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IDENTIFICATION OF DYNAMICS OF A DISTILLATION COLUMN +

I. Gustavsson

ABSTRACT

Linear models of distillation column dynamics have been
computed from plant data by the maximum likelihood method.
The models are compared with results cbtained by other
identification techniques, the least squares method, the
generalised least squares method and cross correlation
analysis. The differeﬁt methods give comparable results

for these data depending on a low noise level.
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1. INTRODUCTION

This work is a part of a systematic investigation of various
identification methods with respect to practical applications
to dindustrial processes. The purpose of this paper is +to show
how the maximum likelihood method for parameter estimation can
be used for plant modelling. The process studied is a binary
distillation column. The maximum likelihcod (M.L.) estimates
are also compared with cross correlation analysis and with
estimates obtained by the generalized least squares (G.L.S.)

method and by the least squares (L.S.) method.

The data, for which the identification is performed, have been
received from National Physical Laboratory in London, where the
practical experiments have been carried out. Cross correlation

and 6.L.5. models have also been computed at the National Phy-

sical Laboratory. Those models have been referred to in this report.

The purpose of the experiments was *to apply recent ideas of
control theory to a practical situation. Both modelling and
control calculations were therefore entirely performed in the
time domain. The received discrete time models are well suited

for on-line control applications.

The experiments were performed with a six-plate pilot-secale

binary distillation column. Perturbations were introduced

either to the reflux ratio or to the boiler heat supply. The
perturbations were PRBS-sequences. The output signals were

the temperatures T1-T6 from the lowest plate (1) to the top
plate (6) and also a composition measurement at the output
stream. In this work four experiments are investigated and
some of the typical results are shown. In all the four ex-
periments the input signal is the reflux ratio and the output
is either the temperature T6 or the top-product composition.
The M.L. identification gives models, which do not differ much
from experiment tc experiment. Tt turns out that a second or-
der model is sufficient to define the plant behaviour from the
reflux ratic to the temperature T6, but that a second or a
third order model is appropriate to describe the relation bet—
ween the reflux ratio and the top-product composition. Further-

more the last model has a non-minimum phase character.




It also turns out that for this case cross correlation analysis
gives results comparable with the results obtained from M.L. or
G.L.S. methods. The parametric methods are perhaps preferable
because they can be used direct for the control computations.
However, cross correlation analysis is a good method to obtain
a fast, rough estimate of the process. On the other hand the M.L.
method seems to give better models when the noise-signal ratio
is high. Notice also that even if the @.L.S. method worked very
well for these experiments, no theoretical proof is available
of the statistical goodness of the results. The M.L. estimates,
on the other hand, are unbiassed, consistent and efficient. The
L.5. method often gives a high order model when the noise is

correlated.




2. THE DISTILLATION COLUMN AND THE MEASUREMENTS

A laboratory distillation process separating a mixture of ethanol
and water is investigated. A simplified flow diagram of the dis-
tillation column is shown in Fig. 1. Furthermore a digital com-
puter is coupled to the distillation column, ref {6}. The distil-
tation column is described in ref {2}. The column has six plates,
numbered 1 to 6 from below. As input signals the power supply

to the reboiler, the feed composition and the reflux ratioc can

be chosen. The output signals from the column are the plate tem-
peratures T1-T6, the mass flow of the top product and the com-
position of the top product. The reboiler liquid level is under

local closed loop control.

During these identification experiments perturbations were in-
troduced either to the heat supply to the reboiler or to the
reflux ratio. The temperatures of the plates and the top product

composition were vecorded. The input signals are PRBS-signals

of 2- or 3-level type, ref {1}. In this Work four experiments
have been investigated. Theréxperimental conditions are given
in Table 1. In these four experiments the only interesting re-
lations were the relation between the reflux ratic and the tem-
perature T6 (A) and the relation between the reflux ratic and
the top product composition (B). The other input signals were
constant during the experiment. By 1A we mean the input-output
samples chtained from experiment 1, and where the input is the
reflux ratio and the output the temperature T6. Other notations

follow straight forward.
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3. OUTLINE OF THE MAXIMUM LIKELIHOOD ESTIMATION METHOD

The problem is to determine an appropriate model of a process
from which we have input-output samples. Assuming the process
to be linear of n-th order and to be subject to disturbances
that are stationary random processes with rational power spectra,

we choose the model

AGZTHY vy = Bz u(t) + 4 c(z"h) et . (1)
where {u(f), v(t), t = 1,2,...,N} is the input-output sequence
and where {e(t), t = 1,2,..,,N} is a sequence of independent

normal (0,1) random variables. z denotes the shift operator
z x(t) = =(t+1) . (23

and A(z), B{(z) and C{(z) are pclynomials

Alz) = 1+ ajz + ... +a 2"
ist
B(z) = blz I bnz
C(z) = 1+ cqz + ...+ cnzn (3)

Since the identification 1s described elsewhere {4}, {9} the
details are not given here. However, a short summary is pre-

sented.

The problem is solved by determining the maximum likelihood
estimate of the parameters § = (al""’an’bl""’bn’cl""’cn)'
The maximum likelihood estimate is consistent, asymptotically
normal and efficient under mild conditions given in {10}. Maxi-
mizing the likelihood function is equivalent to minimizing the

loss function

V(o) = &£ 3 <l(t) ()
? +t=1

where the residuals e£(t) are obtained from

clz™ ) e(e) = AGzTD vt - B(zTH) ult) (5)

The identification problem is then reduced on a problem of mini-

mizing a function of several variables.




We solve this problem by a recursive technique, which uses both
the gradient with respect to the parameters, V., and the matrix
of the second partial derivatives, V... Other minimization me-
thods do not use the second derivatives but the work to compute
these is not of essential importance because the computations

of V,, are done very eccncomically and increase only linearly
with the order of the model for large N. Furthermore this method
directly gives the accuracy of the parameters, because an esti-
mate of the inverse of the information matrix is available
(hz{Vee}_l). The parameter x is determined from

Y= 2 yeey (5)

=i

where 8 is such that V(e) is minimal.

To obtain a starting value for the minimizing algorithm we put
c; = 0, 1 = 1,...,n. The loss function V(&) is gquadratic in a,
and b, and the algorithm converges in one step to the least
squares estimate of the a- and b-parameters.This estimate is
then taken as the starting point for the gradient routine. By
taking different starting values of s i = 1,...,n we investi-

gate whether V(8) has several local minima.

This method of identification also gives a possibility to test
the order of the model, when it is unknown. The identification
is repeated for increasing order of the model. Now let v, denote
the minimal value of the loss function for the n-th order model.
Tt follows from {9} that the parameter estimates for large N

are asymptotically normal (GO, XZ Vee_l), where € stands for
+the covrrect value of 0. Assuming that asymptotic theory may be
applied we test the hypothesis that the system is of corder n,

that is the null hypothesis is

. c _ o _ o _ - o
HO. an+l = eea. = an+k = bn+l =T L., = bn+k =

- o _ _ ° . g

= Cpe1 T o0t T Cntk
(5.° stands for the correct value of ai).
Then

_ Va7 Vae L N - 3(ntK) 7
+

ntk,n v 3 K




has an F(3k, N - 3{(ntk}} distribution under null hypothesis.
When N is large 3k - Fn+k,n tends to a XE—distribution with 3k
degrees of freedom. Most often the test is used with k = 1, that
is we test the model of order (n+l) against the model of order
n. It is used at a risk level of 5%, that is if the test quan-
tity is greater than 2.6 (N is supposed to be larger than 100},
the loss function has been reduced significantly and the order
of the model is at least (n+l). However, this stétisticai tegt
often seems to give a too high order model when identifying in-
dustrial processes, ref {5}. For simulated data, on the other

hand, the test works very well.

FORTRAN programs for the identification procedure are available.
The programs are described in {4}. They can handle the multiple-
input, single output case and are in this sense a bit more gene-
ral than what has been described in this section. But principally
there is no difference. There is no loss in generality for the
identification procedure by assuming the constant term of the B-
polynomial, b_, to be zero or by assuming the time delay k in

the model

XTI v{t) = B(z™T) ult-k) + & Clz™h) e(t) (8)

to be zero. These cases can be handled with by shifting input/

cutput signals appropriately.




4. RESULTS OF THE MAXTMUM LIKELTHOGD IDENTIFLICATION AND COMPARI-
SON WITH OTHER IDENTIFICATION TECHNIQUES

In this section typical results from the identification of the
four experiments are presented. First we give an example showing
the results of the maximum likelihood identification of experi-

ment 1B for increasing order of the system (Table 2).

n 1 2 3 " 1y

a, -0.808x£0.0632 -1.208x0,015 -1.461+£0.239 -0.568+0.218
=y 0.23Lk20.015 0.497+0.292 -0.%09x0.066
aq 0.015z0.061 G.556x£0.204
&y, -0.04220.057
bl 0.4399+0,0486 0.104L20.,023 0.106+0.013 0.109x0.013
b2 -0.806+0.015 -0.842+0.030 -0.748x0.026
bS 0.233x3.191 -0.527+0.1548
bu 0.286x5.1%65
Cq 0.553+£0.05658 -0.624+0.0861 -0.891+0.2LY4 0.027x0.224
c, 0.111+0.057 0.238+0.,172 -0.677x0.022
Cjq -0.064+0.9063 80.258x0.126
Cy 0.015£0.064
A 42.39 12 .49 12.26 12.11

v 283079 24569 23668 : 23092
Table 2 - Results of M.L. identification of experiment 1B

for increasing order of the model. TITn the table
the estimated values of the parameters are given
together with the estimated standard deviations of
parameter estimates. Furthermore the estimated va-

lues of A and V for each model are given.

1f we try to test the order with a statistical F-test we get the

following test quantities

F?,l = 13483

F = 3.9
3

T = 2.5




Tf the test is performed at a risk level of 5%, we concl
the system is of third order. However, there are other £
lead to the conclusion that perhaps a second order model
ficient to describe the process. There is a large increa
uncertainty of the parameters when going from n = Z ton
and this indicates the presence of redundant parameters

third order model. But the parameters a, and Cy do not d
nificantly from zero. Therefore putting these parameters
identify the other parameters by the ML-method. We get r

according to Table 3.

ude that
acts that
is suf-
se of the
= 3,
in the
iffer sig-
Zero we |

esults

aq -1.403 = 0.052
a, 0.426 £ 0.051
bl 0.106 + §.,013
b2 -0.836 # 0.018
b3 0.187 + 0.051
cq -0.834 £ 0.078
sy 0.2031 = 0.080
A 12.2%8

Y 236772

Table 3 - Results of M.L. identification of experiment 1B;
n = 3 (a3 = e, = 0)

From Tables 2 and 3 it is obvious that there is only a very small

increase in the lossfunction when the parameters a, and

ax

omitted. The test quantity P %
thus

9 is 11.7. The resulting
?

1 pa 1

3 1-0.8342 T+0.

0.106z —-0.836z “+0.187z

model is

2012“2

y(t) = u(t)+12.3 T

1-1.4503z" t+0.u2gs"2 1-1.403z 1+0.

For the further comparisons we, however, use the second
del

1

0.1042 T-0.8062 2 1-0.62u4z"

—5 e(t)
L26z

order mo-

2

+0.111z
-1

y(t) = T — u(t)+12.5 -
+0.7234%7 1-0.2G8z "+0.234z

1-1.208z"

5 e(t)




and the third order model from Table 2. The reasons are the small

difference between the dynamics of the models and the structure

of the models from the other identification methods.

Turthermore the assumptions about the sequence {e(f)} to be nor-

mal and independent should also be tested. Tests of the residuals

show that they are independent and normally distributed with good

accuracy already for the second order model (Fig. 2 and 3).

In Fig. 4 and 5 the results of the M.L. identification of experi-

ment 1B are shown. In these figures we show

1
2
3.
I

The input signal
The cutput signal, y(t)
The residuals, (1)

The deterministic output, yd(t), defined by

-1
Eigﬁjl u(t)

y.(t) = —
d Alz )
-1 -1 . . ‘
where Bz “)/A(z ) is the obtained model.
The error of the deterministic model, ed(t), where

ed(t) = y(t) -~ yd(t)

This error is a sum of for instance the disturbances in the
process and the measurements and the epror introduced by the
model approximation of the real process (unlinearities, other

inputs etc).

Notice the different scales.

The error of the deterministic model is rather small. The improve-

ment of the model when going from second order to third order seems

to be negligible. Notice that the residuals also are the ervrors

of the one-step-ahead predictor.

As a comparison the least squares (L.S.) estimates are given in
Table U,




n 1 2 3 4
aq -0.823 -1.133 -0.713 -0.612
a, 0.160 -0.370 -0.299
aq 0.124 -0.,101
ay, 0.061
bl 0.138 0.111 0.111 0.108
b2 -0.809 -0.762 -0.751
b, -0.374 -0.435
bq | | -0.165
A 45.86 14,40 12.71 12.41
v 331309 32669 25446 24263
Table 4 - Least squares estimates for experiment 1B

In Fig. 6 and 7 the results of the L.S. identification are shown
for the second and third order model. From Fig. 4-7 it is not easy
to determine if there are significant differences between the mo-
dels, However, in Fig. 3 we can see that the residuals from the
L.5. models are not independént to the same extent as the resi-
duals from the M.L. models.

A G.L.S5. estimation of a model for the process has been performed
at the National Physical Laboratory using the same measurements.

The second order pulse transfer function was

0.103z° % - 0.8052°

1 - 1.2042" % + 0.230%"

2
v(t) =

5 u(t)
and the parameters of this model are almost egual to the second

order M.L. model. The G.L.S. method is described in ref (3}. More
‘models obtained by the 6.L.S. method can be found in ref {7}. For
instance we give examples where thevre are larger differences bet-

ween the G6.L.3. and M.L. estimates, Table 5.
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Experiment 3B 4B
Method G.L.S. M.L G.L.S M.L
aq -1.552 -1.586 -1.531 -1.537
a, 0.567 0.801 0.551 0.554
bl 0.24%0 0.220 0.245 0.225
b2 -0.602 -0.56%6 -0.604 ~-0.538
Gain 24.1 23.1 18.0 21.9
Table 5 - Comparison between models cobtained by G.L.S. and M.L.

identification of experiments 3B and 4B

Experiments 3 and 4 were carried out under the same operating con-

ditions but with different input signals. From Table 5 we notice

that the G.L.S. estimates of the plant gain, defined by
n
b bi
i=1

|H(z) ]| = -
1+ £z a,;

i=1
{(the final value theorem applied to H(z), the pulse transfer func-

tion), differ much more than the M.L. estimates. However, since

n :
oA is close *to -1 any small variations in the parameters a.
i=1

will result in significant changes in |H(z)|. Therefore no defi-
nitive conclusion can be drawn from this comparison cof the two

identification methods.

In Fig. 8 we show the results of cross correlation analysis com-
pared with M.L. estimates. When the input signal is a PRBS-se-
quence as in this case, the cross correlation function is approxi-
mative equal tc the impulse response, ref {1 } and {8}.A parameter
model can be estimated using the cross correlation function. When
the signal to noise ratioc is high the cross correlation analysis
seemg to give reasonable estimates. But when this ratio is low
cross correlation analysis may give bad estimates. On the other
hand the M.L. method still works very well. In this case there is
no large difference between the impulse response of the 2nd or

3rd order models and the cross correlation function.




In Fig. 9 the impulse response of the 3rd M.L. model is compared
lwith those of the ?nd and 3rd order L.S. models. The impulse res-
ponses from the 3rd order M.L. model and from the M.L. model with

a, and b3 equal zero are practically the same.

3
Below some more results from the M.L. identification of the four

experiments are given.In Table 6 some of the obtained models are

presented.
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In Fig. 10-17 typical vresults are shown. From Tables 2 and © we
see that the models for the two different processes respectively
do not differ very much from experiment to experiment. The only
large difference is the b-coefficients for experiments 1B and
3B, but this is probably due to the different experiment condi-
tions. F-test gives a third order model for experiment 3B, but
the accuracies are increasing very much from the second order
model. The accuracies of the parameters of the models from ex-
periments 1A and 4A are much larger for the second order models.
But in this second case the F-test significantly gives a second
order model. For both processes therefore a second order model

seems to be appropriate.
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