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1. INTRODUCTION

Many programs for simulation of dynamical systems on digital
computers were developed during the sixties. The first
languages were designed around concepts that were familiar
to users of analog computers. Such languages are called

block diagram languages. - They used concepts like

integrators, summers and potentiometers. The user had to
convert his model to a block diagram of these elementary
subsystems. It was then simple to enter the model in block
diagram form to the computer. Some of the advantages with
this technigue compared to analog simulation was that there
was no need to scale the problem with respect to time and
amplitude. The security against badly specified models was
increased because the model was not specified as connections
on a patch board as for analog computers. The documentation

was also better.

The transformation of the model to block diagram form is not
necessary. Programs which accept differential equations
have also been developed. Such languages are called

equation oriented languages. The language MIMIC is an early

example of an equation oriented language. A standardization
effort was made by the Simulation Councils in the USA in
1967. This resulted in the CSSL language (Continuous System
Simulation Language) , (Strauss, 1967) . It has been
implemented on many computers. The program CSMP-364
(Continuous System Modelling Program) was developed at about

the same time (Brennan, Silberberg, 1968).

In equation oriented languages the model is specified as
assignment statements of FORTRAN type. A gpecial
integration operator is used to describe differential
equations. The equations can be given in arbitrary order
because they are sorted by the programs. It is a problem
for the modeller that the equations have to be given as
assignment statements because it is sometimes difficult to
determine which variable to solve for in an eguation. This

problem is further discussed in chapter 2.




In equation oriented languages submodels can be handled by

using a Macro concept. Examples are given in chapter 2.

Simulation can of course also be made by using a general
programming language and an integration routine for ordinary
differential eguations. The model is then specified by a
subroutine or procedure which computes the derivatives of
the state variables. There are several subroutine packages

available. A typical example is given in Fick (1975).

After 1967 progress has essentialy been made in two areas:

interactive programs and combined continuous - discrete

simulation.

Simulation is a good example of the need for interactive
computing. The DARE programs (see Korn, Wait, 1978) are
well known interactive programs. The program SIMNON has
been developed by the author (Elmgvist, 1975,1977a). Other
examples of interactive simulation programs are ISIS (Hang,
Sangster, 1975), BEDSOCS (Ord—-S8Smith, Stephenson, 1975) and
5IM (van den Bosch, Bruijn, 1977).

The interest for simulation of systems modelled by both
ordinary differential equations and discrete events has
increased, see Fahrland (19780). One reason is the desire to
simulate processes controlled by digital computers. Several
programs have been developed, e.9g. GASP-IV (Pritsker,
Hurst, 1973), GSL (Golden, Schoeffler, 1973) and CADSIM
(Sim, 1975). A survey is given in Oren (1977). Models
described by ordinary differential equations and difference
equations can be used in SIMNON. GASP-V (Cellier, 1976) is
a program for simulation of systems described by ordinary
differential equations, partial differential equations and

discrete events.

It seems that the development of ©programs for digital
simulation has been much influenced by the available
software technology. Comparativly little work has been done

with model 1languages. The time has now come to use the




advances of computer science in programs which recognize the

demands of the users.

The situation for the modeller can vary widely. A difficult
task 1is to obtain an accurate model for a large complex
system for which no prior model exists. The modeller first
has to find the structure of the system and then split it up
into modules with simple connections. This 1is necessary
because it is practically impossible for a single person to
grasp a large system at the same time as the details are
described. It must also be decided which phenomena are
interesting for the model and which gquantities should be

included in the model.

In presently available languages the connections between
submodels are done with variables. There are no concepts
which correspond to the much more complex connection
mechanisms that occur in ©physical systems 1like shafts,
pipes, electrical wires, etc. The connections of submodels
would be much simplified if such mechanisms were available.
The details of the connection mechanisms, such as the
variables involved, do not have to be considered at the time
the structure of the system is described. This has an
important consequence for the modeller who has models
available for the subsystems included. If it is known that
the models are compatible with respect to the phenomena
included, the degree of complexity and the connections, then
the model building 1is reduced to a description of the
structure of the system. One example of this situation 1is
the engineer who selects available modules to form a complex
system. If there are models for the modules then it is a

simple matter to check the performance of the system.

This thesis describes a proposal for a model language for

continuous dynamical systems. The characteristics of this
language are the following. The differential equations and
the algebraic equations of the model can be introduced in
their original form. They need not be converted to

assignment statements. There 1is a concept, cut, which
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correponds to connection mechanisms of complex type and

there 1is also a simple way of describing the connection

structure of a system.

The model language is called DYMOLA (Dynamic-Modelling

Language) .

The connections between submodels introduces constraints on
the variables in the cuts. This can in some cases lead to a
reduction of the number of states for the system. The
parallel connection of two capacitors is a typical example.
Each capacitor is separately described by one state
variable. The total system will, however only have one
state. Many of the available integration algorithms require
that the derivatives of the states can be computed as a
function of the states. This is not ©possible for many
systems which are described by basic physical eguations
because it happens frequently that the derivatives of the
state variables are only defined implicitly. The
determination of the derivatives is often a nontrivial task
because it may happen that it is necessary to differentiate
some of the eguations to be able ’to solve for the

derivatives.

There are special methods to transform models of electrical
networks to state space form. These methods are based on
graph theory, see e.g. Desoer, Kuh (1969). It is often not
possible to transform Newton's eguations for mechanical
systems to state space form directly. The state space form

is obtained if a Lagrange function is used.

Another way of approaching this problem is to develop
integration methods that can handle such systems directly.

Such methods are available, see chapter 5.

An important characteristic of the language is that the
model is independent of the operations to be done. It could
€.J. be simulation or different types of static

computations. The equations are transformed in different
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ways depending on what is unknown. The transformation can
freguently be done in such a way that the variables can be
solved one at the time from the eqguations. When systems of
equations, which have to be solved simultaneously, occur
they are often small and in many cases linear. There are
methods to find in which order the variables should be
solved and from which equations. These methods also
indicate systems of equations. They only use the structure
of the equations, i.e. 1if a variable appears in an eguation

or not.

If an equation is linear in the unknown variable it is easy
to obtain the corresponding assignment statement by formula
manipulation. Linear systems of equations can also be

solved by formula manipulations. Nonlinear equations

generally have to be solved by some iterative technique.

When solving systems of equations by iterative technique the
Jacobian 1is often needed. The computations may be speeded

up by using symbolic differentiation.

The methods for sorting and manipulation of the equations
have consequences not only for the numerical computations.
The resulting assignment statements and systems of eguations
can be shown to the user in symbolic form. This is very
interesting because it shows the cause-effect relationship
between variables. It also has a positive psychological
effect to see exactly the equations that were generated from

the model in the high level language.

A translator for the DYMOLA language has been written in
Simula. It accepts a model as input. The output from the
program is the model equations. They are sorted and grouped
into systems of equations. Eqguations that are linear in
their unknown variable are solved. There are commands to

specify what variables are considered as known or unknown.

Gear and Runge at University of Illinois have developed a

program for simulation of dynamical systems, see Gear (1972)
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and Runge(1975). Their program accepts the model equations
as they are without requiring conversion to assignment
statements. Cuts or terminals can be introduced as a set of
variables describing a connection mechanism. The model
structure can be entered using a display and a light pen. A
figure can be associated with each submodel. When a
submodel is incorporated its figure is placed at a specified
ooint on the display. The connections of the submodels are

done by drawing lines between the terminals of the

submodels. It 1is also possible to connect the submodels
using alphanumeric instructions. The integration of the
equations is done with an implicit routine for

differential-algebraic systems (see Brown and Gear (1973)).

The use of equations instead of assignment statemets have
been discussed for analysis of static systems. Many of the
algorithms for transformation of the equations have been
developed for design of <chemical ©processes. Design
computations on thermal power plants (Volgin et.al., 1975)
is another example. The corresponding problem for models of
economical systems with difference equations is discussed by
Drud (1975). A theoretical discussion of transformations of

the equations is given in Aarna (1976).

This thesis 1is based on the report Elmgvist (1977b).
Chapter 2 illustrates some of the problems with present
model languages like CSSL, CSMP and SIMNON. The drawbacks
discussed have served as a motivation for the proposed model
language. The model language DYMOLA is described in chapter
3. Different types of operations on the model are discussed
in chapter 4. HMethods for doing these operations are given
in chapter 5. An implementation of a translator for the
model language 1is described in chapter 6. Chapter 7
illustrates the use of the model language to describe
different types of systems. It also contains the sorted and
manipulated equations of the models as they are outputted by
the translator. The appendix contains a description of the
syntax notation wused and the syntax of the language. The

listing of the translator is also given in appendix.
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2. SOME PROPERTIES OF PRESENT SIMULATION LANGUAGES

To use a language of the CSSL-type the model equations must
be rewritten as assignment statements. When a model is
derived from physical principles it is frequently not
trivial to know what variables should be solved for. The
assignment statement is also a worse form of documentation.
In some cases the equations have to be transformed in

different ways depending on the environment of a subsystem.

This chapter contains two examples which illustrates the

advantages of describing a model with equations.

Example 2.1

Consider the network in Fig. 2.1.

eT é& ﬂ*’"z
TR

Fig 2.1

A model for this system is

= 1

1 i 1
szé = 12
e = R3(il+i2) + Rlil + vl
e = R3(il+12) + R212 v,

To enter the model into a simulation language like CSSL the
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linear system of equations involving il and 12 must be
solved by hand. This is necessary in order to use CSS5L
effectively because CSSL only has facilities for solving

systems of equations by iteration,

An algorithm for finding the derivatives is shown below.

e = s aa
-y -y le TRR. (Rge = (Ry*R3)vy + Ryvy)
172 173 273

. 1

i, = - - (Rye + Ryv, = (R;+R,)v,)
2 R{R, + RyRy + RRy 1 3V1 17737V
L

vy = 11/Cl

vy 1= 1,/C,

It can be observed that the original model is easy to write
down and easy to check. The transformed model on the
contrary is not at all as easy to check and not as easily
readable. A small change in the equations may also imply
large changes in the assignment statements. It is, however,
possible to make a computer discover systems of equations
and solve them by formula manipulations. These manipulated
equations can then be wused for computations and also be
printed for the user.

[l

Example 2.2

This example illustrates the problem that the manipulations
of the eqguations that have to be made may depend on the

environment.




a

Suppose that the low pass filter in Fig 2.2 is
of a system.
R i
—{ >
KMT C=— Tuz
° - ®
Fig 2.2
A model is
ul - R1 = u2
1 =
Cu2 1
The output gate is assumed to be open. Using

facility of CSSL this system can be modelled as

MACRO FILTER [U2,I = Ul,R,C]
I=(U1-U2)/R
U2=INTEG[I/C, D]

END

Assume that the low pass filter is used in the

Fig 2.3,
i R
o 1 °
,eT T% C—=— T%
o © °

Fig 2.3

The driving voltage is

e=sin(t)

component

the Macro

circuit

in
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The system can then be described as

E=SIN(T)
U2,I=FILTER[E,R,C]

This system description is expanded to the equations

E=SIN(T)
I=(E-U2)/R
U2=INTEG[I/C,0]

which describes the system correctly.

Consider now the system in Fig 2.4.

: L R
o [ } °
eT Tu,, C== Tuz
o o °
Fig 2.4

The additional eqguation is

= - .
ul e Li

A description of this system could be

E=SIN(T)
I=INTEG[ (E~-U1l) /L, 0]
U2,I=FILTER[Ul,R,C]

The expansion of the Macro gives

E=5IN(T)

I=INTEG[(E-Ul)/L,0]
=(Ul-U2)/R

U2=INTEG[I/C,0]
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Two equations have the variable I in their left hand parts.
This is not allowed in CSSL. However, if the statements are
considered as egquations they are correct. The Macro FILTER

can not be used in this case. It has to be modified as

MACRO FILTERZ2[U1,U2 = I,R,C]
Ul=02+R*1I
U2=INTEG[I/C,9]

END

The system description can now be done as
E=SIN(T)
Ul,U2=FILTER2[I,R,C]
I=INTEG[ (E-Ul) /L, 0]
which is expanded to
E=5IN(T)
Ul=U24R*I
U2=INTEG[I/C,0]
I=INTEG[ (E-Ul) /L, 0]

These statements constitute a legal model in CSSL.

The third case to be studied is the circuit in Fig 2.5.

i R; R
o o {1 °
eT Tu1 C—— Tuz
0 oO— °
Fig. 2.5

The additional equation 1is
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Using the Macro FILTER the system description becomes.

E=SIN(T)
Ul=E-RI*I
U2,I=FILTER[UL,R,C]

This is expanded to

E=SIN(T)
Ul=E-RI*I
I=(Ul-U2)/R
U2=INTEG[I/C,0]

These equations can not be sorted for sequential execution.
In the second equation Ul 1is a function of I and in the
third equation I is a function of Ul. These two equations
have to be solved simultanuously. There is an iteration
operator in CSSL which can be used. 1In this case, however,

the system of equations is linear and the solution is

i [l

The examples show some of the benefits of using equations
instead of assignment statements when modelling. It is
required that the equations <can be manipulated into
different forms. Linear systems of equations occur
frequently. These could be solved before computations are
performed.
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3. MODEL LANGUAGE

This chapter contains a description of the model language.
The first six sections describe the basic elements of the
language such as submodels, equations, cuts, paths and
connection statements. Section 7 contains an example.
Additional features such as conditional statements, indexed
elements, loop statements, difference eguations, discrete
events and model validity are discussed in section 8.

The language is described by a combination of discussion,
examples and syntax. The syntax is developed gradually.
The syntax notation used is described in appendix 1. The
complete syntax of the language is given in appendix 2.

3.1 Submodels

When models for large systems are developed it is advisable
to split the system up into a set of well defined
subsystems. The physical structure of the system often
suggests suitable subdivisions. Examples of such subsystems
are pumps, valves, heat exchangers, tanks, pipes, reactors,
destillation columns, motors, generators, transistors,

amplifiers, filters, etc.

When a subsystem is isolated the boundaries of the subsystem
are first determined. Such a boundary is in fact inherent
when defining the basic physical laws. A typical example is
the wuse of "control surfaces" in continuum mechanics. To
describe the interaction of the subsystem with its
environment it 1is necessary to introduce variables which
describe what happens at the boundaries. Such variables are

called cut wvariables or terminal variables. A typical

example from rigid body mechanics 1s the necessity of
introducing reaction forces as cut variables when a part of
the rigid body is considered. To describe the model it is
also necessary to introduce variables which account for

storage of mass, energy and momentum in each subsystem.
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Such variables are called local variables. The

cut-variables and local variables are used in the aquations

describing the subsystem.

When a system is split up into subsystems the corresponding
submodels can be developed separately. It is sufficient to
consider the internal behavior of the subsystem and the
interaction with its environment. A clear subdivision of
the system is also necessary when different persons develop
models for different subsystems. The subdivision also

increases the possibilities to verify the models separately.

A language for model description should make it possible to
represent the structure of the system in a simple way.
There should also be a possibility to replace a submodel
with another submodel having different complexity. The
possibility to create model libraries is another advantage
of the submodel concept.

The division of a system into subsystems is done with
succesive refinement until all subsystems are so simple that
they can be described by equations. The system thus has a
hierarchical structure of subsystems. Such a structure can

be represented as a tree.

Example 3.1

A system S1 is considered as composed by three subsystems
52, 83 and S4. The system S3 is split up into S5 and S6.

The situation is pictured in Fig 3.1.




21

S1

S3
S2 S5 S6 S4

Fig 3.1. A hierarchical submodel structure

This structure can be represented by a tree as shown in Fig

3.2,

Fig 3.2. Submodel structure represented as a tree

(]

The description of a model must include
- the hierarchical structure of the submodels
= the connection structure of the submodels

- the equations

It should be possible to wuse a submodel when modelling
different systems. This implies that each submodel should
include a description of its internal structure. The
hierarchical structure can be described in the same way as
the block structure of Algol.
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Example 3.1 (continued)

One way to describe the hierarchical structure of S1 is

shown below,

model S1
model 52
end
model S3
model

0]
Ui

end

model

w2
(o3}

The following pattern for a model description is proposed.

model <model identifier>

declaration of submodels
declaration of variables and connection mechanisms

equations and description of connection structure

end

This way of describing the model hierarchy has a serious

two subsystems have the same model the model

drawback. If
way to avoid these

description must be duplicated. One

problems is to declare a model type which can be used to
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generate several models with a submodel statement.

Example 3.1 (continued)

Assume that the systems S2 and S5 contain the same model M.
The ©previous description of S1 can then be simplified as

follows.

model S1

model type M

end

submodel (M) S2
model 53
submodel (M) 85
model S6

end

end

model 54

end

end

(]

The model type declaration has the same structure as a

model declaration.
The submodel statement has the following syntax.

submodel [ (<model type identifier>)] {<model identifier>
[ (<parameter list>)]}*
{parameter list>::={<number>}*/{<parameter>=<number>}*

The brackets [ ] denotes that something is optional. The
. * .
notation { }° denotes repetition one or more times. The

complete syntax notation is given in appendix 1.
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Ex.
submodel Tank Pipe
submodel Tank (A=5 H=10)
submodel (Tank) Tankl(A=5) Tank2 (A=20)
submodel (resistor) R1(5.6) R2(109) [1

The submodel statement
submodel (M) M1 M2 M3
is read
'submodels of type M named M1, M2 and M3'.

If no <model type identifier> is given it is assumed that it

is the same as the <model identifier>.

A parameter list can follow after the <model identifier>.
This 1list 1is used to set or change default values for
parameters. The parameter list has two forms. The values
of the parameters can be given together with the
corresponding names of the parameters or they can be given
alone in the same order as they are declared in the
submodel.,

It should be possible to reference submodels (and their
variables) on all lower levels. Since it is possible that
several models have the same <model identifier> there must
be a way to distinguish them. One way of doing this is to
follow the path in the submodel tree down to the actual
submodel., For this purpose there is a ::-notation which can

is used in the following way.

<model spec>::=

<model identifier> [:: <model identifier> ]*

In modern programming languages like Simula, Pascal and
Algol—-68 a dot-notation is used to reference components of
data structures. A submodel is often considered as a 'black
box'. The reference notation :: was chosen because it looks

like a box.




3.2 Interdependence of submodels

It 1is ©possible to distinguish between two types of

influences on a submodel from the environment.

In the first case the influence from the environment comes
through distinct mechanisms e.g. shafts, wires and pipes.
It is then practical to introduce variables which describe
the coupling through the mechanisms. Such variables are
called terminal variables. The coupling between different

submodels can then be described by giving relations between
the terminal variables in a model which is higher in the

hierarchy.

The other case of influence can be thought of as coming from
a higher level. Examples of this type of influence are the
temperature and pressure of the athmosphere and the
temperature of an amplifier influencing all its components.
The gravitational field and electrical fields are also
examples of this type of coupling. This type of influence
can in some cases be described by letting the submodels use

common variables declared in the superior model.
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3.3 Variables

The behavior of a system is often conceived as the variation
of certain gquantities. When a model is developed a number
of quantities are selected to appear in the model. This
selection depends on the complexity of the model. The model
contains variables which have correspondence with these
quantities. A variable is a real function of the time and

has an associated name. All var iables must be declared.

Parameters are basic attributes of a system. They are

declared in the model by the statement

parameter {<variable> [=<number>] }*

Parameters can be assigned from superior models or
interactively. They can also be computed by static
computations or by optimization. If a parameter 1is not

assigned from the outside the default wvalue in the

declaration is assumed.

It is also possible to declare variables whose values can

not be changed, constants, by the statement
constant {<variable> = <number>}”

The independent variable is global and is called time. The
time varying variables are divided into two categories:
local variables and terminal variables. The terminal
variables describe the interdependence between a submodel
and its environment. These types of variables are declared
by:

local {<variable>}*

terminal {<variable>}*

There are two special types of terminal variables: input-
and output-variables. The value of an input-variable must

be given from an equation not included in the same submodel
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as the declaration. The converse 1is true for an output-
variable. These two types of variables have been introduced
to increase the security against bad incorporation of
submodels. The declaration of these variables is done using

the statements:

input {<variable>}*
output {<variable>}*

Terminal variables are also declared implicitly when

declaring cuts (see section 3.5).

Models are often developed so that they can be wused in
different environments. It may then occur that some
connection mechanisms are not used. For that reason there
is a possibility to give default values to terminal
variables. The default value 1is wused if the terminal

variable is not referenced externally.
default {<Kvariable> = <number>}*

Submodels can be connected implicitly if they use the same
variables. This is accomplished by declaring these
variables as internal in a superior model. For security
reasons the variables must then be declared as external in

the submodels themselves., The declarations are

internal {<variable>}*

external {<variable>}*

One way to connect submodels is to give eguations which
relate terminal wvariables of the submodels in a superior
model. Since different variables in different submodels can
have the same identifier there must be a mechanism to
reference them. The dot-notation is a suitable reference
mechanism.

<variable spec>::= [<model spec>.]<variable>
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3.4 Equations

When developing a model for a physical system one uses
fundamental laws such as mass balance equations, energy
balance equations and phenomenological equations. These are
either algebraic or differential equations which relate

certain variables.

There are often conditions in the equations which can be
easily entered with the if-then-else construction of Algol.

The following form is thus proposed for equations.
{expression> = <expression>

The syntax of the expression is the same as in Algol except
for variable references. The equations can contain ordinary

function procedures written in some algorithmic language.

It is also useful to be able to use ordinary ©procedures
written in an algorithmic language. In order to allow
manipulation of the equations it must be known which
variables that are input and which are output for the
procedure. The simulation languages CSSL and CSMP have 1
suitable notation for procedure calls:

{<variable>}* = <procedure identifier>({<expression>}")
Ex. vyl y2 y3 = Proc( ul u2 )

A notation for time derivatives 1is required to enter
differential equations. The following notations are

proposed:

first derivative: x' or der (x)

second derivative: x or der2(x)

etc.,
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3.5 Cuts and connections

When connecting submodels it is natural to view a submodel
in the same way as the corresponding subsystem. One then
wants to work with the physical mechanisms that connect the
subsystems. Each mechanism 1is associated with certain
variables. These are used internally in the equations and

they describe the interdependence with other submodels.

Examples of such mechanisms and their associated variables

are:

shaft: angle, torque
pipe: flow-rate, pressure, temperature

electrical line: voltage, current
For the reasons given above there should be a way to name
groups of wvariables in order to simplify the connections.
Such groups of variables are composed when defining the
boundaries of subsystems by introducing cuts between them.
Cuts are declared in the following way (compare above):

cut shaft(angle, torque)

The basic concepts are introduced by means of an example.

Example 3.2

Suppose there are two subsystems S1 and 52 which are
connected by a pipe with a flow of some liguid, see Fig 3.3.
To be able to describe the systems separately, a cut 1is
defined somewhere along the pipe. The relevant variables to
introduce in the cut can e.g. be flow rate (Q), pressure

(P) and temperature (T).
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QRET] |QPT
S1 —- —— S2
Fig 3.3

The two submodels will contain the cut-declarations:

cut outlet(Q ,P, T)

cut inlet(Q, P, T)

The submodels could be connected from a superior model in
the following way.

S = 52.0Q
l.p = 52.p
S1.T = 52,7

Cut wvariables are often defined in such a way that
connhections of subsystems mean that the corresponding
variables are gset equal. For this reason there is g3 special
operator, called at, which operates on cuts and which can be
used in the following way.

Sli:outlet at S2:inlet

This statement has the same effect as the equations above.

Note that S1.Q is defined as the flow out of S1 but 52.Q 1is
the flow into 82. This problem with reference directions
will be solved later.

[]

The discussion in example 3.2 is now summarized. An
elementary way to declare a cut is with the statement:
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cut <cut identifier> ( {<variable>}* )

Submodels can then be connected via the cuts with the

connection statement.

connect <model identifier>:<cut identifier>

. PPN *
{ at <model identifier>:<cut identifier> }

The corresponding variables in all cuts are set equal. The
same cut can appear in several connection statements. A
colon-notation 1is used when referencing the cuts. The colon
was chosen because it associates to a vertical bar which

often represents a cut.
In some cases the connection of submodels does not imply
that the cut variables are set equal. This is exemplified

pelow.

Example 3.3

Consider the electrical circuit in Fig 3.4.

Fig 3.4

The constraints at the connection node are

vVl = v2 = V3
I1 + I2 + I3 = 0

Only the first equation is of the type discussed earlier. A
small subsystem with three c¢cuts containing the sescond

equation could of course be introduced to handle the
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connections. This is, however, cumbersome since the number
of connected components can vVary. A better way is to
introduce a new type of variables. The sum of such

variables is defined to be zero at a connection point.

Suppose that in all the submodels R, L and C there is

defined a cut wirel as

cut wirel (V / I)

The / has been used to indicate that I is a variable of the

second type. The connection statement
connect R:wirel at L:wirel at C:wirel

would then be eguivalent to the following equations
R.V = L,V

L.v = C.v
R.I + L.I + C.I =9

Example 3.4

A number of levers are connected as shown in Fig 3.5,

Fig 3.5

If all the levers have a cut endl declared as

cut endl (X,Y,Z / Fx,Fy,Fz, Mx ,My,Mz)
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then the connection can be expressed as
Ll:endl at L2:endl at L3:endl

This statement is equivalent to the following equations.
Ll1.X = L2.X ; L2.X = L3.X

Ll.Y L2.,Y ; L2.Y L3.Y
Ll.Z L2.72 ; L2.% L3.7%

L1.Fx + L2.Fx + L3.Fx = 0§
L1.Fy + L2.Fy + L3.Fy = §
L1.Fz + L2.,Fz + L3.Fz = 0

Ll.Mx + L2.Mx + L3.Mx = 0
Ll.My L2. My L3.My =
Ll1.Mz + L2.Mz + L3.Mz = 0@

-4
-+

[l

The examples show that it is practical to introduce two

types of cut wvariables. The notation across variable is

sometimes used in the literature (Koenig, Tokad, Kesavan,
1967) £for the wvariables that are equal in the cuts. The
variables that are summed to =zero are called through

variables.

If the / -symbol is used to separate these two types of

variables the cut declaration takes the form:
cut <cut identifier> ( [<variable>]* / [<variable>]* )

The connection statement is the same, only its

interpretation is changed.

It is not clear whether there are other types of relations
between variables for which it would be practical to have a

special notation.
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By introducing through variables it is possible to handle

reference directions. An adequate way is to define a common

reference direction for all through variables in all cuts.
If some variable has the opposite direction it is preceeded

by a minus sign in the cut declaration.

Special care mwmust be taken not to introduce redundant
equations relating through variables. For example one of
the node equations for current is redundant when connecting
electrical components. One way to solve this problem when
modelling is of course to introduce a dummy through variable
in one of the submodels. The language permits that this
dummy variable is replaced by a dot in the cut declaration.
When that cut is connected no equation is generated for the

corresponding through variables.
Ex. cut A(Va / I) B(Vb / .)

Across variables can also be replaced by a dot in the cut
declaration. This is sometimes practical when using
standardized cuts to show that a submodel is independent of

some variable in a cut.
Nodes

The points where several connection mechanisms are Jjoined
are sometimes called nodes. 1In some cases it is natural to
name the nodes and use the names in the connection
statements. The standard method for describing electrical
networks is to number the nodes and for each component give
the numbers of the nodes to which it is connected. One way
to declare a node is the following.

node <node identifier>

A submodel can contain equations describing the static or
dynamic coupling between its submodels and the environment.
There is then a need for an "internal cut" to Dbe connected

to the cuts of the submodels. For that reason it is
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possible to associate variables with a node in the following

way.

node <node identifier> ( <variable cut> )

Hierarchical cuts

When a number of submodels are joined together in a superior
model it may be natural to join the externally available
cuts into larger cuts, called hierarchical cuts. Another

form of the declaration statement for cuts is thus
. . R )
cut <cut identifier> [ {<cut>} 1

Syntax for cut and node declarations

The complete syntax for declaring cuts and nodes is given
below.

{cut declaration> ::= [main] cut {<cut identifier>

[<cut>]}*

<cut>::=<cut clause> / <cut spec>

<cut clause> ::= ( <variable cut> ) /
[ <hierarchical cut> ]

<variable cut> ::= [ <cut element> ]*
[ / [ <cut element> 17

<cut element> ::= <variable> / =<variable> / .

<hierarchical cut> ::= { <cut> / . }*

{cut spec> ::= <model spec> [:<cut identifier>] /
<cut identifier>

<node declaration> ::= node {<node identifier>
[<node clause>]}*

<node clause> ::= ( <variable cut> ) /
L <hierarchical node> ]
<hierarchical node> ::= { <node clause> /

<node identifier> / . }*

One cut in each submodel may be declared as main. Some




examples of cut and node declarations are given below.
EX.

cut Cl1 (vl v2 / v3 v4) C2 (v5 . / -v3 .)
cut €3 [Cl C2]
main cut C4 [ [ (v6 / v7) (v8 / -v7) ] Cl C2 C3 ]

node N1 N2
node N3 (v9 / v1@)
node N4 [N1 N2 N3]

Generation of eguations

The at-operations on cuts and nodes are translated to

equations involving the variables in the cuts.

Equations for the through variables can not be generated
until all the at-operations have been processed. The
following restriction is made. A cut may only be referenced
in the connection statements of one submodel. The reason is
that it is then possible to generate equations corresponding
to the connection statements of a submodel as soon as the
last connection statement of that submodel has been
processed. This has some implications. When a submodel is
duplicated with the submodel statement it is not necessary
to duplicate the connection structure. It will be contained
in the equations which are duplicated. It should be
possible to obtain a 1listing of the equations generated.
With this restriction the generated egquations will be
grouped together with the other eguations of a submodel,

An at-operation on a variable cut and a hierarchical cut is
illegal. The number of across and through variables or
subcuts should be the same in all cuts that are connected.
An at-operation on two hierarchical cuts are defined as

at-operations on corresponding subcuts.
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The generated equations should only contain one equality
sign and one or more plus signs. If a variable is preceeded
by a minus sign in a cut declaration, it is put on the other
side of the equal sign. This is important in order not to

get cumbersome equations after formula manipulation.

An example illustrates how cuts containing dots are handled.

Example 3.5

The following at operations

(vl v2 / il i2) at (v3 . / i3 .) at (v4 v5 / —-i4 -i5)

gives the following equations

v3 = vl
vd = ¢3
vh = v2

il + i3 = i4

At operations on the following hierarchical cuts
[C1 C2] at [C3 .] at [C4 C5]

will be replaced by the at operations

Cl at C3
C3 at C4
C2 at C5
[1

Special attention must be given to the case when a variable
cut is used in a connection statement in the same submodel
as it is declared. It is easy to see that the through
variables of the cuts declared in the same submodel should
be negated in order to get consistent equations. The same
is true for nodes with an associated variable cut. These

facts are illustrated by an example.
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Example 3.6

Consider the model structure in Fig 3.6.

MO

M2

Fig 3.6

The cut declarations and connection statements are shown

below.

model type M
cut A (vl / il) B [ (v2 / =-i2) (v3 / -i3) ]

end

model M@
submodel (M) M1 M2
cut A (vl / 11) B [ (v2 / ~i2) (v3 / =i3) 1
node N (v / 1)

connect A at N at M1l:A at M2:A
connect B at M1l:B at M2:B

end

The following equations are generated.

v = vl
Ml.vl = v
M2.v1l = M1l.v1

Ml.il + M2.il1 = i1 + i




Ml.v2 = v2

M2.v2 = Ml.,v2

i2 = M1.i2 + #M2.12
Ml.v3 = v3

M2.v3 = M1l,v3
i3 = M1.i3 + M2.1i3
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3.6 Model structure

The previous sections have shown how the relations between
variables in different submodels can be given either
directly via the dot-notation or by using cuts and the
at-operator. The at-operator allows models to be connected
in arbitrary structures. The connection statements,
however, become cumbersome to read and they do not contain

the structure of the model themselves.

One problem with the description of the model structure 1is
the following. For physical systems the connection
structure exists in the three dimensional space. A diagram
of the system on a piece of paper is a two dimensional
representation. In this case the structure should be
represented as a string of characters, which is, in a way, a

one dimensional representation.

This section gives an alternative way to describe the
structure of a model.

Model graph

The connection structure of a submodel can be considered as
a graph. The vertices of the graph are the declared nodes
and the cuts in its submodels and in the model itself. The
edges of the graph correspond to the connection mechanisms
that exists between the nodes and the cuts. Fig 3.7 shows
an example of a model graph. An other example can be found

in example 7.4 (page 143).
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Fig 3.7. A connection structure

The description of such a graph can be done using different
principles. One possibility is to concentrate the
description on the edges and indicate the vertices each edge
is connected to. This can Dbe done in the model langage
using the at-operator. The expression Cl at C2 states that
there is an edge between the cuts Cl and C2. This type of
description does not consider the fact that the cuts are

naturally grouped as belonging to the same submodel.

Another possible method is to describe how each submodel is
connected. This can be done by giving the vertices to which
there are edges from the submodel. When constructing the
submodel the cuts are ordered in some way to simplify the
connection. The connected vertices are then given 1in the

same order.

This way of describing the connections 1s the standard
method used in analysis programs for electrical networks as
e.g. ASTAP (see ASTAP) and TESS (TESS, 1972).

Hierarchical cuts are used for this kind of description in
the model language. The ordering of the cuts of the

submodel is accomplished by inserting them into a
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nierarchical cut. The connection 1is done with the
at-operator and a corresponding hierarchical node containing

the nodes with edges from the submodel.

Example 3.7

Consider the following submodel.

model M
cut A(vl v2) B(v3 v4) C(v5 vb)
main cut D [A B C]

end

This model is connected in a superior model to three nodes
Nl, N2, N3 using the following statement.

connect M at (N1 N2 N3)

This connection statement is equivalent to the following

statement.

connect M:A at N1, M:B at N2, M:C at N3
[]

A third philosophy for description of the graph will now be
given. It 1is Dbased on the fact that the connection

mechanisms introduces a natural grouping of the submodels.

It is sometimes natural to say that a number of models are
connected e.g. in series or in parallel in some respect.
The connection mechanisms can belong to different
categories, such as electrical or mechanical connections or
pipes with different kinds of fluids. It is thus natural to
consider several different groupings and relations between
the submodels.

Since a model can have several cuts it is important that the

description takes the orientation of a submodel into
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account.

Example 3.8

A verbal description of an industrial plant could contain a
sentence like: "Water flows from Pump through Pipe through
Valve into Tank". It is then assumed that the outgoing port
of the Valve is connected to the inlet of the Tank.

This would be described in the model language as follows.

connect (water) Pump to Pipe to Valve to Tank

[l

When stating that models are connected after each other or
in series in some respect, it is assumed that the models

have two sides, between which there exists a direction.

Directions are often inherent in systems. They can e.g.
originate from ©physical observations such as flows through
the subsystems and the connection mechanisms. The direction
in the model is in fact equal to the direction of the flow

when the corresponding variable is positive.

When a system has no inherent directions, the choice of
reference directions for variables will impose directions.
One example is a resistor in an electrical network. It must
be considered as physically symmetric. Its direction will
coincide with the current when the <current wvariable is

positive.

Another reason to consider directions in a submodel 1is the
perception of the causalities. It is, however, not a well
defined concept because one submodel can influence another
submodel in one respect but in another respect the influence

is in the opposite direction.

Ag directions are defined in a model it 1s natural to

introduce the concept path. A path exists between cuts at
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the input and cuts at the output and is declared in the

submodels as follows.

path <path identifier> < <cut> - <cut> >

If there are several cuts at the input or at the output they
are dgrouped into a hierarchical cut. Several paths can be
declared in a submodel corresponding to different connection

mechanisms.

The concept path is also associated with the description of
the structure as a text string. There 1is an inherent
direction from left to right in a text string. In the text
a model is represented by its identifier. A path in a model
thus corresponds to a direction from the left side to the
right side of the model identifier.

An alternative way of looking at the introduction of ©paths
is the following. The graph consisting of connection
mechanisms, nodes and cuts is normally a set of subgraphs
with disjoint vertex sets. By introducing vaths, new edges
are introduced inside the submodels and a more connected
graph is obtained. The graph is then described by selecting
a set of subgraphs which are described separately. The
division of the graph is arbitrary. The choice is made for
convenience. It is guided by natural properties of the
system and a desire to have simple descriptions. Such
subgraphs can e.g. consist of simple paths, parallel paths,

trees and loops.

The union of the vertex sets and edge sets of the subgraphs
must be equal to the corresponding sets of the total graph.
However, neither the vertex sets nor the edge sets of the

submodels need to be pairwise disjoint.

A natural way to describe the subgraphs is to state how the
internal edges in the submodels (paths) are joined with
edges (connection mechanisms). This description 1is done

with a set of connection operators. The most important is
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the to-operator.

Example 3.9

Consider the model structure in Fig 3.8.

o/ M3 \c2_ ¢ M4 \C2

_/

Fig 3.8

This structure can be described with the to-operator as

follows.

connect M1 to M2 to M3 to M4
If the models M1 - M4 has the following declaration of a
path

main path P <Cl = C2>

then the connection statement is equivalent to

connect M1:C2 at M2:C1l, M2:C2 at M3:Cl, M3:C2 at M4:Cl

Example 3.10

Consider the model structure of Fig 3.7 (page 43) and assume
that there are two different types of connection mechanisms

and directions as indicated in Fig 3.9.
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C1

qi!’ CL

C5

Fig 3.9. A connection structure with
directions and paths

If the submodels have paths declared according to the dotted
lines inside the submodels then the model structure could be
described with the following statements.

connect (pathl) Cl branch (M1 to (M2 par M3) to C3
M4 to M5 to C4)

connect (path2) C2 to M2 to M3 to ( . M5) to M4 to C5

Note that the second cut of path2 in M3 and the first cut of
path2 in M4 is hierarchical.

[]

Syntax for path declaration

The syntax for path declaration is given below.

{path declaration> ::= [main] path {<path identifier>
{<path clause> / <path spec>} }*
{path clause> ::= < {<cut>/.} - {<cut>/.} >

One path in each submodel may be declared as main. Some

examples of path declarations are given below.
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Ex.
path P1 <Cl1 - C2>
path P2 < (vl / v2) - (v3 / =-v2) >
main path P3 < [C1l C2] - [ (v4 v5) (v6 v7) ] >
[]

Connection operand

The connection of the submodels 1s done with connection

statements. The operands in a connection statement are

cuts, nodes and paths.

<connection operand> ::= <cut spec> / <path spec> /

<node identifier>

There are several different ways to specify the cuts and

paths.

<cut spec> ::= <model spec> [:<cut identifier>] /

<cut identifier>

<path spec> ::= <model spec> [..<path identifier>] /
<path identifier>

If no <model spec> is given the named cut or path is assumed
to Dbe declared in the submodel where the reference is made.
If only a <model spec> is given there are two
interpretations. If a <cut identifier> or <path identifier>
is given within parentheses after connect in the actual
connection statement that identifier is used for reference.
If there is no such identifier the operand is the path or

cut declared as main.

Connection operators

The available connection operators are at, to, from, par,
loop, branch, join and reversed. The operators are
illustrated in Fig 3.10 - 3.17.
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A connection expression consists of operands, operators and

parentheses. The syntax is given below.

<connection expression> ::= <connection secondary>

{ {atl=|tol-Ifrom|parl|//|looplbranch|join}
{connection secondary> }*

{connection secondary> ::=
[reversed|\] <connection primary>

<connection primary> ::= <connection operand> /

( {<connection expression)/.}* )

The interpretation of a connection expression 1is defined
using the elementary at-operator. Each operator is
translated to a set of at-operations. It also gives a value
which is either a cut or a path. The evaluation of the
operators is done from left to right 1f not otherwise
indicated by parentheses. One exception 1s the unary
operator reversed which has higher priority than the others.
The binary operators have equal priority. However, it might
be more natural to give the par and loop operators higher

priorities.

Table 3.1 gives the evaluation rules for the operators. The
notation Cl, C2,... has been used for cuts and nodes and

the notation <C1 - C2>,... has been used for paths.
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Table 3.1 Evaluation rules for connection operators

Operation

1. Cl at C2

2. reversed <Cl - C2>

3. <C1 = C2> to <KC3 - C4>
Cl to <C2 - C3>
<Cl - C2> to C3

4, <C1 - C2> from <C3 = C4>
Cl from <C2 - C3>

<Cl =~ C2> from C3

5. <C1 - C2> par <KC3 - C4>

6. <Cl - C2> loop <C3 - C4>

7. <C1l = C2> branch <[C3 C4 ...]

8. <Cl1 - [C2 C3 ...]> join <C4 -
9. (Cl)

(<C1 - C2>)

(C1 C2 ...)

(<Cl - C2> <C3 = C4> ...)

Result

C2

<C2 - C1>
<Cl1 - C4>
C

Cl

<C3 = C2>
C2

C2

<C1l = C2>
<Cl = C2>
- C5>

<Cl - C5>
C5>

<Cl -~ C5>
Cl

<Cl - C2>
[Cl C2 ..
<[C1l C3

Effect

Cl at

none

C2 at
Cl at
C2 at

Cl at
Cl at
Cl at

Cl at
C2 at

C2
c2

none
none

o] none

cee] = [C2 C4

none

c2

C3
Cc2
C3

C4

C3

C3

C3
C4

C4
C3

C3
C4

c4
C4

1>
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Example 3,11

The structure shown in Fig 3.18 could be expressed as

M1 to (M2 to M3 par M4) to M5

—(t)—(e)—
©— -©®

®

Fig 3.18

Assume that the models M1 - M5 have the following path.

main path P <Cl - C2>

The connection expression could then be written as

<M1l:C1l - M1:C2> to ( <M2:C1 - M2:C2> to <M3:C1 - M3:C2>
par <M4:C1 - M4:C2> ) to <M5:Cl - M5:C2>

The expression is reduced succesivly generating a set of
at-operations. The first expression to evaluate is M2 to M3
because of the parentheses. The resulting at-operation is
M2:C2 at M3:C1
The result of the operation is the path <M2:C1 - M3:C2>
which is inserted into the connection expression.
<M1:C1l = M1:C2> to ( <M2:C1l - M3:C2> par <M4:Cl - M4:C2> )
to <M5:C1 - M5:C2>

The next operation to perform is par. It results in two
at-operations.

M2:Cl at M4:Cl

M3:C2 at M4:C2
The expression is then reduced to

<M1:Cl - M1:C2> to <M2:Cl - M3:C2> to <M5:C1l - M5:C2>
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The first to-operation gives
M1:C2 at M2:C1
The reduced expression 1is
<M1:Cl = M3:C2> to <M5:Cl - M5:C2>

The last operation gives
M3:C2 at M5:Cl1
The result of the connection expression is

<M1:Cl - M5:C2>

The effect of the connection expression 1is five at

operations in accordance with Fig. 3.18.

[]

In order to shorten the connection statements e.q. when
describing electrical networks the following alternative
notations are proposed.

at =

to -

par //

reversed \

Parentheses in connection exvression

Parentheses in a connection expression can be used as in
arithmetic expressions to indicate priority. However, it is
also used to construct hierarchical cuts and to handle

parallel paths.

Several connection expressions can be given after each other
within parentheses. They are evaluated independently. If
the result of all evaluations 1is a set of cuts then a
corresponding hierarchical cut 1is constructed. If the
result is paths then a new path is constructed in which the
first cut 1is hierarchical containing the first cuts of all
the paths. The second cut is constructed in the same way.
It is not 1legal to mix cuts and paths. These rules are

summarized in rule 9 of table 3.1.
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The construction is used e.g. to generate hierarchical
nodes when connecting submodels between nodes. Compare
example 3.7 (page 42). It is also important together with
the branch and join operators. These operators are used to

describe subgraphs which are trees.

Connection statement

The syntax for a connection statement is

{connection statement> ::=

connect [(<identifier>)] {<connection expression>}*

Each connection expression describes a subgraph of the model
graph. The identifier within parentheses is used to specify
which cuts and paths of the submodels that are concerned in

the connection expressions. Compare connection operand.

Redefinition of cuts and paths

Each level of the hierarchical submodel structure has a
connection structure. A connection statement can contain
references to cuts and paths declared in the model where the
reference is made and in its submodels. It is also possible
to reference cuts and paths at lower levels in the submodel
hierarchy using the ::-notation. Knowledge about the
internal structure of the submodel 1is then needed. Such
references can of course be avoided by declaring a new cut
at the outer level. The details of such a cut, e.g. the
included wvariables, are then not interesting. There are

thus two ways to redefine a cut at an outer level.

A cut can be declared without <cut clause>.

cut <cut identifier>

Such a cut can then be used in a connection statement, e.g.

as below.
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connect <cut identifier> at |

<model identifier>:<cut identifier>

The same effect can be obtained by the following alternative

cut declaration.
cut <cut identifier> <cut spec>

Paths can also be redefined in a correspong wavy.
path <path identifier> <path spec>

An important form of the path declaration is the following.
path <path identifier> < <cut spec> - <cut spec> >

This is exemplified below.

Example 3.19

Consider the submodel structure of Fig 3.19.

M1 M2 M3 k——4'

Fig 3.19

Assume that the submodels M1, M2 and M3 have the following

declarations.

cut Cl(...) C2(eecs)
main path P <C1l - C2>

It should be possible to consider M as having a path between
the cut C1 of Ml and the cut C2 of M3 when connecting the
submodel M. This can be accomplished by the following

description of M.




model M
submodel M1 M2 M3
main path P <M1:Cl - M3:C2>
connect M1 to M2 to M3

end
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3.7 Example

The ideas presented in the previous sections are illustrated

by an example. Further examples are given in chapter seven.

Consider the electrical network in Fig 3.20.

Fig 3.20

For this system it is easy to write down the equations

directly. One model is the following.

model Network
input u
output y
local il iy v,

parameter Rl R2 R3 C

U=Ry %1 4v

VoTRyFi +R* i,

Y_R3*12
C*v '=iy-i,
end

Another approach when modelling the network is to develop a
library of electrical components which are then connected

together.

A library consisting of resistor, capacitor, coil, voltage
source, current source and common node is given on page 58.
The components are prepared for connections according to the
different philosophies discussed. The main cuts are used
when connecting the components between nodes and the main
paths are wused when following paths in the network. The

voltage V of a voltage source is a terminal variable. Its
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value 1is given using the dot notation. The same holds for
the current I of a current source. The cut declarations 1in
the current source contains dots corresponding to the
terminal voltages because a current source is independent of
the voltages. The description of each network should
contain one submodel of type Common. The cut declaration in
the submodel Common contains a dot corresponding to the
current. The redundant current equation for the network is

eliminated in this way (see page 34).
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{ Library of basic electrical components }

model type resistor
cut A (Va / I) B (Vb / -I)
main cut C [A B]
main path P <A - B>
local V
parameter R
V = Va-Vb
R*I = V
end

model type capacitor
cut A (Va / I) B (Vb / -1)
main cut C [A B]
main path P <A - B>
local V
parameter C
V = Va-Vb
C*der(V) =1
end

model type coil
cut A (va / I) B (Vb / -I)
main cut C [A B]
main path P <A - B>
local Vv
parameter L
V = Va-Vb
L*der(I) = V
end

model type voltage
cut A (Va / I) B (Vb / -I)
main cut C [A B]
main path P <A - B>
terminal V
V = Vb-=Va

end

model type current
cut A (. / I) B (. / -I)
main cut C [A B]
main path P <A - B>

end -

model type Common
maln cut C (Vv / )

Vv = @
end




59

This library of components have been used for the following

two alternative descriptions of the network in Fig 3.20.

model Network
submodel (resistor) R1 R2 R3
submodel (capacitor) C
submodel (voltage) E
submodel Common
input u
output y
connect Common to E to Rl to (C par (R2 to R3))Eg Common
E.V = u
y = R3.Va

end

model Network
submodel (resistor) R1 R2 R3
submodel (capacitor) C
submodel (voltage) E
submodel Common
node NO N1 N2 N3
input u

output y

connect Common at NO,
E at (NO N1),

Rl at (N1 N2),

C at (N2 NO),

R2 at (N2 N3),

R3 at (N3 NO@)

The first description generates the equations listed below.
The equations for the second description will not be exactly

the same, but they will be eguivalent.
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Submodel

Rl

B
Common
R2

R3

Network

Equation

V = Va - Vb
R*I =

V = Va - Vb
C*der(v) =1
Vv = Vb - Va

Vv =20

V = Va - Vb
R*I =

V = Va - Vb
R*¥I =

E.V = u

y = R3.Va
Rl.Va E.Vb
R1.I = E.I
R3.Va R2.Vb
R3.I = R2.1
R3.Vb C.Vb
Common.V = R3.Vb
E.Va = Common.V
C.Va = R1.Vb
R2.Va C.Va

C.I + R2.I = RI1,

I
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3.8 Additional features of the language

The previous sections of this chapter have described the
basic elements of a model language for continuous dynamical
systems. This section is devoted to a brief discussion of
some additional features which would be wuseful when
modelling systems. The list of features 1is by no means
complete. More experience of the use of the language is

needed to define it completely.

Conditional statements

The model of a system depends on the phenomena of interest.
When collecting submodels to form a complete model it is
very important that the submodels are compatible in this
respect. There could thus be several models of a system in
a submodel library which describes different aspects of a
system. However, in many cases the differences between the
models are small. It could be a matter of which
approximations are made. 1In this case it would be natural
for the modeller to include conditional statements in a
model. Different models can then be selected by using some

kind of structural parameters.

Some of the cases can be handled by the if-then-else
construction in the equations. However, even the
declarations can be conditional. The problem can be solved

by using an if-then-else statement or a case statement.

Consider the simulation problem. If the conditions only
depend on parameters the set of equations and variables are
the same during one simulation run. This means that the
transformation of the equations, which is discussed in later
chapters, only has to be done once before the simulation
starts.

In some cases it is natural to 1let the model equations
depend on the operating region of +the model. If the

solution crosses the boundaries during a simulation then the
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integration algorithm must compute the crossing point and
then the new model should be determined. It is possible
that a transformation of the eguations must be done at such

a point.

Indexed elements and loops

It is obvious that a model language should include indexed
var iables such as vectors and matrices. It should also be
possible to operate on them using a generalized assignment

statement.

There are examples when it is desirable to index cuts.
Consider for example a mechanical system which is built up
from levers. Each lever has a number of holes and the
levers <can be connected by bolts through the holes. To
describe such a system it is convenient to make only one
model of a lever, declaring an indexed cut hole[n] which
could then be referenced as e.g. leverl:hole[3]. The
equations in the model will not be the same for different
numper of holes. However, it is easy to incorporate the

equations using a loop statement.

The following example show the use of indexed submodels and

the use of a loop statement.

Example 3.20

Consider the problem of modelling a heat exchanger. A heat
exchanger 1s probably most easily described by partial
differential equations. Sufficiently good approximations
can, however, be obtained by dividing the heat exchanger
into a number of sections each described by ordinary

differential equations (see Fig 3.21).
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Hot in Hot out
Cold out Cold in
1 2 3 n-1 n

Fig 3.21

The degree of approximation depends of the number of
sections. This means that the connection of the sections
should be done in such a way that it is easy to change the
number of sections. This number can also be large. These
facts indicate that there should be some loop statement to
use when connecting the sections. One way of modelling the

heat exchanger is shown below.

model type section
cut hotin(...) hotout(...) coldin(...) coldout(...)
path hot <hotin - hotout>
path cold <coldin - coldout>

model heatexchanger
structure parameter n

submodel section[n]
path hot <section[l]:hotin - section[n]:hotout>
path cold <section[n]:coldin - section[l]:coldout>
for i:=1 to n do

begin

connect (hot) section[i] to section[i+l]

connect (cold) section [i+l] to section[i]

end

end
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Difference equations and discrete events

The demand for combined continuous - discrete simulation
languages has increased. One of the reasons is the need to
simulate computer controlled processes. A computer and its
programs can be modelled as a discrete event model. It is,
however, interesting to consider the special case difference
equations or discrete time models since the basic concept
when designing digital controllers is difference equations.
Difference equations are also used to model economical

systems. A discrete time model could have the same

structure as a continuous model and the same facilities to
transform the equations could be incorporated.

The discrete event models appear at a superior level to
continuous and discrete time models. Discrete events can be
triggered by e.g. a variable passing a limit in a
continuous model. The event on the other hand can change
variables and even change the equations of a continuous
model. One way of handling this situation would be to make
an interface between the discussed model language and
languages for discrete event simulation as e.g. Simula
(Birthwistle et al, 1973).

Changes in model equations could be handled with structural
parameters appear ing in if-then-else-, case- and
for-statements. There should be some mechanism to

manipulate such parameters from a discrete event model.

Model validity

The proposed model language simplifies the creation of model
libraries which «can be used by different persons. Since a
model is not a complete description of the real world
erroneous results can be obtained by using a model in a
wrong way. To overcome this problem the models must have
good documentation. In some cases the test for suitability

can be done automatically. This is the case with the
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numerical region of wvalidity. It should be possible to
express that a model is valid only if certain conditions on
the variables are fulfilled. For this purpose the following

statement is proposed.
valid <Boolean expression>
Conditions can be given on ©parameters, variables and

derivatives. Conditions on the derivatives can be used to

state that a model is valid in a certain frequency range.




Gh
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4. OPERATIONS ON THE MODEL

4,1 Mathematical notation

The total model is composed of three types of equations.

- The equations in the submodels
- Equations of the type
Vi=vj
for across variables
- Equations of the type
Vi+Vj+--c=VK+cc‘
for through variables

The two last types of variables are introduced by the cut

and path operations.

In order to get a simple mathematical notation for the model
all higher order derivatives are eliminated. This is done
by introducing auxiliary variables and extra equations.

From a system theoretical point of view it is interesting to
distinguish wvariables that are considered as inputs and
outputs for the total model. A mathematical notation for

the models described in the model language is

£(t, x', x, Z, U, Yy, p) =0 (4.1)
where
t - time

X — variables that appear differentiated
- inputs
outputs

- parameters

N T = O
1

- other variables

Derivatives of u and y have been eliminated by introducing
auxiliary variables. The number of equations is equal to

dim x + dim z + dim y for a well posed model.
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4.2 Linearization

There is a well developed theory which treats linear
systems, It is thus interesting to develop linearized
models from the basic equations. 3uppose the model should
be linearized along a reference path defined by the
functions x (), Zg(t), uﬂ(t) and yg(t). Introduce

the deviations

Dx(t) = x(t) - Xg(t) (4.2)

etc.
Insertion into the model (4.1) gives.

f(t, xé+Dx', x . +Dx, z_.,+Dz, u,+Du, y0+Dy, p) = 0

g ] g

Linearization gives

f(t,Xé(t),Xg(t),Zﬂ(t)rug(t)ryg(t),P) +
df . df df at
S (pxt + $(ox + §E(pz + $(Du + 35Dy = 0
Note that partial derivatives are denoted df/dx. The

arguments of the Jacobians are the same as for £. If new

notations are introduced the linear model can be written

A(t)Dx' + B(t)Dx + C(t)bz + D(t)Du + E(t)Dy + F(t) =0

If  x=xg,, z=z4, u=uy; and y=y,; is a solution to the
original model then F(t)=0. In some cases the matrices are
constant. The linear model is then:

ADXx' + BDx + CDz + DDu + EDy = 0 (4.3)




4.3 State equations

The original model can be simulated directly. This will be
demonstrated in chapter 5. Many integration methods are

developed for systems in state space form:

x' = £(x,t)
See for e.g. Lambert (1973). Other methods for analysing
dynamical systems also use this form. These are reasons for
transforming the model to state space form if possible.

If

d
det[&—,

cﬁl(.)i@

QA!D.:
N [

then there are functions F, G and H such that locally

x'= F(t,x,u,p)
= G(t,x,u,p)
y = H(t,x,u,0)

Practically it is often sufficient to permute the equations
and to solve variables from x', 2z and y one at a time.
There may of course be systems of equations that have to be
solved simultanuously but they are often linear. Methods to
find the permutations are discussed in section 5.2. In some
cases 1t is possible to find a state space form even if the

determinant vanishes (see section 5.3).

Decomposition

A model in state space form can be written as
]

x' = £(t,x,u,p)

if the auxiliary variables and outputs are left out.
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For control purposes it is sometimes interesting to split up

the system into subsystems with the structure in Fig 4.1.

|

i i
(™

Y v

—
I
I
l
l
I
|

I
I
I
l
|
I
L_ 1

Fig 4.1
It can e.g. be easier to introduce hierarchical control 1if
it 1is possible to find such a structure. This problem is

discussed in Sato, Ichikawa (1967) and Aulin (1969).

The problem can be formulated as to find a permutation

matrix P such that

becomes block triangular. The blocks correspond to the

subsystems in Fig 4.1.

structural controllability and observability

It is difficult to see how different variables can influence
each other when the model consists of many equations. When
designing regulators heuristically such information is very
important. It is not only direct influence which is of
interest because the influence of a variable can sometimes

be seen only in its derivatives. The information can be
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presented as the lowest derivative which is influenced.
Information of this type can easily be obtained with a

computer and presented to the user.
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4.4 Computations

The original model (4.1) may be used to obtain other models
or transformed models. Simplified models may for example be
generated by neglecting certain dynamics. This may be done
simply by replacing dynamic equations by static equations.
The original model may also be used to calculate equilibrium
values, to obtain linearized equations and equations for the
inverse of the system. Some of these calculations are

briefly described below.

The description of the computations are done using the model

notation
£(t, X'y Xy 2, u, y, P) = 0
Simulation

For simulation it is assumed that the inputs u, the
parameters p and an 1initial wvalue of x are known. The

purpose is to calculate the time responses of X, z and vy.

If x is not a state vector there may be <conflicts between
the equations and the given initial values. The problem can
then in some cases be defined such that the eguations are
only valid  for t>tg, This situation correspond to
connecting different subsystems with known initial values at

t=t@+e_
Another way of specifying the problem is to give initial
values to only a part of x and use the eguations to compute

the other part. After that the integration can take place.

Computation of initial wvalues

In many cases it is unnatural to give initial values to all
components of x. The variables x are only characterized by
the appearance of their derivatives. It should be possible

to give initial values to some of the components of x, z and
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Ve Introduce the notation Xr 23 and y; £or these
components. Some equations should if possible be selected
which after transformation gives the initial value £for the
rest of x, Xoe

The structure of the equations gives constraints on the

selection of x,, z; and y;. The dimension of x; can
of course be zero. When X, is computed then the initial
value 1is known £for the entire x and the simulation can be
done. The equations are in this way assumed to be valid
also for t=t®,

Optimization of dynamical systems

Many problems in system theory can be expressed as
optimization problems. Typical examples are model fitting,
parameter estimation, regulator tuning and optimal control.
The optimization problem can be formulated as follows.

Given the model
£(t, x'y %, 2, u, y, p) =0

Find values of the parameters such that the criterion

t
£

J =f 9, (tyx",x,2z,u,y,p)dt
g

+ gz(tf,x' ' XyZ,U,Y,P)

is minimal subject to




74

hl(tle'(tf)rX(tf)rz(tf)ru(tf)rY(tf)rp) = 0

x(tg) = Xg(p)

Some of the parameters p, are fixed. The equations hl
(and £) may express dependence between parameters. The
optimization procedure becomes more effective if there are
as few constraints as possible. The first problem is thus
to select a set of parameters P, such that the rest 0,
can be solved from the equations. Algorithms for this are

discussed in section 5.2 under 'design variable selection’.

The optimization problem can now be formulated as: Select

values for Py such that some variable z; is minimized
subject to

E'(t,x",x,2,D = 0

3)
hi(tf,X'(tf),X(tf),Z(tf),p3) = 0

v
S

hz(tflxl (tf) ,X(tf) IZ(tf) Ip3)

Many optimization algorithms need the Jacobians

dzi dhi dh2
ag;(tf), agg(tf) and ag;(tf)
The two last Jacobians can be computed directly. The

derivative of the loss function can be obtained by numerical
differentiation. The equations must then be integrated for
different values of py. The derivative can sometimes be
obtained more efficient by solving an adjoint equation for
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dZi/dp3. This equation 1is obtained by differentiating
f' with resect to P3.

df' 4 ,dx df' dx df' dz atg' _ |

dx' at'dp;) Tax dp, taz dpy Tapg T’

The initial value for this differential equation is
dx (t) = dxﬁ
dp3 ] dp

The integration of the original equations and the equations

for dx/dp3 is done at the same time.

Static model

A static model is obtained by setting x'=0.

£(t,0,x,2,u,y,p) = 0

The variables x,z and y should be solved when t,u and p are

given.

Static design

In static design certain variables like the operating point
are specified. The equations are then used to compute the

other variables. This can formally be written as
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u2 = g(trxlrzlrulrylrpl)

| P2 ]

The static model is clearly a special case of this.

Static optimization

Static optimization of a model is a special <case of the

dynamical optimization.
The following example shows how the equations are
manipulated in different ways depending on the operation on

the model.

Example 4.1

Consider the equations for the network in section 3.7.

u = Rl*ll +Vc

Ve = Rp¥iy + Ry*i,
y = Ry¥i,
C*v v = -

c iy - i,

The state equations are obtained if the parameters R

1!
R2, R3 and C, the state Ve and the input u are assumed
known. The equations are solved for il, 12, u, and
Vl

cc




77

i, = (u-—vc)/Rl

i, = vc/(R2+R3)
= * 9
y = Ry*i,
v, = (11—12)/C
The derivative of v_ is zero for a static model. The

c
static relationship between u and y is obtained if u and the

parameters are assumed Known. The following system of

equations are obtained.

Rl g 1 iy u
ﬂ R2+R3 —l ° i2 =
1 =1 2 v

C

The additional equation is

= * 1
Y = Ry¥i,
If the system of equations is solved the following static

input - output relationship is obtained.
Y R3*U/(R1+R2+R3)

For this example it could of <course be obtained directly
from Fig 3.20.

The model equations can be used for design purvoses. It is
not possible to determine all parameters from static
considerations. Assume e.g. that R3 is known and that
Ry and Ry should be determined. The input u, the output
y and the operating point V. are also assumed known. The

following equations are obtained.
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5. COMPUTATIONAL METHODS

This chapter contains a brief discussion of some of the

computational methods needed for operation on the model.

5.1 Integration

The basic operation on the model
£(t,x",x,2,u,y,p) = 0 (5.1)
is simulation, i.e. solution of x(t), z(t) and vy(t) when

u(t) and p is known.

Almost all integration algorithms are solving the equation
x' = F(t,x) (5.2)
See e.g. Lambert(1973).

In order to use methods for (5.2) on the model (5.1) it 1is
required that

df df df

dx' dz a§] >0

along the +trajectory. This condition is not always

det [
fulfilled as shown in example 5.1.

It is thus interesting to solve (5.1) directly. Algorithms
for this can be found in Gear (1971, 1972), Brown and Gear
(1973), Hachtel, Brayton, Gustavson (1971) and Brayton,
Gustavson, Hachtel (1972). These algorithms are implicit
multi step methods. 1In the special case when the order of
the method is one the derivative 1is approximated by a
backward difference.
x(tn) - X(tn—l)

' = o = -
X(tn) 0 ; h t t

This is inserted into (5.1) to get
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F(t 2 (x(t)=x(t 1)), x(t ), z(t),ult),v(t),p) = 8

This equation can be solved by wusing Newton's method.

Introduce the notation Xn = x(tn)'
at 1 af m+l m df, m+l m df , m+l m, _ _
(Fx'a © ax) (¥ X)) *oFp(zy vEg) dy(yn yy) = -t

The matrices df/dx', df/dx, df/dz, df/dy and the vector £
all have the argument

1l .m m m
(tnr E(Xn_xn—l)’ Xgr 2 7 U, Y

The iteration index 1s m.

r P) (5.3)

In order to solve x, z and y the following condition must be
fulfilled

daf 1 af daf df
det[ag,ﬁ - R (5.4)

The Jacobians all have the argumentlist (5.3).

This condition is different from the one that was necessary
for transformation to state space form because df/dx' has
been replaced by df/dx'/h + df/dx. It is thus possible to
integrate the equations even if they can not be reduced to

state space form.

Example 5.1

In order to study some of the characteristics of the

integration algorithm, the following system is studied.
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R .
|
— .
, c,
e C1 = V1 _— |V
Fig 5.1

A model for this system is

1

= ' '

1 Clv1 + C2v2

vy =V,
The derivative is approximated by

ol (b ) ~ v(tn) - v(tn_l) _ o - Vn—l

n t -t - h
n n-1

Simple calculations give the following difference equations.

n _ 1 n-1 n-1 N o
Vi T FF R(C1+C2) (RClvl + RC2v2 + he'’)

n _ 1 n-1 n-1
V2 T BF R(CrC,) (BCVy ot RGyvy o * hed)

n _ 1 _ n-1 _ n-1 n
i T R(C.IC ( Clv1 sz2 + (C1+C2)e )
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The capacitors will all get the same voltage after one
iteration.

vi o= vh
1 2’

The following eqguation 1is obtained if h << R(C1+c2) (the

n=1

time constant).

1.9 o, 2 0
2 1 2 1 Cl + C, 2
This is true since charges are moved from one capacitor to

the other.

vl = v
1

For n>2 it follows that

+ hen)

n _ 1 n-1
Vi T E T R(cl+c2)(R(C1+C2)V1

or equivalently

n-1 n _ n
1 ) + vl = e

This difference equation corresponds to the differential

. l n
R(C1+C2)E (Vl-V

equation

]
R(C1+C2)vl + Vl

which is obtained if the capacitors are replaced by one with

= &

the capacitance C1+C2.
[]

In this particular example it is thus <c¢lear that the
implicite integration method will give a proper solution and
that it is not necessary to convert the system to state

space form for simulation.
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5.2. Transformation of the equations

Different operations on the model were discussed in chapter
4, This section contains methods to transform the equations
to simplify the calculations. The equations can be written
in the following form independent of what operation should
be done.
fE(x,y) = 0

The known variables are denoted y and the unknown by x. The
vectors x and vy contains different variables depending on

the operation desired.

A numerical solution can be obtained by HNewton's method.
The Jacobian has, however, often a simple structure. It is
frequently sparse and many of its nonzero elements are
constant. This can be used to make the calculations more
efficient. In some cases the system of =equations 1is so
simple that the variables can be solved sequentially one at
a time. This corresponds to the case when the Jacobian can
be made triangular by permuting equations and variables
independently. Such transformations are important if the
equations are solved by formula manipulations.

Many of the methods to transform the equations are
formulated using graph theory. The basic methods use only
the structure of the equations, i.e. whether the elements
of the Jacobian are identically =zero or not. This

information can be put into a bipartite graph. A Dbipartite

graph contains two sets of nodes, which in this case
correspond to the eguations and the variables. Edges must
not connect two nodes from the same set. An edge between an
equation node and a variable node means that the variable is

present in the equation.

Example 5.2

Consider the following system of equations
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fl(xz,x4) =0
fz(x3) =0
f3(xl,x3) =0
f4(xl,x2,x3,x4) = 0

These equations can be represented structurally by the

bipartite graph in Fig 5.2.

Fig 5.2. A bipartite graph

Qutput set

In the following sections the system of equations will be
denoted by f(x) = 6. To find an output set means that each
equation is associated with one and only one variable. This
can also be seen as to transform the bipartite graph to a
directed bipartite graph such that each equation node has
one outgoing edge and each variable node has one incoming
edge. The problem is equivalent to finding a permutation
matrix which permutes the equations
g(x) = PE£(x)
such that

(49,

ax #+ ¢

ii

A necessary condition for the equations to have a solution

is that there exits an output set.
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Algorithms for finding an output set can be found in Steward
(1962) and Wiberg (1977) (see procedure Assign 1in the

program listing).

Partitioning

Partitioning is used to permute both equations and variables
independently in such a way that the variables can be solved

seqguentialy.

Two permutation matrices are wanted, one that permutes the

equations, P and one that permutes the variables, Q, i.e.
g(y) = Pf(x) ;5 x = Qy

They should be chosen in a way that the matrix

ag _ , at
ay - P ax ©

becomes block triangular with minimal blocks, see Fig 5.3.

a.

g
29 Lﬁ%

<

If all the blocks are scalar and all the equations g9; are

linear functions of Yy; then the equations can be

transformed as

gi(er---rYi) = hil(Yl:---rYi_l) + ylhlz(ylr"'lyl_l)
The variable vy. is easily solved from this equation.  All
the wvariables «can in this case be solved successively from

the equations. If h;,=¢ the problem is ill posed.

Nonscalar blocks in the permuted Jacobian correspond to

systems of equations that must be solved simultaneously.
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Special methods can be used if the equations are linear in
the unknown variables. Newton's method can be used to solve

nonlinear equations. See e.g. Ortega, Rheinboldt (1979).

Algorithms for partitioning can be found in e.g. Steward
(1965), Tarjan (1972) (see procedure Strongconnect in the
program listing) and Wiberg (1977). Wiberg also gives a

comparison between some algorithms. Some of the algorithms
first find an output set. The equations and the variables

are then permuted by the same permutation matrix.

Partial partitioning

If the system of equations is underdetermined it is
sometimes useful to split the equations into two parts:
equations that can be solved and equations that can not be

solved. The problem can be formulated as follows.

Assume the eguations

f(x) = @ dim £ < dim x

Find permutation matrices P and Q and a partitioning of the

equations and the variables such as

97 Yy
=P f ; x =20
92 Y2
in a way that d9,/dy, = @ and dim g; = dim y; is
maximal.

The structure of the Jacobian after permutation is shown in

Fig 5.4.
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O g
1
dg .
dy
9,
] )
Fig 5.4

The variables Y, can be solved from g;.

An algorithm for solving this problem is given below. It is
based on adding a set of equations. All of them depend on
all wvariables. The total set of equations are then

partitioned.

In order to have as many equations as unknown variables a

set of equations I(x) is added.

Qu
—

. ||._|.

I{(x) = 0
iﬂ?Vilj

>

QO
o]

im I = dim x - dim £

All the equations are then partitioned by an arbitrary
algorithm. The partitioning algorithm fails if it is not
possible to assign a variable to some equation. It will
thus fail for any other equations that makes the system of
equations complete. The problem is thus badly posed if the

partitioning algorithm fails.

Since all equations in I(x) depend on all variables it 1is
obvious that they will all be contained in the last system
of equations (last strong component of the corresponding
graoh) . The equations in all the other strong components

correspond to gy (x). The equations of g, are found in
the last strong component. The structure of the division of
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the equations 1into 9 and 9, is thus correct. The
dimension of g, is maximal since the eguations of g, are
contained in a minimal system of equations that have to be
solved simultaneously. The algorithm thus solves the

problem.
An example of the use of the algorithm is given below.
Assume the following system of equations.

f(x,y,2) = 08 ; dim £ = dim x
The variables y and z are assumed known and x should be
solved. Assume, however, that the equations should be
solved many times for different y and =z and that vy is

changed more often than z. To make the computations more

effective the equations should be split up into two sets.

1 dim Xl

FZ(Xl' Xor Y z) = @ dim F2 dim x

Fl(xl’ z) = 0 dim F

2

The equations Fl then do not have to be evaluated as many
times as the egautions F

2-
The problem is solved by making partial partitioning of the
equations that do not depend on y. Fl then corresponds to

94 F, corresponds to 95 and the equations depending
on y.

Tearing

Tearing is a method to decrease the number of iterated
variables when solving systems of equations with iterative

technique. Tearing was introduced by Kron (1963).

The problem can be formulated as follows. Find a

partitioning of the wvariables and the equations, and
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permutation matrices P and Q, such that

97 Yy

i
T
h
i

it
©

92 Y2
The system of equations can then be written as
9,(yqry,) = 0
9, (yqry,) =0
The criterion for the partitioning and permutation can be

e.g to make dgl/dyl triangular or block triangular with

blocks corresponding to linear systems of equations. The
dimension  of y, should be chosen as small as possible.
The equations are solved by iterating over Yoo V1 is

solved from 9, and substituted into 9.

Combinatorical problems occur when the dimension of Yo is
high. Algorithms for tearing have been given in Steward
(1965), Lee, Christenson, Rudd (1966), Christenson (1978)
and Stadther, Gifford, Scriven (1974). 1In Ledet, Himmelblau
(1979) there is an algorithm that does not necessarily give
the minimal dimension of Y, but could be practically
useful for tearing large systems.

Design variable selection

In some cases the system of equations is underdetermined.
f(x) =0 ; dim £ < dim x
One problem then is to select dim x - dim f variables called

design variables in such a way that the other variables can

be solved as a function of the design variables. In some
cases the problem is combined with tearing.

The variables and the equations are permuted and partitioned

as follows.
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I (Yyr¥Yyryg) = 0

Iy (Yqr¥yry3) = 0
The design variables are denoted by Y3, y, are torn
variables for iteration. The variables Yy, are solved from
91 The criterion for the selection can be that

dql/dyl should be triangular and that the dimension of

Y, should be as small as possible.

Lee, Christenson, Rudd (1966) gives an algorithm without
tearing which works when dg,/dy; can be made triangular.
Christenson (1970) gives an algorithm which includes
tearing. Stadther, Gifford, Scriven (1974) allows that
dgl/dyl is block triangular and the types of the blocks
can be specified.

Sparse matrix technique

Sparse matrix technigues can be used as an alternative to
tearing in order to speed up the solution of large systems
of equations. When the coefficient matrix or the Jacobian
is sparse there are special methods to store the Jacobian
and to solve the system of equations. There are e.g. other
types of permutations than the ones discussed earlier which
make the computations more effective. A good survey of such

methods can be found in Tewarson (1973).
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5.3 State equations

Consgsider the basic model

f(t,x',x,2,u,p) = 0

The outputs y have been included in z.

It was mentioned in chapter 4 that there are many reasons
for having the model in state space form. If the states are
chosen as X, i.e. the variables which appear
differentiated, then it is often possible to use the
partitioning algorithm to obtain the state space form. The
equations should then be sorted in a way that it is possible
to solve for x' and z when t, x, u and p are Kknown. The
partitioning algorithm should thus operate on a function

with the following structure.

F(x', z) = 0

The derivatives of the state variables have to be calculated
many times during a simulation. It is thus important to
make these computations efficient. A common situation is
that many of the variables do not change their value at each
evaluation. The computations c¢ould thus be made more
efficient by grouping the variables according to their
dependencies. A natural grouping of the variables (and

equations) 1is the following.

1. Variables which only depend on parameters
2. Variables which only depend on parameters and time

3. Derivatives and variables needed when
computing derivatives

4, Communication variables

This grouping could formally be expressed as follows.,
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The first group of variables can be calculated once Dbefore
the iterations start. The second group is evaluated each
time the time variable 1is changed. The third group 1is
computed when the integration routine needs the values of
the derivatives. The groups 2 and 3 are considered
separately mainly because the implicite integration
algorithms need the Jacobian. Numerical evaluation of the
Jacobian requires repeated calculation of the derivatives
for different values of x. The fourth group of variables
are not needed to integrate the differential equations. It
should be possible to get them printed and plotted. They
need only be computed at points which are accepted by the

integration routine.

A method to find these groups of variables and eguations 1is

given below.

The first group is found by making partial partitioning of
the equations which do not depend on t and X as described on
page 87. The second group 1is found by making partial
partitioning of the rest of the equations which do not

depend on X.

An output set is then determined for the 1rest of the
equations. The oroblem is then to find out the equations
needed to calculate the derivatives. This is done by
backtracking the variables from the equations assigning the
derivatives. The variables in such an equation are studied.
The equations corresponding to variables which have not been
selected previously are added to group 3. This step 1is

repeated for each equation included.
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This part of the algorithm could be imolemented as a depth
first search in the corresponding directed graph. Tarjan's
(1972) algorithm Strongconnect for finding the strong
components of a directed graph makes a depth first search.
By making Strongconnect start its depth first searches at
equations assigning derivatives it will find the equations
belonging to group 3. The partitioning is also wanted and
is found at the same time. The remaining equations belong

to group 4.

Differentiation of equations

If the dynamical order of the system is less than the number
of wvariables appearing differentiated or if elements of z
and y are chosen as states then it is not possible to get
the state space form directly. In many cases it is possible
if the model 1is extended by some of the equations
differentiated.

Pernebo (1977) gives a general algorithm for finding the
state space form of a linear time invariant system. This
section outlines an algorithm for nonlinear systems to
determine which equations to differentiate 1if the state

variables have been gpecified.

A formal analysis of the proverties of this algorithm has
not been made. It is conjectured, however, that it will
give the state equations if condition (5.4) on page 89 1is

satisfied structurally.

Assume that the vectors x and z are partitioned in two parts
in such a way that the state vector is [x1 Zl]' The
problem is then to transform the model

f(tlxiIxérxlllezllzzlulp) = 0

to
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= F(t,xy,2y,u,u',...,0)

N N X X X
= N o=

Note that derivatives of u are allowed. In order to do this

transformation dim X, more equations are needed.

The determination of the variables which have to be
differentiated 1is done in varallel with reapeated partial
partitioning. Introduce the notation v, for the variables
and derivatives which are output set in the i:th block.

After the i:th block has been processed the situation is

Vi = Fy(E,xy,2y,u,p)

<
i

i Fi(t,Xl,Zl,u,u',-c-,p,V1,o--,Vi_l)

Wnen a block has been found it is tested if any element of
vV, appears differentiated in the equations. If not so the
algorithm seeks the next block of equations else all the
equations in the Dblock are differentiated. The following

eguations are thus obtained.

vi = Gi(t,xl,xi,zl,zi,u,u',..,p,vl,vi,..,vi_l,vi_l)
Since variables in previous output sets now appear
differentiated the corresponding equations have to be

differentiated. This step is performed until no more new

variables appear differentiated.

All the differentiated equations are added to the model. If
the blocks are scalar and m equations have been
differentiated then m=1 new variables (not previously

appeared derivatives) have been introduced. Since this




situation will appear dim X, times 1if the blocks are
scalar then  dim X, new equations are generated which was

needed.

If an equation is differentiated which has a variable which
not appears differentiated as output set then as many new
equations as new variables are generated. The only way to
obtain dim X, new equations 1if differentiation is
performed after the Dblocks have been found is thus to
differentiate variables (equations) which appear

differentiated.

The discussion can be applied also to nonscalar blocks after
solving the corresponding system of eguations formally.
Practically all the equations in a block are differentiated
if any of the output variables appears differentiated. The
reason is that the derivatives will appear in a system of
equation with the same structure as the original. It is
thus not possible to partition this system of eguations and
solve only for the unknown derivatives. This fact can be

seen by studying a block of equations.
E(v) =0

These equations are differentiated.

The derivatives v' should be solved from these eguations.
The Jacobian with respect to v' is fv(v), i.e. the same
Jacobian as for the original system of equations. They thus

have the same structure.

The algorithm is demonstrated on some examples.
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Example 5.2

The model equations for the network in example 5.1 are

e = R*i +vl
Vi T Yy

The input is e. If vy is chosen as sgstate wvariable, the

algorithm gives

i = (e—vl)/R

V., = v

2 1
and the following system of eguations in vi and Vé

vé = Vi

If the system of equations is solved and the variables i,

vV, and vé are eliminated then

Vi = (e = vq1)/R/(Cy+Cy) []

Example 5.3

Consider the following model of a pendlum with a moving
pivot (Astrdm, 1976).

x' = 2

-sin ¥ + u cos ¥

y =X

The input u is the acceleration of the pivot. X 1is the

angle and z is the angular velocity.

Assume that the inverse model is wanted. The input is then
YV The inverse model has no state variables. The
differentiation algorithm gives the following sorted

equations.
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X =y add x' = y'

x' = yl

z = x' add z' =x'', xx'"' =y"'
x"! =y||

ZzV = x'!

u = (z' + sin x) / cos x

Elimination of x, x', x'', z and z' gives
7

u = (y'" + sin y) / cos vy

Example 5.4

Consider a superheater for steam. A complete model is given
in example 7.4 (page 146). The equations are in fact valid

for many other similar processes.

The energy balance is

E' = Qin - W*(h - hin)
where E = stored energy in the superheater, Qin = incoming
heat flow, W = mass flow rate of steam, hin = entalphy of
incoming steam and h = entalphy of steam in the superheater.

The stored energy can be expressed as
E = V*r*h
where V = volume and r = density of steam.
The density 1is related to the entalphy and pressure

according to the Moliere diagram. The pressure is assumed

known.,

The function g could €.7. be implemented using
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interpolation in tables.

The variables Qin, W, hin and the pressure are considered as

inputs to this submodel. There are three alternative ways

of chosing state variables: E, h or r.

If E is chosen as state variable the sorted equations are

E = V¥*r*h nonlinear system of equations
r = g(h) in r and h
E' = Qin - W*¥(h - hin)

If h 1is «chosen as state variable the differentiation

algorithm gives.

E' = Qin - W*(h - hin)
= g (h)
E = V*r#h
E' = V*¥(r'*h + r*h') linear system of equations
r' = 9y (h) *h?! in r' and h'

The derivative of h is obtained after solving the 1linear

system of equations.
h' = E' / (V*(g, (h)*h + 1))
If r is chosen as state variable the algorithm gives

E' = Qin - W*¥(h - hin)
E = V¥*r#h

E 1

n g1 ' in r' and h'

V*¥(r'*h + r*h') linear system of equations
r (r)*r

The derivative of r is thus
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r' = E' / (V¥{(h + r*g"lr(r)))

It is difficult to know which choice of state variable is
the most effective one for computations. The first choice
gave a nonlinear system of equations. The partial
derivative g, is needed for the second choice. The
inverse of g and its partial derivative was needed for the

third choice.

It is, howevar, interesting to note that it is very easy to
try different alternatives since the manipulations of the
equations needed are done automatically by the algorithm.
The example also shows a practical problem with design of an
algorithm which automatically choses the state variables of

a nonlinear model.

[l
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5.4 Formula manipulation

Solution of linear equations

It has been stressed earlier that the equations to be solved
can often be solved sequentially, one variable at a time.
In many cases the equations are also linear in their unknown
variable. In such cases the computations can be speeded up
by manipulating the equations in order to produce code that
directly assigns the value of the variable. Moreover, it is
very interesting to get the manipulated equations written in

symbolic form.

Example 5.2

Assume that the wvariable B should be solved from the
equation
A+ B + C*¥(D + 2*%B) = E*F
The symbolic result should be
B = (E*F - A - C*D)/(1 + C*2)
The equations can also contain functions and the

if-then—-else construction.

[]

The equations which have one unknown variable can be written
in the following form

E(x,y) = g(x,vy)
The variables have been split up into two parts. The
unknown variable 1is denoted x and y is a vector of known

variables.

If £ and g are linear functions of x the eguation can be
rewritten as

Egv) + £1(1)x = g4(y) + gp(y)x
The solution of the equation is
x = (9y(y) - £4(y))/(£9(y) = gy(v))
The problem is badly posed 1if the denominator vanishes.

This is a numerical problem.
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The operations above should be performed directly on the
formulas. The problem is then to split up the expression f
(and g) into £, and f,. In order to do that the
structure of f must be known. In this case it is assumed
that it is an <expression> in the sence of Algol-60 (Naur,
1962).

An expression can be represented by a syntax tree. The
syntax tree is very important for formula manipulations.
The terminal nodes in a syntax tree are variables and

constants, other nodes represent operations.

Example 5.3

The expression
A+ B+ C*¥(D + 2*%B)

has the syntax tree shown in Fig 5.5

Fig 5.5

Fig. 5.6 shows the types of nodes needed to represent an
Algol expression. A syntax tree can be constructed during
syntax analysis e.g. top-down analysis or bottom-up
analysis, see e.g. Gries (1971). Top-down analysis is easy
to program. Each syntactical rule will correspond to a

recursive procedure.
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A op B
op € {+ - * / #%) - a
if A then B else C £(A,B,...)

if -then-else

Fig 5.6

Different information can be obtained from the syntax tree

by traversing it. A traversal of the tree with "suffix
walk" will produce Reverse Polish Notation. A symmetric
order traversal produces infix notation, 1i.e. the

expression in mathematical notation except for parantheses.
These are, however, easily incorporated during the

traversal.

The syntax tree is manipulated in order to split wup an
expression which is 1linear in some variable., Elementary
rules of computation are used to transform the syntax tree

to the form shown in Fig 5.7.

Fig 5.7
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The squares indicate the syntax trees for the expressions

fg and fl which do not contain the unknown variable x.

The transformation is done easily using a recursive
procedure. This procedure has a syntax tree as input and
produces a modified tree with the structure given above. If
the 1input syntax tree has an operator node as its root then
the syntax trees for the operands (sons) are first modified
by calls of the procedure. Then a new modified tree is
constructed using the elementary rules of each operator
given in Table 5.1. If the input syntax tree is Jjust a
variable or a constant the modification 1is trivial. This

case ends the recursion.

Example 5.4

The expression
(A + B*X) + (C + D*X)
is modified with rule 1 to
(A+C) + (B+D)*X
This corresponds to a modification of the syntax tree as

shown in Fig 5.8

Fig 5.8

The second tree has the desired structure with the unknown
variable in just one node.

when the decomposition of the +two expressions of the
equation has been done it is trivial to build the syntax

tree for the corresponding assignment statement. From this
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tree 1is then derived either Reverse Polish Notation or the

assignment statement in symbolic form.

Symbolic differentiation

Differentiation of the equations of the model is needed to
get the linearized model. It 1is interesting to get the
linearized model in symbolic form. The numerical solution
of problems involving Jacobians may be speeded up if
symbolic differentiation 1is used instead of numerical

differentiation.

Symbolic differentiation of an expression 1s easily done
using the syntax tree. A modified syntax tree is built up
in the same way as when solving linear equations, The
differences are the rules of modification. The rules for
symbolic differentiation are given in Table 5.2, Joss
(1976) gives a method and a program for differentiating an
algorithmically defined function. It accepts an Algol
procedure defining the function as input and produces
another Algol ©procedure which evaluates the partial

derivatives with respect to specified variables.

Table 5.1 Rules of transformation

1o (Bg+f1x) + (gg+gyx) = (fg+gy) + (£1497)x
(f@+flx) = (9gr91x) = (£4-94) + (£1-97)x

3. (f@ + £ix) * (gg + 0x) = f59, + £19,x
(5 + Ox) * (9g + 91%) = £4945 + £49;%

4. (f5 + £9x) / (gy + 9x) = £5/95 + £1/9y%

5. (fg + Ox) ** (g@ + 0x) f@**gg + 0%

6. F(f@ + 0x) = F(fg) + Ox

7. if h then (f, + f,x) else (9g + 97%) =

(1f h then £, else g4) +

(if h then fl else gq)x




Table

(£ +49)’
(£ - g9)'
(£ * g)'
(£ / 9)’
(£ ** g)'

= fl + gl
= f' - gl
= f'*g + f*g'

5.2 Rules of differentiation

= (f'*g - f£*g')/(g%9)

= f**g* (f'*g/f + In(f)*q')
(£(g))" = £'(g)*g"’

(if h then £ else g)' =

if h is independent of the differentiation variable

if h then f£' else g'

105
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class SUBMODEL
procedure Modelbody
ref (submodel) procedure Newsubmodel

class CUT
procedure Atop

cut class NODECUT
procedure Duplicate

cut class HIERARCHICALCUT
procedure Scanclause
procedure Duplicate
procedure Atop

cut class VARIABLECUT
procedure Scanclause
procedure Duplicate

cut class CONNECTNODE
procedure Connect

class VARIABLE
procedure Duplicate
procedure Infix

class EQUATIONNODE
procedure Infix
procedure Traverse
procedure Duplicate
ref (expr) procedure Solve

ref (expr) procedure PRIMARY
FACTOR
TERM
SIMPEXPR
EXPRESS5ION
EQUATION

class EXPR
ref (expr) procedure Add
Sub
Mult
Div
Power
Equal

ref(expr) procedure MINUS
ref (expr) procedure IFTHENELSEHE

expr class VARIABLENODE, FUNCTIONOP, NUMBERNODE,
MINUSOP, IFTHENELSEOP
procedure Infix
procedure Traverse
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6. IMPLEMENTATION OF TRANSLATOR

A language translator has been written in the programming
language Simula (Birthwistle et al, 1973) on a Univac-11¢8
computer. A model written in the wmodel language can be
entered. The output from the program 1is the model
equations. They are sorted and solved with respect to the
unknown variable. It is possible to specify which variables

are known and unknown. The program is listed in appendix 3.

When developing a language it is useful to have a translator
available for testing ideas and investigating examples.

The idea behind the model language is not only to generate
computer instructions for different types of calculations.
The computer should also be an aid when preparing the model,
The equations are sorted and grouped into systems of
equations using a partitioning algorithm. This structural
analysis is interesting for the modeller. The sorted
equations indicate the causality relations in the model
which should be compared with the modeller's perception of
the causalities of the system. The systems of equations
correspond to algebraic loops. The systems of equations
should thus be studied in order to see if the corresponding
strong coupling between the submodels is reasonable. It is
interesting to test these ideas during practical modelling

of large systems. A translator is then needed.

The implementation of a translator gives a test on the
language that it can be translated. It is also an aid for
sorting out constructions that are difficult to implement.

The description of the semantics is a problem with language
definition. The semantics are contained in a translator.
By writing a translator in a high level programming language
a useful description of the semantics is obtained.
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External description of the program

The program is interactive. The input to the program is the
model and commands which specify what should be done with

the model. The available commands are described below.

partition

This command sorts and groups the equations into systems of
equations that have to be solved simultaneously. The
variable to be solved from each equation is also selected.
The partitioning fails if the problem 1is structurally
singular. A printout of unassigned variables and redundant

equations are obtained.

print { variables / known / unknown /

egquations / sorted / solved }

This command prints variables or equations on the terminal.
The 1list of variables can contain all variables, only known
variables or only unknown variables. The list of equations
can contain the equations in the order they were generated
dur ing compilation or they can be sorted and grouped into
systems of equations. If 'solved' 1is specified the
equations are sorted and grouped and the eguations which are
not included in a system of equations and which are linear

in the unknown variable are solved.

The format for printing equations contain two columns, one
for model specifications and one for the equations. If the
model specification is the same as on the previous 1line it

is omitted.

A system of equations is preceeded and followed by blank

lines. All equations included in the system are preceeded

by -.
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The variable assigned during partitioning is enclosed by [ ]

in equations which are not solved.

known { <variable spec> }*

*
unknown { <variable spec> }

These commands specifies variables as known or unknown. All
variables which appear differentiated, parameters and inputs
are assumed known at compile time. The simulation problem
is thus default.

do [not] eliminate
This command indicates whether trivial equations of type a=b
should be eliminated or not. No elimination is default. If
elimination should be performed, one of the variables which
are equal is selected to substitute the others in the
equations.

stop

This command stops the program.

@add <file name>

The model is also read from the terminal. The operating

system of Univac-1108 allows, however, that the input is

temporarily taken from a file. This 1is done with the
add-command . This facility has been used to simplify the
program.

Data structure

Equations are the basic structure in the program. In order

to manipulate the equations they are stored as a syntax tree
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(see section 5.4). The nodes in the syntax tree are objects

from subclasses to class Expr.

There is sometimes a problem with objects having references
to subobjects. If the number of subobjects is not known
when the processing of them is started it is not possible to

allocate a vector +to hold the references. This situation

occurs several times 1in the program. A submodel has
submodels, variables, equations, cuts and paths as
subobjects., A cut has either cuts ot variables as

subobjects.

Two different solutions to this problem are wused in the
program. The first is based on the fact that an arbitrary
tree can be transformed to a so-called RKnuth binary tree
(see Page and Wilson, 1973). Each node in a Knuth binary

tree has at most two pointers.

The submodel structure is a tree (see Fig 3.2, page 21).
Instead of having a vector of references to submodels in

each submodel there are just two pointers.

ref (submodel) firstsubmodel

ref (submodel) companionsubmodel

The other method is based on use of a global vector for
storage of references. An object then has a segment of the
vector which references the subobjects. The specification
of the segment can be done with two integers, the bias in
the vector and the number of subobjects. This method is not

suitable for hierarchical structures.

Variables, equations, cuts and paths which are subobjects to
submodels are stored using a global vector. A submodel thus

has the following attributes.

integer ivariables, nvariables
integer iequations, nequations

etc.
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For variables and equations there are two advantages by
using global vectors for storage. The equations are sorted
after compilation. The submodel structure is then not of
interest. It is then natural to consider the variables and
the equations as two sets with references stored in a
vector. The other advantage comes from the fact that if
there are several submodels of one type then in principle
the same equations will appear several times in the set of
equations. The only difference is the variable references.
They refer to variables in the submodel itself and to all
its submodels. Since references to all variables are stored
in a vector it is possible to have relative references in
the syntax trees. A variable node in a syntax tree contains
an integer which is the number of the variable in the
current submodel. The bias 1is fetched from the current
submodel and added to give the complete reference. The
vector Equations contains pointers to objects from <class
Equationnode. They have pointers to the syntax trees and to
the actual submodels.

The parts of the data structure which have been discussed
are shown in Fig 6.1. The solid arrows correspond to
reference variables and the dotted arrows correspond to

computed references.
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Fig 6.1l. Data structure of the translator
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Fig 6.1 does not contain all parts of the data structure.
Cuts and paths are e.g. not included. References to these
objects are stored in two global vectors called Cuts and
Paths. The handling of the at operation on cuts is

described below.

The equations corresponding to at-operations can not be
generated until all the connection statements of a submodel
have been processed. Cuts that are connencted are joined in
a circular 1l1list with a list head. The circular lists are

stored in another list using pointers in the list heads.

Example 6.1

1

Assume that the following at-operations are generated when

processing a submodel.

A at B
C at D
A at D

Fig 6.2 shows how the data structure is changed during the

processing of the operations.
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A at B
C at D

Fig. 6.2

The cuts A and B are linked together with a list head when
the expression A at B is processed. Another list containing
C and D is generated corresponding to C at D. The 1list
heads are then linked together. When the expression A at D

is handled the structure is changed to one circular 1list.

(]

Program structure

The program 1is divided into seven parts which handle
submodels, cuts, equations, connection statements, auxiliary
procedures, partitioning and interaction. The program
structure is shown on the two following pages. Only the
most important classes and procedures are included. They
are 1listed in the same order as they appear in the complete
program listing in appendix 3. If a ©procedure is an
attribute of a class or imbedded in an other procedure the

corresponding line is indented two spaces.




class SUBMODEL
procedure Modelbody
ref (submodel) procedure Newsubmodel

class CUT
procedure Atop

cut class NODECUT
procedure Duplicate

cut class HIERARCHICALCUT
procedure Scanclause
procedure Duplicate
procedure Atop

cut class VARIABLECUT
procedure Scanclause
procedure Duplicate

cut class CONNECTNODE
procedure Connect

class VARIABLE
procedure Duplicate
procedure Infix

class EQUATIONNODE
procedure Infix
procedure Traverse
procedure Duplicate
ref (expr) procedure Solve

ref (expr) procedure PRIMARY
FACTOR
TERM
SIMPEXPR
EXPRESSION
EQUATION

class EXPR
ref (expr) procedure Add
Sub
Mult
Div
Power
Equal

ref (expr) procedure MINUS
ref(expr) procedure IFTHENELSE

expr class VARIABLENODE, FUNCTIONOP,
MINUSOP, IFTHENELSEOP
procedure Infix
procedure Traverse

NUMBERNODE,
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procedure Linj

expr class BINARYNODE
procedure Traverse

binarynode class ADDOP, SUBOP, MULTOP,
DIvOop, POWEROP
procedure Infix
procedure Linj

binarynode class EQUALOP
procedure Infix
procedure Add

class PATH

class CONRNOP
ref (connop) procedure Atoper
Toop
From
Par
Loop

ref (connop) procedure REVERSED

ref (connop) procedure CONNECTIONOPERAND
CONHRECTIONPRIMARY
CONNECTIONSECONDARY
CONNECTIONEXPRESSION
procedure CONNECTIONSTATEMENT

procedure SCAN

boolean procedure SEARCH
procedure ERROR
procedure COMPILE

procedure PARTITION
boolean procedure Assign
procedure Strongconnect

class STRONGCOMP
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Comments to the program

This section contains comments to the most important classes

and procedures of the program.

Procedure Modelbody of class Submodel handles the <model
body>. It takes <care of +the submodel part and the
declarations and calls the procedures Equation and

Connectionstatement for the statement part.

Procedure Newsubmodel duplicates submodels, variables, cuts
and equations when the submodel statement is used.

Procedure Atop of class Cut generates circular 1ists of
connected variablecuts and nodes. Procedure Atop of

Hierarchicalcut performs at-operations of all the subcuts.

Procedure Connect of class Connectnode generates equations
from the circular lists of connected cuts and nodes.

The procedures Primary, Factor, Term, Simpexpr, Expression
and Equation implement a recursive descent algorithm to

build the syntax tree of an equation.

The nodes in the syntax tree are objects from subclasses of
class Expr. The procedures Add, Sub, Mult, Div, Power and
Equal of class Expr and the procedures Minus and Ifthenelse
generate the nodes of the syntax tree. These procedures
contain simplification rules such as x+9=0. These rules are

needed to get nice expressions during formula manipulation.

Fach subclass of Expr has three procedures associated:
Infix, Traverse and Linj. They are all declared as virtual
in class Expr. This means that a reference variable
gualified to <class Expr and pointing to a subclass can be
used to reference e.qg. Infix. The correct version of
Infix, i.e. the one declared in the referenced subclass, is
then automatically selected. The virtual concept simplifies

the programming and makes the program better structured.
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The procedures Infix are used to print equations in infix
notation, 1i.e. normal mathematical notation. To denerate
infix notation, the syntax tree is traversed with a
symmetric order traversal (Page and Wilson, 1973, n. 112)

which for each node can be expressed as follows.

- traverse the left Subtree
= visit the node itself

- traverse the right subtree

When dealing with equations, however, care must be taken
about priorities and parentheses. The basic rule is to
output a left parenthesis before traversal of the 1left
Subtree and a right parenthesis after traversal of the right
subtree if the priority of the node (operator) is less then
the vpriority of the superior node. This rule is, however,
not enough. The expression a-(b-c) would then be outputted
as a-b-c. This ©problem occurs with the operators **, /s
unary =, - and if-then-else. It has been solved by using
different priorities for the subtrees.

The procedures Traverse are used during partitioning to
obtain the structure of an equation. They make a traversal
of the syntax tree and a reference to each variable
appearing in the equation is placed in the global vector
Egquvar.,

The procedures Linj implement the transformation rules given
in Table 5.1 (page 104) to split up an expression into a
constant part and a factor with respect to some variable.
This 1is done for the 1left part and the right part of an
equation in procedure Solve of class Equationnode. The
solution of the equation

Egy) + £.(y)x = 9 (Y) + 91(y)x
with respect to x is

= 9g(y) - E5()) /(E1(y) - 91(y))
This formula is implemented in procedure Solve by the
following statement.
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Solve:-x.Equal (g@.Sub (f@) .Div(f1l.Sub(gl)))

The procedures Atoper, Toop, From, Par and Loop of class
Connop and procedure Reversed implements the rules 1 - 6 of
Table 3.1 (page 59)

The procedures Connectionoperand, Connectionprimary,
Connectionsecondary and Connectionexpression implement a
recursive descent algorithm for translation af a connection
expression. The expression is not stored, it is immediately

translated to at-operations.

Procedure Partition sorts and groups the equations into
systems of equations that have to be solved simultaneously.
A list of numbers corresponding to unknown variables is
generated for each eguation using the procedure Traverse,
Procedure Assign (Wiberg, 1977) is called for each equation
with this list to find an output set. Procedure
Strongconnect (Tarjan, 1972) +then finds the systems of
equations (or the strong components of the corresponding

graph) and stores them in the vector Equsystems.

Comments about the implementation

The objective for the present implementation has not been to
produce a program to be widely used. For that reason some
simplifications have been made and some features of the
language have not been implemented. The error diagnostics
are also poor and the translator stops scanning when the

first error is found.

The following features are not implemented.

- default, internal and external declarations

- parameter list to submodel

- the operators branch and join

- . 1in hierarchical cut, path and connection primary
- procedure call

- solution of linear equations

- boolean expressions
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- the use of nodes together with hierarchical cuts
- <cut spec> and <path spec> instead ot <cut clause>
and <path clause> in cut and path declarations

- cuts without <cut clause> or <cut spec>

Derivatives are handled in the following way. If der2(x) is
round it is replaced by a new variable der2x. A new
variable derx is also generated 1if it does not already
exist. The variables x and derx are assumed as state

variables and are thus indicated as known.
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7. EXAMPLES

This chapter contains four examples illustrating the use of

the model language and the translator.

7.1 Electrical network

Figure 7.1 shows a logical inverter. Assume that it 1is

obtailn the
B modified Ebers-Moll model has been used

of the inverter when the

desired to response

input is a pulse.
It is shown in Fig 7.2. These models

(see ASTAP).

ror the +transistor.

have been adopted from the ASTAP-manual

Rin : ///F> ey

\ Rbias [] Rioad
u CDEm O
- - +
6v( )Est 6V <> Es2
\ -

Fig 7.1 Logical inverter

Cenﬂt ‘CcoH

|1 , |

I 1
3 D
Diode 1 Diode 2

Emitter Collector
Revcurr Forwcurr
Rbb
Base

Fig 7.2. Transistor model
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The capacitor Cl1 corresponds to the stray capacitances
between base and emitter. The stray capacitances between
collector and emitter have been neglected. The reason 1is
that they would be connected in parallel with the series
connection of the capacitors Cemit and Ccoll, It is then
not possible to obtain the state equations of the network
directly. This problem is, however, already discussed in

examples 5.1 and 5.2.

The capacitances of Cemit and Ccoll depend on the diode
currents and are thus time varying. The model type
varcapacitor reflects the fact that the basic equation for a
capacitor is

d (CV)
at

= I

and not

av _
CaE = T

The model of the inverter is given below. It uses the
library of electrical components given in section 3.7
(page 58).

After the model follows the dialogue with the translator
program. After compiling the library and the model, the
generated equations are printed. The equations are then
partitioned and the solved equations printed. Two systems
of equations are obtained. They contain six equations each
and are due to the dependence between capacitances and diode

currents.
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model type varcapacitor
cut A (Va / I) B (Vb / -I)
main cut C [A B]

main path P <A - B>

local vV, Q

terminal C

Vv Va-Vb
C*v

0]
Lo S | I 1|
@]
11
-~

model type diode
cut A (Va / I) B (Vb / -I)
main cut C [A B]
main path diode <A - B>
parameter I8, K

local Vv

vV = Va-Vb

I = Id% (exp(K*V) = 1)
end

model type Transistor
submodel (diode) Diodel(3.5E-9,28), =>
Diode2(7.3E=-9,32)
submodel (current) Revcurr, Forwcurr
submodel (resistor) Rbb(30)
submodel (varcapacitor) Cemit, Ccoll

parameter Al = 9.47, A2 = §.978

cut Base (Vb / Ib) Emitter (Ve / Ie)

cut Collector (Ve / 1Ic)

main cut Trans [Base, Emitter, Collector]
path Baseemitter <Base - Emitter>

path Collectoremitter <Collector - Emitter>

node N
connect Emitter - ( \ Diodel // Cemit // Revcurr ) - N

connect Collector - ( \ Diode2 // Ccoll // Forwcurr ) - N
connect Base - Rbb - N :

Cemit.C = 3.,0E-12 + 6.7E-9%Diodel.I
Ccoll.C 2.0E-12 + 180.0E-9*Diode2.1

1f

Revcurr.I = Al*Diode2.1I
Forwcurr.I = A2%Diodel.I

end




124

model inv { Logical inverter }

submodel (Transistor) Tr

submodel (voltage) Ein, Esl, Es2

submodel (resistor) Rin(5.6E3) =>
Rbias (18E3) =>
Rload (1E3)

submodel (capacitor) Cl(3.6E-12)

submodel Common

input U
output Y

connect Common - Ein - Rin - ( (Rbias - Esl) // Cl // =>
Tr . .Baseemitter ) - Common

connect Common - Es2 - Rload - Tr..Collectoremitter

Ein.V = U
Y = Rload.Vb

Esl.V
Es2.V

6
)

end




{ Interaction with the translator }

>@add ellib
>@add inv
>print equations

Tr ¢ :Rbb V = Va - Vb
R*I =V
Cl V = Va - Vb
C*derV = 1
Ein V = Vb = Va
Common vV =0
Tr::Cemit VvV = Va = Vb
Q = C*V
derQ = 1I
Tr::Diodel V = Va - Vb
I = I0*(exp(K*V) - 1)
Tr::Diode?2 V = Va - Vb
I = I0*%(exp(K*V) - 1)
Tr::Ccoll V = Va - Vb
Q = C*V
derQ = I
Tr Cemit.C = 3.8E-12 + 6,7E-9*Djodel.I
Ccoll.C = 2,0E-12 + 180.9E-9*Diode2.1I
Revcurr.I = Al*Diode2.1I
Forwcurr.Il = A2%*Diodel.I
Diodel.Vb = Ve
Cemit.Va = Diodel.Vb
Cemit.I + Revcurr.I = Ie + Diodel.I
Diode2.Vb = Vc
Ccoll.Va = Diode2.Vb
Ccoll.I + Forwcurr.l = Ic + Diode2.1
Rbb.Va = Vb
Rbb.I = Ib
Diode2.Va = Rbb.Vb
Ccoll.Vb = Diode2.Va
Diodel.Va = Ccoll.Vb
Cemit.Vb = Diodel.Va
Diode2.I + Diodel.I = Rbb.I + Ccoll.I +
Forwcurr.I + Cemit.I + Revcurr.I
Bsl V = Vb - Va
FEs?2 V = Vb = Va
Rin V = Va - Vb
R*I =V
Rbias Vv = Va - Vb
R*I = V
Rload V = Va - Vb
R*I = V
inv Ein.V = U
Y = Rload.Vb
Esl.V = 6
Es2.V = 6
Rin.Va = Ein.Vb
Rin.I = Ein.I
Esl.Va = Rbias.Vb
Esl.I = Rbias.I
Cl.Vb = Esl.Vb

Tr .Ve Cl.Vb

125
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>partition
>print solved

Common
inv

Cl

inv

Tr

-Tr : :Diodel

-Tr
-Tr::Cemit

-Tr

Tr : :Rbb

inv

Esl
inv
Rbias

Tr

inv
Ein
inv
Rin
inv
Cl

inv

~Tr::Diode?2

-Tr

Common.V = Tr.Ve

Ein.Va = Common.V
Es2.Va = Ein.Va
Rbias.Va = Rin.Vb
Cl.Va = Rbias.Va
Tr.Vb = Cl.Va
Rbias.I + Cl.I + Tr.Ib = Rin.1I
Rload.Va = Es2.Vb
Rlcad.I = Es2.1
Tr.Vc = Rload.Vb
Tr.Ic = Rload.I

vV =0

Tr .Ve = Common.V
Cl.Vb = Tr.Ve

Va = V + Vb

Tr.Vb = Cl.Va

Rbb.Va = Vb
Diodel.Vb = Ve
Cemit.Va = Diodel.Vb

vV = [Va] - Vb

I = I0%(exp(K*[V]) - 1)

Cemit.C = 3.0E-12 4+ 6.7E-9%[Diodel,.I]
Q = [C]*V

[V] = Vva - Vb

[Cemit.Vb] = Diodel.Va

Ccoll.Vb = Diodel.Va
Diode2.Va = Ccoll.Vb
Rbb.Vb = Diode2.Va

V = Va - Vb

I = V/R

Rbias.Va = Cl.Va
Esl.V = ©

Esl.Vb = Cl.Vb

Va = Vb - V

Rbias.Vb = Esl.Va

v Va = Vb

I V/R

Ib = Rbb.I

Ein.V = U

Ein.Va
Vb = V
Rin.Va
Rin.Vb
V = Va
I =YV/R
Cl.I = Rin.I - (Rbias.I + Tr.Ib)
dervV = I/C

Ein.I = Rin.I

o

Common.V
Va
Ein.Vb
Rbias.Va
Vb

w4+

]

[1] I0* (exp(RK*V) - 1)
[V] Va - Vb
Ccoll,Va = [Diode2.VDb]




-Tr::Ccoll

-Tr

inv

Es2
inv
Tr
inv
Rload

inv
Tr

Tr::Cemit
Tr::Ccoll
Tr

inv
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v = [Va] - Vb
Q = C*[V]
[Ccoll.C] = 2.0E-12 + 180.0E-9*Diode2.I

]

Revcurr.I = Al*Diode2.1
Forwcurr.I = A2*Diodel.I
Es2.V = 6

Es2.Va = Ein.Va

Vb = V + Va

Rload.Va = Es2.Vb

Ve = Diode2.Vb

Rload.Vb = Tr.Vc

V = Va - Vb

I = V/R

Tr.Ic = Rload.I
Ccoll.I Ic + Diode2.I - Forwcurr.I

Cemit.I = Diode2.1I + Diodel.I = (Rbb.I +
Ccoll.I + Forwcurr.I + Revcurr.I)

derQ = I

derd = 1

Ie = Cemit.I + Revcurr.l = Diodel.I

Esl.I = Rbias.I

Es2.1I = Rload.I

Y = Rload.Vb
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Simulation

The interactive simulation program SIMNON (Elmgvist, 1975,

1977a) has been used to obtain the time responses.

A Simnon model can be composed of a set of submodels and a
connecting system. Each submodel 1is described by either
ordinary differential equations or difference egquations in
the form of assignment statements. The interaction with the
program is normally done via a graphical terminal. The
program 1is controlled by commanads and the resulting time

responses are plotted on the terminal.

It is not possible to handle systems of equations directly
in Simnon. For that reason the capacitances of Cemit and
Ccoll were assumed constant independent of the diode

currents.

The network was described by a single continuous system
containing variable declarations, the solved equations and
parameter statements. The solved equations as outputted by
the translator ©program were completed with respect to
variable references. The reference mechanisms :: and .

were deleted to obtain legal identifiers.

The dialogue with the Simnon program 1is shown below.

Comments are placed after " in the lines.
>SYST SIMINV " Compile model
>PAR RBBR:20 " Change base resistance
>INIT CCOLLV:® " Change initial value of state
>STORE INVU INVY ClV CEMITV CCOLLV
> " Specify variables to be stored
>SIMU @ 150E-9 " Simulate 150 ns
>SPLIT 2 1 " Divide plotting area
>ASHOW INVU INVY " Scale, draw axes and plot

>TEXT 'Fig 7.3: Logical inverter. Inv.u = 1, Inv.y = 2'
>ASHOW Clv CEMITV CCOLLV
>TEXT 'Fig 7.4: Cl.V = 1, Cemit.V = 2, Ccoll.V = 3'




Fig 7.3: Logical inverter. Inv.u = 1, Inv.y = 2
1
.
6_
£ |
0 T T T I 1
0 40 80 120 Time [nsl]

Fig 7.4: Cl.v = 1, Cemit.V = 2, Ccoll.V = 3

T
0 40 80 120 Time Cnsl
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7.2 A mechanical model

The formulation of a mechanical model by Newtons equations
is naturally done in the model language. The cuts of a
mechanical model will contain such variables as coordinates,

reaction forces and reaction torques.

It is often not possible to solve for the derivatives in the
Newton equations obtained. The equations can then be solved
in two ways: by using an integration wmethod of the type
discussed in section 5.1 or by using the differentition
algorithm of section 5.3 to obtain state equations which are

then integrated by an ordinary algorithm.

A mechanical model for a human body is wused to 1illustrate
the ideas. A schematic picture of the body is given in Fig
7.5,

_—

Fig 7.5

The model consists of four rigid bedies: head, trunk, thighs
and calves. They are joined at the neck, hips and knees.
This type of models of the human body are wused to compute
stresses and motions of a human during a car crash (see
Hornstein, 1976). The model is assumed to be symmetric. No
external forces except gravitational force are assumed in

the given model. The model is listed on page 133.
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If the equations are partitioned the translator will give

the following message.

Singular problem

Unassigned variables:
head.F2x

head.F2y

neck.derv

trunk.F2x

trunk.F2y

thigh.F2x

thigh.F2y

hip.derv

knee.derv

Redundant equations:

trunk.xl = neck.x
trunk.yl = neck.y
trunk.v = neck.v2
thigh.xl = hip.x
thigh.yl = hip.y

thigh.v = hip.v2
calf.xl = knee.x
calf.yl = knee.y

calf.v = knee.v2

The default assumptions made by the program 1is that all
variables appearing differentiated are considered as state
variables. All state variables are then assumed known.
This explains the redundant equations. On the other hand
there are not enough equations to determine the derivatives.
Note that there 1is an arbitrariness about unassigned
variables. The selection made depends on the algorithm for
finding the output set.

The differentiation algorithm of section 5.3 has not been
implemented, It 1is thus not ©possible to show the state

space representation of the model.
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The partitioning algorithm can also be used together with an
implicit integration algorithm. It will then make a
partitioning of the model into the structure shown in Fig
4.1 (page 78). The partitioning of the equations is done

with respect to dynamic loops instead of algebraic loops.

In order to make the program do this partitioning, the der
operator is replaced by a arbitrary function, called diff.
The dialogue with the program is shown on page 134. The
elimination feature has been used. A system of 38 equations
was found. It means that the partitioning algorithm has
found 10 equations to Dbe excluded from the iterations at

each time step.




{ A mechanical model for the human body }

model type limb

cut A (x1 yl v / Flx Fly M1)
cut B (x2 y2 v / -F2x -F2y -M2)
main path P <A - B>

local x y N1 N2

parameter J L1 L2 m

constant g=9.31

= (Flx*sin(v) = Fly*cos(v))*Ll
= (F2x*sin(v) - F2y*cos(v))*L2
J*der2(v) = N1 + M1 + N2 - M2

m*der2(x) = Flx - F2x

m*der2(y) Fly - F2y - m*g
X1l = x = Ll*cos(v)

yl = y = Ll*sin(v)

X2 = X + L2%cos (v)

y2 =y + L2*sin(v)

end

model type joint

cut A (x y vl / Fx Fy M)
cut B (x y v2 / =-Fx =-Fy -M)
main path P <A - B>
parameter A B v{

vl - v2
=A* (v - v@) = B*sign(der (v))

=<
o

model human

submodel (limb) head trunk thigh calf
submodel (joint) neck hip knee

connect head to neck to trunk to hip to
thigh to knee to calf

head.Flx = ¢
head.Fly = §
head.M1 = ¢
calf.F2x = @
calf.F2y = ¢

calf.M2 = ¢

end

133
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>dadd human
>do eliminate
>partition
>print solved

human

-head
-trunk

-head

-trunk
-head

=trunk

-neck

-trunk
-thigh

-trunk
-thigh

-trunk
-calf

-thigh
-calf

~thigh
-Knee

-calf
-hip

-thigh
head

calf

head.Flx = @
head.Fly = 0
head.M1 = 0
calf.F2x = @
calf.F2y = @

calf.M2 = @

m*diff2([x]) = Flx - F2x

m*diff2(x) = [head.F2x] - F2x

head.x2 = [x] - Ll*cos(neck.v2)

[x2] = x + L2*cos (V)

J*diff2([{v]) = N1 + M1 + N2 - M2

[N1] = (Flx*sin(v) - Fly*cos(v))*Ll

[N2] = (F2%*sin(v) - F2y*cos(v))*L2

m*diff2(y) = [head.F2y] - F2y - m*g

head.y2 = [y] - Ll*sin(neck.v2)

iy2] = y + L2*sin(v)

m*diff2([y]) = Fly = F2y - m*g

J*diff2([neck.v2]) = N1 + head.M2 + N2 - M2

[N1] = (head.F2x*sin{(neck.v2) = head.F2y*
cos (neck.v2))*L1l

[head.M2] = =-A*(v - v@) -B*sign(diff(v))

[vl = head.v - v2

[N2] = (F2x*sin(neck.v2) = F2y*cos(neck.v2))*L2

m*diff2(x) = [trunk.F2x] - F2x

trunk.x2 = [x] - Ll*cos(hip.v2)

[x2] = x + L2*cos(neck.v2)

J*diff2([hip.v2]) = W1 + trunk.M2 + N2 - M2

[N1] = (trunk.F2x*sin(hip.v2) - trunk.F2y*
cos(hip.v2))*L1

m*diff2(y) = [trunk.F2y] - F2y - m%*g

trunk.y2 = [y] = Ll*sin(hip.v2)

[vy2] = yv + L2*sin(neck.v2)

m*diff2(y) = [thigh.F2y] - F2y - m*g

thigh.y2 = [y] - Ll*sin(knee.v2)

[vy2] = yv + L2*sin(hip.v2)

J*diff2([knee.v2]) = N1 + thigh.M2 + N2 - M2

[N1] = (thigh.F2x*sin(knee.v2) - thigh.F2y¥*
cos (knee.v2))*L1

m*diff2(x) = [thigh.F2x] - F2x

thigh.x2 = [x] = Ll*cos(knee.v2)

[x2] = x + L2%*cos(hip.v2)

fthigh.M2] = -A*(v - v#@) - B*sign(diff(v))

[vl] = hip.v2 - v2

[N2] = (F2x*sin(knee.v2) - F2y*cos(knee.v2))*L2
[trunk.M2] = =A*(v = v@) - B*sign(diff(v))

[v] = neck.v2 - v2

[N2] = (F2x*sin(hip.v2) - F2y*cos(hip.v2))*L2

x1l = x = Ll*cos(v)
vl = y = Ll*sin(v)
X2 = X + L2*cos(knee.v2)
y2 = y + L2*sin(knee.v2)
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/.3 Blectrical energy transmission

Consider an electrical power system consisting of two
synchronous generators, three transmission lines and loads

as shown in Fig 7.6 (see Elgerd, 1971).

Load 1

T

Fig 7.6

The voltages and currents are assumed to be sinousoidal with
slowly varying amplitudes and phases. This means that the
transmission lines and the loads can be considered as static
systems and that the jw-method can be used to calculate the
load flow. The system is an example which 1is naturally
described wusing complex variables. They are split up into
their real and imaginary parts in this model. The model is

shown on pages 137-138.

The interaction with the translator is shown on vages
139-141. After compiling the model, the eguations are
partitioned, solved and printed. The partitioning is done
for the simulation problem. The model has four states: delt
and delt' in the two generators. A system of equations is
found. It consists of 22 nontrivial equations and

correspond to the load flow calculation.
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It is assumed that the initial values of the state variables
delt in the two generators are unknown. The parameters of
the 1loads are also unknown. On the other hand, the
amplitudes of the bus voltages and and the power flows are
assumed to be known in steady state. Bus 1 is selected as

reference bus.

The commands "known" and "unknown" are used to specify that
the equations should be sorted for computing the initial
values. The partitioning is then performed and the solved

equations are printed.

For this problem there are six systems of egquations. The
largest contains 19 nontrivial eguations. The others
contain only two eguations. Three of these small systems of
equations are linear. They are easily solved by the

computer using formula manipulation.
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model type Generator

{ A model for an electrical generator in three phase
symmetric operation }

parameter &, Xd, H, f0, D, Pt
constant PI=3,14159

main cut generator (Vx, Vy / -Ix, -1y)
local delt, Pg, V, Ex, Ey

{ The electrical model for the generator is a voltage source
behind a reactance:
E = j*Xd*Ig + V
The magnitude of E depends on the field current,
which is assumed constant. The phase angle
of E is the relative angular rotor position delt. }

ExX = E*cos(delt)
Ey = E*sin(delt)
Ex = —-Xd*Iy + Vx
Ey = Xd*Ix + Vy

{ The power delivered from the generator is
Pg = Re (E*Ig*) }

Pg = Ex*Ix + Ey*Iy

{ If the mechanical input power Pt is not equal to Pg then
the phase angle of E will vary. A model for this is the
so called Swing eguation: }
der2(delt)*H/(PI*f0@) + der(delt)*D = Pt - Pg

{ The magnitude of the terminal voltage is: }
V = sqrit(Vx**2 + vVy**2)

model type Line

{ Model for a transmission line }

cut A(vxl, vyl / Ix, Ly)
cut B(vx2, Vy2 / -Ix, -1y)
main path line<aA - B>
parameter XL

{ The transmission line is modelled by a reactance:
V1 = j*XL*I + V2 }

-Iy*XL + Vx2

Ix*XL + Vy2

Vx1
Vyl
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model type Load

{ The load is modelled by an impedance }

main cut Load(Vx, Vy / Ix, 1y)
local P, Q, V
parameter Zx, Zy

{ Vv = 2*1 }
Vx = ZX¥Ix - zy*1ly
Vy = Zx*Iy + Zy*Ix

{ The energy load is:
S = V*I* }

V*Ix + Vy*liy

Vy*Ix - Vx*Iy

{ The terminal voltage is }
V = sqrt(Vi**2 + Vyk*2)

model power
{ Transmission of electrical energy }

submodel (Generator) =->

Gl (Xd=0.054, H=38, £@=508, D=8) ->

G2(Xd=0.054, H=300, £0=58, D=0)
submodel (Line) Linel(0.05), Line2(@.05), Line3(2.85)
submodel (Load) Loadl, Load2(Zx=%), Load3

node Busl, Bus2, Bus3

Busl
Bus?2

connect Gl
connect G2

connect Linel from Busl to Bus?
connect Line2 from Busl to Bus3
connect Line3 from Bus2 to Bus3

I

connect Loadl at Busl
connect Load2 at Bus3
connect Load3 at Bus3

end




139

>{ Interaction with the translator }
>

>@add elpower

>

>{ Simulation problem }

>partition

>print solved

G2 Ex = E*cos(delt)

Ey = E*sin(delt)
Gl Ex = E*cos(delt)

Ey = E*sin(delt)
-power Gl.Vx] = Linel.Vxl

[

[Linel.Vxl] = Line2.Vxl
- [Line2.Vxl] = Loadl.Vx

[

-Loadl Vx] = Zx*Ix = Zy*1ly
-power [Loadl.Ix] + Line2.Ix + Linel.Ix = Gl.Ix
-Line?2 Vyl = [Ix]*XL + Vy2
-power [Line2.Vyl] = Loadl.Vy
-Loadl [Vy] = Zx*Iy + Zy*Ix
-power [Loadl.Iy] + Line2.ly + Linel.Iy = Gl.Iy
~-Line?2 Vxl = Vx2 - [Iy]*XL
-power [Line2.Vx2] = Line3.Vx?2
- [Line3.Vx2] = Load2.Vx
- [Load2.Vx] = Load3.Vx
-Load3 [Vx] = Zx*Ix - Zy*Ily
-power [Load3.Ix] + Load2.Ix = Line3.IxXx + Line2.Ix
~-Load?2 Vx = Zx*[Ix] - Zy*Iy
- Vy = Zx*[Iy] + Zy*Ix
-power [Load2.Vy] = Load3.Vy
-Load3 [Vy] = Zx*Iy + Zy*Ix
-power [Load3.Iy] + Load2.ly = Line3.Iy + Line2.Iy
- [Line3.Iy] = Linel.Iy + G2.1y
=Linel Vxl = Vx2 - [Iy]*XL
-power [Linel.Vx2] = Line3.Vxl
-Line3 [Vx1] = Vx2 - Iy*XL
-G2 EXx = Vx - Xd*[Iy]
~-power [G2.Vx] = Linel.Vx2
- [Line3.Ix] = Linel.Ix + G2.1Ix
=Linel Vyl = [Ix]*XL + Vy2
-power [Linel.Vyl] = Line2.Vyl
- [Linel.Vy2] = Line3.Vyl
-Line3 [Vyl] = Ix*XL + Vy2
-power [Line3.Vy2] = Load2.Vy
-G By = Xd*[Ix] + Vy
-power [G2.Vy] = Linel.vVy2
-Gl BEx = Vx = Xd*[1y]
-power [Line2.Vy2] = Line3.Vy?2
-Gl By = Xd*[Ix] + Vy
-power [Gl.Vy] = Linel.Vvyl
Gl Pg = Ex*Ix + Ey*Iy
V = sgrb(Vx**2 + Vy#**2)
der2delt = (Pt - Pg - derdelt*D)*PI*f@/H
Loadl P = Vx*Ix + Vy*ly

Q
v

Vy*Ix - Vx*1y
sqrt (Vx**2 + Vy**2)

([




149

G2 Pg = Ex*Ix + Ey*Ily
V = sgrt(Vx**%2 + Vy**2)
der2delt = (Pt - Pg - derdelt*D)*PI*fg/H
= Vx*Ix + Vy*Ily
Vy*Ix = Vx*1y
sqrt(Vx**2 + Vy**2)
Vx*Ix + Vy*ly
Vy*Ix - Vx*Iy
sQre(Vx**2 + Vy#*+*2)

Load?2

Load3

<O U <O o

[ | | | I

>{ Initial computation }

>

>known Gl.Vx Gl.Vy Gl.derdelt
>known G2.V G2.Pg G2.derdelt
>known Loadl.P Loadl.Q

>known Load3.P Load3.Q Load3.V
>

>unknown Gl.E Gl.Pt Gl.delt
>unknown G2.,E G2.Pt G2.delt
>unknown Loadl,.,Zx Loadl.Zy
>unknown Load2.Zzy

>unknown Load3.zZx Load3.Zy

>

>partition

>print solved

power Linel.Vyl = Gl.Vy
Line2.Vyl = Linel.Vyl
Loadl.Vy = Line2.Vyl
Linel.Vxl = Gl.Vx
Line2.Vxl = Linel.Vxl
Loadl.Vx = Line2.Vxl

-Loadl Q = Vy*Ix = Vx*[Iy]

- P = Vx*[Ix] + Vy*ly

-Line?2 Vxl = vx2 - [Iy]*XL

-power [Line2.Vx2] = Line3.Vx2

- [Line3.Vx2] = Load2.Vx

- [Load2.Vx] = Load3.Vx

-Load3 V = sqrt ([VX]**2 + Vy**2)

- Q = [Vy]l*Ix - Vx*Iy

- P = vx*[Ix] + Vy*ly

-power [Load3.Iy] + Load2.Iy = Line3.Iy + Linel2.1ly

-Load?2 Vy = Zx*[Iy] + Zy*Ix

-power [Load2.Vy] = Load3.Vy

-Load?2 Vx = Zx*Ix - [Zy]*1y

-power Load3.Ix + [Load2.Ix] = Line3.Ix + Line2.Ix

-Line3 Vyl = [Ix]*XL + Vy2

-power Linel,Vy2 = [Line3.Vyl]

- G2.Vy = [Linel.Vy2]

-G2 V = sqri(Vx**2 + [Vy]**2)

-power [G2.Vx] = Linel.vVx2

- [Linel.Vx2] = Line3.Vxl

=Line3 [Vx1l] = Vx2 - Iy*XL

-power [Line3.Iy] = Linel.Iy + G2.1y

~Linel Vxl = Vx2 - [Iy]*XL

-G2 Pg = Ex*Ix + Ey*[1ly]




~-poOwWer
=Linel
-G2

-power
-Line?2
-power

Gl
power
Gl

Loadl

-G2

Load?2

-Load3
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[Ex] = Vx - Xd*Iy

Line3.Ix = Linel.Ix + [G2.Ix]
Vyl = [Ix]*XL + Vy2

[Ey] = Xd*Ix + Vy

[Line3.Vy2] = Load2.Vy

Vyl = [Ix]*XL + Vy2
[Line2.Vy2] = Line3.Vy2

Gl.Iy = Loadl.ly + Line2.ly + Linel.Ily
Ex = Vx - Xd*Iy
Gl.Ix = Loadl.Ix + Line2.Ix + Linel.Ix
By = Xd*Ix + Vy

Ex = [E]*cos(delt)
Ey = E*sin([delt])
Pg = Ex*Ix + Ey*1ly
Pt = der2delt*H/(PI*f0) + derdelt*D + Pg

V = sqrt(V**2 + Vy**2)

v SQre(Vx**2 + Vy**2)

Vx = [Zx]*Ix - Zy*Iy

Vy = Zx*Iy + [Zy]*Ix

Ex = [E]*cos(delt)

Ey = E*sin([delt])

Pt = der2delt*H/(PI*f@) + derdelt*D + Pg
P = Vx*Ix + Vy*ly

Q = Vy*Ix - Vx*Iy

V = sqgrt(Vx**2 + Vy**2)

[Zx]*Ix - Zy*1y
Zx*Iy + [Zy]*Ix

<<
=
W
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7.4 A drum boiler - turbine model

A model of a thermal power station has been developed by
Lindahl (19706) . The model was simulated in SIMNON
(Elmgvist, 1975, 1977a). This program requires that the
model is specified in state space form. A substantial
amount of analysis and trivial rewriting of the model was

reqguired to obtain the Simnon description.

The structure of the system is shown in Fig 7.7 and the
model is given on pages 144-152. It should be noted how
easy it is to describe the structure of the model using the
model language. This is done on page 152. It is also very
easy to understand each submodel because of the well defined
cuts. There are functions HSP, RHP, etc. which defines the
state of steam and water by interpolation in the Moliere

diagram.

The sorted, grouped and solved equations are shown on pages

153-161. The elimination feature has been used in order to
shorten the 1list of solved equations. There are 252
nontrivial equations. The partitioning algorithm found 11

systems of equations. Many of them are nonlinear but could
easily be solved by hand. There 1is one system of 17
equations involving steam and feed water flows. In the
original model (Lindahl, 1976) a simplification was made in
the attemperator models. Two systems of equations were then
obtained instead, one for steam flow and one for feed water
flow. It was possible to solve these nonlinear systems of
equations by hand because the quadratic terms cancelled when

the equations were added.

The example shows that the partitioning algorithm 1is very
useful when transforming the model. It also helps to
indicate when simplifications are required to avoid too

large systems of equations.
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{ A nonlinear drum boiler = turbine model.
Translated to the model language by H. Elmgvist.
Reference: S. Lindahl, A non-linear drum boiler -
turbine model, TFRT-3132,

Department of Automatic Control,
Lund Institute of Technology.

model type drum { with downcomers }

cut inwater (Wwr, Hwr, .)

cut outwater (Wdc, Hdc, Pdc)

path water <inwater - outwater>

cut insteam (Wsr, Hsr, Pd, dP4)

cut outsteam (Ws, Hs, Pd)

path steam <insteam - outsteam>

cut feedwater (Ww, Hw, Pd)

local z, Rw, Vw, Vs, HsP, Rs, RsP, Rwr, Hd
parameter Vvdc, Adrum, £, L, D, A, Vwd, Vs@, Aw
constant g=9.81

Pd - Pdc = (1+£*L/D)*Wdc**2 / (2*A*Rw) - g*L*Rw

{ mass balance for water }
{ der ((Vw+Vdc) *Rw) = }

Aw*der (z) *Rw = Ww + Wwr - Wdc

Vw = Vw@ + Adrum*gz

{ energy balance for water }

{ der ((Vw + vdc)*Rw*Hd) = }
(Vw + Vdc) *Rw*der (Hd) = Ww*dw + Wwr*Hwr -Wdc*Hdc
Hdc = Hd

{ mass balance for steam }

{ der (Vs*Rs) = }
-Adrum*der (z) *Rs + Vs*RsP*der (Pd) = Wsr - Ws
Vs = Vs@ - Adrum*z

{ energy balance for steam }
{ der (Vs*Rs*Hs = }

-Adrum*der (z) *Rs*Hs + Vs* (RsP*Hs + Rs*HsP) *der (Pd) ->
= Wsr*Hsr - Ws*Hs

dpd = der (Pd)
Hs = IHSP(Pd)
HsP = HSPP(PAd)
Rw = RHP (Hd,Pd)
Rs = IRSP(Pd)
RSP = RSPP(Pd4)
Rwr = RWP(Pd)

end
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model type risers

cut inwater (Wdc,Hdc,Pdc)

cut outwater (Wwr, Hwr, .)

path water <inwater - outwater>

cut steam (Wsr, Hsr, Pd, dPd)

cut heat (Q)

local Vb, x, xs, TAU, Wsprod, Wmix, Rmix, Tm, TmP, TmixP
local Rs, Rwr, RsP, RwrP, Tdc, HwrP, Hs, HsP, Tmix
parameter Vr, Cm, m, K, £, L, D, A

constant g=9.81

Pdc - Pd = (1 +f£*L/D)*Wmix**2 / (2*A*Rmix) + g*L*Rmix
Rmix*Vr = Vb*Rs + (Vr ~ Vb)*Rwr
Wmix = Wdc

{ mass balance for water }
{ der ((Vr - Vb)*Rwr) = }
-de

r (Vb)*Rwr = Wdc - Wsprod - Wwr
= (l=x)*Wmix

{ mass balance for steam }

{ der (Vb*Rs) = }
der (Vb)*Rs + Vb*RsP*dPd = Wsprod -Wsr
Wsr = x*Wmix

{ energy balance }

{ der (Cm*m*Tm + (Vr - Vb)*Rwr*Hwr + Vb*Rs*Hs) = }
Cm*m*TmP*dPd - der (Vb) *Rwr*Hwr + -—>

(Vr - Vb)* (RWrLP*Hwr + Rwr*HwrP)*dPd + ->

der (Vb) *Rs*Hs + Vb* (RsP*Hs + Rs*HgP)*dPd = ->

Q + Wdc*Hdc = Wsr*Hsr — Wwr*Hwr
Tm = Tmix + K*Q**(1/3)
TmP = TmixP

XS = 2*Vb*Rs/(Vr*Rmix)
TAU = Vr*Rmix/Wdc
der (x) = 2/TAU* (x5 - X)

HsP =IHSP(Pd)

Hwr = HWP (P4d)

HwrP = HWPP (P4)

Rs = IRSP(Pd)

RsP = R3PP(P4d)

Rwr = RWP (Pd)

RwrP = RWPP(Pd)
Tmix = TLP(P4)
TmixP = TLPP(Pd)
Tdc = THP(Hdc, Pdc)

model type drumsyst

submodel drum
submodel risers
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connect (water) drum loop risers
connect (steam) risers to drum

model type superheater

cut insteam (W, H1l, Pl)

cut outsteam (W, Hd2, P2)

path steam < insteam - outsteam >
cut heat (Q)

parameter Cm , m, XK, Vs, £

local Tm, TmH, T2, T2H, R2

PL**2 - P2%%2 = EXjk*D
{ energy balance }

{ der (m*Cm*Tm + Vs*R2*H2) = }
(m*Cm*TmH + Vs*R2)*der (H2) = Q - W*(d2 - H1)

Tm T2 + K*W*(H2 - HIL)
TmH = T2H + K*W

R2 = RHP(H2, P2)
T2 = THP(H2, P2)
T2H = THPH(H2, P2)

model type attemperator

cut insteam (Wl, H1, P)

cut outsteam (W2, H2, P)

path steam <insteam - outsteam>
cut feedwater (Ww, Hw, Pw)

input Sw

local aw
parameter fw

Pw - P = fw* (Ww/aw)**2
aw = Sw**2

{ mass balance }
Wl + Ww = W2

{ energy balance }
W1l*H1 + Ww*Hw = W2*H2

model type controlvalve
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cut insteam (W, H, Pl)

cut outsteam (W, H, P2)

path steam < insteam - outsteam>
input Sv

local av

parameter fv

P1l**2 - P2*%2 = fy*(W/av)**2
av = VALVE(Sv)

model type reheater

cut insteam (Wl, H1, P1l)

cut outsteam (W2, H2, P2)

path steam < insteam - outsteam >

cut heat (Q)

parameter Cm, m, Vs, K, £

local T2, T2H, Tm, TmH, R2, R2H, R2P, R2T

Pl**2 - P2%%2 = f*yl*#*2

{ mass balance }
{ der (Vs*R2) = }
Vs#*R2T = Wl - W2

{ energy balance }
{ der (m*Cm*Tm + Vs*R2*¥H2) = }

(M*Cm*TmH) *der (H2) + Vs* (R2T*H2 + R2*der (H2)) = =>
Q + WL1*H1 - W2*H2

Tm = T2 + K*Q
TmH = T2H

{ der(R2) =}
R2T = R2H*der (H2) + R2P*der (P2)

R2 = RHP(H2, P2)
R2H = RHPH(H2, P2)
R2P = RHPP(H2, P2)
T2 = THP(H2, P2)
T2H = THPH(H2, P2)

model type turbsection

cut insteam (W1, H1l, P1)

cut outsteam (W2, H2, P2)

path steam < insteam - outsteam >
cut extractsteam (Wp, H2, Pp)

cut inpower (N1) outpower (N2)
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path power < inpower - outpower >
input S

local H, T2, ap

parameter £, fp, Eh

{default N1=0, wWp=0, S=1}

Pl = £*yl

P2%**%2 - Pp**2 = fp* (Wp/ap)**2
av = S

Wl = W2 + Wp

N2 Nl + Wl*{(Hl - H2)

H2 H+ (1 - Eh)*(H1 - H)

H = ISENX(Hl, Pl, P2)
T2 = THP(H2,P2)

model type IPturb

submodel (turbsection) IPl, IP2, IP3, IP4

path steam < IPl:insteam - IP4:outsteam >

cut extractsteam [ IPl:extractsteam IP2:extractsteam ->
IP3:extractsteam IP4:extractsteam |

path power < IPl:inpower - IP4:outpower >

connect (steam) IP1 to IP2 to IP3 to IP4
connect (power) IP1 IP2 IP3 to IP4

S
S

model type LPturb

submodel (turbsection) LP1l, LP2, LP3

path steam < LPl:insteam - LP3:outsteam >
cut extractsteam [ LPl:extractsteam LP2:extractsteam ]
path power < LPl:inpower - LP3:outpower >

connect (steam) LPl1 to LP2Z to LP3
connect (power) LP1l to LP2 LP3

S

model type condensor

parameter Wl, Hl, Pl
cut steam (Ws, Hs, Ps)
cut condensate (Wc, Hc, Pc)
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cut feedwater (Ww, Hw, Pw)

path coolingwater < (w1, H1l, Pl) - (Wl, HZ, .) >
parameter HAiff, Ve, m, Cm, Vcool, Pdiff

local Rw, R2, Tw, Tl, T2, HwP, TwP, Tc, TmP

Pw + P4iff
Pc

Pc
Ps

{ mass balance }
Ws + Wec = Ww

{ energy balance }

{ der (Vc*Rw*Hw + m*Cm*Tm + Vcool*R2*Hdw) = }
(Ve*Rw*HwP + m*Cm*TmP + Vcool*R2*HwP)*der (Pw) = =>
Ws*Hs + Wc*Hc - Ww*Hw - W1l* (H2-HI1)

H2 = Hw - HAiff
TmP = TwP

Hw = TIHWP (Pw)
HwP = HWPP (Pw)

Rw = RWP (Pw)
R2 = RHP(H2, Pl)
Tw = TLP(Pw)

TwP = TLPP (Pw)

Tl = THP(H1, P1l)
T2 = THP (42, P1)
Hc = IHWP(Pc)
Tc = TLP(Pc)
end
{ e }

model type preheater

path feedwater < (w, Hl, Pl) - (w, H2, P2) >

cut extractsteam ( Ws, Hs, Psat )

path condensate < (Wcl, Hcl, .) - (Wc2, Hc2, .) >
local Tsat, TsatP, Rw, T2, Rc, Hsat, HsatP
parameter Vc, Vw, Hdiff, £, m, Cm

P1l*%2 — P2%%2 = fhyk#*)

{ mass balance }
Wc2 = Wcl + Ws

{ energy balance }
{ der (Vc*Rc*idsat + m*Cm*Tsat +Vw*Rw*Hsat) = }
(Vc*Rc*HsatP + m*Cm*TsatP + Vw*Rw*HsatP) *der (Psat) = ->
Ws*Hs + Wcl*Hsat - W* (H2-H1) - Wc2*Hc2

Rc = RWP(Psat)
Hsat = HWP (Psat)
HsatP = HWPP(Psat)
Tsat = TLP(Psat)
TsatP = TLPP(Psat)
Rw = RHP (H2, P2)
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H2 = Hsat - HAiff
Hel = Hsat
T2 = THP(H2, P1)

path extractsteam < (W, H, P) - [ (W1, H, P), (W2, H, P)

Wl = 0.3%W
W2 = 0.7*W
end

model type dearator

parameter Wwater

path feedwater < (w, H1l, P1l) - (W2, H2Z, .) >
cut extractsteam (Ws, Hs, o)
cut condensate (We, Hc, Pc)

cut water (Wwater, Hwater, o)
parameter Hstorage, Vw, m, Cm, Pdiff
local Rw, H2P, T2, T2P, Psat, Tc

{ mass balance }
W2 = W + Wc + Ws + Wwater

Hwater = if Wwater { > 0 } then Hstorage else H2

{ energy balance }
{ der( Vw*Rw*H2 + m*Cm*TZ = }
(Vw*Rw*H2P + m*Cm*T2P) *der (Psat) = =>
Ws*Hs + W*H1 + Wwater*Hwater + Wc*Hc - W2%H2

Rw = RWP(Psat)
H2 = HWP(Psat)
H2P = HWPP(Psat)
T2 = TLP(Psat)

T2P = TLPP(Psat)

Pc = Psat + Pdiff
Hc = HWP(Pc)

Tc = TLP(Pc)

Pl = Psat

end

model type feedwaterpump

path feedwater < (W, H, . ) - (W, H, P2) >
input Ppump

parameter £
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model type feedwatervalve

cut infeedwater (W, H, P1)
cut outfeedwater [ (Wd, H, P2), (Wal, H, P2), (Wa2, H, P2) ]

path feedwater < infeedwater - outfeedwater >
input a
parameter £

P2 = Pl - f£*(W/a)**2
Wd + Wal + Wa2 = W

model type combchamber

cut heat [ (Ql), (Q2), (Q3), (Q4), (Q5), (Q6) ]
input Woil

parameter bl@, b20, b330, b4d, b59, bed
parameter bll, b2l1, b3l, b4l, b5l1l, b6l
parameter bl2, b22, b32, b42, b52, b62

Ql = blO + bll*Woil + bl2*Woil**2
Q2 = b2 + b21l*Woil + b22*Woil**2
Q3 = b30 + b3l*Woil + b32*Woil**2
Q4 = b4y + bdl*Woil + b42*Woil**2
Q5 = b5@ + b51*Woil + bbh2*Woil**2
Q6 = bo6fl + b61*Woil + bo2*Woil**2
end
e }

model type economizer

path feedwater < (W, H1l, Pl) - (W, H2, P2) >
cut heat (Q)

local Tm, T2, R2, T2H, TmH

parameter k, £, Cm, m, Ve

{ energy balance }
{ der( Cm*m*Tm + Ve*R2*H2 ) = }
(Cm*m*TmH + Ve*R2)*der (H2) = Q + W*H1l - W*H2

P2 = Pl - f*jk*2
R2 = RHP(H2, P2)
T2 = THP(H2, P2)

T2H = THPH(H2, P2)
Tm = T2 + k*Q
TmH = T2H
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model powerstation

submodel drumsyst

submodel (superheater) superhl, superh2, superh3

submodel (attemperator) attempl, attemp2

submodel reheater

submodel controlvalve

submodel (turbsection) HPturb

submodel IPturb

submodel LPturb

submodel condensor

submodel (preheater) prehl, preh2, preh3, preh4, preh5,
prehé, preh7

submodel splitsteam

submodel dearator

submodel feedwaterpump

submodel feedwatervalve

submodel combchamber

submodel economizer

connect (heat) combchamber to (economizer,
drumsyst::risers, superhl, superh2, superh3, reheater)

connect (steam) drumsyst::drum to superhl to attempl ->
T to superh2 to attemp? to superh3 to =>
controlvalve to HPturbp to reheater to IPturb ->
to LPturb to condensor

connect (extractsteam) HPturb to preh7,
IPturb to (preh6, preh5, preh4,
splitsteam to (dearator, preh3) ),
LPturb to (preh2, prehl)

connect (feedwater) condensor to prehl to preh2 to ->
preh3 to dearator to feedwaterpump to preh4 ->
to preh5 to preh6 to preh? to ->
feedwatervalve to -»
(economizer to drunsyst::drum, attempl, attemp2)

connect (condensate) preh7 to preh6 to preh5 ->
to preh4 to dearator,
preh3 to preh2 to prehl to condensor
connect (power) HPturb to IPturb to LPturb

HPturb.N1 = ¢
LPturb::LP3.Wp = 0

end




153

CxxZM® 101 IE2DL]
TxxZM®101RIEODLT
TxxTM®103BICSDy]
TxxZM°®101RIRBDyT = ZxxCd

Cxxld - Txxlzd°9ya1d]
Cxxcd - N**Hmm.mzmunu
Zxx?d - Txxlzd pus1d]
Zxx[zd-dundisjempssy]

Zxx[ZM®103EIRSP] xJ - dundg = zd

TxxgMozdusiaeyy =
Txx (AR/ZTM ZAWSIAR) x0T =

Zxxl2dl
} Zxxlzd]

[zM zawe33e] 43
ZxxCM°TAWIRRLT = Zxx[Td]

- ZgxZd®zUiadns
- ZxxZd-gyiadns
= ZAd°SATEATOIJUQCD
- ZTgxzd°TUI2dnSE

Zxx (Me/[zEM SATRAISIEMDPSST] ) yMT = Zd°Zyiadns - zd°dATesIsiempsazy
ZM = zem°aaTeAIS1IEBMpPRST 4 [gM°Tdwa3lae]

M =

ZM® 103EIRSP

[zd°oAaTeAISIeMpPDR]]
[zd-Tya=sdns]

ZxxPM°OATRAISICMDOST T -
Zxx (MR/TEM DATRAISIRMADSS]T) x AT =
Zxx [SMeUnip::asAsunip] I =

(pad uwnip: :asAsunip) dme
opMeUNIpP: :3SAsSuniIpy (X - T)

My Teb -

(M £V¥x?) /T2x0PMy (Q/TxT + 1) =
XTWIxTxb +

[TeM°2ATRAIS}EMPOBT] + SM uwnip::isAswunip
= zeMm + T1eMm + [PpM]

pdcunip: :asAsunip
Zd°SATRAIDIBMPDSRT

CxxCd — TxxPd uWwnip::isAsunip

i

T %3 MG me

(£8) AATYA AR
CxxMg = ME

IME UNIP: :3sAsunip
IMMSUNIP: t3sAsunip

[opd]l - pa
(XTWwdx®x7)

/Zxx [OPM UWNIP: :1SASUNIP] 4 (Q/TxI + T) = PA°WNIP::3sAswWnip - Opg UWNIp::)SASUNIP

IN/ (3G (GA - 3IA)
(pag unip: :3sAsunip)dmy =
(pa-wunip::3sAsunip)dsyI

+ S¥xJA) = XTWY
amy

= S¥
(Pd‘PE)dEY = MY

Lu2ad-

gyoid-

cyaid-

vyai1d-
dundisjempaai-
fyiadns-
SATEATOIQUOD-
ginidH-
Zyiadns-
zdwsille-
Tdwalye-
SATRAID}EMPRRT -
ISZTWOUODS~
1dwsije-
Tyxadns-

1dwsiae
SATRATOIZUOD
zdwsije

SI9STI::3sSAsunip

unip: :asAsunip-

SI9ST It :31SASUnip
unip: :asAsunip

POATOS 3UT 14K
uota T3 Ied
S1BUTUWITS OpPK<
3sAsismod ppe<



154

(zd‘ZH) dEL = Z&
(X - SX)40NVL/7 = XI38p
(PAPxdSUxGA + S¥UxdAIOP) /((PAdPxdSHxS¥YxdA + PdPx (dIMHy IMY
+ IME UNIP::1SASUNIPydIMY) x (A - IA) + IME WNIP: :31SASWNIPyIMIyxJAIDP
-~ PAPxdXTWLxW4UD) — IME°UWNIP: :3SASUNIPyIMM WNIP: :3SASUNIP
— ISHyxISM - PH UNIP::1SASUNIPyOPM°WNIP::3sASunip + z0O° I2qUeydoquwod) = SH
(pd uwnip::3sASWNIpP)dSHI = dSH
(pd unip::3sAsuUnip)ddMe = JIMH
(opd uwunip: :3sASUnIp‘pE WNnIp: :3sAsunip)dugl = °OPIL
(pd wnip: :31sAsUnip)ddmd = JImy
(Pg-wnip::3sAsunip)ddil = dXTWL
(€/1) »x70° I2qUEYDIqUOD LY + XTWL = WL
CxxTTOMxZZA + TTCMxTCA + 929 = ZO
(pad unip: :3sAsunip)dil = XTWl

IMM WNIP: :3SASWUNIP — POIASM — OPM WRIP::31SASWnNIp = IMdy [gAISP] -
IsM - [poidsM] = PdPxdS¥xdA + SUxJAISP

(pg-wunip::3sAsunip)ddsy asyg
OpPMTWNIP: :1SASUNIP/XTUN 4 IA Ovl
(XTu ¢ IA) /SUxGAxT = SX
ISM°SI3STI::3SASUNiIp/ (SHxSM + SHxSHxZI9pPyxWNIPVY
- Pdp°si9STI::3sASUNIPy (GSExSY + SHxdSY)sSA) = ISH®SISSTI::3sAsunip
(dS¥xSA) / (SHxZISPxWNIPY + SM ~ ISM°SI9STI::3SASUnip) = PP SISSTI: :asAsunip
opMTuNIpP::3SASUNIPyX = ISM
(M9x (OPA + MA) )/ (PHxOPM - IMHyIMM + ZH® ISZTWOUODS4PM°®2ATRAISIBMPSS]T) = PHISP
(MIxMV) / (OPM — IMM + PM°SATRAISIEMPSSI) = ZI9p
(pa)amyg amy
(pd)ads¥ = dsy
(pd)ds¥I = sy
(Pd) ddsH = dsH

il

ZyWNIPY - SA = SA

ZxUNIDY + GMA = MA

(Pd)dSHI = SH

Txx (®/ZM*303e1E2P) I - [Zd°Ly21d] = Z4

1uaadns

SI9sTas:3sAswnip
Io2gueyoquod

SI9STI::1SASUNIp

wnips: :3sdAsunip
SI9STI::3sAsunip

wnip::3sAsunip

SATeAIDIRMPDR]-



155

(B - ZH"I93e®Ua1)x(Yd - 1) + H
(zd‘zd°Is3eauyai’‘zZH" I123e2Ua1) XNIS

I

= CH
= B

ZM°1d1::0I03dIxF = [2d°TdI::9In3dI1]
Zxx (S/19M]) x43F = Txx30Sd°9Ua1d - Zxx7d
dMm + [zZzM] = zZmMm*®Ie3eSUS1

dzda/ (ZeIspyHZY - 124d) =

(4

disp

(Z9%SA + HZLxWDxW)

/(ZExLZ9%SA - THxCM - ZH QINAIJHZM®GINIJH + 90° I2quWeydquwod) =
(E - zH ¢yredns)x (UYd - 1) + H
(zd’zd-o2ATeATOIRUCDZHcyIadns) XNIS

sA/(TM - ZM°QIN3dE)

(4

I

HISp
= ZH
= H
174

TxxCTM°QINYdHxTF = TxxCld — Txx[Cd°9INIJH]
Txx (S/[AM]) x0T = ZTxx3®Sd"LUSIQ - Zxxld
dM + [zm] = gzM°zdwelje

(zd‘zZB)ddapd

(zd’zB)B4AHY

(za‘zu)dpy

90" I92queYDqUOodD Y + ZL
ZxxTTOMxZ90 + TTOMxT99 + 694
(zd‘ZH)BJdHL

(zda‘zB)dHL

dcd
HZA
At
ur
90
BZL
= N.H—U

1l

]

]

I/zd*I93e8Usl = ZM®°isjeayal

M/ (zH°LyoadyTeM  SATRAISIEMPOR] + ZH°TUJXodnSysM wnip: :jsAsunip)
JITPH - 3esH
(3esd)amu =

= CH
= ZH
lesyg

(Z9%SA + HUWELxUWD W)

/((sp unip::31sAswunip -~ ZH)xSM°UWnIip::isAsunip - ¢0°I9qWeydquod) =
CxxTTOMxZCO + TTOM&TEQ + fE]

(zd’zH) duy

sMcunip::aisAsunipyy + HZL

. (zd’'ZH)HAEL
(S WNIp: :1SASUNIP - ZH) xSM°WNIP::1SASUNIPLY + ZIL

14

Hisp
€0
(A

HWTL

BZ L

= WL

TdI::0IN2dI
ZdI::gInigI-

TdI1::QIN3gI-

io3eayail
ganidy

Jeljeayed-~

gin3de-

193esyail
I2queydquiod

I93eauai
TdI::=qinadr
1dwsaje
Lu2ad

Tyaadns
Iaqueydquod



156

CM TdT::qIn3dTx3 = [gd 1d7T::9IN3dT]
Txx (S/[AM]) xdT = Zxx3®Sd"TURIA - ZxxTd
aMm + [zZM] = ZM°$dI1::9In3dgl

(zda‘zH)dHL L

(ZH - ZH €dI::0INAdI)xZM°€dT::9INAdT + ZN°€d4I::Ganadr ZN
(H - ZH €dI::qIN3dI)x(Yd - 1) + H = ZH

(zd’z2d ¢€dI1::9IN3JI‘ZH €4 :QINAJI) XNIAST = H

TM°$dI1::0IN3dIx3 = [2d pdI2:qIn3dI]
Txx (S/[AM]) x3GT = Zyxx3lesSd cysid - zZgx2Zd
dM + [ZM] = ZM®€dI::9In3dI

(zd’zH)dHL = 7.1
(ZH - ZB"2dI::0In3dI)»¢M°2dI::0IN3dT + gN°ZdI::9anadl = ZN
(H - ZH® °ZdI::qin3dI)x(Yyg - 1) + H = CH

(zd’zd zdI::QIN3dI‘ZH"ZdT::9an34T)XNAST = H

CM€dI::qInddIxF = [2d°€dI::qan3dr]
N**Am\HQZ_v*&w = Zxx3€Sd°pUsid - Zyxzd
aM + [ZM] = Zm°ZdI::ginigr

(zd‘zE)dEL = 724
(ZH - ZEH°TdI::gIN3dI) «ZM°TdI::QIN3dI + ZN°TdI::qinidl = ZN
(B - ZH"TdI::9an3d1)¢(Ys - T) + B = ZH

(zd’zd°1d41::09IN3dI‘ZH T4T::QIN3JI) XNIST = EH

CM°Z2dI::0IN3dTxF = [2d°CdI::QIN3dI]
Txx(S/[AM]) xGF = Zxx3®SI°GUSIA - Zxx7d
dm + [gMm] = ZM°TdI::ganadgl

(zd“ZH)4dHIL ZL

(ZH - TH"I193Ee3UdI) 47M° I23R3YS1 + ZN°gINnidH ZN
(zH - ZH°gyiadns)ygMm zdwelle + IN = N

¢ = IN°Gan3ldH

]

¢dls-qanigi-~

TdT::gaIn3igi-

¥dI::-qaniqdr

Td71::qIn3di-

PdI--gan3dIi-

€dI::Qan3qdr

PdI::9an3dIi-

€4I::QIN3gI-

ZdI::Cganidr

€dI::04n3dI-

¢dI::=qin3di-

T1dI::-Gin3dzt
qianidu
uoTjlejsismod



157

(zd°€dT1::9I0n347)dTL = 2L
(M3)dd1L = dmL

(Md) ddMH = dMH
(Td’ZE)dHL = Z&

(Td‘TH)JHL = T1&
(M3)dTI = ML
(Ta‘ze)dHY = 2¥
(Mg)amyg = myg
JITPE - MH = ZH

(M3) dMHET = MHE

TxxMM°® IOSUSPUOD YT = ZTxx3ESJ"I03RILSP - Zxx[Td TY21d]
TxxMP° IOSUSPUOD T = ZxxCd — Txx[Td°TUS1d]

Zxx [MM°®IOSUDPUOD] xT = Zxxld - ZxxMd®IOSUSPUOD
(Zd‘ZH)dEL = Z.&
(ZH - ZH ZdT::QIN3dT) »ZM°ZdT:+0an3dT + ZN°zdT::9aIn3dT = ZN

Txx (S/AM) xdT = Zxx[dd] - Zxx2d

(H - ZH ZdT::0an3dT)x(yad - 1) + H = ¢H
(zd’zd- zd7::0qaIn3agi1’zu°zdT::qanidi) XNAsSI = H
F3TPd + Md = 7d-"€dT::QaN34T

dM - ZM°zdT::0In3dT = TM

g = dM°€dT::09In3al

(zd*ZEB)dEL = 71
(zH — ZE°TAT::gIN3dT) M °TdT::9INAJT + ZN°TdT::0in3dT = N
(H - zH 1d7::¢gan3aT)«(yd - 1) + H = ZH

(zd’zd°1d7T::9IN3JTZH " TAT: 2 QINYJT) XNISTI = H

gM°zdT::9In3dT«F = [2d4°2dT::9IN3dT]
Zxx (S/[AM]) xCF = ZTxx3BSI°TUDId - ZxxZd
dm + [ZM] = ZM Td7T::9In3gTl

(zd‘zZH)dHI = 7L
(zH - ZH"PAI::0INAJT) xZMHdT::0INIJT + ZN°$#dI::9IN3dI = N
(H - ZH $AT::0IN3dI)x (YT - 1) + H = TH

(zda‘zd pd1::qan3xdI“‘ZH " $dI::QIN3JI)XNIST = E

Iosu=2puocd

fus1d-
ZysI1d-
Tusad-

€47 :Q9IN3JT
I0SUSPUOD

€d1:-qgan3ga
uotjejzsiamod

¢dT: s ganadgi
€4 qInig-

7dT::qIn3aT-

TdT1::QaINnAd1



158

10° Isqueydoquod sy + ZJI ug,
(pd wnip::3sAsunip’zH)dEL = ZXL
TxxTTCMxZGO + TTOMyxTSY + @69 = 6O
Zxx»TTOMxZ¥%d + TICMxTI®CG + 674 = ¥0
TxxTTOMxZTA + TTOMyTIG + 4TQ = 1O
(dZLxWUDxW + dZHxMIyMA)/(ZHxZM — ZOH'§UDIdyzOM°pys1d

1l

+ JIO1EBMHxI93BMM + ZH°fUSIAyMM®° IOSUSPUCD + ZH HdI::0INAJIx[M°WES28317dS) = 3esdisp
(0d)daMH = ZOH°pysad
(Is3emM + TM°WED3SITTAS + MM*® IOCSUDPUCS) - 7ZM = ZOM°*HUSId

JITPH - 3ESH = ZH
(AesSd)dME = 3ESH
(dd)da1a = O
(resd)dd1lL = dZI
(1esg)ddr = zZi
(3esd)ddME = d7H
(Resd)dmyg = My

ZH esT7® °2bei03sSH usyl Isiemm JT = IS3EMH
JITpPd + 3esd = 24
(1esd)dMH = ZH

AM°§dI::qINIJIxL "0 4.
dM°§dI::0IN3dIxe g = TM
(dIeSHxMIxMA + JICSLxWDxW + JICSHxOAxOA)/(ZOHxZOM - (MH®IOSUSpPUOD - ZH)
2 MM IOSUSPUOD ~ ZOH®ZUDAdxzOM ZYDId + ZH®ZdT::gIN3dT¢dM°zdT::gIn3dT) = 3esdisp
dM®zdT::9anigT ~ ¢oOM = zomczyaad
(3esd)ddMH = daesH
(3esa)ama o9
(Md° I0SUSPUOD‘ZH) dHL = ZIL
(zd’zu)auy = myg
(3esd)d4d1L = daesr
(3esg)dir = 3ess
JITPH - ZOH ZUSIC = ZH
(3esd)aMuE = goH zu2iad
A@Bm*mm*ﬂooo> + dMILxUWDxW + JMHxMIxOA)/((TH - ZH) xTIM
- MEHxMM — ZOH°TUSI1d47ZOM°TUSI4 + ZHE €dT::0IN3dTZM°€dTs:GaIn3dI) = mgisp
(Zd°€dT::0an3dT)dMEI = gOH"TyUsad
ZM°€dTT::0an3gT - MM = ZOomM TyL21d

I19ZTWOUO0DS

Isqueydquod

ioleiesp

cysad

iciereap

wes3s3T1ds

Tu@iad



——

159

(3esd)ddMH = d3esH
(3esg) ama oy
(zd*zZus1d’ZH)dHL = ZL
(desd-acieiesp’ZE)dHY = MY
(3eSd)dd1I = d3esl
(3esd) gL = 3esqy
ZM°wWe231s3TTds — ZOM = TIOM
(dlesHxMIxMA + JAPSLxWDxW + dICSHxOdxOA)/(ZOHxZOM - (ZH Tus21d - ZH)
xMM*® IOSUSPUOD - ZOH°EUDIdxgOM gUDId + ZH TJT::9IN3dT«dM*TdT: :QIN3gT) = 3©SqIap
dM®TdT::9aIn3dT - gOM = gzom°gysid
(3esd)ddMH = dJiesH
(resd)amy = o¥
(zd°TUy®14'ZH)dELI = Z&
(zd’zE) duy My
(3esd)dd1lL = d3eskL
(3esd)d1I = 3esl
JITPH - ZOH"¢y=1d = zH
(3esd)dME = 7ZOH°¢uy=2id
(zda’zE)dHI = Zg
(Z9%SA + HULxWDyw) /((zH zdwslie - ZH)xZM zdwsl3e - G°I2queydquwod) = ZHISP
(zd’zH)dHY = 7¥

ZMczdws3leyy + HZIL = HUL
(Zd’ZE)EBJHL = HZI
(zu- zdwelae - zH)xzgM°zdwalleyy + gl = Wl

ZM/(ZH®LUSI1dyzeM 2ATRATISIBMES3T + ZH ZUIadnsyzMm°Tdwelle) ZH
. (Zd“ZB)dHL = TL
(ZU¥SA + HULxWDW) /((zZH°Tdwslle - ZH)xgM TCWd33e - §0° I2qUeydquod) = zHISP
(za‘zy)dpy = 29
ZM*T1dwelleyy + HZI = HUL
] (zd“ZH)HJEL = HZLI
(zu-1dwe33®e - ZH) xzM°TAdWd33eyy + ZTI = WL
(zd’'ZH)dHL = 21
(Z9%3A + HZILxWxuwd)
\ANm*muZ.wwa.mDuwn«mBmummm - Nm.hﬂmuaw*muz.w\wﬂ.m\wumumzmuwmw + HO.MOQE.@QOQEOQV = ZHISP
(pa-wnip::3sAswnip’zH) HdHL = HZI
(pa-unip::3sAswnip’zZH)dBd = ¥

cyaid

zu@1d
ganidyg

cyiadns
zdwaaae
cyiadns

zyradns



160

dM°0IN3dy - ZOM = TOM
(dIeSHxMIxMA + dIBSLxWOxW + JdIBSHxOUxOA)/(ZOHxZOM - (ZH GUys21d - ZH)
xCM®103RIR3P - ZOH"LUBICxZOM*LUD1C + ZH TdI::dINigIxdM°TdI::qInadI) = 3esdiesp
dM®°TdI::0in3dI - ZOM = ZOM°Lysad
(3esd)ddME = diesH
(3esg)amd oy
(zd*Guya1d‘ZH)dHL = 1L
(zda’zH)dHEY = MY
(3esd)ddiL = diesi
(3esd)dIL = 3est
JITPH - ZOH'LU21d = ZH
(3esd)dMH = ZOH®LU=1d
(dICSHxMIxMA + JIESLxWDxW + JICSHxOUxOA)/(ZOHxZOM - (ZH°pU2id - zH)
xZM® I03eIE3P - ZOH 9U®IdyZOM°9URId + ZH®ZdI::ginidIsdM°zdI::QIn3idI) = 3esdisp
dm®zdI::ganidl - goM = Zom*°9uysid
(3esd)ddMH = dlesH
(3esa)amd = 2y
(Zd°"9Uei1C’ZE)dHL = I
(zda‘zB)dpY = Mmy¥
(3esd)ddil = d3esk
(3esd)d1L = 3esi
JITPH - ZOH'9US1d = ZH
(3esd)dMH = ZOH°9ys1d
(dICSHxMIxMA + JIBSIxUWDxW + dICSHxDUxOA)/(ZOHxZOM - (ZH®I03RIBSD - ZH)
#ZM*103EIESp - ZOH GUSIdyZOM°GUDIG + ZH"€4I::CQINAJICGM °€dTI::GINA4I) = }IesSdisp
dM°€dI::gIN3dI - ¢OM = gdOM°Gquaid
(3esd)daME = d3lesH
(1esd) amy o9
(za-dundisjempsal‘zH) dEL = ZL
(za’ze)amy = my
(3esd)ddiy = d3esl
(3esd)d1r = 3esrt
JITPH - ZOH"GUSId = ZH
(esdg)dMH = zdoH"gyaad
(d1eSHxMIxMA + JICSTLWO4W + JICSHxOUxOA/ (ZOHxZOM - (ZH°ZU21d - ZH)
¥MM° IOSUSPUOD - 3BSHxOM + ZH PdI:ginidIyzm wes3s3iT(ds) = 3esgisp

[

il

LU ad

gysid

cysid

pyaad



161

(dIBSHxMIxMA + JIBSLxWD4W + JICSHOUxOA)/ (ZOHxZOM

- (ZH"9U®Id - ZH)xZM®I03BIRSD - 3BSH4IOM + ZH QINIdH«dM°qIN3dH) = jesgisp
(esd)ddamMy = diesn

(resa)amy = o¥

(zd*9usi1d‘zZH)dHL = I

(za‘’zy) duy my

(3esd)ddis = daiesr

(3esd)a1r = 3esg
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APPENDIX

1. Syntax notation

The following syntax notation is used.

/ or (separates terms in a list from which one and

only one must be chosen)

{ } groups terms together

[ ] groups terms together and denotes that the group

is optional

{ } denotes repetition one or more times

[ ] denotes repetition none or more times

If any of the symbols / { } [ ] < > should be considered as

terminal symbols it is underlined.

It should be noted that the syntax is not complete in some
respects. It does not contain the definition of basic items
like <identifier> and <number>. Trivial ©production rules
such as <model identifier> ::= <identifier> are omitted.
The syntax for <expression> is also omitted. It can e.g.
be found in WNaur (1962), The only exception 1is that

<variable> is replaced by <variable spec>.

It is possible to use a comma as separator between variables
in a 1list even if this is not included in the syntax.
Comments are written within the parantheses { }. New line
is treated as ;. Continuation of a statement on the next
line 1is indicated by -> at the end of the line.

Continuation is also assumed if a line ends with comma.




179

2. Syntax for model language

®
<model specification>::=[ <model type>; ] <model>;

<model> ::= model <model identifier>; <model body> end
<model type> ::= model type <model type identifier>;
<model body> end
<model body> ::= <submodel part> <declaration part>

<{statement part>

{submodel part> ::= [ <model>; / <model type>; /
<submodel incorporation>; ]*
{submodel incorporation> ::=
submodel [ (<model type identifier>) ]
{ <model identifier> [(<parameter list>)] }*
<parameter list> ::= {<number>} /

*
{<parameter>=<number>}

{declaration part> ::= [ <variable declaration>; /
<cut declaration>; / <node declaration>; /

{path declaration>; ]*

{variable declaration> ::=
parameter { <variable> [=<number>] i /
constant { <variable> = <number> }~ /
local { <variable> }* /
terminal { <variable> }* /
input { <variable> b /
output { <variable> 3" /
default { <variable> = <number> N /
internal { <variable> }* /

external { <variable> }*
<variable> ::= <identifier>
{cut declaration> ::= [main] cut {<cut identifier>

[<cut>]}*
<cut>::=<cut clause> / <cut spec>




171

<cut clause> ::= ( <variable cut> ) /
[ <hierarchical cut> ]}
<variable cut> ::= [ <cut element> ]*
[ / | <cut element> 1%
<cut element> ::= <variable> / —<variable> / .
<hierarchical cut> ::= { <cut> / . }*
<cut spec> ::= <model spec> [:<cut identifier>] /
{cut identifier>
<model spec> ::=
<model identifier> [::<model identifier>]*

<node declaration> = node {<node identifier>

[<node clause>]}*
<node clause> ::= ( <variable cut> ) /

[ <hierarchical node> ]
<hierarchical node> ::= { <node clause> /

<node identifier> / . }*

<path declaration> ::= [main] path {<path identifier>
{<path clause> / <path spec>} b
<path clause> ::= < {<cut>/.} - {<cut>/.} >
<path spec> ::= <model spec> [..<path identifier>] /

<path identifier>

{statement part> ::= [ <equation>; / <procedure call>; /

{connection statement>: ]*

<equation> ::= <expression> = <expression>

<variable spec> ::= [<model spec>.] <variable>

<procedure call> ::= { <variable spec> }* =
<procedure identifier> ( {<expression>}* )

{connection statement> ::=
connect [(<identifier>)]
{ <connection expression> 3
<{connection expression> ::= <connection secondary>
{ { at/=/to/-/from/par////1oop/
branch/join } <connection secondary> }*
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{connection secondary> ::=
[reversed/\] <connection primary>

<connection primary> ::= <connection operand> /
( {<connection expression>/.}* )

<connection operand> ::= <cut spec> / <path spec> /
<node identifier>
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3. Listing of the translator program
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begin
comment DYMOLA TRANSLATOR

Author: Hilding Elmgvist
Date: January, 19738

ref (submodel) array Modeltypes(l:25);

ref (variable) array Variables(1:709);

ref(cut) array Cuts(1l:200);

ref (path) array Paths(1l:38);

ref (equationnode) array Equations(l:590);

integer Nummodeltypes, WNumvariables, Numcuts, Numpaths,
Numequations;

ref(strongcomp) array Egqusystems(l:599);
integer Numequsystems;

ref(variable) array Equvar (1:40):
integer Numeguvar ;

ref (submodel) Model,Currentsubmodel,Lastsubmodel;
ref (connectnode) Firstconnectnode, Prevconnectnode;
text Nextitem; integer Nexttype; real Nextnumb;
integer Idtype, Deltype, Numbtype;

text Connectionident:

boolean Eliminate;

ref(variable) Markvariable:

ref(expr) zero, one, two:

bocolean nonlinear;

integer 1i;

COMMENE = o e e o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e ;

class SUBMODEL (modeltypeident)

text modeltypeident;

begin

text modelident;

integer submodelnr:

ref (submodel) modeltype, superiormodel;

ref (submodel) firstsubmodel, companionmodel;

integer nsubmodels;

integer ivariables, nvariables:

integer icuts, ncuts;

integer maincut:

integer ipaths, npaths;

integer mainpath;

integer iequations, nequations;

boolean occupied;

comment The variables ivariables, icuts, ipaths and
iequations are biases for this submodel in the vectors
Variables, Cuts, Paths and Equations. ;
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procedure modelbody;
comment <model body> ::=
<submodel part> <declaration part> <statement part> ;

begin

text modelid, modtypeid;

boolean incorporation, declaration, statements,
type, maing

text vartype; ref(variable) var;

text ident; integer clausenr;

ref (submodel) submod, modtype, mod;

ref (submodel) nextsub, prevsub;

ref {connectnode) nextconnectnode;

ref (path) newpath;

comment <submodel part> ::=
[<model type> / <model> / <submodel incorporation>]* ;

incorporations=true;
while incorporation do
if Nextitem="model" then
begin
comment <model type> / <model> ;
Scan;
if Nextitem="type" then begin Scan; type:=true; end
else type:=false;
if Nexttype=/Idtype then
Error ("Missing identifier");
modelid:~copy (Nextitem) ;
Scang
if Nextitem =/ ";" then Error("Missing ;");
Scan;
submod:~new submodel (modelid) ;

submod .modelbody;

Scan;

if Nextitem=/";" then Error("Syntax error"):;

scan;

if type then
begin
Nummodeltypes:=Nummodeltypes+l;
Modeltypes (Nummodeltypes) :-submod;
and

else
begin
nsubmodels:=nsubmodels+l;
nextsub:-gubmod.newsubmodel (this submodel,modelid,

nsubmodels) ;
if firstsubmodel==none then firstsubmodel:—-nextsub
else prevsub.companionmodel:-nextsub;

prevsub:-nextsub;
end

end

alse
if Nextitem="submodel" then
begin
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comment <submodel incorporation> ;
Scan;
if Nextitem=" (" then
begin
S5can;
if Nexttype=/Idtype then
Erxrror ("Missing modeltype identifier");
modtypeid:=copy(Nextitem) ;
Scan;
if Nextitem=/")" then Error ("Missing )"):
S5can;
if not search(i,Nummodeltypes,
Modeltypes (i) .modeltypeident=modtypeid) then
Error ("Not existent model type"):;
modtype:=Modeltypes (1) ;
end
else
modtype :-none;
while Nexttype=Idtype do
begin
if modtype==none then
begin
if not search(i,Nummodeltypes,
Modeltypes (i) .modeltypeident=Nextitem) then
Error ("Not existent model type"):
mod :=Modeltypes (i) ;
end
else
mod:-modtype;
nsubmodels:=nsubmodels+1;
nextsub:-mod.newsubmodel (this submodel ,Nextitem,
nsubmodels) ;
if firstsubmodel==none then firstsubmodel:-nextsub
else prevsub.companionmodel:-nextsub;
pDrevsub:-nextsub;
Scang;
comment Skip <parameter list> ;
if Nextitem = " (" then
begin
while Nextitem =/ ")" do Scan:
sScang
aend;
if Nextitem="," then Scan:
end;
Scan;
end
else
incorporation:=false;
comment Bnd of <submodel part> ;

comment <declaration part> ::=
[ <variable declaration> / <cut declaration> /
<node declaration> / <path declaration> ]* ;

Currentsubmodel:-this submodel:
ivariables:=Humvariables:
icuts:=Numcuts:
ipaths:=Numpaths;
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declaration:=true;
while declaration do
if Nextitem="parameter" or Nextitem="constant" or
Nextitem="terminal"” or Nextitem="input" or
Nextitem="output" or Nextitem="local" then
begin
comment <variable declaration> ;
vartype:=copy (Nextitem) ;
Scan;
while Wexttype=Idtype do
begin
var:—-new variable(this submodel,Nextiten):;
nvariabless=nvariables+1l;
Scan;
if Nextitem="=" then
begin
Scang;
if Nexttype=/Numbtype then
BError ("Missing number");
Scan;
end:;
if vartype="parameter" or vartype="constant"
or vartype="input" then
var .known:=true;
if Nextitem="," then Scan;

end;
if Nextitem=/";" then Error("; expected");
s5can;
and
else
if Nextitem = "cut" or Hextitem = "node"
or Nextitem = "path" or Nextitem = "main" then
begin
if Nextitem = "main" then begin Scan; main:=true; end;
if Nextitem = "cut" or Hextitem = "node" then
begin
comment <cut declaration> / <node declaration> ;
Scan;
while Nextitem =/ ":" do
begin

if Nexttype =/ Idtype then
Error ("Missing cut or node identifier");
ident:=copy(llextitem) ;
Scan;
if WNextitem = "[" or Wextitem = " (" then
begin
clausenr:=cutclause;
Cuts(icuts+clausenr) .identifier:=ident;
end
else
begin
new nodecut.identifier:-ident;
end;
ncuts:=Numcuts~icuts;
if main then
begin
maincut:=Numcuts—icuts;




main:=false;
and:;

if Nextitem = "," then Scan:

end:
sScan;
end
else

if Wextitem = "path" then

begin

comment <path declaration> ;

Scan:
while Nextitem =/ ";"
begin

do

if Nexttype =/ Idtype then

Brror ("Missing path identifier™);

newpath:-new path(Nextitem) ;

Scan;
if Nextitem =/ "<"
Scan;:

then Error ("Missing <"):

gscancut (newpath.cutnrl,newpath.modspecl) ;
]

if Nextitem =/ "-"
sScan:

then Error ("Missing ="):

scancut (newpath.cutnr2,newpath.modspec?2) ;

if Nextitem =/ ">"
Scan;

if main then
begin

then Error ("Missing >");

mainpath:=Numpaths-ipaths;

main:=false:
end:;

if Nextitem = "," then Scan;

end:

npaths:=Numpaths=-ipaths;

ncuts:=Numcuts=-icuts;
Scang
end;
end
else declaration:=false;
comment End of <declarat

comment <statement part>

ion part> ;

o =

[ <equation> / <connetion statement> ]* ;

iequations:=Numequations;
Firstconnectnode:-none;

Currentsubmodel :=this submodel:;

statements:=true:
while statements do

if Wextitem = "connect"”
begin
connectionstatement;
end

else

then

if Wextitem =/ "end" then

begin

new equationnode (Equation,this submodel) ;
if Nextitem=/ ":" then

179

T



180

Error ("Syntax error: ; expected");
Scan;
end
else
statements:=false;
comment End of <statement part> ;

comment Generate equations corresponding to the
connections statements in this submodel ;

nextconnectnode:~Firstconnectnode:

while nextconnectnode =/= none do
begin
if nextconnectnode.connected=/=none then

nextconnectnode.connect;

nextconnectnode:=nextconnectnode.next:
end ;

for i:=1 step 1 until Numcuts do
Cuts (i) .connected:-none:

nvariables:=Numvariables-ivariables;
nequations:=Numegquations~iequations;
end - modelbody - ;

ref (submodel) procedure newsubmodel (supmod,modid, submodnr)
value modid; ref (submodel) supmod; text modid;
integer submodnr;
begin
ref (submodel) mtype, newsub, next;
ref (submodel) newsubsub, prevsub;
integer 1i;
if not occupied then
begin
occupied:=true;
newsubmodel:=this submodel;
modelident:-modid;
modeltype:=-this submodel;
superiormodel :=supmod ;
submodelnr :=submodnr ;
end
else
begin
mtype:-this submodel;
newsub:~new submodel (modeltypeident) ;
inspect newsub do
begin
nsubmodels:=mtype.nsubmodels;
next:-mtype,firstsubmodel;
for i:=1 step 1 until nsubmodels do
begin
newsubsub:-next.modeltype.newsubmnodel (newsub,
next.modelident,i):
if firstsubmodel==none then firstsubmodel:-newsubsub
else prevsub.companionmodel :-newsubsub;
prevsub:-newsubsub;
next:-next.companionmodel;
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end;
superiormodel :~supmod;
modelident:-modid;
modeltype:-mtype;
submodelnr :=submodnr ;

duplicate;

icuts:=Numcuts;
ncuts:=mtype.ncuts;
maincut:=mtype.maincut;
for i:=1 step 1 until ncuts do
Cuts (mtype.icuts+i) .duplicate(this submodel);

ipaths:=mtype.ipaths;
npaths:=mtype .npaths;
mainpath:=mtype.mainpath;

end;
newsubmodel : =newsub;
end;
end = newsubmodel -

procedure duplicate;
begin
integer 1i;

if this submodel =/= modeltype then
vegin
ivariables:=Numvariables;
nvariables:=modeltype.nvariables;
for i:=1 step 1 until nvariables do
Variables (modeltype.ivariables+i).
duplicate (this submodel);

iequations:=Numequations;
nequations:=modeltype.nequations;
for i:=1 step 1 until nequations do
Equations (modeltype.iequations+i).
dunlicate (this submodel):

end;
end - duplicate = ;

boolean procedure searchsubmodel (ident,submod,submodnr) ;

comment Returnsg true if ident is the model identifier of
a submodel of the current model, It also returns a
reference to that submodel and its submodel number. :

name submod, submodnr; value ident;

text ident; ref(submodel) submod; integer submodnr;
begin

boolean found:

submodnr :=8;

found:=false:
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while submodnr<nsubmodels and not found do
beqgin
submodnr :=submnodnr+1;
submod:=if submodnr=1 then firstsubmodel else
submod .companionmodel ;

found:=submod.modelident = ident;
end;

searchsubmodel :=found:

end - searchsubmodel -

ref (modelspec) procedure scanmodelspec;

comment Scans for <model spec> and generates a list of
modelspec-objects describing the specification.
<model spec>::=<model identifier>[::<model identifier>]* ;

begin

ref (submodel) submod:

integer submodnr;

ref (modelspec) modspec;

if not searchsubmodel (Nextitem,submod,submodnr) then

begin

scanmodelspec:=none;

end

else

begin

scan;

if Nextitem = "::" then
begin
Scang;
modspec:-submod.scanmodelspec;
if modspec == none then

Error ("Not incorporated submodel");

end

else

modspec :-none;
scanmodel spec:-new modelspec (submodnr ,modspec) ;
end;
end - scanmodelspec - ;

procedure infix(subm); ref(submodel) subm:

comment Generates a <model spec> for this submodel relative
to submodel subm and print it. ;

begin
if superiormodel =/= none then
begin
if superiormodel.superiormodel =/= none and
super iormodel =/= subm then
begin
superiormodel.infix (subm) ;
outtext("::");
end;
end;
outtext (modelident) ;
end - infix -
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end - SUBMODEL =-;
COMMEIN T 7 o o o o ot om0 2 7 8 S S e e e

class MODELSPEC (submodnr ,modspec);
integer submodnr; ref (modelspec) modspec;
begin

ref (submodel) procedure specmod(currentmod) ;
comment Evaluates the model specification relative to
submodel currentmod. ;
ref (submodel) currentmod;
begin
integer i; ref (submodel) submod;
submod::-currentmod.firstsubmodel;
for i:=2 steo 1 until submodnr do
submod : -=submod .companionmodel;

specmod:-if modspec == none then submod
else modspec.specmod (submod) ;
end;

end -~ MODELSPEC - ;
COMMEN T == = o o o o ot o o o = =

ref (modelspec) procedure SPECIFIED(submod) ;
comment Generates a list of modelspec—objects for submod
relative to Currentsubmodel. g
ref (submodel) submod;
begin
ref (submodel) subm; ref(modelspec) spec:
subm:—~submod ;
while subm =/= Currentsubmodel do
begin
spec:—-new modelspec (subm.submodelnr,spec);
subm:—-subm.superiormodel;
end;
specified:-spec;
end = SPECIFIED - ;
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comment class CUT

class CUT;
virtual: procedure duplicate, atop;
begin
text identifier;
ref (submodel) submod:;
ref(cut) connected;

procedure atop(c2); ref(cut) c2;
comment Links variablecuts and nodecuts that are
connected by the at operator to a circular list
together with a head, connectnode. When all connection
statements of a submodel have been translated,
equations are generated from these lists by the
procedure connect of connectnode. ;
begin
ref(cut) lastcutl, lastcut2, connode;
integer nacross2, nthrough2;
if ¢2 is hierarchicalcut then Error ("Incompatible cuts");
if connected == none then
begin
connected:-new connectnode;
connected gqua connectnode.connected:-this cut;
if this cut is variablecut then
begin
connected gua connectnode.nacrossvar:=
this cut gua variablecut.nacrossvar;
connected qua connectnode.nthroughvar:=
this cut gua variablecut.nthroughvar;
end;
end;
lastcutl:-connected;
while not lastcutl.connected is connectnode do
lagtcutl:=lastcutl.connected;
lastcut2:~-c2.connected;
if lastcut2 =/= none then
while not lastcut2.connected is connectnode do
lastcut2:-lastcut2.connected;
connodez:=lastcutl.connected;
if c2.connected == none then
begin
lastcutl.connected:=c2;
c2.connected:-connode;
inspect ¢2 when variablecut do
begin
nacross2:=nacrossvar;
nthrough?2:=nthroughvar;
end;
end
else
begin
inspect lastcut2.connected gua connectnode do
begin
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nacross2:=nacrossvar;

nthrough2:=nthroughvar;

end:
lastcutl.connected:~-lastcut2.connected.connected;
lastcut2.connected.connected:-none;
lastcutZ.connected:=-connode;

end;
inspect connode qua connectnode do
begin
if nacrossvar = § and nthroughvar = § then
begin

nacrossvar :=nacrossl;
nthroughvar :=nthrough?2;
end
else
if nacross2 =/ # or nthrough2 =/9 then
begin
if nacrossvar =/ nacross2 or nthroughvar =/ nthrough?2
then Error
("Not equal number of across or through variables");
end:
end;
end - atop - ;

Humcuts:=Numcuts+1l;

Cuts (Numcuts) :=this cut:
submod : -Currentsubmodel ;
end = CUT -

COMMEN T o o o o o o o o o o o o

cut class WODECUT:
begin

procedure duplicate(subm); ref (submodel) subm;
begin
ref (nodecut) ncut;
ncut:—-new nodecut;
ncut.identifier:—identifier;
ncut.submod:=-subm;
and;

end - WODECUT - ;
COMMENT — e o om0 o o o £ o (o

cut class HIERARCHICALCUT:
begin
ref (subcut) firstcut:
integer nsubcuts;

procedure scanclause;
begin
ref (subcutnr) nextsubcut, prevsubcut;
integer cutnr; ref (modelspec) modsp;

scan;
while Nextitem=/ "]" do
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begin

scancut (cutnr ,modsp) ;

if modsp == none then
begin
nextsubcut:=new subcutnr;
nextsubcut.cutnr:=cutnr;
end

else
begin
nextsubcut:-new subcutspec (modsp) ;
nextsubcut.cutnr s=cutnr;
end:

nsubcuts:=nsubcuts+l;
if firstcut==none then firstcut:-nextsubcut
else prevsubcut.nextcut:-nextsubcut;
prevsubcut:=-nextsubcut;
if Wextitem = "," then Scan;
end;
S5can;
end;

orocedure duplicate(subm); ref (submodel) subm;
begin
ref (hierarchicalcut) hcut;
hcut:=-new hierarchicalcut;
hcut.identifier:—identifier;
hcut.submod:—-subm;
hcut.firstcut:~firstcut;
hcut.nsubcuts:=nsubcuts:
end;

procedure atop(c2); ref(cut) c2;
comment Replaces an at operation on two hierarchical cuts
by at operations on all their corresponding subcuts. ;
begin
ref(hierarchicalcut) h2;
ref (subcut) subcutl, subcut2;
if not ¢2 is hierarchicalcut then
Error ("Not compatible cuts");
h2:=c2:
if nsubcuts =/ h2.nsubcuts then
Error ("Not egqual number of subcuts");
subcutl:-firstcut:
subcutZ:=h2.firstcut:
for i:=1 step 1 until nsubcuts do
begin
subcutl.cutref (submod) .atop(subcut2.cutref (c2.submod)) ;
subcutl:-subcutl.nextcut;
subcut2:=-subcut2.nextcut;
end;
end;

end — HIERARCHICALCUT - ;

COMIMEIIE = o o ot e o o ;
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cut class VARIABLECUT:
begin
ref(cutvariable) firstacrossvar, firstthroughvar;
integer nacrossvar, nthroughvar;

nrocedure scanclause;
begin

ref (cutvariable) procedure variablelist(nvar):;
name nvar; integer nvar;
begin
ref (cutvariable) firstcutvar, nextcutvar, prevcutvar;
integer i; boolean minus;
nvar:=0;

while Nextitem =/ "/" and Nextitem =/ ")" do
begin
nextcutvar:-new cutvariable;
if Nextitem = "." then begin end
else
begin
if Nextitem = "=" then
begin
minuss=true;
Bcang
end:;
if Nexttype=/Idtype then
Error ("Missing variable identifer");
if not search(i,Currentsubmodel.nvariables,
Var iables (Currentsubmodel .ivariables+i).
identifier=Nextitem)
then
begin
new variable (Currentsubmodel ,Nextitem);
Currentsubmodel .nvariables:=Currentsubmodel.
nvariables+1;
i:=NHumvariables-Currentsubmodel.ivariables;

end;
nextcutvar.var:=if not minus then i else -i;
end;
if firstcutvar == none then firstcutvar:-nextcutvar

else prevcutvar.nextvar:—nextcutvar;
prevcutvar :-nextcutvar;
nvar:=nvar+l;
5can;
if Nextitem = "," then Scan;
and;
variablelists:=-firstcutvar;
end ;

Scan;
firstacrossvar:=-variablelist (nacrossvar);
if Nextitem = "/" then
begin
Scan:
firstthroughvar:-variablelist (nthroughvar) ;
end;
if Nextitem =/ ")" then Error ("Missing )");:
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Scan;
end;

orocedure duplicate (subm); ref(submodel) subm;
begin
ref(variablecut) vcut:
vcut:—-new variablecut;
vcut.identifier:=identifier;
vcut.submod:=-subm;
vcut.firstacrossvar:=firstacrossvar;
veut.firstthroughvar:=firstthroughvar;
vcut.nacrogsvar :=nacrossvar ;
veut.nthroughvar :=nthroughvar;
end:

end = VARIABLECUT - :
COMMENE o o o o o e o e o e o o o o o o o 7 2 o o e e e H

cut class COWNECTNODE:
begin
ref (connectnode) next;
integer nacrossvar, nthroughvar:;:

procedure connect;
bagin
ref(cut) c:
ref (expr) array lastvar (§:nacrossvar),
lastequ(f:nthroughvar) ;
integer 1i;
ref(cutvariable) cutvar; ref(expr) varnode;

for i:=1 step 1 until nthroughvar do
lastequ (i) s=zero.Equal (zero);
c:—connected;
while ¢ is nodecut do c:-c.connected;
while not ¢ is connectnode do
begin
cutvar:=c qua variablecut.firstacrossvar;
for i:=1 step 1 until nacrossvar do
if cutvar.var =/ 9 then
begin
varnode:-if ¢.submod == Currentsubmodel
then new variablenode (abs(cutvar.var))
else new variablespec(abs(cutvar.var) ,specified
(c.submod)) ;
if cutvar.var<¥ then varnode:-Minus (varnode) ;
if lastvar (i) =/= none then
new equationnode (varnode.equal (lastvar(i)),
Currentsubmodel) ;
lastvar (i) :~varnode;
cutvar :~cutvar .nextvar;
end:

cutvar:=c qua variablecut.firstthroughvar;
for i:=1 step 1 until nthroughvar do
if cutvar.var =/ 9 and lastequ(i) =/= none then
begin
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varnode:—-if c.submod == Currentsubmodel
then new variablenode(abs(cutvar.var))
else new variablespec(abs(cutvar.var) ,specified

(c.submod)) ;
if cutvar.var<® then varnode:-Minus (varnode) ;
if c.submod ==Currentsubmodel then varnode:-

Minus (varnode) ;
lastequ (i) .Add (varnode) ;
cutvar :-cutvar .nextvar;
end

else
lasteqgu (i) :=none;

C:=Cc.connected:
while ¢ is nodecut do c:—-c.connected;
2nd;

for i:=1 step 1 until nthroughvar do
if lastequ(i) =/= none then
new equationnode (lastequ (i) ,Currentsubmodel);
end - connect -

if Firstconnectnode == none then
Firstconnectnode:—-this connectnode

else Prevconnectnode.next:-this connectnode;

Prevconnectnode:=this connectnode;

Numcuts:=Numcuts=-1:
end - CONRNECTNODE -

COMMENTE = o o e e o o e o o o o o ot e ;

class 8UBCUT; virtual: ref(cut) procedure cutref;
begin
ref (subcut) nextcut:
end:;

subcut class SUBCUTNR:
begin
integer cutnr;

ref (cut) procedure cutref(submod); ref(submodel) submod;

begin

ref (submodel) subm;

subm:=-1if this subcut is subcutspec then
this subcut qua subcutspec.modspec.specmod (submod)
else submod;

cutref:=-Cuts (subm.icuts+cutnr) ;

end:

end - SUBCUTHR = ;

subcutnr class SUBCUTSPEC (modspec) ;
ref (modelspec) modspec;:

subcut class SUBCUTREF(c); ref(cut) c;
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begin

ref (cut) procedure cutref (submod); ref(submodel) submod;
cutref:-c:

end:

class CUTVARIABLE:
begin
ref (cutvariable) nextvar:
integer var;
end;

COMIMEN T oo o ot o o o o o o e ot o o o i o o o o o o o o o o m .

integer procedure CUTCLAUSE;

begin
cutclause:=lHumcuts—-Currentsubmodel.icuts+1l;
if Nextitem = "[" then
new hierarchicalcut.scanclause
else
new variablecut.scanclause;
end;
COMMENE == o o e e o e e e e o e o o o e o o o e ;

procedure SCANCUT (cutnr ,modspec) ;
name cutnr, modspec;
integer cutnr; ref (modelspec) modspec;
begin
ref (submodel) subm:

if Nextitem = "[" or Nextitem = " (" then
cutnr:=cutclause

else
begin

if Nexttype =/ Idtype then

Error ("Missing cutclause or cut spec");:
modspec:=Currentsubmodel .scanmodelspec;
if modspec =/= none then

begin
subm:-modspec.specmod (Currentsubmodel) ;
if Nextitem = ":" then

begin

Scan;

if not search(cutnr,subm.ncuts,
Cuts (subm,.icuts+cutnr) .identifier
then Error ("Not declared cut");
Scan;
end
else
if subm.maincut =/ # then
cutnr :=subm.maincut
else
Error ("No main cut declared"):
end
else
begin
if not search (cutnr,Currentsubmodel .ncuts,
Cuts (Currentsubmodel.icuts+cutnr).identifier=Nextitem)

Nextitem)
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then Error ("Not declared cut®);
Scan;
end;
end;
end - SCANCUT -
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comment c¢lass VARIABLE, class EQUATIONNODE,
procedure EQUATION and class EXPR

°
1

class VARIABLE (submod,identifier);
ref (submodel) submod;
text identifier:
begin
boolean knowng:
ref(variable) alias:
integer egqunr;

procedure duplicate (subm); ref (submodel) subm;
begin
ref(variable) v:
vi:=-new variable(subm,notext);
v.identifier:-identifier;
v.known:=known:
end;

orocedure infix;:

begin
if this variable == Markvariable then outtext("[");
if submod =/= Currentsubmodel then

begin

submod.infix (Currentsubmodel) ;
outtext (".");
end;
outtext(identifier);
if this variable ==
end;

Markvariabla then outtext("1"):

ref(variable) procedure eliminated;
eliminateds:-if not Eliminate or alias == none
or alias == this variable then this variable
else alias.eliminated;

boolean procedure determined;
determined:=known or (Eliminate and alias=/=this variable
and alias =/= none):

if identifier =/= notext then
begin
identifier:-if search(i,Numvariables,Variables(i).
identifier=identifier) then
Variables (i) .identifier else copy(identifier);
end;
Numvar iables:=Numvariables+1l;
Variables (Numvariables):=this variable;
end - VARIABLE -~

COMMENT == = o i e s o o o o e i o e ot o 2 o o e e :

class EQUATIONNODE (express, submod); ref(expr) express;
ref (submodel) submod:
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begin
integer varnr; comment Index for assigned variable ;

procedure infix(string); text string;
if not (Eliminate and trivial) then
begin
outtext(string);
if submod =/= Lastsubmodel then
begin
submod.infix (none):
Lastsubmodel :~submod;
end;
setpos(max (20,pos+2)) ;
Currentsubmodel : =submod;
Markvariable:=if varnr=# then none else Variables{(varnr);
express.infix;
outimage;
end;

boolean procedure trivial;
trivial:=express qua Equalop.exprl in variablenode
and express qua Egualop.expr2 in variablenode;

procedure eliming
begin
ref(variable) wvarl, var?2:
if trivial then
begin
Currentsubmodel :=submod;
varl:-express qua Equalop.exprl qua variablenode.varib;
varZ:-express qua Egqualop.expr2 qua variablenode.varibg
if not varl.determined and not var2.determined then
varl.aliass:-var2.alias:=-var2
else
if not varl.determined then varl.alias:-var2
else
if not var2.determined then var2.alias:-varl
else
if varl==var2 then
begin
outtext ("Redundant equation:"); outimage;
Eliminate:=false:
infix(notext):;
Eliminate:=true;
end
else
varl.alias:=-var2;

d;

[OTR{Y]
N

2n

procedure traverse;
begin
Currentsubmodel : =submod;
Numequvar :=0;
exXpress.traverse;
end;
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procedure duplicate (subm); ref(submodel) subm:
new equationnode (express,subm) ;

vref (expr) procedure Solve;
begin
ref(expr) x, €6, £1, g0, gl;
Currentsubmodel : ~submod;
express qua equalop.exprl.Linj(Variables(varnr),£0,fl):
express qua equalop.expr2.Linj(Variables(varnr),gd,gl);
X:-new variableref (#,Variables(varnr));
Solve:=-x.Equal (g@.5ub (£9) .Div(£1l.Sub(gl)));
end;

Numequations:=Numegquations+1l;
Equations (Numequations) :-this eguationnode;
end ~ EQUATIONNODE -;

COMME N == e e e e e e e e e e e e e e e e e e e e e e e H

ref (expr) procedure PRIMARY;
comment <primary> ::= (<expressiond>)/ <variable spec> /
{function identifier> (<expression>[,<expression>]*) /
{der/der2}(<variable>) / <variable>{'/''} / <number> ;
begin

integer procedure dervar (varid,orefix);
text varid, orefix;
begin
text derid;
if not search(i,Currentsubmodel.nvariables,
Variables (Currentsubmodel.ivariables+i) .identifier
=Nextitem) then Error ("Not declared variable");
Variables(Currentsubmodel.ivariables+i).known:=true;
derid:-blanks(prefix.length+varid.length);
derid.sub (1,prefix.length) :=prefix;
derid.sub (prefix.length+l,varid.length) :=varid;
if search(i,Currentsubmodel.nvariables,
Variables(Currentsubmodel.ivariables+i).identifier=derid)
then dervar:=i
else
begin
new variable(Currentsubmodel,derid);
dervar :=Numvar iables-Currentsubmodel.ivariables;
end;
if prefix = "der2" then
begin
derid:-blanks (3+varid.length) ;
derid.sub(1,3):="der";
derid.sub (4,varid.length) :=varid;
if search(i,Currentsubmodel.nvariables,
Variables(Currentsubmodel,ivariables+i).identifier=jerid)
then Variables(Currentsubmodel.ivariables+i).known:=true
else
begin
new variable (Currentsubmodel ,derid) ;
Variables (Numvariables) .known:=true:;
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end;
and;
Currentsubmodel .nvariables:=Numvariablegs-Currentsubmodel.,
ivariables;
end;

ref (modelspec) modspecs; ref(submodel) subm;

text ident; integer narg;

ref (argument) firstargument, nextargument, prevargument;:
text der; integer ider;

if Nextitem= " (" then
begin
Scan;
Primary:=Expression;
if Nextitem=/ ")" then Error ("Syntax error: )} expected");
S5can;
and

else
if Nexttype = Idtype then
begin
modspec:=Currentsubmodel .scanmodelspec;
if modspec =/= none then
vegin
if Nextitem =/ "." then Error ("Missing .");
Scan;
if Nexttype =/ Idtype then Error ("Missing variable");
subm:-modspec.specmod (Currentsubmodel) .modeltype;
if not search(i,subm.nvariables,
Variables (subm.ivariables+i) .identifier=Nextitem) then
Error ("Not declared variable");
Primary:-new variablespec (i,modspec) ;
Scan;
end
else
if search(i,Currentsubmodel .nvariables,
Variables(Currentsubmodel.ivariables+i).identifier
=fNextitem) then
begin
Scan;
while Nextitem = "'" do begin iders:=ider+1l; Scan; end;
if ider>d then
begin
der :-copy("der ")
der.sub (4,1) .putint(ider) ;
i:=dervar (ident,der) ;

end;
Primary:=-new variablenode(1i);
end
else
begin
ident:-copy(Nextitemn) ;
Scan;
if Nextitem =/ " (" then Error ("Not declared variable");
if ident.sub(1l,3) = "der" then
begin

Scan;
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i:=dervar (Nextitem,ident) ;
Scang
if Nextitem =/ ")" then Error ("Missing )");
Primary:-~new variablenode(i);
Scan:
end
else
begin
Firstargument:-none;
while HNextitem =/ ")" do
begin
if narg>% and Wextitem =/ "," then
Exror ("Syntax error: , expected");
sScan;
nextargument:-new argument(expression) ;
narg:=narg+l;
if firstargument == none then
firstargument:-nextargument
else prevargument.nextarg:-nextargument;
prevargument:-nextargument;
end;
Primary:-new functionop(ident,firstargument,narqg):;
Scan;
and:
end;
and

else
if Nezttype=Numbtype then
begin
Primary:—-if Nextnumb=0 then zero else if Nextnumb=1 then one
else if Nextnumb=2 then two else
new numbernode (Nextitem, Nextnumb) ;
bcan;
end
else
Error ("Missing primary");
end - PRIMARY - :

COMMEN T = o o e o e e e i o e o ;

ref (expr) procedure Factor;
begin
ref (expr) express;

express:=Primary;
while Nextitem = "**" do
begin
Scang
express:— express.Power (Primary);
end;
Factor:-express;
end;

COMIMEN T == o o o e s ot e e o e ;

ref(expr) procedure Term;
begin
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ref(expr) express;

express:—~Factor;
while Hextitem = "*" or HNextitem = "/" do
if Nextitem = "#*" then
begin
Scan;
express:—express.Mult (Factor)
end
else
begin
Scan;
express:—express.Div (Factor);
end;
Term:—express;
end;

COMMENE = = = o o e e o em e e i e i o o o o o 2 2

ref(expr) procedure Simpexpr;
begin
ref(expr) express;

if Nextitem = "+" then
begin
Scan;
express:~ Term;
end

else

if Nextitem
begin
Scan;
express:— Minus (Term) ;
and

else
begin
express:=Term;
end;

" then

1

while Wextitem = "+" or Nextitem = "-" do
if Nextitem = "+" then
begin
Scan;
express:—-express.Add (Term)
end
else
begin
s5can;
exXpress:—express.Sub (Term) ;
end;
S5impexpr :=expPress;
end;

COMMEI T = o o o mm e o oo o o o o o o i o
ref (expr) procedure expression;

begin
ref (expr) exprl, expr2, expr3;
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if Nextitem = "if" then

begin

Scan;

exprl:=-Expression:

if Nextitem=/"then" then Error ("Syntax error: then expected");
scan;

expr2:-Simpexpr;

if Nextitem=/"else" then Error ("Syntax error: else expected");
Scang

expr3:-Expression:

Expression:= ifthenelse (exprl,expr2,expr3);

end

else
Expression:-Simpexpr;
end;
comment —m=—mme e e e e e e e H
ref (expr) procedure EQUATION;
begin
ref (expr) express;

express:—- Expression;

if Nextitem =/ "=" then Error("Syntax error: = expected”);
ocan;
Equation:-express.Equal (Expression);
end;
comment === =——mmm— e e e e ;

class EXPR;
virtual: procedure infix, traverse, Linj;
ref (expr) procedure Add, Deriv;
begin
comment The procedures Add, Sub, Mult, Div, Power and Equal
are used to build the syntax tree of an expression. ;
ref(expr) procedure Add(y); ref (expr) y;
comment Simplification rules:
x+@=x, O+y=y, x+(-y)=x-y, =X+y=y-x ;
Add:-1f y==zero then this expr else
if this expr==zero then y else
if y is Minusop then this expr.Sub(y gua Minusop.
express) else
if this expr is Minusop then
y.5ub(this expr qua Minusop.express) else
new addop(this expr,y):;

ref (expr) procedure Sub(y); ref(expr) y;
comment Simplification rules:
Xx=0=x, O-y=-y, x=(-y)=x+y 3
Sub:-if y==zero then this expr else
if this expr==zero then Minus(y) else
if y is Minusop then this expr.Add(y qua Minusop.
express) else
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new Subop(this expr,vy):

ref(expr) procedure Mult(y); ref(expr) v;
comment Simplification rules:
x*@=0, 0*y=0, x*l=x, l*y=y, x*(-y)=-x*y, (-X)*y=-x*y ;
Mult:=if y==zero or this expr==zero then zero else
if y==one then this expr else
if this expr==one then y else
if v is Minusop then Minus(this expr.Mult
(y qua Minusop.express)) else
if this expr is Minusop then Minus
(this expr qua Minusop.express.Mult(y)) else
new Multop(this expr,y):

ref (expr) procedure Div(y); ref(expr) y:
comment Simplification rules: 0/y=0, x/l=x,
(-x)/(=y)=x/y, (x=y)/(-z)=(y-x)/2Z2, &/(y/z)=1*%z2/y ;
Div:—-if this expr==gzero then zero else
if y==one then this expr else
if y is Minusop and this expr is Minusop then
this expr qua Minusop.express.Div(y qua Minusop,
express) else
if y is Minusop and this expr is Subop then
this expr gqua Subop.expr2.S5ub(this expr qua Subop.
exprl) .Div(y qua Minusop.express) else
if v is Divop then this expr.Mult(y gua Divop.exprl).
Div(y gua Divop.exprl) else
new Divop(this expr,v):;

ref(expr) procedure Power (y); ref(expr) y:;
comment Simplification rules:
x**@=1, x**1l=x ;
Power :—if y==zero then one else
if y==one then this expr else
new Powerop(this expr,v):

ref(expr) procedure Equal(y); ref(expr) vy:
equal:-new equalop(this expr,y):

orocedure leftpar(pri,priority); integer pri,priority;
if pri<priority then outtext (" ("):;

procedure rightpar (pri,priority); integer pri,priority;
if pri<priority then outtext(")"):

end - EXPR -;
COMMENE === = o e e e e e e e e e e e e e e e e e e m ;

ref(expr) procedure MINUS(x); ref(expr) X:
comment Simplification rules:
-0=0, -(-x)=x, —-(x-y)=y=x ;
Minus:-if x==zero then zero else
if x is Minusop then x gua Minusop.express else
if x is Subop then x gua Subop.exprl.
Sub (x gua Subop.exprl) else new Minusop(X):;

COMIMEN T = = o o o o o o o o o o o o e e ;
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ref(expr) procedure IFTHENELSE(X,V,2Z);
comment Simplification rule:
if x then y else y = v ;
ref (expr) x, v, z;
ifthenelse:-if y==z then y else
new ifthenelseopn(x, Vv, 2);

COMMEN T o = ot om o o o o o o ottt o o o o o m e

expr class VARIABLENODE(var):; integer var;
begin

ref(variable) procedure varib;
comment Gives a reference to the variable relative to
Currentsubmodel;
begin
ref (submodel) subm:
if this variablenode is variableref then
varib:=this variablenode gua variableref.v
else
begin
subm:~if this variablenode is variablespec then
this variablenode qua variablespec.modspec.specmod (
Currentsubmodel) else Currentsubmodel;
varip:-Variables (subm.ivariables+var) .eliminated;
end;
end;

procedure infix(pri); integer pri;
varib.infix;

procedure traverse;
begin
Numequvar :=Numequvar+1;
Equvar (Numeguvar) :=varib;
and;

nrocedure Linj(x,h#,hl); name h@,hl; ref(variable) x;
ref(expr) h#d, hl;

if varib == x then
begin h#:~zero; hl:=one; end
else

begin h@:~this variablenode; hl:—-zero; end;

ref(expr) procedure Deriv(x); ref(variable) x;
Deriv:=if varib == x then one else zero;

end - VARIABLENODE - ;

variablenode class VARIABLESPEC (modspec) ;
ref (modelspec) modspec;;

variablenode class VARIABLEREF(v): ref(variable) v
COMIEINI T o o o o o o o o o o o o

expr class FUNCTIONOP(func,firstarg,nargs);
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text func; ref (argument) firstarg; integer nargs;
begin

procedure infix(pri); integer pri;

begin

integer i; ref (argument) arg;

outtext (func):

outtext (" (");

arg:~firstarg;

for i:=1 step 1 until nargs do
begin
if 1i>1 then outtext(","):
arg.expregs.infix (29);
arg:=arg.nextarg;
end;

outtext(™)");

end;

procedure traverse;

begin

integer i; ref (argument) arg;

arg:=firstarg;

for i:=1 step 1 until nargs do
begin
arg.express.traverse;
arg:—-arg.nextaryg;
and;

and;

orocedure Linj(x,hd,hl); name hf,hl; ref(variable) x;
ref(expr) h9, hl;
begin
integer i; ref(argument) arg; ref(expr) £0, f1l;
arg:-firstarg;
for i:=1 step 1 until nargs do
begin
arg.express.Linj(x,£0,£1);
if f1 =/= zero then nonlinear:=true;
arg:—=arg.nextarqg;
end;
if not nonlinear then
begin
h@:-this functionop;
hl:=-zero:
end
else
begin
h@:=-zero;
hl:-zero:
end;
end;

end - FUNCTIONOP -
class argument (express); ref(expr) express;

begin
ref (argument) nextarg;
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and;
COMMEN T = = o o o o ot o o o o o o o o o :
expr class WUMBERNODE (id,val): value id; text id: real val;
begin
procedure infix(pri); integer prig;
outtext (id) ;

procedure traverse; ;

procedure Linj(x,h0,hl): name hd,hl;
ref(variable) x; ref(expr) hd,hl;
begin
h#:-this numbernode; hl:-~zero;
end;:

ref (expr) procedure Deriv(x); ref(variable) x;
Derivs:=zero:

end - NUMBERNODE - :
COMMENE = = o o o o o o o o o o ot o o o o o 1 o o o ;
expr class MINUSOP (express); ref(expr) express;

begin

integer priority,nr;

procedure infix(pri); integer ori;

begin
leftpar(pri,o):
outtext ("=");

express.infix (5);
rightpar (pri,6);
end;

procedure traverse;
exXpress.traverse;

procedure Linj(x,h#,hl); name h#,hl; ref(variable) x;
tef(expr) ho, hl;
begin
ref(expr) f0,fl;
express.Linj (x,£f0,£1);
h:=Minus (£8) :
hl:=-Minus(fl):
end;

ref(expr) procedure Deriv(x):; ref(variable) x:
Deriv:-Minus (express.Deriv (x));

end — MINUSOP - ;
CoMmMent === == e e e e e e ;
expr class IFTHENELSEOP (exprl, expr2, expr3);

ref(expr) exprl, expr2, expr3;
begin




procedure infix(pri); integer pri;

begin

leftpar (pri,10);
outtext ("if ")
exprl.infix(10);
outtext (" then ");
expr2.infix (9);
outtext (" else "):
expr3.infix (18);
rightpar (pri,19);
end;

procedure traverse;
begin
exprl.traverse;
exprl2.traverse;
expr3.traverse;
end:;

nrocedure Linj(z,h0,hl); name h6,hl;

ref(expr) h#, hl;
begin

ref(expr) £f0,£1,90,91,00,bl;

exprl.Linj(x,bd,bl):

expr2.Linj(x,£06,£1);

expr3.Linj(x,99,9l);

if bl == zero then
begin

ho:-ifthenelse (b0,£0,90);
hl:=ifthenelse (b@,£f1,9l);

end

else
begin
nonlinear:=true;
hi:=zero;
hl:=zero:
aend;

end;

ref (expr) procedure Deriv(x):;

ref (variable)

ref(variable)

X7
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b:H

Deriv:-ifthenelse (exprl,expr2.Deriv(x) ,expr3.Deriv(x));

end -~ IFTHENELSECP - ;

COMMENT = = o o e o o s 2 o o o o o o H

expr class BINARYNODE (exprl,
begin

procedure traverse;
begin
exprl.traverse;
expr2.traverse;
and;

expr);

ref (expr)

exprl,

eXpri;
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comment

integer pri,priorityl,priority2; text op;

begin

leftpar (pri,priorityl);

exprl.infix(priorityl);

outtext (op);

expr2.infix (priority?2);

rightoar (pri,priorityl):
end;

end - BINARYHNODE - ;

binarynode class ADDOP;

begin

procedure infix(pri); integer pri;

infixl(pri,8," + ",8);

procedure Linj (x,h#,hl); name hé,hl;

ref(expr) h#, hl;
begin
ref(expr) £9,£1,90,91;

exprl.Linj(x,f0,£1);
expr2.Linj(x,g99,9l);
h9:-£f0.Add (g0) ;
hl:=-f1l.Add(gl);

end;

procedure infixl(pri,priorityl,op,priority2);

ref(variable) x:

ref (expr) procedure Deriv(x); ref(variable)

Derive-exprl.Deriv(x) .Add (expr2.Deriv (x));

and - ADDOP - ;

binarynode class S5UBOP;

begin

procedure infix(pri); integer opri;

infixl{(pri,8," - ",7);

procedure Linj(x,h0,hl); name hf,nl;

ref (expr) h@, hl;
begin
ref(expr) £0,£1,90,91;

exprl.Linj(x,f0,£1);
expr2.Linj(x,99,9l);
h@:=£0.5ub(g0);
hl:-fl.85ub(gl);

end;

ref (variable)

ref(expr) procedure Deriv(x); ref(variable)

deriv:-exprl.Deriv (x).sub(expr2.Deriv(x)):;

end - SUBOP - ;

X3

X3

Xj

°




binarynode class MULTOP:
begin

procedure infix(pri); integer pri;
infixl(pri,4,"*",4);

nprocedure Linj(x,h®,hl); name h#,hl;

ref(expr) nhd, hl;

begin

ref(expr) £6,£f1,99,91;

exprl.Linj(x,f0,£1);

expr2.Lini (x,99,g9l);

if £1 == zero then
begin
h@:-£0.4Mult (g?d);
hle=f@.Mult (gl);
end

else

if gl == zero then
begin
hds=f0.Mule(g@);
hl:—-£l.Mult(g®):;
end

else
begin
nonlinear:=true;
hf:=zero;
hls—zero:
end;

end;

ref(expr) procedure Deriv(x)

ref(variable)

ef (variable) x:

[
Derivi-exprl.Deriv(x) .Mult (expr2).Add (exprl.

Mult (expr2.Deriv(x))):;
end - HMULTOP - ;

binarynode class DIVOP;
begin

procedure infix(pri); integer pri;
infixl(pri,4,"/",3):

procedure Linj(x,h#,hl); name hd,hl;
ref(expr) ho, hl;
begin
ref(expr) £0,£1,98,91;
exprl.Linj(x,£6,f1);
expr2.Linj(x,g8,g9l);
if gl == zero then
begin
h:=£0.Div (g0) ;
hl:=-£1.Div (g®);
end
else
begin
nonlinear:=true;
hils=-zero:

ref (variable)

X3

X7
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hl:=-zero;
end;
end;

ref (expr) procedure Deriv(x); ref(variable) x;
Deriv:-exprl.Deriv(x).Div (expr2) .5ub (exprl.Mult (expr2.
Deriv(x)) .Div(expr2.Power (two)));

end - DIVOP - ;

binarynode class POWEROP;
begin

procedure infix(pri); integer pri;
infixl(pri,2,"**",1);

procedure Linj(x,h8,hl); name h@,hl; ref(variable) x;
ref (expr) h#, hl;
begin
ref(expr) £0,£1,90,91;
exprl.Linj(x,£0,£1);
expr2.Linj(x,90,91);
if £1 == zero and gl =
begin
hd:~£9.Power (gd) ;
hl:=zero;
end

else
begin
nonlinear:=true;
h@:=-zero;
hl:—zero;
end ;

end;

i

zero then

ref (expr) procedure Deriv(x); ref(variable) x;
Derivs=if expr2 == two then two.Mult(exprl) else
exprl.Power (expr2) .Mult (exprl.Deriv (x).Mult(expr2).
Div (exprl));
end = POWEROP - ;

binarynode class EQUALOP;
begin

procedure infix;
infixl(14,12," = ",12);

ref (expr) procedure Add(x); ref(expr) Xx;
begin
if not x is minusop then
exprl:—exprl.Add(x)
else
expr2:-expr2.Add (x gua minusop.express);
Add:-this expr;
end;

end - EQUALOP - ;
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comment c¢lass PATH, class CONNOP,
procedure CONNHNECTIONSTATEMENT.

class PATH (identifier):; value identifier; text identifier:
begin
integer cutnrl, cutnr2;
ref (modelspec) modspecl, modspec2;

ref (cut) procedure pathcutl(submod); ref (submodel) submod;
begin
ref (submodel) subm:;
subm:-1if modspecl == none then submod
else modspecl.specmod (submod) ;
pathcutl:=-Cuts(subm.icuts+cutnrl);
end;

ref (cut) procedure pathcut2(submod); ref (submodel) submod;
begin
ref (submodel) subm;
subm:~1f modspec2 == none then submod
else modspec?.specmod (submod) ;
pathcut2:-Cuts(subm.icuts+cutnr2);
end;

Numpaths:=Numpaths+l;
Paths (Numpaths) :=this pathg
end - PATH -

COMMETN L = o o o o e e e e e e o e e e o o o o e e ;

class CONNOP;
begin
ref (cut) cutspec, pathcutl, pathcut?2;

ref (connop) procedure modconnop(c,cl,c2); ref(cut) c,cl,c2;
begin
cutspec:—-c;
pathcutl:=-cl;
pathcut2:-c2;
modconnop:~this connop;
end;

ref (connop) procedure atoper (0op2);

ref (connop) op2;

if cutspec =/= none and op2.cutspec =/= none then
begin
cutspec.atop(op2.cutspec) ;
atoper:-modconnop(op2.cutspec,none,none) ;
end

else
Error ("The at operator only operates on cuts");

ref (connop) procedure toop(op2);
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ref (connop) op2;
if pathcutl =/= none and op2.vathcut2 =/= none then
begin
pathcut2.atop(op2.vathcutl) ;
toop:-modconnop (none,pathcutl,op2.pathcut?);
end
else
if pathcutl == none and op2.pathcutl =/= none then
begin
cutspec.atop(opZ2.pathcutl);
toop:-modconnop (op2.pathcut2,none,none) ;
end
else
if pathcutl =/= none and op2.pathcutl == none then
begin
pathcut2.atop(op2.cutspec);
toop:—-modconnop (pathcutl,none, none) ;
end
else
begin
cutspec.atopm(op2.cutspec);
toop:—-modconnop (none,none,none) ;
end;

ref (connop) procedure from(op2);

ref (connop) op2;

if pathcutl =/= none and op2.pathcutl =/= none then
begin
pathcutl.atop(op2.pathcut2);
from:-modconnop (none,op2.pathcutl,pathcut2);
end

else

if pathcutl == none and op2.pathcutl =/= none then
begin
cutspec.atop(op2.pathcut2);
from:-modconnop (op2.pathcutl,none,none) ;
end

else

if pathcutl =/= none and op2.pathcutl == none then
begin
pathcutl.atop(op2.cutspeac);
from:-modconnop (pathcut2,none,none) ;
end

else
begin
cutspec.aton(op2.cutspec);
from:-modconnop (none,none,none) ;
end;

ref (connop) orocedure par (op2);

ref (connop) on2;

if pathcutl =/= none and op2.vathcutl =/= none then
begin
pathcutl.atop(op2.pathcutl);
pathcut2.atop(op2.pathcut2);
par :-modconnop (none ,pathcutl,pathcut?);
end

else
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Error ("The par operators only operates on paths");

ref (connop) procedure loop(op2):;

ref (connop) op2;

if pathcutl =/= none and op2.pathcutl =/= none then
begin
pathcutl.atop(op2.vathcut2);
pathcut2.atop(op2.pathcutl);
loop:-modconnop{none,pathcutl,pathcut?);
end

else

Error ("The loop operator only operates on paths");

end = CONNOP -
COMMEN T = o o o o o o ;

ref (connop) procedure reversed (op);
ref (connop) op;
if op.pathcutl =/= none then
raversed:—-op.modconnop(none,op.pathcut2,op.pathcutl)
else
Error ("The reversed operator only operates on a path");

COMMEBNTE = e e e e e e e e e o o o o o H

ref (connop) procedure CONNECTIONOPERAND;
begin
integer i;
ref (submodel) subm;: ref (modelspec) modspec;
ref (connop) op; ref(path) p;

Oop:—new connop;
subm:~Currentsubmodel;
modspec:-Currentsubmodel.scanmodelspec;

if modspec =/= none then

begin
subm: ~modspec.specmod (Currentsubmodel) ;
if WNextitem = ":" then

begin

Scan;

if not search(i,subm.ncuts,Cuts(subm.icuts+i).identifier
= Nextitem) then Error ("Not declared cut");
Scan;
op.cutspec:~Cuts(subm.icuts+i) ;
end
else
if Nextitem = ".." then
begin
Scan;
if not search(i,subm.npaths,Paths(subm.ipaths+i).
identifier = Nextitem ) then Error ("Not declared path");
Scang
p:—Paths(subm.ipaths+i) ;
op.pathcutl:-p.vathcutl (submnm) ;
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op.pathcut2:-p.pathcut?2 (submnm) ;
end
else
1f Connectionident =/ notext then
begin
if search(i,subm.ncuts,Cuts(subm.icuts+i).identifier =
Connectionident) then
op.cutspec:-Cuts (subm.icuts+i) ;
if search(i,subm.npaths,Paths(subm.ipaths+i).identifier =
Connectionident) then
begin
p:-Paths(subm.ipaths+i) ;
op.pathcutl:-p.pathcutl (subm) ;
op.pathcut2:-p.pathcut2 (subm) ;

end:;
if op.cutspec == none and op.pathcutl == none then
Error ("Not found cut or path");
end
else
begin

if subm.maincut=/ 9 then
op.cutspec:=-Cuts (subm.icuts+subm.maincut) ;
if subm.mainpath =/ ¢ then
begin
p:-Paths (subm.ipaths+subm.mainpath) ;
ov.pathcutl:=Cuts(subm.icuts + p.cutnrl);
op.pathcut2:-Cuts(subm.icuts + p.cutnrl);
end;
1f op.cutspec == none and op.pathcutl == none then
Error ("No main cut or main path declared");
end;
and
else
if Nexttype = Idtype then
begin
if not search(i,subm.ncuts,Cuts (subm.icuts+i).
identifier = Nextitem) then
Error ("Not declared cut or node"):
S5can:
op.cutspec:-Cuts(subm.icuts+i) ;
end
else
Error ("Missing connection operand”);
connectionoperand:=-op;
end - CONNECTIONOPERAND =

COMMEN T =m0 o e H

ref(connop) procedure CONNECTIONPRIMARY;
begin

procedure includecut(h,c,prevsubcut,notcomplete);
name prevsubcut, notcomplete;
ref(hierarchicalcut) h; ref(cut) c:
ref (subcutref) prevsubcut; boolean notcomplete;
begin
ref (subcutref) nextsubcut;
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nextsubcut:~-new subcutref (c);
if ¢ == none then notcomplete:=true;
h.nsubcuts:=h.nsubcuts+l;
if h.firstcut == none then
h.firstcut:-nextsubcut
alse
prevsubcut.nextcut:-nextsubcut;
prevsubcut:-nextsubcut;
end;

if Nextitem =/ "(" then
connectionprimary:=-connectionoperand
else

begin

ref (connop) op:

Scan;

op:—connectionexpression;

if Nextitem = ")" then
begin
5can;
connectionprimary:—op;
end

else
begin
ref (hierarchicalcut) h, hl, h2;
ref (subcutref) prevsubcut, prevsubcutl, prevsubcut2;
boolean first, nocut, nopath;
h:-new hierarchicalcut;
hl:-new hierarchicalcut;
h2:-new hierarchicalcut;
Numcuts:=Numcuts=-3;

first:=true;

while Hextitem =/ ")" do
begin
if not first then op:-connectionexpression;
includecut (h,op.cutspec,prevsubcut,nocut) ;
includecut(hl,op.pathcutl,prevsubcutl,nopath) ;
includecut (h2,0op.pathcut2,prevsubcut2,nopath);

first:=false;
if Nextitem = "," then Scan;
end:
if nocut then h:-none;
if nopath then begin hl:-none; h2:-none; end;
connectionprimary:=-op.modconnon(h,hl,h2);
Scang
end;
end:;
end = CONNECTIONPRIMARY -

COMMETIE = = = o o o i o o o o o o e e e ;

ref (connop) procedure CONNECTIONSECOWNDARY;
if Nextitem = "reversed" or Nextitem = "\" then
begin
Scang
connectionsecondary:~reversed(connectionprimary) ;




212

end
glse
connectionsecondary:-connectionprimary;

COMMEN L = o o o o o o e o ot o o

ref (connop) procedure CONNECTIONEXPRESSION;
begin
ref (connop) operand;
boolean continue;

operand:-connectionsacondary;
continue:=true;

while continue do

if Nextitem = "at" or Nextitem = "=" then
begin
Scan;
operand:-operand.atoper (connectionsecondary) ;
end

else

if Nextitem = "to" or Nextitem = "-=" then
begin
Scang
operand:-operand.toop(connectionsecondary) ;
end

else

i1f Nextitem = "from" then
begin
Scang;
operand:-operand.from(connectionsecondary) ;
end

else

if Nextitem = "par" or Wextitem = "//" then
begin
Scan;
operand:-operand.par (connectionsecondary) ;
end

else

if Nextitem = "loop" then
begin
Scan;
operand:-operand.loop(connectionsecondary) ;
end

else
continue:=false;

connectionexpression:-operand;
end - CONNECTIONEXPRESSION - ;

COMIMENT = = o o e o o o o 2 o o o o o

procedure CONNECTIONSTATEMENT;
begin
Scan;
if Nextitem = " (" then
begin
scan;
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if Nexttype =/ Idtype then
Error ("Missing cut or path identifier");
Connectionident:-copy(Nextitem) ;
scan;
if Nextitem =/ ")" then Error("Missing )");
Scan;
end
else
Connectionident:-notext;

while HNextitem =/ ":;" do

begin
connectionexpression;
if Nextitem = "," then Scan;
end;

Scan;

end - CONNECTIONSTATEMENT = ;
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comment procedure SCAN, SEARCH, ERROR and COMPILE.

procedure SCAN;

comment Gets next item: identifier, number or delimiter.
Skips blank lines and comments. Handles the continuation
symbol =-> and the symbols ** ., :: // . The next item is
put in Nextitem, its type in Nexttype and the value of
a number in Nextnumb.

begin
integer ipos; character ch; boolean skip;
inspect sysin do
begin
skips=true;
while skip do
if not more then

begin
if Nextitem=";" or Nextitem==notext or WNextitem=",6"
then inimage else skip:=false;
end
else
begin

ipos:=pos;
ch:=inchar:
1

if ch = ° then
else
if ch = ':' then
begin
if Nextitem = ":" or HNextitem == notext then inimage
else begin skip:=false; setpos(ipos); end;
end
else
if ch = '{' then
begin
che=" "':
while ch =/ '}' do
begin

while not more do inimage;
ch:=inchar;
end;
end
else
if ch = "=' and more then
begin
ch:=inchar:
while more do if inchar =
if ch = '>' then inimage
else
begin skip:=false; setpos(ipos); end;
and

' ' then else chs:= :

else
begin skip:=false; setpos(ipos): end;
end:
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if not more then ]
begin
Nexttype:=Deltype;
Nextitem:=copy(":");
end

else
begin
ipos:=pos;
ch:=inchar:

if Digit(ch) then
begin
Nexttyne:=Numbtype;
setpos (ipos) ;
Hextnumbs=inreal;
end

else

if Letter (ch) then
begin
Nexttype:=Idtype;
while letter (ch) or digit(ch) do

ch:=1f more then inchar else ' ';
setpos (pos—1);
end
else
begin

Nexttype:=Deltype;
if (ch="*' or ch='.
then
begin
if ch=/ inchar then setpos(pos-1);
end:
end
Nextitem:~image.sub (ipos,pos-ipos) ;
end:
end;
end - SCAN -

' or ch=':" or ch='/") and more

COMMEN T = oo o o o o o o o o 0 o o o ;

boolean procedure SEARCH(1i,max,cond);
comment Used to search tables for certain attributes.
Note that i and cond are called by name. ;
name i, cond; integer 1i,max; boolean cond;
begin
i:=1:
while i<=max and not cond do i:=i+l;
search:=i<=max;
end - SBEARCH -

COMMEBN T = o e o e e o e o o o o o e o o o o H

procedure ERROR(message); value message; text message;
comment Outputs error messages together with the current
input line. Nextitem is underlined. ;
begin
integer 1i;
outtext (message); outimage;
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outtext (sysin.image); outimage;

for i:=1 step 1 until sysin.pos-1l-Nextitem.length do
outchar (' "):

for i:=1 step 1 until Nextitem.length do outchar ('=");

outimage:;

while Nextitem =/ "end" do Scan; Scan;

go to command;

end = ERROR =~ g

COMMENE == e e e e e e e e e e e e e e e e e e e e e e ;

procedure COMPILE;
comment <model specification> ::= [<model type>]* <model> ;
begin
boolean type; text modelid;
ref (submodel) submod:;

for i:=1 step 1 until Nummodeltypes do Modeltypes (i) :~none;
for i:=1 step 1 until Numvariables do Variables(i):-none;
for i:=1 step 1 until Numcuts do Cuts (i) :-none;

for i:=1 step 1 until Numpaths do Paths(i):-none;

for i:=1 step 1 until Numequations do Equations(i):-none;

Nummodeltypes:=0;
Numvariables:=0;
Numcuts:=0;
Numpaths:=0;
Numequations:=0;

type:=true;
while type do

if Nextitem = "model" then
begin
Scan;
if Nextitem = "type" then Scan else type:=false;

if Nexttype =/ Idtype then Error ("Missing identifier");
modelid:-copy(Nextitem) ;
Scang
if Nextitem =/ ";" then Error("Missing ;");
sScan;
submod : =new submodel (modelid) ;
submod .modelbody;
Scan:
if Nextitem =/ ";" then Error ("Missing ;"):
if tyoe then
begin
Nummodel typess=Nummodeltypes+1l;
Modeltypes (Nummodeltypes) :=submod;
scan;
end;
end
else
Error ("Missing model");

Model:-submod.newsubmodel (none,modelid, 1) ;

for i:=1 step 1 until Numcuts do Cuts(i):-none;
for i:=1 step 1 until Numpaths do Paths (i) :-none;
Firstconnectnode:-none;

Prevconnectnode:~none;

end - COMPILE - ;
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comment procedure PARTITION

procedure PARTITION;

comment Sorts and groups the equations into minimal systems of
equations that can be solved after each other. The vector
Equsystems contains references to strongcomp-objects.
Each such object contains references to all eguations in
a system of eguations. ;

begin

class node;
begin
integer lowlink, number;
ref(list) adj, visited;
end;

class list(n); integer n;
begin
integer array vert(9:n):
integer cheapcount;
integer eqgunr;
end;

Boolean procedure Assign(v); ref(node) v;
comment Associates one of the undetermined variables to
an eguation.
Reference: T. Wiberg: Permutation of an Unsymmetric Matrix
to Block triangular form, Dissertation, Department of
Information Processing, University of Umea, Umea, Sweden.;:

begin
ref (node) w;
integer k,max;

while v.adj.cheapcount < v.adj.n do
begin
v.adj.cheapcount:=v.adj.cheapcount+l;
ws:=nodes(v.adj.vert(v.adj.cheapcount));
if w.adj == none then
begin
Assign:=true;
w.adj:=v.ad]j;
go to return;
end;
end;
v.visited:-zero.adj:
max:=v.adj.n;
for k:=1 step 1 until max do
begin
ws:=nodes(v.adj.vert(k));
if w.visited =/= zero.ad]j then
begin
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if Assign(w) then
begin
w.adj:=v.adj;
Assign:=true;
go to return;
end;
end;
end;
Assign:=false;
return:
end;

procedure Strongconnect(v); ref(node) v;

comment Finds minimal systems of equations that have to be
solved simultaneously.
Reference: R.E., Tarjan: Depth first search and linear graph
algorithms, SIAM J. Comp, 1, 1972, pp. 146 - 160. ;

begin
ref (node) w:
integer k,max,ncomp;

v.lowlink:=v.number :=nextnodes=nextnode + 1;

stackpoint:=stackpoint+l;
stack(stackpoint) :-v;

max:=v.adj.n;
for k:=1 step 1 until max do
begin
wi-nodes(v.adj.vert(k));
if w.number=8 then
begin
Strongconnect(w) ;
v.lowlink:=min(v.lowlink,w.lowlink);
end
else
if w.number < v.number then
velowlink:=min(v.lowlink,w.number):;

end;

if v.lowlink=v.number then
begin
ncomp:=0;
while v=/=stack (stackpoint+l) do
begin
stack(stackpoint) .number:=n+1l;
stackpoint:=stackpoint-1;
ncomp:=ncomp+l;
end;
Numequsystems:=Numequsystems+1;
BEgusystems (Numegusystems) : = new strongcomp(ncomp) ;
for k:=1 step 1 until ncomp do
Equsystems (Numegusystems) .equ (k) :=Equations
(stack (stackpoint+k) .adj.egunr) ;
end:
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Boolean singular, heading;
integer n,nextnode,stackpoint;
integer i, j, k;

integer nunknown, nnontrivial;
ref (node) array stack(l:200);
ref (node) =zero:

ref(node) array nodes(1:589);
ref(list) adjlist;

integer equnr;

ref(variable) var;

if Eliminate then
begin
for i:=1 step 1 until Numvariables do
Variables (i) .alias:-none:
for i:=1 step 1 until Numeguations do Equations(i).elimin;
end;

nunknown:=@:;
for i:=1 step 1 until Nunmvariables do
if not Variables(i).determined then
begin
nunknown:=nunknown+1;
variables (i) .egunr :=nunknown;
end;

if Bliminate then
begin
nnontrivial :=0;
for i:=1 step 1 until Numeguations do
if not Equations(i).trivial then
nnontrivial e=nnontrivial+l;
end
else
nnontrivial :=Numequations;

if nnontrivial =/ nunknown then
begin
outtext ("The number of equations is ");
outint (Numeguations, 4); outimage;
outtext ("The number of unknown variables is ")
outint (nunknown,4); outimage;
end;

~e

ne:=max (nnontrivial ,nunknown) ;
Zero:—-new node:
for i:=1 step 1 until n do nodes (i) :-new node;

comment For all equations, generate a list of undetermined
variables and assign one of them. ;

nnontrivial:=g

for i:=1 step

begin

7
1 until Numeguations do
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nnontrivial :=nnontrivial+l;
if not (Eliminate and Equations(i).trivial) then
begin
Equations (i) .traverse;
nunknown:=9;
for j:=1 step 1 until Numegquvar do
if not Eguvar (j) .known then nunknown:=nunknown+l;
adjlists:-new list(nunknown) ;
inspect adjlist do
begin
n:=0;
for j:=1 step 1 until Numequvar do
if not Equvar (j).known then
begin
if not search(k,n,vert(k)=Egquvar (j) .equnr) then
begin
n:=n+ls
vert(n) :=Eguvar (j) .equnr ;
end;
end;
end;
adjlist.equnr:=nnontrivial;
Equations (i) .varnr:=0;

zero.adj:=-adjlist;
if not Assign(zero) then singular:=true;
and;

and;

if singular then
begin outtext("Singular problem"); outimage; end;

comment Store the result of the assignment as a coupling
between equation nodes and variable nodes. ;

heading:=true;
for i:=1 step 1 until Numvariables do
if not Variables(i).determined then
begin
var:=Variablesg (i)
adjlist:-nodes(var.equnt).adj;
if adjlist =/= none then
begin
equnr :=adjlist.eqgunr;
var .equnr :=equnrg ;
Equations (equnr) .varnr:=i;
end
else
begin
nodes (var .equnr) .number :=n+1;
if heading then
begin
outimage;
outtext ("Unassigned variables:"); outimage;
heading:=false;
end;
var.infix; outimage;
end;
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and:

heading:=true;
Lastsubmodel :=none:
for i:=1 step 1 until Numequations do
if Equations(i).varnr=9
and not (Eliminate and EBguations(i).trivial) then
begin
if heading then
begin
outimage;
outtext ("Redundant equations:"); outimage;
heading:=false;
end:;
Bguations (i) .infix (notext) ;
end:

comment Find the partitioning of the equations into smaller
systems of eguations. ;

Numequsystems:=0;
nextnode:=0:
stackpoint:=0;
for i:=1 step 1 until n do
if nodes (i) .number=0 then
Strongconnect (nodes(i)) :
end;

comment ==== = e e ;

class STRONGCOMP (n); integer n;
begin
ref (equationnode) array equ(l:n);
end;
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comment INTERACTION

boolean stop, known, no;

integer j;

ref (equationnode) equ, solvedequ;
ref(expr) solution;

ref (modelspec) modspec:

ref (submodel) subm:

Idtype:=1; Deltype:=2; Numbtype:=3;

zero:—-new numbernode ("¢",d) :

one:-new numbernode ("1",1):

two:~new numbernode ("2",2);
solvedequ:-new equationnode (none,none) ;
Numegquations:=0;

stop:=false;

command :

while not stop do
begin
inimage; Nextitem:-notext;
Scan;

Currentsubmodel :=Model:

Lastsubmodel :=none:

if Nextitem = "model" then
compile

else
if Nextitem = "print" then
begin
Scang
if Nextitem = "variables" then
begin
outimage;
for i:=1 step 1 until Numvariables do
begin Variables(i).infix; outimage; end;
outimage;
end
else
if Nextitem = "equations" then
begin
outimage;
for i:=1 step 1 until Numeguations do

Equationsg (i) .infix ("™ ")
outimage;
and
else
if Nextitem = "known" or Nextitem = "unknown" then
begin
known:=Nextitem = "known":

outimage;
for i:=1 step 1 until Numvariables do
if (known and Variables (i) .known) or




(not known and not Variables(i).known) then
begin Variableg(i).infix; outimage; end:
outimage;
end
else
if Nextitem = "sorted" then
begin
outimage;
for i:=1 step 1 until Numegusystems do
if Equsystems(i).n = 1 then
Equsystems (i) .equ(l) .infix (" ")
else
begin
outimage;
for j:=1 step 1 until Equsystems(i).n do
Equsystems (i) .equ(j) .infix ("-");
outimage;
end;
outimage;
end
else
if Nextitem="solved" then
begin
outimage;
for i:=1 step 1 until Numequsystems do
if Equsystems(i).n = 1 then
begin :
equ:-Equsystems (i) .equ(l);
if not Eliminate or not equ.trivial then
begin
nonlinear:=false;
solution:—-equ.solve;
if not nonlinear then
begin
solvedequ.express:—-solution;
solvedequ.submod:-equ.submod;
equ:—-solvedequ;
end;
and ;
equ.infix (" ")
end
else
begin
outimage;
for j:=1 step 1 until Equsystems(i).n do
Equsystems (i) .equ(j) .infix ("-");
outimage;
end;
outimage;
end
else
begin
outtext("Bad argument"); outimage;
end;
and

else

if Nextitem = "known" or Nextitem = "unknown" then
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begin

known:=Nextitem = "known";

5can;

while Nextitem =/ ";" do
begin

modspec:-Model .scanmodelspec;
if modspec =/= none then
begin
if Nextitem =/ "." then
begin outtext("Missing ."); outimage;
go to command; end;
Scan;
subm:-modspec.specmod (Model) ;
end
else
subm:~Model
if not search(i,subm.nvariables,
Variables (subm.ivariables+i) .identifier=Nextitem) then
begin outtext("Not declared variable"); outimage;
go to command; end;
Var iables (subm. ivariables+i) .known:=known;
Scan;
end;
end
else
if Nextitem = "do" then
begin
Scan:
no:=Nextitem = "not";
if no then Scan:
if Nextitem = "eliminate" then
Eliminate:=not no
else
begin outtext("Bad argument"); outimage; end;
end
else
if Nextitem
Partition
else

il

"oDartition" then

if Hextitem
stop:=true

else
begin
outtext("Invalid command”); outimage;
end:

end;

"stop" then

end
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