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OPTIMUM BEAMFORMERS FOR UNIFORM CIRCULAR
ARRAYS IN A CORRELATED SIGNAL ENVIRONMENT

B. K. Lau, Y. H. Leung

Australian Telecommunications Research Institute
Curtin University of Technology

Bentley WA 6102, Australia

ABSTRACT

By virtue of their geometry, uniform circular arrays
(UCAs) are ideally suited to provide 360 degrees of
coverage in the azimuthal plane. However, in a correlated
signal environment, the well-known technique of spatial
smoothing to mitigate the signal cancellation effect as seen
in an optimum beamformer will not work since this
technique is applicable only to uniform linear arrays. In
this paper, we show how the transformation of Davies can
be adopted to design optimum beamformers for UCAs in a
correlated signal environment. We also introduce
derivative constraints to improve the robustness of the
optimum beamformers to mismatches between the
beamformers’ look direction and the actual direction-of-
arrival of the desired signal. The effectiveness of our
design method is illustrated by a numerical example.

1.  INTRODUCTION
Typical scenarios for sensor array systems, such as radar,
sonar and wireless communications involve all-azimuth-
angle (i.e. 360°) coverage [1]. An array geometry that is
naturally suited to provide this range of coverage is the
uniform circular array (UCA). We consider here the
problem of designing beamformers for optimum signal
reception for UCAs.

The classical approach to optimum beamformer design
is to minimize the beamformer output power subject to a
constraint that enforces a fixed response in the direction-
of-arrival (DOA) of the desired signal (the look direction
of the beamformer). If none of the other received signals
are correlated with the desired signal, then, as expected,
the optimum beamformer will exhibit the target response
in the look direction and nulls in the DOAs of the
interfering signals. However, if one of the interfering
signals is highly correlated with the desired signal, such as
that may happen in a multipath environment, then the
beamformer will attenuate the desired signal severely.

Many approaches have been proposed to counteract the
aforesaid signal cancellation phenomenon (see [2] and the
references therein). One general class is spatial smoothing
[2-6], which exploits the Vandermonde structure of the
steering vector of a uniform linear array to decorrelate the
correlated signals. In this approach, the array is divided

into a number of equal size overlapping subarrays. The
decorrelated covariance matrix is obtained by averaging
the covariance matrices of the subarrays.

In the case of UCAs, the steering vector does not have
a Vandermonde structure. Accordingly, spatial smoothing
cannot be applied. In this paper, we follow the approach of
Davies [7] (see also [1, 8]) to transform the array sensor
outputs to derive the so-called virtual array [1]. The key
feature of the virtual array is that the resulting steering
vector displays the desired Vandermonde structure.

More recently, [9] has generalized the Davies
transformation to 2-dimensional arrays of any arbitrary
geometry and broadband signals. This method, called
array manifold interpolation (AMI), is used in [10] to
perform optimum beamforming in the presence of
correlated wideband signals via frequency averaging. This
paper, though close in spirit to the work presented in [10],
is nevertheless distinct in that it considers narrowband
signals and the averaging is performed over a single virtual
array. We also introduce derivative constraints [11] to
obtain robustness against directional mismatches.

Finally, we note that the transformation of Davies and
AMI both involve an approximation. They thus necessitate
some compromises in terms of the size of the virtual array.

2.  PROPOSED METHOD
2.1  Problem Statement
Consider a UCA of N elements and radius r. The nth
component of the array response (or steering) vector ( )a θ ,

^ `1, 2, ,n N° " , for a narrowband signal of wavelength O

arriving from angle θ  is given by

[ ] 2 ( 1)
( ) ( ) exp cosnn

n
G jkr

N

 −  = −    
a

πθ θ θ (1)

where 2k = π λ , ( )nG θ  is the complex gain pattern of the

nth array element, and [ ],∈ −θ π π .

Suppose the array receives L signals, 1( ), , ( )Ls t s t! ,
each arriving from a distinct direction 1, , L!θ θ . The
array output vector is given by

( ) ( ) ( )t t t= +x As n (2)

where [ ]1( ) ( )L=A a a"θ θ , [ ]1( ) ( ) ( ) T
Lt s t s t=s " ,
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[ ]1( ) ( ) ( ) T
Nt n t n t=n " , ( )nn t  is the noise output of the

nth sensor, and ( )tn  and ( )ts  are assumed to be stationary,
zero mean, and uncorrelated with each other. The
covariance matrix is given by

2( ) ( )H H
nt t = = + x s nR E x x AR A σ Σ (3)

where sR  is the signal covariance matrix, and nΣ  is the
normalized noise covariance matrix.

Let 1( )s t  be the desired signal. If none of the other
signals is correlated with 1( )s t , then the optimum
beamformer defined by the following problem:

min H
x

w
w R w   subject to  ( ) 1H

l =w a θ , (P1)

where lθ  is the look direction of the beamformer, will
exhibit the expected characteristic of unity gain in the
desired signal direction if 1l =θ θ , and nulls in the other
signal directions. The solution to (P1) is given by

11 1
opt = ( ) ( ) ( )H

l l l

−− − 
 x xw R a a R aθ θ θ . (4)

We shall refer to the beamformer as defined by (P1) the
conventional optimum beamformer.

The difficulty with the above design method is that if
one of the interfering signals is highly correlated with the
desired (or look direction) signal, then the desired signal
can be cancelled [4]. A remedy is to perform spatial
smoothing on xR  but this requires the steering vector to
be in Vandermonde form which is not the case with UCAs.

2.2  Modal Transformation

To simply the following presentation, we shall assume that
( ) 1nG =θ , 1, ,n N= ! . Consider the matrices J and F

defined as follows where 1, ,p M= ! , 1, ,n N= ! , and
2 1M h= + :

( ) 11
1diag ( )p h

p hN j J kr
−− −

− −
 =   

J (5)

[ ] 2 ( 1 )( 1)1 j p h n N
pn e

N
− − −=F π , (6)

where ( )pJ ⋅  denotes a pth order Bessel function of the

first kind.
In [1], it is shown that if the sensor outputs are

transformed by J and F as illustrated in Fig. 1, then the
array response vector of the resultant M-element virtual
array will have, approximately, the Vandermonde form

( ) ( ) 1
Tjh jh

v e e− = ≈  a JFa " "
θ θθ θ . (7)

An appropriate choice for h is given by

( )1
max and

2 ( )
h N

h

J krN
h h

J kr
− − ≤ < 

  
ε (8)

where ε  determines the accuracy of the approximation.
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Fig. 1. Modal transformation and optimum beamforming
for uniform circular arrays.

2.3  Spatial Smoothing
In Fig. 1, the output vector of the virtual array is given by

( ) ( )t t=y JF x , (9)
and the corresponding covariance matrix is given by

2( ) ( )H H H H
v v nt t = = + y s nR E y y A R A JF F Jσ Σ (10)

where the steering matrix of the virtual array, v =A JFA ,
is Vandermonde.

To perform forward/backward spatial smoothing [5],
we divide the virtual array into overlapping subarrays of

SM  elements each. The pth forward subarray covariance

matrix ( )f
pR  is then the pth S SM M×  principal sub-

matrix of yR , where ˆ1, ,p M= !  and ˆ 1SM M M= − +
is the total number of subarrays; and the pth backward
subarray covariance matrix is given by

( )( ) ( )b f
p p

∗
=R I R I� � (11)

where I�  is the reverse permutation matrix. The spatially
smoothed covariance matrix is now found as

( )
ˆ

( ) ( )

1

1 ˆ ˆ
ˆ2

M
f f H

av p p v v
pM

∗

=

 = + = +  
∑ s nR R I R I A R A R� � (12)

where

( ) ( )
ˆ

1 1

1

1
ˆ2

M H Hp p p M p M

pM
− − − ∗ −

=
= +∑s s sR B R B B R B , (13)

ˆ

1

1
( )

ˆ2

M
H H

p
pM =

= ∑n nR JF F JΣ , (14)

� � � �� �11diag , , , Sj h Mj hjhe e e TTT � � �� ��

 B " , (15)

> @1
ˆ ˆ ˆ( ) ( )v v v LT T A a a" , (16)

ˆ ( )v Ta  consists of the first SM  elements of ( )v Ta , and
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( )H H
pnJF F JΣ  is the pth S SM M×  principal sub-matrix

of H H
nJF F JΣ .

As long as the number of signals in the largest
subgroup of highly correlated signals is not more than
2 3M , the above procedure ensures that sR  is well-
conditioned [5]. This means that the spatially smoothed

sR  has reduced signal correlations compared to sR  and
optimum beamforming will now work [4, 6].

Summarizing, the optimum beamformer for a UCA in a
correlated signal environment is found as follows

ˆ
ˆ ˆmin H

av
w

w R w   subject to  ˆˆ ( ) 1H
v lT  w a (P2)

where ŵ  is as defined in Fig. 1. The resulting optimal
weight vector is given by

11 1
opt ˆ ˆ ˆˆ = ( ) ( ) ( )H

av v l v l av v lT T T
�

� �Ë Û
Í Ý

w R a a R a . (17)

We shall refer to the beamformer as defined by (P2) the
spatially smoothed optimum beamformer.

Note that only one subarray of the virtual array is used
in the spatially smoothed optimum beamformer. This
suggests a compromise in the effective aperture of the
beamformer when using this approach to deal with highly
correlated signals.

Note also that for a signal ( )s t  arriving from the look
direction, the output of the virtual array is given by

( ) ( ) ( ) ( ) ( ) ( )l v lt t s t s t= = =y JF x JF a aθ θ . (18)

The output of the spatially smoothed optimum beamformer
is given, accordingly, by

ˆˆ ( ) ( ) ( )H
v l s t s t=w a θ (19)

which follows from the look direction constraint in (P2).
Thus, the beamformer is able to receive the desired signal
with no distortion, although strictly speaking, there will be
some distortion due to the approximation in (7).

2.4  Derivative Constraints

In an uncorrelated signal environment, the conventional
optimum beamformer is known to be highly sensitive to
mismatches between the beamformer's look direction lθ
and the actual DOA of the desired signal 1θ . In [11], it is
shown that this sensitivity can be reduced by appending
derivative constraints to the optimization problem (P1). In
the case of the spatially smoothed optimum beamformer,
we expect a similar problem will arise. We derive,
accordingly, derivative constraints for this beamformer.

Following [11], the derivative constraints are found by
setting to zero the partial derivatives (wrt T) of the power
response of the virtual array, i.e.,

2
ˆˆ ( ) 0

l

n
H

vn
=

∂ =
∂

w a
θ θ

θ
θ

,  1, 2,n = ! . (20)

It can be shown, similarly to [11], that the first order

( 1n = ) derivative constraint is linear in w�  where

{ } { }ˆ ˆRe Im
T TT  =   w w w� , (21)

whereas the higher order derivative constraints are
quadratic in w� . We consider, therefore, only the first
order constraint. The robust optimum beamformer is
defined, accordingly, by

min H

w
w Rw

�

�� �   subject to  ( )T
lT  C w f� �� (P3)

where

{ } { }
{ } { }

Re Im

Im Re
av av

av av

 − 
=  
 

R R
R

R R
� , (22)

[ ]1 2 3( ) ( ) ( ) ( )l l l l=C c c c� θ θ θ θ , (23)

[ ]1 0 0=f� , (24)

{ } { }1 ˆ ˆ( ) Re ( ) Im ( )T TT
l v l v l

 =   c a aθ θ θ , (25)

{ } { }2 ˆ ˆ( ) Im ( ) Re ( )T TT
l v l v l

 = −  c a aθ θ θ , (26)

{ } { }3 ˆ ˆ( ) Re ( ) Im ( )T TT
l v l v l

 ′ ′=   c a aθ θ θ , (27)

and where ˆ ( )v l′a θ  is the first derivative of ˆ ( )va θ  wrt T,

evaluated at l=θ θ ,

( 1)ˆ ( ) ( 1)l S l
Tjh j h M

v l Sj he h M e− − − + ′ = − ⋅ − + a "
θ θθ .

(28)
The solution to (P3) is given by

11 1
opt ( ) ( ) ( )T

l l l

−− − =  w R C C R C f� � � �� �� θ θ θ . (29)

Note that if ( )lC� θ  is not full rank, then the redundant
constraint(s) will have to be located and removed.

3.  NUMERICAL EXAMPLE
In the following example, we consider a UCA of 15
elements with 0.3d =λ . We choose 0.05=ε  which by
(8), results in a 13-element virtual array. The subarray
length was set to 9 for 5 subarrays. The signal scenario
consists of uncorrelated sensor noise of 0 dB, and three
equal power (10 dB) signals arriving from 120− D , 0D  and
90D . The signals arriving from 120− D  and 90D  are fully
correlated while the signal arriving from 0D  is not
correlated with either of the other two signals.

In Fig. 2, we plot the power response of the
conventional, spatially smoothed, and robust optimum
beamformers, as the look direction is swept across the
360D  azimuthal plane. As can be seen, in contrast to the
spatially smoothed and robust optimum beamformers, the
conventional optimum beamformer was not able to receive
the two correlated signals arriving from 120− D  and 90D .
Also, the peaks of the robust optimum beamformer are
broader than the peaks of the spatially smoothed optimum
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beamformer because of the derivative constraints.
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Fig. 2. Output power against look direction. Dashed
line: conventional optimum beamformer. Solid line:
spatially smoothed optimum beamformer. Dashed-
dot line: robust optimum beamformer.

In Fig. 3, we compare the array patterns of the three
beamformers when they are steered towards the look
direction of 120− D . As can be seen, they all achieved the
target response (0 dB gain) in the look direction, and
placed nulls in the DOA of the uncorrelated interferer at
0D . However, only the spatially smoothed and robust
optimum beamformers were able to place a “null” in the
DOA of the correlated interferer at 90D . The “null” at 90D

can be made deeper by increasing the number of subarrays
used but this will reduce the subarray size and hence the
number of degrees of freedom [6].

4.  CONCLUSIONS
The transformation technique as presented in this paper
provides a solution to the design of optimum beamformers
for UCAs in the presence of coherent signals. However,
the technique is limited by the approximation involved in
the modal transformation and may necessitate a
compromise in the size of the virtual array. We also
showed how derivative constraints can be easily
incorporated into the design, and showed that they are
effective in increasing the robustness of the beamformer to
directional mismatches.
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