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Abstract

In vision-based feedback control systems, the time to ob-
tain sensor information is usually non-negligible, and these
systems thereby possess fundamentally different timing be-
havior compared to standard real-time control applications.
For many image-based tracking algorithms, however, it is
possible to trade-off the computational time versus the ac-
curacy of the produced position/orientation estimates.

This paper presents a method for optimizing the use of
computational resources in a multi-camera based position-
ing system. A simplified equation for the covariance of the
position estimation error is calculated, which depends on
the set of cameras used and the number of edge detection
points in each image. An efficient algorithm for selection
of a suitable subset of the available cameras is presented,
which attempts to minimize the estimation covariance given
a desired, pre-specified maximum input-output latency of
the feedback control loop.

Simulations have been performed that capture the real-
time properties of the vision-based tracking algorithm and
the effects of the timing on the performance of the con-
trol system. The suggested strategy has been compared with
heuristic algorithms, and it obtains large improvements in
estimation accuracy and performance for objects both in
free motion and under closed-loop position control.

1. Introduction

Over the last decade there has been a growing interest in
vision-based control, where objects are being positioned us-
ing visual feedback from one or several cameras. Much in-

� The work has been sponsored by the Swedish Foundation for Strategic
Research via the program FLEXCON, the Swedish Research Council,
and by LUCAS — the VINNOVA-funded Center for Applied Soft-
ware Research.

formation about an unknown scene can be obtained from
visual data, and with the increasing computational power
available today, there is a potential for robust visual feed-
back (visual servoing) systems operating at camera frame
rate. In mobile and industrial robotics in particular, many
guidance and positioning techniques using camera feedback
have been developed. A good review of different visual ser-
voing techniques is given in [5]. Using new techniques for
visual feedback from multiple cameras, it is possible to ob-
tain high positioning accuracy, even in uncalibrated envi-
ronments [9]. Positioning using standard digital cameras is
also a very cost-effective solution, compared to other tech-
niques such as, e.g., laser scanning.

In the past, the inaccurate and noisy nature of visual mea-
surements, and the complex and time-consuming computa-
tions involved, have restricted the achievable bandwidth of
the controlled systems. Even today these are very impor-
tant issues, especially in systems using feedback from mul-
tiple cameras. However, relatively little work has been per-
formed to study the timing performance of visual servoing
systems and its effect on the dynamic performance of con-
trol loops. One exception is [14], that investigates the ef-
fects of timing on tracking accuracy in a simple setup.

For real-time control applications in general, the im-
portance of minimizing the input-output latency, i.e., the
delay from the reading of the sensors to the generation
of the control output, is well-known. Unless compensated
for, the input-output latency will compromise the perfor-
mance of the control system, and may even cause instabil-
ity. In vision-based control systems the latency is usually
dominated by the image processing. This paper presents a
method for resource allocation in multi-camera visual ser-
voing. The method aims at achieving a close to constant
input-output latency and to maximize the obtained accuracy
of the estimated vision-based feedback information during
this bounded pre-specified time interval.

Many methods for rigid body tracking work by minimiz-
ing some measure of the image space error as a function
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of the unknown position and orientation parameters, using
standard non-linear optimization methods, or Kalman fil-
tering techniques [7, 10]. The position and orientation can
be parameterized in different ways, such as Euler- or roll-
pitch-yaw angles. There are also various ways to measure
the image space error, the most common measurements be-
ing the positions of point features [7], lines, or point-to-edge
distances [3, 9]. The point-to-edge method has a major ad-
vantage in that it does not require the exact matching of fea-
tures, only the distances in the normal direction from a num-
ber of edge detection points to the real edge, see Figure 1.
This only requires a one-dimensional search in the image,
reducing the computational complexity considerably [3].

It is standard practice in visual sensing to only search for
the tracked object in a small region around the estimated
position. Thus, when the object moves in an unpredictable
way, e.g., by a disturbance acting on the system, the search
has to be extended. This will lead to a significant increase
in the execution time of the tracking algorithm. The poten-
tial schedulability problem of visual tracking algorithms re-
sulting from these sudden execution time variations were
treated in [2]. However, to circumvent this problem and to
obtain a more or less predictable computational delay of the
tracking algorithm, several cameras are being used. By us-
ing many cameras with different settings and distance to the
tracked target, it is possible to reduce the likelihood of the
object suddenly moving out of the tracking region.

The tracking method based on point-to-edge errors used
in this paper is of anytime or milestone [8] nature, i.e., its
computational requirement can be influenced by the number
of edge detection points used. By having a fixed number of
points it is possible to obtain a predictable input-output la-
tency, that can be compensated for by the control algorithm.

With a constant number of edge detection points, the on-line
resource allocation problem is reduced to finding an optimal
set of cameras and point distribution in every sample, i.e.,
to maximize the estimation quality by a proper choice of
active cameras and distribution of the available edge detec-
tion points between these cameras. The camera selection al-
gorithm proposed in this paper is based on successive mini-
mization of the estimation covariance, by adding more cam-
eras to the active camera set, until no further improvement
of the estimation accuracy can be obtained.

The suggested algorithm is evaluated in a simulation
study, using a setup of six cameras. The scheme is evalu-
ated both in terms of estimation variance and control perfor-
mance using a delay-compensating LQG-controller [1]. It is
shown that the resource-optimizing algorithm yields higher
performance than the heuristic camera choices of distribut-
ing all edge detection points in the best-placed camera, or
distributing the points evenly between all cameras.

The rest of the paper is outlined as follows. Section 2
describes the tracking algorithm and its associated tim-
ing properties. The suggested resource allocation scheme is
given in Section 3. The scheme is evaluated and compared
with heuristic algorithms in a simulation study given in Sec-
tion 4. Section 5 contains a discussion of the results, and the
conclusions are given in Section 6.

2. The Tracking Algorithm

We assume that M cameras are placed in fixed locations,
viewing a target object whose position and orientation with
respect to some fixed (world) coordinate system should be
estimated. The position and orientation is parameterized as
an n-vector x where typically n � 6 or n � 7, depending on
the selected parameterization of the orientation. The image
data is compressed into a vector y, usually the image space
coordinates of corners, edges and other features. If the ge-
ometry of the target is known, x and y are related by the
projection equations of the cameras

y � h�x� (1)

which is usually a very complex non-linear function. The
most commonly used camera model is the homogeneous
form pinhole camera projection equation [12], which in our
case becomes

yi � hi�x� �
1
Z

KTcwTwo�x�Xi (2)

where K is a matrix of internal camera parameters, Xi is
the coordinates of the point in an object-centered coordi-
nate system, Z is the depth of the point in the camera, and
Two�x� and Tcw are the homogeneous coordinate transfor-
mation matrices between the target object and the world co-
ordinate system, and between the world coordinate system
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and the camera, respectively. The camera position Tcw is as-
sumed to be known, while the parameterization x of Two is
the unknown position/orientation to be estimated.

By stacking the projection equations for many object
points Xi and their image projections yi in all M cameras,
we obtain Equation (1). In order to avoid the correspon-
dence problem of matching a given image feature to a fea-
ture on the object model, the estimated position x̂ is usu-
ally updated iteratively, using the estimated value obtained
in the last sample as a starting point. Equation (2) can be dif-
ferentiated with respect to x and linearized around the previ-
ous estimate x̂. The linearized equations for N feature points
can then be stacked to give

∆y � y�h�x̂� � J�x̂��x� x̂� (3)

where J� dh�dx� IR2N�n is the Jacobian of the projection
equation. Using this equation, the estimated position x̂k at
sample k can be updated iteratively as

x̂k � x̂k�1�J†�x̂k�1��y�h�x̂k�1�� (4)

where J† is the pseudo inverse of J, given by

J† � �JT J��1JT � (5)

In the case of point-to-edge measurements, only the dis-
tance between the predicted and real edge in the normal di-
rection is measurable. This distance can be approximated
well by the projection of the errors ∆y in Equation (3) onto
the normal directions, giving us the modified equation [3, 9]

∆y�N� � NT �y�h�x̂�� � NT J�x̂��x� x̂� �
� J�N��x̂��x� x̂� (6)

where N is a sparse N�2N matrix having “diagonal” blocks
representing the normal directions at the N different edge
detection points along the edge, see Figure 1. J�N� � IRN�n

is the new Jacobian for point-to-edge measurements. When
using edge features, we have significant freedom in how
to choose which features to measure, since any number of
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edge searches can be performed at any place along any ob-
ject edge, in each camera. Typically, when using point-to-
edge measurements, we will have N � n.

The algorithm for rigid body tracking is summarized in
Figure 2. The image pre-processing step involves all im-
age conversions and filtering necessary for each camera.
The position at the next sample is predicted, and the pre-
diction is used to determine where interesting image fea-
tures will be visible next sample. Visible features are de-
termined using a fast hidden-line removal algorithm based
on a Binary Search Partitioning (BSP) tree representation
of the object, see [13]. The BSP tree recursively divides the
surfaces of the object into “in front” and “behind” giving a
perfect front-to-back ordering. A large number of edge de-
tection points are divided between the cameras and placed
along the predicted edges of the object. The number of edge
detection points is chosen based on the timing model below.
Finally, the Jacobians for each camera are computed.

2.1. Timing

The assumed hardware structure of the vision-based con-
trol system is given in Figure 3. The M cameras are further
assumed to have a synchronized image capture. Each cam-
era node is connected to the main control computer via a
standard bus, e.g., a IEEE-1394 (FireWire) or CameraLink
interface, and is able to independently perform image cap-
ture, processing and data transfer. Typical data transmission
rates range from between 400 MBit/s up to 3�2 GBit/s, while
the data for each image is 320� 240� 2 � 150 kB. This
gives a total transmission time of between 0�4 and 3 ms.
The main control computer will perform the necessary im-
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age processing for each image, calculate the estimates and
control signal, and update the data for next sample.

The total computation time required in each sample de-
pends on the number of cameras, M, and the total num-
ber of edge detection points, N. The time required for pre-
processing all images is proportional to the number of cam-
eras used, whereas the total time used for finding edges,
placing edge detection points, updating the estimation and
building the Jacobians, is proportional to the total number
of edge detection points. The total time Ttot from sampling
the cameras until the new estimation is obtained can there-
fore be modeled by the equation

Ttot � T0 �TcM�Tf N (7)

where T0 is a constant time required for image capture and
image data transfer for all cameras. The values of the time
coefficients depend on many factors, such as camera sen-
sor and interface type, camera shutter speed, platform, and
implementation factors. The timing model of Equation (7)
has been verified experimentally by measurements of actual
computation and transmission times. Approximate values in
our implementation have been determined to T0 � 6�0 ms,
Tc � 1�0 ms and Tf � 0�01 ms.

There are two main implications of the timing model in
Equation (7). First, as the computation time is determinis-
tic and roughly constant, for a given M and N, it can be
compensated for by the control algorithm. Second, the re-
lation between Tc and Tf shows the potential of gaining ac-
curacy by switching cameras on and off, thereby allowing
a larger total number of edge detection points. Assuming
a desired input-output latency, Tdes, and M�k� active cam-
eras at sample k, the number of edge detection points to dis-
tribute between the M�k� cameras is given by

N�k� �
Tdes�To�TcM�k�

Tf
(8)

The delay Tdes is typically chosen in relation to the dynam-
ics and closed-loop bandwidth of the control system. An ex-
act analysis of the delay-sensitivity of a control system can,
e.g., be performed using the JitterBug toolbox [6].

With a camera frame rate of 30 Hz, corresponding to a
sample period of 33 ms, simple rules-of-thumb [1] give that
a realistic closed-loop bandwidth should lie between 6 and
18 rad/s. A delay of 15 ms would then correspond to a phase
loss of 5-15 degrees, which in most cases can be compen-
sated for without too much performance loss. Using the es-
timated camera timing parameters in our implementation,
Tdes � 15 ms would correspond to a total of 300 edge detec-
tion points when using M�k� � 6 cameras, and 800 points
when using only one camera.

Thus, depending on the complexity of the scene and the
dynamics of the control system, the relation between com-
putational delay and number of edge detection points can be

chosen arbitrarily off-line. E.g., for certain robotics appli-
cations with highly non-linear dynamics it is non-trivial to
compensate for input-output latency. In this case it may be
beneficial to have a small number of detection points and a
short delay. On the other hand, if the tracking scene is com-
plex and a less delay-sensitive control system is used, it may
be advantageous to instead use a larger total number of edge
detection points.

2.2. Estimation Accuracy

It is clear that in general the accuracy of the estimation
will improve with the number of image measurements N. If
we assume that the errors in the image measurements ∆y�N�

can be modeled by Gaussian, independent noise with vari-
ance σ2, the covariance of the estimation error, x̃ � �x� x̂�,
can be approximated as

E�x̃x̃T � � E�J†
�N�∆y�N��J

†
�N�∆y�N��

T � �

� σ2�JT
�N�J�N��

�1 � σ2�
M

∑
i�1

JT
i Ji�

�1 (9)

where the Jacobian has been partitioned into M individual
Jacobians for each camera as JT

�N� � �JT
1 JT

2 � � �J
T
M�T .

The Jacobian for each camera is a function of the cur-
rent position x, as well as on the number of edge detection
points, Ni, for that camera, and how they are distributed. If
the points are distributed evenly along the visible edges of
the object, we can use the approximation

JT
i Ji � NiΦi�x� (10)

where Φi is a positive semidefinite n� n matrix indepen-
dent of Ni. Using Equation (10) in Equation (9) we get

E�x̃x̃T � � σ2

�
M

∑
i�1

NiΦi�x�

�
�1

(11)

which shows that the covariance of the estimation error is a
direct function of the number, Ni, of edge detection points
placed in each camera.

As can be seen from Equation (9), the estimation error
is also a function of the object position x. For one cam-
era, Φi�x� is large and the resulting estimation error is small
when the entire object is visible and close to the camera.
Conversely, poorly conditioned situations occur when only
part of the object is visible, or when the object is very far
from the camera, where in extreme cases the problem could
become ill-conditioned. A common example is when all vis-
ible image features lie on a straight line, causing rotations
of the object around this line to become unobservable from
the image feature data.
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3. Resource Allocation

When cameras are used for positioning, for instance in
robotics, the cameras need to be distributed so that the en-
tire workspace is covered. Because of the limited resolution
and field of view of each camera, it is usually beneficial to
place the cameras so that each camera covers only a part of
the available workspace. Some cameras may be placed so
that they cover a large part of the workspace, giving rough
information on the location of the object, while other cam-
eras cover only part of the workspace for a more accurate
localization. If the object is moving, different cameras will
give more or less useful or accurate information at differ-
ent times, depending on the current object position.

In general, the most accurate estimation of the position
is obtained when using a subset of the available cameras.
When timing is important, for instance when the estimated
position is to be used for feedback control, it would be an
advantage to use only the ’best’ subset of cameras. The rea-
son is the extra processing time required for each camera,
quantified by the parameter Tc in Equation (7). For a given
total computational time, it is thus possible to use more edge
detection points if using only the well-placed cameras.

Using the covariance of the estimation error as a measure
of the estimation accuracy, we see from Equation (11) that
for a given object position x, we should choose the num-
ber of edge detection points, Ni, in each camera from a sub-
set �Ck� of all available cameras to minimize

E�x̃x̃T � � σ2

�
∑

i��Ck�

NiΦi�x�

��1

(12)

where ∑i��Ck�
Ni � N�k�. In general, the covariance de-

creases with increasing Ni. From Equation (8) we see that

the smaller we choose the set Ck, corresponding to a smaller
M�k�, the more edge detection points can be distributed be-
tween the active cameras.

Finding the optimal camera set and edge detection point
distributionfrom Equation (12) for a general x is non-trivial.
Simple heuristic choices for the camera set, such as the best
individual camera or all cameras, are possible, but can be ar-
bitrarily far from the optimum. Additionally, using a single
camera or a low number of cameras could cause the problem
to become ill-conditioned, for instance in situations where
only a small part of the object is visible in each camera.

3.1. Algorithm

Since timing is important, a fast algorithm for selecting
a suitable camera set and feature distribution has been de-
veloped. The algorithm is outlined in Figure 4. The algo-
rithm updates the active set of cameras and the distribution
of edge detection points among the active cameras in ev-
ery sample. This is done by successively adding new cam-
eras and recomputing the distribution between edge detec-
tion points in the current active set and the added camera. If
the covariance can be decreased, the active set and distribu-
tions are updated with the new camera. If there is nothing
that can be gained by adding another camera, the algorithm
stops and the current active set is used in the next sample.

The algorithm is very robust and easy to implement. It
takes negligible time to execute, since all information about
the relative accuracy of the cameras is contained in the small
n�n-matrices Φi. The algorithm will in general not achieve
the optimum covariance, but will find a small subset of cam-
eras which together give a significantly lower covariance
than for the heuristic choices.
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4. Simulations

The performance of the proposed resource allocation al-
gorithm will be demonstrated by simulations. The simula-
tions were performed using six cameras, where the images
were generated using the standard graphics API OpenGL
[11]. The object being tracked was a textured box of di-
mensions 18 cm�18 cm�18 cm which was moved around
in front of a textured background. Figure 5 shows exam-
ple images taken from a test sequence. We have assumed
the timing model and values given in Section 2.1, the sam-
pling period h � 33 ms, and a maximum desired control la-
tency Tdes � 15 ms.

4.1. Tracking Accuracy

The tracking accuracy for a stationary target was evalu-
ated by measuring the estimation error variance for differ-
ent image sequences, taken from different camera positions.
Three different algorithms for resource allocation between
the cameras were investigated:

1. Choosing the best camera, i.e. the camera for which Φi

is ’largest’, according to some chosen criterion.

2. Using all cameras, with equal distribution of edge de-
tection points.

3. Choosing the best set of cameras, using the algorithm
in Section 3.

The tracking accuracy was measured for image se-
quences taken with several different camera configura-
tions as given by Table 1. The estimated standard deviations
for the error in estimated orientation and translation are

shown in Table 2. The estimation using the single-camera
method did not converge for Sequence 2, since the prob-
lem becomes very poorly conditioned for any choice of a
single camera. In Sequence 1, the minimum translation er-
ror was obtained by using all cameras, but the price is a
significantly larger orientation error.

4.2. Control Performance

The visual feedback was applied in a feedback con-
trol setting, where the textured box was controlled one-
dimensionally along the y-coordinate axis. The estimated y-
position was used as feedback information to the controller.
The simulated dynamics was described by a second order
system, which after discretization [1] with the sampling in-
terval h � 33 ms was given by the state-space model

x�k�1� �

�
1 0�033
0 0�97

�
x�k��

�
0�55
32�8

�
u�k�

y�k� �
�
1 0

�
x�k�

(13)

The controller was a delay-compensating LQG-controller
[1], designed to maximize the continuous-time function

J � lim
T�∞

1
T

� T

0

��
x�t� u�t�

�
Q

�
x�t�
u�t�

��
dt (14)

with
Q � diag�100�0�1�0�001� (15)

As seen by the process model in Equation (13), only the
first state is measurable. Therefore an observer [1] was de-
signed to reconstruct the state vector. The state and output
noise variances used in the design of the observer where
chosen as R1 � 10 and R2 � 0�01, respectively.
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Seq. Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 Camera 6
z[mm] Vis.% z[mm] Vis.% z[mm] Vis.% z[mm] Vis.% z[mm] Vis.% z[mm] Vis.%

1 840 100 840 100 880 100 890 100 870 100 910 100
2 320 20 3800 100 3900 100 445 20 4700 100 4400 100
3 510 100 4500 100 5000 100 500 0 6500 100 7000 100
4 550 30 360 10 330 5 450 10 380 5 280 5
5 600 100 600 100 400 0 600 100 1000 0 1000 0
6 650 100 280 30 450 0 700 0 1000 0 1000 0
7 300 30 330 35 500 70 700 0 1000 0 1000 0
8 400 30 350 30 280 20 400 40 370 15 300 25

����� �� ����	� 
����	������� ������
�� � �� ��	��� ��� ��	� �� ����
� ������� �� ��
� 
���	��

# Orientation error [Æ] Translation error [mm]
Single All Sel. Single All Sel.

1 0.18 0.36 0.18 0.75 0.49 0.68
2 ∞ 0.49 0.17 ∞ 0.37 0.25
3 0.12 1.23 0.10 0.26 1.64 0.21
4 0.22 0.20 0.16 0.97 0.28 0.26
5 0.12 0.29 0.10 0.35 0.36 0.31
6 0.14 0.20 0.08 0.36 0.46 0.17
7 0.22 0.25 0.07 1.10 0.28 0.16
8 0.08 0.09 0.05 0.24 0.14 0.12

����� �� �	�
���� �		�	 ������	� ����������� �	��
�������� ��� �	���������� ���� ����� ��� ����
������ 
���	�� ��� 
���	�� ��� ��� ���� ����
�
���� �� 
���	��� 	����
�������

The real-time simulations of the control system were per-
formed in MATLAB/Simulink using the TrueTime simula-
tor [4]. This simulator allows for co-simulation of continu-
ous plant dynamics and discrete controllers implemented as
tasks in a computer. The simulation environment communi-
cated with the 3D-visualization environment over TCP.

The true position of the continuous-time plant model
was used to update the camera images. The controller was
implemented as a periodic task with the sampling interval
33 ms. In the beginning of the sample, only the images of
the cameras in the active set were read and processed. The
position estimate was then fed into the LQG-control algo-
rithm, after which the computed control signal was actu-
ated. After the control signal actuation, the remaining im-
ages were read and the resource allocation algorithm was
executed to obtain the camera set and distribution of edge
detection points for next sample.

The simulation camera setup corresponded to scenario 4
in Table 1, and the objective of the control was steady-state
regulation of the position around y � 0. Simulation results
are shown in Figure 6, showing the control signal and the
controlled position variable. It is seen that the suggested re-
source allocation algorithm results in better control perfor-
mance than both heuristic camera choices.

5. Discussion

The heuristic selection of the best single camera will
fail in many common configurations such as the one in Se-
quence 2, where no single camera gives enough informa-
tion. Using all cameras works well in most situations, but is
rarely necessary, and may not even be feasible if there is a
large number of available cameras. The best selection algo-
rithm will find a small set, typically consisting of 1–3 cam-
eras, that will give sufficient information to accurately and
robustly estimate the position and orientation. It also scales
well with the number of available cameras.

There is usually a spatial correlation between the mea-
surements, making the assumed model of the image noise
as independent and Gaussian unrealistic. However, the re-
source allocation algorithm does still give good results. The
timing model in Equation (7) and the expression for the
covariance given from Equation (10) are also approxima-
tions, since not all N edge searches will result in an edge
being found. Thus, the computation time of Equation (7) is
a function of the number of searches, rather than the num-
ber of obtained measurements. This could be compensated
for by including the ratios of successful edge detections in
the equations, assuming these to be independent of Ni.

Since not all image searches will be able to find a clear
single edge, due to, e.g., occlusions, specular reflections,
noise, and object texturing, the image data is needed in
order to correctly calculate the matrices Φi and the Jaco-
bians Ji. Therefore, the pre-processing and edge detection
steps need to be performed for every image in every sam-
ple. However, for the cameras not used in the estimation,
these steps are performed after the estimated position has
been obtained, and will thus not affect the control delay.

The strategy proposed in this paper is based on a control
design compensating for a constant input-output latency.
However, an alternative approach would be to exploit the
anytime nature of the tracking algorithm, and dynamically
change the computational requirement by the allocation of
edge detection points. This approach could be used for dy-
namic scheduling of several vision-based control tasks to
optimize control performance under resource constraints.
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6. Conclusions

This paper has presented a method for dynamic resource
allocation in multi-camera based feedback control. It is
shown how the covariance of the position estimation error
depends on the set of cameras used and the number of edge
detection points in each camera image. These parameters in
turn affect the timing of the tracking algorithm and thus the
input-output latency of the feedback control loop.

The objective of the resource allocation algorithm was to
minimize the variance of the position estimate by a proper
choice of active cameras and point distribution between
these cameras. The total number of edge detection points
was chosen to obtain a desired input-output latency.

Simulations were conducted that capture the real-time
behavior of the tracking algorithm and its effect on closed-
loop position control. It was shown that the resource allo-
cation scheme significantly outperformed heuristic choices
of using only the best-placed camera, and distributing all
edge detection points evenly between all cameras. The al-
gorithm was evaluated both in terms of tracking accuracy
and closed-loop control performance.
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