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" REAL-TIME IDENTIFICATION. T
Part IT

J. Wieslander

ABSTRACT.

With real-time identification is understood the esti-
mation from measurements of time-varying parameters
in a model of an unknown system. In this report two
problems in this field are discussed. The first one
is the question‘of convergence. This has been studied
in a simple continucus time case by simulation on a
hybrid computer. Results in the form of distributions
of the interesting variables are shown. The other
problem is that of determining suitable parameters

to use in the real-time identification algorithm. A
method to do this by off-line calculations using rep-
resentative plant data has been implemented. Some npumeri-
cal results are shown.

T This work was supported by the Swedish Board for
Technical Development under Contract 70-337/U270,
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0. INTRODUCTION.

This report deals with two problems in real-time
identification. With real-time identification is
meant the estimation from measurements of time-

varying parameters in a model of e.g. a physical

or chemical process.

In part I of this report (ref. [(4]1) three different
though intimately related schemes for real-time iden-
tification were discussed. They were shown, by some
examples, to possess good performance even when the
parameters varied rapidly with time. The most gene-
ral of the three was the Kalman filter type identi-
fication in that a priori knowledge of the rate of
parameter variations is used in the algorithm. This
is very favourable if such information is available.
Now, this is net a very likely situation, so a me-
thod to determine, from measurements, these proper-
ties of the unknown parameters is needed., This prob-
lem is discussed in Section 2.

Another problem that was not discussed in part I is
that of convergence of the algorithms. As is demonst-
rated in App. A convergence in the usual sense can-
not be expected. In an early attempt to get a fee-
ling of what may happen with a real-time identifica~
tion algorithm, a simple continuous time example was
studied. The result is shown in Section 1. The con-
clusion drawn from the study was that that approach
to the problem did not seem profitable. Anyhow, gqua-
litative knowledge was obtained.




1. A STUDY OF A CONTINUOUS TIME REAL-TIME IDENTIFIER
WITH ONE UNKNOWN COEFFICIENT.

A quéstion which often arises in connection with iden-
tification routines is that of convergence. Of course
with real-time identification there is no such thing
as convergence (see App. A). What can be ho?ed for is
e.g. that the estimation error covariance is bounded.
In the discrete time case the equation for P, the es-
timation error covariance matrix, is nonlinear with
coefficients that are nonstationary stochastic proces-~
ses. Hence a study of the behaviour of the algorithm
in the general case is extremely difficult., Therefore
in order to gain some insight in the behaviour of
real-time algorithms a simple continuous time example
has been studied,

In 1.1 and 1.2 the identified system and the identi-~
fier itself are presented., The question of the beha-
viour of the identifier is then posed in 1.3. To
solve the problem analytically, one has to find a
solution to the Fokker-Planck equation, 1.4. The me-
thod choosen was, however, to simulate the equations
on a hybrid computer, 1.5. The results are discussed
in 1.6. Using the approximations mentioned in 1.3 an
attempt to compute the distribution of the error co-
variance is then done in 1.7. The validity of the
approximations is discussed in 1.8. One of the sto-
chastic differential equations used in the simula-
tions may become unstable for certain parameter va-
lues. An estimate of the stability boundary is given
in 1.9,




The following equation is given
dy = - (a+x)y dt + dv (1.11)

where o is a known constant and v is a Wiener process

with incremental covariance det.

The unknown parameter x is given by
dx = = Bx dt + de . (1.12)

where 8 is a known constant and e is a Wiener process

with incremental covariance R1dt.

The task is now to estimate x{(t) when {y(s), ty € 8
s t}l = E{t has been observed.

5

1.2. Solution of the Estimation Problem.

The estimate that minimizes the expected loss E L(8-8)
where L 1s a symmetric nondecreasing function is given
by the conditional mean E{x(t)l}ﬂt} provided that the

conditional distribution is symmetric around the mean

and nonincreasing for ¢ 2 m (see ref, l51). The con-

ditional distribution of x{(t) given is given by

Y
the Kalman filter, i.e. x(t) is normal (x,P) where

dx = - Bx dt + K(t)Idy + (a+x)y dtl (1.21)
2B . - 2mp + R, - PYyPUR, (1.22)
dt

K(t) is the filter gain and depends on P.

These equations are analogous to those of (2.14).




1.3, Question.

We want to know how good the estimate is, that is
what 1s the expected value of the error variance

E %2, where the estimation error is defined by

~

v
X = X - X

We thus have

E %% = E{E%z zﬂt} = E{P} : (1.31)
and-we are - faced with the problem of finding the

distribution of P, It is easily seen that P must be
greater than zero and less than R1/28. In this case
it is thus possible to give an upper bound on the

estimation error covariance, i.e. the estimates can-

not diverge in the mean square sense,

Before more thorough discussions, the equations may

be normalized, i.e. the time unit is chosen so that
2

8 = 1 and the scale of x is chosen so that E x° = 1
and consequently R,i = 2, Then we have

PX(T) = e"‘T]

Hence

dx = - x dt + de (1.32a)
dy = - (a+x)y dt + dv (1.32b)
4P .~ 92p & 2 - P2y2/R (1.32¢)
at 2

where E de(de)T =z 24t and E dvdv = det.




It was judged unrealistic to try to derive the simul-
taneous distribution of x, y and P, Therefore it was
decided to try a simpler way. If the distribution of
y was available the P distribution might be calcula-

ted by a "fast" or a "slow" approximation.

Slow approximation: Assume that the process y is so

.8low that g% is close to zeroc. The distribution of P

could then be computed from that of y using

- 2P + 2 - E¥0 o g : (1.33)

Fast approximation: Assume that the process y is fast

compared to P. y could then be replaced by white noise,

1.4. The Fokker-Planck Equation.

The distribution of y may be calculated by'solving the
so called Fokker-Planck equation for the system (1.32).
In the case of two coupled stochastic differential
equations driven by white noise the system equations
may be written (ref., [3])

2, = £.(2,,2,) + W
1 L 2 1 (1.41)
Zo = 8o(24,25) + W,
where w; are random variables with Rijéts = E wi(t)wj(s).

The joint probability function f(z1,zz,t) then satis-
fies the partial differential equation

o S o ‘ 2 C a2
2f - o _3_(g1f) - _ﬁ_(ng) v 1 ] R ot
3

i3 (1.42)
at 324 3z, 2 i, 31 aziazj




where the probability function f is conditional with

respect to the initial values

fl(z,t) = f(=z,t zo,to)

If we let z4 correspond to x and z, toy we have

X = = X 4 Wq R11 = 2 R22 = R2
y = = (a+xdy + W, Rip = Ryq = 0
: . 2 2
LESEP. 2_(-x£) - ia~—i[—(o¢-ftr:-c)yf) + 1{2 3—% + R, E—g}
at X 3y 2 9% 3y
é R, ~2
3 o e x 3 4 (aaxdf 4 (a+x)y f 3“7 + =2 i“%
9t X ay X 2 9y
(1.43)

We are interested in the stationary distribution i.e.
af
3t
partial differential equation

= 0. The problem thus is to solve the nonlinear

(T+a+x)f + x £ + (a+x)y af 2L, 2 “‘% = 0
3% 3y bx 2 By
(1.44)

The author does not know of any analytic solution to
equations of this kind. What remains is therefore to
seek some numeric solution. There are two possible
methods available:

a) One method is to derive a difference approximation
of (1.,44) and then by an iterative technique com-

pute the values of f in a two-dimensional grid.

b) The other way is to use a Monte-Carlo method, i.e.

to simulate the stochastic differential equations




(1.32b) and (1.32¢) on a hybrid computer and mea-

sure the distributions of x and y.

The Monte-Carlo method was chosen because the next
step, calculation of the distribution of P in this
way is easily done simultaneously with the simula-

tion of x and y.

1.5. Hybrid Simulation.

The simulations were run at FOA, Stockholm, on an
EATI 8945 hybrid computer.

The equations'(1.32) were simulated on the analog

part using a time scale factor of 100,

The equations were simulated typically 1000 times
and the values of x, y and P were measured at the
end of each single run. Between runs the analog com-
puter was left in hold mode so that each run began
with a new initial condition. The run length was 10
seconds in problem time, i.e. the equations were si-
mulated at least a couple of time-constants between
measurements. The time scale factor of 100 permitted
approximately 10 runs a second, thus enabling 1000
runs to be made in about two minutes. Some extra
time is allowed for bookkeeping in the digital com-
puter. The two white gaussian noises were generated
using a PRBS signal from two 20-bit shift registers
in the logical unit of the analog computer. The PRBS
signal was fed to a first order filter (an integra-
tor with feedback). The filter is thus summing the
pulses of the digital signal. The filter time cons-
tant was chosen small compared to the time constant
of the process but so long that approximately ten
PRBS pulses were summed in the filter, thus producing




an output from the filter with a binomial distribu-
tion which sufficiently well approximates the normal
distribution. In order that the two noises should be
independent the clock signal to one of the shift re-
gisters was interrupted for a short period of time
each time the analog computer was forced into hold
mode. The programming on the digital computer was
done in the programming language HOI (Hybrid Opera-

tions Interpreter).

The program tested the mode of the analog computer
through a sense line and if in hold mode measured

the signals y and P. After the sum and sum of squares
as well as class interval counts had been updated the
analog computer was forced back into operate mode
using a control line. The operation of the control
line also reinitialized a clock which after 0.1 se-~
conds forced the computer back into hold mode. A
block diagram of the set-up is shown in Figure 1.
When the predetermined number of runs had been comp-
leted the mean and standard deviation was computed
and printed out as well as the number of measurements
in each class interval. In this way histograms of the

variables y and P are obtained.

1.6, Results from the Simulations.

For easy reference, the simulated equations are re-

peated:

dx = - x dt + de

dy = = (a+x)y dt + dv (1.61)
. .22 = (1.32)

.El_g:—ZP-i-Q—.P_.__X._

dt R

2




The distribution of x is knownj; x is normal (0,1)
with covariance function

rx(rl = e"‘TI

The parameters o and R2 where B(dv)2 = det_are to

be varied between experiments. The distributions of

y and P are not known but it is clear that the dist-
ribution of y will be close to normal when a is

large compared to E x2 = 1. If on the other hand o

is small the y equation will be unstable (cf. Section
1.9). This is reflected in the choice of Ry3 @ = 1.5
requires a much smaller value of R2 than o« = 4,0 in
order to avoid overloading of the amplifiers if the
amplitude scaling is unchanged., Different values of
R, does not alter the distribution of P as may be
seen from the equations (1.32b) and (1,32c)., The dist-
ribution of y and P obtained in runs with o = 4,0 and
different values of R2 are shown in Diag. 1 for y and
in Diag. 2 for P. Notice that the P distribution is
unchanged for different values of R, as it should.
The distribution of y changes with RQ, i.e. the amp-
litude increases with Rz, and is relatively close to
normal as shown in Diag. 3. Two sample functions are
shown in Fig. 2. The one depicting the function P
shows the typical behaviour: close to one when y 1is
small indicating poor estimates of x, but if y is
considerably different from zero permitting better
estimates P goes down. y resembles normal random

noise.

The next simulation shown is with « = 1.5, Due to the
decreased stability R2 mugst have a much smaller value:
R2 = 0.1, The distributions of y and P are shown in
Diag. 4% and 5. As may be seen in Diag, 4 the distri-
bution of y has very broad tails, which, of course,

depends on the fact that the y equation with this va-
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lue of a for certain periods of time becomes unstable
due to the variations in x. The broad tails is very
clearly demonstrated in Diag. 6. A sample function

of y is shown in Fig. 3. Also the distribution of P
is different from the previocus case. Values conside-
rably smaller than 1, the a priori estimation error
variance, are now much more common, indicating better

estimates.

1.7. An Attempt to Compute the P Distribution from

" the ¥ Digtribution.

As mentioned earlier a possible method of obtaining
the P distribution when the y distribution is known
would be to use the slow approximation, i.e. to as-

sume %% = 0 in (1.32c). In this case we have

2 2
0 = -2P+2 -2 Y (1.71) =
Ry = (1.33)
which gives
/IR, (1-P)
y¥z h(p) = b (1.72)
p

where y*is an auxiliary variable used to take care
of the square in (1.71). y¥* is defined as follows:

y y 2 0
VA

-y y < 0

As the distribution of y should be symmetric the dist-

ribution of y¥* is readily obtained. Then we have to
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calculate the distribution of P using (1.72)., We

have
y¥ = h(P)
and
F . (y*) = P(n ¢ y*)
F (P) = P(w ¢ P)
P
F,(P) = P(n < P) = p(h"T(n) < p) =
= P(n < h(P)) = Fyx(h(P))
d d
£ (P) = 2~ F (P) = == F_.(nh(P)) =
p ap P dPy( )
= fyx(h(P)]h'(P) = fyx(y“)h'(P) (1.73)
R,(2-P)
h'(P) = (1.74)

P2¢§§2(1:P)

Thus to calculate the value of the frequency function-
of the P distribution in a point P using the slow
approximation, y* is computed using (1.72) and fyx(y“)
is read from a diagram, derived from Diagrams 1 or i
by smoothing and a change of scale to obtain the fre-
guency function, then fp(P) is evaluated using (1.73)

and {(1.74).

In this way the curves indicated "computed" in Diag.
7 and 8 have been obtained.

As can be seen there is little correspondence, if any,
between the measured distribution and the computed
one. The conclusion to be drawn is that the slow app-
roximation is not valid.
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Now that measurements have been made some typical va-
lues of y and P are available. Some rough estimation
of the time behaviour of the equations could then be
done through linearization around these points. The
time constants could then be compared. Linearizing
(1.32b) and (1.32¢) around (yO,PD) we have

y = - oy (E x = 0)

) ,.2P0y§ ..ZPSyO
p=l-2- p - y (1.81)
R, R,

By assumption we have {cf. (1.72))

/2R, (1-P,)
i} (1.82)
g -
0

Hence the time constants are

=

In the case of o = 4,0 P is seldom less than 0.8. If
we evaluate the time constants for P = 0.8 we find

T1 = 0,25 and T2 = 0.33 which contradicts the assump-
tion of the slow approximation. For o = 1.5 a value
of P corresponding to the one in the example above is

P =z 0.55, In this case the time constants are T1 = 0,87
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and T2 = 0.19, These values are more in agreement
with the assumption, alsc the region P ¢ 0.6 with

@ = 1,5 is where the correspondence between the com-
puted and the measured distribution in Diagram 8 is
acceptable. This discussion confirms that the slow
approximation is not valid. On the other hand, from
inspection of Fig. 2 it does not seem likely that
the fast approximation should be valid either. In
that case the process y should look like white noise
compared to the process P which is not the case, Un-
fortunately it seems unavoidable to treat the full
3-dimensional problem if the distribution of P is to

be computed. This has not been done,

1.9. Stability of y Equation.

As was mentioned in a previous section the parameter
a of equation (1.32b) had to be chosen sufficiently
large in order that the amplifiers should not be
overloaded for a given value of R,. We are going to
establish a stability boundary for o when there is

no input, i.e. we are going to study
dy = - (a+x)y 4t (1.91)

The following stability criterion is going to be used:

Let the system
x = {A + F(£)}x (1.92)

be given where A is a matrix with constant elements
and T a matrix whose elements are either zero or sto-
chastic processes which are stationary, ergodic, mea-

surable, and continuous with probability one.
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For the constant part
Xz A+ x (1.93)

there exist numbers a and b so that
[1xl] < bflxgl]e™@* (1.9%)

According to Kozin, ref., [2], we then have the theo~-

rem:

If (1.93) is asymptotically stable and E||F(t)]|

exists then if
EJ[E(t)]] < a/b (1.95)

the system (1.82) is asymptotically stable in the
large with probability one.

The proof of the theorem is mainly an application

of the Gronwall lemma.

In our case we have a = ¢« and b = 1, F(t) is replaced
by the gaussian process x which meets the requirements

of the theorem. We then have to evaluate

2
% - X
E|lx] = —;: J Ix]e 2 ax =
Yom )
2
o0 - }_(__ ,
= ~%: J X e 2 dx = 2
2 "

We thus find that (1.91) is asymptotically stable in
the large with probability one if
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a > /2= 0,7979
ki)

This value seems quite reasonable compared to the ex-~
perience from the simulations. The smallest value of
o in the experiments was o = 1.25 with R, = 0.1 which
gave overload indication approximately every 10:th
run.

1.10.Comparison between digital and hybrid simulation.

One may ask if the use of a hybrid coﬁputer gave a significant
saving in execution time compared to a simulation on a fast di-
gital computer.

The following estimation can be done: A thousand runs of 10 se-
conds in prcblemtime each is to be done. In the integration of
the equation: the time increment is chosen an order of magnitude
less than the estimated time constant (cf. page 12). For simp-
licity say 0.01 seconds. Thus for a complete simulation 108
points in time have to be evaluated.

On UNIVAC 1108 the generation of a gaussian random number takes
350 s while the evaluation of the expression in (1.32¢) takes
320 jis. A conservative estimate of the time for a complete si-
mulation would then be: 22¢ 350 + 320 % 1000 seconds, i.e. 16 mi-
nutes. This time should be compared to the two minutes for the
hybrid simulation.

Tt is interesting to note that in this simple first order prob-
lem the full advantage of the parallell processing capability
of the hybrid computer is not utilized. The difference in a more

complex problem would be even greater.
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2. ON THE ESTIMATION OF THE PARAMETER NOISE.

As has been discussed in a previous report the least
squares estimation of the parameters of time varying
linear systems may be thought of as operating a Kal-
man filter with the parameters as state variables,
To design a Kalman filter one needs knowledge of the
covariance of the parameter noise. This information
is not generally available. In this section an imple-
mentation of a method described in the literature to
compute the characteristics of the parameter noise
is discussed. In subsection 1, %he Kalman filter
equations as used in the identification scheme are
displayed. In subsection 2, the loss function used
in the calculations is formed and in subsection 3
some numerical aspects are considered. Some examples
on simulated data are displayed in subsection &4,

2.17. The Model and the Identifier.

As the model and the identification algorithm already
has been discussed in ref. 41, only a brief discus-
gion of the matter is included. The model is the so
called equation error model which we write in the
form

y(t) = Y{t-1)e(t) + e(t) (2.11).

where y(t) is the output at time t and 0(t) the para-
meter vector at time t. ¢(t-1) is a vector of old
input and output values., ¢ is sometimes called the

phase variable vector. We have
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@ (t=-1) = [-y(t-1) ut-1) -y(t=-2) ul(t-2) ...]
(2.12)
0(t) = [a () by(t) a,(t) by(t) ...1"

If we assume that

E e(t)els) = Ry,

and 0(t) is governed by the equation
[ e (t+1) = alt) + v(t)
J with (2.13)

E v(t)v(s)T = R,6

1" ts

where e and v are gaussian uncorrelated variables

with zero mean a Kalman estimation of @ is given by

[ BCt+1) = 0Ct) + KO {y(t) - ¢ (t-1)0 ()}
K(t) = P(t) 9 (t-1)7 +
T -1
2 . {R2 + @ (t=-1)P(t) 9(t-1) } (2.14)

P(t+1) = P(t) + R, - K(t) »

1

. {R,Z + lP(t-1)P(t)‘P(t-1)T}K(t)T

Refer to ref. [4] for a discussion on this as well
as a comparison with other algorithms of the same
structure, These equations may be scaled so that the
Aigturbance € has unit variance. Scaled quantities
are denoted with a prime, e.g. R%.
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[ 0(t+1) = 0(+) + K'()My(t) - ¢(t-1o (1)}
’ T
K'(t) = P (t)Yo{t-1)" .
T -1
. {1 + \P(t-T)P'(t)lP('t*—ﬂ} (2.15)

P'(t+1) = P (t) + R{ - K'{(t} »

L . {1 + @ (t=-1)P"(t) @(t—1)T}K'(t)

It is in this form the algorithm is used in a compu-

ter program.

2.2. The Loss Function.

From ref, [1] we have the logarithm of the likelihood

function of R1 and R2 given the measurements:

N N

2 LIR, ,R, U = - ) log ’v(t)2 - E(t)2
e et £=1 £=1
- h (2.21)
where y(t)2 is the covariance of the residual
elt) = y(t) - @ (t=1)0(t) (2.22)

and £(t) is the normalized residual (i.e. standard

deviation equal to one)
g(t) = e(t)/v(t) (2.23)

Eft(lft) denotes all available output (input) signals
up to and including time t.
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Now, we know that the covariance of the residual in

+he Kalman filter is

v(£)? = Ele(t)e(t)} = R, + @ (£=1)P(t) @ (=117 (2.24)

A scaling so that covariances are measured with R2
as unit is then introduced (see previous section).

Scaled quantities are denoted by a prime. Hence

Ry PI(t) = 1= P(t)

L
R, R,

We thus have the scaled covariance of the residual

)2 = ye? 21 s ee-DPIE) 9 (=T (2.25)
R
2

Hence the loss function becomes

N N
2-L = = ) log y(t)z ) s(t)zy(t)uz =
1 1
N N
= - ) log Rzy'(t)2 - L ¥ s(t)zwr'(.‘t)'_2 =
1 R2 1
N N _
= - Nlog R, -} log v () - 1§ et)?y ()77
1 R2 1

Because y'(t) does not depend on R, we can now maxi-

mize directly with respect to R,:
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q X 2 -2
Max{— N log R2 - —m-z e(t) y'(t) } =
R2 R2 1
1 X 2 -2
= N log — § e(t)%y'"(t)"° - N
N 1 :

The extremum is achieved for

N
Joet)?yr(£)2 (2.26)
‘! -

=y
i
2 |=

The criterion used to find the extremum with respect
to R% is then

LN , " N ,
LR{ = - N log E ) e(E)yT(t) C - N - z log y'(t)” =
1 .

N ) )
= - ; log v'(t)° - N{log R

5 * 11 (2.27)

Note, that (2.27) gives an estimate of the scaled R
matrix (R;) buth that an estimation of the scaling

1

factor is achieved from (2.,26).

An important observation is that in the case of a re-
cursive least squares identification with constant
model parameters, i.e. Ry = 0 ,-(2.26) gives an esti-
mate of the least squares loss function that can be
computed recursively,

Note, also as has been pointed out in ref [1] that

once the optimal value of R1 and R2 have been found
the normalized residuals £(t) from (2.23) are avail-
able and may be used in tests of normality and inde=-

pendence,
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2.3. Numerical Aspects.

When maximizing the likelihood function only the func-
tion values are available. This implies that the maxi-
mizing algorithm to be used must not be of a type that
requires analytical gradients to be supplied. This 1i-
mitates the practically possible dimension of the
search space. Of this reason in the computer program
only diagonal R, matrices are considered and further-
more a means by which different diagonal values may
be forced to be equal has been ;mplemented. It is felt

that this restriction is not a severe one.

The routine used to maximize the likelihood function
is a Fletcher-Powell algorithm with numerical calcu-
lation of the gradient. The routine calls on another
routine that computes the logarithm of the likelihood
function by performing a real-time identification oﬁ
the stored input-output data and then computes the
loss function from (2.27). As the time to do a real-
time identification for a 4:th order model is appro-
ximately 2 ms on a fast computer (UNIVAC 1108) it is
clear that the use of a method like this requires
that the maximization method be efficient, i.e. it
does not require too many function evaluations.
Another problem to have in mind is that typical va-
lues of the diagonal elements of R1 are 10_3 to 10~
It is clear that it would be very difficult for the

search algorithm to have to use these values directly.

7

0f this reason the logarithm is used, i.e. the values
to be considered are in the range -3 to =7 typically.
Yet another problem is when the parameters of the
system are constant and consequently the estimated

Ry matrix should equal zero. Unfortunately, because
of the logarithm, a zero diapgonal element in Ry cor-
responds to -« in the search variable. On the other

hand, input-output sequences of normal length, i.e.
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some thousand data pairs maximum, are too short to
allow the conclusion that the parameters actually

are constant and that R,l is zero. This is reflected
in the behaviour of the P equation. For small values
of R, the loss function will remain unaffected be-
cause the P matrix has not yet converged sufficient-
ly for R, to have any effect, This means that the
search algorithm in a case with very slow-varying pa-~
rameters will go to regions where the loss function is
close to constant. Of this reason the allowable re-
gion in search space has been limited to values cor-
resgogding to diagonal elements of R1 larger than

i0

bounds are introduced using a penalty function tech-

, this value being chosen by experience. The

nique. Special care is exercised to ensure that the
first derivative of the loss function is continuous
at the boundary. This is so that no problems are int-
roduced in the numeric differentiation used by the

search algorithm to find the gradient.

2,4, Examples.

To demonstrate the ability of the routine to correct-
ly estimate a suitable R, matrix 3 examples will be
used. All are simulated digitally. In the first one

a 3:rd order system with constant parameters is used
(see Table I). In the second example these parameters
are varying randomly with starting values as those of
the first example. In the third case, finally, the
parameters are varying as in case 2 but a constant
bias in the y values is added (see Tables II and III).
In all cases the input signal amplitude was 3, and
the output was corrupted with white noise with a

standard deviation of 1.
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The results from the first example are shown in Table
I. Note the good estimates of the parameters and the
poles and that the diagonal value of R, is estimated
to be 10-7 which indicates very slowly varying or
constant parameters, The estimated noise RMS value

is somewhat below the correct one. Estimation of a
4:th order model from the same data gives no signifi-
cant decrease in the loss function, the sum of norma-
lized residuals as described in (2.23).

In the second example a time varying system is iden-
tified. To facilitate a comparison between actual

and estimated parameter values, the system parame-
ters for t = 450 and t = 500 are shown. For an example
including a plot of true and estimated parameters

see ref. [4]. In this case the Ry matrix was estima-
ted to be 9.107°

lue, The estimated RMS noise value is the correct

in good agreement with the true va-

one: 1.00, An attempt to use a U:th order model gives
in this case a slight increase in the loss. In this
case the two complex (and slightly unstable) poles
are found with good precision while the real one is
estimated not as accurate.

In the third example, when the system parameters are
time varying and the output is bilased with a constant
equal to 5, we observe that a direct identification
with a model like the one before gives rather poor
estimates of the parameters. It is interesting to ob-
serve that this is so because the estimate of the

real pole is wrong while the estimates of the comp-
lex ones still are good. We also observe that in this
case an increase in model order gives a significant
decrease in the loss function. When, however, the bias
-{ K.)is estimated as the 7:th parameter, the estimates
of the parameters are again quite reasonable. A model
of order greater than 3 does not give a significant
decrease in the loss function. Note also, that the es-~
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timated R, matrix gives a very small (3-10_8) value
for the variance of the constant bias parameter while
for the stochastic parameters the estimated variances

is the true value 107",




APPENDIX A ~ THE QUESTION OF CONVERGENCE.

We are going to study the estimation error, i.e. the
difference between the true parameters 0(t) and the
estimated ones é(t). Now, the (scaled) estimation er-
ror covariance matrix P'(t) is the matrix P' of the
real~time identification algorithm (2,15). If the K
is eliminated in (2.15) we have

P'(t#1) = P'(t) + R} - P'(t) ¢ (t=1)T+

| -1
¢ {1 + Y (t=-1)P' (%) m(t-1)T} (t-1XP' (%)
(A.1)

Recall that (2.,12) ¢ (t~1) is a vector of old input
and output values and that (2.13) R] is the scaled
covariance matrix of the parameter noise. Thus in a
general case R{ is a positive definite matrix with
rank m. m is the number of unknown parameters in the

model.

It is now easy to see that the estimation error never
will converge to zero. Viz. assume that

éﬁt) > o(t) t + =

If the estimation error tends to zero, so does its
covariance, i.e. P(t) - 0. On the other hand, it is
clear that P = 0 is no solution to (A.1) and the as-

sumption cannot be true.

Let us then lessen our ambition and be satisfied if
the estimation error in the course of time will have
a constant distribution. This would mean that the co-
variance matrix is constant., Let us then assume that
P'(t) » P', (A.1) then gives




-1
R1' = Pé&p (-t..l-)T:{T + @ (t-1 )Pé LP(t—ﬂT} P (t=-1 )PE}
The matrix in the left member is of rank m while the
matrix to the right is of rank 1. Clearly this implies
that our assumption is wrong and that the estimation

error is a non-stationary stochastic process.

It is now possible to sketch some conditions that
would ensure that the covariance matrix does not in-

crease in the long run. If we e.g. require that

t+m-1 T
rank ) P'(t) 9(1=1)" @(r~1)P" (1)} = m (A.2)
=t

the effect of adding R} in each step as in (A.1)
would be eliminated if also P*is sufficiently large.
({1 + V(1=1)P' (1) ¢(T—1)T}_1 is scalar and may be
omitted in (A.2).} (A.2) gives restrictions on ¢ (t-1)
as a function of time. As ¢ is the vector of old in~
put and output values this means that from (A.2)

both a requirement on the input to be sufficiently
exciting as well as an identifiability condition for
the system itself might be derived. This is no easy
task, however, because of the factors P(r) in (A.2)
which depend on ¢(1-2) etc.
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APPENDIX C ~ TABLES, FIGURES AND DIAGRAMS.

" Table 1 - Sysgstem with constant parameters.

Input signal amplitude: 3.

3:rd order model

.. True . Estimated
a1 —1|50 "'1.59
o a, 1.61 1.60
Para- a, ~0.776 ~0.770
meter b1 1,20 1.22
b2 -0.950 -0.944
b3 0,200 0.188
p1 $.400+30.900 0.397+30.900
Poles Po 0.400-30.900 0,397-30.,900
Py 0.800 0.795
A 1.0 0.973
R, . 0 1077
ii _

4L:th order model
A= 0.972 R, .. = 2«10
11




0
N

Table 2 - System with stochastic parameters:

(t+1) = 0.999 0(t) + 0.01 e(t)

Input signal amplitude: 3. E eeT = I
3:rd order model . .
True Estimated
t = 450 = 00 .t = 500
a1 -0.658 ~0,501 -0.688
aq 1.10 1.16 1.18
Para- ag -0.488 -0,384 ~0.587
meter b1 G.822 0.765 0.864
b2 -3.588 -0.551 -0.659
b3 0,037 ~-0.109 0.021

Py 0.0884431.003 0,0765+31.048 0.0767+51.045
Poles p, 0.0884-31,003 0.0765-31.048 0.0767-§1,045

Py 0.481 0.348 0.535
A 1.0 1.00

" -5
Ry 13 10 9410

4:th order model

A= 1.07 R, .. = 710"




Table 3 - System with stochastic parameters:

O(t+1) = 0.999 8(t) + 0.01 e(t)

Input signal amplitude: 3. E eeT = I.

Output signal with bias: y(t) = y(t) + 5.

3:rd order model

True Estimated + = 500
t = 450  t = 500 . without K . with K
a, 1.10 1.16 1.24 1.17
Para- a; -0.488 ~0.384 -1.08 -0.574
meter b,  0.822 0.765 0.878 0.864
b, -0.588 ~0.551 -1.03 ~0.648
b, 0.037 -0.109 0.118 0.018
Dy 0.0884+  0.0765+ 0.0752+ 0.0797+
+51.003  +31.048 +51.082  +31.042
Poles p, 0.0884-  0,0765- 0.0752- 0.0797-
~31.003  -3j1.048 ~31.042  =31.042
Py 0.481 0.348 0.990 0.526
A 1.0 1.2 1.02
Ry & T 5 107° 107"
ii -3
Ry a7 0 - 3:10
b+1th order model
without K: A o= 1.14 Ry ;5 = 541070
: 11
with K: A= 1.02 Ry ;i = 9.197°
: 1 i _7
R = 7410




