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ABSTRACT 

The Davies transformation is a method to transform the steering vector of a uniform circular 
array to another vector with Vandermonde form. However, this transformation can be highly 
sensitive to perturbations of the underlying ideal array model. In this paper, we describe a 
method for deriving a more robust transformation using optimisation techniques. The 
effectiveness of the method is illustrated through a numerical example. 

 

1.  INTRODUCTION 

By virtue of their geometry, uniform circular arrays (UCAs) can provide a natural 360° of coverage in 
the azimuthal plane (see Fig. 1). Accordingly, they are eminently suitable for applications such as 
radar, sonar and mobile wireless communications where one desires all-azimuth coverage [1]. This 
innate advantage of UCAs is offset, however, by the unfriendly mathematical structure of their 
steering vectors. In particular, many useful techniques that have been developed for uniform linear 
arrays (ULAs), such as Dolph-Chebyshev beampattern design [2-4], and spatial smoothing for 
direction-of-arrival estimation in a correlated signal environment [5-6] and adaptive and optimum 
beamforming in a correlated signal environment [7], cannot be applied directly to UCAs. The reason 
for this is because the aforesaid techniques exploit the Vandermonde structure of a ULA’s steering 
vector in order to work while the steering vector of a UCA is not Vandermonde [8,9]. 

In [10], Davies proposes a method to transform the sensor 
element outputs of a UCA to derive the so-called virtual array.  
The key feature of the virtual array is that its steering vector is 
Vandermonde, or approximately so. In [8], we use the Davies 
transformation to design Dolph-Chebyshev beampatterns for UCAs, 
while in [1] and [9], it is used to enable, respectively, direction- 
of-arrival estimation and optimum beamforning for UCAs in a 
correlated signal environment. 

The Davies transformation is not, however, without problems. 
Specifically, Davies [10] tacitly assumes that (i) all antenna 
elements have the same omnidirectional response, (ii) the electronics associated with each antenna 
element are identical, (iii) the antenna elements are located at their correct positions, and (iv) there is 
no mutual coupling between the antenna elements. In a real system, it is certain that none of the above 
assumptions will hold. Although in [1, 11], it is pointed out that these real-world effects can be 
ameliorated somewhat by calibration, there remains the problem of residual calibration errors. In [12], 
it is shown through simulation that when errors are introduced into the model of an ideal UCA, as 
represented by a perturbation of its steering vector, the performance of the UCA can degrade 
appreciably. The yardstick used in [12] to assess performance is the Dolph-Chebyshev beampattern 
obtained through the method of [8]. 

Our aim is to find an alternative transformation that has the desirable properties of the Davies 
transformation, i.e., the ability to transform the steering vector of a UCA to Vandermonde form, but  

Fig. 1.  A uniform circular array 



is more robust with respect to perturbations to the steering vector of an ideal UCA. In this paper,  
we derive such a robust transformation using optimisation techniques. 

The paper is organized as follows. In Section 2, we formulate the optimisation problem, and in 
Section 3, we describe the solution method. In Section 4, we demonstrate the effectiveness of our 
robust transformation through a simulation example. Finally, Section 5 concludes the paper. 

2.  PROBLEM FORMULATION 

2.1  The Davies Transfor mation 

Consider a UCA with N elements and radius r. The nth component of the N-dimensional array 
response (or steering) vector ( )�a , 1, ,� �n N , to a narrowband signal of wavelength �  arriving 
from angle � , [ , ]� � �� � , is given by 

 � � � �2 ( 1)2( ) ( )exp cos nr
n Nn G j ��

�
� � �

�� �� �
� �� �

a  (1) 

where ( )nG �  is the complex gain pattern of the nth array element. 

Suppose the array elements are all identical 
and isotropic, i.e., ( ) 1nG � �  for 1, ,� �n N . 
Suppose further that the antenna element 
outputs are processed as shown in Fig. 2  
where 1, , Nx x�  represent the baseband 
complex output signals of the “real”  array, 

1, , My y� , �M N , represent the baseband 
complex output signals of the virtual array, and 

1, , Mw w�  are a set of weighting coefficients 
whose function is to shape the spatial response 
of the antenna array. 

In [10] (see also [1]), it is shown that if the transformation matrix T is defined as follows 
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where the matrices M M�
�J �  and M N�

�F �  are given by 
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N
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�F , (4) 

and where 1, ,� �m M , 1, ,� �n N , ( )kJ �  denotes a kth order Bessel function of the first kind, 

and ( 1) 2H M� � �� , (5) 

then the M-dimensional steering vector of the virtual array will take on, approximately, the 
Vandermonde form 

 ( ) ( ) 1jH jHe e� �
� �

� �� �� �
� �

b Ta � � . (6) 

Note, in view of Eq. (5), M is odd. Define k such that 1m k H� � � . The mth elements of ( )�b , 

 ( 1 )( ) j m H jk
mb e e� �
�

� � � �

� �  (7) 

is called the kth mode of ( )�b  [1, 10]. 
 
2.2  Robustness 

In [12], it was shown that for some array radii r, the Davies transformation is highly susceptible  

Fig. 2.  Modal transformation for UCAs 
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to perturbations in ( )�a . Fig. 3 shows the Dolph-Chebyshev beampattern obtained from a UCA  
with 29�N  elements, radius 2.1273� , and a virtual array of 23�M  elements. The look direction 
was 0° and the mainlobe to sidelobe level was set to 30�  dB. Fig. 3 also shows the resultant 
beampattern when the gain and phase responses of the antenna elements, and their locations  
are perturbed. We also introduced mutual coupling between adjacent antenna elements. All 
perturbations were drawn from a uniform random number generator. The limits for gain perturbation 
are 0.005�  (relative to 1); for phase perturbation, 1� � ; for radial perturbation, 0.005�� ; for angular 
position perturbation, 1� � ; and for mutual coupling, 0.01 0.01j� �  (relative to 1). 
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Fig. 3.  Dolph-Chebyshev beampatterns of an ideal and a non-ideal UCA 

Clearly, the beampattern of the perturbed (or non-ideal) array is entirely unacceptable. The 
beampattern of the unperturbed (or ideal) array is also not quite satisfactory since it violates the 
design target of 30�  dB mainlobe to sidelobe ratio. This is just another indication of the poor 
behaviour of the transformation matrix. 

At this point, it is worthwhile reiterating that, for a given M and � , the robustness (or lack  
of robustness) of the T matrix depends only on the array radius [12]. For some radii, T can be  
quite robust. For other radii, it can be totally non-robust. 
 
2.3  Problem Statement 

The lack of robustness of the Davies transformation can be traced to the construction of J, Eq. (3).  
As can be seen, for some choices of m, h, and �r , the magnitude of one or more of the diagonal 
elements of J can approach infinity as the corresponding value of 1 (2 )m hJ r� �

� �
 approaches  

zero. Accordingly, the norm of T can become very large. But the square of the norm of T gives  
a measure of the noise amplification of the transformation matrix. Therefore, for a T with large  
norm, small perturbations in ( )�a  will translate to large perturbations in ( )�b . 

Based on the above observation, we formulate the following semi-infinite optimisation problem  
to find a more robust transformation matrix. The basic idea is to trade-off the approximation error  
in the transformation of ( )�a  to a vector with Vandermonde form, for robustness. 



Denote the robust transformation matrix by M N�
�U � . We find U as follows: 
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where F�  denotes Frobenius norm, �  is the absolute value norm 
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 � �1 2
T
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and 1T N
m

�
�u �  is the mth row of U. 

Now, since the rows of U are not related in the above formulation, (�1) can be solved,  
row-by-row, as follows: 

For 1, ,� �m M , 
2

min
m

m Fu
u  (�2) 

subject to    � �Re ( ) ( )T
m m mb� � �� �u a    and   � �Im ( ) ( )T

m m mb� � �� �u a ,    � �,� � �� � � . 

The advantage of (�2) is that it allows the original problem (�1) to be solved efficiently. 
 
2.4  Remar ks 

1. The robustness of U depends on the choice of m� , 1, ,� �m M . One method is to set m�  to  
be some multiple of the corresponding value in T where the multiple is greater than 1. 

2. If, for a given m, 1m� � , then for that m, (�2) has the trivial solution m �u 0 . This follows  
since ( ) 1mb � � . See Eq. (7). 

3. As a guide to robustness, the square of the norm of each row of U should not greatly  
exceed N M . The reasoning is as follows. Suppose the output signal from each antenna element 
contains a complex noise term whose real and imaginary parts are independent with  
identical variance 2

x� . Also, suppose the noise terms of all the antenna elements are mutually 
independent. The total noise from the array of N elements is then given by 22 xN� . Suppose  
the transformation matrix has Frobenius norm FU . The total noise at the output of the  
virtual array is then given by 2 22 F x�U . If the transformation is required to not increase noise, 
then we require 2 2 22 2 Fx xN� �� U , or 2

F N�U . Finally, suppose the noise gain is distributed 
uniformly over the elements of the virtual array. We then get 2 2

F Fm M N M� �u U . 

3.  QUADRATIC SEMI-INFINITE PROGRAMMING 

3.1  The Dual Parameter isation Method 

Consider the mth sub-problem of (�2). Denote this sub-problem by ( m� ). Define the vector of 
decision variables 
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T

T T N
m m
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� �

x u u � . (10) 

( m� ) can be written as a standard quadratic semi-infinite programming problem as follows. 
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and � � � � � � � � 4( ) Re ( ) Re ( ) Im ( ) Im ( )
T

m m m m m m m mb b b b� � � � � � � � �� �� � � � � �� �c � . (13) 

We use the so-called dual parameterisation method of [13, 14] to solve ( m� ). The parameterised 
dual problem of ( m� ) with k parameters is defined as follows. 

 1
2, , 1
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k k

k
T T

i i
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T

k k� � ��z � . 

The main results relating ( m� ) and ( ,m k�� ) are stated in the following theorem. 

Theorem 1 

(a) There exists a k�  satisfying 0 2k N�
� �  such that the optimal value sequence � �� � *

, 1
k

m k kV
�

��   

is strictly decreasing and for k k�� , � � � �, , *m k m kV V�� �� � . 

(b) The number k�  in (a) is the smallest whole number such that for k k�� , the global  
solution of ( ,m k�� ) provides the solution of ( m� ) in the sense that, if * * *( , , )x y z  is a solution  
of ( ,m k�� ), then *x  is the solution of ( m� ). 

Proof See [13]. 

 
3.2  The Algor tihm 

Based on Theorem 1, the following adaptive algorithm is developed in [14]. Define first the 
following problem. 



 1
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k

k
T T

i i
i

�

�

��x y
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T
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i
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Step 1 Choose any 2
0

N
�x � , a small number 0� � , an integer I, an increasing sequence of integers 

� �ik , and a sequence of parameterisation sets � �� �, , 0, 2 , 1, ,i i j i j ij k� � �� � � � �  such that 

 � �� �
� �

,
10, 2

, 0, 2 max min 0
i

i i j
j k

d
� �

� � �
� ��

� � ��     as    i ��  (15) 

Step 2 Let 0 � �E . Set 0i � . 

Step 3 Set 1i i� � . 

Find � �1 1( ) ( )i i i i� � �
� �

� �� � � �A x c 0 E� . 

 Suppose i�  has im  elements. � �,1 ,2 ,, , ,
ii i i i m� � ��

� � ��� . 

 Define ,1 ,2 ,i i

T
m i i i m� � �� �� � �z � � �� . 

Step 4 Solve problem ( , mi
m� z� ) to obtain an optimal solution � �,i ix y . 

Step 5 If i I�     or    1 1
1 12 2

T T
i i i i �

� �
� �x Qx x Qx , 

find � �( ) ( )i i i� � �� � � �A x c 0� � �E � . 

Go to Step 3. 

Step 6 Solve problem ( , im m�� ) starting from � �, ,
ii i mx y z . Denote the solution by * * *( , , )x y z . Take 

*x  to be the solution of problem ( m� ). 

Theorem 2 

Let the condition (15) be satisfied. Then, the sequence { }ix  obtained from the Algorithm  
will converge to the solution of problem ( m� ). Therefore, if �  and I are suitably chosen, the  

*x  obtained in Step 6 is the optimal solution of ( m� ). 

Proof See [14]. 

4.  NUMERICAL EXAMPLE 

Consider the UCA of Fig. 3. Table 1 summarises the squared-norm and maximum real and imaginary 
errors of each row of the Davies matrix for this UCA. As can be seen, the squared-norms of rows  
3 and 21, 6 and 18, and 11 and 13 greatly exceed the maximum desirable squared-norm of 

29 23 1.2609N M � � . Indeed, it is the very presence of these rows that render the Davies matrix 
non-robust. 



For the robust transformation matrix, our strategy is to retain as many rows of the Davies matrix as 
possible except for rows with large squared-norms. Accordingly, we replace rows 3 and 21, 6 and 18, 
and 11 and 13 with rows found by solving (�2) with m�  set to 1, 0.5 and 0.7 respectively. (Note,  
rows 3 and 21 can be solved trivially as remarked in Section 2.4.) The Dolph-Chebyshev beampattern 
obtained from the robust transformation matrix is shown in Fig. 4. The perturbation on the ideal array 
is the same as that in Fig. 3. The characteristics of the robust transformation matrix are summarised 
also in Table 1. Note the increase in approximation error in rows 3 and 21, 6 and 18, and 11 and 13  
of the robust transformation matrix. 

 

 Davies M atr ix Robust M atr ix 

Row # Squared-
norm 

Max Real 
Error  6( 10 )�

�  
Max Imag 

Error 6( 10 )�

�  
Squared-

norm 
Max Real 

Error  6( 10 )�

�  
Max Imag 

Error  6( 10 )�

�  

1, 23  0.43  31,682  31,682    
2, 22  0.99  19,395  19,395    
3, 21  6,935.23  616,799  61,6799  0.00  1,000,000  1,000,000 
4, 20  0.96  2,581  2,581    
5, 19  0.68  732  732    
6, 18  16.38  1,145  1,145  5.86  463,493  464,067 
7, 17  1.02  86  86    
8, 16  1.02  25  25    
9, 15  6.28  17  17    

10, 14  0.73  2  2    
11, 13  403.12  10  10  6.96  724,847  728,719 

12  0.72  0  0    

Table 1.  Characteristics of the Davies and the robust transformation matrices for 
29N = , 23M =  and 2.1273r λ=  
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Fig. 4.  Dolph-Chebyshev beampatterns of an ideal and a non-ideal UCA with robust transformation matrix 

 



5.  CONCLUSIONS 

In this paper, we addressed the important problem of finding a transformation matrix to transform the 
steering vector of a uniform circular array to one with Vandermonde form, subject to a robustness 
requirement as demanded by practical considerations. The robust transformation matrix is found by 
posing and solving a semi-infinite optimisation problem. We showed that, by an appropriate 
formulation of the optimisation problem, we are able to decompose the problem into a set of much 
simpler optimisation problems which can then be solved efficiently using the dual parameterization 
method of [13, 14]. Each sub-problem yields a row of the robust transformation matrix. The 
robustness of the new transformation matrix is demonstrated by a simulation example. The simulation 
example also shows that this robustness is gained only through a sacrifice in the accuracy of the 
resulting steering vector of the virtual array from Vandermonde form. 
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