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 A DOLPH-CHEBYSHEV APPROACH TO THE SYNTHESIS OF ARRAY
PATTERNS FOR UNIFORM CIRCULAR ARRAYS

B. K. Lau, Y. H. Leung

Australian Telecommunications Research Institute,
Curtin University of Technology,

Kent Street, Bentley WA 6102, Australia.

ABSTRACT

Uniform circular arrays (UCAs) are naturally suited to
provide 360 degrees of coverage in the azimuthal plane. In
this paper, we describe a new approach for synthesizing
array patterns with guaranteed maximum sidelobe levels for
any look direction. The advantage of this approach is that it
is computationally efficient which makes it eminently
suitable for real-time beamforming and beamsteering
applications. The approach is based on the Dolph-
Chebyshev method for uniform linear arrays except here,
the Dolph-Chebyshev method is applied to the transformed
array response vector of the UCAs.

1. INTRODUCTION

In many scenarios for antenna array systems, such as radar,
sonar and wireless communications, one desires all-azimuth
angle, i.e. 360°, coverage [1]. One method to achieve this is
to employ UCAs. We consider here the problem of
beamforming with UCAs. In particular, the problem of
synthesizing an array pattern whose main lobe is as narrow
as possible and whose sidelobes have a guaranteed
maximum [2].

One of the standard approaches to the above design problem
is the Dolph-Chebyshev approach [3-7]. But this approach
applies only to uniform linear arrays (ULAs). In the case of
UCAs, methods suited for arbitrary arrays are used to
produce the minimax response. These include optimization,
iterative weighted least squares and adaptive array
approaches (see [8] and the references therein).

In this paper, we show how the Dolph-Chebyshev approach
can be adapted to synthesize the desired minimax patterns
for UCAs. The new approach employs a transformation
technique, first proposed by Davies [9]. Davies’ work is
further extended by more recent research efforts [10-13].
The technique is basically a pre-processing procedure that
transforms the array element space to a mode space,
sometimes called spatial harmonics. The result is a virtual
array in which the spatial response is similar in form
(Vandermonde structure) to that of a ULA. This allows the
use of techniques such as spatial smoothing previously

limited to ULAs to perform high-resolution direction-of-
arrival estimation in a coherent signal environment [1].

We show here that the virtual array concept can be used to
synthesize Dolph-Chebyshev-like array patterns for UCAs.
The advantages of this synthesis technique are as follows:

(1) No complex calculations are necessary for different
look angles once the design weights are found. This
translates to computational savings when compared to
other methods such as the iterative adaptive array
approach1 of [8] where the array weights need to be
recalculated for different look angles. The new
approach also maintains the same array pattern for all
look directions of the main lobe.

(2) The approach in [8] breaks down in cases where the
constraint matrices and/or the interference signal
covariance matrices are ill conditioned. Even though
remedial procedures are available, they require human
interventions. In contrast, our approach does not suffer
from these problems.

(3) The modal-transformed-data can be used in other
applications, such as direction finding of coherent
signals with UCAs [1]. This suggests the sharing of
computational load.

(4) The approach allows non-isotropic element patterns as
it is able to remove the effects of the known element
patterns from the virtual array [12,13]. It is also simple
to incorporate mutual coupling effects into the
formulation, as in [1].

Note, however, that the transformation approach is limited
by the accuracy of the approximation involved. This
depends on the UCA parameters and the signal scenario,
and necessitates some compromises in terms of the size of
the virtual array. Hence, it may not yield the narrowest
possible main lobe for a given maximum sidelobe level.

                                                       
1 We choose the method of [8] for comparison, as it appears to be
the most promising of recent methods in performance and
computational complexity.



2. PROPOSED METHOD

For a UCA of N elements and radius r, the ith component of
the array response (or steering) vector a(θ) for a
narrowband signal of wavelength λ arriving at angle θ is
given by
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where 2k � �� , � �i� �  is the complex gain pattern of the

ith element and � �,� � �� � .

Suppose the array elements are isotropic2, i.e. � � 1i� � � ,
� �1, 2, ,i N� � � . In [1], Wax showed that if the sensor

outputs are transformed by the matrix JF as illustrated in
Fig. 1 where the matrices J and F are defined as follows:
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where 2j Ne �
� � , the size of the virtual array is Nv = 2h +

1, and Jm( ⋅ ) is the Bessel function of the first kind of order
m, then the array response vector of the resultant virtual
array will take approximately the Vandermonde form
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Figure 1. Modal transformation for uniform circular
arrays

Appropriate choice of h has been discussed extensively in
[1,11] and so is not repeated here.

                                                       
2 We can easily extend the following derivations to the general case
as in [12,13].

Consider now the output signals of the virtual array, y-h, …,
yh. To steer the look direction of the array to θl, one method
is to set the weight vector of the virtual array to the form

� �v l��w Da , (5)

where D is a diagonal matrix that specifies the shading that
is applied to the array pattern. Thus, the key design task is
to find the matrix D.

Suppose D has the form

1 0 1diag( , , ,2 , , , )h hI I I I I
� �

�D � � (6)

The array response is given by
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Hence, if the elements of D have mirror symmetry, i.e.

p pI I� � , then
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where

� � � � 2lu � � �� � . (9)

However, we can write � �cos 2 pu �� �� �  as a polynomial in

x(θ), as follows [3]
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Thus, substituting (10) into (8), we can rewrite (8) as
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Now, we wish to express (13) as a Chebyshev polynomial
with a given β where β is the ratio of the main lobe level to
the sidelobe level of the Dolph-Chebyshev pattern. A
Chebyshev polynomial of degree 2h in z with all its roots in
the range 1 1z� 	 	  has the following form
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Accordingly, defining

� �0 0 0,z z x z z z�� � 
 
 (15)

where z0 is defined by ( )2 0 1hT z = >β  and 0 0z � , we

obtain after substituting (15) into (14) and then equating the
resulting polynomial in x(θ) with (13)
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The coefficients Ip (of matrix D) can now be found from
(16) using one of the many methods described, for example,
in [3-6].

Finally, it follows from (13) to (16) that
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and the array pattern is given by
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Note that (18) is in the same form as the Dolph-Chebyshev
pattern of a ULA involving Chebyshev polynomials.

We next show that as a result of the linear dependence of
u(θ ) on θl [see (9)], the half power main lobe width [3,4]
will remain the same regardless of θl.

The maximum amplitude of the main lobe is given by

                                                .

At the half power points,

                                                                             .
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Denoting 1 1,a b
� �  as the half power points, the half power

main lobe width is
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which does not depend on θl.

It is easy to extend the above result to show that the array
pattern over the entire range of azimuth angles also remains
the same (albeit by a shift of θl and wrapping by 2π) regard-
less of θl. This is not surprising since the approximation
involved in the modal transformation requires N >> kr [1].
This translates to the need of having “enough” UCA
elements so that the behavior between the elements closely
approximates that of a continuous aperture circular array
where there is no change in array pattern over all look
angles.

In contrast, for a ULA, even though the spatial response is
also in the Vandermonde form, the main lobe width and the
array pattern change with different look angles. This is
because in the ULA case,
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which is non-linear in θl. [4,7].

3. EXAMPLES

In the first example, we considered a circular array of 35
elements with d/λ = 0.3 and β = 100 (i.e. 40dB peak
sidelobe attenuation). We used the criterion given in [9] to
choose the size of virtual array Nv = 2h + 1, i.e.
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and choose 0.05� � . This gives 33vN � . We also used

Stegen’s formula [4] to calculate the array weights. Fig. 2
compares the array pattern obtained using our method
against that obtained using the method of [8] for θl = 30°.
We see that the widths of the 2 main lobes are very similar.
Here the number of virtual array elements is close to that of
the real array.
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Figure 2. The solid line (     ) is for our method, the dashed
line (- -) for the method of [8].

In the second example, we compared the array patterns
obtained using our method, for the same array as in
example 1, for θl = 0° and 56.6°. As can be seen from Fig. 3,
the two array patterns are essentially the same, except for a
shift.

In the third example, we increased d/λ to 0.6 which gives
more peaks than those that can be directly controlled by the
method of [8]. As a result, the iterative algorithm suffers
from look-angle-dependency and a much longer
convergence time. Fig. 4 compares the array patterns
obtained with our method (Nv = 17) against that using the
method of [8] for θl = 30°.
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4. CONCLUSIONS

The transformation technique as presented in this paper has
distinct advantages over the existing method of [8]. Aside
from its computational efficiency when different look
directions are desired (D is fixed, i.e. independent of θl), it
represents a simple approach to designing minimax array
patterns making use of the Vandermonde structure and the
Chebyshev polynomials. However, this approach is limited
by the proper choice of the virtual array size to ensure a
good approximation in the modal transformation.
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Figure 3: The solid line (     ) is for θl = 0 × 360°/N = 0°
and the dashed line (- -) for θl = 5.5 × 360°/N = 56.6°.
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Figure 4. The solid line (    ) is for our method, the dashed
line (- -) for the method of [8].
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