-controller. The im-
plementation of this controller has been going on for a while, the
hardware is implemented an the program is being developed.

• Continuation of work with FOCS system. This work is actually
already going on in connection with a project done by MEFOS where
an adaption algorithm for the FOCS temperature estimator will be
implemented at The Danish Steel Works Ltd. . The measurement is
obtained from radiation pyrometers near the rolling mill.

• Implementation of a nonlinear slab temperature controller.
It seems that the nonlinear controller giver better results and is
easier to design. It would be interesting to implement it and see if
the controller also works better in practice.

• Implementation of multivariable plate thickness controller.
This is planned to be a part of an ECSC project starting medio 1999.
The plan is to implement the thickness control law on the rolling
mill at The Danish Steel Works Ltd. It is necessary to improve the
multivariable models for the rolling mill before the control law is
implemented.

• Development of an advanced furnace model. As pointed out
several places in the thesis the linear model of the furnace temper-
ature could be improved considerably. An important part to include
is the interaction between the furnace temperature and the temper-
ature of the slabs.

The author plans continue the work on one or more of the above items
and hopes that it will be as much fun as doing the work presented in this
thesis.
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Notations

A cross sectional area of roll pack, 43
Aj system matrix for linearized slab temperature model, 138
A1 area in hydraulic system corresponding to p1, 35
A2 area in hydraulic system corresponding to p2, 35
A3 area in hydraulic system corresponding to p3, 35
A4 area of grease piston, 35
Ac , Bc , Cc , Dc state space matrices for model for rolling stand, 49
B j input matrix for linearized slab temperature model, 138
C j output matrix for linearized slab temperature model, 138
C j

F furnace temperature controller for zone j, 143
C j

S slab temperature controller for zone j, 140
Cv transfer function for traditional thickness controller, 26
E Young’s modulus for steel, 43
Ej vector of enthalpy errors for zone j, 149
Ej

i control error for slab i in zone j for nonlinear controller, 146
Ej

z thermal energy content of furnace zone j, 112
F column vector of heat losses from slab, 129
F matrix used for calculating fc, 50
F j

f fuel flow of the burners of zone j, 108
G diagonal matrix of material properties of slab, 129
Gj

F closed loop transfer function for furnace temperature for zone j, 143
Gj

S closed loop transfer function for furnace temperature for zone j, 143
Gh transfer function for hydraulic systems controlled by Cz, 25
Gt transfer function of thickness control system, 27
I second moment of area for the work roll, 43
K mill spring coefficient, 24
K j input matrix for vs for linearized slab temperature model, 138
KiF integral gain of furnace temperature controller, 143
KiS integral gain of slab temperature controller, 143
KpF proportional gain of furnace temperature controller, 143
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KpS proportional gain of slab temperature controller, 143
L state feedback matrix for new thickness controller, 85
Pj

S averaged system for slab temperatures of zone j, 141
Ps supply oil pressure for hydraulic systems, 34
Q weighting matrix for states in eigenspace design, 87
Q1 flow into left side of oil cylinder, 34
Q2 flow into right side of oil cylinder, 34
R weighting matrix for control signal in eigenspace design, 87
T temperature profile of slab in thickness direction, 102
T j state vector of the slab temperatures of zone j, 129
Ta furnace atmosphere temperature near slab top surface, 108
Tb temperature below slab bottom surface, 102
T j

i center temperature of the i’th slab in the j’th zone, 128
T j

m furnace zone control temperature of the j’th zone, 101
Tr heating curve, 131
Ts temperature of furnace surroundings, 104
Tt profile of furnace roof temperature, 101
T10% slab temperature 10% of slab thickness from top surface, 109
T50% slab temperature 50% of slab thickness from top surface, 109
T90% slab temperature 90% of slab thickness from top surface, 109
Tavg mean temperature of FEM simulations at discharge time, 135
T j

f f setpoint from feedforward tables for zone j, 142
Tin initial slab temperature, 132
T j

m0 nominal furnace temperatures, 132
T j

mmax upper furnace temperature limit for zone j, 133
T j

mmin lower furnace temperature limit for zone j, 133
T j

mr furnace temperature reference for zone j, 131
Tout desired final slab temperature, 133
U column vector of heat inputs to slab, 129
Y j vector of temperature errors for zone j, 138
Y j

i temperature error of the i’th slab in zone j, 137
∆T temperature gradient of FEM simulations discharge time, 135
Γ1, . . . , Γ6 matrices found in the modeling of the rolling stand, 48
Φ matrix used for calculating vc and ve, 52
β 1, β 2 solution of equation for finding the eigenfunctions φ 1 and φ 2, 46
δ Kronecker function, 48
ṁs air mass flow through stack, 104
ε function used in state transformation to obtain u, 44
ε t it the emissivity of slab top surface, 102
η scaling factor for Ps to find p2, 37
G̀vc transfer function relating thickness difference to position difference,

70
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ὼ n undamped natural frequency for G̀vc , 82
f̀ difference between north and south rolling forces, 73
k̀g steady state gain for G̀vc , 82
v̀c half the difference between north and south thickness from model, 70
z̀ half the difference between north and south roll positions, 70
û approximate solution for u, 46
κ time constant for feedback linearized hydraulic systems, 84
λ heat conduction coefficient of steel, 102
λ b heat conduction coefficient for bottom surface of slab, 102
λ j j’th closed loop eigenvalue for rolling stand, 85
λ t heat conduction coefficient for top surface of slab, 102
µ j mean temperature error for zone j, 167
µ distance from plate edge for thicknesses used as controlled outputs,

51
ν1, ν2 finite right closed loop eigenvectors for rolling stand, 85
ν3, . . . ,ν8 infinite right closed loop eigenvectors for rolling stand, 85
ω nh undamped natural frequency for Gh, 82
Gvc transfer function relating mean value of thickness to mean value of

positions, 70
K estimate of mill deflection coefficient K , 26
Ps oil supply pressure transformed to grease side, 36
T slab mean temperature, 103
T

j
output of averaged system for zone j, 142

Y
j
i averaged temperature error for slab in zone j, 140

ω n undamped natural frequency for Gvc , 82
aj pole for averaged linear slab model in zone j, 141
b

j
gain from furnace temperature for averaged linear slab model in zone

j, 141
f mean value of rolling force, 24
kg steady state gain for Gvc , 82
r reference value for v in traditional control, 26
v mean value of north and south plate thickness, 24
vc mean value of north and south thickness from model, 70
ve estimate of v, 26
v−1 mean value of north and south plate thickness for previous pass, 24
z mean value of roll positions, 24
zh output of linear model for hydraulic system, 25
zr reference for z in traditional thickness control, 25
φ 1, φ 2 eigenfunctions obtained in the series expansion of u, 45
ρ mass density of steel, 43
σ j standard deviation of temperature error for zone j, 167
σ Boltzmann’s constant, 102
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σ scalar control weight in eigenspace design, 87
θ s prediction error for identification of south hydraulic system, 63
θ n prediction error for identification of north hydraulic system, 61
ϕ variable used in analysis of thickness control system, 27
ϖ variation of the outgoing thickness vd relative to the outgoing thick-

ness vd−1, 42
T̂ variable used in analysis of slab heating, 103
ξ1, . . . , ξ3 variables of model for hydraulic systems, 61
ξ n1 , . . . , ξ n3 variables in the model for the north hydraulic system, 60
i i times partial derivation with respect to x, 43
a pole of linearized equation for T j

i , 138
aj

1 parameter for heat transport due to hot air for zone j, 113
aj

2 parameter for heat input for burners in zone j, 113
aj

3 parameter for heat losses to surroundings for zone j, 113
aj

4 parameter for heat loss due to slab transport for zone j, 113
aj

5 offset for zone j in furnace temperature model, 113
am plate hardness used in traditional modeling, 24
ahn1 parameter for flow through servo valve in model for north hydraulic

system, 37
ahn2 parameter for oil compressibility in model for north hydraulic sys-

tem, 37
ahn3 parameter for leak flow in model for north hydraulic system, 37
ahs1 parameter for flow through servo valve in model for south hydraulic

system, 37
ahs2 parameter for oil compressibility in model for south hydraulic sys-

tem, 37
ahs3 parameter for leak flow in model for south hydraulic system, 37
am1 plate hardness, 42
am2 plate damping, 42
am3 parameter of vr in pd, 42
b gain from T j

m of linearized equation for T j
i , 138

cj
0 integral gain of nonlinear controller for zone j, 147

cj
1 proportional gain of nonlinear controller for zone j, 147

cp specific heat capacity of steel, 102
e white noise sequence with unit variance, 62
ej

L linear error function for zone j, 137
ej

V error function for nonlinear controller, 145
f heat losses of slab, 129
f vector of rolling forces, 23
fc vector of forces calculated using model for rolling stand, 50
fn rolling force at north side, 23
fs rolling force at south side, 23
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fcn rolling force at north side found using model for the rolling stand, 50
fcs rolling force at south side found using model for the rolling stand, 50
g material properties for slab, 129
h slab thickness, 102
hr slab enthalpy reference, 146
hs slab enthalpy, 145
i integral states for rolling stand, 86
k gain from vs of linearized equation for T j

i , 138
kp plate hardness, 70
l furnace length, 104
l width of rolling stand, 43
l j
z length of zone j, 133

nj number of slabs in zone j, 101
o roll eccentricity and ovalness, 24
oe estimate of o, 26
of e1 , of e2 parameters of observer, 67
p differential operator, 25
p function for interpolation of thermocouple measurements for obtaining

Tt, 116
p1 pressure at left side of oil cylinder, 35
p2 pressure at right side of oil cylinder, 35
pd pressure distribution across plate width, 40
q vector of normal coordinates, 47
q vector of normal coordinates, 68
q1, q2 the normal coordinates obtained in the series expansion of u, 45
qb heat flux through slab bottom surface, 117
qj

b heat input from burners in zone j, 112
qc heat losses from furnace due to convection, 104
qc vector of normal coordinates found using model for rolling stand, 49
qj

f heat flow from zone j to zone j − 1, 112

qj
l heat transport to slabs and surroundings in zone j, 112

qs heat losses due through stack, 104
qj

s heat loss due to movement of slabs in zone j, 112
qt heat flux through slab top surface, 117
qc1, qc2 normal coordinates found using model for rolling stand, 49
qe1, qe2 estimates of q1 and q2 found using observer, 52
r vector of thickness references, 86
rj

L vector of weight factors used in ej
L, 137

rj
V vector of weights used in ej

V , 146
rd reduction across plate width, 41
rl vector containing inputs for feedback linearization, 86
rn reference for plate thickness at north edge, 86
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Chapter 15. Notations

rs reference for plate thickness at south edge, 86
rln input for feedback linearization of north hydraulic system, 84
rls input for feedback linearization of south hydraulic system, 89
t time, 24
tj average time for the slab to pass through zone j, 140
u heat inputs to slab, 129
u new variable for obtaining homogeneous boundary conditions, 44
v vector of plate thicknesses, 23
vc vector of thicknesses calculated using rolling stand model, 51
vd plate thickness across plate width, 40
vn plate thickness at north edge, 23
vr rotational speed of work roll, 41
vs plate thickness at south edge, 23
vs slab speed, 101
vj

z total air flow out from zone j, 112
v−1n ingoing plate thickness at north edge, 24
v−1s ingoing plate thickness at south edge, 24
vcn thickness at north side calculated using model for the rolling stand,

51
vcs thickness at south side calculated using model for the rolling stand,

51
vd−1 ingoing thickness across plate width, 41
vem center thickness calculated using observer, 75
ven plate thickness at the north edge found using observer, 52
ves plate thickness at south edge found using observer, 52
vs0 nominal slab speed used for generating heating curve, 131
vsi nominal speeds of feedforward table, 135
w plate width, 24
x slab position, horizontal coordinate, 102
x position in width direction for rolling mill, 38
xj vector of slab positions in zone j, 129
x1, . . . , x3 positions for measurement of plate thickness vd, 55
xj

i position of the i’th slab in zone j, 111
xv vector of servo valve positions, 51
xvn position of servo valve glider of north hydraulic system, 34
xvrn control signal for north servo valve, 56
xvrs control signal for south servo valve, 56
xvs position of servo valve glider of south hydraulic system, 51
y position in slab thickness direction, vertical coordinate, 102
yc states of the model for the rolling stand, 49
ye estimate of yc found using observer, 50
yn measured output for identification of south hydraulic system, 60
ys measured output for identification of north hydraulic system, 63
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yhn predicted output for identification of south hydraulic system, 61
yhs predicted output for identification of north hydraulic system, 63
z vector of grease piston positions, 23
zd roll position across plate width, 40
zn position of north grease piston, 23
zs position of south grease piston, 23
zt maximal value of position of grease piston, 37
zhn north position found using model for hydraulic system, 37
zhs south position found using model for hydraulic system, 51
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