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A COMPARATIVE STUDY OF RECURSIVE IDENTIFICATION METHCDS

T. S8derstrdm, L. Ljung and I. Gustavsson




ABSTRACT.

Recursive identification methods are of great interest in
several contexts, e.g. for construction of self-tuning re-

gulators and other adaptive controllers.

The usual way of comparing and analysing different recur-
give identification metheds is to use simulations. Making
use of recently developed theory for asymptotic analysis

of recursive stochastie algorithms, it is also possible to

examine them from a theoretical viewpoint. This is done

for five different methods. They are shown to be very simi-
lar in structure and need of computer storage and time.
Possible convergence points and their stability are exa-
mined for the different methcods. The theoretical analysis

is illustrated and supplemented by simulations.
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1. INTRGDUCTION

In many applications it is highly desirable to obtain
the result of the identification of a process recursive-
1y as the process develops. For example it might be of
interest to proceed with the experiment until a speci-
fied parameter accuracy is obtained. Another situation
requiring the model to be updated iIs when the process

or noise characteristics are gradually changing. Recur-
sive estimation is also necessary in many adaptive con-

trol systems.

An identification scheme which is recursive and does not
require all input-output data at each step is called an
on-line method. If the parameters of the process are
truly time-varying the parameters should be tracked in
real-time. This is called real-time identification. In
this report algorithms for on-line and real-time identi-

fication are studied.

In Astrdm - Eykhoff (1971) the fleld of on-line and real-
time identification was called "a fiddler's paradize".
Many different ways of cbtaining recursive algorithms
have been proposed. However, the properties of most of
the presented methods have only been illustrated by a few
simulations. There are a few comparisons available but
only few results on unification and convergence have been
presented. In general on-line identification algorithms
have a smaller need of computer storage and are faster
than off-line methods. However, on the cther hand they

are generally not as accurate as off-line methods.

In this report five commonly used recursive identification
techniques are analysed. The methods are cutlined in Seec-
tion 2 and it is shown that they can be described by es-

sentially the same algorithm, only the Invelved guanti-




ties are defined differently. Also real-time versions
of the algorithms are discussed. In Section 3 a new
tool for analysis of converpence of recursive algo-
rithms is discussed. The unigueness of convergence
points is treated iIn Section 8. In Section & the con-
vergence of the methods is analysed. Extensive simula-
tions are reviewed in Section 6. It will in particular
be shown that the commonly used extended matrix method
can fail to converge for certain systems, which is in
contrast te what earlier simulations indicate and also

to earlier presented convergence proofs for this method.




2, SOME DIFFERENT METHODS

2.1 Introduction,

There are a great number of methods for recursive iden-
tification. In this report the analysis will be limited
to five different methods. It will be shown that they
have great similarities as far as their analysis is con-
cerned. Some of them are very well known and discussed

in several papers. They will be applied to linear single-
input single-output discrete-~time systems.

There is considerable confusion concerning the names of
the methods. The names used in the report are given below,
along with some names used by others. The five methods

will be described in detail in Sections 2.2-2.6. They

are:

o RLS - the recursive least squares method

o RGLS - .the recursive generalized least squares method

o RIV -~ the recursive instrumental variables method
(zlso called the bootstrap estimator)

c EML1 - the recursive maximum likelihood method, ver-
sion 1 {(alsc called the extended least squares method,
the extended matrix method, or the approximate maximum
likelihood method)

[} RMLZ - the recursive maximum likelihood method, ver-

sion 2.

In Teble 2.1 some references dealing with cne or several

of these recursive identification methods are given.




Reference RLS | RELS RIV RMLL | RML?

Astrém (31874) x
Eykhoff (197u4) ' - X
Pinigan-Rowe {(1973) X
Fuhrt (1973) x ®
Gertler-Banydsz (1974)
HastingsJames-Sage (1969)
Isermann et al (1974%)

James et al (1574)
Johannesson-Wesstrém {(1874) .
Kashyap (1974) x
Koreman (18973) x bs
Landau (1874) X x
Mayne (1867) x
Pandya (1872}, Pandya-Pagurek
{1973) X
Panuska (1968,1969) . X
Rowe (1870) X
Saridis (1974) x
Sinha-Sen (1972) x x
Smets (1970) x
Stderstrdm (1973b) % «*
Séderstrdm {1974) bls
Talmon (1%71), Talmon-van den
Boom {(1873) X
Tzafestas (1970)
Wong-Polak (1967)

Young (1968)

Young (1970a,b,1972)
Young-HastingsJames (1970)
Young et al {1971}

E I
=

WM oMo oM K

E - -

Table 2.1 Some references treating the discussed recursive
identification methods. The notation x* means that

the method seems to be originally suggested in

that reference.




In the references listed in Table 2.1 the method RML1

is applied for different model structures. In several
of the papers by Young the methods RIV and RML1 are
combined. The deterministic part of the system is esti-
mated with RIV, and RML1 is used to estimate the infiu-

ence of the noise.

Before going into the details of the different methods,

some general conventions and assumptions will be made.

Applying identification techniques means that a model
is fitted to measured data u{1},..,.,u(¥N) of the input
signal and y(1),... ¥{N)} of the output signal. The mo-
del has for all the treated methods the following gene-

ral structure
NP _ ohe =1 Lo =1
Alg ") y(&) = B(q '} u(x) + H(g ') e{t} (2.1.1)

where e(f) denotes the residuai. A(qﬁi} and %(q?1)
are polynomials in the backward shift operator q_1

(ive. 71 y(t) = yee=1),

AT =1+ aq! 4 s g @
q - 1q e n'q
a

o =1 s - Ty
Blq ") = byg o+ + ban

The transfer function ﬁ(q_q) has different meaning for the
different methods. For RLS and RIV

1

g™ = 1 (2.1.2)

for RGLS

H(q'i} = = 1_1 = = _3 ~—p5 (2.1.3)
Clq ") 1+ egg T+ te q




and for RML1 and RML2

. N -0,
)= 1+ oyq + ...t e g (2.1.4)

c

ﬁ(q—i) = C(q

It would be straightforward to include several input
signals or a larger time delay in the medel. No
principal difficulties occur but these generaliza-
tions are not treated in order to keep the notations

simple.

In the forthcoming analysis
sistency it will be assumed
alsc callied the system, can

of unigqueness and con-
that the actual process,

be described by an equa-

t+ion of the form
atg™h) vy = Ba™H u) + H@™H e(o) (2.1.5)

where e(t) is white noise. The polynomials A(q_1)
and B(q_z) are given as

A(q—1)

"
—
+
o

-
0

+
+
4

-
0

B(g™ " = biq” '+ ...+ Db o q

For RLS it is assumed that

Hig™") = 1
for RGLS that

-1y -1y -1 e
H(q ') = 1/C(q ') = 1/ (M+cyq +.oautce g )

and for RML1 and RMLZ that

™"y = cg™H =1+ cqq_1 + ...+ q

Note that H(q_i) is not specified for RIV.




It is generally assumed that the description of the sys-
tem is such that the pair of polynomials A(z), B(z) as
well as, if applicable, the pair A(z}, C(2) has no com-
mon factors. This implies in particular that the pro-
cess is controllable. It is also assumed that the C(z}-
polynomial has all zeros outside the unit cirele. This
is only a slight restriction, cf the spectral factori-
zation theorem, Astrdm {1970). This assumption is made,
since for the models,the polynomials £(z) will be re-
stricted to have all zeros outside the unift circle in

order to assure finite variance of the residuals.

The input signal can be determined in several ways. In

this report three different cases will be covered,
© open loop cperation

o closed loop operation with a time invariant regula-

tor or shifts between some regulators of this type

o closed loop coperation where the regulator is time
variable and determined by the present model of the
process (an adaptive conirol system).

An example of the third type is the so-called self-
tuning regulator, Astrdm-Wittenmark (1972). In Ljung-
Gustavsson=-Sdderstrdm (1974) it is shown that closed
loop operation will not cause extra identifiability pro-
blems if e.g. appropriate shifts between feedback laws
are made (in the present case it is sufficient to shift

between two feedback laws),

It is natural to require that the process is uniquely

identifiable (parameter identifiable in the terminology

used in Ljung-Gustavsson-S&derstrdm (1974)). For open




loop operation this will be achieved essentially if the
input signal is persistently exciting of an appropriate
order, see e.g. Astrdm=Bohlin (1965) for a definition.
It will also be generally assumed that the system is
asymptotically stable, For cpen loop operation this
means that the A(z) polynomial has all its zeros outside
the unit circle.

Now introduce the parameter vectors ﬁoand ¢ for the

different methods as follows

o RLS and RIV

- T
SO_ [519"9an;b1:"3 bnb]
(2.1.6)
- - A " T
g = [a1,.-,an,b{,--s bn ]
a b
o] RGLS, RMLY and RMIL2
T
8, = [a1,..,an,bj,..,bn,c1,.., e, 1
@ b “ (2.1.7)
- - y oo - T
8 = [a,,.,,a_,b,,..,b ,o.,.., c_ 1
Trre né 10t n 1 o,

(Note that the c;-parameters have different meanings
for RGLS on one hand and for RML1 and RML2 on the
other hand}.

The vectors é are considered as estimates of the true
parameter v?ctors 8,- In recursive identification methods
the vector 8 is updated every time new measurements are
available. Note however, that for some methods, not
treated here, it is not necessary to update the vector

§ but only some other gquantities, see e.g. Peterka-

Emuk (1969), Peterka-Haluskova (1970}, The estimate 8

is thencaleculated only in the sample points where it

is desired.




2.2 The RLS method.

The LS method was used already by Gauss (18039), 1Its
recursive version for process identification is well
known and it is difficult and of 1ittle interest to
specify the origin of the RLS method. The RLS method
is described e.g. in the survey paper Astrdm-Iykhoff
{18717,

Introduce
e(t) = [-y(t-1)...-y(t-njult-D...ult-n)T  (2.2.1)
o(1)T y(1)

¢ = : Y= (2.2.2)

o(m)T y(3)
Then the LS estlimate of b, can be written as
~1
&) 7Y (2.2.3)

This can be made recursive through

B(t41) = 8(t) + K(t+1) efts1) (2.2.4)
K(t+1) = P(t)w(t$1) (2.2.5)
T+ @(t+1) " P(t)o(t+1)
T
P(t41) = P(t) - P(‘c)tp(tﬂ)wétﬂ) B(L) (7.2.5)
T+ p{t+1) Pltlolt+1)
e(t41) = yi{t+1) - @(t+1)] a(t) : (2.2.7)

In (2.2.4) 8(%t) denotes the estimate of 8 based on %

pair of measurements, The residual e(t+1) is a pre-

diection error, since it is the difference between the

Tinitial value effects are neglected.

a3




10, |

measured value y{t+1) and the optimal prediction
y(t+111) = @(t+1)76(t). The vector K(t+1) is to be

- considered as a weighting factor,

It is well known, see e.g. Astrdm-Eykhoff {(1871)

that the RLS method is a simple and easily appli-
cable method. There is only one real disadvantage,
namely the cconsequences of the assumption H(q_1)=1.

If this is not fulfilled, the LS, as well as the equi-
valent RLS method, will in general not give & consisg=-
tent estimate. This drawback is in fact “the motivation
for use of other methods.

The RLS method can be interpreted in several ways,
These interpretaticns are related to the other metheds

treated here, which can all be considered as exten-
sions of the RLS method. The interpretations ave

given in Table 2.2.

INTERPRETATION OF RLS EXTERSION

A system of two coupled
RLS algorithms -+ RGLS

Solution of Solution of

(aTe)s = ¢y (2Tere = 2Ty - RIV

Kalmanfilter for Kalmanfilter for a larger

B(t+1) = e(¥) system structure -+ RML1

Yt = et + e(t)

Regursive minimization Recursive minimization for

of Eez(t) anocther model structure -
REML2

Table 2.2 Interpretations and extensions of the RLS
method.




B T
11.
2.3 The RGELS methed.
The off-line-8LS method was suggested in Clarke (1957)
and later analysed in S8derstrdm {1972). It can be
interpreted as a special way of minimizing the loss
function g ez(t), where the residuals ¢ {(t) are given
by (2.1.1).
Inspired by Clarke's algorithm,a recursive method was
suggested in HastingsJames-Sage (1%63). It consists of
two RLS estimators combined via filtering., Introduce
the notations
6, = lag.va bu..b 1T (2.3.1)
a b
c - T
By = [c?...cn 1 (2.3.2)
(83
L oeng =1 R s -1 =1 T
9 (L) = [~C(q Dylt=1),,.-C(g Jy{t-n_J),C(g "Jult=1), C(q )u(t—nb)]
(2.3.3}
0 (1) = [-¥(e=1)...-¥(t-n )17 (2.3.4)
Yoy = Ay - BgmHue (2.3.5)
The algorithm can be written as
B (t41) = B,(¥) + K (t+1) o, (t+1) (2.3.6)
P,i(‘t)tp,i('t-t»‘l)
K, (t+1) =
! 1+ gy (t+1) TP, (£, (e 1) (2.3.7)
Pq{t)w1(t+1}w1(t+1)TP1(t)
Pyalee1d = Pyl ~ T {2.3.8)
T+ (£41) 7P (D, (T+1)
eq(e+1) = a7 Dy ert) = o (et e (o) (2.3.9)

By (T+1) = 8,080 4 K, (TH1) ey (£41) (2.3.10)




12.

P, (t3p, (t+1)

Kz(t+1) = T (2.3.11)
1 + ‘92(“1) Pz{t)(pz(tﬁ)
P, (1)@, (t+1)9, (£41) TP, (1)
Pz(t+1) = Pz(t) T (2.3.12)
1 + wz(t+1) Pz(t)wz(t+1)
£, (t41) = E(t#1) - @, (4] yé, (1) (2.3.13)

In the computations for 8,(t+1) the polynomial 6(q_1)
is required. It is obtained via the estimate 8,(t).

Different kinds of approximations are possible. E.g.

in computation of w1(t) one can filter all relevant

data with the é(q"1) polynomial given by éz(t). An=
other possibility is to use the previously computed esti~
mates of @(q-l)y(t—Z),...,5(q-1)y(t~na),é(qél)u{t—Z),
...,é(q_l)u(t—nb) and o make a new filtering only to
compute é(q_l}y(t-l) and é(q_l)u(t—l). Such minor diffe-
rences wWill not influence the result of the coming ana-
lysis. Nevertheless, it can in some cases have a signi-
ficant influence on the transient behaviour of the algo-

rithm.

2.4 The RIV method.

The principle of instrumental variables, see e.g. Kendall-
Stunart £1961), has been applied to system identification
in several ways. The off-line description of such methods
is as follows., Let 7 be a matrix satisfying

ZT

lim ¢ = R a non-singular fuadratic) matrix (2.%.1)

==

lim

ZT(Y—@BO}= 9 (2.4.2)

T




13.

Normally lim is understood as limes in probability,
although the stronger concept limes with probabllity

cne can be applied without difficulties. The conditions -
above imply that the estimate

~

8 = (zre) TTy (2.4.3)
becomes consistent.
There are of course a great number of ways of satisfying

the conditions (2.4.1), (2.4.2). It is not difficult
to show that

z(l)T
Z = . (2.u,4)
z(N)T
8(g 1) Bg™ | ’
z(t) = |- ==t u(e-1), - 24 wlt-n u(t-1)..ult-n,)
INCEED) atg™h
(2.1.5)

will meet the assumptions provided that the system is
operating in open locop. MNote that the difference bet-
ween ¢, given in (2.2.1), (2.2.2}), and Z is just that
in Z the influence of the disturbances on the output is

subtracted.

The IV estimate (2.4.3) is easily rewritten into an

equivalent recursive algorithm of the form

6CE41) = a(t) + K(t+1)e (t41) (2.4.8)

P(t)z(t+1)

K(t+1) = T
T + p(t+1) Pz (t+1)

(2.4,7)

_ P(alt+elt+1) "P(L)

P(t+1) = P(t) (2.4.8)

T4 pCeeDTPCO)2(t+1)




14,

e(t+1) = y(t+1) - m(t+1)T5(t} (2.4.9)
The vectors {z(t)} are defined from (2.4.,4)

There is one problem in using the vectors {z(t)}

given by (2.4.5). Their computation requires
knowledge of A(q_1) and B(qpﬁ). On the other hand

the goal of the whole procedurse is just to obtain
estimates of these parameters. This problem is solved
by the use of

2{t) = {-x(t-1)..-—x(t—na},u(t—'i)...u(t-nb)]T (2.4.10)
.where
x() = at¥o(t) (2.4.11)

The equation (2.4.11) for computing x(t) is often modi-
fied. Usual variants are

x(t) = z(t¥ece-1) (2.4.12)
where T is a small positive integer, or

x(t) = z() T (L) (2.%.13)

B(E) = (1-v)¥(E-1) + yo () (2.5.14)
y being a number slightly less than one. However,

these variants do not change the analysis made in this
report.

For this type of algorithm original work seems to have
been done by Mayne (1967), Wong-Polak {1%67)} and Young
(1968), It should be mentioned that there are other
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recursive identification methods similar-to this approach.+
One of them is the so-called tally principle treated in
Peterka - Smuk (1969), Peterka - Haluskova (197().

2.5 The RML1 method.

As mentioned earlier the RLS method can be interpreted
as a Kalman filter for the system

g (t+1) = 8(t) =81 (2.5.12
vit) = l)Ta(t) + e(t) (2.5.2)

This interpretation is described e,g. in Astrém-Eykhoff
(1971}, This idea can be exploited also for the model
structure given by (2.1.1}), (2.1.4).

Assume for a momént that the noise sequence {e(t)} is
known (measurable). Then the estimation problem could
be treated as an ordinary LS problem but with two in-
puts u(t) and e{t). This would lead to exactly the
algorithm (2.2.4) - (2.2.7) with the excepticns that
w{t} is given by

o(t) = [~y(t—1)4..wy(t-na)p(t—i)...u(t—nble(t—ﬁ)...e{t—nc)]T
(2.5.3}

and 8 as (2.1.7). Since the noise e(t) is in fact not

known, some approximaticn must be made. A natural way

to get a useful algorithm is to substitute e{(t) with
g{t) i.e. to take

1

GCt) = [=y =)L -y Ctmn du(e=1) .o ultony he (£=1). L e Ctmn_]*

(2.5.4)
Thus the algorithm becomes

WLThe analysis made here for the RIV method can easgily be

generalized to other cholces of Z, if the elements of

z(t)are formed by filtering the input signal u(t).
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Ct+1) = 8(t) + K(t+1de(t41) (2.5.5)
K(t+1) = P{t}wét+1> (2.5.6)
1T+ p(te1) P()p{t+1)
T
Petat) = p(r) - PLO@Lr+1yeltet) PIL) (2.5.7)
1+ (t+1) P{tYe(t+1)
e(t+1) = y(r+1) - @(x+1) 8 (E) (2.5.8)

and @(t) defined by (2.5.4).

This algcrithm seems to be originally proposed by
Panuska (1968, 1969%) and by Young (1968)., It is
often used to model time series i.e. used withcout
bi-parameters and scmetimes also processes without
a;-parameters. In Talmon (1971) it is used for the

model structure given by

o -1 oo =1 IO
AlgT Ny (E) = B(gT Dult) + FA— elt) (2.5.9)
D{g ')

2.6 The RML2 methcd.

The origin for this methed is the off-line maximum
likelihood methed developed by Astrdm-Bchlin (18B5). .
This off-line method has been shown to have nice proper-
ties both in theory and in practice., Thus it is a
challenge to try to attain them for a recursive meth-
od as well., The off-line ML method consists of mini-
mizing the function g e?(t) where e(t) is defined by
(2.1.1)., A recursive (approximative) versicn of this
minimization is described in S&derstrim (1873bJ.

This algorithm will be called the RML2 method. A
similar algorithm has been proposed by Fuhrt (18723).
The RML1 can be interpreted as an approximation of

the RML2 method.
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The RMLZ? method is described by the eguations
B(t+1) = 8{t) + K(t+1)e(t+1) (2.6.1)
K(t+1) Ee)elrt) (2.6.2)
1 + @(t+1) "P{t)g(t+1)
P(t)@(t+1)oCt+1) T P(L)
P(t+1) = P(t) - T (2.6.3)
T+ i (t+1)P(Edpl(t+1)

The prediction error e(t) is computed from
Sq™ ety = AlgTHy ) - Blg"Huo (2.6.1)
To obtain the exact prediction error,eq. (2.6.4) has
to be solved from t = 0 for every new measurement.
This will require too much computation, and some suit-
able approximation has to be made.
One way is to make use of (2.5.%) and (2.5.8), i.e.
to take
e(t) = y(t} - [-y(t—?)...—y(t—na),u{tn1).u(t—nbla(t—i)

cee(t-n ) ie(t-1) (2.6.5)

This eguaticon is iterated only once for every measurement,

An alternative way, described in S&derstrdm (1973b),

. . +
is to consider

- . q .
n ]

—?1 1 1 a, b1
-c, . 5 0
x{t+1) = . x(E)+ | T |wle+1d+ v{t)- '
—a a b
ni n f ny
{2.6.8)
fre is assgumed, for notaticnal simplicity only, that n_=n,

in (2.6.8) and (2.6.8).

u{t)

=n
~
<
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which is quite equivalent to (2.6.4) with e(tYy=x, ().
Similarly to (2.6.5), the state equation (2.6.8)
is solved oﬁly once. In the computation of x(t+71)
from x(t) the matrix elements are formed from the esti-

mate 8{t).

Tn (2.6.2) and (2.6.3) the vector v(t) contains the
derivatives of e(t) with respect to & and is de-

fined by
O(t) = |- a——r ylt=1)...m e y(t-ny),
Clg 2 C(qg )
,—7— a(e=1) s s u(Emny) s e (BT
C(g Clg ') Ci{q
T
————7—-e(t n, ) (2.6.7)
cig
The vector @{t) can be shown to satisfy
_c1...—cnc] l v{t)
1 a
g | 9 | 0 .
o o L b o
|—c1.. —o, | ~u(t)
p(t+l)= 0 RN C' 0 o(ty+ | O
R R R .
‘ l-c1. el -c{t)
1 ¢ o
0 l 0 l 0
| | o )
(2.6.8)

Analogously to (2.5.6),the equation (2.5, 8) is solved
only once and with the present values 8(t) in the ma-
trix elements when @{t+1) is computed from @(t).
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Tn Fuhrt (1973) another and somewhat less accurate

approximation of the computation of p{t} is given.

2.7 Stochastic approximation versiocns.

There are sBeveral recursive identification methods
based on stochastic approximation, see e.g.Sakrison
(19587), Saridis~Stein {1968), Lobbia-Saridis {1972),
and Saridis (1874).

The methods treated above can be simplified to yield
algorithms of this type by essentially substituting
the matrix P(t) by a scalar p(t), e.g. ¢/t or

t/tr PCt)Y ', This means that the general descriptiecn

of the algerithms is transformed inte
Bt+1) = 8(t) + plr+1)z(t+1)e(ts1) (2.7.1)

Such a simplificaticn will of course reduce the com-
putation time considerably. However, in general the
convergence will be slower than if the original al-
gorithm is applied.

Algorithms of the type (2.7.1) are not considered
explicitly in this report. There are,however, no
difficulties in extending the analysis tc such methods
also. In fact, the theoretical results of such
simplified algorithms when uniqueness and stability
are concerned will be analcogous to the results for

the original algorithms,

2,8 Initial conditions.

In order to stapt up the algorithms it is necessary
to have some initial values 0(0) and P(0). With
use of the interpretation of the RLS methed as a

Kalman filter it can be seen that 0(0) can be
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interpreted as an a priori gstimate of %}with the
covariance matrix P{0). If no a prieri information
is available, then the aigerithm can be started with-
6(C) = 0 and with P(0) = a-T where a is a large numb-~
er. The choice of a suitable value of « depends o©n
the variances of the signals. It is often sufficient

to take it 10 times the variance of yi(t).

The choice 8(0) = 0, P{0) = a+I is applicable for

all the methods. It is not very difficult to show,
of Section 3, that 1f the methods converge properiy,
then the ipitial values will have no influence asymp-
totically. Note, however, that the choice of ini-
tial values can have a large influence on the tran-

sient bpehavicur of the metheds,

2.5 Real time versions.

Real time identification means that time variable
parameters can be tpacked. It is possible to modify
the general algorithms to handle such systems.
Essentially two kinds of extenslons are used in the

literature.

One way is to ipclude a weighting factor or forgett-
ing factor A making the algorithm into (the involved
gquantities are defined earlier for each of the meth-
ads)

SCE+T) = 8(1) + K(x+D)elt+) (2.9.1)
K(t+1) = Plt)altil) (2.9.2)
A+ @ltE1) P(E)z{t+1)
T
ples1) = [p(1) - BE2CEDeCDE(E) (2.9.3)

Ao+ @(t+t Pz (E+1)
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lt_55(5)2
1
(e.g.

For the RLS method this algorithm means that

is minimized. By choosing A smaller than 1

[

B

as 0,99) old residuals will have small influence on -
the estimates. This approach is described e.g. in
Wieslander (1969).

Another way, see e.g. Bohlin {1968) is to make use
of the interpretation of the RLS method as a Kalman
filter. Inclusion of process neise in the model
will lead to the algorithm

BCt+1) = 8(t) + K(t+1)e(t+1) (2.9.4)
K(t+1) P(t)2(§+1) (2.9.5)
T+ e{t+1) P(E)z(t+1)
T
p(rs1) = pery - PADElErDeGsD TR | L (2.9.6)

1+ @(ttd ) P(E)z(ts1)

where R is a positive (semi) definite matrix.

Both the extensions have the desired property that
the weighting factor K(t) does not tend to zero.

2.10  Improvement of the convergence rate,

In Sddersirdm (1973h) several ways to improve the
convergence rate were discussed for the RML2 method,
A very common choice, see e.g., Puhrt (1973) and
Talmon-van den Boom (1973}, is to consider the alge-
rithm

BCtE1) = B(L) + K(t+1)e(t+1) (2.10.1)

K{t+1) = P(riz(t+1) (2.10.2)

A{t+1) + w(t+1)TP{t)z(t+1)
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) T
_ BP{t)zlt+1)w(e+1) P(L) 1 /x(e+d

[P(t) a
A+ Y+ (E+1) TP ()2 (c+)

P{t+1)

(2.10.3)

A1) = A ale) & SR ) (z.10.4)

The number A, is chosen close to 1, e.g. as 0.99,
and so is the initial wvalue *(0). Eq. (2,10.4)
means that A{t) tends exponentially to 1 as t tends
to infinity.

The algorithm can be viewed as a generaligzation of

the real time algorithm (2.8.71) - {(2.3.3). The

time dependent weighting facter A{t} will cause the
influence of the first estimates 6(1), 5(2)... on
distant estimates of 6  to decrease. The weighting
factor (%) is constructed to tend te 1. This means
that, asymptotically., also the first data points are
given positive weights in contrast to the real time
algorithms, This will in particular imply that the accu-
racy of the parameter estimates will be Dbetter and that

they may really converge.

It is easy to see that (2.10.3) also can be written

P+ = e P)™ T v zertroe+) T

and that, in the case of the RLS algorithm, this
algorithm gives the minimum of the loss function
t

ot 5
rLmoAaid] e(x) (2.10.5)
k=1 i=k

Here the "forgetting profile" of o0ld data is clearly
seen, and the real time algorithm (2.9.11) corresponds

to exponential forgetting of previous data. Algorithm

(2.10.4) gives the forgetting ccefficient
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1
. t U T _ Teg_

| Alt) = Ao A0 + {1 AO Y =1 Ao (1=-2¢0))
| and asymptotically for t large -
|
. t oy kpd-a(0) 5 t+1-k
| MEVEPERIPRLTIRS s e Lt

k

For some of the theoretical considerations in the next

section, 1t is convenient to rewrite the algorithm.

For a given sequence {A(t)}, which need not satisfy

(2.10.4}, define the sequence {y(t)} recursively:

ylt+1) = —rlr) 3 y€(0)Y = 1 ) (2.10.6)

ACE+1) + y(t)
Then
13 k
A(T+1) = W(1 y(t+12) ) (2.10.7)
Introduce

. _ 1
[ %(t) =y P{t)

Rty = ?T%T K(t)

Then by straightforward calculations (2,10.1)-(2.10.3) hecome

g (t+1) = a(t) + 4 (E+R(T+1) e (t+1) (2.10.8)
i
K(rs1) = Slboelle?) (2.10.9)
T+ v (D [p(E+1) " Pt Ia(t+1)-1]
Bee ™ 2 BT s pteeater o DT - BTl
(2.10.10)

where (2.10.10) also can be written
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vee1)  BroyztteDett+ 1) )

Bet1) = ey PO -
T=yit+? SRR 1+y(t+1)[w(t+1)T%(t)z(t+ﬁ)-1]

This description may be useful, since ¥ and ¥ do not
tend to zerc as ft-w~, but to limits that may have
physical interpretaticn., Also, this description gives
a2 more explicit account for the "step length" of the

correction at time t. This is given by v(t).

In Ljung (1974a) algorithms of the type (2.10.8) -
(2.10.10) are studied, and the choice of {y{(t)} to
improve the convergence rate is discussed. In par-
ticular, reasons are given why slowly decreasing
sequences {y(t)} (corresponding to A(t) < 1) are
better than y(t) = 1/t.

We will alsc anticipate -here scme conditions that
will be imposed on {y(f)} later on, and discuss
their interpretation for {A(t)].

First, a necessary condition is

L oy{t) = = (2.10.11)

This means that the step sizes must be large enough

to zllow for any amount of change necessary.

Tn terms of {A(t)} it essentially implies that

Aty g e.

Secondly, to yield convefgence w.p.1 {vy(t)}must de-

crease sufficiently fast to reduce the noise influence.

The condition will be
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Iy () < = some large enough p > 1 {2.18.12)
1

This is a condition on how fast A(t) approaches 1.
Clearly, the real time algorithm {2.9.1) - (2.9.3)
does not satisfy (2.10.12).

Finally, twe other conditions are imposed for techni-

cal reasons:

Yit+1) 2 oy (EX(t-y{t+1)> . (2.10.13)
{v{t)} decreasing (2.10,14)
Eg. (2.70.13) is equivalent to A(t+1) g 1, and it is

easy to see that {y(t)} corresponding to the A-sequence

generated by (2.10.%) satisfies (2.10.11) - (2.10.14),

2.11 A unified description of the methods.

The description of the discussed methods can now be
summarized and unified as folliows. The description
has also been used in the Sections 2.9 and 2.10. A1l

the methods can be described by

B(t+1) = 8(t) + K(t+1)e(t+1) (2.11.13

K{t+1) = PlE)z 1) (2.11.2)

ACEE1) + e+ 1) Pz te1)

- P(r)z{t+DOL+1)P(t)

P{t+1) = [P(t) T T /a(t+1)
Alt+1) ¢ @(e+1) " P{E)2(t+1)
(2.1%.3)
A{t+1) = Ay ACEY + (1—30) (z.11.4)

The meaning and the computatlons of the guantities

8(t), e(t), w(t) and z(t) for the different methods
are given in Table 2.3,
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For part of the analysis in this report the alfternative

description derived in Section 2.10 will be useful

BLts1) = 8(L) + y(t+1) F(t+1)eit+1) (2.11.5)
Y = il
Rite1) = P(t)z(t%!)

1+ y(erD e+ D 1B z(t+1)-11 {2.41.8)
by 1
BF(t#1) = ————~ P{t) -

1=y {t+1)

T
_o_y(xe1d Btyz(e+ 1o+ 1) Bt
T ) (2.11.7)

Ty (o) [l 1) T¥ )z (et )11
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3. TOOLS FOR THE ANALYSIS OF RECURSIVE ALGORITHIIS

3.1 Introduction.

The algorithms (2.11.1) - (2.11.4) are, in fact, non-
linear, time varying stochastic difference egquatiocns
and the convergence properties of them are difficult
to analyse. On the other hand, vital questions 1ike
consistency of the estimates and uniqueness of solu-

tions rely upon the question of convergence.

A simple and natural way of studying the algorithms

is simulation. This often gives valuable information
about the behaviour of the algorithms, and in Section

6 the results from numerous simulations are reported.
In fact, simulation seems so far to have been the main
toel for studying the asymptotic properties and the
only teool for compari;ons of the algorithms. However,
since the algerithms are stochastic, many simulations
are required in order to evaluate the behaviour. Also,
from simulations of a number of different systems it

is dangerous to make conjectures about any general pro-
perties. An important illustration of this will be given
(see Examples 5.6.3,5.6.4). Therefore,some analytical

tools are required as a complement to simulation.

The RLS method has been analysed e.g., in Astrom-Eykhoff
(1971)1 The analysis relies upon the corrvesponding off-
line method, since the obtained estimates ave identi-
cal. The other recursive methods treated in Section 2
differ from their off-line counterparts, and therefore
they must be analysed separately.

In Ljung {(197%a,b) and in Liung-Wittenmark (1974) it

has been shown how a deterministic, ordinary differen-

tial equation (ODE} can be asscciated with recursive
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stochastic algorithms. In this section these ideas
will be applied to the algorithms {(2.11.1) - (2.11.8),
A heuristic introduction is given in Section 3.2. The
main results are stated in Section 3.3 and in Sec-

E tion 3.4 it is discussed how the tools can be used

for analysis.

3.2 A heuristic approach.

Consider the algorithm (2.11.8)7
8(t) = 8(t-1) + y(LIB(t-1)a(t)e(t) (3.2.1)

For simplicity, in this section a stochastic approxi-
mation variant with E(t} = I will be considered. The
interpretation of é(t), z(t) and e(%) is given in
Table 2.3. )

Clearly, for all methods e(t) is a function of §(t-1}.
For RML1,(2.5.4) - (2.5.8),1t 1s seen that e(t) is formed

from the difference equation

() + o (tlet=1) + ... + énc<t>e(t—nc) =
= y(E) + 2, (Oy(x=1) + ...+ a (Dylt-n,) -
a
- by (tule=1) -« .. - ﬁnb(t>u<t-nb> (3.2.2)

Therefore, £(t) (and hence @(t) = z(t)} will in this

case depend on all previous f{shs < t,

The same holds for RML? and RBLS. If the input sequence
is independent of B{t), then ¢(t) is independent of g

for RIV and RLS.,and e(t) depends only on é(t—1}. How-
ever, for RIV z(t) is defined recursively using old esti-

mates. This makes z{t) depend on all cld é(s}, s < 1,

YSince v{t} tends to zero, the denumerator in {(2.11.6)

has been omitfed for this asymptotic analysis.
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When needed, such dependences will De denoted through

S(t) = elt; B(d) = e(ty 6(t=1),..,0¢(00)
@(t) = @(t; B(-)) = @lt; 8(t-1),...,8¢00)
2(t) = z(ty 8(+)) = 2(t; 6(t-1),...,8(0))

When, for an adaptive controller, the input is (part-
1y) determined by a feedback law that depends on 8(ty:

ult) = uglt) + FBCO), < Hyen

then it is guite clear that @(t) and (%) for ail the

different algorithms will depend on all previocus 8(sy.

These complicated relations batween §{s}, «(%) and

z{tY, naturally is a major stumblingblock for the analy-
sis of the algorithms. An evident simplification fol-
lows if it is assumed a priori that the estimates con-

verge to some value 8%,

T+ is +hen reasonable to assume that, as ts=, elt ;8(:))
tends to a variable £(t3;8*), which would be obtained
from (3.2.2) for é(s) = g¥; g < t. Introduce also,

analeogously the statiomnary processes B(t30%) and z(ts;a*).

Such analysis is made in Astrém-Wittenmark (19723, S56-
derstrsm (1973b) and Astrdm {(1874).

Then we have from {(3.2.1)

. . t+N " R
B(t+N) = 8(t} + & y()z{kse(«3)e(kis{}}
kK=t+1

and for large T
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T+ - Ay = *
I oy(k)yezd{k;e ) elkss™) = D (3.2.3)
T+

Now
Z{l3a%) e(kie*)

is a stationary stochastic process for given 8%, and

since

it should follow that
E z(ky8*) c(kig*) = O {(3.2.4)
if (3.2.3) holds with non-zero probability.

Consequently (3.2.4) is a necessary condition on 6%

te be a possible convergence point to (3.2.1).

By considering the number of peints that satisfies (3.2.4),
an analysis of uniqueness+of the method can be made.
Such analysis is reported in e.g. SOderstrdm (1273b}
and in Section 4 of this report, The main idea of the
analysis so far has been that if a(k) converges to a
value g*, then the complex functions eg(t+1 3} 6(-)) and
e(t+1 3 8 + )) tend to functions e(t+1; &*) and
@it 6™), which are easier to handle. This idea can
be extended as follows. Since (t+1 § 8(-)) and
plt+l; g (-1 depend on old 8ex) only to a rapidly de-
creasing extent, and also since 8(k) in most cases
varies more and more slowly as k increases, it is rea-
sonable to assume that e(f+1] €¢*)y in some respect

tends to e(t+14 8(t+1)) and analogously for@(t+1} §(+*)).

+i.e. whether the method can give several limits
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Then
-~ ~ t+N ~ -~
BUL+N) = () + "I y(kJdz(k;8{)¥)elk;8(+}) =
t+1
R T+N _ . _ .
= p(t) + £ +vy(X)z(kiel{k)elk;g{k)) =
t+1
o _ . _ R LT+N
= g(t) + B z{tse{tidel(tio (L)) & «v(kJ (3.2.5)
tT+2

where the last step should follow since

Z{k38 ())E(K38(K)) k=t +1,,t+N are a number of ran-
dom variables with mean approximatively E Z(t3;B(t))
2(t36(t)), This would imply that the sequence of
estimates more or less follows the ftrajectories of
the ODE

§ = f(o) (3.2.6)
where

F(8) = E z2(t30)z(t30)

This result can in fact be shown formally, as will be
done in the next section, but it requires that several

technical problems first are solved.

The conclusion about the possible convergence points
made first in this section then implies that the se-
guence cf estimates {é(k}} can converge only to sta-
tieonary points of (3,2.6)., This result can be
strengthened by including 'dynamic properties’'.i.e,

the stability character of the stationary point.

3.3 An ordinary differential equation associated with

the recursive algorithms.

Congider a linear, stochastic discrete time systen

y(t) = (g Dult) + H{g  elt) (3.3.1)




where G and H are rational functions of the backward
shift operator. {e{t}} is a stationary sequence of
independent, random variables. Let H{z) have all
poles strictly cutside the unit circle., Assume that
a model of one of the structures described in Section
2 will be fitted to the input - cutput data provided
by (3.3.1). TFor this purpose a recursive algorithm
(2.11.5)-(2.14.7) is used:

B{t+1) = 8(t) + y(t+1)KCt+1)elt+1) - (3.3.2)

u n T
K{t)Y = PCz(t+12/{1 + vy (o+ 1) [+ " P(L)z(t+1)~11}
(3.3.3)

Beea)™ ! = Beoym! s v lz(reeis 1 =B 1)
(3.3.4)

Here é(t), e{t) ©(t) and z{t) have the meanings

given in Table 2.3.

Let the input to the system be given by

G(t) = ug(e) + Eola” Dy(e) + F,(300),q7 Dy(t)  (3.3.5)
where uR(t) is a stationary, external input signal
independent of {e(t)}. The second term is a linear,

time invariant feedback term, and the third term is

a feedback element that depends on the current esti-

mate.
Introduce
f(e) = E z{ts8) e(t;8) {3.3.5a)

@) = E 2(t30) @ltse) (3.3.5b)

33.
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where the expectation shall be taken with respect to
{e(+)}, assuming that y(t) and ul(t) are generated
with the feedback '

u(t) = ug() + F(a7 IyCe) + Fylasa Dy(e) (3.3.7)

and that these sequences have reached stationarity.
Tt shall alse be assumed that z(t), (%) and e(t2
are formed from {y{t)}, {u(t)}} according tc Table
2.3, using a time invariant estimate 6, and so that

they have reached stationarity: e{t} = e(t38), etc.

Stationarity can be achieved, and hence the functions
f and € defined only if the linear filters involved
in the generation of {y(t)} and {e(t38)} are
exponentially stable.

Therefore, introduce the area

b, = {eLI—G(Z)Fj(z)—G(z}FZ(e,z) = ¢ = |z} > 11
which consists of all 6 that makes the system (3.3.7),
together with the feedback (3.3.7}, exponentially
stable. In the common case when the term FQ ig lack-
ing this area does not have tonb%nconsidered and can

be replaced in the Squel by R 2P for the RLS and RIV
fg*npfne

metheds and by R a for the RGLS, RMLI and RMLZ
methods.

Introduce alsoc the area Dp, which consists of all @
such tThat the generation of =, @ from v, u 18 exXpo-
nentially stable. This area has relevance only for
RML1 and RML? and consists of

D, * 8] C(z) has all zeroes sirictly outside the

unit circle}




n_+n
Por RLS and RIV let D =R © © and for RGLS, RMLI and
Ng+np+n, P

EMLZ? let DfR .
In order to let the definitions (3.3.4) make sense,
it consequently has to be assumed that
g £ D nDp_.

5 P
Finally, introduce
D, = fa} @(8) invertiblel.
Remark: The assumption on linearity of the system
(3.3.1) and the feedback (3.,3.5) is by nc means cru-
cial. The reason for it is that the notaticn and
the stability concepts are somewhat easier to handle.
Consider now the CDE
§ = R £(0) : (3.3.8a)
R = ale) - R {3.3.8b)

The relationships between the algorithm (3.3.2) -
{(3.3.4) and the ODE (3.3.8) are given by the fol-

lowing theorem,
Theorem 3.1.
Consider the system (3.3.71) with input (3.3.5) and

the algorithm {(3.3.2) - (3.3.4). Suppose that, if

the term Fz(ﬁ;q_1) ig present, it is Lipschitz con-

tinuous in 8. Suppose that {y(t)} satisfies (2.10.11)-
(2.10.14). Suppose also that Ele{t)|FP<= all p > 0.

35.
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a) Then 6(t) » 8% & D_ D Dp 1 Dy with non-zero
probability as t+e only if

1y £(e™y = 0 (3.3.9)

1i) all eigenvalues to

cex)”" %g £{8) (3.3.10)

a=p*
have non-positive real parts -

b} Assume that 6(t) belongs to a compact subset
of D, N D infinitely often w.p.1. Assume that

(8,R) = (0%, G(a%)) (e*€ D;) is a globally. asymp-
totically stable statlonary point of the ODE (3.3.8).
Then

8(t) + 8% w.p.1 as tom,

) Denote

t

Ty = % y(s)

1
Assume that the right-hand side of (3.3.8) is con-
tinucusly differentiable. Benote the solution to (3.3.8)
with initial condition 8= B(t y,R=F~ (t )y at 1= Tt by
Bles 7y, ot Bl 0. Consider the ODE (3.3.8)
linearized around thls solution. Suppose that there
exists a quadpratic Lyapuncv functiom for this linear,
time varying ODE. (See e.g. Brockett (1870)). Let
I be a set of integers, such that inf {t; - le z
= D » 0, where i+3 and i,3€I. Then there exist
K, 8§45 and €0 such that for

€ < € ly(to)x(to)i

O’




we have

P {sup |6{t) - §(r ; T ,e(to),g_l(to)}i > e} g

)
tel T,
t>t
¥r N r
€ =z L v(3) any r » 1 {3.3.11)
€ i=t, -

where N = sup t, which may be =.
tel

Remark. The matrix in (3.3.10) is the system matrix
cf the linear ODE obtained from (3.3.8} by lineari-

zation arcund (8%, G{a*)), of Section 5.2.

Proof, The proof is heyristically outlined in the
previcus section. The formal treaiment is given

in Appendix 1.

Theorem 3.1 can be applied in several ways to the
analysis of the algerithm {2.3.2) -(3,3.,4), and the
analysis of the rest of this report will be based
upon this theorem. The next section contains a dis-

cussion of the applicability of the theorem.

3.4 How to use Theorem 3.1.

It is naturally desirable that the recursive identifi-
cation algorithm has the property that 1t converges
w.p.1 to the "true" parameter value. According to
Theorem 3.1b such a result can be shown if, essen-
tiaily, a certein ODL is globally asymptotically sta-
ble. In many instances this is not the case, and

even if it is, it may be difficult to prove rigor-

ously.

37.
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However, in Section 5 some examples of convergence

results are given.

A simpler, but still very important, task is to de-~

termine the set of possible convergence points.

According to Theorem 3.%a this can be made in two

steps. First the set

D, = {el£(s) = 0}
ig determined. This is done in Section 4 for the
various methods. Then these candidates for limit
values can be tested further, and those values that
yield unstable linearized equations can be elimi-
nated. Such analysis is made in Section 6. IT may
happen that then the resulting set of possible con-
vergence points is empty, and that thus non~conver-

gence of the method has been proved.

The third result of Theorem 3.1c is more technical.
Let us first describe the result intuitively. Sup-
pose that the estimates {6(%€)} are plotted against

the fictitious time T Tigure 3.1.

&

T —
T T
Tto. t

Figure 3.1 The estimates {8(t)} plotied against the

fictitious *tine Ty-
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o Y- -
Flot the solution 8{t, v_ , 8{(t_ ), P Tet }) in the
tg o) o

sane dlagram, Figure 3.7.

3 (0P ty)

~ //’;"-\ /

1

T
)

wd g

Tigure 3.2 The estimates {8(t)} and the solution
AT
a(T,Tt ,a(to),P 1(to}} plotted against

. o . . 0
the fictitious time Tgo

Let I be a set of integers. The probability that
811 points 8(t); t€I simultaneously are within a
certain distance ¢ from the trajectory is then es-
timated in (3.3,11).

Notice that since the sunm
T oy (HF
1

is convergent, the RHS of (3.3.11) can, for fixed ¢,
be chosen arbitrarily small by taking to sufficlently
large. Thus, the theorem states that the trajecto-
ries of the ODE (3.3.8) describe the beshaviour of the
algorithm (3.3.2) - (3.3.2) arbitrarily well for suf-

ficiently large time points.

It should be remarked that, although the proof of

Theorem 3.1c provides an estimate of ¥, it is not prac-
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tically feasible teo use the theorem 1o obfain numeri-
cal bounds for the probability. The estimates are too
crude. The main value of the theorem is that a basic
relationship between the trajectories and the algorithm

is established.

In Ljung (1974%a) it is discussed how the shape of the
trajectories of (3.3.8) influences the behaviour of
(3.3.2) - (3.3.4), rate of convergence, =tc. Numeri-
cal solution of (3.3.8) therefore is a very valuable
complement to simulation of the algorithm. Examples

of this are given in Section 6.
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|
;
; 4. UNIQUENESS

4.1 Introduction.

It was shown in Sectionm 3 that the possibtle convergence

points for the recursive algorithms are the sclutions

of the equation

- *, - *
E z(t;86 Jelt;8°) = O ) (u,1.1)

Tn this section the purpose will be to examine the num-
ber of solutions of (4.1.1) for the different methods.

It is generally assumed that the process is operating in
open ioop. To analyse systems operating in ciosed lcop it
might be necessary to know the [eedback laws.

The questiocn whether there is a unique solution for the
recursive identification methods is very closely related
to the same question for the corresponding off-line
methods. The guestion is treated e.g. in Sbderstrém {1972,
1973a) and Astrém - S8derstrém {197L) for different off-
1ine methods and the results in these references will be

strongly utilized.

For all the methods (i.e. RLS, RGLE, RIV, RMLI, RML?) it
is seen that the true parameter vector 0 is a solution
of (4#.1.1), i.e.

r Z(t;eo)g(t;eg) = 0 {(4.1.2)

The interesting question is thus if eq. (4.1.1) has more

solutions than BO.
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4,2 The RLE method.

Since the RLS method is equivalent to the off-line
LS method, it follews from a well-known analysis that
the result cof this methed is unique. A straightfor-
ward analysis of {(4.1.1) would be to rewrite it as

8 = E @(1)e(t36*%) = E @(t)[y(t)-w(t) 6%}

£ o) lotH)Te_+ e()-o(t)To %]

£ o(o)ee) 1o _~*] (4.2.1)

This is a system of linear equations, and due to assump-
tions made in Section 3, (here essentially open loop
cperation + stationary processes) it implies that

E @(t)p(t)T is positive definite and thus non-singular.
This shows that 6* = eé is the only sclution.

4.3 The RGLS method.

The analysis of the RELS method given in the following
lemma shows that in some cases (4.1.1) can have several

solutions.

For the RGLS3 method eq. (4.1.1) becomes twe systems of
equations, namely (cf (2.3.1) - (2.3.13)).

1
Lo ]

E 21(t;6*)51(t;6*)
(4.3.1)

1
D

E e (t;0%)0,(t;8%)
Lemma 4.1 The equations (4.,3.1) can eguivalently be
written as

vtoa(s*y = 0 (4.3.2)

"In the following &1 ¥(8) and V' (0) will both be used
to denote the derivative of V with respect toc & (ana-

logously for other functions).
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. %y, . T
where the function V(8 ) is given by

vie™y = L E eo?y e = argThexa v -

- B*(q_1)C*(q—1)u(t) (4.3.3)

Proof, It is easy to see that

£,0t30%) = A¥(qTDIC* (a7 Dy () 1-Bx g D Ier(a Hut)Ts ece)
5,030 = cx(a har@ Dy -Brg Du)] = (n)
Moreover

U, 0%) 2 B e(f) e' (1)

Now

etoult) = [0%(q Dy lt-1). 0% (q™ Dy le-n d=0* (g Dutt-1). .
- o*(q” Dulton, 3% (g7 Dy (e-1)=B5 (g Dult-1)1..
{a*(q" Dy tt-n_)-B*(q" Dult-n )}
= [~cpq(t;a*}T: - mzct;e*)T]

and the assertion of the lemma easily follows.

G

Remark. The function V(69 piven by (4.3.3) has the
following interpretation. The off-line GLS method
can be interpreted as a special way of minimizing the
function re’(t), see Siderstrdm (1972). V(&*) is an

asymptotic normalized version of this loss funetion.

+The polynomials associated with the parameter vector

* * * . : -
8 are denoted by A*, B and C ., This conventicn is also

used in the forthcoming proof of Lemma b.2.
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Corr Suppose that the system is controllable and
that the input signal is persistently exciting of
order (na+nb)' Then there are two constants 5, and
81, 0 < 81 < SO < =« gych that

i) if the signal-to-noise ratio S satisfies 55 ¢ S,
then 8* = 8 is the only solution of (¥.3.1),

ii) 1f 8 satisfies 0 < § < S, then {4,3.2) has
multiple sclutions. -

Proof: The proof follows immediately from the analy-
sis of equation (4.3.2) made in S&derstrsdm (1872).

o

4.4 The RIV method.

The analysis of the RIV method is almost a repetition

of Section #.2. The equation (4.1.1) can be written as
0= F 2(t38%)5(t;0%) = E 2{t;6™) [y(ti-u(t) 8*] =

= E 2050 w00 To_+e(t)mp(t)To*] =

[E Z(t;0%)0(t) 1o _~0*] = a(0*)(0_-e%) (4.4.1)

The procedure has degenerated in some way if G(©™ becomes
singular. If only solutions of {(L4.1.1) such that G(8™)
is non-singular is considered, it is clear that e*:eo

is the only solution. This does not prevent (4.1.1)

from alsc having other soluticns in some cases. However,
since it is possible to test on singularity of G during

the identification, an examination of such sclutions is

of minor interest.
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Remark. Motice that it is important that the system ope-

- *
rates in open loop. For closed loop systems E(z(t;8 Je(t))kD
in general, unless e(t} is white noise. This means that in

such a case BO is not a possible convergence point.

4,5, The RMLI method,

It is not easy to give a complete analysis of equation
(4.1.1) for the RML1 method. An independent analysis of
this method is given in Astrdm ¢(197&). Some partial ve-
sults are given in the following lemma.

Lemma #.2 TIn each of the following cases sufficient
conditions for & to be the unigque solution of (4.1.1}

are given.

i) Consider ARMA précesses, i.e, A(q_1)y(t)=C(q"1)e(t).
Then 8% = q}follows.

ii) Assume that the input signal is persistently
exciting of order (n_+n,). Then there is a
constant S1 such that if the signal-to-noise
ratio 5 « 51, then 8% = 8 follows.

Proof

Part i) is proved as follows. The equation (#.1.1) can

be written as

-1 -1
Boy(e-q) AL _0CQ D) ey -0 45 i en

atg"Herig™h i &

(k.5.1)
-1 -1 -1
£ A _D grpogy 8200 0 ) o) 20 1< ke,
Cx(gq” ") A(g "JCx{gq )

It may be possible that A¥ and C* have common factors.

For this reascn introduce new polynomiais A, T and D by
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"
i ]
=]

AX

o
[}

o =

where A and € are relatively prime and D is a unitary

polynomial B(z) = 1 + dyzt...

Then the eguations (#.5.1) can be rewritten as

r 1 [ -1
1 5@...55 “*“ﬁ;%Q%”—%T—e(t—ﬂ)
c . 1 Alg 'IC(q "} _
. . : O PO
. ) 5 . : A _1)§( _1) e(t)=0
—_—— it Tleo Alg "XClg D)
1 a . a- ’
1 n
£ a.
. -1
1., A —E9 ) e(tn_ )
n, A(q_1)ﬁ(q_1) a c~

It fellows from the theory of resultants, see e.g.
van der Waerden (1937} that the matrix with dimen-

ions +n n_) has rank n_+n_. Thus
51 (ng DC)(na+nc) atng hu

E ———9$l—————-e(t -1) 513__225;7__ e(t) = 0 lsjen +h
A{q ")C(g ) A{q J)C(g

which can be written as integrals around the unit

circle as

=, =1 -1 .
1 Cc{z) Az JC(=z ) 3 d=z . -
r § = T E— z° — = 0 1gj¢n_+n
28T a(z)B(2) Az Tz ) z & e

Note that the Function A(z” )c(z~ N/atz"113¢z™h

also can be written as & fraction between twe poly-
nemials in z and of degree (na+ﬁc). Then it folilows from
Astrém-SBderstrdm (1974) first that

Az Heehraz"hee™h = 1




and then that this implies

A¥{(z) = A(z), C*(z) = C(z)

Part 1i) of the lemma follows from theorems proved
in S&derstrdm (1972},

4.6 The RML? method.

The analysis of equaticn (4.1.1) for the RML? method
consists of two steps. The first step is fo realise
gxl8FI=0

where V(8*} is a loss function. This loss function

1
that this equation can be rewritten as V

has in fact been studied in S&derstrdm (1873a) and
Astrém-S8derstr8m (1974) and some results on the

unigqueness of the RML?2 method are then easily cbtained.

Lemma 4.3 The equation (4.71.1) can be equivalently

expressed as

b7,

Ve (8%) = 0 (h.6,1)
where
I -1
VEe¥) = 5 B oe()?y el = AN oy - BME Dy,
c*(q" ICED
(3.6.2)

r
Proof Since ¥ e*(e*) = E s(t}e'e*(t) it is suffi-

cient to show that @(t;e*) :—E'B*(t)- However, this

can be shown by straightforward calculations, cf
Astrsn-Bohlin (16653,




Corr 1 Consider the case of ARMA Drocesses, i.e.

nb=D.
Then 8% = GD is the unique solution of (4.6.1).

Proof See Astrdm-Séderstrdm {(1574),
o

Corr 2 Assume that the input signal is persistently
exciting of order (na+nb). Then there exist two

constants S, and R 0 < 8y < So < = guch that

i) if the signal-to-noise ratic 5 Is larger than

S, then 8* = %Dis the only solution of (4.8.1)

ii) if 5 is smaller than 3, then g* - g,is the
only solution of (#.6.2).

Proocf See S&derstrém (19873a).

4,7 Summary of the secticn.

The obtained results are now summarized in Table 4.7%.

It is generally assumed that the process is operating

in open loop and that the input signal is persistently
exciting of a proper order and that only points giving
a non-singular 6{(#) matrix arve of interest. Let S

denote the signal-to-noise ratio.
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Method Sufficient conditions for | Sufficient conditions
a unique solution for multiple solutions
RLS No additional conditions There are never nul-
are needed tiple sclutions
RGELS S »» 1 S << 4
RIV No additional conditions There are never mul-
are needed tiple solutions
RMLA i) ARMA processes (Not examined}
or 1i) 8 << 1
or iii) na:nb:nczl and
u{t) white noise, see
Astrdm (1974)
RML2 i) ARMA processes (Not examined)
or i1} 5 << 1
or 1ii}) S => 1

Table 4.1

Summary of the resiits of Section 4,
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5. CONVERGENCE

5.1 Introduction.

The purpose of this section is to further analyse the
ordinary differential equations introduced in Section
3. The staticonary peints were examined in Section U,
Stability of these points will now be considered. The

differential equations are written as

D
i

R™E(8)

(5.1.1)
R =ge) -R

The stationary points are determined by the solutions

of f¢(&*¥) = 0 and then alsc characterized by R = G(&*).

In Section 5.2 the equations (5.1.1) are linearized

around stationary points. In the following Sections
5.3 - 5.7 linearization is applled to the different

recursive identification methods. Thus the possible
convergence points according to the analysis of Sec=
tion &% can be tested further. In Section 5.8 global
stability is considered and finally in Secticn 5.9 a

summary of the results in this section is given.

5.2 Linearization.

Introduce r = ccl{R}), i.e. let r be & column vector
containing the elements of R. If R is symmetric then

it is sufficient to include equal elements once.

When the system (5.1.1) 1s linearized arcund a sta-

tionary point (G*T,r*i)Tit becomes
s A A - p*

a %m0 Lt T B0 (5.2.1)
J— J—

dt |r r Agy Ags T r
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It is easy to see that

_‘] '
Ayq = G{a*)y £ a(e*)

Apq = L collsie)]

da B=g%*
A22 = -I
To derive the expression for A12,utilize f(e*) = 0,

Thus the matrix becomes triangular and the stability
is determined by the eigenvalues of the matrix

1

A = G(e*)” £ tex) (5.2.2)

For a general stationary point

£ (e%) = E's (t;0%Je(t;8™®) + F Z(t;e*)Eé (t;8%)
(5,2,3)
Consider now in particular the true parameter vector.
Tt will be allowed that the system is operating in
closed loop. Adaptive systems where the regulator
depends on the estimates will also be inciuded in the

analysis.

For linearization around 6, the first term will vanish.
For the methods RLS, RGLS, RML1 and RML? this follows
since then g(t;eo): e{t}) and the matrix Z'e(t;eo) de-
pends only con older values of the nolse and eventually
on an independent input signai. For the RIV method
the residual ={t;s, ) becomes egqual to the noise
H(q_?)e(t), while the matrix E'e(t;eo)contains only
elements depending on the input signal. If for this

methed the additional assuwption of open loop opera-

tion is made then the first term of (5.7.3) vanishes.
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Some cauticn has to be taken in the intevpretation of

a'e (tie*) for adaptive systems. Let the regulator

be written as
u(t) = ~Fa(ex” Dyt (5.2.4)
The cases when the regulator depends explicitly on

also older estimates is straightforwardly cobtained by

generalization. With use of (5.2.4} the stationary residuals

can be written symbolically as

e(t;9,F(8))

and they obviously depend on 6 Dboth explicitly ,and
implicitly via the regulator. Thus the derivative

written in a symbeolic way becomes

B1L(£38) = am TCE30,7€0)) + % F(t30,F(8)) -F :
£ 8 H —-s'-ﬁ-E sy B_FE ,O, 8 ﬁ (5.2.u)
HBowever, since E(t;eO,F(BO)) is pure noise, {(in fact

the white noise e(t) for all methods but RIV and equal
to the noise H(q_l)e(t) for RIV) and thus independent

of I,it follows that the second term in (5.2.5) cap be

drepped when linearization arocund g, is made,

To summarize, for the true parameter vector 6, the
: . *
matrix A becomes (with 0 =6 )

1

A= [T Z(t;8*)@(t;8%)] " E Z{t;a*)%g E(t;8%) (5.2.8)

The only restricticn has to be made for the RIV
method, for which it is assumed that the process

is operating in open loop or that H(q_l}:]_

In the following sections the matrix A will he

examined for the different methods.
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5.3 The RLS method.

It i1s known from Sectionm 4.2 that 8* = 8,1z the only
stationary point. Thus the matrix A is always given
by (5.2.6). Moreover for the RLS method

Zltyex) = pltye*) = @(t)

{(5.3.1)
g% (ti0%) = - (0
A= o1 (5.3.2)

Thus 8,1is a stable solutioen of the ODE. Moreover,
all the eigenvalues of A are in -1 and they are not

coupled.

5.4 The RGLE methed.

For the RGLS method the analysis becomes more dif-
ficult. First there will be two systems cf the
form (5.1.1) to consider, and these two systems

are coupled., The analog of (5.2.,1) will be

- _g %
8,-8,% | ¢ o 04-0,
- * - *
4 18y A oo 8,0, )
T l— — = | - - = = = = {5.4.,1)
P1—r1* X x!-l 0 r1—r1*
rz—r?* X xl 0 -I rzwrz*

The blecks marked x are without interest when the

stability is examined. The stability 1s entirely

determined by the properties of the matrix A,
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The matrix A can be written as

]

3 - - T, - - -t
[E (3800, (£32m 71T EE @y (eo®e,, (£58%) +

¢ -_
A = + E @ {ti8%)e, (t;8%)}
Te ! (5.%.2)

- - - - - 1
[E mz(t;e*)mztt;e*)T] 1{E w2(t;a*)sz o (tie*) +

-_ 1 -
+ L @, 4 (t;e*}eg(t;e*)}

But, see Section 4.3,
Eq(t;e*) = Ez(t;B*)

-t = T - T
€1 g (t;0%) = [-@q(£38%) P, {t30%37]

Utiltizing these relations the matrix A can be written as

-I -{E 51(t59*)<51(t58*)T]_1E L‘a1(t;e*)¢)2(t;e*)T-
A=
L(E 3, (650008, (+305)T17TE §,(130%08, (x50 -1
- — £ —_— 1 —_
[E &, (£36%)8, (t36%)717E @ o (£38%)5,(t30%)
+
—_ _— - — ! -
& B,0t36%)8, (13050117 E B, o (13007, (t50%)]

(5.4.3)

Consider first the true parameter vector & . Then the

second matrix in (5.4.3} will vanish.

Lemma 5.1 The matrix A, given by (5.4.3) and evaluated

at the true parameter vector 8, has all eigenvalues

strictly inside the left haif plane.
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Proof Introduce the square matrix G by

G eqlEs0 . .
Q = =k Loy (t380)7 @y (e Y]
T -
S0 Q22 @ (t38,)
This matrix is positive definite. Introduce the matrix
Qpq By

3 172 = 172
Qs = Qqy Q2 Q9

Thus

Q =
el T 172
o Q2 " ||Q1z2 1 0 Qo

Thus the matrix in the middle must be positive definite

and in particular the matrix

as well.

jow, the matrix A can be written as

I "y Qy
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The characteristic equation of A is then examined as
follows. Assume for simplicity that n_+n zn, (the

opposite case can be treated analogously)

-1
sT+ T Q4 "0,

0 = det(sI-A) = det -1 T
Q22 le sI + I

- -1. T_1 -1 -1
= det[(s+113T in ]det[(s+1}in -0, Q1 TiTon +n Q4 Q12}
a’ b c a b

na-i-nb—n

-1/25 ?/2]

=(5+1} Cget[(s+1)°T - Qs 12T§¢2Q22

n_+n,-n
S(s+1) & D

[« ? = Tz
detI(g+1)Y°I - Q12 Q12}
Let now the matrix I - 5?21512 have eigenvalues

0 < X, g 12,_. £ A s which are positive due to pre-
1 Tig .

vious conclusions. The matrix A has obviously

n_+n -n_ eigenvalues in -1 and the remaining 7n_, are

given by
2 _ .
{s+1)° - 1 + Ai =0 1% 1€,
or
s = -1 x ¥i-A, 1 ¢ i< n
c

which all have strictly negative real parts. This

proves the lemma.
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Assume now in the rest of this section that the process
is operating in open locp. It was found fhat there

are other stationary points when the signal-to-noise
ratio S is very smail. The proof,given in S&derstrém
(1872), showsthe existence of stationary polints satis-
fying

A% (2)C*(2) = A(z)C(z) + O(S)' (5.1.14)
which e.g. is obtained as

A*(z) = C{z) + O(8)

C*(z) A{z) + O(3»

Tt will now be analysed if points of this type will

correspond to stable staticnary solutions of the ODE.

Quite generally

—y(e=2).... .. -y(t-nc~1)
é118(t59) . o wy(t—na—l)...--y(t—na—nc)
ul{t-2)....., u{t-n -1)
. s
u(t—nb—l)....u(thnb—nc)
—y(t=23.0...0, —y(t-n_-1¥,u{t-2}....... ult-n,_-1)
- 1 =3 b
9g B(t',e) = :
—y(t—nc-l)...—y(t—namnc),u{t—nc—l)...u(t—nb—nc)

Tor points satisfying (5.%.4)

e (t38%) = £ (f38%) = e(t) + 0(8)
1 2

$The terms G(8) tend *to zero as S, i.e. S_lO(S) is bounded

when S > 0.
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Clearly

11
e}

E 61'e(t;e)e(t) =03 E 52;(t;6)e(t)

After some inspection it can also be seen that the
relative change from the case 8* = 6,0f The matrix
elements in A is of order 8. This means that if 8

is sufficiently small, then the eigenvalues of A will
remain in the left hand plane and the solution of

the ODE will be stable.

5.5 The RIV methed.

The analysis of the RIV is almost a repetition of

Section 5.3. Since

2B (pip%) = - pleye*)

as)

it is easily concluded that

A=-1 _ {(5.5.1)

and stability is proved.

5.6 The RML1 method.

For this method it is difficult to analyse A in the
general case. This difficulty is not only a technical
problem because it will be shown that sometimes the
true parameter vector is an unstable sclution to the
ODE. The analysis will be limited to simple prccesses

and specific numerical examples.

Example 5.6.%1 Consider the case of a pure moving ave-
rage, i.e. when conly C-parameters are to be estimated.

Then the matrix A becomes,evaluated for the true




parameter vector (the only stationary point, see Sec-

tion 4.5)

e(t=-1) e(t-1)
Ae e} e .eeea ¥ EL 0T
e(t—nc) e(t-nc)
1 1
. — e(t-1) .. ——— e(t-n_)
cg™h ceg™ e

=

1
-1

w

-

= . (5.6.1}

B
»
B
i
iy

The elements below the diagonal are without interest

in determining the stabillty properties. It is seen
that the matrix A has all eigenvalues in -1, Note, how-
ever, that in contrast to {(5.2.1) and {5.5.1) the
eigenvalues are ccupled. This may mean that the expec-

ted convergence rate is slow for the RML1 method.
’ o

Example §,6.2 Consider a first-order ARMA process, i.e.
y(t) + a y(t-1) = e(t} + ¢ e(t=1}
Then the matrix A becomes (evaluated at the true para-

meter vector, which is the only stationary point due
to Lemma 4.2)

A= [ D iy cmnece-n BTG |- e,

=
¢lq "

e{t-171] (5.6.2)
)




60.

Straightforward, but somewhat tedious calculations,
lead to the explicit form

- 0{1-62)
c - a c-al)(1~ac
A =
a = 2c + ac2
c - a c-al){1-ac

which has eigenvalues in -1 and in - T_;TEE « Thus
8,18 a stable solution to the ODE in this case.

It will now be shown that there exist systems, however,
such that the matrix A, evaluated at the true parameter
vector, will have eigenvalues with positive real parts.
This means that for thege systems the true parameter
vector is an unstable solution toc the ODE, and that the
correspending recursive algorithm cannot converge o
the true value. To constryuct such systems, Ljung-
Stderstrim-Gustavsson {1974), consider

A= LE Z(30%) §lt30%)17 1 E Z(t;0%) 2 I(tje%)

38
where
S E0t;0%) = By = E[?(t-l),...,§<t~na),—$<t—1),...,
—S(t-nb),—éft—l),..,-é(f—nc)]T
with

N

¢ @™y = v ¥ H¥e = uiers e* o ¥y - e(t)
Furthermore z(t;6*) = @(t;e*) for RML1

(Here it has been assumed that the generation of u(t)

does not depend on 6(+t). This assumption does not
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hold for adaptive regulators of various types.)
Hence

E z{t;8%*) 5% S(tye%) = E @(t;o*)%(t;e*)

It follows that

tr L E(38%) 5p E(1je%) = n =B y(OF0T + n I-E u(¥e)] +

+ o [-E e(£)&(1)]
Assume that {u(t)} is white noise independent of the

noise and with variance 1, and that [ e2(t}=l. Then

the covariances are given by, Astrdm (1970},

E (i) = oo g 10 MEILER
» . {5.6.3}
ek 6 ol [ sl
E ul()d(t) = E e()8(t) = 1
Hence
te B Z(630%) s I(t58%) = -(npenl) - ong B y(0¥(E)

The point is now that E y(t);(t) can be made negative,
As seen from (5.6.3), this may be achieved if C{z) is
chosen sc¢ that

Re C{z_ ) < 0 some zo;lzol = 1 and if [Alz )| is smail.

By taking |A(z )] sufficiently small, the trace will be

positive and hence

L z(t;8%) 5% g{tia*)

Trhe integration path in (5.6.3) 1s the unit circle.




62.

has at least one positive eigenvalue. The eigenvalues
of A can then be checked by calculation. The same pro-

cedure also &pplies for ARMA-processes with ng=0.

Example 5.6.3. For the system

y(t) + 0.9y(t=1) + 0.95y(t-2) = ul{t-1) + el(t) + 1.5e{t-1) +
+ 0.75e(t-2) (5.6.4)
the matrix

— a -
E z(t;g*) e e(t;0%)
has the eigenvalues (-3.081%24.2391, 0.864, 1.116, 1),
and A has the eigenvalues (0.162%1.3831i, -1, -1, -1} if
ul(t) is white noise of unit variance. Simulations of
this system are given in Johannesson-Wesstrdm (1974).

=]

Example 5.6.4. The ARMA-process

yit) + 8.9y{t-1) + CG.95y(t-2) = e(t) + 1.5e(t-1) +

+ 0.75e{t-2) (5.6,5)
yields the eigenvalues of

E Z{t;a*) -é% E(L38%)

(0.772, 1.152, -1.177%£8.2851) and the eigenvalues of A
(0.162£1.3831, -1, -1). Simulations of this process
are given in Section £.3.

[n}
According to Thecrem 3.1 the algorithm (2.5.5)-(2.5.8)
will with probability cone not converge to the true para-

meter vector when applied to (5.6.4) or (5.6.5}). This

i
i
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holds alsco for the stochastic approximation variant de-
; scribed in Section 2.7. In fact, for (5.8.5) it can be
shown that 6(t) will not converge to any finite 1imit

, at ali,

One might ask why this phenomenon has not been revealed
previously, in spite of the rather extensive simulations
made. One reason evidently is that a randomly picked

low-order system has rather small probability of having an

unstable ODE. The counterexamples have- been consiructed
with care, and many conditions must be satisfisd for a

second-order system in ovder to make
tr E z{t;o%) 5% g{tis*) > 0O

i It is also important to neotice that Theorem 3.1 in con-
@ nection with the examples 5.6.3 and 5.6.4% show that the
convergence theorems in Panuska (1968) and Kashyap (197h)

are not correct.

5.7 The RMLZ? method.

Consider now the RML2 method. TFor this method

Elt;o%) = pltia*)
(5.7.1)

a
5l

l

(t30%) =-@(t;0%)

L]
(e

This means that for the true parameter vector BO the

matrix A becomes

A = -1

’ Thus §,1s a stable solution of the ODE. Also note that

in contrast to the RMLY method there is no coupling

between the different eipenvalues.
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5.8 Clobai stability.

It is in fact possible to make some analysis concerning
the global stability properties. The analysis is carried
out for the RML? method. It is also valid for the RLS
and the RGLS methods. Note, however, that it is already
well known that eo is globally stable for the RLS meth-
od.

According to Theorem 3.1 global asymptotic stability for
the solution &{(1) = 9, of the ODE (5.1.1) implies, to-
gether with some additional conditions, convergence with
probability one for the algorithm to the true parameter
values. It will be shown that there exists a Lyapunov
function that assures stability for the CDE (5,1.1)y. Con-

sider the function (r defined in Section 5.2)
V(o,r) = & B 215007 (5.8.1)

This function clearly is positive definite. Moreover, its

time derivative satisfies

Yia,0) = 7' (o, r)b + V;(e—,r)% =

g
- [E St30)EL (68 IR B TC50)3(Es0)
Since

ealtse) = —o (t;e)

it follows that

U(o,r) = —£(8)R £(8) (5.8.2)




Since only vegions where R is positive definite are of
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interest, it is clear that V is nepative definite as long

as there is a unique stationary peint, i.e. when

flegl) =

has a unique solution.

Sufficient conditions for this

to be true were given in Section 4.6 for the open lcop

‘case,

5.9

Summary of the section.

The analysis made in Section 5 is now summarized.

In

Table 5.1 sufficient conditions for 8, to be a stable

peint are given, Note that it 1s generally assumed that

the process may operate in closed loop or even that the

regulator may depend on the parameter estimates.

Method | Sufficient conditions Supplementary charac-
for local stability of SO teristics

RLS always stable all eigenvalues of A

in =1 and decoupled

RGLS always stable —_—

RIV if the process is opera- |all eigenvalues of A
ting in open loop %)is in -1 and coupled
always stable :

RMLA1 stable for MA process and|all eigenvalues of A
for first-order ARMA pro-|in -1 and coupled
cesses
unstable for some pro-
cesses

RML2 always stable all eigenvalues of A

in -1 and decoupled

Table 5.1

Results of local stability for IR
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In Secticn 4 it was shown that the RELS method has

other staticnary points when the signal-to-noise ratio
is very small. It has been proved that there are such
points which alsc are stable. Other stationary points

that are unstable may perhaps exist.

Global stability was treated for the methods RLE, RGL3
and RMLZ. It was shown that 8 was a globally gtable
point when the corresponding loss function I e (t) has
a unigue local minimum in BO. Hence, according to Theo-
rem 3.1 if 6(t) belongs to a compact subset of D_ A Dp
infinitely often w.p.l, this implies that 8(%t) converges
to 8 w.p.l as t tends to infinity. Notice that the re-
quirement that the loss function has & unique local mi-
nimum in fact is required also to assure convergence fo
BO for the covrespending off-line methods. An important
consequence of Seotion 5.8 thus is that the convergence
(consistency) properties of the ML-method do not dete-
riorate when it is approximated by the recursive RML2
method. On the other hand, the RML1 method has worse

consistency properties than the off-line method.

For processes operating in open locop sufficient condi-
tions for a tanique local minimum of the loss function
were derived in Section #. For the RLS method 68 isg

always a global, stable solution due +o the assumption

that the matrix € is nonsingular.
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6. NUMERICAL EXAMPLES.

The five recursive identiflcation methods considered

in this report have also been subject to extensive si-
mulations. In this section some of the typical results
obtained are presented. The methods are compared and the
influence of the cholce of the tTime dependence of the
weighting factor and of the signal-to-noise ratio is
discussed in Section 6.%. In Section 6.2 the ODEs asso-
ciated with the algorithms are studied by simulation of
the ODEs. In Section 6.3 a counterexample to the gene-
ral convergence of the RML1l method 1s presented. Seve-
ral of the results in this section were originally pre-
sented in the Master Thesis, Johannesson - Wesstrdm
(19743,

6.1 Results of simulations.

For the methods considered in this report different mo-
del structures are postulated in order to treat the
question of convergence and consistency. It has been
generally assumed that the system has a proper (i.e.
corresponding) structure. In the simuiations, however,
one of the main purposes is to compare the behaviour

of the alporithms for a given system. Therefore it is
in this section in general assumed that the system is

described by

-1 1. . -1
g Ty(t} = B(q ulf) + Clg ety (6.1.13
In order to get a good fit alsc models with a higher

order than the true system will be tried for the RLS

method. Similarly the degree of the é—polynomial for
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the RGLS method was chosen higher than the degree of C.

Results of identification of simulated data from the

following systems are presented,

lst order system

Ag™H) =1 - 0.8¢""
-1, . -1
B(q ") = 1.0q (5.1.2)
ctq™h = 1+ 0.797t )
2nd order system
A(q_l) =1 - 1.5 1+ 0.7q_2
B(qg" ) = 1.0 1 + 0.5q7"° (5.1.3)
clq™y = 1 - 1.0g7t ¥ 0.2q7?
ird opder system (only the RML1l and RML2 methods)
Ata™dy = 1 - 1.6007F ¢ 1.61q7% - 0.778q7°
B(q™ %) = 1.2047% - 0.95¢"7 + p.200q"° (5.1.4)
cq™ty =1+ 0.10g9" 1 + 0.25q'2 + 0.873g7°

In order to test the RLS and RELS alpgorithms simulations
have also been performed using the same structure for the
system and the model. These results are, however, not re-
viewed here but showed that the algorithms had expected

properties.

The input signal has been chosen as a pseudo random bi-
nary sequence (PRBS) of period 127 with the bit interval
equal the sampling intervael or the same signal with the
bit interval ten times the sampling interwval. In the fol-
lowing only results using the first input signal are pre-

sented, since in general this input signal gave the best

accuracy, The noise e(t) was generated by & random number
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generator, producing a normally distributed sequence with
a mean value of zero and a variance of one. The amplitude
of the input was cheosen so that the signal-to-ncise ratio,
S, at system output was either 1 or 10 for each simula-

tion. S is here defined by
. 2 ?
S = By (t)7/E ¥,it)
where
' Blq~h)
. yl(t} = ——9:7— u(t)
Alg )
andc
cig™h
v, (t) = —d== e(t)
Alg 7}

The weighting factor gccording to (2.11.4)
A+l = a2 (8) ¢ (133

has been varied in order to study the influence on the

» convergence rate., Different choices of A and 2(0) have
been studied. For the results presented here A(t) was
put egual to one for the RLS and RIV methods. The initial
value of P has been chosen as 100-T and 8{0)} as zero when

nothing eise is stated.

The results given in the following are the averages of

10 runs of 2000 data points each. In addition an estimate

of the standard deviation based on those ten runs is pgi-
ven. All the simulations veviewed in this section were

carried out on UNIVAC 1108.

In order to compare the results not only by studying the
parameter estimates three different measures of the ac-
curacy are used, of. Stderstrdm - Liung - Gustavsson

(1374,
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(1) v, (8) = E e(t)?

The function Vlfé) expresses the variance of the one
step prediction errors that will be obtained using
the model. For methods giving efficient estimates
the expected value of ¥, is 1+p/N, where p is the

number of estimated parameters and N the nunber of

samples.
2. =1 -1
(i) vy8) = B (B - Bla ) ween1?
Alg T Alg )

The function Vz(é) expresses how well the model de-
scribes the deterministic part of the system. If the

input signal u(t) is white noise then

Al < _ 2
(8) -izl(hi Ehi)

™M

2

where h, (ﬁi} is the discrete-time pulse response of

the system (resp. the model}.

(iii) Assume that the model is used for construction of a
minimum variance regulator, cf Astrtm (1870). Suppose
that the true system is controlled by this regulator
and take

va{ﬁ} = E yz(‘t)

The regulator is given by

- peo-1
u(t) = - v{t)
Thus the closed loop system will be

[3ea Heta Hrtata Dt H-Ag Hae vy =

- B(q e Hen
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If the system and the model contain a larger delay

the equations will have a more complicated form.

These functions can be used for measuring the accuracy

of & by considering the scalar
) i=1,2,3

In interpreting the results notice that the RLS and RIV
methods only estimate the parameters of the polynomials
A and B and that the RLS and RGLS methods give biased

estimates for the systems considered,

The results cbtained for the five different methods are
degeribed in Sections 6.1.1 - 6.1.5. Appendix 2 contains
some supplementary results. TIn Section 6.1.6 a compa-

rison between the methods is made.

In 3ections 6.1.1 - 6.1.5 the methods are illustrated

with plots of the estimates for one of the realizations.

In the text for the figures and the tables the following

notations are used,

e} S denotes the system
o I denotes the identification method used

o M denotes the model structure, which will be specified
with the integers ﬂa, ﬁb and (possibly) ﬁc. The cap
iz used to dencte that these integers may not be the

same as n_, n and n, regpectively.

b

In the figures the true values of the parameters are given

by dashed lines.
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6.1.1. The RLS method.

The RLS algorithm has been used to estimate the -para-
meters of models of different orders for the first and
second order systems (6.1.2) and (6.1.3). The numeriecal
results are summarized in Tables AZ.Z - AZ.8 in Appen-
dix ?. In Figure 6.1.1 the estimates for one of the
realizations of the first order system are shown. In
Figure 6.1.2 one of the realizations of the second order

system is illustrated.

15

1Ol B - b
05

0o

-10

-15

L t
[+

Figure 6.1.1., 38: First order (6.1.2), 8-1

500 1000 500 2000




500 1000 1500

Figure 6.1.2. §: Second order (6.1.3), 35-=10
I: RLS
i na:?b=2

The main conclusions ave:

o For the first order system the estimates are close
to the final estimates after less than 100 samples.
The convergence is somewhat slower for the second

order system. See Figures 6.1.1 and 6.1.2,

o The estimates are biased since the system and the
model have different structures. A high signal-to-
noise ratio reduces the bias, but may be quite sub-
stantial even for a signal-to-noise ratic of 10.
See Table A2.8 and Figure 6.1.72Z.

o ¥ V, and V, decrease in general with increasing

1 "2

number of samples, see Tables AZ.4-AZ.6. Notice,
however, that since the estimates are biased V1 and
V? do net tend to one but to some values greater

than one.

o Tn general V1 and V decrease with increasing or-

3
der of the model. This is not true for V2 which in

2000
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general first decreases and then increases again.
There seem, however, to be several local minima,
whiclr indicates that it is difficult to choose

the order of the model using this oriterion,

o For the second order system the derived minimum
variance strategy often gave an unstable closed-
loop system, which made it impossible to use Va

ag a measure of the accuracy of The model.

6.1.2. ‘The RELS method.

The RCLS method has been used to estimate the parame-
ters of models with different orders of the polynomial
¢ for the first and .second order systems (6.1.2) and
(6.1.3). To improve the transient behaviour of the al-
gorithm it was started up in the following way. For
the first 50 samples no filtering was used. More pre-
cisely, é(q_l) was substituted with 1 in (2.3.3) and
(2.3.9) during this initial phase of the estimation.
The results are summarized in Tables AZ.9-A2.13, In
Figures 6.1.3 and 6.1.4% the estimates are plotted
versus number of samples for one realization of the

first and second order systems respectively.

The main conclusions are:

o Tor the first order system the estimates are close
to the final ones after less than 100 saﬁpies. The
convergence ig considerably slower for the second
order system, particularly for the case 5=1. See
Figures 6.1.3 and 6.1.4 and Tables AZ.3, A2.10,
A2.17 and A?2.13.

o By thecretical considerations it can be concluded

that the estimates 4 and D will be biased. This is
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Figure 6.1.3. §: First order (6.1.2), S=1
I: RGLS

M: n_=f.=n =1
a b e

0 500 1600 1500 2000

Tigure 6.2.4. S: Second ovrder (5.1.3), 9=10
I: RGLS

M: A_=n,=n =2
a b ¢
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difficult to establish from the simulalions cnly.
There are, however, indications of bias, see Fi-
gures 6.1.13 and 6.1.14 (cf alsc Section 6.2.2).

o A comparison of V, for different orders of the
polynomial C indicates that V2 in general increases
for model of high orders, indicating that nothing
can be gained by increasing the order of O too

much.

¢ A compariscon of the estimated standard deviations
for a and ﬁ for different orders of the polynomial
€ is shown in Figures 6.1.5 and 6.1.5, The standard
deviations are pgenerally increasing with the order
of C.

&

PARAMETER a

o

.
111

-0.75-

i

=100 =500 - t=2000

105 PARAMETER b

PR—
PR—
L 2|
et
——

Q.95

Figure 6.1.5. Influence of the model structure and the
number of samples on the accuracy of the

estimates. The length of the drawn lines

are twice the standard deviation.
8: First order (5.1.2), S=10
I: RGLS
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-0.85

~080° 42345
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PARAMETER b

Figure 6.1.85.

-
BT

Influence of the model structure and the
number of samples on the accuracy of the

estimates. The length of the drawn lines

the standard deviation.
$: First order (6.1.2), 8=1

are twice
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6.1.3. The RIV method.
. For the RIV method only simulations with a proper mo-
del structure were performed. The effect of varying
the delay t in (2.4.12) has been studied. The results
are summarized in Tables AZ2.14-A2.18. In Figures
6.1.7 and 6.1.8 the estimates are plotted for cne rea-
lizetion of the first and second order systems respec-—
tively.
20 .
04— == ———— b
0.0
—————— a
Aol
: t
-20 ‘
C 500 1000 800 2000
Figure 6.1.7. $8: First order (6.1.2), 8=1
I: RIV '
M: na=nb=;

The main conclusions are:

o The estimates are in general close to the true pa-
rameter values after 100 samples, but there are
runs for which the estimates took guite unreasonable
values, even after 2000 samples, in particular for
the second order system, cf Table AZ.17.

o The value of T seems not tTo be too critical.
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© Since the polynomial € is not estimated, V; and

VS tend te constant values greater than ane.

500 1000 1500

Figure 6.1.8. 8: Second order (6.1.3), S5=10
I: RTV, 727

M na=nb:2

6.1.4%. The RML1 method.

The RMLI method has been used for the estimation of
models for the first, second and third order systems
(6.1.23-{(5.1.4). The results are summarized in Tables
A2.18-A7.23. In Fipures 6.1.9 and 6.1.10 the estimates
are plotted for one realization of the first and second
crder systems respectively. In Table A2,28 the results
for the third order system are given and they are com-
pared to the results oblained by the RML2 method.
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Figure 6.1.%., 8: First order (6.1.2), 8=1
I: RMLL, A(0)=0.85, 2 _=0.89
M ﬁazﬁb=ﬁc=l
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) 500 1000 1500 2000
Figure 6.1.10. $§: Second order (6.1.3), S=10
1: RMLI, x(0)=0.85, AO=O.99
M na:nbzncz2




The main conclusions are:

o In general the choice A(0)=0.85, % =6.99 gives the

best accuracy.

o A larger A(0) implies a slower convergence of the

estimates o4

o For the first order system the estimates a and &
are close to the true values after 100 samples.
The estimate & converges much slower. For the se-
cond crder system the estimates éi and gi also
converge slow, but not so slow as the estipates

Caw
iy

6.1.5. The REML? method.

The RMLZ method has bee; used for the estimation of
models for the same systems as for the RML1 methed.
The results are summarized in Tables A2.2Y4 - A2,27,
In Figures 6.1.11 and 6.1.1% the estimates are plotted
for one realization of the first and second order
systems respectively. TIn Table A2.28 the results for
the third order system are given. They are compaved

to the resultts obtained by the RML1 method.

The main conclusions are:

o In general the cholece 3(0)=0.85, % _=0.399 is good.
Also a(0}=0.88, AOZO.SQ has given good results.

o Faor the first order sysiem the estimates & and b
are close to the true values after 100 samples.
The estimate ¢ converges slower. For the second
orde? system the convergence of the estimates éi

and bj is slower, but still the convergence of

the estimates o is slowest.
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Figure 6.1.11, §: First order (6.1.2), 8=1
T: RML2, 1(0)=0.95, 3_=0.99
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Figure 6.1.12. 3S: Second ovder (6.1.3), 5=10
: RML2, 2(0)=0.95, A _=0.99
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.6. Comparison of the methcds.

In thisg section the five metheds will be compared. In

order to compare the results of the recursive methods

with the most accurate off-line methods, the asymptotic

Cramér-Rao bounds on the standard deviations for diffe-

rent number of samples are given in Table AZ.2¢ for the

first and second order systems (6.1.2) and (56.1.3).

In Figures $.1.13 - 6.1.17 the estimates and their

accuracy are compared for the five methods used. The

Cramér-Ras bounds are also given in these figures.

o

o]

The main conclusions arve:

The RLS and RGLS methods give biased estimates.

The RIV, RML1 and RML? methods often give good
results. Notice, however, that the RIV method

sometimes produces uhacceptable estimates.

In general the RML? method is the most accurate
method.

The RML2 method seems to be superior to the RMLI
method, in particular concerning the estimation

of the parameters of .

For a further comparison between the RML1 and RML2

methods the resultse of the estimation of the para-

meters for the third order system (6.1.4) shown in

Table A2.?8 can be used. The conclusion is that the
RML2 method is better for 508 and 2000 samples but

that the RML1 method often gives better estimates

of the parameters of the polynomials A and B after

160 samples.
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Figure 6.1.13. Comparison between the different methods.
S$: First order (6.1.2), S=1 :

1: RLS, RELS, RIV, RML1 (A(0)=0.85, A_=0.99), |

RMLE? (x{(0)=0.95, AOIG.QQ) and the Cramér-

Rao lower bound (in order from left to right).

M Itla:;lbii. For RGLS, RMLI and RMLZ ‘5():1. !

The length of the lines is twice the standard
deviation.
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Figure B.1.14. Comparison between the different methods.

8: First order {(6.1.2), 5=10
1: RLS, RGLS, RIV, RMLL (A(0)=0.35, A _=0.99),
RMI2 (x(0)=0.95, AOIU.QQ) and the Cramér-—
Rao lower bound (in arder from left to right).
M ﬁazﬁbsl. For RGLS, RMLL and RML2 §_=1.

The lernpgth of the lines 1s twice the standard

deviation.
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Pigure 6.1.15, Comparison between the different methods
using the criterion V2'
$: First order (6.1.2), S=1 and S=10.
T: RLS, RGLS, RIV, RML1, RML? and the Cramér-
Raoc lower bound

M: n_=zh, =1, For RELS, RML1 and RML? 1 =1
a b C
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Figure 6.1.16. Comparizon between the diffevent methods.

8 Second order (6.1.3), 8=1

T: RLS, RGLS, RIV, RMLI (a{0}=0,85, x _=0.99),
RMILZ (1{02=0.85, AG:O.QQ) and the Cramér-

Rao lower bound (in order from left to right),

M A_=n,.=?, For RGLS, RMLI and RML? 1 =7.
2 b ¢

Tho lenpth of the lines 1s twice the standard

deviation.
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Figure 6.1.17, Comparison between the different methods.
S: Second order (6.1.3), S=10
I1: RLS, RGLS, RIV, RML1 (A{0)=0.95, A =0.8%),
RML2 (x(0)=0.85, A 50 99} and the Cram@r—

?ao lower bound (1ﬂ order from left to Plght)
For RGLS, RML1 and RML? n 2. :

The length of the lines is twice the stdndard

M nd—nb 2.
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6.2 Simulations of the ODEs for the different algorithus.

In order to study the asymptotic properties of the diffe-

rent recursive identification algorithms treated in this
report the 0ODEs (3.3.8)

2 r(e)

€T
i

.

R = €¢(8) - R

associated with the algorithms were simulated for the

first order system
-1 Loa-1 -1
(L+ag Dy{t) = bg ~ul(t) + (l+cqg el(t) (6.2.1)

In all simulations in this section it is assumed that
u(t) is white noise with zero mean and variance ouz. It
is alsc assumed that the input signal is independent of
e(t), which is white noise with zero mean and variance

2
o,
The simulations were made possible through the use of an
efficient interactive simulation program package, SIMNON,
see Elmguist {(1875}. They were all run on a PDP/15.

The simulations of the ODEs for the different methods

were carried out for a number of different conditions,

o different signal-to-noise ratios 3

o different systems, in particular different values of ¢
o different initial values a(0), b(G) and &(g).

In the simulations the initial value of the RE-matrix was
generally chosen as the unit matrix. Alsc notice that the
time sgcale in the dlagrams shown is a ficticious time, cf

Lijung (197%a). Let 1 denote the time variable in the ODEs.

Then roughly t= 1In{(t) + constant, if ar=l.




5.2.1. The RLS method.

The complexity of the right hand side
equations in (3.3.8) for this type of
illustrated by the simplest case, the RLS method.

this c¢ase the model is
f -1 s -1
(1+ag Dyt = bg ~ult) + (%)

For the RLES method

z{t) = w(t) [~y(t~1), u(t-131

in (6.2.1) is subst

and if v(i)

(b—%)q_l+(éb—aﬁ)qhz w(s)

e{t}
1+aq_1
Then
£08) = [£ (8), F,(8)]"
1 02
Gll(O) Glz(ﬁ)
G(0) =
621(0) GQ?(S)
and (the integration paths are
Z
oy
fl(e) = Et_y(T—l}F(t}] = - m I
7
a
- &
PEE
2 2
“u (
1—a2
2
. . Ty
fz(ﬁ) = Blu(t-1)e(td] = 5 =

L

of the differential
problem will be
in

(6.2.2)

ituted into (6.2.2)

. (1+ég_1)(11cq_1)

i+ag

e(t)

the unit cirele)

bz ?
itaz
_1 _l ~

z (l+cz ) (l+az){i+cz) dz _
i 1+az z

(b-D)s+(ab-ab)z’ dz _
l+az 4

i

f

l+az

(a—C){l—ac}~§(i+c2—2aC) 2

-a)
1—a2

+

-1 (b-P)z+(ab-ab)a’
T+az

dz
z

(b—b)ou
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o
- 2. _ 2 u bz bz d=
Gllte) = Eiy(t—l) ] = E[y(t) 1 iy 1t 1 1+az =z
2 22
Ye ]_+«:Z_1 l+cz dz b 74 1+c" -Zac 2
Yo =T T¥az Tz 7t 7 e
b l+az i-a 1-a
Glz(ﬁ) = G21{6} = 0
8,,(6) = E[u(t-1>"1 = Elu(t)?] = 5 °

Since for this methed

metric and the system

z{t)=ep(t) the P-matrix will be sym-
of differential equations will be

of fifth order. This can further be reduced to a fourth

order system observing Glz(e) = Gzl(ﬁ) = 0 and when R{0}

is chosen equal to a diagonal matrix, which corresponds

to the practical situation where P(0) is commonly chosen

to be a diagonal matrix. Then

by = i - £148) /Ry
8, = { - £,(8)/R,,
Rip = 643(8) - Ryy
Ryy = 65,(0) = Ryy

with flfe), fz(e), G471

(6.2.3})

{(¢) and G,,(8) given above.

The results of the simulations of the system (6.2.3)

with

az=0.8, b=1, =0, S=1, a(0)=h(0)=0

are presented in Figure §.2.1. The convergence to the

true values is illustrated and it can be seen that the

estimate a converges faster than the estimate b. In
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Figure 5.7.2 the trajectories for the case

| a=-0.8, b=l,

c=0.7, 571, a(0)=h(0)=0

are shown. It is immediately observed that the estimate

a4 will be Biased.

Tigure 6.2.2.

A
1 b
5
0.1
\\ a
1
- 1_-
-2 . . . . . ; . . ; —»T
0. 5. 1
Figure 5.%.1. Trajectories for the RL5 case.
a=-0.8, bsl, c=0, 821, a(0)=h(0)=0
&
1. b
b
0
o
s}
=14
-2: . T T T T . T T g T
0. E 0.

Trajectories for the RLS case.
a=-0.8, b=1l, c=0.7, $=1, a(0)=u(0}=0




a4 .

Qf course the behaviour of the ODE can be illustrated
by phase planes instead. However, when interpreting

the results one must bear in mind that a phase plane -
only relate two variables but that all systems of diffe-
rential equations simulated in this section have a
greater order than two. In Figure 6.2.3 the phase plane
of & and b for the case -

a=-0.8, b=l, c=0, §=1

is given as an example. This illustrates the fact that
for systems with C(qp1)=1 the estimates obtained by the
RLS method always converge to the true values indepen-
dent of the initial values.

-

as

Q- T Y T 1 b

Figure 6.2.3. Phase plane of 4 and b for the RLS method.
a=-0.8, b=1l, ec=0, §=1




5.2.2. The RGLS method.

For the RGLS method two cases are studied:

i) the system is assumed to he

-
1+cq_:L

(1+aq Hy(t) = ba Tu(t) + elt) (6.2.4)

ii) the system is assumed to be (6.2.1)

Case 1) corresponds to a "proper" form of the system
for this method. The model is assumed to be

(1thq” Dyle) = bg lult) + ——

T e(t) (6.2.5)
l+cg

for both cases.

Let us first study casesi). According to Section b,

Table 4.1, a unique solution can be proved to exist for
S=»>1, but multiple sclutions exist if S << 1, The CDE
was first simulated for the case 5=1 to see what happens.
It turned cut that there were two stable solutions in
this case and that it depended on the initial values
which sclution was obtained, cf S8derstrdm (1972). The
results are illustrated by Figures 6.2.4 and 6.2.5,

which show the trajectories for the cases

. A(0Y=A(0)=0
a==0.8, b=i, ©=0.7, $=1, b(0)=0

A(0)=-0.5, (0)=-0.98

Tor the first case the estimates converge to the true
values, for the second case, however, to another peoint,
(2,5,6) = {0.492,0,386,-0.821).

The behaviour of the ODE in this case can also be illu-

strated by phase planes. As an example the phase plane
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&
1 b
[}
a
- - T T T T T T T T % T
z 5. 1

Figure 6.2.4%. Trajectories for the RCLS method, case i).
a=-0.8, b=1, o=0.7, S=1, a(0)=b(B}=4(0)=0

£
14 b
= €
b
0,//’ﬂ7:—_P—_
¢
k a
..1__
B
- T T ¥ T T T T T T BT
?'0. ! 5 10.

Figure 6.2.5. Trajectories for the RGLS method, case i).
a=-0.8, b=1, c=0.7, 8=1, 4(0)=-0.5, b(D)=0,
a(0)=-0.99
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of &4 and ¢ is given in Figure 6.2.6% which clearlg

shows the two convergence points found. In Figure 6.2.7
the corresponding phase plane is 'given for the signal-
to-neoise ratio 5=18, in which case only one convergence
point, the true one, exists.

ah

17

o+

4 é 7 i ";i:‘
Figure 6.2.5. Phase plane of a and & for the RGLS method,
case i}. a=-0.8, b=1, c=0.7, 8=1, bH(0)=0.

T T T T P C

-1. Q. 1
Figure 6.7.7. Phase plane of a and & for the RGLS method,

case i). as-0.8, b=l, £=0.7, 5210, h{0)=0.
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Then consider case ii), which corresponds to the simu-

lations presented in Section 6.1. Only the case
a=-0.8, b=l, 0=0.7, §=1, al0)=b{0)=zc(0)=0

is illustrated, Figure 6.2.8. The asymptotic estimate
is (é,g,é) = (~-0,772,0.989,-0.498) which means that the
estimates & and b will be biased, cf the simulations in
Section 6.2.1. For the case S5<10 the convergence point
is (a,b,c¢) = (-0.796,0.989,-0.474).

F:Y
1 b
<
5 =z
/8
¢
k ~
g a
- a
71
-2 T T T r T T T v T T
0. 5. 10

Figure 6.2.8. Trajectories for the RGLS method, case ii).
a=-0.8, b=1l, o=0.7, 5=1, af(0)=b{0)=a(0)=0

5.2.3. The RIV method.

The different equations corresponding to the RIV algo-
rithm given in Section 2.% were simulated, giving the
results illustrated by Figure 6.2.9. Convergence to the

true values occurs as expected. As a comparison the case




where the instrumental variables all are chosen as

delayed input signal values, i.e.
z(t) = [ul{t-1} u{t-n_-n )1T
. ye s Rty

is studied in TFigure 6.72.10. The convergence rates

seem to bhe approximately the same for this example,

A
14 b
0:
a
—17
-2: T T T T r T = . r —T
0. g, o

Figure 6.2.9. Trajecltories for the RIV method.
22-0.8, b=1, =0.7, $=1, a(0)=b(0)=0

& .
b
14 r‘—-}n___ b
0
a
Q
-4
i
-2 T T T T L~ T ¥ T T T = T
[ 5 .

Fipure 6.2,10. Trajectories for the RIV method using
input signals only as ipstrumental yvariables.

az-0.8, b=i, c=0.7, S=1, a{0i=b{n}=0
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5.2.4. The RML1 and RMLZ? methods.

The simulation of the 'differential equations correspond-
ing to the RML1 and RML? algorithms are exemplified in Figures
6.2.11 and 6.2.12., It is readily observed that the esti-
matz b follows approximately the same trajectory for the

two algorithms. The convergence of the estimate ¢ is much

faster for the RML2 method, possibly in exchange to a

slightly slower convergence of the estimate a. For this

example the convergence of the estimate © is slower than

the convergence of the other estimates. This fact is
highly proncunced if a higher signal-to~noise ratio S

is used.

Err

fa T3
-]

Z: 1 T T T T 7 T g T —PT

0 5. 10.

Figure 6.2.11. Trajectories for the RMLI method,
2a=-0.8, b=1, c=0.7, 5=1, a0)=b(0)=c(0)=0
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b
&
O‘_
& .
-1
-7 T T T T T T T T T T B
“8. B, T

Figure 6.2.1%2. Trajectories for the RML2 method.
a=-0.8, b=1l, c=0.7, S=1, a{0)=b(0)=a(0)=0

5.7.5., Summary.

A relevant gquestion is how well the trajectories for the
estimates as shown in this section describe the real be-

haviour of the algorithms. The trajectories illustrate

the asymptotic behaviour but in practice it turns out
that the simulated trajectories often describe the be-

haviour well also for the first estimates. This is, how-

ever, dependent also on factors which are not taken into

account in the differential equations, such as the weight-

ing factor A{t).
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6§.3. Simulations of a counterexample to general con-

vergence of the RML]1 method.

In this section simulations Ffor the autoregressive-

moving average system (5.6.5)
y(tY+ 0.9y(t-1) + 0.95y(t-2) = e(f) + 1.8e(t-1) +
+ 0.75e(t-2)

are presented. These simulations were exemplified in
Ljung -S8derstrdm - Gustavsson {(1874). The results
using the RML1 metheod will be compared to what is ob-
tained using the RML2 algorithm instead. Alsc the GDE
asscciated with the RML1 estimation problem will be
simulated to give a deeper insight into the asymptotic

properties of the estimates.

In Table 6.3.1 the averaged estimates together with an
estimated standard deviation, based on ten runs with

2000 samples each, are given. Both the RMLI method and
the RMLZ method have been used. The initial values were
chosen in two ways, 8(0)=0, P(28)=100-I and B(D)zeo,
P(0)=0.0005'T respectively. The latter case was simulated
to test if the true parameter vector 6_ is a possible
limit of the estimates 8(t). In all simulations the
weighting factor was chosen as A(03=0.95, AO:O.QQ in
order to allow the estimates te vary sufficiently. If no
weighting factor is used there is a danger thatl the esti-
mates will remain practically unchanged for any reascnable
number of samples, since in such a case K(t) in the algo-

rithm (2.11.1) will reach small values.

The results are also illustated by Figure 6.3.1, showing

one of the ten runs. In Pigure 6.2.2 the same run using
the RML? method is illustrated. The RMLZ algorithm clear-




RMIZ ML2
Para- | drue 8 {010 6(0}=0 §{0)=0 0(0)=¢
metery value | pgyoigoet | P(0)Y=0.0005T | P(0I=100-T | P(0)=0.0005-7
ay .80 0.898z0G.037 0.912x0.048 (.90140.007 0,901%0,007
a, |0.95 | 0.9au20.041 | 0.94120.080 | 0.953¢0.006 | 0.9530.006
=1 1.50 1.260+0,129 1.338+0.120 1.490+0.021 1.49140.021
2, 0.75 0.487+0, 246 0.559%3,153 0.783%0,017 0.742+0.017
v, Lo 1,207 1.208 1.002 1.002

Table 6.3.1.

Estimates for the system (5.6.5) using the
RML1 and RML2? methods respectively.

1y behaves superiorly to the RML1 algorithm for this exam-

ple.

in order to study the gonvergence properties in more de-
tail the ObL (3.3.8) associated with the estimation of Lhe
parameters of the system (5.6.5) using the RMLl methed

was simulated. The syslem of nonlinear ordinary differen-—

tial equations is in this case of fourteenth order.

The

results of the simulations are presented in Figure 6.3.3,

a

where the states corvesponding to the estimates él’ 79
&1 and 62 are shown. The simulatieon is initialized by
0(0) = (0.91, 06,98, 1.%9, 0.78) and it is seen that the

estimates

tend to limit cycles, illustrating the fact

that the estimates in this case will never converge. No-

tice that the oscillations in the estimates can hardly

be obsgerved In the simulations, of Figure £.3.1,

using

2000 samples only. The time scale in Figure 6.3.3 is

fietiticus

number of samples.

Howevear,

and it is not immediate to relate

it to the

general tendencies such as

too small cj—estimates and possibly better ai—estimates

can be noticed.
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a)

PARAMETER ESTIMATES

E
500 1000 1500 2000

LOSS FUNCTION V(H1=Ec21)

1

500 1000 1500 2000
NUMBER OF SAMPLES

Figure 6.3.1. Results of a recursive identification using
the RML1 algorithm, initialized by
a) P{0)=100-I 6{0)=0
B) P(0)=0.0005-T 8(0)=6
The dashed cuprve indicates the asymptotically
expected loss, assuming that § is asymptoti-
cally gaussian distributed with mean value €. ;

and variance equal to the Cramér-Rao lower

bound.
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Continued
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-
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Figure 6.3.2. As in Figure §.3.1 but using the RMLZ
algorithm.
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PARAMETER ESTIMATES
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Figure 6.3.2. Continued.
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T T T ; T ¢ T —f T

) 0. 20. 30, 40, 50.

Figure 6.3.3. Trajectories for él’ 32, 61 and 62 for the

ODE assodiated with identification of the

system (5.6.5) by the RMLI method.




7, CONCLUSICOHNS

Five different recursive identification methods have been
examined, namely the recursive versions of the least squares
method (RLS), of the generalized least squares method (RGLS},
and of the instrumental variables methed {(RIV} and two re-
cursive versions of the maximum likelihoed metheod (RML1 and
RML?). The methods can be described by very similar algo-

rithms as shown in Section 2.11.

The algorithms are nonlinear and stcechastic difference equa-
tiongs which make a direct analysis of convergence extremely
difficult. However, it has been shown that a theoretical
examination is possible by studying the stationary solu~
tions of a certain system of nonlinear ordinary differen-
tial equations. It is then not too difficult to get the
possible 1limit points as well as to examine their stabili-

ty properties.

The basic results are as follows: It is generally assumed
that the system may be operating in closed loop, and even
that the regulator may depend on old parameter estimates
as is often the case Ffor adaptive controllers, It is alsc
assumed that the model structure is of proper form for the
system under consideration, For technical reasons it is
assumed that the matrix 6(3%), defined in (3.3.5b) is non-
singular. T+ is in principle not difficult to test if this

matrix is singular or not,

For the RLS and the RIV methods the parameter estimates
will always ceonverge to the true values. This is a well-
known result and follows from the properties of the off-

line methods.

Tor the RGLS method the parameter estimates will converge
to the true values 1f the signal-to-necise ratic is larpe
if this ratio is small, it is

enough. On the other hand,
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possible that the estimates converge to false values, In
such a case the limit depends on the initial values for

the estimation alporithms as well as on the realization.

For the RML]1 method convergence to the true values is
achieved for moving average processes and for first order
processes of autoregressive = moving average type. Con-
structed counterexamples show that there are systems with,
as well as without, input signal for which the estimates

never converge,

For the RML? method the parameter estimates will always
converge to the true values for autoregressive - moving
average processes, For systems with an input signal a
very small or a very large signal-to-noise vratio will
imply convergence. The convergence under more general
conditions is closely related to an examination of the
0ff-line ML method. \

The results have been illustrated by several numerical

examples.




f. ACKNOWLEDGEMENTS

The authors are grateful to Marianne Mcore, who typed
the manuscript, and to Britt-Marie Carlsson, who pre-

pared the figures.

The work has been partly supported by the Swedish Roard

for Technical Development under Contract No. 74-3476.

1i1.




112.

9. REFERENCES

K. J. Astrdm (1378)
"Introduction to Stochastic Control Theory'. Academic

Press, New York.

K. J. Astrdm (1374}
"A Self-Tuning Estimator”., Publication No. 74/55, Dept.
cf Computing and Control, Imperial College, London.

K. J. Astrdm and T. Bohlin (1985)

"Numerical Identification of Linear Dynamic Systems from
Normal Operating Records"., IFAC Symposium on Self-Adap-
tive Systems, Teddington, England. Alsoc in "Thecry of
Self-Adaptive Control Systems" (ed. P. H. Hammond}, Ple-
num Press, New York.

K. J. Astrdm and P. Eykhoff (1971)
"System Identification - A Survey", Automatica, Vol. 7,
pp. 123-162.

K. J. Astrém and T. SSderstrdm (1974}
"Uniqueness of the Maximum Likelihood Estimates of the
Parameters of an ARMA Model". IEEE Trans, AC-189, 769-773.

K. J. Astrdm and B, Wittenmark (1372)
"On Self-Tuning Regulators". Autcmatica, Vol. 8, pp.
185-1%9.

T. Bohlin (31968)
"Real Time Estimation of Time Variable Process Characte-
risties". Technical paper TP 18,190, IBM Nordic lab.,

Liding&, Sweden.

R. W. Brockett (1870)
"Finite Dimensional Linear Systems". J. Wiley & Sons,
New York.




113,

D. W. Ciarke (1867)
"Ceneralized Least Sguares Estimation of Parameters of
a Dynamic lodel.” lst IFAC Symposium on Tdentification

in Autematic Control Systems, Prague.

H. Llmquist (1975}
YGIMNON - An Interactive Simulation Program for MHenlinear
Systems. User’s guide™, Report, Div. of Automatic Contrel,

tund Inst. of Tech. To appear.

P. Lykhoff (1874)
vgystem Identification - Parameter and State Estimation.”

J. Wiley & Sons, London.

8. Finigan and I, H. Rowe (1973}

"On the Tdentifiability of Linear Discrete Time System
Models Using the Instrumental Variable Methed". 3rd IFAC
Symposium on Identification and System Parameter Estima-

ticn, the Hague/Delft,

B, P. Fuhrt (1973}
"New Estimator for the Identification of Dynamic Pro-
cesses,” IBK Report, Institui Boris Kidric Vinca, Bel-

grade, Yugoslavia.

K. 7. Gauss (188%3)
"Theoria lotus Corporum Coelestium." A translation into
Inglish: Theory of the Fotion of the Heavenly Bodies.

Dover, Mew York (18€3).

J. Bertler and Cs. Barydsz (13747
"A Recursive (On-lire) Maximum Likeliliced Identificaticn

Hethod," 1LEE Trans. AC-1%, 816-820,

R. HastingsJames and 7. W. Sape (1869
"Eecursive Generalized Least Squares Preocedure for On-
line Tdertificaticn of Frocess Faramcters.” IEE Prc-

ceedings, Vol. 116, pp2057-2002.




11u.

R. Isermann, U. Baur, W. Bamberger, P. Knepo and H.
Siebert (1974)

"Compérison of Si; On-line Identification and Parameter
Estimation Methods." Automatica, Vol. 10, pp81-103, 'ﬂ

P. N. James, P. Souter and D. C. Dixon (1874)

"A Comparison of Parameter Estimation Algorithms for
Discrete Systems", Chemical Fngineering Soiene, Vol. 23,
DD 539-547,

H. Jcohannesson and J. 0. Wesstrdm (1974)

"Jdmf¥relser mellan ndgra rekursiva identifieringsmetoder.™
(Comparison cof some Recursive Identification Methods).
Master Thesis, RE-1ku, Div. of Automatic Control, Lund
Inst. of Tech. (In Swedish).

R. L. Kashyap (1974)

"Estimation of Parameters in a Partially Whitened Repre-
sentation of a Stochastic Process.” IEEE, Trans. AC-19,
(1), ppl3-21.

M. G. Kendall and A. Stuart {(1981)
"The Advanced Theery of Statistics." Vol, 2, Griffin,
London.

R. J. L. Koreman (1973)

"Recursive Parametric Estimation Methods for Multi-

variable Systems." M.Sc. Dissertation, Contrel Systemsg
Centre, Univ. of Manchester, Inst. of Science and Tech,

I. D. Landau (1974)

"Algorithme d”identification utilisant le concept de

positivite”.Presented at le Colloque Tnternaticnal
IRIA/IFIP sur la Théorie du Contrdle, Rocguencourt,
France.




115,

L. Ljung (197u4aj

"Convergence of Recursive Stochastic Algorithms." Report

7403, Div. of Automatic Control, Lund Inst. of Tech.

L. Ljung (1974b)
"Convergence of Recursive Stochastie Algorithms." Pre-

prints, IFAC Symposium on Stochastic Control, Budapest.

.. Ljung, I. Gustavsson and T. Sedevstrdm (1374)
"Téentification of Linear, Multivariable Systems Opera-
ting Under Linear Feedback Control." IEEE Trans, AC-19,
pp. B36-840,

L. Lijung, T. S&derstrdm and I. Gustavsson (1874)
"Counterexamples to General Convergence of a Commoniy
Used Recursive Identification Method.” Submitted to

IEEE Trans. AC.

L. Ljung and B, Wittenmark (1874)

"asymptotic Properties of Self-Tuning Regulators.”
Report 7404, Div. of Automatic Contrel, Lund Inst. of
Tech.

R. N. Lobbie and G. N. Saridis (1872)
"On-line Identification of Multivariable Stochastic

Feedback Systems.'" Proc. JACC,

D. Q. Mayne (13867)
"A Method for Estimating Discrete Time Transfer Tunc-
tions¥In 'Advances in Computer Control!, Second UKAC

Control Convention, The University of Bristol.

R. k. Pandya (1972}
YA Class of Bootstrap Estimators for Identification of
Iinear Discrete Time Models." Technical report SE 72-3,

Div. of Syst. Eng., Carleton University, Ottawsa, Canada.




116.

R. N. Pandya and B. Pagurek (1873}

"Two Stage Least Squares IDstimators and their Recursive
Approximations." 3rd IFAC Symposium on Identification
and System Parameter Estimation, the Hague/Delft.

V., Panuska {1968}
"A Stochastic Approximation Method for Identification
of Linear Systems Using Adaptive Filtering." Proc., JACC.

V. Panuska (1969}

"An Adaptive Reeursive Least Squares Identification
Algorithm.," TIEEE Symp. on Adaptive Processes, Decision
and Control,

V. Peterka and K. Smuk (1969)
"On-line Estimation of Dynamic Model Parameters from
Input-Output Data." bth IFAC Congress, Warsaw.

V. Peterka and A. Haluskova (1970}

"Tally Estimate of Astrdm Model for Stochastic Systems."
2nd IFAC Symposium on Identification and Process Para-
meter Estimation, Prague.

I. H. Rowe {(1970>

"A Bootstrap Methoed for the Statistical Estimation of
Model Parameters." Int. J. Ctrl. Vol. 12, No. §
p 721-738,

2

D. J. Sakrison {1967)

"The Use of Stochastic Approximation te Solve the Sys-
tem Identificaticn Problem." IEEE Trans. AC-12 ,

p 563~567.

G. N. Saridis and G. Stein (1968)

"Stochastic Approximation Algorithms for Linear Discrete
Time System Identification." IEEE Trans. AC-13, p 6515-
523,




117.

G. N, Saridis (1874)
“Comparison of Six On-Line Tdentification Algorithms.”

Automatica, Yol. 10, p 68-78.

N. X. Sinha and A. Sen {1872)
“gn~Line System Identification: A Critical Survey."

Internal report SOC-14, Faculty of Eng.,McMaster Univer-

sity, Hamilton, Ontaric, Canada.

A. J. Smets (1378} )
"The Instrumental Variable Method and Related Identifi-
cation Schemes."” Dept. of El. Eng., Eindhoven Univ. of

Technology, Netherlands.

T. Séderstrém (1872)

®On the Convergence Properties of the Generalized Least
Squares Identificaticn Method." Report 7228, Div. of
Automatic Centrol, Lund Inst. of Tech.

T. Stderstrdm (1873a)

"0On the Uniqueness of Maximum Likelihecod Tdentification
for Different Structures." Report 7367, Div. of Auto-
matic Control, Lund Inst. of Tech.

T. 3tderstrdm (1973L)

"An On~line Algorithm for Approximate Maximum Likeli-
hood Identification of Linear Dynamic Systems." Report
7308, Div. of Automatic Control, Lund Imst. of Tech.

T. Sbderstrém (1873c)
"On the Asymptotic Fstimates of Least Squares Tdenti-
fication." Report 7327C, Div. of Automatic Control,

Lund Inst. of Tech.

T. Stderstrdm (1374}
"Convergence of Identification ¥ethods Based on the
Instrumaental Variable Approack.”

685-688,

Automatica, Yol. 10,




118.

T. S&derstrdm, L. Liung and I. Gustavsson (1374)

"On the Accuracy of Identification and the Design of

Tdentification Experiments.” Report 7428, Div. of Auto-
matic Control, Lund Inst. of Tech.

J. L. Talmon (1871)

"Approximated Gauss-Markov Estimators and Related
Schemes.™ TH-Report 71-E-17, Dept. of ElX. Eng.,
Eindhoven, Univ. of Technology, Netherlands,

J. L. Talmon and A. J. W. van den Boom (1373}

"0n the Estimation of Transfer Function Parameters of
Process and Noise Dynamics Using a Single-Stage Esti-
mator." 3rd IFAC Symposium on Identification and System
Parameter Estimation, the Hague/Delf+t,

5. G. Tzafesgtas (1970)

"Some Computer-Aided Estimators in Stochastic Control
Systems Identification." Int. J. Ctrl., Vol. 12, No, 3
p 385-339. '

B. L. van der Waerden {1337)
"Moderne Algebra II' S8pringer, Berlin.

J. Wieslander (1969)
"Real Time Identification - Part T." Report 6208, Div. of
Automatic Control, Lund Inst, of Tech.

K. Y. Wong and E. Polak (1967}
"Identification of Linear Discrete Time System Using the
Instrumental Variable Method," IZEE Trans. AC-17,

p 707-718.

P. C. Young (19%8)
"The Use of Linear Regression and Related Procedures
for the Identification of Dynamic Processes.™ Proc.

7th IEEE Sympesium on Adaptive Processes, UCLA.




P. C. Young (1876a)

"An Instrumental Variable Methoed for Real-Time Identi-
fication of a Noisy Process.” Automatica, Vol, b,

p 271-287. -

P. C. Young (1970b)

"Ap Extension of the Instrumental Variable Method for
Tdentification of a Noisy Dynamic Process." Univ. of
Cambridge, Dept. of Eng., Technical Note CN/78/1.

P. C. Young and R. Hastingsdames {(1970)°
"Tdentification and Control of Discrete Dynamic Sys-
tem Subject to Disturbances with Rational Spectral
Density." IEEE Symp. on Adaptive Processes, Declsion
and Control, Univ. of Texas, Austin.

P. C. Young, S. H. Shellswell and C. G. Neethling (1871)
"A Recursive Approcach to Time Series Analysis.”
CUED/B -~ Control/TR 16, Dept. of Eng., Univ. of Cambridge.

P. C. Young {1972)

Comments on "On-line Identification of Linear Dynamic
Systems with Application to Kalman Filtering." IEEE
Trans. .AC-17, p 268-270.




Al.1.

APPENDIX 1 - Proof of Theorem 3.1.

All three assertions of the theorem follow basically

from the following lemma:

Lemma 4.1 Suppose that 8{n) and § belong to DP f by
Let m{n,At)} satisfy

m{n,AT)
¥ v(k) » At as n + =«
n

Suppese that le(n)] < ¢ and |z(n)| < ¢ (C may depend
on the realization), Then for sufficiently small At
and (e(n),gﬁTn)) sufficiently close to (8,R)

6(n(n,av)) = 6ln) + ar B £(8) + q,(n,a1,8,8) +

+ ay(n,at,8,R) (A.1)
Fhmin, st =¥ e arle(d) - B1 o+ q'y (n,a7,8,R) +

+ gq', (n,87,8,R) (A.2)
where

T, an,E,R 0] e s cxtjet) = 8+ [P - R |3 s

“+ ACATY?

Ciand

2 '1 N _
;:qzc }(n,AT,B,R ) > 49 w.p.? as n -+ =,
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Proof of Lemma A.1

-This lemma is proved for the RLS algorithm (with 8(t)-
dependent feedback) in Liung-Wittenmark (1974). Since
the main difficulty in handling the complicated relation-
ships between €(s) and e{t), z(t) is exactly the same
for the general algorithm, we will use this proof as a
basis and discuss the modifications which have to be
made.

The counterpart of what is called x(t) -in Ljung-Wittenmari
(1974} is here ®(t), =z(t) and e(t). These vectors satisfy

recursions sguch as

e(t+1)] (A.3)

wl{t+1) = ACe(£)) p{t) + B[uR(t)

where all feedback effects have been removed. They are
included in A{8(t}). This matrix depends on ¢ for two
reascns. Firstly, because of the removal of &(t)~
dependent feedback terms (Fz{e,q_ﬁ}} and secondly, be-
cause of the recursive computation of e(t) being made
through 6—dependent matrices, of (2.6.8).

This latter effect Is not present for the algorithms
treated in Ljung-Wittenmark (1974}, but the only thing
that matters is that

A(E)

is & stable matrix. This is assumed since 8 € DS n Dp' A

After this observaticn the proof of Lemma 4.1 in Liung~

Wittenmark {1974} goes through with only notaticnal changes.
o

The conclusions b} and ¢} follow from Lemma A1 exactly
as Theorems 4.1 and 4.2 in Lijung-Wittenmark (1974).

We will thus turn to assertion a). hLet g denote the sample
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space and w its points. Suppose that §(t) » 8% as tr=
for w € &, where P(ﬂ1) > 8., It is a direct conse-
quence of Lemma A.1 that f(e*) = 0 then must hold.
Consider for notaticpal simplicity the stochastice
approximation variant of (3.3.2) with () = I, (which
implies G(e*) = I) applied to an ARMA-process (no
input). Assume that

%3 f(a)
G=0%

has an eigenvalue ), with positive real part and cor-
responding left eigenvector L., Denote the unstable
mode z{t) = IL[8(t) - e*l. Trom the proof of Lemma A.1

it follows that

elty] =2 CZ/Y(t)1/2 i.o. for w €q, where Pig,) = 1

(A.4)
The assumption that all moments of the noise sequence
{e } are finite, implies via Chebychev's inequality
and the Borel-Cantelli lemma that

[edt)] < Cot® |e(e)] < Cet®  Jolr)] < CotF (A.5)

w.p.1, i.e. for w€@,, where P(ng} =1, for any ¢ > 0.
The constant C may depend on the realization.

Now consider the algorithm (3.3.2):
BCt+1) = aCt) + 1/t () e(ts1)
From (A.3)

elt+1} = A8 (1)) ©(t) + B y(t+1)
(A.B)

el{t) = C (L)




Introduce for short @(t) = ﬁ(t;é(t)) and e (t) =
= e(t3g(t)). Then

) e(t41) = QCEIE(EH1) + Q(EIE(E41) + G(L)E(t+1)

where
i T - teg
p({t) = L [A(8(t))] B y(s) ;
s5=0
+ T ~ : -
e(t) = E [ A{8(k)) B y(s)
s=0 k=g
() = @(t) = F(t) 3 E(t) = e(t) - ECL)

The filter 1/C*(q"1), corresponding to the estimate® *,
is stable since B*EDP' Therefore, the matrix A(9*) has
© crz7Y) strictily

inside the unit eirele. Hence, if 6(t) is sufficiently

T
all eigenvalues (= the zeroces of =z

close to 6%

acsent® <o ™, w5 lacece)) - acdan| =

t-k

. yey1-eE

< Cglet) - at)| s c
where the last inequality follows since
[o(ts1) = ()| = gloDe(tsD) | < ¢, y()17®

due to (A.S)

This gives, after some calculations,

[t ] sfte«((t)%E (Another ¢ than above) (A7)
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Now

af{s)

E G(t)IE{E+1) = £(8(t)) = ~db pogw (L) -8%) +

i1

+ gle(x) - &%) {A.8)
where g(x) = o{x) as x + 0. Hence
TCt41) = 2(t) + v(£)[rzm(£) + ECE) + n(t) + (1)} (A.9)

where

i

£¢ty = LEG(L)E(E+1) - E @{t)e(t+1)]

n{t) = L G(EIE(t+1) + L BE)E(t+1)

g(t) = L g(8(t) - 6%)
Introduce
M M
r = (1+Ay(E)) ;B = Av(t) I (14X ;
w t T YOO s By vit) t+1( ¥(s));
-1
[ =T B

t,H N,M t,M
Then
mf‘u
IPN,MI + o as M+ o L g = 1
N
Eg. {A.%) implies

M
£ =y g c(N) & % (gCt) + nlt) + E(1))  (A.10)
kd

B8 ‘
t=N .M

Consider first

M
1/2 %
b ﬁt,N £(t2

N

Sy T YO0
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[ (M) = fy ()

It is easy to see that a(N,M) + a*{N) as M » = for
w€Q,, and that a*(N) is a vandom variable with zero
mean value and bounded (in N} variance. It alsoc fol-
lows that the correlation between r{(N) and a*{N)} tends
to zero as N increases. This together with {(A.%) im-
plies that

2

vyt 4 ax0] > 20, i.o. for w€a, n o

2 2

3
(A1)

Then consider

1/2

Zm

%t N n(e)} s '\r(N)‘U2 max|n(t)l <
’ 3N

¢ cg yan/2e (A.12)

Finally,

s, ] = [y !/? y7 2 pmax|§e)l «

¥ (t)| v W
£ (D) nax

=z R

1

1/2
£ v (N) 5

Colg (M} i.o. for wen, (A.13)

Egs. (A.11), (A.12) and (A.13) imply that

172

XANLM) = |y CH) S0 )+ o(N,M) + g(N,M) o+

+ §(N,M)| = % €, .i.o. for M=M(N) sufficiently large
and for w€Qy N 9, 0 Q4.

But from (A.10)

TN,
IC(M)I ='-———3?7-2- = x (N,M)
v{N)

which, with M=M(N) suffieiently large, contradicts the

assumed convergence slnce




~1/2
. o M > o
FN,M LALE - as

Hence 8(t) cannot tend to 8% if H(e™) has an unstable

mode .
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APPENDIX 2 - Results of simulations.

In this appendix the results of the simulations are
summarized. In all tables the estimates are given to-
gether with the estimated standard deviation from ten
runs. The estimates are the averaged values from the ten
runs. When nothing else is indicated no weighting has

been used, i.e. A{0)=1 and AD:l.

In some cases theoretically expected values for the esti-
mates and the criteria are given. If such a value in-
cludes t it describes how the expected value varies with

t. It is then valid only for large t. If no t gcecurs in the
value it is the expected limit when t tends to infinity.

In the calculations made for the RLS method the results

of S&derstrdm (1973c) -have been used.

Table I(method) S(system) S
AZ,2 ~ RLS (6.1.2) 1
A2.3 RLS {(6.1.2) 19
A2.7 RLS (6.1.3) 1
A2.8 RLS (6.1.3) 10
A2.9 RGLS (6.1.2) 1
A2.10 RELS (6.1.2) 10
A2.12 RALS (6.1.3) 1
A2.13 RGLS (6.1.3) 10
A1k RIV (6.1.2) 1
A2,15 RIV (6.1.2) 10
A2.17 RIV {(6.1.3) 1
A2.18 RTV (6.1.3) 10
A2.18 RML1 (6.1.2) 1
A2.20 RML1 (6.1.2) 10
A2.22 | RML1,3(0)=0.95,% _=0.99 [(6.1.3) 1
£A2.23 | RML1,2(0)=0.95,2"=0.99 [(5.1.23) 19
A2, 724 RML? © {6.1.2) 1
A2.25 RMIL? {6.1.2) 16
A?.26 | RML2,A(0)=0.,95,x =0,99|{6.1.23) 1
A2.27 | RML2,2(0)=0.95,10=0.99 [(5.1.3) 10
RML1Y .. _
AZ.28 RML?}A(G}-Q.QS,AOTO.QS {6.1.1) 1

Table A?.1. Organization of the simulation results. Only

tables showing parameter estimates are referred

to in this table.
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:
Para- ! True Expected Number of samples
meter| valuej value 100 500 2000
a -0.8 -0.848 | -0.85320.042| -0.85%%0.012 | -0.851%0,009
£ 1.0 1.0 1.034x0,095 1.00u4%0.036 0.998+%C,0089
V1 - 1.446 1.469 1.u48 1.445
V2 - .12 0,584 0.255 .15
V3 - 1.426 1.454 1.417 1,420
Table A2.2. S: First order (6.1.2), S=1
I: RLS
M na:nbzl
!
Para- | True Expected Number of samples
meter | vajuel value 100 500 2000
a ~0.8 -0,809 | -0.807+0.031 ] -0.814x0.007 | -0.810+0.004
B 1.0 1.4 1.008+x0.033 1.001+2.011 0.999+0.003
Vl - 1.478 1.490 1.873 1.477
V2 - 0.0029 0.0538 0.0103 0.00hY
Vv, - 1.478 1.480 1,472 1.475
Table A2.3, S: First order (56.1.2), 5=10
T: RLS
M na=nb:1
Order S=1 $=10
of the Expected] Number of samples | Expected| Number cof samples
model value 100 500 2000 | value 100 500 20098
1 1.446 T.LUuBSfI.uu8]1.4u40 1.478 $1.890|2.473(1.477
2 1.1563 1.190}1.1564§1.153 1.160 {1.166)1.16013.153
3 1.6865% 1.,126(1.072]|1.067 1.068 [1.300(1.067111.068
i 1.4631 1.10511.040(1.033 1.832 [1.080(1.036]11.033
5 1,014 1.106(21.02811.018 1.015 [1.07131.02841.017
Table AZ.4. The criterion Vl. $: First order (6.1.2)

I RLS

M: n_=n
el

5=152,8,U,5
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5=1 5=10
g?diie Number of samples Number of samples
model 100 500 2000 100 500 2000
1 0.59418.255]10.145 | 0.0538}0.0103]0.0047
2 0.4L20.06110.065 | 0.0560(0.0045{0.0035
3 0.721(0.070)0,032 | 0.0685}0.0055{0.002Y4
4 0.572{0.04%4(0.019 § 0.0811(0.00u44(0.0021
5 0.872:0.063:0.021 | 0.0940}0.0059]{0.0025
Table AZ2.5. The criterion V2. 8: First order (6.1.2)
I: RLS
M: ﬁazﬁb=1,2,a,u,5
8=1 8=10
Order
of the | EXpected| Number of samples] Expected | Number of samples
mode1 | vaiue 100 | 500 | 2000] value 100 | s00 | 2000
1 1.426 1.454%]1.41711. 620 1.478 1.4890)1.47211.475
2 1.146 1.168]1.23611.143 1.158 1.165]1.155(1.157
3 1.063 1.11411.068]1.0865 1.067 1.08611.07011.068
[ 1.029 1.1071.038]1.032 1.031 1.075]1.G63611.032
5 1.014 1.126§1.028}1.018 1.015 1.0868)1.026)1,017
Table A?.6. The criterion V3. 3S: First order (6.1.7)
I: RLS
M. ﬁa:ﬁb=1,2,3,u,5
Para- | True Expected Number of samples
meter | value| value 100 500 20600
él ~-1.5 -0.756 -0.785+0.101| -0.798+0.05%3| -0.771+0.033
a, 0.7 0.101 0.143:0.124| ©.14020.052] 0.11220.025
Bl 1.0 1,000 1.221+0.396 1.045%0,141 0.999+0.,90886
52 0.5 1.244 1.136+0.445 1.292+£0.168 1.276+0.107
Vl - 2.688 3.150 2.6140 Z2.647
V2 - 5.219 6.034 4.821 5.017
Table AZ.7. 8: Seceond order (6.1.3), S=1

I: RLS

M qaznb=2
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Para- | True Expected Number of samples
meter | value | value 100 500 2000
él -1.5 -1.185 -1.218+0.047 ] -1.209+0.034 | -1.197%0.022
a, 0.7 06.416 0.443+0.052 | G.43940,033 | 0.42640.010
Bl i.B 1.000 1.10320.143 1.024%0,047 1.003+0.037
BQ 0.5 0.815 (.731x0.186 §.81620.073 0.820+0.042
Vl - 1.751 1.818 1.757 1.782
V2 - 2.193 2,031 1.915 2.061
Table A2.8. §: Second order {6.1.3), S=10-
I: RLS
M na=nb=2
Para- | True Expected Number of samples
meter | value | value 180 500 2000
a -0.8 -0.772 -0,82740.055 | -0.808x0.02% | -0.789+0.018
b 1.0 0.989 1.02540.100 0.99620.035 0.989£0.011
é 0.7 -0.498 -0.449+0,092 [ -0,46420,039 | -0.U74+0,02¢€
V2 - c.026 0,402 0.038 0,015
Table A2.9. 8: FPirst order (6.1.2), S=1
I: RGLS
M na:nb:nC:1
Para- | True Ixpected Number of samples
meter | value | value 100 5090 20408
a -0.8 -0.796 -0.804%£0,028 ) ~-0,8008+0.011 -0,.79%9+8,006
B 1.0 0.859 1.005£0.036 0.999%20,011 0.997x05.003
é 6.7 -0.474 -0,u458+0,080 1 ~0.47820.032 1 -0.473x0.013
V2 - 0.0005 0.8845%3 £,0056 g.001%
Table A2.10. S: First order {(6.1.2), S=10
RGLS
. &o=n = -
M na—nb-nc-l
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5=1 ‘ 8=10
s
tﬁieg—gg— Number of samples Number of samples
lynomial | 100 | 500 ] 2o00 100 500 2000
1 0..0210.038(0.015 | 0.0u43]0.0056]0.0018
2 0.4940.108]C0.039 | 0.047u|0.coeu|o. 0018
3 0.457]0.087(0.029 { 0.052110.0065|0.0015
y 0.376(0.108|6.055 | 0.0510|0.0096 (0. 0023
5 0.28910.10210.062 | 0.0663]0.020010.006L
Table A?.11. The criterion V?‘ 8: First order (6.1.2)
1: RGLS
M ﬁazﬁb=1, ﬁc=1,2,3?u,5
Para- | True Expected flumber of samples
meter | value { value 100 500 2000
él -1.5 | -1.332 {-0.684520.134 {-0.94920.153 |-1.01%+0.161
éz 0.7 0.597 | 0.189+£0,185 § 0.266+0.151 | 0.319:0.140
Bl 1.9 0.913 | 1.300+0.649 | 1.051£0.274 | 0.9772+0.104
b, 0.5 0.89] | 1.217z0.841 | 1.25420.99% | 1.172:0.158
51 -1.0 0.737 | 0.180£0,232 § 0.235:0,198 } 0.331+0.155
62 9.2 0.307 | ©,04120.171 | 0.03720.096 | 0.050s0.077
v, - 1.283 §.392 L,1y48 3.378
Table AZ.,12. S: Second order (6.1.3), S=1
1: RGLS
M: na=nb=n0=2
Para- | True Expected Number of samples
meter tvalue jvalue 1a0 500 2000
él =1l.5 | -1.458 {-1.310+0.0u0 |-1.416+0.017 |-1.4u42:0.016
éz 9.7 0.670 | 0.53620,045 | 0.63%20,013 | 0.656+0.013
Bl 1.0 0.978 | 1.101xG.172 | 1.01020.056 | 0.980%9.022
52 0.5 0.597 | 0.884208.277 | 0.651£0.080 | 0.623%0.038
61 -1.0 G.793 | 0.522:0.205 | 0.661£0.09C | 0.75040.035
<, 6.2 0.362 | 0.18920.198 | 0.277+0.092 | 0.32420.0728 _
v, - ¢.087 1.712 0.328 0.1y43 i

Table A2.13. 8: Second order {(6.1.3), $=10

RGLS
fia=fip=h =2




A2.6,

\\' )
Para- | True Expected Mumber of samples
meter | value | value iB0 500 2600
a -0.8 -G.8 ~0.755+¢0.137 | -0.,813+x0.027 | -0.805+0.018
b 1.0 1.0 1.009+0.124 | 1.000£0.035 | 0.995:0.009
Vl - 1.490 1.757 1.u482 1.487
V2 - 15.4/t 0.681 0,046 0.012
V3 - 1.49Q 1.581 1.473 1.878
Table AZ.14. S: First order {6.1.2), S=1
I: RIV, 1=2
M: narnbzl
7 - 1les
Para- | True Expected Number of samples
meter | value | value 160 500 2000
a -0.8 -¢.8 ~0,798+0,037 | -0.805+0.009 | -0.802+0.008
5 1.4 1.0 1.007+£0.0633 1.000£0.011 0,398x0,003
Vl - 1.490 1.5086 1.u884 1.488
V2 - 1.54/t G.05%6 0.00u4 0.06011
V3 - 1.490 1.501 1.483 1,488
Table A2.15. 8: Tirst order (6.%1.2), 5=10
1: RIV, 1=
M na=nb=l
T 571 5=10
0.0115 0.00106
4 G.0108 0.0081006
0.0103 0.0008287
Table A?.15. The criterion V,. S: Tirst order (6.1.2)
RIV, ©=2,4,5
M na:nbrl

The theoretical value is 0.0077 for S=1 and
0.00077 for $=10. 2000 data points were used
to get the values in the table.




A2.7.

Para- | True | Expected Mumber of samples
meter | value {value 180 500 2600
ay ~1.5 -1.5 -1.726%0,409 | -1.435+0.314 | -1.48020.100
a, 0.7 0.7 1.006+0.438 | 0,64420.299 | 0.68120.09%
51 1.0 1.0 1.203x0.725 1.075%0,183 1.002%£6.140
52 8.5 0.5 -0.239+£1.103 0.615x0,458 0.568+0,188
. V2 - 0 17.2 3.865 6.420
Table A2,17. S: Second order (6.1.3), S5=1
1: RIV, t=2
M: n_=n, =2
The estimates after 100 samples are in this case
based on seven runs only. The remaining three runs
gave quite unacceptable estimates for 100 data
points.
Para- | True Expected Number of samples
meter { value |value 100 500 2000
él -1.5 ~1.5 ~1.5609£0.374 | -1.4580+£0,023 | -1.49620,9018
52 0.7 0.7 0.722+0,.182 0.692x0.022 0.69720.016
ﬁl 1.0 1.0 1.990+0,.153 1,025%0.055 1.00120.0kY
by 0.5 0.5 0.372£0.317 | 0.525£0.083 | 0.518£0,0u47
V2 - 0 2.352 2,028 2.038
Table A2.18. 8§: Second order (6.1.3), S=10
1: RIV, =2
M na=nb=2
Number of samples
Para- | True Expected
meter | value [value 100 500 20040
a -0.8 ~0.8 -0,787£0,081 | ~0,806¢0,037 | -0.8010.018
5 1.0 1.0 1.02720.049 1.005+0.031 §.997+£0.012
¢ 0.7 0.7 0.461+0.2156 0.597+20,108 3.656+20.059
Vl - 1 1.133 1.030 1.088
V2 - G 0.3650 0.0Loh 0.0093
V3 - 1 1,124 1,025 1.006.
Table A2.19. 8: First order (6.1.2), S=1

RML1




A2.8.
Para- § True Fxpected Mamber of samples
meter | value | value 100 500 2000
a -0.8 ~-0.8 -0.78940.037 | -0.800£G.013 | -0.800+£0.008
b o 1.0 1.0060,020 | 1,080£0.008 | 0.89920.00%
a 0.7 0.7 0.369+0,109 0.579x0.035 0.653x0.022
Vl - 1.145 l1.02k 1.065
V2 - 0 0.0502 0.00585 g.0017
VB - 1.1486 1.023 1.004%
Table A2.20. §: First order (6.1.2), 5=10
RML1 .
M: £ =f =n_=1
RMLL RMLZ
S pathy Ay v, v, v, v, v, v,
3 L85 10,01 | 1.0026 1 0,00568 1 1.0026 1.0017 1 0.G053 }1.0016
110,99 jo.01 |1.0042 | 0,0062| 1.0032{ 31.0015] 0.0053 |1.00L8
1 {o.99s|g.01 | 2.0078 | D:0089| 1.0088 | 1.,0016 4§ 0.0062 | 1.0009
1 |0.95 |0.001}1.0175 ) 0.0172) 31,0201 1.0082 | 0.9276 [ 1.0186
1 |0.95 |0.0581)1.00u47 | 0,065 1.0059 | 1.0017 j 0,0057 [ 1.0024
1 |0,999{6.001§1.0051 | 0.0067] 1.0638 ¢ 1.001¢6 O.DDSB 1.0010
1]1.0 0.0 1.0084 | 0.5093 | 1.0064% | 1.0017 | 0.0084 | 1.0009
10| o.95 {o.01 t1i.0018 | 0.0011 | 1.0C637 § 1.0011 | 0.6869 | 1.00%0
ig|ec.e9 o.01 | 1.0020 % 0.0013 ) 1.0017 [1.60311 | 0.0009 | 1.0009
10|0.9%%|6.01 [1.0082 [ 0.0017 ] 1.0037 }1.0015 ) 0.000%9 | 1.08013
10l 0 0.001{1.011y | 0.0025 | 1.0113 | 1.00633 | 0.00u43 ;1.0043
10 39 lpg.001§1.0032 | 0.0007 | 1.0038 [ 1.0668 | 0.000% | 1.6009
10(0.999{0.6014{1.00256 | 6.0013 | 1,0022 [ 1.0012 | 0.0009 [1.06010
10 1.0 0.0 1.0047 1 0.0017 | 1.0082 § 1.0016 ‘9.0810 1.60L3
Table A2.21. Comparison of the criteria Vl’ VQ and VS for diffe-
rent choices of A{(0) and AO. The values are obtained
after 2000 samples.
8: First order (6.1.23
I: RML1 and RMLZ
M ﬁa:ﬁb:ﬁCZI
The expected values are:
5=1 Vl 1.0015 V2 0.0040 V3 1.0010
§=10 vy 1.0015 Vg G.0007 Vg 1.0005




AZ.9.

Para- | True Expected Number of samples
meter | value | value 100 586 2660
%1 -1.5 -1.5 -1.015%0.233-} -1.396%0,140 | ~1,4600,058
2, 6.7 0.7 0.32540.193 0.600+0,12k 0.658+0,065
?1 1.0 1.0 1.258+0.u478 1.008x0.238 0.97520.082
b2 0.5 G.5 0.69220.681 0.66746.188 0.581£0.179
= -1.9 -1.¢ =0.,28820,248 [ -0.784£0.198 | -0.917+0.085
c5 0,2 0.2 0.03320.143 0.043x0,088 0.136+0,053
Vl - 1 2.995 1.618 1.08¢9
V,2 - 0 5.764 1.832 0.312
Table A2.22., 38: Second order (6.1.3), §=1
: RMLI, 2{0}=0.95, A,70.98
M: ﬁa=ﬁb=ﬁc=2
Para- | True Expected Number of samples f
meter |value [ value 100 500 2008
él =1.5 -1.5 ~1.384%0,132 | -1.u48B£0,03L |-1.L90+0.024
aq 0.7 G.7 0.589+0.126 0.686+0,038 0.689£0.021
?1 1.0 1.0 1.09940.156 1.00620,078 0.892+0.026
b, a.5 0.5 0.498+0.294 0.63520.081 0.521+0.066
oy -1.90 ~1.0 =0.530+0,261 { -0.86520.096 §1~0,951+0.0u49
= 0.2 0.2 ~0.06020,112 0.04320.092 0.137+0,0u43
Vl - 1.860 1.089 1.018
Vo - 1.225 0.198 0.037
V3 - - 1.080 1.008
Table A2.23. 8: Second order (§.1.3), S=10
T: RMLL, A(0}=0.85, i _=0.98
M: na:nb=ﬁc=2




A2.10.
para- | Toue Expected Mumber of samples
meter | value value 106 500 2000
a -0.8 -0.8 -0.785%0.,080 [ -0.807+£0.024 § -0.802+0.013
5 1.0 1.0 1.021%06,073 1.001+0.020 0.998x20.012
6 0.7 G.7 0.588x0.195 0.670+0.0873 0.689x0,0721
vl - 1+3/t 1.166 1.006 L.002
V2 - 7.8/t 3.3820 0.0268 G.006Y
V3 - 1+1.86/¢ 1.167 1.003 1.001
Table A2.24%. 8: First order (5.1.2), S=1
I: RML2
M: n_=ng=n =1
T
Para- | True Expected Number of samples
meter | value value 160 500 2000
a -0.8 -0.8 -0,732+0.031 | -5.B00£0.009 | -0.80020.005
é 1.0 _l.O 1.000+£8.070 0.99520,007 0.989+£0.,003
e 0.7 0.7 0.434£0,111 0.641+0,0L40 0.681x0.024
Vl - 1+3/t 1.163 1.008 1.002
V2 - 1.33/¢ 0.6343 0.0028 0.061¢0
V3 - 1+1.09/¢ 1,100 1.008 1,001
Table A2.25. S: FPirst order {6.1.2), 8=10
I: RML2
M na:nb=nC:1
Para- | True Expected Number of samples
meter | value value 100 500 2000
él -1.5 -1.5 -0.888+0.445 | -1,460£0,060 | -1.497+0.023
32 .7 G.7 0.299x0.287 0.678+0.054 0.688+0.021
bl 1.0 1.0 1.13520.532 0.992x0.231 0.970£0.077
b2 .5 0.5 0.790+0.576 0.661x0,259 $.548£0,.110
él -1.0 -1.0 -0,204+£0.389 | -0.888+0.093 | -0.980+0.038
82 0.2 0.2 0,092+0.2189 0.149+0,035 0.182+0.039
Vl - 1+6/% 3.701 1.155 1.033
V2 - 0 6.952 0.5072 0.087
Table AZ.28. 38: Second order (6.1.3), S=1

RMLZ, 3(0)=0.95, 3_=0.99

1
I H fi_=n,

=n_=2
C




A2.11, f
Para- | True Expected Mumber of samples
meter | value jvalue 100 500 2000
al -1i,5 -1.5 -1.265%0,294% | ~1.49640.020 | -1.498+0.008 |
?2 0.7 G.7 C.482+0.280 0.69%x0.015 0.698+0.807
bl 1.0 1L.¢ 1.03720.205 1.006+0,079 0.991+0.025
b, 0.5 0.5 0.588£0.289 0.525£0,048 0.515+0.0386
Cq -1.0 ~-1.0 -0.281+0.443 } -0.891+0.095 [ -0.9732£0.0423
=] 0.2 0.2 0.089+0.158 0.1014£0.105 C.172x0.0u44
vy - 1+6/¢ i.163 1.0u1 1.006
Vs - ¢ 2.240 G.05Y4 0.0190
Vs - 1 - i.058 1.004

Table AZ.27. §: Second order (6.1.3), S=10
I: RML2, A(0)=0.95, A _=0.99

M: n =fh, =h =2

Para- | True ?MLl RML2
meter | value Number of samples Number of samples !
100 5840 2000 1006 500 2006 !
&1 -1.600 | -1.6565%-1.594(-1.588 | ~1.565|-1.603}-1.594 :
52 1.610 1.6G7{ 1.599| 1.86060 1.464) 1.606] 1.606
éa -0.776 | -0.800)-0.776{~=0.764 { -0.695]|-0.775[|-0.770 !
Bl 1.200. 1.262( 1.199) 1.188 1.3281 1.181} 1.193 1
b2 -0.950 { -1.057|-0,%03]-0.929 | -0.955(-0.960{-0.9486 il
53 0.200 0.137%1 0.235] 0.204 | 0.085| 0.20uj] 0.762
oq 0.100 g.08891 €¢,1451 0,133 6.133) 0.110/] 0.104
= G.250 9,017 ©.162F 0.226 { ~0.018} 0.172| 0.239
cg 0.873 0.2329 06.7403% 0.798 0.1761 0.733| 0.840
V1 - 1.682} 1.171§ 1.960 2.1404 1.337¢ 1,022
Table A2.28, 8: Third order (6.1.4), S=1

T: RML1 and RMLZ, A{0)=0.95, AO=O.99

M: n =n =n_ =3




Az.12.

pan 521 5=10
Number of samples Mumber of samples

meTer [y 500 | 2000 100 500 [ 2000
a 0.0u2 £0.019 | 0.00¢8 0.018 | 0.008 { 0.00Y
ol 0,048 | 0.622 | 0.011 0.016 ¢ G.007 | 0,004
ol 0.073 {6.033 10,018 0.072 4 0.032 [0.016
aq 0.08310.037 10.019 .03 | 0.015 y6.008
a, 0.071 }0.032 | 0.016 0.028 § 0.013 | 0.006
bl 0.348 { 0.156 | 0.078 0.1310 | 0.0859 $10,025
bQ 0,425 1 0.190 | 0.085 9,145 | 0.065 | B,032
= 0.13% { 0.060 | 6.030 0.105 1 €,647 | 0.023
Cq 0.127 {0.054% {0,027 0.102 | 0.0u46 {02,023

Table A2.79, The Cramér-Rac lower bounds on the standard
deviation of the estimates of the parameters

of the first and second order systems (6.1.2)

and (6.1.3) respectively.




