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CONTROLLERS FOR BILINEAR AMD CONSTRAINED LINEAR SYSTEMS

A

The art of controlling linear systems is well developed -
one might even claim almost ccmplete: When it cones to the
control of non~linear systemss the khowledge is rather
fragmentavic. There avre in gensral no systematic control

design methods.

3

It is safe to say that linear systewms control theory is far
ahead of industrial practice. With inexpensive
microcomputersy howevers the practical control engineer may
solve his non-linsar control problesms in various ad-hoe
Ways s 2ol by introducing non-linearities. variable

controller structuress eto. In most cases there is no

theoretical analysis to support the wviability of the
implemented schemes. Hence» in this respecty practice is far

ahead of theory.

In industrial processes there is in general a separation
hetween local controls done by linear regulators: and global
contrals e.g. start-upss large reference value changess and
shut-downss which ave performed in an on-off fashion by
programmable controllers. These two modes of operation
somatines counteract each other. Non-linear econtrol theory
might bridge the gap so that local and global control tasks

are pevformed by the same controller.

With these points in viewy it is a timely task to extend the

knowledge of non-linear control systems.
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3

This thesis treats control design problems for a few
non—linear systens that ave akin‘ to linear systemwms.
Btability of the closed loop system and optimality in some
time-domain sence are the design critevia. The theorems give
sufficient conditions for the proposed controllers to be
stabilizing. Thus the thesis covers a few of the white spots

on the map of control design for non—-linear systems.
The thesis consists of the following papers:

i. Btabilizing controllevrs for bilinesar systems. IEEE Trans,

Automatic Contrals AD-26s 217 - 922.

2. A wnew design of constrained controllers for linear

systemns.

3. Application of linear programming for on—-line control.
Submitted to the 3vd IFAC/IFIP Symposium on software for

computer control. Madrids Spainy Oct. 5 - 8y 1982,

520n dimka chnas Stise worws s E3eow Cves Suvis Fras €fhas cuoea sren ¥I0Y ém>

® = Ax + z (B »x + b Ju 13
ot i io i
i=]
avokes interest because of several reasons? It is a "simple”
class of non-lineanr systems slightly wmor2 complex than
linear systems. Knowing how to control this class is a
logical step in the development of control theory. HMany

non-linear systems may be approximated by bilinear modelss

see Bussman (19746). Especially a bilinear approximation may




7
be acceptable in a greater region in the state space than a
linear one, Several real life control procasses are

naturally wmodelled bilinearly: see Mohlevr (1979).

in this thesisy it is demonstrated that a constant linear

plus quadratic feedback law foreces trajectories of (1) into
an arbitrarily small neighbourhood of the origin assuming

the non—intersection of the varvieties xTPCBix + bi = O

3
O
{for some positive definite symwetric matrixy P) over a
region of interestd and a different controller is given when

T . .
B =b o for some i. The proposed control laws arve applied

i io i
to & simulated example of neutron control in a §Fiesion

reactor.

After the submission of part 1 for publications a few worve
rontributions to the control of bilineavr systems have
appeavred. Longchamp (19303 constructed a stable feedback
controller that exhibits bang—bang structure and sliding
motion for single input bilinear systemss and
Koditschek (1981) gives necessary and sufficient conditions
for a constant linar feedback to globally asymptotically
stabilize second order bilineay systems.

The problem of finding a stabilizing controller for a system

i e v s 09 Ve Saem ST S51an T Wole ) ewe W becih KiZae o eoney soccn viasy

with_ _linear dynamics _and bounded _controls is treated in

s s s ounon qmese eseen eeaa cSrge caond Soege wae gy €aes v e wuach <> e e v e S aaees (Rt <290 A s W GeD

part 2 and 3. When this problem is treated e.g. as a
time-optimal control problewy it wvsually Ileads to an open
loop bang-bang solution. By storing a ccmpliqated "switching
surface"s the solution can be made into a oclosed loop
control law. The method has rarely been used in practice.

Several authors have suggested simpler appvoxiﬁately
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time—optimal closed loop solutionsy e.g. Melsa (194673 and

Luh (1970, These methods have not bscoms populary either.

Todayq: a control enginesr would typically develop a linsar
controller and then saturate it. Other than local stability
of the closed loop system can  in general not be assured. To

convince himself that the controller will works:s he has to
parform extensive simulations and tests. Our idea in pavt 2
is to find a design method for a saturated linear feedback
conktrol that guavantees an extended domain of stability. It
requlres computer programs for Lyapunov equation solvings
for some matvix algebra, and Ffor simulation. A& depth
regulator designed in this way was actually tested on boavrd

a submarine. Due to the siwplicity of the controllers it was

not difficult to convinece the control engineer in charge.

Part 3 considers problems similar to the one of part 2. The
lineay _plant is assumed to be discrete-time with linsar

s b o e s Grams Gonas enany Biemt cacas cen itz as

input constraints or linear input _and state constraints. In
the sixtiess several authors noted that certain optimal
control problems for such a plant can be reformulated as a
geries of linear programning problems that vield an opan
loop solution. By solving the LP-problems in each sampling
interval:s you get a feedback contvol. Up to now the
computation times on existing computers have been
prohibitively long. This study shows that today the wmethod
could be practical for processes with éampling intervals of
10 seconds or more. This time will certainly decrease in the

future.




(é}

i1
The main contribution of pavrt 3 is that it contains the
first (reported) real life use of the LP-regulator in a
feasdback fashion to control a process with bounds both on
the inputs and states. Some new ideas on how to design such

a regulator ave also presented.
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FART 1 - STOARILIZING CONTROLLERS FOR BILIMEAR SYBTEMS

Reprint from IEEE Transactions on Automatic Controls vol,
AC-26+ No. 4+ August 1981, 917 - 922







IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-26, NO. 4, AUGUST 1981

Stabilizing Controllers for Bilinear Systems
PER-OLOF GUTMAN

Abstract— The problem of finding stabilizing feedback controllers for
continuons bilinear systems, where the controls act additively and multi-
plicatively simultaneously, is treated. The applicability of the “quadratic”
control law of Jacobson [5] and others is extended to the case when the
A-matrix_has arbitrary eigenvalues under certain conditions. A class of
bilinear systems common among biochemical flow systems is defined: the
dyadic bilinear systems. A control scheme, the so-called division controller,
for dyadic bilinear systems is“suggested. The practicality of the control
schemes is demonstrated on the problem of controlling the neutron level in
a fission reactor.

I. INTRODUCTION

This paper deals with the problem of finding stabilizing feedback
controllers for continuous bilinear systems, where the controls act addi- -
tively and multiplicatively simultaneously. The importance of the problem
is underscored by the existence of several bilinear models of real life |
control processes; see, e.g., Mohler {8], Mohler and Ruberti [9], Mohler
and Kolodziej [10], and Espafia and Landau {3].

The problem has been treated in several reports, among them Jacobson’s
[5]. The control problem has been solved in essence under certain assump-
tions by a “quadratic” control law when the 4-matrix has no eigenvalues
in the right-half plane.

This paper contains an extension of the result of Jacobson and others.
The case when the A-matrix has’ arbitrary eigenvalues is covered under
certain assumptions.

A special class of bilinear systems, the dyadic bilinear systems, is
defined. This class is quite common, especially among biological and
biochemic flow systems. A design method for stabilizing controller for
dyadic systems, the so-called division controller, is suggested.

The paper is organized as follows. Section II contains definitions and
the problem statement. Section III shows the extension of the “quadratic”
controller of Jacobson and others and two nontrivial examples. Section IV
contains the definition of dyadic bilinear systems, conditions for stabiliza-
bility of those systems, and the design of the division controller. Section V
is devoted to an example of neutron control in a fission reactor, where
both the “quadratic” controller and the division controller can be used. A
comparison with the bang-bang control found in Mohler {8] is also done.
Section VI contains a summary and discussion. Section VII is the Ap-
pendix containing the proof of Theorem 3.1.

Manuscript received November 29, 1979; revised February 11, 1981. Paper recommended
by M. Vidyasagar, Past Chairman of the Stability, Nonlinear, and Distributed Systems
Committee.

The author is with the Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

0018-9286 /81 /0800-0917300.75 ©1981 IEEE



II. DEFINITIONS AND PROBLEM STATEMENT

Definition 2.1: The bilinear system under consideration is

m
s=Ax+ X (Bix+big)u; Q.0
i=1
. where xER™, u=[u; uy - u,]T ER™ and 4, B;, byg fori=1,2,---,m
are real constant matrices of appropriate dimensions. Also define

=[b10: by : mO] 22)
Note that the control u acts additively and multiplicatively simulta-
neously.

Assumption 2.2: Consider the class of inputs that make the unique
solution of (2.1) continuous.

Definition 2.3: Given the system (2.1) with the initial condition, x(1g)
=x,. § is said to be a (null) stabilizable region if, for every x, € and for
every neighborhood w of the origin, there exists a locally bounded
function u(t), t>ty, and a finite time interval T, such that the solution of
(2.1) with u(¢) as input exists and satisfies x(¢) Ew for all >, +T. If
Q=R", then the system is said to be stabilizable.

Problem statement 2.4: Find a stabilizing state feedback control.

III. A “QUADRATIC” FEEDBACK CONTROL SOLUTION

Several authors, among them Moylan and Anderson [11], Jacobson {5],
Slemrod [13], Brockett and Wood {1], and Landau [6}, have found that a
feedback control of the form

=—(Bx+bo) Px, i=12,m 3.D

where P is some symmetric, positive definite matrix, will stabilize the
system (2.1) under various assumptions on the system. One of the crucial
assumptions has been that the A-matrix in (2.1) has no eigenvaluesin the
right-haif plane.

The following theorem gives sufficient conditions for the controller
(3.1) to stabilize (2.1) when the A-matrix has arbitrary eigenvalues.

Theorem 3.1: Given the system (2.1), if there exists a matrix P=P7 >0,
such that

(Byx+by) Px

(Byx+by) Px
#0 (32)

(B, x+tb,0) Tpx

in the set {x|x70, xT(PA+ATP)x=0}, then there exists an a>0, such
that the control

u,~=—a(B,~x+b,0)TPx, i=1,2,---,m (3.3)

will stabilize (2.1).
Proof: See Appendix.



Remark 3.2: A matrix P satisfying Theorem 3.1 might be found by the
following procedure. Compute

m

. T 2
= m min’ B, x+byy) P 34
w P=ng>0xesgmi§‘[< x+big) " Px] 34

where E is the region of interest and Hp ={x|x70, x"(PA +ATP)x=0},
with the stopping criterion w=>8 for some §>0. An algorithm to solve
(3.4) numerically can be found in, e.g., Polak and Mayne {12].
Theorem 3.1 is illustrated by the following three nontrivial examples.
Example 3.3: For single-input systems
>
x=Ax+(Bx+b)u, xER", uER (3.5)
alt eigenvalues of A lie in the right-half plane '

it is possible to find a P that satisfies the condition of Theorem 3.1 iff all
eigenvalues of B lie either in the left half plane or in the right-half plane,
and 5=0. In this case, however, there exists a constant control that will
make the resulting closed-loop system asymptotically stable.

Example 3.4: Given

{1 0 0 1 -1 0
x——(o 1)x+(l O)xu,+( 0 1)xu2 (3.6)

with P=I the condition of Theorem 3.1 is satisfied and u,, u, can be
calculated according to (3.3). Easy calculations show that the system is
forced into {x|x%+x3 <€?} if a>1/¢% Note that no constant control
will stabilize (3.6).

Example 3.5: Given !
x=Ax+(Byx+byg)u;+(Byx+by)us 3.7
with
1
1% (5 2 {4 5 _ —3)
A= e B‘”(z 1)‘ B, (5 4)’ bio (—2’
0 %

2 _
bm:( ‘2), and By=(b1o| bx)-
P=1 satisfies Theorem 3.1, since

((B,x+b,0)rx

(Byx+by)

— — {16
)—0 onlyforx—Oorxz( 4‘0). (3.8)

But

XT(PA+ATP)x| _(-16)~ —7<0. (19
x’( 4.0)

Thus, the control (3.3) will stabilize (3.7). Note that [ A, By] is a stabiliz-
able pair in the sense of linear system theory. Therefore, when the control



(3.3), with an appropriate a, has forced the system sufficiently near the
origin, a switch to a linear controller u=KT. , with some suitable X, will
make the closed-loop system asymptotically stable. This follows casily
from the Lyapunov-Poincaré theorem, Note also that no constant control
will stabilize (3.7).

IV. DyapiC BILINEAR SYSTEMS: THE DIVISION CONTROLLER

In this section a common class of bilinear systems will be defined: the
dyadic bilinear systems. Necessary and sufficient conditions for stabiliza-
bility will be shown, and a method to construct a stabilizing controller will
be suggested. N

Definition 4.1: A bilinear system (2.1) is called dyadic of order d if for
i=iy, iy, dE{1,2,+ - m)

Bix+b=b,o( cfx+1). 4.0

The following example illustrates that dyadic bilinear systems form quite
a common class of systems.

Example 4.2: Consider the following (sce Fig. 1) flow system which
models, for instance, the effect of drugs on the transfer of some dissolved
living matter in the human body. The equations governing the flow system
are

Vixy=u(x,—x;) +xu, 42)
Vada=—u)(x;—x3) +e5x, ’

with the constraints x, x, >0; ¢, >0; and Uy, uy <O, where
¥, = the volume of pooljl ()
x; =the concentration in pool 1 (kg/m’)
¥, =the volume of pool 2 (m?)
x3 =the concentration in pool 2 (kg/m’)
¢, =the growth rate in pool 2 (s 7')
u) = the transfer rate between pool 1 and pool 2 ™

uy =the transfer rate out of pool I (s 1),

u
Pool 1 ‘i | Poot 2
X—
“ox A

u2

Fig. 1. Model of flow system in the human body.



Rewritten in standard fashion the systems equation became

X=Ax+ Bxu; + By xu, (4.3)
where
0 O _x-
A= 0 & ’ Bl:‘blle: 1 (1 _l)v
vy ——
V2
1.
B,=byd;=| V1 |(1 0).
0

We note that B, and B, are dyads.

A desired equilibrium point x, =(xy,, x4,)T may be chosen, such that
X5, >>xy,>0. Setting the left-hand sides in (4.2) equal to zero gives the
corresponding equilibrium input.

r__( €2 X2e "szzg-)r 44

ue( Ues uZE) - Xy —X2e ’ X1, - ( N )

Transforming (4.3) with x, as the origin in the state space gives the
following bilinear system:

Ax=A Ax+[bdTAx+b(x1,—x5.)] Auy

. +[b,dT Ax+byx,, ] Auy (4.5)
where
Ax=x—x,, Au=u—u,,
and
sz%e TCaXae
= Vi(xie=x20)X1e  Vi{Xe—%2.)
T (X, CaX1e
VZ(Xle—XZE) V2(xle—x2£)
Define
- - d,
by =(xy,—X%2.)by, dy=7—7,
1 ( le 2e) § 1 (xle—xh)
. - dy
by =x,,by, d2=x——. (4.6)
le

Then (4.5) can be rewritten as
A)'c=/iAx+51(J,TAx+l)Aul-H;Z(JZTAx-H)AuZ. 4.7

Consequently (4.5) is dyadic of order 2.



In the sequel bilinear systems dyadic of order 1 will be treated.
However, the results can be generalized to systems of higher dyadic order.
Consider the single-input dyadic system

i=Ax+(Bx+b)u, x€R", ueR
4.8
(Bx+b)=b(cTx+1). (48)

Let
d(x)=c"x+1. 4.9)

d(x)=0 defines an (n— 1)-dimensional hyperplane.
Divide the state space into the following sets:

S+‘—‘{x|.d(x)>0}
Sp={x|d(x)=0} (4.10)
S_={x|d(x)<0}.

Referring to Assumption 2.2, let @(x, 4(*), ) be the solution of (4.8) at
time ¢ when x(0)=x, and u(s), s€I0, 1], is the control input. Define

V={x, €S.|3u, such that p( x5, U, 1) ES, V¢, and

@(xg, Uy, t)—0, {0}

(@.11)

Y={x, €S,|e?x, €V for some >0
0 €S 0

W={xo|3uy such that (x,, uy, t) EY for some >0},

Theorem 4.3: A necessary and sufficient condition for stabilizing (4.8)
is that

1) Yis nonempty, and (4.12)
2) VUYUW=R". (4.13)

Proof: Note that the origin is interior to S, and belongs to V.

Sufficiency: 1f xo € V, the origin may be reached. If x, €7, the trajec-
tory may end in ¥, from where it may continue to the origin. If x, EW,
the trajectory may end in Y, etc. The sufficiency is proved because
VUYUW=R"

Necessity: (1) Control action ceases in S,. The oaly way to pass from
SoUS_ to S, is by power of the autonomous system x=Ax. In order to
reach the origin at least one of the trajectories of the autonomous system
emanating from S; US_ must end in V. Therefore, ¥ must be nonempty.
(2) By definition a trajectory emanating from the set C(VUYU W) will
remain in this set. Therefore, it must be empty. )

Fxample 4.4: Consider the system, dyadic of order 1,

x=x+xutu. (4.14)

Choose an equilibrium point x, 7 — 1. The corresponding equilibrium
input is



—x,
1+x,°

u,=
The transformed system equation will be

Ax=

1
Ax+AxAut(x,+1)Au
+x, (xe*D) (4.15)

Ax=x-x,, Au=u—u,.

It is easily realized that, for x,<<—1 and the control Au=0, the condi-
tions of Theorem 4.3 are satisfied and the system is stabilizable to the
chosen equilibrium point. With x, > — 1, we find that the trajectory of the
autonomous system in Sy ={x|x=—1} is described by Ax=—1, and
leads from S, ={x|x>-1} into S_={x|x<—1}. Consequently, the
system is not stabilizable to the chosen equilibrium point.

The use of Theorem 4.3 stems from the fact that the system (4.8) might
be analyzed as a set of linear-systems when suitable controls are applied.
Then the control problem is transformed to one of finding controls that
satisfy Theorem 4.3. This leads to the following.

Design 4.5 (The Division Controller): Consider the system (4.8), (4.9).
Define the sets

Si={x|—6<d(x)<¢,} {4.16)

where ¢, =0, €, =0 are control parameters in the sense that the control
designer may let them vary depending on time, the actual state, etc.:

S, =8\ S5
{S'_=S_\ S (*17
Apply
KT x+up(x, 1)
u+——————-————-d(x) , xeSy
 up=0, xES (4.18)
KT x+u(x,1) ,
u_———d—z-;)——', XES.
where k ., k _ €R". The closed-loop system now becomes
(3=(A+bkT )xtbuy, — XES,
£=Ax, xES} (4.19)
1 =(A+bkT)x+buy, xES;.

Select, if possible, k ., k ., U, €, and €,, such that the conditions of
Theorem 4.3 are satisfied. In particular, it is clear that they can be
selected to satisfy Assumption 2.2, a

We see that the problem of controlling (4. 8) is reduced to combining
suitable state-space trajectory portraits (4.19) into a stable whole. u, is
used to (temporarily) change the equilibrium point in order to change, for



instance, the set Y. ¢, ¢, are used as controls (for instance as hystereses)
in order to avoid stationary. points or limit cycles on or around the
boundaries of Sj.

Several examples of the use of the division controller can be found in
Gutman {4]. One important example is displayed in the next section.

V. AN EXAMPLE: NEUTRON CONTROL IN A FISSION REACTOR
A. Preliminaries

As a realistic example of bilinear control, we choose the neutron level
control problem in a fission reactor described in Mohler [3, pp. 112-119].
The neutron population is described by a second-order model:

4 (s.1)

with the state constraints n>0, ¢>0, where n=neutron population,
c=precursor population, and u=reactivity, which is the control input,
Typical values of the constants are

=107, B=0.0065, A=04. (5.2)
A control constraint might be assumed:
jul<to3, (5.3)

The control objective is to stabiliZe (5.1) to a chosen neutron population
equilibrium level n,. With #, chosen, the precursor population level c,
follows from (5.1):

Ce=7}:ne.

Now, (n,,c,) is taken as the origin in the transformed state space. The
new state-space variables are chosen dimensionless:

x| = ne > —‘l
nE
c—c (5.4)

£>—1.

Xy =
e

In the new state space (5.1) becomes

X=Ax+bd(x)u (5.5)
where
B B
A=("7 7), d(x)=xl*l+—l, b=(1 o).
A A :

The eiger;values of A are 0 and —(A+B//). A has thus an eigenvalue ori
the imaginary axis, and, according to Section I11, there might or might not



exist a P=PT >0, such that the control
u=~[d(x) 0]Px (5.6)

stabilizes (5.5). The possibility of such a control will be investigated in
Section 3.2, where it will be called the quadratic control.

We also note that (5.5) and the state-space constraint (5.4) reveal that
the system is dyadic and satisfies the conditions of Theorem 4.4. The
dyadicity stems from the change of equilibrium point, ¢f. Example 4.2,
The situation is extremely favorable because the allowable state space
[defined by (5.4)] is a subset of S, . Thus, So ={x]d(x)=0} does not
belong to the allowable state space. Morcover, [A4, b] is a controllable
pair, It can be proved that the control

u= ;"(—\% (5.7)

will make the systeri asymptotically stable for a suitable choice of k. The
division control is displayed in Section V-C.

Section 5.4 contains a brief description of the bang~bang controller by
which Mohler (8] solved the control problem.
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Fig. 2. The control input u(r) for a simulation with the quadratic controller (5.9), (5.10)
with the initial condition (2.1).
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Fig. 3. Phase plane trajectories for simulations with the quadratic controller (5.9), (5.10)
subject to the constraint (5.3).



B. Quadratic Control

Set

Cp{P1 P2 -
P_(Pz p3)>0’ p,ER, i=1,2,3, (5.8)

The quadratic control (5.6) is computed:

x;+1 i
u=—"—(px1+p2%2): - (59)

Let ®=x7Px be a Lyapunov function. Compute ® as a function of P and
select a p, and p, that stabilizt the system. One suitable choice of P is

p1=40-1071°
pp=20-1071 (5.10)
P3>p3/p-

Simulations were performed (see Figs. 2 and 3). (For details on the
simulations, see Gutman [4]) We conclude from the figures that the
chosen quadratic control stabilizes the system, although the convergence
is rather slow.
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Fig. 4. Phase plane trajectories for simulations with the division controller (5.14) subject
to constraint (5.3).

ﬁlu(t)

time
- 1 1P ime

001

Fig. 5. The control input u(?) for a simulation with the division controller (5.14) subject
1o constraint (5.3). Initial condition: (2.1).



C. Division Control

In the division control (5.7) the vector k7 is chosen as if the linear
system

x=Ax+bu (5.11)
is to be controlled by the linear controller
u=k"x. (5.12)

The choice can be done, for instance, through the use of linear optimal
control with state constraints (see Martensson {7]). Here the choice was
done to get a stable one-tangent node

kT=(648.4 —650.9). (5.13)

Moreover, in the simulation program, a lower bound was set on the
denominator in (5.7) in order to avoid numerical overflow. The control
input in the simulation was

_ 648.4x,—650.9x, s
4= max(x, 1, oo 0 G149
Some simulation results are shown in Figs. 4 and 5.

The division controller seems very attractive. It is easy to design and it
provides good local and global control with the same algorithm,

D. Bang-Bang Control

Mohler [8] solves the problem of stabilizing the system (5.5) by a time
optimal bang-bang controller (see Fig. 6). This control mode is not
suitable when the state is near the origin; therefore Mohler [8] suggests a
PI-controller for local control.

o
Y

O

SCALED PRECURSOR LEVEL

1 S
Ng ng b
NEUTRON LEVEL

Fig. 6. Adopted from Mohléx_’ [8, Fig. 4.1]. Phase plane trajectories for the Mohler i8}
ban'g?bfxng cor_\lrol. The trajectory from the initial condition (ng,cg) to the desired
equilibrium point (n 7, ¢r) is heavily drawn. (ny,cp) corresponds to the origin in the
Xy — X3 space.



E. Conclusions

When comparing the quadratic controller, the division controller, and
the bang-bang controller, it seems as if the division controller offers the
most advantages. It is very easy to design; the other two are more
complicated. Different control objectives can be taken into consideration,
including time optimality. The bang-bang control might give an endpoint
error, which must be compensated for by another controller, for instance,
a Pl-controller. The division controller provides good local, as well as
global control with the same algorithm.

VI. SUMMARY AND DISCUSSION
Al

At present there exist no general criteria for necessary and sufficient
conditions for stabilizability of bilinear systems. Consequently, there
exists no general method to design stabilizing controllers. The literature
on the subject contains solved special cases that by no means exhaust all
possible bilinear systems. -

The contribution of this report is the solution of another few special
cases.

1) An extension under certain conditions of the applicability of the
“quadratic” controller by lacobson [5] ami uthers {0 the case when the
A-matrix has arbitrary eigenvalues,

2) a possible design method, the division controller, for the class of
dyadic bilinear systems.

The practicality of the above two controllers is demonstrated on the
neutron control in a fission reactor.

Tt is apparent that further work is needed both on general stabilizability
theory, and on special cases, It wguld also be valuable to find more real
life processes that can be modeled bilinearly.

APPENDIX
Proof of Theorem 3.1: The closed-loop system is
x=f(x) (A1)
where

f(x)=Ax—a § (B,x+byo)( Bix+bio) Px

i=1
with the initial condition x(0)=x,.
Define the Lyapunov function candidate ¥=x"Px. Then
- 2
V=xT(PA+ATP)x—2a 3, [x"P(Bix+byo)] . (A2)
i=1

The assumption in the theorem implies that, given an €20, there exists an
a>constant- 1 /€2, such that V<0 in the set {x|llxlI>e¢}.
Define Q= {x|x"Px<<c} with ¢ chosen, such that

1) V<Oond®, and 2) xoER. (A3)

Let D={x]||x;|<d;, i=1,2,: - -,m} with d;, i=1,2,---,m chosen such



that DD Q.

It is obvious that f(x) satisfies a Lipschitz condition and is continuous
on D. Then, according to Theorem 1.2.3 of [2], there exists a unique
solution ¢ €C" of (Al) in the finite time interval [0, 7]:

7= min —
i

M

where
M= .
‘ max | f(x)|
Now, the following three facts,

V>0 and V<0 in the set {x{ll x|>¢},
the definition of @ (A3), and
@ (1) is continuous,

imply that
e(1)CQ, o<r<r. (A4)

Hence, according to Theorem 1.4.1 of [2], the solution may be continued
beyond the time interval {0, 7].

Repeating the argument above with (7)€ as the initial condition, it
is found that there exists a unique continuationpE€C !in the time interval
[r,27]. The argument is now repeated ad infinitum, and we conclude that
there exists a unique, bounded, and continuous solution of (Al).

Especially it should be noted that ¥ precludes the possibility of a finite
escape time.

Since V<0 in {x}|{l xli>¢}, x(¢) converges to an e-neighborhood of the
origin and remains there. Thus, the system is stabilized according to
Definition 2.2. 0
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PART 2 -~ A NEW DESIGN OF CONSTRAINED CONTROLLERES
FOR LINEAR SYSTEMS

Abstract

A new method is presented +to fFind stabilizing
linear state feedback controllers for linear continuous—time
and discrete-time systems. A controller of this type was

satisfactorily tested on board a submarine as a depth
regulator.

saturated
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1. INTRODUCTION

The problem addressed here has the following background: A
plants modelled by a linear systems works well near a
stationary operating point when regulated by PID-s LE~2 or
other linegar controllevs. The control law can be chosen such
that the constraints on  the control  input are not

encountered.

Howevers if the contvol laws ave used fFor ‘Ynon~-local”

controly ®2.g. for transferring the plant from one stationary
point to anothevrs or for lavge disturbancess then theire
inherent drawbacks appear. In the words oFf Frankena and
Sivan (197%):3

“Let us assume that the gains of the contvoller have
been adjusted so that at the maximal ervors to be
encountereds the control vector will be at its
maximal allowabls level. Because of the linearity of
the systews whengver the evror is less than the
maximal evrory the control vector will also be less
than its maximal allowable valuesy and by the same
propovtion. Thus: pavticularly for relatively low
errorsy the control systew is opervating far from its
full capability. A move efficient way of operating
is to maintain control vectors which are eclose to
their maximal allowable value until the ervror has
been completely eliminated. Such a controller would

The mathematically wmost appealing way to overcome the
difficulty would be to solve an optimal control problems for
instance the time optimal control problemy see e.g. Athans
and Falb (1966 or Fleming and Rishel (1973). This usually
leads to a two-point boundary value problem which vields an

open loop bang bang solution. By storihg a ocomplicated




"switching surface"s this solution can be made into a closed

loop control law.

In most applicationss the optimal control solution has not
been applied. Notable exceptions are sSome space
applications. One reason seems to be that it is considered
conplicated and expensive’ extensive work off line has to be
done to generate the switching surfacess and their storage
requires a lot of expensive wmemory. Computer hardware

technology might change the latter fact.

How is then the problem tackled in industry today? Fivrst the
control sigrnals are calculated as if no constraints existeds

antd then they are simply limited. This type of control will

$5in e €Y (ores S Yy S 4SeTe ST RV S KeSDE GRS Gy P R SESTS EOUSY e ans Pmis GROTS $HEED SO

Howevers it wmight be serviously deficient. Stability cannot
be guaranteed in genevrals svan though the original
(unconstrained’ linear control yields a stable closed loop

system. See e.g. Example 5.1 below.

Sometimes an attempt is made to pateh up the saturated

lingear control. For instances. it is taken into account that

the rcalculated control is not the implementsd ones e.g. in
the updating of the integral pavt of a PID-controllers see

Astrdm (19313,

Another way that seems to becowe popular together with
conputerized control is dual—-mode control. This means for
instance that a low gain linear control is used fav from the

desived working point while a high gain control is used wnear
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it. Oreat care must be taken that limit cyecless or other

undesired featuress do not occur. Ses Astrdm (19713,

For stable systemss a quadratic Lyapunov function can be
founds on the basis of which a relay control scheme iz bhasad
(Astréms 1971). The switching cuvrves are lines. and hence

not time optimals but the closed loop system is speeded up.

Frankena and Sivan (1979} have a solution based on optimal

control theory. However: it does not apply to systems with

an unstable A-mabtrix.

it should be noted that unstable systems regulated by a

constrained controllers: cannot be stabilized for all initial

conditions. This paper presents a design technique for
saturated linear state feedback control that guarantees
stability and allows some tuning to achieve a desired

perfornance.

The idea is the following: the system is first stabilized by
a low gain linear state feedback contvrol. A guadratic
Lyapunov function is found: on the basis of which another
linear state feedback control is computed. The second step
is very similav to the above mentioned relay control design.

The two controls are addedy and saturated.

The paper is organized as follows. Section 2 contains
preliminariess Section 3z presents the design in the

continuous time cases and Section 4 in the disovrete time

case. A Ffew examples are given in Section S including the

submarine underwater test. A discussion and summarvy is found
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2. PRELIMINARIES

The continuous plant which we consider is the following

I G couna et @30ms bumh hven Cosen e (s Qrize Sitne Coves eovid G603 TR

(2.12

whare x € Rna u € Rms and A» B are matrices of appropriate

dimensions. Assume that

LA Bl is a stabilizable paiv, 2

1%
®

a
s’

and that the allowed cantrol inputs are constrained

g 2 u % h i = 192900sma (2.5

The control aim is to bring the state from the initial
condition KO to the vicinity of the origin. We do not define
an explicit ecriterion functions but in view of the
discussion in the introductions it is reasonable to suggest
that the transfer should be as speedy as possible while at
the same time the inputs. statess and outputs behave to the

liking of the design engineer. After all & real—life control



system is not Judged by how well it satisfies a loss
critervions but by how "reasonable" it pervforms in the time

domain. Compare the discussion in stram (1976).

Not all points in Rn are initial conditions of interest.
Most certainly the control engineer knows to what set the
initial conditions may belong. It is also obvious that if
the matrix A is unstables a constrained input (2.3) cannot
bring the state to the ovrigin from any point in Rna This

leads to the following:

Definition 2.1% Let D be the set of initial conditions in

the state spaces from which it is desirable to stabilize the

system to the origin.

n]
Consider an nxm matrix
A
L= [£8 2 J..a]t 1 (2.4)
i 2 m
such that
A A T
A =0 (LY = (a8 + BL > (2.5
o o

is a stability wmatrix. Such a matrix does exist due to the

assumption (2.2). Associated with each matrix L is the set

A

E R and

z %2 h 4 i=1l929cuaomd. (2.4

E(L) is simply the set of initial states at which the




Z6
T
stabilizing linear state feedbachk L x does not initially

excead the constraints (2.3).

AY

Another sets associated with sach matrix L is

A A o -1
F = F(L)y = n {e ] E}. (2.7)

tELOsw)

F is a subset of E. Along all trajectories emanating from Fi
T
the stabilizing linear state feedback L x doess not excesd

3

the constraint (2.3). See Fig. 2.1.

As A is a stablity matrix the Lyspunov equation
c

Pa  + AT p=-0 (2.8)
o o

yvields an nun matrix

A T

PCL LG P=PFr > O (2.9

T
for every nxn matrix @ = 8 3 0. Bee Lancaster (19492, It is

wall known (AstrdHmy 19713 that
- T.,. . .
vit? = ® () Px(t (2.100

is a Lyapunov function for the system

e
i
o d

Ha (2.117

A stability region for (2.11) can be defined

A A T ,
2 = QCL+Psec)y = {ulxn Px £ . (2.12)




=7
1t is clear (Astrdms 19713 that
®EOY E O D xikY € L For t T Q. (2.13%)
Erom the definitions of @ and F it follows that
QcE % O cF. (2.142

The sets Dy E(L) and QC(L:Pse)y are crucially important forv
the design. It will be shown in Section % that a sufficient
condition for the design to work is that D is such that for

some Py oy and L

DefeE. (2.15)

The two-dimensional case is depicted in Fig. Z.1.

N\

Fig. 2.1 The sets D v F» and E according to (2.142s
(2.1%) in the two-dimensional tCase.
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Finallys define the function sat:

Definition 2.2 Let § be an mxl vectors and r a scalar. Then

s 0%y e chata Cume ey ki e Gt vt St Sy vt S

F sat F
1 1
A sat §F
sat § = 2 2 t2.16)
i sat i
i 2} .
where
g, if r £ g
i i
sat r = r ifg (r (h t2.17)
i i i
h ifh £ v
i i

3. THE DESIGN IN THE CONTINUOUS TIME CASE

We proceed to present the design in the continuous time

case. As stated above the idea is as follows: a linear state
feasdback control that does not wviolate the control

constraints is found to stabilize the plant. If this cannot
be achieveds the scheme is not applicable. & quadratic
Lyapunov function is constructed for the closed loop system.
On the basis of the Lyapunov functions another state
feedback control is computed. TheAth controls are added and
saturated. Theorem 3.1 contains the stability proof of this
schemes and Algorithm 3.2 suggests how to design the

caontroller.
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Theorem_3.1: Let the plant defined by (2.13-(2.3) be given.

Assume that the set D of intervest (Dafinition 2.1 has the

property that there exists an nxm matrix L satisfying
T

(2.432(2.5) an naxn matrix P =P ? 9 satisfying ¢2.8)s and

a constant o such that (2.15) is gsatisfiedy, i.8.

D e Q(L.Pac) & ECLD.

Defins

>
ot

K . + k2 O i1 92900091 (Z.12
" i

Then the control

u = sat CCLT - KBTP) xwl ¢

L
8

B3
Ly

stabilizes the plant for all such K and all initial

conditions x_ € D.
&

Proonf: Initiallys it is clear that the control signal in
(3.2) is continuous. It follows that the closed loop system
has a uniques continuous solution. Gee Coddington and

Levinson (19353,

Consider the unconstrained plant (2.13~-(2.2)s with the

fepedback control
o= LTx + v - (3.3

then v can be chosen such that ®€Ld) € 0 if x) € D e . For
{

instances v=0 is such a choice. For v=0, assumption (2.135)
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implies that w«(t3 € E(L). The remainder of the proof will
show how to construct a better v with the constraint (2.3
gtill enforced.
The closed loop system (2.1):(3.3) is

X = A % + Bv (3.4)

o

with Ac daefined in (2.5). Let

Vo= xTPx (3.3

be a Lyvapunov function candidate.s

with P computed according

to (Z.8).
Compute

- T T T

V= x (PA + A Pix + 2 % PBy (.62

o c

The first term of the right hand side is negatives dug to
(2.8, In order to ensure that V is a Lyapunov functions: we
demand that

2 x PBv % 0, (3.7)
Define

R = diag CPiv T 9 ees? T 33 P 2 0Oy imleZe..evm (3.3)

= " i

Clearly the choice




v = - R B Px

satisfies (3.7) because

T

T
2 xTPBv = - 2 % PBRE

YV ois thus

with the cantrol (F.324.(3.

a4t

(3.9

Px % O. (E.100

a Lyapunov function for the unconstrained system

729 whevre it should be noted that

the R-matrix may be a function of x.

The next step is to show
can be written in the

appropriate choice of Ry i

LTM - RBTPX = zat CLT

for any diagonal K 2 0y and x € E.

Farm

that the constrained control (Z.32)
(3.33+03%.93 for o € E by an
2. s0lving

K o= KBTPK) C3.112

Consider the itth row of

(3.113
1Tx o r_CBTP),x = gat (lTx e k,(BTP),x) (3.1
i i i i i i

whersa CBTP}_ is the isth

1

that I?X lies inside the i
i

lTx - k,CBTF),x
1 i 1

“Fj v =k % 0. On the other

- I¥f also
i i

lTx - k,CBTP),x Y h, s
i i i i

row of BTP. Note that »x € E means

nterval [g +h T,
i i

C5.13)

lies inside the intevrvals then

handy 1




a4

B2

then a smaller ri would decrease the term added to 1:x$ ieBa

A

there is riy O{Fi(kiv such that
lTx - r.CBTP},x = h, 9
i i i i

and similarly at the lower limit g . Cf. Figure 3.1.
i

It is thus shown that V £ 0y also for the constrained system
o T T .
o= Ax + B sat(lL x - KB Px) £3.14)

provided x) € Q3 and the stability follows.
{

The main condition of the theorvem is

D e Q(LsPye) g ECLD.

This is both a condition on L to stabilize the system and a
stronger condition to allow for some saturated control. It

actually implies

vl
f

e FL) L5150
ar

X » {-I-I-X-ki(BTP)iX

— -

— 3

l{x—ri (BTP) iX

Fig. 3.1 The computation of r .




g €2 e x&ks 20 x.§€D. (3.16)

But F 2 D would not have been sufficient to guarantee

stability of any extended saturated control.

The design of controller (3.2) involves formulating the set
Dy and selecting the matrices L. P (or @)y the number os and

K such that the conditions of Theorem 3.1 arve satisfied and

such that the closed loop system perF0¥ms desirably. Procesd

2.0. as followst

Algorithm 3.33 Step 1. Detevrmina D. The set D is

ouns oy £ beon B e i e st B s w8 G2

e covea oot G e R VS

out of D.

Step 2. Find L. This can be done e.g. by solving an L@
problems with the state penalty rveflecting the design
ohjectives, see Andevson (1971) and Wieslander (19803 . The
pontrol penalty is increased until the control LTx satisfies
the constraint (2.3) for x in D. This check is easily done
since the constraint is linears

g. % max iTx £ h o i = 1e@raanrma (3.172

i wED i i

If D is such that (3.172 cannot be satisfied for any Ly then

this design is not appropriate.




a4

Dbviouslys other criteria for linear design (e.g. pole
placement) can be used to generate stabilizing watrices L

that satisfy (3.14) or (3.150.

By (3.17) we have ensured that E 2 D: In step 3 we will try
to find P and o such that D & QL Pseld € E(L). When a "lower
gain" L-matrix is needed in order to increase the size of E
and F relative D so that the construction of O in point 3

may go throughs a good thing to do is to increase the

control penalty in the above LO-problem and get another L.

Step Z. Find P and o. Fivst a P = PT Y 0 is sought such That
PAC + A;P Yy 0. IF the LE-technigque was used in point 2y the
stationary solution of the Riccati equation may serve as P.
Another method is to solve the Lyapunov equation (Z.8) with

a choice of @ giving a suitable decrease rate of the

Lyvapunov function V.

Now determine O by choosing the parvameter o in the

definition (2.12) such that D & & ¢ Es

T
suUp xTPx £ o £ min x Px (3. 130
KED HEBE

where 8E designates the boundary of E. Using constrained

optimization theory (see e.g. Brocketts 1770) it can be

shown that



+ T I3 i i ) A} L3 e
min ¥ Py = min {=————-- g oo o ok o for i=le2s.sa.vm

XEIE i lep e 2P 2
(3.19)

Both conditions arve then easily checked numevically.

1f this failss choose another Ps and if this does not helps
select a “"lower gain® L in order to enlarge the set E.

Finally a cut down of the size of D might be considerved.

Step 4. Set up the control u according to eq. (3.2).

Algorithin 3.3 is readily carvied out when you have cowputer
programs for the LE-problems for solving the Lyapunov
equations and for sinulation of nonlinear dynamic systems.
Preferably the programs should be interactive. For the
examples in this paper the interactive programs described in
Wisglander 19807 (LE-design? and Elmgvist C1973)

{(simulation) have besn used.

4. THE DESIGN IN THE DISCRETE TIME CASE

The design in the discrete time case can unfortunately not
be made as general as in the continuous time case. Theorem
A4.1 will give a stability vesult in the single input casei a

genevralization to the mnulti—-input @ case is given in




4é6

Proposition 4.3. Firsts howevers

comne the

>

definitions and

preliminaries corvesponding to those of 8sction 2.

The plant is

KCE+1) = Sultd + Tultd
®KEOY = y
0
where x £ Rnw n € Rm’ m £ n. The

appropriate dimensionss

{4471 is a stabilizable paiv

g %2u £ h i = 1a2veaarm
i i i
Defina
A
L= [8 2 Jouauld ]
1 2 m
A A T
@ = § (Ly = ($+I"L )
c o
where ¢ is restricted +to be a
o
matvrix.

Let D be the set of initial

Def. 2.1 and introducs

>

EdLD

>
gpmmtioeny
14
m
)
3
s}
P
Y
F2S
)
2]

>
>

F(La

and T is aof §full

matvrices

3

discrete time

conditions of interest

rank.

(4.1)

¢ ' are of

Assumse that

(4.2)

(4.3

.40

(4.5

stability

as in

9 i=1a2v..uvm} (4.5)

4.7)




*g&mf

a7

Let o

o

¢ P - P = - (4.8
o

yvield a nxn matrix

A T
PL.s@) = P =P ) O 4.9
T
far avery & = & ) Q. Thaen
e T, .. .
VEEDd = 5 (b)) Pxdid 4,10

is a Lvapunov function for

wit+1) = & w(t)a 4.117
o

Using the notation

A A n T
Q= QCL+sPscd = {x €ER | %« Px £ c} Cd.123
it follows that
€0 € Q D« € v t = 0319290 (4.13)

The function sat is defined in Def. 2.2.

The following single input result is analogous to Theorem

F.1.




as

PR g e e

m=1. Assume that the initial condition set D is such that
T
there exists an mxm matrix L an mxn matvrix P = P ) O and a

constant s such that ¢ defined by (4.5) is a discrete time
(]

stability matrixs that
T .
& P& -~ P (0O 4.14)
o

Ly

and that the sets £ and Qs defined in (4.63 and (4.1239

satisfy
De ek, €4.15)

Then the control

u = sat ELTx + hwld 4,14
where

W=~ (et FTPécx (4.17)
stabilizes the plant for ¥ € Ds provided the design

0
parameter k lies in the interval

Lo
15
o
I
]
.

td. g




Proof: First consider the control

cramy ezes enscs s S

u = LTx v (4.19)

with v = 0. Provided KO €EDc it follows from (4.12) -
(4.15) that xC(t) € @ € E and the constraint (4.3) holds for

all t.

The remainder of the proof will establish stability for the
contral  (4.16)y a more generous choice of v. Introduce
(4.17) into (4.1):

xCt+1) = & x(t) + I v(tl. (4.20)
o

The +Ffunction
] T.,. )
Vitr = x (b)Y Px(td (A.212

is a Lyapunov function for v = 0. Now compute the increment
in V(t) for the system (4.20):
T

T
VEE+Ls — V) = x (¢ P$E — P) x + FOV) (4,220
L o

where

T
fivy = ZKT &T PP v + v FT P v (4.23)
[

For control laws (4.12)s such that

Fivy £ 0 : (4.24)




it foliows from (4.14) that V is a Lyapunov

for <{4.20). Introduce w from (4.17) into (4.23)
Fivy = (va)T TT Priv-wy - wT FT PI" w.

Since m = 1 the choice

satisfies (4.24) for

J
b3

(l=pd" = p

I
o

or eguivalently

o
ioh
iss
%]

Just as in Theorem 3.1 it can be shown that

(4.16) fulfills

u = gat ELTx + kwl = LTX + T

Ffunction also

giving

(4 .25)

4260

C4.27)

C4.28)

3,

the control

.29

for ¥ € E and that
O % » £ k. (4.30)
This proves the stability under the control 4.146) - (4,182,

o




In the multi input cases wm )} 1y the saturated linear state

feedback
T
ru o= gat [L x + Kwl
T -1 7T

w = ={I" P ' Pe
< c (4.3

K=diag (k 9 o wva ? k)

i m

L O & Kk & 29 i = 1ls 29 aees m

i

would not stabilize the plant in general.

First we note that egs. (4.146) — (4.25) of the Theorem 4.1

carry through to the multi-input case. Equations (4.1%2y

(A4.2463 would corvespond to

u = LTx + Rw
C4.32)
R =diag (r 9 wear ¥ )
i i
We will then show that (4.24) reguires that
R = rl
(4.33)
O % v £ 2
insert (4.32) into the expression (4.25) for fiv)
. T T .. T
FCRwWY = w €(R~I PI'(R~-I> ~ T PI'} w (4.34)

and €4.33) follows divectly from the following lemma.




Lemma 4.2% Let M be a positive definite symmetric mxm

epochlo il ) copiph AR N4

matrix. Let A be a diagonal mxm matrix. Then

AMA - M £ 0 for all M - .35

iff

A= diag (Ar waa3v Al -1

S
>
I
-

(4.36)

Y

Proofs Bufficiency: Let A be given by {(4.346). Then

Szag esmsn e em wos

-
AMA -~ M = (A" -13 M £ 0. C4.37)

gsince M » 0 and Ckz—i) % Q.

Necessity: Let

A = diag (Aiv A s waas AN I (4.38)
= m

I# |2 | ¥ 1 for some 3y it is clear that the choice M=I will
J

make the ji*th diagonal element of AMA-M positive and hence
AMA-M  is non-negative semidefinite. Therefores in the

ramainder of the proof assume that |A | € 1 for all j. Then
J

it will be shown that (4.35) may be violated if A Al for
i

any is say i=2, Define

1-" vEl=A A 3
1 12
U = .ﬁ -
vei-A A ) C1-A 3
12 2

The choice




A
i v O
v
M o= “ g jv] ¢ 1 ; 4.3
0 T
gives that .
= 2
AMIA - M = diag [U1 Cl=A J3 aawsy Li-A )]. (4.40)
3 m
F rom
2 L2 . 2
det U = (1—-v ) (1—k1hﬂ) o th—kz) (4.41)

3

s

it follows that <¢4.35) is violated for v~ close to 1. This

conpletes the necessity part.

Hence it is clear that in order to continue the proof in the
multivariahle case we have to establish an equality betwesen

{4.31) and (4.323+04.3323 i.e2. between
T . A
u = gsat L[L x + Kwl (4.42)
and
T
u =L ¥ + rw (4.43)

for some v = pi(xy € (0«21 but this can not be done in

general. A slightly wmodified design is therefore suggested.




Proposition 4.3: Let

Coren cmy tmemn Bints €5t Lo ey erans apn £3amh ets <oove EEnva Svt e

k€ [0s21, i = 1429...m (4.443
1

be design parameters. Then the control

T )
u =L % + r{x) wixd

(4.43)
T -1 T
wix) = (I" PIM r Ped u
e
where S
m
rix) = min {s.
i i
i=1 (4.46)
T
S = max {{z € [Osk 1> n {z g % L x + zw (%) % h_}]
i z i i i i i

will stabilize the plant for x € D.

0
%]
Remark _4.4: Considering (4.25) it is clear that
. et -T. T .~
min fFlv) = fl-v) = = v ' PI'y C4.47)
v

since TTPF Y} 0. Thus k = 1 in (4.18) vyields the fastest
decrease in the Lyapunov funection (4.213 among the control

laws (4.16).

Remark _4.5: For k = 1y the single input control (4.16) can

be rewrittens using (4.53:

U = sat C—FTPéx/FTPFJ. (4.4
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This control looks like a saturated state feedback dead beat

controly see Leden (1975 Astrdm (1970 and (19735. It is

not in general. If it wevre a dead beat controls then

$ -~ P-(FTpéfTTPF) (4.49)

would be nilpotent of order n. See also Example 5.4.

Algorithmn 4.6% Steps 1-3 of Algorithm 3.3 carry over with

o s o8 srarn e S  Gines R wOSTH Gy 4ESR VO

some obvious changes.

Step 4: Set up the control u acecording to eq. (4.163.
Select a suitable number ks 8.g. with the help of

simulations of the closed loop system.

5. EXAMPLES

We will first consider the doubles integratore a single input
plant. which has been studied several times» see @.g. Athans

(19646 and Kivk (192703, It is described by

X = ¥ b u .
00 i (5.1
-1 & u £ 1

The continuous time controllers will be constructed with




Sb
(5.1 as the model. The discrete time controllers will be

based on the corrvesponding discrete time model (which was
obtained by sampling the continuous wmodel (5.1 with the

sampling period = 133

11 0.5
i+l = [ 1} ®(iy + ) Wil

. =1

HE
o

i
ot

The set D is arbitrarily chosen as the following square in

the state space:d

D=+ x € R™ | ~10 £ 5 £ 10, i=1:2 3 (5.3)
i
The design_gbjective is to bring xi from its initial value

to the origin as fast as possibley using a saturated linear

cantrol .

Baefore turning to the actual design according to algorithus

3.3 and 4.4y let us firvet discuss a few features of the

double integrator that arve of some interest in our context.
It ecan be shown that in the continuous-time cases every

control law of the Form
T . )
U = gat (& xRy (3.4)

whaevre the 2xl wmatrix 2 is such that 4 + bRT is a stability

matrixy will stabilize (5.13. This is indeed not 8o in the

discrete time case as demonstrated in example S.1.
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Example S5.1:3 Given model (3.2). Compute the saturated
state feedback dead-beat controller ch. Azt rdms 19730
ulid» = sat (L—-1 ~1.51 wCiddy i o= Osle2vans (5.5
Let the initial condition be
] T
(03I = (10 103y € D, (55D

The phase plane trajectory and the <control signal of the
closed loop system avre shown in Fig. S.la. Clearly it is

unstable.

We also cowmpute the sets E and Fy (4.7:4.83» for the

dead—-beat controller.

E=4Lx | -1 £ -x = 1.5 x_ % 17r. (3.7)

To determine F we have to cowmpute the inverse wmappings

R T
c
0.5 025
< "'"1 "")ns
We find that
F=En4<x | -1 £ x + 0.5 % % 1). (5.9
i 2
See Fig. S.1b.
]




o
D0

5. ]

7.85]

~-100,

100,

200.

o 1

Fig. S5.1a

75.

150,

226,

300.

The phase plane trajectory and the control signal

of the gystem (5.1)+(5.5).

T

(0 = (10 103 .




Fig. S.1b The sets E and F for the model (5.2) with the
controller (5.5).

Another intevesting feature of the double integrator is that
the time-optimal design with constrained input is hknown.

Theraefore we can compare our designs with the best possible.

Example S5.23 The time-optimal contvrol of plant (5.1 can

[P ARG AR S P -4

be found in e.g. Kirk (1970). The control law is

=1 if s ) O or (s
0 if x =0 - (5,100
+1 ifs {0 or (s O and XZ { 0

0 and X, > 0D

where




L4

&0

-10. ] ' T — switching curve
-15. ' |
0. " 20. ' 4. 80. = X1

el

0. ' 7.5 ' I5. ' 22.5 j 30.

Fig. 5.2 Time-optimal control of the plant (3.1, The
control is given by (5.7). Initial conditions:
1. €03 = (10 10)T§ 2. X(03 = (~10 10)T5 a. Phase

plane trajectoriesi b. Control inputs uft).




&3

&1
A

5 X o+ 0.5 X }xﬁ;.

1 2 2

v

The phase plane trajectory of the closad loop system with

T
the initial condition (S.6)y i.e. x(0) = (10 10 is

displayed in Fig. 3.2.

It takes approximately 25.5 seconds to reach the origin from

(10 10)T.

Let us now turn to the continuous time design presented in

Section 3.

Example S5.3: OGiven the plant (5.1) and the set D (5.3). To

Comne cteay e e s Svave Taiap doste SE0a Gvrms

find L1 we use the LO-designs wheve the loss is given by
T T
J Cx B % + u @ ul dt. (E.110
i 2
)

The choice
Qi = diag [10» 11 (5,120

reflects +the importance we attach to bringing Kl to the

origin. We had to increase @_ up to
o

e

&, = 500 000 (5,130

E

until we got a control law that produced unsaturated control

For all v (Z.15),




U = -~ [4.47

A few control histories for

vartices of D

in Fig. 5.3a. This

reference later on. To

with

Fd .61

when using the control

linear

I

= 10 ® (S.14)

trajectovies emanating from the
(5.143 arve displayed

control law will be used as a

fFind a matrix Ps: (2.8) was solved

-3
A o 1 O] L4a.47 94.61 - 10
e lo o 1
(5.15)
0 = diag (1+ 1>
which gave
b
1.2,
¢-10,-10>
0.8
.ClO,— >
0.4]
0. ]
-0. 4]
¢-10, 0>
~0-84 710,10
0 25. 0. ' 75. oo, T
Fig 5.3a The input for the system (5.1) using the linear

control law
conditions.

(5.14) Ffoar different initial




=5

15.9 111.8]
11i.8  1187.3)°
Then it was found that

T T
suB ¥ Px £ wmin x Px
wE HEBSE

could not be fulfilled. We tried in vain to replace { in

(5.153 in order to get a better P.

3

We turned back to point 2 to find a lower gain Ls so that

the @ defined by
T
C = sup X Px
% €D

would lie inside the new E. One way to find @ new L was to
multiply the old L by a factor less than ones zn that the

0ld {discavded) £ would have lain inside the new E.

We settled for

3

L =~ 0.78 - [4.747 94.61 « 10 (5.17)

which gives a linear control satisfying (3.15) and vields an

asymptotically stable A
o

8 =

[o 1] {o} £4.47 98.610.75-10 ~
g

0 0 1

A new P was generated according to equation (2.8).

10 173 1433
@& = 2 P o= ? (5.1
(S | 1433 19435 ‘ '




LY

Eb

&4

and the new ¢ computed according to (2.12) with

T
c = sup X Px.

Now equation (2.13) was satisfiedy sgsee Fig. 5.3b. It is

interesting to note that the set F is much larger than Q.
We set up the control

o= gat [(L - kKECG 11PXxds where (S.200

Lois given in (5.17)2 and P in (5.193.

The system was simulated for various k-valuess and Ffor

various initial conditions. Simulations for the initial

condition (10 10)T are shown in Fig. 5.3c.

The k-value ensuring the fastest settling tiwme is

ko= 0.5 « 10 (5.21)

A sinmulation of the plant (3.1 with the controller (5.20),

(5,213 can be found in Figures 5.3d and 5.3%e.

A comparison with the linear controller is also shown. It is
clear from these figures and from Fig. 3.2 that while the
time optimal control is twice as fast as the control (5.203
(5.21»y this is considerably faster than the linear control.

N}




&5

&7

~45,
~1000

L

500, 0. ' 500. ' o0 = X1

Fig. 3.3b D given in (5.3)y @ in (2.12) and (S5.19)s F in
(2.7 and (5.18)s E = {x|~-1 % LTx £ 1) with L

given in (3.14).
We now consider the discrete-time case:!

Exanple S.4% Given the plant (5.1). HWe use the model (5.2

to design a discrete time control low acecording to algorithm
d.6. The set D is given in (5.3). We Ffind L by using the

Le-designy where the loss is given by

@

- T T .

Z v B % + u @ uw) (3.22)
ol i =

i=0

N
b
fa

The choice




75.

60. |

30. |

15.

-t

0. N 25, ' 50. ’ 75. ' 100,

Y

ma_

W

-0.75,

.

0 = 28, " 50, 78. " 100.

Fig. 5.3c xict) and u(t) Ffor the system (3.1 (5.1

a3y

denoted by 1 in the graphs and for the system

(S.120 (5,200 with various values for

parameter k. The initial condition: «{0)

the

10 10)Ta 18 (5.13 governed by the linear
controller (3142 22 (5,10 (5.207 with
-3

&

k = 10 “s 32 5,13y (5.20) with k = 0,510

A4z (S.1ds5 (S5.20) with k = 10 5 S5& (S.1)s (5.

with k = 10 .




L7

-1
‘——-
0. 25 50, 75 mo.' t
Au
> / ey 1
- L}
|
-0.5
N A
0. i 25. ) 50. ’ 75. ’ 100, =t

Fig. 3.3d x1Ct) and udt) Ffor the linear system (S5.1)s

(S.143) (denoted by 1 in the figureds and the

system (5.1 (5,20) (S5.21)y i.e. with
=
Kk = 0.5 « 10 . Initial condition:

x€(0y = (10 103 .

Qi = diag (10s 13 (5,232

reflects one design objective. We had to increase & up to
oy

@, = 500 000 ¢

%
]
o
g

until we got a control low that stayed inside the control

bounds along all trajectories emanating Ffrom Ds i.e. made

D e F.

utts = LTx(i) = ~{0.0043F 0.0924TxCi)y igt{i+l «

ifl

t
a




FO
K
0. |
D
7.5 .
5 \\\\\\\
- '
2.5
{
N QQ§§W\
os | \\"

2.5

S

o, i 25, ’ 50, ) 75.

-2.5

-—X1

Fig. 5.3 Phase plane trajectories for the linear system
(S.13s (5.14)s (denoted by 1 in the figurses)s and

the system (5.1)s (5.20)y (5.21)s i.e. with

k = 0.5 « 40 ~»  for the initial econditions

(10 10)T and (=10 10)T. The set D is also

displaved.




- T TS WY

&9
The control histories were ochecked by simulations see

Fig. S.4by o

The corresponding solution P of the stationavry Ricatti

equation
T
P o= C¢+FLT3TPC¢+PLT3 + LQPL + Qi {(5.26)
was '
217 2238}
P o= (8.272
2238 47340
Since
12 199
g =Le L + 0 = {5.28)
b 199 4270

T
is positive definite (eof. equation (4.82)y V = x Px is a
Lvapunov function for (5.23, (5.25). Now @ is computed

accovrding to (4,128

{x | xTPx £ % Px ¥ (8. 292

bec]
]

T
with x( = (i 10» . From Fig. S.4a it is evident that
)

D e eE with E defined in (4.4 with the LTx af (5.25).

Alsoys in Fig. S.4ay the set F (4.7) is displayed.
Finally we sat up the control (cf. Thaoreaw 4.1

T
uCt)=eatt(LkaanPé T PPInCidls gt (i+d (3.3E0)
g




oy

30. |

~15,

=30,

4

4

-45

21600 ' ~500., ' 0, " 500, < 1000 X1

Fig. 3.4a Ds given in (5.33§ Qs in (5,293 F: in (4.7

(4.5 (5.2 and (5.25F E €x | —1 £ LTx £ 13

]

with L given in (5.25).

with

LT = ~[Q.0043 0.09724]
k € L0O+21y 2 design parameter
FT = [0.5 1]
Py see (5.27)

. | T
¢ = + I'L.
o o 1

The system (S.1)s: (5.30) was simulated for various values of

k. Bee Fig. S.4b. We chose somewhat avbitrarily




5
3
e

Fig.

100. |

75. |

50. |

25, |

k'X1

71

- 1

0. j 25, ' 50. ' 75.

100,

B
H

Jﬂﬁﬁfw’*t ggggngiz —

=it

5 -—s_J

5

-t

0. ' 25, ' 50, 75,

3.4b

x1€t) and ult? for the system (3.1

various k-values. Initial
w(0Y = (10 10)T. 12 k = O (i.ga
system (S5.1)s (5.25))s 2 k = 0.005

4: k = 0.02y 58 k = 1.

100,

(5.30) using

condition

the linear

38 ko= 0.01y




J

k = 0,01 €5.351)

to get a short solution time without too wmuch of an
overshoot. The resulting system (5.1 (5.30)y (5.31)y is
simulated in Figures 5.4c and dy where a comparison with the
plant controlled by the linear controller (5.1)s (5.25) is
made. We note that the new design vields a somswhat faster
systemy although it is a far ovy from the time optimal

performance. N

Referving to Remark 4.5+ we compute

so._‘ X1

40.

, , ; . ' v ' —a T
0. 25. SO, 75. {00,

-

o. 25. ' 50, ’ 75. ’ 100,

Fig. S.4c x(t)} and ul(t? for the linear system (5.1),
(5.253y denoted by 1y and the system (5.13s

(5.30)s (35.31) i.e. with k = 0,01. Initial

condition: »x(0) = (10 1O)T.




73
A x .
10, ] 2
D
" \
5. ' 1
2.5, i
) 1\
-2.5 \ t——
4
-5.
ok, ' 0" 2. 50. 7= X
A x
{0, 2
};\\\\\\\
7.5, ‘
5.]
{
2.5
o QL
-2.5
-5.
-25. i o. 25. ) 50. 72 =X
f;d Fig. 5.4d Phase plane trajectories for the linear system
g) (5.1 (3.25)y denoted by 1 and the system
Wg; (5.109  (5.300 (5.31)y i.e. with k = 0,01.
i -7 Initial conditions (10 1O)T and (-10 IO)T. The

set D is displayed.
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A T T 0.976 0.483
$ = ¢ - [oll" P&/T" PI') = (H.32)
oc ”0304? 071‘)24
and fFind that
L3 # diag (QOy O3 (5.3%)
o
and hence the control (5.30) with k = 1 is wnot a saturated
dead beat control.
]

It is evident from Figures 5.3 and S.4 that the improvement

of our controller over the linear one is not as dramatic in
the discrete time case as in the continous time case. We

used diffevent O-matvrices in the two cases.

Example S5.5% The following linearized model for the depth

i camh canes b fiten $50m e s e Cump £

control of a submarine was abtained from Kockumation AR,

Malmds» Sweden:

¥ = A % + b u

4 0 1 O O (5.34)
A= G 0 1 sy b = 10

! 0 0 -0.003 0. 005

with the control constraint
ju] & Q0.005, ‘ (5.35)

and x1 designating depth.
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The set of initial conditions of interest was given as
D=4 x| |x1]£10» Ik 20,05 |x [£0.005) (5.36)
2 3
We chooss our initial 2 somewhat arbitravily:
oy A -
QT = = (FG.65.10 & b6.27.10 T 0.82) CB.37)
with
T 5
max & w = 0.0045, (5.38)
®ED

The esigenvalues of the closed loop system then becoms:

ALA 3 = ACA + biT) = {~0.0037 —~0.002621i-0.0021) (5.37)
o

Proceeding accovrding to Algovithm 3.3 we find that

= {
@ = diag (1. 10~ 1.5-101)) (5.40)
vields a solution F such that
T 7
max H Px = 4.55-10
KED
(5.41)
T 7
min ¥ Px = 4.81-10
RESE
and
TaA T 4 7 7
m = h P = (5.78-10 3.992-.10 B.0610 3 (5.42)

Hence a control
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u = sat EiTx - kK me3 b (5.43)
stabilizes (5.34). He found .
ko= 2.1 - 107 (5.44)
suitable. This yields the control
AT N
u = gat (4L x?
(5.45)
AT 4 -2
L = «(l.28-.10 B.16-10 17.74)

The closed loop system poles becomes
AT
ACA + bR ) & {~0.087, ~0.0022 & i-0.00015)

Sinulations of controller (5.45) showed that it might be
adequate. Actually an insignificantly different controller

was tested on a real submarines

u = gat CZTx)

- CS3.46)
=T . - -4 - )
R = ~ (1.39-10 2.68-10 17.36)

Simulationsy comparing (5.4523s (5.34% with (5.446) (5.34)

show that the controllers havrdly differ at all.

A simulation of controller (5.446) and the linear model
(5.34) with the initial condition (0y Oy -0.004) is shown in
Fig. 5.%a. The actual underwater test with the same initial
condition is shown in Fig. 3.5b. The ocrew is reported to be

satisfied with the controller.
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A
0.‘ depth [m] .
-20. |
-40., |
) _ ' Time
0. ' 250, ' 500. ' 750. ' 1000 [s]
0_005l control
0.0025 |
0.
' ' i ' . ) ' ' o Tiime
0. 250, 500. 750. 1000 [s]

Fig. 3.9a Sinulation of controller (3.463 with linear
systemn (5.343, Initial condition

®€OI = {0 O mD.QDd)T.
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20,

'deviu’rion from reference [m]

Fig. 35.5b Underwater test of the submarine using controller
(5.42). Times greater than A00  should be
disregarded sinpce the submarine touched the

surface. Initial condition x(O) = (O O »O.ODAET.

A comparison between figures 5.9a and 5.5b suggests that the
linear wmodel is inadequate. Although Theorem 3.1 implies
stability for the closed loop system (35.463y (5.34),
stability cannot be guarantesd for the real life nonlinsar

system.

Sowme different ways to work with the algorithms have been
demonstrated in the examples. & better understanding of the
design method is certainly neededys i.e. how the choice of @

and the gain k affects the result.




4. BUMMARY AND DISCUSSION

. Al
In this paper a new method is presented to find stabilizing
saturated linear controllers for linear continuous time and

discrete time systems with control constraints. The basic

theorems and design algorithms arve found in SBection 3 and 4.

The underlying design criterion is the perfomance in the

time domains which has to be checked by simulations.

3

The design involvess

1. deeciding upon a set D of initial conditions in the state

space from which stabilization is desired.

bt

. Ffinding a low-gain stabilizing controls and the get E
in which this control initially does wnot exceed the

control constraintss

3. solving a Lyapunov equation in ovrder to find a Lyapunov
function for the closed loop systems and a stabily

region Qs

4. checking the crucial condition D g @ & E»

5. tuning a diagonal "gain" matrix.

The design scheme wmight seem involved but with suitable
interactive computer saftware including =30 I

linear—quadratic conrol synthesis, SOME optimization



o

o= ,n»i

S0

routines: and simulation facilitiess the task is easily
managable. Software packages that include facilities useful
for our design although they are not taylov-mades are
Synpacy Wieslandeyr {19803y and SianNs Elmgvist (1975 of
The Department of Automatic Controls Lund Institute of

Technologys Lunds:s Swedsn.

Stability is the only property of the new controllers that
is investigated analytically in this report. HMore thorough
knowledge is of course required - it is left as a topic fovr

further research.

The new controllers are applied to the single input double
integrator plant in Section 5. It is found that although
they cannot match the tiwme-optimal controller in speeds they
are superior to linear controllers designed with the

intention not to violate the constraints.

The main advantaege of the new controllers are their
extremely sasy implesmentation. It is our conviection that for
those plants where simulation studies show that they perform

satisfactorily they will become popular.
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PART 3 - APPLICATION OF LINEAR PROGRAMMING
FOR ON-LINE CONTROL a

s Gy o cramh oty S OB v

For linear dynamical systems with linear constraints the
regulator problem can be formulated as a linear programining
problem. In present industrial practice: control and state
constraints ave usually considered in ad-hoc wayss e.g. with
max—min selectors. An LP-regulators operating in the Dpen
Loop Optimal Feedback (OLOF) fashionsy is used on~line to
control a laboratory process with both input and state
constraints. Several examples arve sinmulated.

The wmethod suits both single- and multiple—input systems
with or without time delays. It seems quite robust and
especially suitable for large reference value changes and
large disturbances. It is feasible for processes with
sampling periods of 10 seconds or more (depending on model
order» number of inputs: and the speed of the computer)s
i.e. for many industrial applications involving flows heat.
chemical processes» and climate control. As small computers
become increasingly fasters the LP-OLOF vregulator will get
move attractive.

The regulator was built around a standard LP-program on a
VAX 11/780 computer. The laboratory process controlled
consisted of two water tanks. The constrained input acted on
the pump to the upper tank: from where the water flowed
freely into the lower tank. The level of the lower tank was
to assume a reference value in minimum time. The state
constraints prevented overflow in the tanks. The experiments
show that the LP-OLOF regulator behaves excellently although
its internal model of the tanks does not take into account
the non-linear dynamics.
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1. INTRODUCTION

Already Zadeh (1962 and Propoi (19433 noticed that the
minimum time problem for linear Qiscrete systams with
constraints on the controls can be formulated as a servies of
linear programming problems. Propoi (194633 proposed that the
LP-problems be solved in each sawpling intevrvals thus
getting a feedback control. This wethod is called Open Loop

3

Optimal Feedback (OLOF).

In spite of the simplicity of the LP-0OLOF, most control
engineers seem to be discouraged by the excessive
computations needed in each sampling interval. It was feared
that the computations would be so time consuming that the
LP-OLOF could only be applied to processes with very long
sampling intervals. This need not be the case using a modern
computer. We show that sampling periods of a few seconds and
movre are possibles depending on model ordevrs number and type
of constraintsy and the computer performance. These results
are very encouragings since many industrial processes would

allow sampling periods of these orders of magnitude.

We present heres as far as we knowy the first simulations of
how the LP-0OLOF regulator would behave "on line" for
technical applications. It is also the Ffivst time the
LP-0OLOF with state constraints is repovted to control a

real—life process.

The LP-algorithm we use is not tailormade but “"taken From

the shelf". We wanted to investigeate if it is viable to
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const ruct an LP-OLOF using a standard time~proven
LP-algovithm. LP-algorithms have now matured to a science of
its own. Expertise is needed to avoid numervical problems. OFf
cCOoUurse we pay a price: some shmrthts can be taken in a
tailovr—made version. However, many speacial LP-routines
reported in the literature do not seem easy to extend to

include state constraints.

The paper is organhized as follows: In chapter 2 the

3

regulator problems are defined, and sowme approaches to solve
them arve given. In chapter 3 the linear programming method
is presented. including a litervature survey. Chapter 4
treats the constrained input cases and chapter 5 deals with
the case when both input and state constraints are present.
Both these chapters include simulations. In chapter 6+ the
real—~life experiment is described. The obssvved properties
aof the LP-regulator are listed in chapter 7. The discussion

and conclusions follow in chapters 8 and 9. Chapter 10

contains the acknowledgement: and chapter 11 the references.

2. PRELIMIMARIES

Assume +that a plant is lingar with constant control

constraintss

¥ = Ax + Bu (2.1a)

o (32 % u (LY £ B (33 J = 1929rewami all t!tr (2.1
t . 8
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or with constant control and state cownstraints.
¥ = Ax + Bu (2.2a)
o (32 & u (L) £ 8 (379 g = 192s5...9m3 all tzt {2.208)
U J U 0
o (i3 £ w £y £ @ (il i = 1+29...911% 811 T2t . (2.2
o i X €
. ; o wa ¥ . ,
Define a« = La (13 & (2)9 oawr & (w21 » and similarily for
u u u u
v o0 ¢ and £ .
U X ® N

More geneval linear constraints ave not considered herve. It
is straightforward to extend the proposed methods to such

Cases.

Our objective is to design a regulator that takes the state
(or output) From its initial value ¢to a prasoribed
stationary point» which will define the origin in the state
space. The regulator must stabilize the system» and it is
assumned that the initial state is such that it is possible
to stabilize the systewms in spite of the imposed constraints

on controls and states. Thus we assume stabilizability.

The regulators could be constructed with various
optimization cviteria in wmindy e.g. wminumum time: i.e. it
should take the shortest possible time to reach the desired
states or minianum control effort, ete. In this study we will

mainly use the minimum time criterion.

It may be assumed that the whole vector x¢{t) is measuved: or

ortly the output y(t?» = Cxi(t)s or that the state is
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reconstructed without ervors etc. Here it is assumed that

*

the whole state is available for measurement at discrete

sampling instants. When not otherwise stated it is assumad

that the sampling interval = 1.

In the next section we will give an exposé over some of the

methods proposed to design controllers for (2.1 and (2.2).
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A straightforward idea is to design a linear controller that

never hits the constraints and causes the states never to

hit their constraints. This could be done e.g. through the
linear-—guadratic design methods ovr via model following, i.e.
the set point of the closed loop system is changed in such a
modest  way (e.g. a vramp reference input) that the

constraints arve never vinlated. Both these methods use
simulation to check that the constraints are not violated.

Although these methods in general are favr from time optimals
at least closed loop stability can be guarvanteed in a

neighbourhood of the reference point.

The common wmethod in practice +to deal with (2.1 is to
design a linear controller (e.g. state feedbacks output
feedbacks or PID) disregarding the constraints and then
saturate it. The region of stability may be very small. For
open loop stable plants Astrdm (19711 proposes a stabilizing
relay control scheme: and Shapiro (1972) suggests a wethod

to detevmine the wmatrix L so that u(t) = satilx(t)]l is

stabilizing. Under certain conditions there is a method to




Yy = o™

8%
determineg a stabilizing u(t) = satllx(t)] also for open loop

unstable plantss see Gutman <1982).

To find a regulator for (2.2) Glatthlder (19743 and othervs
have proposed the method of max—win selectors. In  this
method a whole set of controllers is used. When a state
constraint is viclateds the control is switched to a
controller whose aim is to remove the state from the
boundary. Although there exists no proof of stability (it

3

often happens that the states oscillate from one boundary to
another) the method has become quite popular for instance in

the power industry.
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An elegant way to design regulators is to apply optimal
control  theory. The constraints are taken cave of in a
natural ways while you are optimizing a eriterion of YO
own choice. The disadvantage is that in genevral you get an
open loop contvol solution from one initial states not the
desired feedback contvol. There are two ways to create a
feedback controller from the open loop optimal control. One
is to solve the optimal control problem for a great number
of initial conditionss and then to set up a look-up table:s
which can be used in a feedback fashion. The second way is
to solve the optimal control problem once avery sampling
instants i.e. the Open Loop Optimal Feedback schewe

(OLOF~schemne) .
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The OLOF idea was proposed in a stochastic setting by
Dreyfus (19643s and is described in Wittenmavrk (19730, 1t

has been considered in the context of adaptive controls see

2.g. Bar—~Shalom (19763,

In each sampling interval you compute an optimal contvol
sequence. Then you use only the control pertaining to the

curvent sampling interval. This is illustrated in Fig. 2:1.

1f the computation time is shorter than ‘the sampling period.
vou can simply use u(t) as soon as it is computed. Possiblys
you will have to include a time delay in the model of your
sampled systems which is not done in this report. If the
computation time is longer than the sampling periods you

cannot use the regulator.

Real time:

fu

t=0 -
= time
| 1| - o )
" time horizon
u -
t=1 _— _—
= time
— -

Ly T




2.3 _80lying the optimal control problem
When solving optimal control problemss some optimization
methods allow a free end-time. When using e.g. linear

programmings it must be specified.

Let the time horizon v+ be the end~time of a fixed end-time
optimal control problem. It is possible to solve a free
eand-time optimal control problem with the linear programming
maethods by solving a sequence of Fixea gnd-time problemss

iterating over T.

We now turn to the optimization criterion. WVarious linear

criteria could be used in the LP-method. Recall that the

reference value is chosen as the origin. As time optimality
has been in wmost researchers’ minds: we will present three

methods to achieve its at least suboptimally.

Method_1: Initialize x. Minimize |[x(td|. Iterate ovevr =«

until [x¢xd} { £+ where & is a predetermined test quantity.

&

Method 1 was proposed by e.g. Canon (1970 and Bashein

19713

When solving the free end-time problem as a seqguence of
fined end-time problems. it is esgsential that tha
computation continues until “optimal t©" is reached. That a
shorter final t might be harmful is obvious. A longer final
T can also be harmful in the OLOF-settingy since the control

may be nonuniques and the one obtained for the currvent
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sampling interval might then countevract the control

objective. N

There is one possible disadvantage with Method 1§ the

minimization of |[xi< t)l might give non-unigue control
op

sequences udt). It is at present not clear whether this is

harmful For an OLOF-regulator. In any casey many authors

have beesn distuvbed by its and thevefore proposed a

different optimization to get a unigue solution:

Method 28 Find the wminimal £ for which x{t) = 0. Then

mindmize

max ju (ti].
Jet J

Itevrate over © until (2.1b) is satisfi

minioum—time mininum—-anplitude solution,

2.9 Cadrow (19743 and Rasmy (19733,

Method 3¢ Find the wminimal = for
minimize
2 lu C(t3f.
o J

Jet

Itevate of v until (2.1b2

minimum—time winimum—-effort solution.

g.9. Rolev (1972),

ad.

This is called the

It was proposed by
]
which x{tl = 0. Then

is satisfied. This

It

is called the

was proposed by
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If vyou solve the miﬂimum“amplitude;‘prablem in the above
schemay and if in (2.1b) ﬁU(JD = auCJ} = oy all jJs then
you will end up with the same solution as in Method 1
(disregarding non—-uniqueness). This i; usually not the case

for the aminimun—-effort problem.

We will use wmethod 1 in the most simple way: i.e. we solve

one LP-problem for each t.

3. THE LINEAR PROGRAMMING METHOD

In this chapter it is shown how the regulator problem for
plants (2.1) and (2.2 could be formulated to Fit into the
linear programming Fframework. A literaturve survey is also

included.
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With linear programmings problems of the following type are

solved:

Find z such that FTz is minimizeds (3.1a)
undeyry the conditions
Az = by (3. 1k

O£z £ v i= leZoaoasle (3.1l
i i




b

where £ and z are N-vectorss b is an M-vectors and A an

MeEN matrin. Some LP-voutines allow inequality constraints in

{(Z.1b3y and some have other upper and lower liwmits in

(Z.1e0.

-

When solving an optimal control problem for plant (2.1 with

the LP amethod, we use

T
-y g=1-ag

T
XCTY = & xCO) + 2 «:- Fucs) (3.2a)
=
=0 ¥
® (1) £u (k) £ B (30 J = 132s...0md all £ (3.20)
u J u

where © is the time horizons and x(02 is the initial state.
The LP-routine then datermines the optimal utt o
£ = 09 ceay T=13 and the corvesponding x(t). In view of

(Z.lory some LP-routines need a dummy constraint on x(t)s

-

o €i) £ x (o) £ B (ido i = 192v.0090 (3.2e)
H i X

where « (i) ¢ Oy and g (i> ¥ 0. We study this problem in
" X

chapter 4.

For the state constrained system (2.2) we dirvectly use the

following sampled model of (2.2):

®{t+1d = dult) + Fult)d L= Dsdlswaonart~l (Z.3al
® (33 £ u () £ 8 (37 J = 132s...9m% all ¢ (3.3by
u J u
® (i) £ x (b)Y £ § (i i = 1+2v...9n% all t (3.3
X i ®
Here the LP-routine solves for the optimal uitls

£t = 0y weev T=1v and the corvesponding x(tls € = 0y .uur Ta




Note that the solution will not guayaﬁtee that (3.3c) is
satisfied between the sampling instants. Note also that we
can use (3.3) directlys and we do not have to solve for x(t)

-

explicitly in u(s?) as in (3.2a).

We treat the LP-regulator problem for plants with both

state- and control constraints in chapter 5.
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Many authors have concentrated on algorvithm development for
Finding the time optimal solution for (3.2)» along the lines
presented above in section 2.3. Among them we note Torng

(19643 : Weischedel (19703 Canon {19703y Bashein (19715
Cadzow (19743 Rasmy (19753 Kolev (19783, Ghdelmalek (1973)

and Tracht (19803. Most of these authors have considered the

linear programming method. Their main preoccupation has been
to increase computing speed and decrease the wmemory storage.
This has usually been achieved by wutilizing (parvtial)
results of the solution for 1t to speed up (or make
redundant? the computation for t+l. As an example Rasmy
(1975) needed appr. 0.1 seconds on a CDC-46400 computer for
the solution for a 4th orders single input system with

T = 20,

Sakawa (1977) has developed a simplex wmethod Ffor the
multicriteria linear optimal control problems and Kim (1951)

a wmethod for systews with delay.
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Rasmy (1977 touched upon the on-line applications although
he considered OLOF impossible since he beleived the
computations would take +too long. Instead he used a longer
variable sampling interval but allowsd the contrvol to be

-

piecewise constant during the sampling interval.

Nieman (1973a) used the time optimal LP-solution as program
control for a pilot plant evaporator. In Nieman (1973b) he
used the off-line solution as reference for the evaporator

3

in closed loop.

Knudsen (1975 seewms to be the only one to have implemented
LP-0LOF for a plant with control constraints. He used his
own algorithm: A 4th orvder continuous time model for a pilot
plant evaporator was discretized using a Oauss guadrature
formulaid x(rli:=0§ an initial © was guessed: and increased
until a feasible solution for the LP-problem was found.
Non-unigqueness was disrvegarded. The sampling time was 30
seconds and the computation time on an IBM 1300 computer was

12 ~ 16 seconds including filtering and data logging.

Recently Baba (19303 has studied how the computing time

atfects the choice of sampling period for LP-0LOF.

Many authors have pointed out the desirability to include
state constraints but the only early reference §found
touching upon the regulator problem for ((2.2) is Lack
(12673 . Lineav programming was used to find the off-line
trajgectory that maximized the distance to a danger region in
the state space whose boundary was linear. The final state

was given.
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Chang (1981) contains ideas similar to those presentsd here.
But he only considered a suboptimal regulator looking one
sampling interval aheady and used the solution in feedback
fashion in simulations. This is a regulator:s that for some

plants is not even stabilizing.

In economics and related fields linear programming is used
for decision and plannings e.g. Propoi (1981). One could say
that this constitutes LP-OLOF with very long sampling

pariads.

4. THE CONSTRAINED INPUT CASE

The Institute of Applied Mathematicsy Stockholmy Kindly
supplied us with PRIMAL:, a linear programming subroutine
package written in FORTRAN: see Holmberg (19831). PRIMAL

gsolves the problem defined in (3.1 with the sxception that

A
21 = loss. The base inverse matrix is storved in product

form:s and reinversion is done when the wmultiplication
bacomes too time consuming: see Orchavd-Hays (194681, The MaN

matrix A is stored columnwises without zevo entries. The

computation time is approximately proportional to N-M-1n M.
The routine containg a number of test quantities that have

to be properly chosen.

Using the subroutine PRIMAL: we want to solve the optimal

control problem for (2.1)9 in the formulation of (3.2 with
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the critevion

A

1

A . A =

minimize loss = min [x(xd] = min 2 o |x (Ti] (4.13
c S I S
i=1
where the weight vector © = [o » 7 sesv € 1.
o= 4]

In orvrder to compute the loss two dummy wvariables are
introducedr see e.g. Canon (197033

b

W' -"y =H":T:)’ i *112!---!?’]

£
By
<

(4.2)

<
e
<

Since the LP—-solution guarantees that minfw »y ) = 0y (4.2
i i

implies that

W+ y = |x (T)]s i= 1929000 1 (4.3
i i i

Hence we can rewrite (3.2)s (4.1)y 4.2y (4.3 into the

PRIMAL-forms
r—-1 e o 0 aae 0 }
[ANE—
g1
L 0 I -1 r R i r J
~ .,T
z = |loss w y [ulg=1li-a 3 e« [uddl-o 1
L u u o
r (3
bh = T g1 (d.43
$ (O + |& + awe + Mi®
4
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maxloss

The structure of (4.4) is very favouvable. & and v are

sasily expanded for increasing
decreasing t. The new x(0) obtained

only influences the last n elements

The LP-routine was incorporatsd
FORTRAN-program LPREG. A skeleton

given in Fig. 4:1.

T " and truncated for
at each sampling instant

of vector b.

as a subroutine in a

flow chart of LPREG is

Saved T or initial (T, + 1)

MEASURE

PRIMAL
Store solution u{()

!
Yei@mld <TEST? )
*No

Is solution u(0) No
for {T-1) saved?

Yes

CONTROL

T =T+ j————

'

PRIMAL

'
Q(T)ld < TEST?}NL

Fige. 4:1. The skeleton flow chart of main program LPREG.
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The user defines the initial value To of t. The optimal T is
saved from one sampling instant to the next. Observe that
the saved ©v is decveased by one tht immediately. This
corresponds to the anticipation that the optimal time

horizon will decrease by one for sach sampling interval.

Information about what wvariables arve base variables in the

LP-anlutiony is saved from ong © to the next during the same
sampling intervaly and from one sampling instant to the
next. Sometimes that old information suggests optimal base
variables: and the solution for the new ¢ is thus speeded up
considerably. This typically occurs in "steady state"s i.e.
when the previous solution almost corrvectly anticipates the

correct time horizon and trajectory.

The following test is used to determine if we reach a

sufficiently small neighbourhood of the origin:

A g
eyl = 2 d |w (3] % . (4.5
d = )

i=1i

Let d = Edis dﬁ, wens O 1. We want the minimal © for which

P [ ]
(4.5 is Fulfilled. Therefores © is decreased until (4.5 is

not satisfiedy or increased until (4.5) ig satisfied. Hences
at least ¢two LP-problems will be solved in each sampling
interval. In “"steady state"y two LP-problems arve solved. In
theory "steady state” will be reached after one sampling

interval.

We will now turn to two simulated on-line examples. In both

of them the plant is defined as a continuous system in the
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simulation language SIMNDN, Elwmgvist (1975)y and the program
LPREG is included as a discrete FORTRAN subsystem. The

pragram is run on a VAX 11/780 computer.

. o 1 0
xw[ ]x+{ ]u (4.6
0 1

with the control constraint

-1 & u(ty £ 1 (4.7

Bulh)

0. ' 10. ’ 20. ) 30.

S vin A s ez e 0mes S5
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10 1
J
0 4
. - . =
0 50 X1

Fig. 4:3. Phase portrait for the double integrator starting

at x{0) = (10 10)T.

The sawmpling interval of the controller is 1 second. The
sanpled wmodel does not include any time-delay possibly
genevated in the regulator. The weights in (4.1 and (4.5

arve chosen as o = d = (1 1) and 8 = 0.4664.

In Fig. 432 the computed controls and the state trajectories
from the initial condition (10 10)T ave shown. Fig. 433

depicts the phase portrait.

s expecteds the LP-regulator behaves extremely well for

this simple example. OGiven the sampling intervals the




trajgectories ave indeed time op

in "steady state" are very lows

possible time problem ocours at

hovrizony © was set {(guessed) to

0.23 seconds (0.7% ssconds when

time is

]

T 25. The computation

the simulations which weans that

immediately after the receipt of

The plant is the m

o Aoy L3 AN PRI A 8-

of an aivplanes found in Bryso

states and 2 control inputs:

f 00297 —1 0
0.331 -(3,00416 -0
X = -~1.13 0.129 -0
0 0 1
L 0 i 0
4 0 0 -
~0.381 0.0671
+ '—O n 0&04 1 B 5.9 (W]
0 0
L O 0 d
-1 £ u (t» £ 1
J
where % = sideslip angles
] XE = ypll angular velocitys xa =
u1 = yudder deflectiony and u, =

Bz

x-

s
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timal., The computation times
less than 0.082 seconds. A

>

start-—up? the initial time

22+ and the program needed

==

v = 1) to find the optimal

0O

not included as a delay in

ulty was assumed available

x(td.

(8]
odel for the lateral motion
n (194693. The plant has 9

0.0438 0
w0461 O 0
Ak 0 0 H o+
0 0
0O 0
(4.8)
J = 12
= vaw angular velocitys

.

roll angley MS vaw angles

ailevon deflection.
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The sampling interval of the controller is (Chighly
unrealistically) set to 1 second. The sampled model does not
include any time delay possibly generated by the regulator.

The weights ave o = d = (2 0.5 0.5 1 2)y and & = 0.001.

The control trajectorvies can be found in Fig. 434, In
Fig. 4353 vou Find the ensuing state trajectories From the

T
initial condition (1 O O O 13 .

3

The cowmputing times in "steady state" are 0.4 CPU-seconds or
less. Howevers the start-up computation time, with
T = + 48 is longer than the sampling period:
0 opt

1.18 CPU~seconds (1.42 seconds for TO = 13. The computation

0 ' ' S0

|

0 ' ' ' 10

Fig._ 4:4. The airplane: the controls.
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Fig. 4:5. The airplane: the states.

times are not included as a time delay in the simulations.

S. THE CONSTRAINTS ON BOTH INPUT AND STATE

Before reformulating (3.3) for our subroutine PRIMAL: we
investigate two possible difficulties that might ocour when

constraints are placed on the states.
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Assume that a measurement of a state‘gariable is outside the
allowed region. See Fig. 5tl. This wmight occur for instance
if the plant is non—-linear or noise affects the system. It
might happen that the state variable is so far out in the
forbidden regions that there exists no__adwissible control
that will take it back into the allowed region in one
sampling interval. In such a8 case the LP-routine will not
find a feasible solution for any . But there may still be a

control that will take it back in wmore than one sampling

interval.

We therefore propose that the state measurements are

"filtered"s so that

L]

¥ (O > @ (i) & x (0 2= g (idy i l9caa 0
1 X X

1

¥ (0 (e (i) 9 x €(0) = o (idy i = 1ls... n
i ¥ i X

(5.1

The controller will believe that the state is on a boundarys
and compute a feasible control. This controls howevers may

or wmay not bring the actual state towards the allowed

fopocp

LYANLL o)

Fig. 3:1. The filter.

o ains enidh weszs oomey e35om 2253 Soms
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region. Because of the filters the controller will not know
if the state passes further into the forbidden region. Since
we do not want to rely on luck to bring the state back to
the allowed regiony we try to keep it slightly away from the
boundarys so that the chance it passea‘ﬁutside is decreased.
Furthers even if a state is not inside the forbidden region
at the sampling instantss it wight be there betwsen the
gsampling instants. Theve is also a risk for oscillatory

inputs along a state boundarys similar to chattering.

3

We therefore propose that a penalty is added to the loss
function if the state belongs to the “cordon sanitaire"s a
strip along the boundariess see Fig. 512. The wminimization

oriterion replacing (4.1%s will thus be:

SNNNNNNNANN

state

I 1
Uy Vx 0 Ox Bx

Fig. 3:32. The “cordon sanitaire".

ot a2xa G eroes wnes Elsek erven Srmmg
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min 2" [r.maxtmx_Ct)+y (13901 + w maxix C(£)=5 Ci)aO]] +
wd i i X i, i X
ist
-
+ Z o |x (T3] (5.2)
i i
l -
. - , T T
with » = [y 53 v 3 Lsee9 v 1 and similarvily for vy 3 we & s and
1 2 3] X b
c‘l

The stopping criterion is still (4.3).

If the pernalty weights and the "corvdon sanitaire" itself arve
chosen Judiciouslys we might be able to assure that the
state stays inside the allowsed region for all times. UWe

propose simulations to vevrify this.

Remark 5.1 I¥ noise or non—-lineavrities affect the
constrained input plant (2.1)s controlled by the controller
bhased on (4.4)s the state x(B) might be such that there
exists no control sequence leading to the origin. To
decrease the risk that the state is thrown too far outs the
state trajgectory should be kept well inside the safe region.
This will most likely happen if the control is not allowed
to assume its boundary valuesy except in ‘“emergency"
situations. Therefore a cordon sanitaire on the control

might be useful.

Introducing the same type of dummy variabless (vs ¥y pts qtv

Qtv st) as in (4.2 and using the loss function (53.2) (3.3}

is rewritten into the form:
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1 T T T T T T
-1 o o 0 0 v w D 0 = O # w O O
01 -1 =" j=& & 0 0 O] «» 0 0 O 0 0
oo 0 O}l-1I I I =I O] =« O O O 0 O
A 00 0O O I -1 0O O =] «« O O O 0 O
00 O 0O 0 0 0 0 0 «]-% & 0 0 O
00 0 O 0 0 0 0 0 es]=I I I -1 O
00 O O o 0O 0 O 0O s} I =1 0O O =T
"1 T T 7T T T T T ™T
=z = ass v t o [ %} e w8 i
L y -1 p'c—"i qt-—i Qt—-i T=1 T~2 O
r T T T ™T
b= |0 (dy 3 (y =& 3 {dy -y 3 C«!@x(O)«y)]
s X X X KX b
rmaxloss) (5.3
A
®
g
X
f -«
U u
B —a
X X
¥ &
X
V:
B —&
¥ X
& -
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f ~—«
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f —«
. LU U
with
) poo- = w(t) - st o= 13 29y saaws a1
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A}

Each block in the matrix A is of dimension 3Indi{dn+m) wheve n

is the number of states: and m the number of control inputs.

There are (t—1) blocks in the A-matrix.

We will treat two exampless similar to those of chapter 4.

3

Consider the double integrator plant defined by

s sy s b Bioen Goeon enoes karas Kamet e Cn

(d.6) and

~100

-3

(4.7 together with the state constraint

£ xiCt) & 100

B

£ ox (k) 3
2

The sampling interval of the controller is 1 second. The
gampled model does hot include any time delays possibly
generated in the regulator. In (3.2) and (4.5,

vo= = o = = £1 11

y = [=%0 -2]T (5.5

K

& = [ 70 2]T

o
and g€ = 0.3, The computation time is included as a delay in

the simulation.

In Fig. 333 and S3:4 the reference value for xiv the computed
controls and the state trajectories are shown ¥for a
simulated experiment. The computation times ave clearvly
visible. At t = 0y the measured state is (0 0) while the
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*u(’r)
14
0+ : LJ"‘“ ‘
18 10 20 —
|
10 i
\\ reference
Xq(t)
Xz(ﬂ 1 ’
0..
T T T -t
0 10 20 30

Fig. S:3. The double integrator? ult)s x{(t) and reference.

LN - P a4

ax(Z)

S S S / S S

Fig. 5:4. The double integrator: Phase portrait. Note the
change of reference point.
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desired steady state is (10 0). The computations starting at

the initial time horizon ro = 1 and ending with the optimal
time horizon =« " = 73 takes 0.43 seconds. In the subseqguent
op N

sampling intervals the computations take between 0.3 and 0.1
secondsy while at £ = 7 and up to t = 10y when the state is

at (10 0): the computations take about 0.05 sgeconds. When

the reference change at t = 10 occurss the computations take
0.58 secondss and at the reference change at t = 15, 0.73
seconds. The time horizon is reset to ¢ = to = 1 at the

raference changes.

The controller behaves as expected: §full spesd forwavds

until x2 reaches its ‘“covdon sanitairve"y then a suitable

control to keep it therer and finally §full speed backwards
in the unconstrained optimal fashion to reach the desirved
steady states whereafter the control is zero. The phase

portrait shows that the state bounds are not transgressed.

This simulation is very sncouraging since it shows how well
tha LP-regulator behavess even when the long computation

times affect the control.

The simulation experiment was repeated with TD £ 1 at the
referance changes. Howevers unless TO was very Judiciously
chosety the computation times got longer than those reporvited

ahove.
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Example 5.2¢ Consider the plant given in Example 4.2

s oy e o Bices et ey costs oraes 0t Srvem

together with the state constraints

=2,05 £ x (¥) £ 2,05 i = 1929000103 (5.6

i
The sampling interval of the controller is 1 second. The
sampled model does not include any time delays possibly

generated by the regulator. In (5.2) and (4.5),

Po=w o= C1 111 1] }

c=d=[2 0.5 0.5 1 2] (5.7)
T

Y = -f = [~2 =2 -2 -2 -2]

and € = 0.001.

The initial condition is (1 0 0 0 1) and the desired steady
state is the origin. With TO = 19 the computation time to
get the optimal « = 20 was 45.1 seconds. With TO = 24+ the
computation time was 450.2 seconds. Clearly the desired
sampling interval of 1 second is far too short for this

systemy and consequently no OLOF simulation was done.

Howavers as an illustration onlyy the solution was applied
as an open loop control sequence. The result can be seen in
Fig. 7:5. The time to reach the originy 20 secondss should
be compared with the approximately 50 seconds it takes if
the airplane is controlled by a regulator based on
linear—quadratic theory with the control  and state
constraints in mind. The LP-controller will be appealing

when the computation time is brought down.




iid

-

I

Fig. 5:5. The airplane: the controls and the states.

ainy enes G cxmos sanoe cades G wets




&. AN EXPERIMENT: THE DOUBLE TANK PROGCESS

The LP-regulator was used to control a laboratovry process

consisting of two water tanks: as drawn in Fig. 431,

The tanks were identical: height 20 cmy  width 10 cms and
breadth 3 cm. There was free flow From the upper tank
(tank 1) into the lower tank (tank 23 through a cocircular
hole with the diameter 2 mm. The flow out of tank 2 was frae
through a civeular hole (diameter =2 mnd . A cog wheal pump
was used. Its rotational velocity (the tacho signal) was
proportional to the flow. The pump characteristics from the
input voltage to the flow out was highly non-linsar. The

water heights in both tanks were measured; hi in tank 1. h2
in tank 2.

The control objective was to get h2 as fast as possible to a
reference valuesy h2refs without causing overflow in either
tank. The input voltage to the pump was limited between 0
and 10 volts.

The non-linear pump characteristic was found so harmful that
we introduced a locals analogue PiID-feedback avound the
pump. The time constant of the pump + PID-controller is less
than 1 second which is wuch smaller than 12 secondss the
sampling interval of the LP-regulator. The dynamics of the

flow

N
Tank 1

tacho signal Tank 2

- Pump
h2

Figs_6&:1. The double tanmk process: physical setup.

ooy ciie B tevns ewnee e b s

input vol’ruge—

N

water
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pump with PID-regulator are neglected. Fig. 6:2 depicts the
block diagram of the process.

As our VAX 11/780 computer lacks - AD/DA-portssy we used
another computers an L8I-11y as an interface. The LSI~-11 was
connected to a VAX terminal port. The interface program
included the sampling clocks and a primitive operator
communication facility for insevting h2vef via the L8I-11
terminal. The interface program is written in Pascal
extended with the real time kernel described in
Elmgvist (1981). The computer structure of the set-up is
found in Fig. &:23.

The double tank system is non—-linear. The time constant
(From u to h2)y» when filling the tanks is about 125 saconds §
but only about 40 seconds when emptying. The sampling
interval for the LP-regulator was set to 12 seconds. The
first reason is that it is then a suitable fraction of the
shorter time constant. The second reason is that 12 seconds
suffices as computation time in the LP-regulator for most
reference changes.

Dimensionless units were introduced for Uy hils and h2:

O £ yu £ 1
0 % hi £ 1 Chold
0O % hz £ 1

e Vv flow h1 h2

Tank 2

PID == Pump |—= Tank 1

tacho signal

LP-regulator

Ithef

Fig. £:2. The double tank process: Block diagram.

e s S sa geves ehves xvnh S
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h1
u
Double tank system h2
LSI-11
hZref | Interface program |g |
u h1 |h2 |h2ref
VAX 11/780 x

LP-regulator program

Fig. £33. The double tank processs: Cowmputer structura.

conon ma wielh sz e eonas wmma st

= 0 means no water flows u = 1 means maxinum Flow. For the
tank heights hl and h2y 0 indicates that a tank is empty» 1
that it is full.

We obtained the following wmodel from some step input
axparinents. IDPAC: an interactive identification program
for linear systems (Wieslanders 19803y was used. We
stretched the theory a little in order to retain physical
state variables:

® =3 0197 O 0.0263
ity = [ ]h(t) + [ ]u(t) (&2
0.0178 ~0.0129 O

whevre Wty = [hldb) hECt)JT,

The continuous model was discretized with a sampling period

of 12 seconds:

hit+12) = { (4.3




iis

This model was used in the LP-regulators with

u = 4 - uraf
¥, = hl - hlref (iod)

X, = h2 - hiZref

with hiref and uvref computed ¥from the stationary solution of
(6.2)9 given h2ref. The input and state constraints arve

given in (4&.13. In (5.2) and (4.5 we chose

¥

"o £1 11

c=d= [ 41

e )
f-hivef 03T (6.3

o
i

E=hlvef+0.v OJT

]
i

]

and & 0.05,

Hince hZrvef = 0 is a perfectly acceptable referance. which
means that hi = 0 in stationarvitys we did not want to have a

cordon sanitaire for low tank 1 levels. Therefores

¥ (1) = ~hiref.
o

The wvalues of yxczb and &RCED mean that |[hd - hZref] is
included in the loss for all £ty not only at the time horizon
T. This is not the intended way to define a cordon
sanitaires but we settled for it after a Ffew preliminary
experiments. Especially the behaviour of the controller for

samall deviations from hZvef was improved. Morsovers for

those occasions when the sampling interval is not sufficient
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to find the optimal time horizon (at large rveference value
changes?: it is good to penalize the deviation §from hZvef
along the trajectory to ensure thatréha control leads the
system in the right direction. Since the second tank is
essentially a fivrst order systemy this type of peanalty
function will not affect the time optimality of the

LP-golution.

With yx(2} # O and &KCZD £ 0y the control again tended to
becomne a dead-beat control for small deviations from hZvef.
This caused oscillations since the model was not perfect. We
also found that a winioum time hovizon of 2 sampling

intervals was beneficial for the local controls in addition

to the above cordon sanitaire.

The tanks were initially empty during a veal life experiment

ul(t)
0 M A3 L T T ',\ ¥ h -t
0 1000
Anith)
“ m
0 y r . r -t
0 1000
"reference
o
\YhZ(’r) / \
0 r b I i\\k* ol
0 1000

Fig. &:4. The double tank process: ultd)s hidtds hZvefitls
and h2{t) during a veal life experiment.
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and h2 was to follow h2refs as seen in Fig. &:14. No outer
disturbances affected the system. Thg computation times are
discernible in the figure. At reference value changes they
ware up to 4 seconds: except at the last refsrence value
change (the one at t = 13462 seconds); when the computations
were interrupted after 10 secondss and the suboptimal
solutions u = 0Oy covresponding to ¢ = 23y was used in the
ensuing sampling interval. (The control u = O happens to be
equal to the optimal control.) The intervuption came after

3

10 secondss because it was estimated that the next itevation

would make the total computation time longsv than 12
seconds. In "steady state"s the computation times werve less
than 1.5 seconds. At reference value changess the time

horizon was restavted at 1. 8t the first reference value

change (0 to 0.7 the optimal time horizon was found to be
T = 119 and it took about iz sanpling intervals

(144 seconds) Ffor h2 to reach 0.7. &t the next reference

value change (0.9 to 0.2)s the optimal v = 1{5: but it took
only about 11 sampling intervals (132 seconds) for h2 to
reach O.2. For reference value changes upwardss © roughly
reflected the settling times while it was too long for
downward changes. This explains the overshoot at downward

refarence changes.

The computation times at the reference changes weve: for
T o= Ay 0.23 g3 for T = 99 1.1 8% Ffor = = 1ly 1.8 s3 for
T = 137 3.4 5 and Ffor v = 23 (suboptimall)s 10 s. Compare
fig. 433, These data suggest that the computation time is

approximately proportional to Tz'lﬂ T
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The controller behaves as expected: maximum Flow wuntil
tank 1 is full:s then a suitable constant flow to keep tank 1
fFull until k2 reaches the vicinity DF\hEPEFv then a draop in
u so that hl reaches hilrvef when 2 = hZrefs and Finally

U = uref. We notice that the state constraints are not

violateds and that the local control is smooth.

A5 a comparisons this LP-regulator was sinulated against the
linear model (4.2). The computation times were included in
the simulationy but not in the sampled model. The result can
be seen in Fig. &:5¢ and a cowmparison between the real lowar
tank level h2 and the sinulated one is found in Fig. &34,
Notice especially the computation times in Fig. 4&:i5s which
ave vroughly equal to the real Llife computation times. As
expecteds the LP—-regulator behaves parfectly in the

simulated situation. Theve are two main deviations between

real lifte and simulation: In the real life experiment there
is a slight stationary evvor in h2., The real life downwards
dynamics are faster than the simulated. These discrepances
are due to the use of the simple linear modsl {(46.3). A aset
af different linear waodels for wvarious reference changss

could be used if better control is desired.

Khat is remarkable is instead how closely the real life
axperiment resembles the simulation. Even if a simple linear
model is used for a wnon~linsar systemy the LP-vegulator may

have nice properties.
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buity

1

I—L““’

0 y . e —= . . i
0 1000 '
*hﬂf)

1 4
] )

0 ' . r T - . -t
0 1000

1 ll‘eference

h2(t) _\\\\\\

0 r — ~ T v —t
0. 1000
"compufing time [secs] in each sampling interval

104

0 - n;\_ - n—-—-_r f — . .
0 1000

Fig. 4:5. The double tank process: ult): hict)s hErefit),

h2{t)s and the computation time in a simulated
experimnent.
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simulated h2(t)

real h2(t)

real h2(t)

0 ' - 1000

Fig. &3:&. The double tank process: h2(t) in the real life
and the simulated experiments.

7. PROPERTIES OF THE LP-REGULATOR

In this chapter some general experience of the proposed
LP-regulator will be given. The observations are based on
the simulations and experiments performed for this studys
and not on analysis. A lot of theoretical work remains to be

done to gain a solid knowledge about the regulator.

The LP-regulator is used to control plants that can be
modelled linearvrly with linear state and control constraints.

It is easy +to assure that the constraints are never
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violateds by properly choosing weightss bounds and “cordons
sanitaires". It is possible to intr@?uee further boundary
layers with different penalties, and to penalize the
controls. The price you pay is that the LP-problem gets
larger and more time oconsumings and\ that vou have mnove

parameters to tune.

It is not more difficult to control multi-input systems with
the LP-method than single—-input systems. This contrasts
favourably with other wmethods for constrained control. It is
also sasy to introduce feedforward from known disturbancess

and model time delays.

The user defines loss functions of the type given in (4.13
(4.5 and (5.2)y and chooses the weights. The weights do
have physical significance but are sometimes difficult to
tune to get the desired time domain behaviour of the system.
Cleavrlys the loss function must include a penalty on the
final state. If the state is not penalized gn_routes and if
the state and input stay free from the bounds or "cordons
sanitairesg"s the regulator behaves as a dead-beaat
controller. This typically happens near the origin. In
general the dead-beat behaviour is undesirable, in
particular when noise affects the systems ov when theve is a
modelling errar. To penalize the state en_routes however:
will influence the global contvol. In gensral it will not be
time optimal. So+. there seems to be a conflict between

global controls i.e. when the state is far from the ovrigins

and local control.




For certain loss criteria the LP-algorithm may give
non—unique solutions. In our sinmulations this did not seem
to adversely influence the control. The controller always
stabilized the plantsy even when the computation times

oerasionally were nearly as long as the sampling interval.

It is well known that open loop optimal control strategies

are sensitive to model ervors. This does not seem to be the

3

case in the feedback version. We performed several

simulations with incorvvect linear models in addition to the

double tank experiment of chapter 4. In all cases the

LP-regulator was vobust.

We performed a few simulations in which measurement noise
and state noise were introduced. The degradation of the
performance was not  unexpecteadly high. Mo unexpected

features arose when a Kalman filter was used.

The computation times on a VAX 11/730 cowmputer ave given in
the following table. "Steady state" wmeans as above that the
optimal time horizon and the solution is known approximately

in advance from the previous sampling interval.




Computation time [s]
State con- Systemn Mo. of Steady Ref. value
straints order inputs state change
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The table gives some typical computation times. At pressnt
we have no rules of thumb regarding the connection between
system complexity: constraint complexity and computation
time. Thus it is nrecessary to investigate the individual

problem.

When we had tuned the test gquantities of our LP-voutines

there were no numerical difficulties.

2. DISCUSSION

This chapter contains a discussion of a few of the problams
with the LP-regulators and some ideas for further

improvemants.

In chapter 7 it was mentioned that theve may be a conflict

between local and global control. It would be favourvable to




have different contrallers for these gituations. The

LP-regulator is most advantageous for global controls whan
optimal +tragjectories will touch the state and input

constraints. Howevers for local control there is an

abundance of good regulatovs» such as PiDmregulatmraa linear
guadratic state feedback regulatorss etec. We propose that
such a controllevrs rather than a LP-vregulatory is used fovr
local control. There arve potential advantages with suech a
choice. The sampling interval can be ochosen shovrter.
Integral action can be achieved in a ‘move natural way.

Existing regulatorsy which psople are more used to tunes do

not have to be removed.

We want to stress that it ig possible to use a LP-regulator

for local contvols but with a loss function differant From

the loss function of the global controllers so that the
dead~beat behaviouyr is avoided. It is also possible to

introduce integrating action into the local LP-regulator.

When switching between the local and global controllersy
hysteresis should be used in order to avoid limit cyoles

arvound the switching surface.

At set point changes or when large disturbances act on the
systemy the corvect time horizon igs unknown and the
computation time might increase beyond the sampling
intevrval. This is e serious problem which wight lead to the
dilemma that Rasmy (1977) touched upon (see section 3.2).
Ocecasional long computation timess and the subsequent choice

of a suboptimal solution:s might not be harnful as the

experiment in chapter 6 shows. But we would like to warn




have different controllers for these situations. The

LP-regulator is most advantageous For‘glcbal controls when
optimal trajectories will touch the state and input

constraints. Howevers for local control there is an
abundance of good regulatovrss such as PiD”PEQUIatOPﬁv linear
guadratic state feedbach regulators: etc. We propose that
such a controllers rather than a LP-regulatory is used for
local control. There arve potential advantages with such a
choice. The sampling interval can be ochosen shorter.
Integral action can be achieved in a} move natural way.

Existing regulatorsy which people are more used to tunes do

not have to be removed.

We want to stress that it jig possible to use a LP-vegulator

for local caontrols but with a loss function different From

the loss function of the global controllers so that the
dead~-beat behaviour is avoided. It is also possible to

introduce integrating action into the local LP-regulator.

When switching betwsen the local and global controllerss
hysteresis should be used in order to avoid limit cycles

avournd the switching surface.

At set point changes or when lavrge disturbances act on the
systems the corvect time horizon ig uwunkhnown and the
computation time might increase beyond the sampl ing
interval. This is a serious problem which might lead to the
dilemma that Rasmy (19773 touched upon (see sesction Z.2).
Ocecasional long computation timess and the subseguent choice
of a suboptimal solution: wmight not be harmful as the

experiment in chapter 6 shows. But we would like to warn




128

against a systematic use of suboptimal solutions in every or

almost every sampling intevvals as proposed by Chang (19210,

*

The computation time is obviously the big problem with the

LP-regulator. There seem to be four routes to slash it:

# If the large computation times occur only at set point
changess indicate the set point change a short while
before it should take place. Then use the spare time
during the following sampling intervalss while the
regulator still operates in "steady state"s to precompute
an approximately optimal time hovizon and an approximately

optimal control tragectory.

¥ Implement the LP-ragulator in a multi-processor
configurations operating on a cowon data area. The
computations for different time horizons can be pevformed
in parallell. One or  more processors  can handle

precomputations.

# Find faster LP-algorithms. As far as we knows there are no
algorithms especially geared towards plants with

constraints both on inputs and states.
# Wait until faster computers ave built (1),
Dther improvements would be

# design schemes for weights and other parameters with a

stability proof in mind.




* increase the robustness to wmeasurvement 2rrors  and model

errors by including state filters and adaptivity.

>

7. CONCLUSIONS

In a near future there will appear ‘micvacmmputers more
powerful than the VAX 11/780. appeavr. It will then be
attractive to use the LP-regulator on processes with
sampling periods of 10 seconds or mores i.e. for aany
industrial applications involving flows heats and chemical

processess and climate control.

The experience up to date indicates that LP-regulator is a
robust and flexible controller for linear systems with or

without time delays and with state and control constraints.
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