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'TAGRANGE MULTIPLIER METHODS FOR MINIMIZATION UNDER
EQUALITY CONSTRATNTS:

T, Glad

2bstract.

Different ways of converting the minimization problem under equality
constraints into an unconstrained problem are considered. The methods
of Hestenes [31, Powell [4], Fletcher [5] and Martensson [7], based
on Lagrange multiplier theory, are diécussed and soe. theoretical
results concerhing their properties are presented. These methods and a
modification of the method of Hestenes and Powell are compared with
the classical penalty function method on a mumber of mmerical test
problems,
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PRESENTATION OF THE OPTIMIZATION PROBLEM.

This report deals with optimization under equality con-

traints. The problem can be formulated

(P) minimize f£{x) with respect to x€R"

subject to h(x) = 0

where f: R" +R

and  h: R® -R"

Apart from differentiability assumptions and the "constraint
qualification" defined below f(x) and h(x) can be arbitra-

ry functions,.

To study this problem it 1s convenient to introduce the La-

grangian L{x,u).

Lix,u) 2 £(x) + p h(x) u € R
The components of u are called Lagrange multipliers.

The following theorems form the basis for the discussion of

(P).

Theorem 2.1. Suppose that f and h are twice continuously

differentiable and that h, (x*} has full rank. A necessary
condition for x* to be a solution to (P) is then that there

exists a u* such that (x*,u*) satisfies
(i), h{x*) = 0
(ii) Lx(x*,u*) = 0

(1ii) for every y # 0 such that h (x*)y = 0 it follows that
T . '
y Lxx(x*,y*)y : 0.



it eafr:s great progress has been made in the development
cal methods for the minimization of a function of several
A description of same of these methods can be found
erences [91-[12]. In practise the independant variables eften
vary freely, but are confined to a certain region by

s or inequality constraints. It is possible to develop
methods to deal with these constraints and this has been
ome extent, However it is very attractive, considering
dvances in unconstrained minimization, to convert the problem
iconstrained one. In this report sSome ways of doing this



See [1].

eorem 2.2. A sufficient condition for x* to be an isola-
e e
d local minimum of (P) is that there exists a y* such

~
o
~
b
*
-
h=
*
~—t
1
fue

(311) for every v with hx(x*)y = 0 and yv # 0 it follows
: that yTLXX(x*,u*)y > 0.

Proof: See (17.

The condition thathhx(x*) has full rank is called a con-
straint qualification. Since it will always be assumed from
now on that this condition holds, the conditions (i} =
(1ii) of Theorem 1 will always hold at the minimum. If the
strongey conditions of Theorem 2 are satisfied the problem
is said to be nonsingular. The solution of (P) which is
assumed to exist will in this report always be called x¥

and the corresponding multiplier p*.



URVEY OF SOME NUMERICAL METHODS PROPOSED IN THE

upvey containg methods that solve the minimization
m with equality constraints by converting it to an
mstrained optimization problem. A good reason for do-
ﬁis is that very effective algorithms for uncon-
ned optimization have been developed, for instance
of the Quasi-Newton methods, see o1, (101, {117,

The Penalty Function Method.

is the classical method of solving (P). The function

R i

(%) = £(x) + & hT(0h(x)

- is minimized for a sequence of decreasing values of v.

Let Xk,be the minimum f?r roE . Then it can be shown
that under mild assumptions about f and h,x, + x* when

vy > 0. The disadvantage of the method is that F becomes
very ill-conditioned when » is small. The algorithm is
often used together with Richardson extrapolation : The mi-
nimum can be thought of as a funetion of r, x(r) and can
be represented by a power series.

x(2) = x(0) + ayw + apl + ...

2
When two poihts x(ri) and x(rz) have been computed an ext-
rapolated value x(0) can be calculated from the eguations
which remain when the series is truncated after the second
term




it

x{0) + a4y

x{0) + a

1]

1%9

When three points are computed an extrapolation can be
1e using the first three terms and so on. In a similar
ay it is possible to predict where the minimum will be
s the next value of r. This can be used in starting up
e unconstrained optimization algorithm. Detailed com~

putational schemes for the extrapolation are given in [1].

'3.2. Methods Which Use the Lagrangian.

The purpose of these methods is to c¢reate a function which
has an unconstrained minimum at the point which is a solu-
tion to (P). A good candidate seems tc be the Lagrangian
L{x,n), since for p = u*¥ it has a stationary point at

x = x*, Suppose that this stationary point is a minimum
and also that min L(x,u) exists for all u in a neighbour-~
hood of yu*. Theh it is posgible to define

G{p) = min Li{x,u).
%

It then follows that
Gpu*) = L{x¥,n*) = f£{x*)

G{p) = min L{x,p) g L{x*,p) = £{x*) = G(u*).
X .

This means that

max G{ul) = G{u*) = £{x*)
U

Consequently the optimization problem can be solved by mi-




ng with respect to X in an inner loop and maximizing
pect to u in an outer loop. It is also possible to
at derivatives of G can be calculated. A survey of

deas is given in [2].

runately this approach is only possible for certain

netions £ and h. In many cases min L{x,p) does not exist
X

‘any u. This has been The incentive for the following

ifications of the Lagrangian.

3.3, Methods That Use a Modified Lagrangian and Iterate on
the Multipliers.

A suggestion of this kind of method has been made by Heste-

nes [3]. He studied the function .
- T T

F(x,u) = £{xY + uwhi{x) + ch (x)h(x)

where ¢ is a positive constant.

This can be thought of as a combination of the Lagrangilan
and a penalty function. In contrast to the penalty function
methods the parameter ¢ is not increased towards infinity
but held at a constant value. In this way the ill-condi-
tioning, which is characteristic of the penalty function
methods, is avoided. Hestenes showed that F(x,u*¥) has a
local minimum at x* if c is chosén large enough and if the
problem is nonsingular. This result can be viewed as a spe-~

cial case of the theoprems given later in 3.5.

To uge this result p* must be known. Hestenes suggested

the following iterative scheme.

1) put k = 03 select uo.




‘minimize F(x,uk); call the minimum <K,
ypdate u according to
f_lk+1 = yk + ECh(Xk)

if Hh(xk)li is sufficiently small stop, otherwise

increment k to k+1 and go to 2).

Ui T

fx(xk} + uk‘h (xk) + Zch'(xk)h (xk) = 0
B % *®
which means that

. T

k k+1 k. .

fx(x ) 4 u hx(x Yy =0
‘Since at the minimum p* satisfies
F_(x*) + p*Th (x*) =
X X

this is a natural way of updating ¥ which turns out to

work quite well in practice.




11's Method.

od working along similar lines has been developed
211 [4]. The difference is that in Powell's method
unction to be minimized is

=8

¥ = £x) + uTh(x) + ] oghy ()2
151

:different components of h are given different positive
ights ¢;. The updating of u is done in the same way as

n the previous section. The parameters c; are adjusted in
he following way:

£ Hh(xk)ltm < % nh(xk"q)}lm then the parameters c; re-
main the same. If this condition is not satigfied the c.
corresponding to components of h, that are too large, are
increased by a factor 10. Powell shows that his strategy

ensures convergence for quite general functions.

3.5. Methods That Use Lagrange Multiplier Functions.

In these methods the Lagrange multipliers are replaced by
functions 1(x). Fletcher [5] and Mirtensson [7] have stu-
died the following function:

o(x) = £(x) + Y0OTh(x) + ehT(x)h(x)
where

n -1

H(x) = - (n, GORLGO) h GOFL(x).

With this definition g(x*) = p* and ¢X(x*) = Lx(x*,p*) = 0.



and [7} it is shown that, if the problem is nonsingu-

d ¢ great enough, (x*) js positive definite. ¢ then

Pxx
local minimum at x*. Fletcher has also studied the

£ ¢ itself requires derivatives. of f and h, while for ¢,
cond derivatives of f and h would be needed. In [6] Flet-

T Try T
fx+uhx+hpx+2chhx
~one should replace ﬁx with an approximationfﬁhich is up-
dated so that SXAx = Ap. In this way a minimization method

using the gradient can be used even if f__ and h _ are not

XX
“available,

A generalization of these ideas is given by Martensson in

[7]. He studies the function

F(x) = £(x) + $L(x)n(x) + ch>(x}h(x)

where y(x) is an unspecified function, and formulates the

criteria g(x) has-to satisfy. These are

(i) ,t(x) exists and is twice differentiable in a neigh-

bourhocod of x*.
(ii) W(x*) = p*,

Then it can be shown that




Theovem 3.1. If the sufficient conditions of Theorem 2
are satisfied and ¢ is great enough F{x) has a local mi-

nimum at % = xé with T (x*) > 0,

f the problem is singular a third condition on }(x) is

needed.

(iii) for every y # O gych that hx(x*)y = ¢ and yTLXX(x*,p*}

= 0 u(x) satisfies

{hx(x*)Lxx(x*,u*) + hx(x*)hi(x*)ﬁx(x*)}y = 0

Then the following theorem can be shown.

Theorem 3.2. Assume that h, {x*) has full rank.and that XD

aj

b)

a)

satisfies conditions (i) -~ (111). Then there exists a cg
. £ ™ 7 &
such -that Fx(x Yy = 0 and Lxx(x ) 2 0 for ¢ > ¢y

-1

It can be shown that the choice j(x) = = (hx(x)hi(x)) .
» hy (x)f (x) satisfies the conditions (i) - (iii). Obvious-
1y u(A) = p* satisfies (i) and (ii), but this choice does

not satisfy (iii) for arbitrary f and h.

Mirtensson has also shown the connection between the multi-
plier function method and Hestenes' method. Suppose the

following algorithm is used.

set k = 03 select an xo,
compute < = - (hx(xk)hz(xk))'1hx(xk)f§(xk).

7
Liniiioo pex) = £(x) + wS h(x) + ehT(Oh(x). Call the

‘o k+1
minimum X )

10.




11.

iF RS

inerement k to k+1 and go to b}l.

I is sufficiently small then stop else

“Then this algorithm is equivalent to Hestenes's method., That
follows because x<'! satisfies fx(xk+1) + ukThx(Xk+q) +

t ZChr(xk+1)hx(Xk+1) = 0, The updating formula used by Hes-

k+1

tenes would now give a u that satisfies

T
1 :
fx(xk+ y + u}<:+1 hx(xk+1) _—
or
-1
k+1 _ _ X+1,,. T, k+1 k+1, T, xk+1
W= = (b G DR (T ) h (kT YELxTT )

which is the expression used in step b).

- - +
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SOME THEORETICAL RESULTS FOR LAGRANGE MULTIPLIER

n the previous section it was shown that the function

= f(x) + ET(x)h(x) + chT(x)h(x)

as a local minimum at x* if the problem is nonsingular
ind ¢ great enough , if Bix)y = =~ (hxhz)—1hxf§ or

p*. For E(x) = y* this result cannot be extended

= (0,0) and pu¥ = 0 and
F{x} = xg t KgXy * cx?

e 1

FXX(U) is indefinite for all ¢ which means that x* is not

a minimum of F{x).

In the previous section it was shown that for multiplier
functions satisfying the extra third condition the second
derivative of F(x) could be made positive semidefinite.
This is, however, not a sufficient condition for a local
minimum. The following theorem shows that for Hix) =

= - (hxhz}-jhxfz it is indeed possible to choose ¢ so that

F{x) has a-loccal minimum.




13.

neorem 4.1, Suppose that f and h are twice continuously
{fferentiable and that h, (x¥) has full rank. Then there
s:a ¢, such that F(x) = f(x) + T(x)h(x) + cn (x)h(x),

- - Ty-1, T . o
here u{x} = (h,h ) 'h f,, has a local minimum at x

roof: Since h (x*) has full rank and h, is continuous it

tn M o= {x} Hx=-x*|l < &8}, Then there exists a constant K
“1 ape less than K/v/&

“From the facts that h(x*) = 0 and h{(x) is continuous it
;follows +hat there exists a &8' such that Hh{x)H 5 672K
“Af Hx-x®*ll ¢ 6', Let &" = min(é6/2,6') and define M' =

| {x! Nx=x*|| ¢ 6"}, Then Hh(x)Il < §/2K for all x€M' and

-

Mtal, .

]

Let x; be any point in M' with hixg) # 0 and study the dif-~

ferential equation
, T T o (x
x'(t) h, (h h )" 'h *)

x(0) = X

The .right hand side of (*) is a continuously differentiable
function on M and therefore satisfies a Lipschitz condition
which means that a solution exists in a neighbourhood of Xg e

Study the function

P(£) = hT(x(t))h(x(t)). It satisfies P'(t) = - 2P(t) which
gives P(t) = P(O)e_Qt. Along the curve x(t) it is conse-

gquently true that

Ih(xCE)) 1l = Nh(xydlie "



t
_ T T ~1
Xq é hx(hxhx} hdt

t follows that

t

t .
HxCe)=x* 1 ¢ 1 x=x* 1l + Kil hixg) i [ e "dt ¢ 8" + &/2 ¢ 68
. : 0

The solution x(t) therefore never leaves M and can be con-
‘tinued indefinitely. From Hox'(t) B« KIEh(xg) e t it foi-
iows that

1im x(t) = X
tore

exists and from,!lh[x(t)]u = |th(x0) ﬂe_t it follows that
hi{x) = 0.

Now study F(xo).

Flxg) - F(x) = = é Fxx‘(t)dt =

- é[hTﬁkhi(hXhz)_1h & 2ch hldt

The function ﬁth(h hT)_1 is eontinuous on M and therefore

, XXX Ta T T, ~1
there exists a constant C such that |h pxhx(hxhx) hi ¢

Clih !F-for all x in M. If ¢ is chosen such that c > C/2

=

then

[ Tl Dy + 2enhlat 5 (2e-0) Il heso 1 2at =
0 | 0

= (26-C) I h(xg) 12 > 0

14,



refore F(xy) > F(x) 3 F(x*) where the last inequality
lows from the fact that x satisfies h(x) = 0. Conse-
ﬁtly F(xg) > F(x*) for all x with |l x-x* )l ¢ & and

%) # 0. Since F(x) 3z F(x*) for all x with h(x) = 0 it

ollows that x* is a local minimum,.

A

corollary. If £(x) > £(x*) for all x % x* with hi{x) = 0,
-hen F(x) > F(x*) for all x #% x* such that [l x-x* | g §.

o far it has only been proved that in certain cases x* is
i local minimum of F(x)., This means that there exists a
6 >0 such that F{x) 3 F{x*) for all x satisfying H x-x* || <
;? 8. In the following theorems it is proved that for a
large class of problems 6 can be made arbitrarily large

by‘choosing ¢ great enough. o

Thecrem 4,%2. Assume that f and h are such that fix) > f{(x*)
for all x # x* such that hix) = 0. Let F{x) = F£(x) + ﬁT(x)-
« hix) + ehT(x)h(x) whepre w(x) is a continuous Ffunction

with yp(x*) = u*. Assume that for c 3 ¢y F(x) has a prépef
local minimum at x*. (From the preceding results it fol-
lows that this is true for H(x) = - (hxhi)“1hxf£

the problem is nonsingular, for §(x) = uk) Then for every

and, if

A > 0 there exists a constant & > 0 such that, for ¢ 3 Qg
it holds that F(x) » F(x*) for all x % x* with d(x,Mh) £ 8,%)
where My = {xth{x) 0 and I}l x=x*.[{ s A},

i

Proof: Assume to begin with that ¢ = ¢,. Since F(x) has a
proper local minimum at x* there is a constant 4 > 0 such
that F(x) > F(x*) for all x % x* with H x-x* il £ 4. Define
g = {xl% g |l x-x* |l £ d} and

=
!

o
i

min (F(x) - F(x*)} >
xéM1

o
.

“) d(x,M ) is defined as inf { ||x-y|[}

Yth

15,



g N x=x* ]| ¢ A}

min {F(x) - F(x*)} > 0
XEM

(x) is uniformly continuous in My = {x{ll x-x* || ¢ A} so
there is a &' > 0 such that H F(x)-F(y) § s &y/2 for all
%,y € My with |l x-y Il ¢ 8'. Put § = min(&',d/2). Study
M' = {xld(x,M) ¢ 8}, If x€M' there exists a y€M with

- F(x) % Fly) < aM/Z and F{y) 3 F{x*) + &y SO it follows
that F(x) » F({x¥) + gM/z.‘Now take an arbitrary x % x*

with d(z)Mh) < 6. IFf xeM!' then F(x) 3 F(x*) + BMfQ > F{x*).
Suppose that x§M'. Then there exists yEMh suqh that

Hx-y i ¢ & and yéM. Therefore |l y-x* 1l < a/2 and N x-x* I <
< Wxy Il + ly=-x*[] < § + d/2 ¢ d which means that F(x) >

3 F(x*). Consequently F(x) > T(x*) for all x % x* with
d(x,Mh) £ 6. Since F(x*) = f(x*) and, for all other values
of x, F(x) increases with increasing ¢, the theorem is al-

so true for all c » Cq .

3

Theorem 4.3. Assume that the conditions of Theorem 4.2 hold.

Then for every A > 0 there is a c, such that F(x) » F(x¥)

for all x # x* with }f x-x*l ¢ A if ¢ 3 c4.

Proof: According to Theorem 4.2 there is a § > 0 such that
F(x) > F(x*) for x # x* with d(x,M ) ¢ § if ¢ 3 ¢,. Define
M! {xIll x=x* |l ¢ A and d(x,Mh) z &8},

L

min I} h(x) 1i%> 0  and m, = min [£(x) + ﬁT(x)h(x)]
x€EM? xeM!

My

Then for x€M' F(x) 3 m, + cmy > F(x*) if

2
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F{x*)

nce it is possible to make x* the minimum of an arbltra—
large part of R" one could ask if it is possible to
¥x* a global minimum by choosing ¢ large enough. That
is not possibie is shown by the following example.

fix} = xg - x?xg, h{x) = X4.
X*:Uandﬂ*:(Jt

For y(x) = u* one gets
Fq(xJ x x% - X

Let x4 Le constant, x4 = « > 1. Then ¥, = ou? - (a3~1)x§
which.is monotonically decreasing towards -=» when x, va-
ries from 0 to =. This reveals a fundamental difficulty
when using numerical methods to find x*. Suppose the me-
thod is started at x = (x1,x2) with Xq > 1. F{x) can be
made greater than F(x*) by choosing ¢ great enough, but
this is no guarantee that the algorithm will find x*. It
might just as well move towards infinity. If instéad Hix) =
= - (hxhz)—1hxf§ one gets F,(x) = xg + 2x3x§ + cx1 which

has the game behaviour.

To be sure that these difficulties can be avoided one has

to make more assumptions about £(x).



i8.

'heorem 4.4, Assume that

the minimum is nonsingular
£(x) > £(x*) for all x ¢ x¥ with hi(x) = 0

hxix*) has full rank

fl(x) » o when I x| + =

Then there exists a g such that for ¢ > ¢4 Fix) = f{x} +
u*Th(x) + chf(x)h(x) has a unique global minimum at x* and

F(x) - «» when I x| + .

Proof: Since

n

F({x) = f(x) + U*Th(x) + chT(x)h(x) =

i

T T
£(x) + c(h(x) . ﬁi] {h(x) + Hf} oot
2c ’

T T
3 f{x) ~ wp? > F(x) - XX £op all o 3 Cy
3] 4c1

it follows that F(x) =+ = when i x li » «. Consequently there

is an A > 0 sueh that F(x) > F(x*) for I| x-x* || > A and
C oz Cy- But according to Theorem 4,3 there is a Sy such

that F(x) » F(x*) for x % x* and |l x-x* ] ¢ A if ¢ 3z ¢,

finally choose ¢y = max(c1a02)'
The theorem is not true when applied to F(x) = f{x) ¢+
¢ P Gone + chTGOR(x) with ¥(x) = = (b)) 'h £ . This

is shown by the following example.

Take f(x)

4]

2 b, 2 _
xp + (1+x2)x1, h o= %Xy

- 2x1(1+xg) and F(x) = xg - x%(1+xg) + cxg

Then ﬁ(x)
which is not bounded from below.
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_THE ITERATION WITH RESPECT TO yu.

. B@sig Theory.

fé-use the results from the previous section about the
multiplier function Bx) = u* the value of u* has to be
known. It is then necessary to have some iterative method
5f determining u*. Therefove it is natural to study the
function of two variables

CP(x,u) = £(x) + uTh(x) + ehT(x)h(x)

"and the function which is a result of the minimization

with respect to x

G(}J) = min F(X,u).
. X

1

The basis of the theory for G(u) is the following theovem.

Theovem 5.1. Suppose that x* satisfies the sufficient con-
ditions of Theorem 2.2. Let the constant ¢ be chosen such
that F, (x*,u¥) > 0. Then there exists an & > 0 and a § >
> 0 such that the function

6(plg = mig F(x,p)
XE€

exists for all ué€D,where S = {xill x~x* } <" ¢} and D =
= {yll w~p* Il < 6}, The unique minimum of F(x,p) in S is
p(n) where ¢ is continuously differentiable

x¥,

given by x
with @(u*)

Al

Proof: Since Pxx is continuous it is possible to find a
§, > 0 and an & > 0 such that Fxx(x,u) > 0 when X€S = [x| -
. 1l x=x* Il < ¢} and gen1 =l u=u* o< 843



.y the equation Fx(x,u} = 0 for x€5, u€Dy. Since
(x*,u*) s 0 and F_ (x¥*,u*) > 0 it follows from the imp-
cit function theorem (see for instance [8]) that there
ists a solytion of Fx(x,u) = § for u€D, = {ulll y-u®ll <
2} if 8, is chosen small enough. It also follows that

@(n) with ¢ continuocusly differentiable. From the
trict convexity of F in 8 it also follows that x = @(u)
¢ the unique minimum of F in 8. With ¢ = min(8,,8,) the

heorem is proved.

The following theorem shows that p* can be computed as the

maximum of G(u)s.

Theorem 5,2.

max G(u)s s G(p*)s = F{x*) S
€D

Proof: For ali pu€D it holds that

min Plx,u) ¢ F(x*,p) = f(x*) = Flx*,u*) =
XES

it

G(u)s

it

min Flx,p*) = G(u*lg
XES
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Theorem b.3. G(u)s is concave in D.

Proaf: Let 6§ be a real number satisfying 0 ¢ 8 ¢ 1. Then

G((1~8duy + ou,) = min{f(x) + c1-e)u¥h(x) + eugh(xb +
XES

+ chT(x)h(x)} =

"

min((1-8)F(x,uy) + 8F (%yu,)) 3
XES

W

min{(1~e)F(x,u1)} + min{aP(x,uQ)} =
XES X€ES

= (1~8)6(uy)g + eG(uQ)S

v b

For numerical calculations it is essential to know the de-

rivatives of G which are given by

Theorem 5.4, For uED G(u)s is twice continuously differen-

tiable with

G, (u)g = hlo(m)

6, (Mg = - hx(w(u))F;l(w(u),U}hg(W(u))

where ©(¢) is defined in Theorem 6.1.
Proof:

G(u)s = min F{x,u) = P(w(u),u]
XES

g, (Mg = F (0G0, u)o, () + Floww),y) = h (@)




ince Fx[(p.(.p.),u) = 0,

-Guu(p)s = 'g‘; h(LP(u)] = hx[w(u)‘)!ﬂ (ul

@, is computed in the following way. Differentiate the
identity Fx[w(u),u] = () with respect to u

Fxx(w(u),u)wu(u) + Fxp(m(n),u} ﬁ.o

This gives

o T
0, (1) = = F7 1 (00 ,u)ny (0(w)

and the theorem is proved.

If F(x) tends to infinity when Il x {{ » « a ‘stronger ver-
sion of the theorems can be proved. It is then possible

to take D and § as the whole of R™ and R" respectively.

Theorer 5.5. Suppose that the conditions of theorem h.h

are satisfied. Then for ¢ 7 Cy the function

G(u) = min Flx,u)
%ERN

exists for all ueﬁm. I+ is concave and attains its maxi-

mum for p = u¥*,

Proof:

T T am
Flx,u) = f{x) + c[h + JL] (h + __] W BH
2c 2c ¥}

and consequently F(x) » <« when H x 1l » =. This means that




fined, Tha concavity of G(y) is proved in the same way as
in Theorem 5.3.

SG(p) = min Plx,u) ¢ Flx¥,u) = £(x*)
X

From Theorem .4 it follows that

G(u*) 2 min F(X,p*) = F(X*,p*} = f{x¥*)
X

so that G{p) < G(p*),

Theorem 5.6. Buppose that the cenditions of Theorem U.4
are satis{ied. Then there exists a § > 0 such that for
Hy~u* 1l < & the minimum of F{x,u) is unigue and given by
x = wlu) where @ is continuously differentiable.

Proof: From the continuity of Fyx it follows that there
are constants 84 > 0 and &4 > 0 such that Fxx(x,p) > 0 1if
Hox-x* }f < 51 and |} y-p* |} < 61.

T T ENE
Flx,p) = £(x) + c[h 4 JL} (h + JL} - BBy f(x) - BN
Za 2c

Since f{X) + « when ll x|l + « it follows that there exists
an A > 0 such that for a given a > 0

Cl} u* H+61)2
fix) > = + F{x*) + o if Hxil > A
Be

If Il u=p* }l < &, then

I I oux g1e8,)? .
F(x,u) 2 f{x) - : f{x) - : > F(x*) + «
be Lo

f(x,n} has a global minimum in x so that 6(u) is well de-.

23,
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if U x Il » A,

Now study f{x,ﬁ) on the compact set Ma='{xlzﬂ§ h x4 < Al
Define '

aq = min{F(x,u%) - flx*x)} > 0
' xeM

and

“m o= maxlih(x) Il
XEM
Then Flxsu) = F(x,u*) + hE(x)Cumut) 3 ul—m62+f(X*)=¢i/2+f(X*) if

%€M and I y~p* I < b, = u1/2m. Now ohoese &, = min(61,62).
For I w-u* i < 84 '

inf Fix,u) > £(x*)
Iox-x* Hae1

But min F(x,u) < £(x*).

The global minimum of F(x,ﬁ) therefore lies in the region
ftx-x* 1l < e, where T > 0. That x = @®(u) with @ conti-

nuously differentiable then follows with the same veasoning
as in Theorem 5.1.

Theorem 5.7. For, Il w=p* | < & (with §& the same as in Theo-
vem 5.6) G{y) is twice differentiable with

6 (1) = nt (o))

‘ -1.T
6, (1) = - hx(w<p>}rxx(w(u),u)- h (0(n))

r

Proof: Same ag for Theorem 5.4.




§.2. Computational Consequences,

In the light of these theorems the method of Hestenes can

be interpreted in the following wayv. Since the gradient
k+1 k

is given by @p = h{g{u)) the updating formula u = 0+
+ 2ch can be regarded as a step in the direction of the
gradient in the u-space. The method tries to locate the
maximum by a "steepest ascent” method. It is known that
this method can be rather ineffective. Powell [#] has
shown that when ¢ » « the updatihg aof u comes arbitrari-
ly close to a Hewton-Raphson step, which would be very ef-
fective. Since it is desirable not to make ¢ larger than
necessary to prevent ill~conditioning of F(x,u), it would
be interesting to use an updating formula for u which is
a Newton-Raphson step for any value of c. This is dealt

with in the following section.

5.3, A Second Order Algorithm.

This algorithm makes use of Guu to take a Newton—Raphson
step in p-space. At first sight this seems to require se-
cond derivatives of f an h, since F__ is used. However,
many algorithms give an estimate of the second derivative
(or its inverse) at the minimum.and this is utilized in
the algorithm making it possible to use only function
values and gradients of f and h. When u has been updated
it is desirable to estimate where the new minimum of F(x,u)
lies to get a good starting point for the algorithm. This

is done by differentiating F (x,u) = 0 which gives F_ (x,u) -

« 8X + hisu = 0 if higher order terms are neglected.

The second order algorithm uses the following iterative

scheme:

25,
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0 0

1) Set k = 0, select a u° and X .
L - s .k X .. n0
2). Compute the minimum point x~ of Flx,u ), using X
as starting point fay the minimization algorithm.

Assume that this algorithm also gives an estimate of
k k k-1
Flp (% ,uk) (or F, (x"5u) }.
3y cateulate & () = hTG) ana 6 (4K = - h ()
. P (xS 'kg“1hT(xk) o )
xx % oM X .

y) Compute Suk from G éuk s - & and-sxk from F (xk,u ).
k T,k ¥ H XX
. X = - hxﬁu
5) Put uk+1 - uk + Guk’ §k+1 _ Xk + 5xk,

Put k = k+1 and go to 2).




6., SUMMARY AND DISCUSSION OF THE THEORETICAL RESULTS.

From the preceding sections i1+ follows that the methods

27.

for minimization using Lagrange multipliers can be divided

into two groups, (I) methods that use the function

P, (x)=£ 0T (b G reh™(x)  with ¥ ()= (b h3) ThE
and (II) methods that use

P (x,u)=E (x)+uTh (x)+ch’ (x)b (%)

2
and iterate in u in such a way that pru¥,

T
X

For the methods of group I the interesting theorem is 4.

1,

which states that for all functions £ and h which are twice

continously differentiable and satisfy the constraint
gualification, the solution x* of the problem (P} can
be made into a local minimum of Fl(x) by choosing the
parameter ¢ large enough. This means that any unconstrai

ned

mipimization method should be able to fFind x* if the starting

point is near enocugh. On the other hand the .eXample on
page 17 shows that it might be impossible to find the
minimom if no good initial approximation can be found.

“The possibilities of the methods of group II are indicated

by the theorems 5,1~5.4 . In these theorems it is assume
+hat the function Fz(x,u} ig minimized with respect to

d

« in the set S,which is a sufficiently small neighbourhood

of x*. This means that the minimization algorithm must b
started near enough to x*. The function G{u) can then be
computed by the minimization algorithm.The multipliers u

e

has to be updated in a way that leads to the maximization

of G(u), using the expressions for Gu(u) and possibly (2:1j
ggnce these results are only valid for values of y which

p(“)'

are near p*, a sufficiently good initial approximation of u¥
has to be provided. The results of these theorems form the
theoretical basis of the method of Hestenes and the method

of section 5.3 . As shown by the example on page 12 the
methods of type II do not necessarily work on singular
problems, in contrast to the methods of type I .



go far the results only-deal with local properties indicating
that algorithms will work if the initial approximation of
the minimum is good enough. It would be nice to have global
results, making it possible to guarantee convergence for
algorithms starting from an arbitrary point., A result of
this type has only been obtained for a restricted class of
functions £ and h. These are the functions satisfying the
conditions of theorem 4.4 : In addition to the constraint
gualification and the condition that the minimum should

be nonsingular, f(x) must-tend to infinity when Plseh

tends to infinity and f£(x) must have a proper minimum under
the constraint h(x)=0. Under these conditions, with the

help of theorem 4.4,it is possible to prove theorem 5.5,
which states that, for any u, Glu} is defined as the global
minimum of F(x,u}. The maximon of the concave function G{u)
is obtained for p=p*. If algorithms for global unconstrained
minimization or maximization were available: the solution
could be obtained from any initial value of x and uy by

a minimization in an inner loop and a maximization in an
outer loop. When conventional minimization algorithms are
used the result is not clear as theve might be local minima
as well as the global minimum of F{x,u). Some global optimi-

zation algorithms have been suggested,{lé},[lS},[lG], but
it is not yet clear how well they work in practise. Alsoc
the theorems 5.6 and 5.7 only give Gu and Guu in a neigh-
bourhood of y*.Note that even when the strongey conditions
of theorem 4.4 apply, the methods of type I can not be used
directly for arbitrary initial values of:x, as shown by

the example on page 18.
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%, NUMERICAL RESULTS.

Tn order to get an idea of the usefulness of some of the
methods presented in the previous sections, a comparison
has been made using a number of test-problems found in the
1iterature., The following methods were tested.

1. The ordinary penalty function method (oPF}.,

This is the method presented in 3.1, Since it is the classical
method to solve the problem it was chosen as a comparison

for the more recent Lagrange multiplier methods. In the tests
the method was used together with the extrapolation technigue

of 0.

2. The method of Hestenes and Powell (HEPO).
Since these methods are very similar they have been repre-
sented by one method in the test, that of Powell [4].

W

3. The method of sec{ion 5.3 (MYNEW).

4. The method of Fletcher and Mirtensson (FLE).

This is the method of section 3.5 with ﬁ(x):-(hxhz)_lhxfg.
In order to make it possible to use an unconstrained mini-
mization method requiring the gradient, without using-

second derivativesoof £ and h, ﬁ§£x) is approximated as
suggested by Fletcher, [6]. An initial approximation of

3x(x) ig obtained by difference approximations and this
approximation is then updated according to the formula

Exzzﬁx + (Aﬁ-ﬁxAx)ﬁxT/Abex .

Tn all cases the unconstrained minimization which is reguired
is performed by an algorithm given by Fletcher in [9].

This algorithm uses function values and gradients of the
function to be minimized. This means that the four methods
which are compared all use the same information: function’

values and derivatives of f and h.




The following test problems are used:

POW, see [4]

minimize XX X X X

when xi gxg-i-xi é -10=0
o 3-—53{4}{5—0
x%—xg +1=0

solution  (=1.7171,1.5957,1.8272,~0.7636 ,~0.7636)

PAV, see B12]1
. 2.2 2
minimize 1000~x1—2x2 x3 l 5 Xle

2 2
when xl—t»xz 3 25—0

8x1+14x2+7x3—56=0

starting point  (10,10,10)
solution  (3.512,0.217,3.552)

EXP, see [12]

10 10
minimize I {exp(x ){c: . ~In % exp(x Yy )}
i=l J=1
vwhen exp (%, J+2exp (x,) +2exp (x25)+exp (%, Jrexp 2y, y=~2=0

exp (x,)+2exp (k) rexp (¢ y+exp (%) 10
exp (X, ) +exp (x7)+exp (x8)+2exp (x9)+exp (xm) -1=0

vhere cl=-‘"6.089 025"17.164 03=—-34.054 045-5.914 05?24.721
cﬁmlé.986 c7=—24.100 cgﬁ-lo.?OB c9=‘-26.662 cloﬁ22.179




Startirg mint ("2.3,"203;"2.3,"2:3;“2;3"‘2.3;“2.3,“213'"‘2-3;"2.3)
SOlution ("3.2’_109 }—0.24 !“m’—0072 f_m'~3.6f—4q0,—3- 3'-20 3)

corl, see {6} and [13]

5 5 5 5. 3 ’
minimize Te,x,+ ¥ Ci'x'xj + £ djx.
=y 13 3=1 i=1 3=1
5
vhen - .-3.5xl+2x3=- -0.25
—9x2~2x3+x 4"2.8:{53 —~4 .
2x1~4x3= =1
xl+2x2+3x3+4x 4+5;-~:5=- 5
vmgre & 4¢ cij and‘dj are given by
e ¥ 2 s ¢ 5
\.\‘\1. . .
et {78, ~27 ~56 ~18 <12
e;s I 80 -20 ~10 52 . -10
220 39. -6  -3L . 38
8 -10 -6 10 -6 -10
- 4] 32 ~-31 - -8 39 - -20
510 ‘32 -1 -20 30
d, 4 8 10 6§ 2
Jv -

starting point  (0,0,0,0,1)-
solution  (0.3000,0.3335,0.4000,0.4283,0.2240)

TRIG n
minimize E (eiE,~f. (x)}2
T i 71
=1 ,
when - Ei—fi (X)=0 i-""l; oo g
whore 6 _ randam number  i=l,..,m .

il i=ml,..,n
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n
fi(x)-—-jil(hijsn_n(xj) + Bijcos(xj) )

Ej =fi (Xﬂ)
= point chosen to be the minimur

Aij and Bij are generated by a randam sugther generator.

Result: Mumber of times that (£ ,fx;hﬁ_h{) has been evaluated to reach
the given -abhsolute accuracy in X.

problem accuracy HEPO OPF MYNEW  FLE
PO 1074 37 a1 36 43
PAV 1073 54% &4 63 47
EXP 107 192 21 163 47
corl 1074 54 45 20 13
mRic T2 1073 28 29 14
=1 5 -
10 35 22 14 8
n=4 ,.~3
o LO_S 02 130 85 21
10 105 - 101 -
=6 -3 . a
= 10_6 57 62 8 25
10 T 49 -
n_=8 ....2
—" —-—
i 10w4 172 194 101

10 - - 136 -
*} found a different minimum

Entries which are mar};ed u_n indicate that the accuracy in question

was never reached. FIF had a tendency to stop too early, before the
desired accuracy was cbtained. It is not clear if this deperdds on

the approximation of M that is used or on the way the algorithm is
implemented. In the latter case it would probably be possible to _
avoid the problem, Apart from this FIE has very good results especially
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on TRIG with n=4,m=2 and EXP, The increase iR speed cbtained with

the different updating of v in MYNEW compared to HEPO is -also shown
altheggh MYMEW is usually slower than FLE. The camparison also indicates
that wee of the ragrange multiplier technique nakes it possible to
design algorithing that are faster than the ordinary penalty function
algorithm,
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