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1

Introduction

1.1 Background

Mathematical models describing the behavior of physical systems are
important in many areas. The required accuracy of the model largely
depend on the purpose for which the model is intended.

In control engineering there is usually a trade off between model
simplicity and model accuracy. Simulation and controller design based
on complex models may result in time consuming computations as well
as numerical difficulties. The designed controller usually also becomes
complex and may therefore be expensive and difficult to implement.
Models with low accuracy, on the other hand, may give rise to incorrect
simulations, as well as control loops with low performance or even
instability.

For these reasons there is a need to use a hierarchy of models,
each equipped with a quality measure. The most appropriate should
then be used for each task. Computation of such quality measures is
the objective of this thesis. We analyze the importance of different
components in a model. We then simplify the description of the less
important components to a suitable level of accuracy. The resulting
model is obtained together with a quality measure.

The choice of modeling framework restricts the type of behaviors
that can be described. Mathematical models describing only the lin-
ear part of a system may, in more difficult design problems, result
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1.2 Related work

in control loops with low performance or even instability. This has
lead to the development of the robust control framework, see e.g. Zhou
et al. (1996). In this framework the model may include an uncer-
tainty description. These are described using constraints, such as norm
bounds. Recently a unified framework for describing uncertainty and
also nonlinearities has been developed, using integral quadratic con-
straints, see Megretski and Rantzer (1995). This is the modeling frame-
work chosen in this thesis.

1.2 Related work

Model simplification has been studied for many years and there is a
large amount of work done in this area. The most common simplifi-
cation method is linearization, where a linear, usually time-invariant,
model is obtained by simplifying a non-linear model. The linear time-
invariant model is relatively easy to analyze and use in controller de-
sign. However, it is still important to keep the model order low to avoid
numerical difficulties in the controller design and to obtain fast simu-
lations and fast control algorithms. Below we review one well-known
reduction method for linear models and a generalization applicable to
models with norm-bounded uncertainty. These results are closely re-
lated to the results in this thesis. We emphasize, however, that the
reviewed results only are a very small part of all the work done in the
area.

State-space models

A lot of work has been done, and is still being done on simplification
of state-space models

x = Ax+ Bu,

1.1
y = Cx+ Du. (1.1)

Two well-known reduction methods for stable models are balanced
truncation, see Moore (1981), Glover (1984), Enns (1984), Pernebo
and Silverman (1982), and singular perturbation approximation, see
Fernando and Nicholson (1982b), Liu and Anderson (1989), Fernando
and Nicholson (1982a).

11




Chapter 1. Introduction

The first step in these two reduction methods is to transform the
given realization into a balanced realization, which is a realization
where each of the states is equally controllable and observable in an
energy perspective. The controllability Grammian P > 0 is the solution
to the Lyapunov equality

AP + PAT + BBT =0
and the observability Grammian @ > 0 the solution to
QA+ ATQ +CTC =0.
Solutions exist if the model is stable. It is then always possible to find

a realization where the states are equally controllable and observable,
P = @ = X. Such a realization satisfies

AT + AT + BBT = 0
YA+ AT3 + CTC =0
for some diagonal matrix
2= diag(al, R O'n) > 0.
The last step is to eliminate the chosen states. In balanced trun-
cation, as the name indicates, we truncate the parts of A, B and C

corresponding to the chosen states. If we assume that we choose to
eliminate the last states and partition the balanced realization corre-

spondingly as
[Au A12] B - [31}
A1 Ag B;

A =
c=[C;, C] D,

then the truncated model is given by

Il

Q>
Il
e

Il

SEC:

I
Q
> &
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1.2 Related work

This method results in no error at very high frequencies. In singular

perturbation approximation the reduced order model is instead given
by

= A — ApAytAy B = By — A1y A;lB,
=C; - CQA2_21A21 b =D — CzAglez

Q>

This method has the advantage that there is no error ar zero frequency
(stationarity).

The calculated matrix X provides an easy way to calculate an upper
bound on the reduction error. If we let G(s) be the transfer function for
the original model and é(s) be the transfer function for the simplified
model then

1G(s) = G(s)lloo < D _ 20%,

where the sum should be taken over the eliminated states. Small ele-
ments in X thus indicate states with little importance. The X-matrix is
therefore also an important guide when we select which of the states
to eliminate.

The above results have been presented for continuous time models
but similar results also exist for discrete time models, see Hinrichsen
and Pritchard (1990) in addition to the previous references. The model
is

Xpe1 = Axp + Buy,
Y = ka+Duk,

and the Lyapunov equalities

APAT + P+ BBT =0
ATQA+Q + CTC = 0.

Finally, we remind the reader that there exist many other results

for simplification of linear time-invariant models, than those presented
above.

13




Chapter 1. Introduction

Closed loop models

Simplification of a model results in an approximation error. It is impor-
tant to be able to measure if this error satisfies the specified accuracy.
This accuracy is in controller design usually specified for the closed
loop model. However, the closed-loop approximation error depends not
only on the open-loop error but also on the controller to be designed.
The relation between the open-loop error and the closed-loop error, for
a given controller, is in addition non-linear. This means that a small
open loop error at some frequencies may result in a large closed loop
error while the same open loop error at another frequency results in
a small closed loop error. We illustrate this with two examples taken
from Skelton (1989). First we show that arbitrarily small modeling
errors may result in arbitrarily bad closed-loop performance.

EXAMPLE 1.1—SENSITIVE MODELING PROBLEM
Consider the system

1

G) = G Dee v 1)

controlled using a P-controller. The closed loop system will then be
given by

Gus) = K/e _ w?
AS) = s2+(1+1/e)s+ (K +1)/e  s2+2wos + w2’

where € is a small value. The parameter { > 0 is the damping of
the closed loop system. When { is close to zero then the system is
oscillative and when ¢ > 1 then the system is well damped. We, thus,
see that using a large value on K the closed loop system gets arbitrary
oscillative.

Now assume that the design is based on the model

1

é(S)=.9+1

which has a small error at all frequencies,

1G = G|l < €.

14




1.2 Related work

The closed loop model using a P-controller is

K

Gal) = TR T T

The closed loop model will therefore be well damped for all values on
K. O

We now show that large open-loop modeling errors do not necessarily
lead to large closed-loop prediction errors.

ExXAMPLE 1.2—ROBUST MODELING PROBLEM
Consider the system

1

Gls) = s+1

controlled using a P-controller. The closed loop system will then be
given by

K

Gals) = T a1

Now assume that the design is based on the model

G(s) = -S]E

which has a infinite approximation error at low frequencies. The closed
loop model using a P-controller is

K
s+ K’

Gcl(s) =

The closed loop model will therefore be close to the closed loop system
when K is large. O

To avoid the above described type of problem, frequency weighting was
introduced in Enns (1984). To apply this method one has to choose the
weights depending on what frequency ranges that are important for
the closed loop model.

15



Chapter 1. Introduction

It is clear from the discussion above that the required accuracy of
the open-loop model is different at different frequencies. This may in
fact also be the case for the closed-loop model. Frequency dependent
error bounds are therefore important, and are the subject of study
in Chapter 2. These frequency dependent error-bounds may also be
important in other applications than controller design.

Models with perturbation

In modern robust analysis and control design it is common to describe
a system using a feedback interconnection according to the relations

x = Az

(2]

as illustrated in Figure 1.1. Here A represents nonlinearities and model
uncertainty, and M represent linear time-invariant dynamics. The per-

and

Z’= A X

M

Figure 1.1 Feedback interconnection representing a model with nonlinearities
and uncertainty.

turbation A is usually block diagonal,
A = diag(Al, ceey Ar).

and M is a transfer matrix partitioned consistently with the signals

as
[ ]
C D|

16




1.3 Contribution

Simplification of the above described type of model has only been stud-
ied for a small class of A. For discrete time models where the uncer-
tainty is norm bounded, linear and time-varying and the spatial struc-
ture is

A = diag(61lny,...,6:1), Sl <1, E=1,...r

and M is a frequency independent matrix, a truncation method simi-
lar to balanced truncation has been developed, see Wang et al. (1991),
Beck et al. (1996), Beck (1996). The Lyapunov equalities are now re-
placed by Lyapunov inequalities

AXAT + T+ BBT <0
ATSA+X+CTC < 0.

Both the transformation into a new realization and the X-matrix are
in this case non-unique. To obtain good error bounds we have to solve
for a realization as well as a X so that £ has small elements. This is
not a convex optimization problem. A suboptimal algorithm has been
proposed which minimizes the trace of P > 0 and @ > 0 for the
following Lyapunov inequalities

APAT + P+ BBT <0
ATQA+Q +CTC <0,

followed by a (unique) transformation. Each minimization is a convex
problem involving linear matrix inequalities (LMIs). Efficient algo-
rithms for solving such problems have been developed, see Nesterov
and Nemirovski (1993), and reliable software packages exist, see for
example Gahinet et al. (1995). Example 3.5 illustrates the described
method.

Similar results where special consideration is taken if the uncer-

tain part does not include dynamics have been presented in Helmers-
son (1995).

1.3 Contribution

This thesis provides error-bounds, that are numerically obtainable us-
ing convex optimization, for comparison and simplification of a large

17




Chapter 1. Introduction

class of nonlinear and uncertain models.

We will consider the feedback interconnection in Figure 1.1. The
nonlinearities and uncertainties will be described in the IQC-frame-
work by frequency dependent matrices Il (i@). The X-matrix is obtained
as a solution to the inequalities

[A(;’a)) B(éw)rn(i“’) [A(;’a)) B(éa))} < {3 H

{A(iw) + C(i0)*C (io) < 0.

} 1 (i) {A(“")}
I I
For linear time-invariant, possibly uncertain, models the error-bounds
may be obtained separately for each frequency. Then X will be fre-
quency dependent.

We propose a general class of reduction methods, which include
truncation and singular perturbation approximation as special cases.

The thesis consist of two main chapters that may be read indepen-
dently of each other.

Chapter 2 (Frequency dependent Error Bounds) considers
uncertain linear time-invariant models, with the uncertainty described
using quadratic constraints. Model truncation is first studied. Then
we study model comparison and propose a class of reduction meth-
ods, where truncation is a special case. The error-bounds are obtained
separately at each frequency. Chapter 2 is based on the following pub-

lications:

ANDERSSON, L. and A. RANTZER (1997a): “Frequency dependent error
bounds for uncertain linear models.” To appear in American Control
Conference, Albuquerque, New Mexico.

ANDERSSON, L. and A. RANTZER (1997b): “Frequency dependent error
bounds for uncertain linear models.” Journal article under prepa-
ration.

Chapter 3 (Comparison and Simplification using I1QCs) con-
siders the same problem as the previous chapter; model comparison
and simplification. However, the class of models is generalized to in-
clude both time-variability and nonlinearities. The nonlinearities and

18




1.4 Alternative approach

model uncertainty are now described using integral quadratic con-
strains (IQCs), instead of quadratic constraints, and the error-bounds
are no longer obtained at separate frequencies. Effort has been paid to
give an extensive comparison with the results for models with norm-
bounded uncertainty presented in Wang et al. (1991), which is a special
case of the results in this chapter. Chapter 3 is based on the following
publications:

RANTZER, A. (1995): “Error bounds for nonlinear model truncation.”
Presented at Bernoulli Workshop, Groningen.

ANDERSSON, L. and C. BECK (1996): “Model comparison and simplifica-
tion.” In 35th IEEE CDC Proceedings, Kobe, Japan.

ANDERSSON, L., A. RANTZER, and C. BECK (1996): “Model comparison
and simplification.” Submitted to the Int. Journal on Robust and
Nonlinear Control.

We conclude the thesis with some remarks in Chapter 4.

1.4 Alternative approach

An alternative approach to calculating upper bounds would be to cal-
culate the error between the original model and all those models that
we consider for simplification.

Each error can, at least approximately, be calculated using the H .-
norm, /-analysis or stability theory based on integral quadratic con-
straints.

One advantage with direct calculation of the error is that we find
a better upper bound. A disadvantage is that the computation time
depends exponentially on the number of blocks instead of polynomially.

EXAMPLE 1.3
Assume that we have a model with

A = diag(Ay, Az, As)

and that we would like to truncate some of these three blocks. We
can then either calculate upper bounds using o-values or the error

19




Chapter 1. Introduction

A1 Ay Az | error upper bound
0 0

X e1 20'1
es 209

X X e12 2(o1 + 09)
X es 203

X X e13 2(o1 + 03)
X €93 2(0q + 03)

X X eios | 2(01 + 03 + 03)

Figure 1.2 The errors and upper bounds when we simplify different parts of A
in Figure 1.1. The blocks in A that we simplify are marked with x. The number
of o-values are equal to the number of blocks while the number of errors grow

exponentially.

directly for the different possible simplified models. Figure 1.2 shows
that we have to calculate 23 = 8 errors or 3 o-values. Each of these
computations are done in polynomial time w.rt. the number of errors
and o-values respectively. O

20




2

Frequency dependent error
bounds

Abstract

In this chapter, mainly consisting of the paper Andersson and
Rantzer (1997b), we study frequency dependent error bounds for
approximation and truncation of linear dynamic models with un-
certainty. The uncertainty is described by quadratic constraints
and the error bounds are calculated based on solutions to linear
matrix inequalities.

2.1 Introduction

In modern robust control design it is common to model both the sys-
tem dynamics and uncertainty. This often results in models that have
high state order and complicated uncertainty descriptions. These mod-
els may be difficult to analyze and the subsequent controller design,
based on these models, may be both difficult and time consuming. The
resulting controller usually also become complex and may therefore be
expensive and difficult to implement.

For these reasons there is a need to develop methods to analyze
the importance of the uncertainty description as well as the states. In
many situations, such as in controller design, the required accuracy of
the model is different at different frequencies. It is therefore desirable
to do the analysis frequency by frequency.

21




Chapter 2. Frequency dependent error bounds

For linear time-invariant models without uncertainty there exist
well-known order reduction methods and associated error bounds. Two
such methods are balanced truncation, see Moore (1981), Glover (1984),
Enns (1984) and singular perturbation approximation, see Fernando
and Nicholson (1982b), Liu and Anderson (1989), Fernando and Nichol-
son (1982a). The balanced truncation method has been generalized to
models with norm-bounded uncertainty, see Wang et al. (1991), Beck
et al. (1996), Beck (1996).

In this thesis we generalize these results to include a more general
class of uncertainty descriptions as well as nonlinearities. This chap-
ter will focus on uncertain linear time-invariant models, for which fre-
quency dependent error bounds can be found. Error bounds for models
with time-variation and nonlinearities will be obtained in Chapter 3.

The chapter is organized as follows. We start, in Section 2.2, by
describing the modeling framework and stating the problem. In Sec-
tion 2.3 we describe model truncation and present the associated fre-
quency dependent error bounds. An application example is then given
in Section 2.4. Model comparison as well as model reduction using a
general reduction method is described in Section 2.5. A numerical ex-
ample is given in Section 2.6 and the application example is continued
in Section 2.7. Numerical calculation of the error bounds are described
in Section 2.8 and we conclude the paper in Section 2.9 with some
remarks.

2.2 Preliminaries

In this section we describe the modeling framework and state the prob-
lem. Everything in this chapter is done in continuous time, even though
similar results also hold in discrete time.

Notation

Let R denote the real numbers. Subscripts of a matrix denote subma-
trices and parentheses in the subscripts denote submatrices of subma-
trices, e.g.

Ay = [An(n) A11(12)}.

Aj101) Ao
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2.2 Preliminaries

The hermitian conjugate of a matrix A is denoted A* and the symmet-
ric transpose AT . The space of square integrable functions of dimension
p, is denoted L5[0, 00) and the space of functions that are square inte-
grable over any finite time Lf [0, 00). The gain of a transfer matrix is
defined by the maximum singular value as

|G (o)|| = 6(G(iw)).
Note that the gain is frequency dependent.

Model description

A

M

Y =— -~ U

Figure 2.1 Feedback interconnection representing a model with uncertainty.
The modeling framework considered in this thesis, is commonly used
in modern robustness analysis and control design, see e.g. the book

by Zhou et al. (1996), and is defined by the interconnection of a pair
(A, M) according to the relations

x = Az

and

as illustrated in Figure 2.1.
We will usually assume that A and M are stable proper transfer
matrices and that at least one of them is strictly proper. The transfer

23




Chapter 2. Frequency dependent error bounds

matrix A is used to represent uncertain dynamics as well as known dy-
namics considered for simplification while M represent the remaining
part of the model.

The transfer matrix A is also assumed to have a block diagonal
structure A = diag(As,...,A,), where each of the blocks satisfy a con-
straint, e.g. a norm bound or some other quadratic constraint. These
quadratic constraints can also be used to describe uncertain dynamics.

The signals in the interconnection are the input u e LJ}[0, c0),
the output y € L}, [0,00) and the internal signals z € L, [0, 00) and
x € L} [0, 00).

The transfer matrix M is partitioned consistently with the signal
dimensions as

(2.1)

T

C D

The input-output mapping of the interconnection in Figure 2.1 is then
defined by the Redheffer star product

y = (A« M)u = (D + CA(I — AA)"'B)u.

EXAMPLE 2.1 —UNCERTAIN SPRING CONSTANT
A mass and spring system can be described using the equation

mé +déE+kE=F

where £ is the position, F' an external force, m the mass, d the damping
and %k the spring constant. Assume that the spring constant is known
with only 10% accuracy. This may be written as

k= ko(1 +0.15)

where k¢ is the nominal spring constant and ¢ a real unknown constant
satisfying || < 1. The equation then becomes

mé +dé + ko& = F — 0.1koS¢
The described model can be written on standard form using

1 {—O.lko I:l

M(s) = ms2 +ds+ ko | —0.1ky 1

24



2.2 Preliminaries

Problem formulation

The problem considered in this chapter is to analyze the importance
of the different blocks in A for different frequencies. In particular, we
would like to find upper bounds on the error,

e=y—95=(A+M—AxM)u,
or more precisely the norm
I(A % M - A% M) (i),

between two models. We will assume that the difference between the
two models is that some of the blocks in the second model have been
truncated, simplified or changed in some other way. These results can
then be used for model comparison, model simplification and model
reduction.

Quadratic constraints

We use quadratic constraints as a general framework to describe uncer-
tain dynamics as well as known dynamics considered for simplification.
This framework includes a number of well-known constraints such as
passivity and norm bounds.

We say that the matrix A satisfies the quadratic constraint defined
by the hermitian matrix IT if

Krn [i] > 0. (2.2)

The matrix IT will be called a multiplier. The following two properties
are useful:

e Assume that A satisfies the quadratic constraints defined by the
multipliers Il;,...,II, then A also satisfies the quadratic con-
straint defined by

IT = zn:akﬂk
k=1

25




Chapter 2. Frequency dependent error bounds

forany o, >0,k =1,...,n.

e Assume that A has a block diagonal structure,
A= diag(Al, cees Ar),

and that A, satisfies the quadratic constraints defined by I, for
= 1,...,r. Then A satisfies the quadratic constraint defined by

I = daug(I1y,...,I1,),

where
[ Ty 0 | i 0 ]
0 m, 0 I,
daug(Hl, cee s H,.) = (11) (12)
(21 0 I11(22) 0
0 [T, (21) 0 I, (20) |

Below is a list of some multipliers.

EXAMPLE 2.2—MULTIPLIERS
e Let A(f{w) be any unity norm bounded transfer matrix. Then
A(iw) satisfies all quadratic constraints defined by

N

where x(®) > 0.

e Let A(iw) be any passive (positive real) transfer matrix. Then it
satisfies all quadratic constraints defined by

L(Z)I x((gﬂ}

where x(w) = 0.

26




2.2 Preliminaries

e Let A(iw) = 6I, where § is a constant real scalar satisfying
|6] < 1, then A(iw) satisfies all quadratic constrains defined by

Yoy —xGo)

where X (iw) = X(iw)* > 0 and Y (iw) + Y (w)* = 0.

e Let A(lw) = J6I, where § is a constant real scalar satisfying
0 > 0, then A(iw) satisfies all quadratic constraints defined by

Yaor o |

where Y (iw) + Y (iw)* > 0.

o A given transfer matrix A(iw) satisfies all quadratic constraints
defined by multipliers I1(iw) satisfying

{Aéw)J*H@@ [Aéw)] =0

The same A satisfies the quadratic constraints defined by many differ-
ent multipliers IT as shown in Figure 2.2.

It will be shown later that the multipliers Il(iw) play a funda-
mental role when we compute the error bounds between two models.
The particular choice of multiplier will influence the error bounds. In
order to obtain less conservative error bounds it is therefore impor-
tant to choose the multiplier I resulting in the lowest error bound.
Restricting the set of multipliers beforehand may therefore result in
more conservative error bounds than necessary.

EXAMPLE 2.3—QUADRATIC CONSTRAINTS FOR AN INTEGRATOR
Assume that A(s) = 1/s. Then A(iw) satisfies the quadratic constraint
defined by I1(iw) if and only if I1(iw) satisfies

[l/iw]*ﬂ(iw) | 20

27




Chapter 2. Frequency dependent error bounds

-

R

Figure 2.2 The same A satisfies the quadratic constraints defined by many
different multipliers I1. The figure shows some sets corresponding to different
multipliers.

A subset of these multipliers are multipliers of the form

o 0]

where x(w) > 0 is a real-valued function. Multipliers of this form
define quadratic constraints that are satisfied for any passive transfer
function. Thus, restricting the multiplier to have this form, may lead
to conservative error bounds, since the error bounds will hold not only
if A is an integrator but also if A is any passive transfer function. O

2.3 Model truncation

In this section we present frequency dependent upper bounds on the
error when parts of the model is truncated. This is a special case of
the more general results presented Section 2.5.

Model truncation is illustrated in Figure 2.3. We assume, without
loss of generality, that the model is partitioned in such a way that the
lower blocks of A and the corresponding part of M should be truncated.
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2.3 Model truncation

Ay 0
U 1 Ay
0 Ap
A1 A By -
A1 By
Ag1 Agy By oD
Y= C, Co D~ u 5’ = ! ~— U
Figure 2.3 Model truncation.
We partition the model consistently as
A1 A B
11 12 1 Ay 0
M= |A Az B, A = N
C; C» D L
where
AU = diag(Al, ey A,ﬁ),
AL = diag(Af‘+17 vees AT‘)
The truncated model is then given by
A A11 Bl ~
M = , A = Ag.
{ C; D } y

We assumed above that we had specified the parts to truncate be-
forehand. This is not always the case. Instead we can make this spec-
ification based on positive real-valued functions o;(®w) that we assign
to each of the blocks in A, as illustrated in Figure 2.4. Each function
or(w) gives a measure on the importance of the corresponding block
A, at each frequency. When the model is truncated then the error at
each frequency, is bounded by two times the sum of the o,-functions
corresponding to the truncated blocks. This is stated in the following
theorem, which follows from the more general result presented later
in Theorem 2.2.
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A or(w
1 | ox(o)

Y
-
x>

/
.'Ar
-

Figure 2.4 Each block A; has an associated function 0} (@) that measure the
importance of the block at each frequency.

THEOREM 2.1

Assume that A and M are stable proper transfer matrices and at least
one of them is strictly proper. Let I1,(iw), for £ = 1,...,r, be bounded
measurable functions taking hermitian values. Assume for all ® € R
that

o TAL(iw), for k = 1,...,r,and all 7 € [0, 1] satisfies the quadratic
constraint defined by I1;(iw)

® Hk(ll)(la)) > 0, for k=r+ 1,...,r
If there exist real valued functions o1(®),...,0,.(@) > 0 such that

{A(;w) B(iw>rdaug(nl(iw),... 1, (i) {A(;w) B(éw)]< [8 3 }

{A(ia))

A(iow)
I I

]*daug(afﬂl(iw),... , 0211, (iw)) { } + C (iw)*C (iw) < 0,

for all @ € [0,00], then both the original and truncated model are
stable and

(A« M — A x M)(io)|| < 20:,1(@) + - + 20.(0).
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2.3 Model truncation

Remark 1 How to compute o;-functions satisfying these inequalities
is described in Section 2.8.

Remark 2 Note that the o;-functions not are unique.

Remark 3 We describe A using quadratic constraints. It is not neces-
sary to know the specific transfer matrix A. This makes the result ap-
plicable to models where A is uncertain. One must then find a quadratic
constraint that is satisfied for all A in the uncertainty set.

Remark 4 The assumptions on A and M to be stable and proper may
be replaced with the assumption that both the original and truncated
models are stable. Then it is also sufficient that A, € IQC(IT;) for
7 = 1 and not for all 7 € [0,1]. This version of the assumptions is
useful when A is unstable, for example when A contains integrators.

We first apply the theorem to state space models without uncer-
tainty.

EXAMPLE 2.4—TRUNCATION OF STATE SPACE MODELS
A state space model

x =Ax+ Bu
y =Cx+ Du

may be written on the standard form using
A B

M =
{C D}

and A = I,,/s. The internal signal x in Figure 2.1 may in this case be
interpreted as the state and z = x as the state derivatives. We let each
integrator 1/s be regarded as a block of A. Each such block satisfies
the quadratic constraint defined by any multiplier IT, satisfying

[1/1iw]*nk<iw) o] 20

For application of Theorem 2.1, it must in addition hold that

Hk(ll) (ZCO) > 0.
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We consider the special case where

-1 0 0 1
0 0 -10 3

C=[1 1/2 1/3] D =0,
with the corresponding transfer function

3s® + 32s + 65
(s+1)(s+5)(s+ 10)

G(s) =

Based on a numerical solution, see Section 2.8, we find the functions
or(w) shown in Figure 2.5. If we decide to truncate the last state we
obtain a state space model with

The error between these two models is at each frequency, @, bounded
by 203(w). O

The example shows two important features; we do not need a cer-
tain type of realization (such as a balanced realization) and the error
bounds are given at each frequency. An other important point is that
the results are applicable to models with uncertainty. An example il-
lustrating this is given in the next section.

2.4 Application example; part |

In this section we consider simplification of models for the flexible
servo in Figure 2.6. First we state a nominal model, then we extend
this model to include either an uncertain spring constant or an un-
certain moment of inertia. The importance of including an uncertainty
description in these two cases is analyzed.
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10

o [rad/s] ' 10

Figure 2.5 The functions 0;(®w) measuring the importance of the different
states (integrators) in the example. The error, at frequency w, for truncating
state k is bounded by 203 (®).

(O] 0)) @3

k1 ko
o | motor Ha AN 2 AN
d1 do ds

Figure 2.6 A flexible servo.

A simple model for the servo in Figure 2.6 is given by the following
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equations

Jld)l = —kl((bl — (bg) - d1w1 + kuu
Jotwy = k1(91 — @2) — k(92 — 93) — dows
Jsd)s = ko(92 — 93) — dsws

¢1 = 01
¢2 = W2
¢3 = W3
y = ko

where ®; denotes angular velocity and ¢, the corresponding angle. We
assume that the parameters are

J1 = 50-107% kgm?

Jo = 20-107% kgm®

Js = 55-107% kgm?®

di =dy =ds = 30-107% Nm/rad/s
k, = 25-1073 Nm/V

ko = 0.1 V/rad/s.

Introducing the state vector

vl =[w1 ws @3 ¢1-0s ¢2— 03]

results in the state space model,

T —d1/J1 0 0 —ky/d1 0 1 "Ry /J1
0 —da/dJ2 0 ki/ds  —kafdy 0
U= 0 0 —d3/J3 0 kz/J3 v+ 0 u
1 -1 0 0 0 0
.0 1 -1 0 0 L 0

y=1[kys 0 0 0 O]v.
This model may be written in a more compact way as
v = Av + Bu

y = Cuv.
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2.4 Application example; part I

The Bode diagram for the model is given in Figure 2.7. We see that
there are resonances at 9 rad/s and 22 rad/s and notches at 6 rad/s

and 21 rad/s.

Magnitude

Phase [deg]

R o s N
107" 10° 10' 10
Frequency [rad/s]

Figure 2.7 Bode diagram for the flexible servo. There are one resonance at
9 rad/s and one at 22 rad/s.

Uncertain spring constant

In this first part of the example we assume that the spring constant
k1 is known only with 10% accuracy, and that we are interested in
analyzing in what frequency ranges the nominal model is a sufficient
description of the uncertain model. We model the unknown spring con-

stant k; as

k1 = k1(1+ 0.15;)

where |0;| < 1 and k; is the nominal spring constant. Using this de-
scription we find that

b=Av+A[0 0 0 1 0]¥6,-01-[0 0 0 1 O]v+ Bu
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and get the model (A, M) where A = §;, and

"= o b

where

A=01-[0 0 0 1 0](sI-A)tA[0 0 0 1 0]
B=01[0 0 0 1 0](sI - A)lB
C=C@I-A)TA[0 0 0 1 0]F
D=C(sI-A)'B.

The uncertainty is in this model represented by a norm bounded real
scalar 0. Such a scalar satisfies the quadratic constraint defined by

M(io) = [ x(a)) y(za))]
y(w)* —x(w)

where x(w) > 0 is real and Re y(iw) = 0. Applying Theorem 2.1 using
this multiplier and numerical optimization, see Section 2.8, we find the
upper bound 20 (@), shown in Figure 2.8 with a solid line. The true
upper bound (the exact error can not be determined since the original
model is uncertain), see Section 2.7, is shown with a dashed line. We
see that the obtained upper bound is close to true upper bound. The
relative error at different frequencies is shown in Figure 2.9. We see
that the uncertainty description is important close to resonances and
notches but is of very little importance at other frequencies.

2.5 Model comparison and simplification

In this section we describe model comparison and how it can be used
for model simplification and model reduction.

Model comparison

Consider comparison of two models that are identical except for some
of the blocks in A, see Figure 2.10. We assume, without loss of gener-
ality, that the upper blocks in A, denoted Ay = diag(Ay,...,A;), are
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2.5 Model comparison and simplification

gy [rad/s]

10°

Figure 2.8 This figure shows upper bounds on the error when the uncertainty
in the spring constant %; is neglected. The solid line shows the error bound
obtained using our method while the dashed line shows the true upper bound.

1.2 T A I T T T T

] 10

v1o°a)[

1

rad/s

Figure 2.9 Upper bound on the relative error when the uncertainty in the
spring constant %; is neglected. It is seen that the uncertainty description is
important close to resonances and notches.
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Ay 0 Ay O
10 A 10 Ag
An Aie Bi| A1 Are By
Ag1 Ay By Agy Ay By
- 1C1 Cy Do - 1C1 Cy, D

Figure 2.10 The two models that we compare.

identical while the lower blocks denoted A; = diag(As.1,...,A,) and
Ar, = diag(Asq,...,A,), respectively, are nonidentical. We partition
the two models consistently as

A A B
1u A B Ay 0 A Ay 0
M= |Ay Axp B, A= NE A= o Al
C, Cy D L L

To compare the two models we assign positive real-valued functions
o () to each of the blocks in A, as illustrated in Figure 2.11. Each
function o (w) gives a measure on the importance of the correspond-
ing block Aj. The error between the two models, is bounded by two
times the sum of the o,-functions corresponding to the nonidentical
blocks. Note, that the oj,-functions will depend on the selection of a
set, described using quadratic constraints, that both A, and Ak belong
to. Figure 2.12 illustrates a case where A, is an uncertain transfer ma-
trix, with a value in the grey set, and A, is a known transfer matrix.

The results in this thesis do not take inter-dependence between the
blocks in A into account. A priori applied coordinate transformations
may therefore be valuable in order to obtain less conservative error
bounds, but do at the same time change the structure of the model. This
change of coordinates may be undesirable, for example if the elements
in M have a physical interpretation.
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A oL@
s | ow(®@)

\
o
=

/
.Ar
-

Figure 2.11 Each block A; has an associated function o;(w) that measure
the importance of the block at each frequency.

Figure 2.12 Both the block A; and A, must satisfy the same quadratic con-
straint (which describes the large set). We illustrate the case where A; is an
uncertain transfer matrix with a value in the grey set and A, is a known transfer
matrix.

Model simplification and reduction

The described comparison of models may be used for model simplifica-
tion. The second model is in this case considered as a simplification of
the first model. To choose which of the blocks in A to simplify, we may
look at the o-functions since they indicate for which of the blocks in
A simplification is cheapest. The simplification is then done by replac-
ing Ay, with a fixed transfer matrix Az, with the same block structure
as Ar. We choose the replacing transfer matrix to be frequency inde-
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pendent to avoid unnecessary dynamics, and choose it close to A;, to
obtain a simplified model close to the original model; the last statement
is motivated by the following result.

Assume that (A, M) is stable then for every € > 0 there exist a
0 > 0 such that

|[AxM —-AxM| <&  when A - Al < 8.
This follows since
AxM—AxM = CA(I - AA)'B - CA(I - AA)™'B

is a continuous function of the matrix elements, and no singularities
occur due to the stability assumption.
After the described simplification, we find an upper bound on the er-
ror by summing the o-functions corresponding to the replaced blocks.
The spatial dimension of the simplified model may be reduced. This
follows by observing that

S B VAN (@23
0 A, *M=AyxM, (2.3)
where
A A1 By A |\ - ~
M = + Ar(I — ApAL) 1 Ayy Bs ).
<C1 D) (Cz> L( 22A1) ( 21 2)

This is illustrated in Figure 2.13. Note that it is crucial for this re-
duction that Ay is a fixed transfer matrix, and not a set of transfer
matrices, so that i/ is a fixed transfer matrix. In some cases it is also
useful to have M frequency independent. To maintain this property
after the reduction, we use a frequency independent Ay,

EXAMPLE 2.5—TRUNCATION
Choosing the fixed matrix A; = 0 results in a reduced model with

. A By
M = .
{ Cy D}

This model is simply a truncation of the original model. This was the
special case considered in Section 2.3. O
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2.5 Model comparison and simplification

Y

A

A
>

Figure 2.13 Model reduction. A fixed transfer matrix Az, may be captured in
M. The new model (Ay, M) will then have a lower, i.e. reduced, spatial dimen-
sion.

EXAMPLE 2.6—SINGULAR PERTURBATION APPROXIMATION
A state space model

x =Ax+ Bu
y =Cx+ Du

may be written on the standard form using

o [A B]

C D

and A = I,/s. Reduction of balanced state-space models using singu-
lar perturbation approximation, see e.g. Liu and Anderson (1989), is
well-known. If we assume that (A, B, C, D) is a balanced realization,
then the reduced order model obtained using singular perturbation
approximation in continuous time is given by

i - A1 — A1sAG Asy By — A1gAjr By
- C, - CzAEzlAzl D — CzAElez .

This reduced order model is obtained by letting Az — oo - I in the
reduction algorithm above. O
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Error bounds

We now present the frequency dependent error bounds associated with
model comparison and simplification.

THEOREM 2.2

Assume that M is a stable proper (strictly proper) transfer matrix and
that we have two stable strictly proper (proper) block diagonal transfer
function matrices

A = diag(Al, e Ar),

A = diag(Al,...,A;,Aerl,...,Ar).
Let I1,(iw), for & = 1,...,r, be bounded measurable functions taking
hermitian values. Assume for all @ € R and all 7 € [0, 1] that

e TA,(iw), for & = 1,...,r, satisfies the quadratic constraint de-
fined by I, (iw)

e TAL(iw), for k = # + 1,...,r, satisfies the quadratic constraint
defined by IT;(iw)
If there exist real-valued functions o1(®),...,0.(@) > 0 such that
A(lw) Bf(iw) 0 0
I o [“lo 1
(2.4)

{A(iw) B(iw)

I } *daug(ﬂl(ia)), 1L (iw)) {

{A(ia))

A(iw)
I I

rdaug(afﬂl(ia)),... ,02I,(iw)) { } + C(iw)* C(imw) < 0

(2.5)
for all @ € [0, 00]. Then both (A, M) and (A, M) are stable and
(A * M — A« M)(io)|| < 205:1(®) + - + 20 (@).

Let (Ay, M ) be the reduced order model obtained using the reduction
formula (2.3). Then

(A % M = Ay * M) (io)|| < 20741(@) + -+ + 20, (w).
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2.5 Model comparison and simplification

Remark 1 The interpretation of this theorem is that, if the transfer
matrices A,k = 7 + 1,...,r are replaced by different transfer matri-
ces, usually constant matrices, satisfying the same constraints, then
the error is bounded by positive frequency dependent functions corre-
sponding to the replaced transfer matrices. The reduction algorithm
give an equivalent model with lower spatial dimension.

Remark 2 Model truncation corresponds to A = 0. The only con-
straint on the multiplier IT, obtained from this replacing transfer ma-
trix is IT;(17) = 0. This condition is found in Theorem 2.1.

Remark 8 We describe A using quadratic constraints. It is therefore
not necessary to know the specific transfer matrix A. This makes the
result applicable to models where A is uncertain. One must then find
a quadratic constraint that is satisfied for all A in the uncertainty set.

Remark 4 The assumptions on A, A and M to be stable and proper may
be replaced with the assumption that both the original and truncated
models are stable. Then it is also sufficient that Az, A, € IQC(II,) for
7 = 1 and not for all 7 € [0, 1]. This version of the assumptions is
useful when A is stable, for example when A contains integrators.

Proof We start by proving stability. This proof is only given for the
model (A, M) since the proof for (A, M) is identical.

We will consider the model where A is replaced with 7A and show
that this model is stable for 7 = 1. Stability means that all the poles
are in the open left half plain. This holds for 7 = 0 since both A and M
are stable. If no pole crosses the imaginary axis as we let 7 increase
from zero to one, then the model (A, M) will be stable. It therefore
remains to check that there are no imaginary poles for any value on
7 €[0,1], i.e.

det(I — A(iw)TA(iw)) #0, we[0,00], 7T € [0,1].
This holds if

[TAfia)) A(;w)}
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is invertible, i.e. the columns are linearly independent. If we assume
that they are linearly dependent then

Al (1 .
[I]wl—LA}wz, w1 # 0,wz # 0.

This implies that

AT L TAY, [T ]
wl[[ I wl—szA} A |2

which is a contradiction since

27

{ I r I

IT > 0.
TA TA
This proves stability.

We now prove the error bounds for the case with 7 = 1 and r = 2.
The case with 7 = r = 1 is almost identical, but less pedagogical. We
partition the matrix M as

and

Ann A B
M= |Ay Ay B
cCi, Cy, D

Since we have two models (A, M) and (A, M) we also have two feed-
back interconnections and also two sets of signals. We introduce the
following notation for the laplace transformed signals:

z1 X1 21 X1
29 =M Xo |, 22 =M .’)?12
Yy u y u
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2.5 Model comparison and simplification

We assume that the initial conditions are zero. This is realistic since
the two models are stable. Note that the input signal u is the same for
both models.

Multiplying the inequality (2.4) with the vector (x1 + X1, x2 + X2, 2u)
from the right and its complex conjugate from the left, and adding this
to the inequality obtained by multiplying the inequality (2.5) with the
column vector o51(x; — £1,%2 — £2) from the right and its complex
conjugate from the left, we then get by noting that z — 2 = A(x — %),
y — 3% = C(x — %) and using some matrix manipulations, the following
inequality

A * A

21 +21 21 +21

0 > . | II1 .
X1+ Xxq X1+ X1

~ E A

9”1 —21 21— 21
+0f622[ A} Hl[ A
X1 — X1 X1 — X1

291" z 251" 2z
2] ma ]2 ] e[
X9 X9 X2 X2

+03 2y — 9* — 4Jul?.

The first and second term are nonnegative since A; = A; satisfies the
quadratic constraint defined by IT; and

X1 + 551 = Al(zl + 21)

The third and fourth term are nonnegative since As and Ay both satisfy
the quadratic constraint defined by ITo. This completes the proof for
thecaser+1=r = 2.

More generally one can generate a sequence of new models by re-
placing A,,...,As,; one at a time. At each step, the above argument
can be used and the total error bound becomes

(v = 3)(io)| < 2(0x(@) + - - + Or1(@)) [u(i@)].
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Some optimality results

The error bounds obtained from Theorem 2.2 are in some cases optimal,
i.e. equal to the true upper bound. The true upper bound is obtained
by taking the worst possible error at each frequency. This means that
there for each frequency exist values on A(iw) and A(iw) such that the
error is equal to the true upper bound.

The following theorems are given without proofs (standard but te-
dious calculations).

THEOREM 2.3
Let A and A be non-negative constant real scalars, then they satisfy
any quadratic constraint defined by

0 :
M(io) = { . y(zw)}’
y(iw)* 0
where Re y > 0. The inequalities (2.4) and (2.5) become equivalent to
C(iw)|-|B(io)|

. , ReA(iw) < 0
@ > 6 o)l Blio) P
mAGe) = eAle)>

using the freedom in these multipliers.
Assume that the assumptions of Theorem 2.2 are satisfied and let
Oopt(@) = inf o(w), then the true error bound is given by 20 (). O

THEOREM 2.4 A
Let A and A be constant real scalars with |A| < 1 and |A] < 1, then

they satisfy any quadratic constraint defined by
0] x0)
N(iw) = { x@) -y )},
y(w) —x(o)

where x(w) > 0 is real and Re y(iw) = 0. The inequalities (2.4) and
(2.5) become equivalent to

|C(iw)| - |B(iw)|
V(A - AG0)P)? + 4(Im A(iw))?’
|C(iw)| - |B(iw)
2 TmA(io)|

|A(iw)| < 1
o(w) >

A(io)] > 1

46




2.6 Numerical example

using the freedom in these multipliers.
Assume that the assumptions of Theorem 2.2 are satisfied and let
Oopt(®w) = inf o (w), then the true error bound is given by 20,,t(®). O

2.6 Numerical example

In this section we give an example where we illustrate both the use
of other reduction methods than truncation and the importance of not
restricting the set of multipliers more than necessary.

(;1(3) (;2(8)

(;3(8)

Figure 2.14 The model in the example.

Consider the model in Figure 2.14 where the transfer functions are

Gils) = S k=123

The time constants are 77 = 1, 75 = 0.1 and 73 = 0.01. We assume
that we are interested in knowing how large the error would be if we
neglect the dynamics for some of the transfer functions, i.e. assumes
that G, (iw) =~ 1. This problem can not be studied using the results in
Section 2.3 where only truncation corresponding to the approximation
Gr(iw) = 0 is studied.

To be able to apply the results in this thesis we rewrite the model
on the form (A, M). We let A contain the transfer functions considered
for simplification and M the remaining part of the model. For example
if we consider simplification of G and G3 then

A = diag(ds, ds) = diag(Gz(s), Gs(s))
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and

0 0 Gl(S)
M(G)={0 0 1
1 1 0

To simplify the dynamics corresponding to G, we use 5y = ék =1
in the reduction formula (2.3).

We will now consider two cases. In the first case we describe the
transfer functions as known transfer functions and in the second case
we describe them as unity norm-bounded transfer functions.

In the first case, the multiplier IT, describing the transfer function
G4, should satisfy both

[Gkémr“k("@ {sziw)} =0

and

[H*Hk(ia)) E] > 0.

The first constraint corresponds to the original transfer function and
the second to the simplified transfer function. These constraints on the
multipliers are necessary and sufficient.

We now consider simplification of one of the transfer functions at
a time. Using numerical calculations, see Section 2.8, we find the o-
functions in Figure 2.15. The corresponding error bounds 20} are in
these cases equal to the true error. The true error has in this simple
case been calculated as the difference between the transfer functions
corresponding to the original and simplified simplified models.

It is easy to understand why the error curves have the form shown
in Figure 2.15. The approximation G3(s) =~ 1is accurate at low frequen-
cies where G3(s) = 1 but not at higher frequencies where Gs(s) =~ 0.
The same idea can be used to understand why the curves for o, () and
o2(w) are small at low frequencies. At high frequencies, however, the
small values are explained by the low-pass character of the transfer
functions in the series connection.
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2l n PRIy
10" 10

@ [rad/s]

10°

Figure 2.15 The oj-functions corresponding to the dynamics in Gy(s). If the
dynamics in Gy(s) is neglected then the approximation error will be bounded
by 207, (0))

In the second case we describe the transfer function G, using the
multiplier
_ x(w) 0
I (tw) =
i) [ 0 —x(w)}

where x(w) > 0 is a real valued function. This multiplier defines
quadratic constraints satisfied by any unity norm-bounded transfer
function and is, thus, a conservative description of our transfer func-
tion. Note that the simplified transfer function 6, = G, = 1, also
satisfies the quadratic constraint defined by this multiplier.

Using this multiplier when considering simplification of one block
at the time we obtain the o-functions in Figure 2.16. Comparing with
Figure 2.15 we see that the o-functions in Figure 2.16 give more con-
servative error bounds. This shows that it is important to allow as
much freedom in the multiplier IT as possible, in order to obtain good
error bounds.
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Figure 2.16 The o;-functions corresponding to the dynamics in G (s), when
a more conservative description is used.

We now return to the more accurate description and let A contain
both the transfer functions Ge and Gz at the same time. Using the
two step procedure, described in Section 2.8 we find the o-functions
in Figure 2.17. These o-functions have higher values and thus result
in more conservative error bounds when we consider simplification of
one transfer function at the time, than the previously obtained. One
possible reason for getting higher values is that the suboptimal two-
step algorithm not necessarily give us the the best possible solution to
the inequalities in Theorem 2.2, as it does in the one-block case. An
other reason is that the o, values are expected to increase with the
number of blocks in A when there is an interdependence between the
blocks. The reason for this is as follows. If we simplify one block then
the error will be bounded by 20}, this must hold independent of how
many blocks there are in A. We therefore do not expect o}, to decrease
with the number of blocks in A. On the other hand if we increase the
number of blocks in A then the function o} should be used to calculate
more upper bounds. The o;-values may then have to be increased. The
following example illustrates the idea.
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al " N " 1 axl P | N RS
° ! ? 10 10

1.0_ .“10 10 10
@ [rad/s]

Figure 2.17 The o-functions corresponding to the dynamics in Gg(s) and
Gs(s), respectively. If the dynamics in both these transfer functions are ne-
glected then the approximation error will be bounded by 2(c2(w) + o3(®)).

EXAMPLE 2.7
Consider the function

f(61,62,03) = (61 — 62)(61 — I3),

defined for |0;| < 1. Think of each §, as a transfer function and the
function f as the input-output relation of a model. Assume that the
nominal model is given by G(6) = f(d,9,0) = 0 and consider the
following three simplified models,

G2(8) = f(8,8,,8) = 0,

Gs(8) = F(8,6,65) = 0,

Ga3(8) = f(8,62,83) = (6 — 62)(8 — 63).

We see that replacing only one of the transfer functions ds and 63 does
not result in any input-output error. If we on the other hand replace
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both 85 and &5 then the error satisfies
G - Gas| = |Gas| < 4,

where the bound is reached for 52 = 53 = -0 = %1.

This shows that the error when we replace more than one compo-
nent of a model may be larger than the sum of the errors for replacing
one component. This indicates that is may be necessary to increase the
value on ¢; when the number of blocks considered for replacement is
increased. O

Finally we let A contain all the transfer functions at the same time.
The suboptimal o-functions are in this case shown in Figure 2.18. We
see that the o-functions in this case have even higher values.

101: T T T MRRRAL] T HEAIRARAL

2l L FEEt
10" 10°

o [rad/s]

Figure 2.18 The o-functions corresponding to the dynamics in Gi(s),
Gy(s) and Gs(s), respectively. If the dynamics in all these transfer func-
tions are neglected then the approximation error will be bounded by
2(o1(@) + 02(@) + o3(@)).

The conclusions from this section are that it is important to describe
the transfer function A as accurately as possible, i.e. use as much free-
dom as possible when the multipliers I1, are chosen. Also one should
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only include in A the dynamics that are intended to be simplified. If
these recommendations are violated the error bounds may be more con-
servative than necessary. On the other hand, if these recommendations
are followed the method gives good error bounds for this example.

2.7 Application example; part I

In this section we continue with the flexible servo example introduced
in Section 2.4. Neglecting the moment of inertia naturally leads to the
use of an other reduction method than truncation.

Uncertain moment of inertia

In this second part of the example we consider the moment of inertia
for the second mass as unknown, and denote it by /. We assume that
J9 < J9 which we model as

- Jo
Jo = ——,
2 1+ 5J
where ; > 0. We are now interested in analyzing whether the moment
of inertia, JJ5, may be neglected or not.

Including the uncertainty description in the model we find that the
state equation becomes

b=Av+[0 1 0 0 0]"6,[0 1 0 0 0]Av+ Bu.

This model may be written on the form (A, M) used in this paper by
letting A = 85 and

A B
M = ,
e ol
where

A=[0 1 0 0 0JA(sI-A)'[0 1 0 0 o]"
B=[0 1 0 0 0]A(sI-A)"'B
C=C@GI-A)10 1 0 0 0]F
D =C(sI-A)"B
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The uncertainty is in this model represented by the real uncertain

scalar 67 > 0. Such a scalar satisfies the quadratic constraint defined
by

H(ia))z{ ) y(iw)]

y(w)* 0

where Rey > 0. Using this multiplier in the inequalities (2.4) and
(2.5) give after numerical optimization, see Section 2.8, the error bound
20 (w), shown in Figure 2.19. It can be shown that this upper bound
is the true upper bound, see the end of this section. The relative

o W .[rad/s]x 1o 10

Figure 2.19 The solid line shows the upper bound on the error when the
moment of inertia for the middle mass is neglected.

error at different frequencies is shown in Figure 2.20. We see that the
uncertainty description is important close to resonances and notches.

To obtain the model where the moment of inertia for the middle
mass is neglected we use d; — oo in the reduction formula (2.3). This
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14 R N
N ..... ......... .....
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N ..... ......... 44444
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o= ; iffffiiio i
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Figure 2.20 Upper bound on the relative error when the uncertainty in the
moment of inertia Jy is neglected. It is seen that the uncertainty description is
important close to resonances and notches.

corresponds to Jo = 0. We then get the simplified model

Jld)l = —kl((f)l — ¢2) — d1w1 + kuu
J3ws = ka(92 — ¢3) — dzwe

01 = w1

f2 = w2 = G (91— 92) = (92 - ¢3)
¢3 = W3

vy = ka,a)l.

This model can also be obtained in a more direct way. We then use
Jo = 0 to eliminate the state equation for @s. This results in the
following constraint

ki(¢p1 — 92) — ka(@2 — ¢3) —dowz = 0

which we can solve for @, and then substitute into the remaining
dynamic equations.
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Note that the simplified model was obtained by letting J; = 0 while
ds remained unchanged. From a physical point of view this means that
the inertia for the middle rotating mass has been neglected but not the
damping.

Exact error bounds

The error bound obtained in the two cases studied for the flexible servo
has been obtained numerically in the way described in Section 2.8.
However, in these simple cases it is also possible to obtain analytical
expressions for the best error bounds obtainable using Theorem 2.2.

The uncertainty in the spring constant d; is a constant real scalar
satisfying |0z| < 1. We then find an analytic expression for the error
bound using Theorem 2.4. This upper bound is the same as the one
found by numerical optimization and shown in Figure 2.8. This up-
per bound is optimal if we consider reduction using any |6z < 1. In
the studied example we only considered truncation (5Ak = 0, then the
optimal error bound can be shown to be

C (iw)| - |B (iw)|
V(1 = |Re A(iw)[?)? + (Im A(iw))?’
C (iw)| - |B(iw)|
| Im A(iw)|

|Re A(lw)| < 1

|Re A(io)| > 1.

which is the dashed line in Figure 2.8.

The uncertainty in the moment of inertia 6, is a constant real
scalar satisfying 6; > 0. We then find an analytic expression for the
error bound using Theorem 2.3. This upper bound is the same as the
one found by numerical optimization and shown in Figure 2.19. The
theorem also state that this upper bound is optimal if we consider
reduction using any d; > 0. In the considered example we only use
5J — 00, but it can be shown that the worst error bound is found for
57 — 00 (and 5 = 0) so that the error bound is equal to the true error
bound, in this case.
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2.8 Numerical computation

2.8 Numerical computation

In this section we describe how the error bounds, or more precisely the
o (w)-functions, can be obtained by numerical computation.

We simplify the notation by collecting the o (w)-functions functions
in the real matrix-valued function

Y(w) = diag(o1(w),,,...,0. (@), ) > 0.
The error bound inequalities can then be written as

[A(ia)) B(iw)

I rdaug(ﬂl(iw),-..,Hr(iw)) {A(ia’) B(iw)]<[0 0],

I 0 0 I

A(iw)

[A(ia)) i

7] o) dag(mio)..... 1) |

] + C(iw)*C(iw) < 0.

The problem is to find £ (w) that solves these inequalities, and where in
addition X(w) is as small as possible. We have to distinguish between
the following two cases:

e [ given
e I1 constrained by linear matrix inequalities

The error bound inequalities are in the first case linear matrix in-
equalities in X?(w). An optimal (w) can then be found numerically,
for one frequency at the time, using for example the LMI control tool-
box, Gahinet et al (1995). In the second case, where we would like
to optimize over both IT and X, the inequalities usually become non-
convex. The resulting optimization problem is in general difficult. We
therefore propose the following suboptimal two step algorithm.

Step 1 Find I1(iw) that minimizes y(®) under the constraints

A(iw)

7’2(60)[ T F.%H(ia))[A(;w)]*JrC*(ia))C(iw)<0,
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[A(iw) B(io)

I 0 Tdaug(ﬂﬂia)),... I, (io)) [A(ia)) B(iw)]<{0 0]’

I 0 0 I

where IT in addition must satisfy the multiplier constraints used to
describe A. The matrix X; is a guess for the optimal value of Z. If no
information is available we choose X¢ = I.

Step 2 Find X(w) = diag(os,...,0,) that minimizes tr W2 under
the constraint

{A(ia))

A(lw)
I I

rzz(a))ﬂ(ia)) { } + C*(iw)C (iw) < 0,

where II is the solution in Step 1. The matrix W = diag(«a,..., ;) is
a weight on the relative importance of different elements in X. If they
are equally important we choose W = I.

Remark 1 The initial guess Xy and the weighting matrix W may be
frequency dependent.

Remark 2 When there is only one block in A then there is also only
one o value to be calculated. In this case this algorithm gives the best
possible value on o. This does, however, not necessarily mean that we
find the optimal error bound.

Remark 3 The two-step algorithm may be used for iteration; then X
obtained in Step 2 replaces Xy in Step 1 when a new iteration begins.

2.9 Conclusions

In this chapter we have found upper bounds on the error between two
uncertain linear time-invariant models. The results can be used to an-
alyze the importance of different components of a model and for model
reduction. A class of model reduction methods has been introduced.

The obtained error bounds are frequency dependent which is an
important feature in many applications such as controller design where
different frequencies have different importance.
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3

Comparison and
simplification using IQCs

Abstract

In this chapter, which mainly consist of the paper Andersson
et al. (1996), we consider simplification of dynamical models, using
a general reduction algorithm. The model may contain nonlineari-
ties as well as uncertainty. The uncertainty and nonlinearities are
described using integral quadratic constraints (IQCs). The pro-
posed reduction algorithm includes truncation and singular per-
turbation approximation as special cases. The reduction error is
defined in terms of the Ly-induced gain. It is shown that each
component can be assigned a positive value, computable by con-
vex optimization, such that the reduction error is always bounded
by the sum of these values for the simplified components.

3.1 Introduction

In modern robust control design it is common to model both the sys-
tem dynamics and uncertainty. This often results in models that have
high state order and complicated uncertainty descriptions. These mod-
els may be difficult to analyze and the subsequent controller design,
based on these models, may be both difficult and time consuming. The
resulting controller usually also become complex and may therefore be
expensive and difficult to implement. For these reasons there is a need
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to develop methods to simplify the descriptions of the nonlinearity and
uncertainty in the model as well as the state order.

For standard linear time-invariant models there exist well-known
state-order reduction methods and associated error-bounds. Two of
these reduction methods are balanced truncation, see Moore (1981),
Glover (1984), Enns (1984), and singular perturbation approximation,
see Fernando and Nicholson (1982b), Liu and Anderson (1989), Fer-
nando and Nicholson (1982a). The balanced truncation method has
been generalized to models with norm-bounded uncertainty, see Wang
et al. (1991), Beck et al. (1996), Beck (1996).

In this chapter we show that similar error bounds can be obtained
for a general class of dynamical models and a general reduction al-
gorithm. The proposed reduction algorithm includes truncation and
singular perturbation approximation as special cases. The models may
contain both nonlinearities and uncertainty, and are described using
integral quadratic constraints. This latter framework was outlined
in Megretski (1993) and further developed in Rantzer and Megret-
ski (1994), Megretski and Rantzer (1995), and leads to noticeably sim-
pler proofs.

The chapter is organized as follows. We start, in Section 3.2, by de-
scribing the modeling framework and stating the comparison problem.
The corresponding error bounds are given and proved in Section 3.3.
In Section 3.4 we apply the method to models with norm-bounded un-
certainty. Section 3.6 contains some concluding remarks.

3.2 Preliminaries

In this section we first describe the notation and the modeling frame-
work. The modeling framework takes the uncertainty structure into ac-
count as proposed independently in Safonov (1982) and Doyle (1982).
This is done using integral quadratic constraints as outlined in Megret-
ski (1993) and further developed in Rantzer and Megretski (1994) and
Megretski and Rantzer (1995). We conclude the section with a state-
ment of the problem.
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Notation

We use R to denote the real numbers. We use subscripts to denote
submatrixes, and parentheses in the subscripts to denote submatrices
of submatrices, e.g. Aj2). The complex conjugate of a matrix A is
denoted by A* and the transpose by AT.

We let I5[0, co) denote the space of square integrable vector signals
of dimension p, with corresponding inner product defined as

(v, w) = /O o) w()dt = 517; /_ " vio) w(io)do,

o0

where the last equality is known as the Parseval formula. Note that
the same notation is used for time and frequency signals. The signal

norm is defined as |jv]| = 1/{(v,v).
An operator on L}[0,00) is a map A : L}[0,00) — L}[0,0); the
operator gain is given by the induced norm

Az
A = sup 1221
zeL2[0,00) Il

z#£0

When A is linear, we use A* to denote the adjoint operator of A defined
by

<A21,22> = <Zl, A*22>.

We let RHEX™ denote the set of proper rational matrix functions with

real coefficients and without poles in the closed right half plane.
Although most results are given in continuous time they also hold

for discrete time using the signal space 5[0, co) with inner product

o
(v,w) = Z V7 wp.
k=0

Model description

The modeling framework considered in this chapter is defined by the
interconnection of a pair (A, M) according to the relations

x = Az
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z A X

M

Figure 3.1 Feedback interconnection representing a model with nonlinearities
and uncertainty.

and

as illustrated in Figure 3.1.

We let A represents nonlinearities, uncertainty, and dynamic ele-
ments, and M represents linear time-invariant dynamics.

Typically, M is the nominal system model, which is often assumed to
consist of a transfer matrix including model weighting functions. How-
ever, as will be seen in Section 3.4, it is often advantageous to consider
M constant, i.e., M € R(*P)X(n+m) The delay or integral operator is,
in this case, included in A and M will no longer be a nominal model.
Throughout the paper, we will use M to denote both constant matri-
ces and transfer function matrices, where the interpretation should be
clear from the context.

The operator A is assumed to have a block diagonal structure

A= diag(Al, NN ,Ar),

where each of the blocks satisfies a constraint, e.g. a norm bound or
more generally an integral quadratic constraint. The specific opera-
tor A need not be known, thus A is particularly useful for describing
uncertainty.

The signals in the interconnection are the input u e LJ'[0,00),
the output y € L5[0,00) and the internal signals z € L3[0,00) and
x € L2[0, 00).
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The transfer matrix M € RH?*P*(+m) g partitioned consistently
with the signal dimensions as

’M:{A B}

C D (3.1)

The input-output mapping of the interconnection in Figure 3.1 is then
defined by the Redheffer star product

y = (AxM)u = [D+ CA(I - AA) 'Blu.

For simplicity we assume that the model is causal, well-defined and
stable.

DEFINITION 3.1

A model (A, M) is well-posed if the operator I —AA is causally invertible
on L2[0,00). If in addition (I — AA)~! is bounded then the model is
stable. O

Integral quadratic constraints

As a general framework to describe the nonlinearities and uncertainty
of the model, we will use integral quadratic constraints (IQCs), see
Megretski and Rantzer (1995). This framework includes a number of
well-known constraints such as passivity and norm bounds.

DEFINITION 3.2
Let IT : iR — C2?™2" be a bounded measurable function, taking Her-

mitian values. The operator A is said to satisfy the integral quadratic
constraint (IQC) defined by the multiplier I1, written A € IQC(IT) if

® rz@iw)1* _,. . [z(iw)
[ ooy | 160 i 20 = 0 &2
for all vectors z,x = Az € L}[0, c0). O

The next two properties are used in the sequel.

Property 1 Assume that A satisfies the IQCs defined by I1;,...,I1;
then A also satisfies the IQC defined by > ;_, I} for any o, > 0,
kE=1,...,n.
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Property 2 Assume that A has a block diagonal structure,

LA

and that A, € IQC(I1;),k = 1,...,r. Then A satisfies the IQC defined
by I1 = daug(Ily,...,I1,), where the operator daug is defined as

A = diag(Al, .

[ Iy 0 | iy 0 |
0 ILay| O IT(19)
IT1(21) 0 | Iy 0

0 I,y | O T2y |

EXAMPLE 3.1—MULTIPLIERS
This example illustrates that the more we restrict the operator A the
more freedom we get in the the choice of multiplier II.

e Let A be any operator with gain (induced two-norm) less than
one. Then A satisfies all IQCs defined by

[xI 0 }
0 —-xI|’

where x > 0 is a constant number.

e Let A be any linear time-invariant operator with gain (H norm)
less than one. Then A satisfies all IQCs defined by

[x(ig’)l —x((L?a))I] ’

where x(i@w) > 0 is a bounded measurable function.

e Let A be defined as multiplication with a time-varying real scalar
with absolute value less than one. Then A satisfies all IQCs de-

fined by
Y -X
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,where X = X7 >0and Y = -Y7 are real matrices.

e Let A be defined as multiplication with a constant real scalar with
absolute value less than one. Then A satisfies all IQCs defined
by

X(iw) Y(w)
Y(iw)* -X(iw)
where X (iw) = X(iw)* = 0 and Y (iw) = -Y (iw)* are bounded
measurable matrix functions.
[

Problem formulation

In this thesis we study model comparison and simplification. Con-
sider comparison of two models that are identical except for some of
the blocks in A, see Figure 3.2. We assume, without loss of general-

Ay O Ay O
10 AL 10 Ag
An Aie Bij, An A By
Ag1 Az By Ag; Az B
- 1C1 Co Dl - 1C1 Co Dl

Figure 3.2 The two models that we compare.

ity, that the upper blocks in A, denoted Ay = diag(Ai,...,A;), are
identical while the lower blocks denoted A; = diag(As;1,...,A,) and

AL = diag(ﬁ;u,l,...,ﬁr), respectively, are nonidentical. We partition
the two models consistently as
A1 A B
11 Az Di Ay 0 ) Ay 0
M= |Aa Ax Ba|, A = , A = ~ .
0 AL 0 AL
Ci Cy D
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To compare the two models denoted (A, M) and (A, M), respectively,
we consider the output difference

e=y—5=(AxMu—(AM)u,
or more precisely the norm
|Ax M — AxM|.

Note that we do not consider allowable model transformations, such as
similarity transformations; that is, we maintain the given model struc-
ture. This may be important if the matrix elements have a physical
interpretation, but may also result in conservative bounds.

The above described comparison of models may be used for model
simplification. The second model is in this case considered as a sim-
plification of the first model and obtained by replacing Ay, with a fixed
transfer matrix A; = diag(Af.H, e, Ar). If this fixed matrix is chosen
within a given set then we can compute an upper bound on the ap-
proximation error using the results in the next section. Note, however,
that we will not give any guidance among the possible selections for
fixed A L.

The spatial dimension of the simplified model may be reduced. This
follows by observing that

Ay O rC Ap kil 3.3
{0 Ay |0 T AU (8:3)
where
- A B Ag \ 4 A
M = + Ar(I —ApAr) [ A B )
<C1 D> (Cz> L( 92AL) ( 21 2)

This thus gives us (Ay, M) as the reduced dimension model. Note that
it is crucial for this reduction that Ay is a fixed operator, and not a
set of operators, so that M is a fixed operator. In some cases it is also
useful to have M frequency independent. To maintain this property
after the reduction, we use a constant matrix Ar.
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EXAMPLE 3.2—TRUNCATION
Choosing for the fixed matrix Az = 0 results in a reduced model with

N A B
i - { 11 1] ‘
C, D
This model is simply a truncation of the original model. Ol

EXAMPLE 3.3—SINGULAR PERTURBATION APPROXIMATION
If standard state-space models are written in the (A, M) form used in
this thesis, see Example 3.4, then

M- {A B}

C D

consists of the realization matrices, and A the dynamics. Reduction of
balanced state-space models using singular perturbation approxima-
tion, see e.g. Liu and Anderson (1989), is well-known. If we assume
that (A, B,C, D) is a balanced realization, then the reduced model
obtained using singular perturbation approximation in discrete time
is

ir - [All + Aro(I — Ag) 'As1 Bi+ Aspa(I - Azz)_lB2]
Ci1+ Cz(I - Azz)_1A21 D + Cz(I - Azz)_le

and in continuous time

i = I:All — A1pAs A9y By — Aleingz}
Ci— CzA2_21A21 D — CQAEQIBQ

These reduced models are obtained using Az = I and by letting
A L —> 00 I s

respectively. ]
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3.3 Error bounds

In this section we present the error bounds associated with the com-
parison presented in the previous section. To obtain these error bounds
we use integral quadratic constraints to describe A.

THEOREM 3.1 .
Assume that both (A, M) and (A, M) are stable and that the operators

A = diag(Al,...,Ar),
[AX = diag(Al,...,A;.,A;J,l,...,ﬁr).

are linear. Also assume that A, € IQC(I1,) for £ = 1,...,r, and that
Ap €eIQC(I1y) fork =7+ 1,...,7.

If there exist real numbers o,...,0, > 0 such that
A B1° A B 0 0
II,,...,II, 3.4
T I B b I o I
AT" 9 0 A
I daug(oiIly,...,0:11,) 7 +C*C <0 (3.5)

for all ® € [0, o] then
IAx M — AxM|| < 267,1 + - + 20,

Let (Ay, M) be the reduced order model obtained using the reduction
algorithm in the previous section then

|Ax M — Ay « M|| < 265,41 + - + 20,

Remark 1 Note that the o,-values not are unique.

Remark 2 Stability for the original and simplified model essentially
follows from inequality (3.4) or inequality (3.5). We refer to Jons-
son (1996) for details on proving stability for models in our framework.
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Proof We start by proving the case 7 + 1 = r = 2. The case with
r = 1 is almost identical, but less pedagoglcal We partition the
matrlx M as
Ay A B
M= |An Az B
Ci: C; D

Since we have two models (A, M) and (A, M) we also have two feed-
back interconnections and also two sets of signals. We introduce the
following notation for the (frequency) signals.

21 X1 él 5&1
29 =M X9 |, é\z =M 552
y u y u

We assume that the initial conditions are zero. This is realistic since
the two models are stable. Note that the input signal « is the same for
both models.

Multiplying the inequality (3.4) with the vector (x1 + X1, 29 + X2, 2u)
from the right and its complex conjugate from the left, and adding this
to the inequality obtained by multiplying the inequality (3.5) with the
column vector o5 ! (x1 —#£1, x2 — £2) from the right and its complex conju-
gate from the left, we then get the following inequality by noting that
z—2 = A(x—%), y—y = C(x—%) and using some matrix manipulations:

z1+211° z1+ 2
0 [1 Al}nl[l Al]

X1+ X1 X1+ X1
z1— 2 21— 2
+0'10'22[ 1 1} Hl{ 1 Alil
X1 — X1 X1 — X1
291" z 21" 2
o] 2]z ) ma 2]
X2 X2 X2 X2
—2 12 2
+05 |y = 17 — 4ful”. (3.6)

Integrating the expression on the right hand side of the inequality
along the frequency axis causes the first four terms to become nonneg-
ative. In the linear case, the first and second term become nonnegative
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since A1 = A; € IQC(I1;) and are linear. (In the nonlinear case, dis-
cussed later, this follows from the additional assumptions that the IQC
is satisfied incrementally and that A1, A; are odd.) The third and fourth
term become nonnegative since Ag, Ay € IQC(ITy). This completes the
proof for the case 7 + 1 = r = 2.

More generally one can generate a sequence of new models by re-
placing A,,...,A;,; one at a time. At each step, the above argument
can be used and the total error bound becomes

ly =3l < 2(0r + -+ + os1) ]l
O

The interpretation of this theorem is that if the operators A, are re-
placed by different operators A, satisfying the same constraints, then
the error is bounded by the sum of positive values corresponding to the
operators which were replaced. This gives a solution to the compari-
son problem. If we then reduce the model to an equivalent model with
lower spatial dimension as in 3.3, then the same error bound holds.
This gives a solution to the model dimension reduction problem.

The error bounds may be improved if some of the oj-values are
equal.

THEOREM 3.2
Equal o}, values in the error bound need only be added once.

Proof If there are equal o;-values then the corresponding blocks can
be collected in one block and the corresponding I, matrices collected
in one larger IT;, matrix. The o,-value corresponding to this larger A,
is the same as for the smaller ones. O

The problem of finding upper bounds on the error has been rewrit-
ten in the theorem as a problem of finding values o, that satisfy the
inequalities (3.4) and (3.5). If the multiplier IT is given then these in-
equalities become linear matrix inequalities in X. Efficient algorithms
for solving such problems using interior point methods have recently
been developed, see Nesterov and Nemirovski (1993), Vandenberghe
and Boyd (1996) for details and further references; a reliable soft-
ware package is e.g. the LMI control toolbox, Gahinet et al. (1995). If
more freedom in the choice of IT exists then the error bounds may be
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improved and the resulting optimization problem is, in general, non-
convex. A suboptimal solution may then be obtained using the following
two step algorithm, where I, is used to denote a convex set of mul-
tipliers IT that define integral quadratic constraints that are satisfied
by A.

Step 1 Find I € I, that satisfies inequality (3.4) and minimizes y

mn
S0AT1" YoA7"
72{ ° }n[ ° } +C*C < 0.
Zo 20

The matrix X, is a guess for the optimal value of X. If no information
is available we choose Xo = I.

Step 2 Find X = diag(c1l,,,...,0,1,,) that minimizes tr Wx? for

A *zzn A C*C <0
7 7 + <
where TI is the solution in Step 1. The matrix W = diag(ay,..., ;)

serves to weight the relative importance of different elements in Z. If
they are of equal significance we choose W = I.

Remark 1 The two-step algorithm may also be used for iteration; then
> obtained in Step 2 replaces Xy in Step 1 when a new iteration begins.

Remark 2 When yX, = X then the inequality in Step 2 is equivalent
to the inequality in Step 1 and inequality (3.5). This follows from the
equalities 22I1 = ZI1E = daug(o?My,...,o?2Il,).

3.4 Special cases

In this section we consider the case where A represents norm-bounded
uncertainty, and has a repeated scalar structure. Error bounds for
truncation of such uncertainty descriptions have been studied during
recent years, see e.g. Wang et al. (1991), Beck (1996). We will show that
the same error bounds follow from Theorem 3.1, but then also provide
additional reduction methods. We will also consider the closely related
case where the scalars are passive operators. Finally, we try to give a
deeper understanding of Theorem 3.1 using these cases.
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Uncertain norm bounded components

We start by introducing the same model structure as used in Wang
et al. (1991), Beck (1996). The matrix M is constant and A is linear
with a repeated scalar structure

A = diag(61l,,,021,,,...,0.1, ),
where the scalar operators are norm bounded, that is,
ol <1, R =1,...,r.

This type of model is typically used to describe discrete time systems
with norm-bounded uncertainty. The known linear time-invariant dy-
namics are modeled by letting one of the d,-s be the delay operator.
The following example illustrates this idea.

EXAMPLE 3.4—STATE-SPACE MODELS
Discrete time state-space models

Xpe1 = Axp + Buy,

¥r = Cxp+ Duy,
with signals in /; and no uncertainty are formed by letting A = 2711,
where z7! is the transfer function for the delay operator. ]

The idea of capturing the linear time-invariant dynamics of the model
in A is used to rewrite a model with a frequency-dependent M as a
model with a constant M.

Applying Theorem 3.1 gives the following result.

COROLLARY 3.3
Let

A = diag(6iln,,...,5.1,),
A = diag(511n1, RN 5,@[,1;, 3,@+1Inf+1, caey Srlnr).

Assume that ||6,]| < 1fork =1,...,rand ||§;]| < 1fork =7 +1,...,r
and that there exists a real matrix £ = diag(oil,,,...,0,1,.) > 0, that
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solves the Lyapunov inequalities

ATA* —3 + BB* <0
A*SA-3+C*C <0 (3.7)

then

IA*x M — AxM|| < 26441 + -+ + 20,

Furthermore, if (Ay, M) is the reduced dimension model obtained us-
ing the proposed reduction algorithm, then

|A*xM — Ay x M|| < 20,1 + -+ + 20

Remark 1 Note that the error bound given in Wang et al. (1991) is
obtained by assuming that the repeated scalars are different scalars,
l.e.niy=...,n, = 1.

Remark 2 The model (A, M) is stable if the inequalities in (3.7) are
satisfied. This has been proven in e.g. Beck et al. (1996), but a more el-
egant proof is obtained using the stability results presented in Megret-
ski and Rantzer (1995). These results are based on integral quadratic
constraints.

Proof The multiplier

z-1 0
I =
0 -xt

defines an integral quadratic constraint that is satisfied for any A with
the above structure. Using this multiplier we find that inequality (3.5)
simplifies to ATEA-X+CTC < 0 and inequality (3.4) can be simplified
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in the following way

[A Br[yl 0 HA B}< [0 0}
I 0 0 -X'|I o0 0 I
Z—l

Ar > 1[A B o
pr|¥ | <16 1
T2AT3-1/2 I 0
~1/2 Ax1/2  y-1/2
{ e } [Z-2A512 $12B] < {O I]
21/2AT2—1/2
[=-1/2AxY2 3712B] [ RT5-1/2 } <1I
ATAT -3+ BBT <.
This completes the proof. O

The positive number o) gives a measure on the importance of the
repeated scalar block 8,1, . The difference between the original model

and the model where this block is replaced by 5, n, 18 bounded by 207,

The error bounds hold for a number of different reduced dimension
models. These models are obtained using different fixed operators, sat-
isfying ||6z]] < 1. To obtain reduced dimension models where Mis a
constant matrix, we restrict the fixed operators S;H, ey éAr to be con-
stant scalars in the interval [—1,1]. Note that the choice 6, = 0 corre-
sponds to truncation i.e. X; = 0 and the choice 5Ak = 1 corresponds to
singular perturbation approximation i.e. Xp,1 = %s.

The following simple example will illustrate how the result have
been used in Wang et al. (1991). Note that we in addition know that
the error bounds hold for a larger class of reduction methods than
truncation.

EXAMPLE 3.5—MINIMAL REALIZATIONS
Consider the model in Figure 3.3 with norm bounded uncertainty
|6]] < 1. This model is written on the form (A, M) using

0 1 1/2 07

00 0 1
M =

10 0 O

10 0 O]
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L 1/2 -2 5

Figure 3.3 The model in Example 3.5.

and
A = diag(z_l,& 0).

Since there is an interdependence between the elements in A it is
possible to use a coordinate transformation,

T.i O 0
x=10 Ty Te]|,
0 Tso Ts3

without changing the input-output properties of the model. This is used
to obtain improved error bounds. We then first solve the inequalities

APA* - P + BB* < 0,
A'"QA-Q +C*C <0,

for block structured matrices P > 0 and @ > 0 and then based on
these find a coordinate transformation, which always exist, such that
the new realization satisfies inequalities (3.7). In order to obtain a
small X-matrix it is shown in Beck (1996) that it is reasonable to
minimize the trace of P and . Doing so we obtain

T 0 100 0.0022 0
Wy | 0800 0 0 1.00
0134 0 0  0.090]’
| 1.00 0 0 0
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and A as before. This new model satisfies inequalities (3.7) for
Y = diag(1.33,1.33,0.03).

This shows that reduction of the last entry in 6 will result in an error
less than 203 = 0.06, which is neglectable. The reduced dimension
model is visualized in Figure 3.4. This model has the same input-output
properties as the original model in Figure 3.3. The original model may
therefore be called non-minimal. Minimality for models with norm-
bounded uncertainty is studied in Beck and Doyle (1996), Beck (1996).

O

1/2

A

Figure 3.4 A minimal description of the model in Example 3.5.

The next example will illustrate that the actual error usually depends
on the fixed operator used in the reduction algorithm.

EXAMPLE 3.6—REDUCTION METHODS
Consider a discrete time state-space model with

0.9638 0.0784 0.0082

A=1]-0.0784 0.5261 -0.1824 |,
0.0082 0.1824 0.1602
1.3639

B = | 13762 ] , C =[13639 -1.3762 -0.1835].
—0.1835

This model has a zero in z = 0 and poles in z = 0.95,z = 0.4 and
z = 0.3 and can be written in standard form using A = z71I; as
described in Example 3.4.
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Assume that we would like to find a first order approximation of this
model together with error bounds. We then choose A = diag(q~1, 82, 63)

with 32, 53 e [-1, 1], and note that the inequalities (3.7) are satisfied
for

> = diag(26.4,2.85,0.134),
so that the upper-bound is given by

|Ax M — Ay * M|| < 2(09 + 03) = 5.97.

Figure 3.5 shows the actual error in the case where Sy =63 = 6. It
is seen that we obtain a smaller error by chosing § = 0.5 than we
do with truncation, § = 0, and singular perturbation approximation
S = 1. This shows that the proposed reduction algorithm may result in
a smaller error than that for either truncation or singular perturbation
approximation. The choice for §; resulting in the smallest error is,
however, not directly given by the reduction algorithm.

To see why the error has it’s smallest value for 6 = 0.5 we consider
the Nyquistplots in Figure 3.6. We see that Singular perturbation ap-
proximation § = 1 has no error for low frequences (to the right) but
has a large error as @ — oo. We also see that 6 = 0.5 has a medium
error for most frequencies, and thus not a large error at any frequency.

Ol

Uncertain passive components

We now consider the closely related case where the scalars are passive
operators, and show that error bounds, not previously published, easily
are found using Theorem 3.1. We also give a further indication of the
importance of the unified reduction algorithm.

We still assume that A is linear with a repeated scalar structure

A = diag(611,,, 6ol n,, ..., 0:10,),
but now assume that the scalar operators are passive, that is,
Oz +5Z >0, k=1,...,r.

77




Chapter 3. Comparison and simplification using IQCs

2‘5 I3 1 1 i I3 13 1 1] ]
21 08 -06 -04 -02 0 02 04 06 08 1
delta value
Figure 3.5 Actual error as a function of the replacing scalar §. The upper
bound is shown with a dashed line.
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Figure 8.6 Nyquist plots for the simplified models - obtained using
0 = 1,05,0,~1 are shown in that order with solid lines and the original model

with a dashed line.
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This type of model may be used to describe continuous-time systems

with passive uncertainty. The known linear time-invariant dynamics

are modeled by letting one of the J;, be the integral operator.
Applying Theorem 3.1 gives the following result.

COROLLARY 3.4
Let

A = diag(61l,,,...,6,1,)
A = diag(511n17---aaﬂnfagf'+11n;+1a'-~75Ar1nr)-
Assume 8, +6; > 0fork =1,...,r and5k+5A* >0fork=r+1,...,r

and that there exists a real matrix ¥ = diag(c1l,,,...,0.1,.) > 0, that
solves the Lyapunov inequalities

AY +XA*+ BB* < 0,
AT +ZA+C*C <0, (3.8)

then
IAx M — A x M| < 20441 + -+ + 20,

In particular, if (Ay, M) is the reduced dimension model obtained using
the proposed reduction algorithm, then

HA*M—AU*MH < 20741 + -+ 20,.

Remark In this case we choose 8, € [0,00) in order that M be a
constant matrix.

Proof The multiplier

o x1
IT =
=1 0
defines an integral quadratic constraint that is satisfied for every A

with the above structure. Using this multiplier we find that inequal-
ity (3.4) becomes
0 O }
< 0,

AB}T{O z—lHAB+
I 0 1 0 I 0 0 —I
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which is equivalent to

zA" + A+ BBT < 0.
Furthermore, (3.5) becomes

ATE+3A+CTC < 0.

Applying Theorem 3.1 completes the proof. ]

These error bounds have not been published before; the error bounds
for truncation of passive operators can not be proven by applying
the usual bilinear transformation to the results published in Wang
et al. (1991). This is a consequence of the fact that the bilinear trans-
formation takes a norm-bounded operator A, to a passive operator
Ay, = (I + Ay)"Y(I — A,). In particular A = 0 is in the interior of
the set of unit norm bounded operators, but on the boundary of the
set of passive operators. Thus truncation, corresponding to A = 0, for
norm-bounded operators does not correspond to truncation for passive
operators. Note, however, that the results in this paper hold not only
for truncation but for an entire set of reduction methods. Since here
Ap +A; > 0 < [|[Ay]| < 1 we have been able to prove the passive case
results using the more general norm-bounded case results presented
in this paper.

Further generalization

We now try to give a deeper understanding of Theorem 3.1. This is
done by generalizing the results for norm-bounded uncertainty. Similar
results also hold when the uncertainty is passive.

We consider a linear A where

A= diag(511n1, 521n2, RN 5rInr)>
and the scalars are norm bounded
ll5k|| <1, k=1,...,r.

We will apply Theorem 3.1 to find o-values that we collect in a matrix
as

¥ = diag(o1ln,,...,0.:1,) > 0.
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We keep in mind that the positive number o) gives a measure on
the importance of the repeated scalar block A, = 6,1,, and that the

corresponding error bound 20}, holds if we replace the block by Ay =
Orly,.

In the proof of Corollary 3.3 we used the assumption that A satisfies
any integral quadratic constraint defined by

>t 0 .
I1 = 0 g1 Y = diag(o1ln,,...,000,,) > 0, (3.9)

where ¥ is a real matrix. In fact A satisfies any integral quadratic
constraint defined by

X 0
Il = [0 X} ., X =XT = diag(X;,...,X,) > 0, (3.10)

where X is a real matrix. Note that X = X! give us the previous
multiplier (3.9). One expects that the extra freedom can be exploited
to improve the error bounds.

The additional freedom in the multiplier (3.10) compared to the
multiplier (3.9) has an interpretation. Consider the following Lemma.

LEMMA 3.5
Let IT have the form (3.10). The inequalities in Theorem 3.1 are then

equivalent to

AxAT _ 3> + BBT <o,
ATsA 3>+ CTC <o,

where
A=TATY, B=TB, C=CT7,
and T is any invertible matrix of the form

T = diag(Ty, ..., T)).
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Proof TFactor X = TTEZ!T and use the steps in the proof of Corol-
lary 3.3. O

This shows that the additional freedom consists of similarity transfor-
mations

from the old internal signals x and z to the new signals X and 2. This
type of transformations do not change the input-output relation of the
model since TAT ! = A.

Note that the given realization has no importance since similarity
transformations are captured by the inequalities. This statement is,
however, only true if we have a method that finds an optimal solution
to the inequalities. If we only can find suboptimal solutions, then these
solutions may depend on the given realization.

EXAMPLE 3.7
Consider a discrete time state space model with
03 0 0
A=1|1 04 0 |,
0 1 095
0.3
B=|1]|,C=[0 0 1].
0

This model has a zero at z = 0 and poles at z = 0.95,z = 0.4 and
z = 0.3 and can be written in standard form using A = 2713 as
described in Example 3.4.

If we consider simplification of the whole block, then no dynamics
will remain after the simplification. Applying Theorem 3.1 using the
multiplier (3.10) we find X = 41.9- I3 as the optimal value. The corre-
sponding error-bound is given by 20 = 83.8. If we on the other hand
try to use the multiplier (3.9) then no error bound will be found. The
reason is that there does not exist a ¢ that solves the inequalities in
Theorem 3.1 or equivalently the inequalities (3.7), in this case. O

Now consider simplification of individual entries in A and not blocks.
We then have to consider each element in 0;1,, as different scalar
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operators Ox(1); ..., Ok(n,)- In this case each entry of X is a measure of
the importance of the corresponding entry in A. This means that we
throw away information about the repeated scalar structure in A, in
order to find error bounds for the separate entries.

EXAMPLE 3.8

We return to Example 3.7. If we are interested in reduction of only
some of the states then we must consider the delay operators in A as in-
dependent operators. Applying Theorem 3.1 using the multiplier (3.10)
we find

> = diag(22.9,45.7, 34.0).

The error bound for reduction of all the states in this case will be
2(01 + 02 + 03) = 205 which is much larger than when we considered
the whole block at the same time. Once again we fail to find upper
bounds if we try to use the multiplier (3.9). O

To obtain error bounds for the separate entries we threw away infor-
mation about the repeated scalar structure in A. This information still
exist and can be used a priori e.g. by similarity transformations. Note,
however, that the model structure will change, which not always is
acceptable.

EXAMPLE 3.9

Once again return to Example 3.7 and Example 3.8. If the particular
realization is not important then we can improve the results in Ex-
ample 3.8 by a priori applied similarity transformations. Consider the
following realization, which is the realization used in Example 3.6,

0.9638 0.0784 0.0082

A =|-0.0784 05261 -0.1824 |,
0.0082 0.1824 0.1602
1.3639

B=| 13762 |, C =[13639 -1.3762 -0.1835].
—0.1835

This realization was found using the ideas in Example 3.5. Solving
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the inequalities in Theorem 3.1 for X using either of the two multipli-
ers (3.9) and (3.10) gives us the solution

¥ = diag(26.4,2.85,0.134).
The error when all the states are reduced will be bounded by
2(0’1 + O9 + 0'3) = 58.7

which is lower than in both the previous cases. O

The examples show that the result in Corollary 3.3 is relatively use-
less without a priori applied coordinate transformations. Either there
does not exist o-values satisfying the inequalities or they may be very
large. The results in Wang et al (1991) therefore depend critically
on the use of a coordinate transformation. The results in this thesis,
however, may be used without coordinate transformations. One should
then keep in mind that we analyze the importance of states in a given
realization, where all states may be important. This should be com-
pared to a Balanced realization where some of the states usually are
less important and others are very important.

3.5 Nonlinear models

The reduction results presented in this thesis, so far, assume that the
operator A is linear. In this section we show how these results may me
generalized to include nonlinearities.

To extend the results to the nonlinear case we require the following
definitions. An operator A is odd if

A(-2) = —Az.

An integral quadratic constraint is said to be satisfied incrementally if

/_OO [zz‘zlrn(iw) {zz—zl]da) > 0,

oo L X2 — X1 X2 — X1

holds Vz1,29,x1 = Az1,%9 = Azg € L2[0,00). These two properties are
sufficient for the results to hold also in the nonlinear case.
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3.5 Nonlinear models

THEOREM 3.6

Assume that all the assumptions in Theorem 3.1, except the linearity
assumption, hold. Also assume that A, is odd and satisfies the integral
quadratic constraint incrementally for 2 < r. Then

|A* M —AxM|| < 2(Cpp1 + - + 0,).

A

Let (Ay, M) be the reduced dimension model obtained using the pro-
posed reduction algorithm. Then

|Ax M — Ay % M|| < 2(0ps1 + -+ + O7).

Proof This case is discussed in the proof of Theorem 3.1. O

Remark Similar results hold also if A is non-causal.

The following examples will illustrate what the incrementality-
condition means for specific static nonlinearities.

ExaMmPLE 3.10
6(2)

A

= N
: -

|
N

Figure 3.7 Static non-linearity in a sector.

Consider a static non-linearity in the sector ||§]| < 1, see Figure 3.7.
This operator satisfies the integral quadratic constraint defined by

o -l
Il = .
0 -1
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The incrementality-condition is in this case satisfied if
6(22) = 6(21)| < |22 — 2],
which is a Lipschitz condition satisfied if e.g.

| ds(2)
dz

ExAmPLE 3.11
6(z)

y
N

Figure 3.8 Static non-linearity in the first and third quadrant.

Consider a static non-linearity in the first and third quadrant
z2-0(z) = 0,

see Figure 3.8. This operator satisfies the integral quadratic constraint

defined by
0 1
IT = :
1o

The incrementality-condition is satisfied if
[6(22) — 6(21)] - [22 —21] 2 0,
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which is a Monotonicity condition satisfied if e.g.

o)

T 0.

3.6 Conclusions

In this chapter we have shown that error bounds can be found for a
general class of dynamical models and a general reduction algorithm,
using convex optimization. The proposed reduction algorithm includes
truncation and singular perturbation approximation. The models may
contain both nonlinearities and uncertainty, and are described using
integral quadratic constraints. Special attention has been paid to com-
pare the results with those in Wang et al. (1991) which are a special
case of the results in this thesis.
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Concluding remarks

In this thesis we have shown that error bounds can be found for a
general class of dynamical models and a general reduction algorithm,
using convex optimization. The proposed reduction algorithm includes
truncation and singular perturbation approximation as special cases.
The models may contain both nonlinearities and uncertainty, and are
described using integral quadratic constraints. This framework leads
to quite simple proofs.

The proposed reduction algorithm allows for a choice of the replac-
ing operators. One such choice corresponds to truncation and another
to singular perturbation approximation. The optimal choice, however,
is not indicated by the method. The type and properties of the reduc-
tion methods corresponding to different replacing operators need to be
further investigated.

An important aspect in model reduction is frequency dependent
error bounds. This is important in many applications, such as con-
troller design where different frequencies have different importance.
Frequency dependent error bounds were obtained in Chapter 2.

A feature of the method proposed is that error bounds are found for
the given model structure without any need for model transformations,
such as similarity transformations. This may be important when the
model parameters have a physical interpretation; when model trans-
formations are acceptable then the error bounds may be improved.
Optimal transformations for different types of models are, however,
difficult to find and remains as an area of further study.

In fact, it still remains a lot of interesting work to be done before
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the results in this thesis can be used efficiently on a wide range of
problems. Larger application examples have to be studied to further
investigate the strength and weakness of the method. Comparisons
with direct calculation of the errors as discussed in Section 1.4 has
to be done. Theoretical results for special areas of application such as
control oriented simplification must be obtained. Finally, user friendly
software with efficient computations is needed.

89




5

References

ANDERSSON, L. and C. BECK (1996): “Model comparison and simplifica-
tion.” In 35th IEEE CDC Proceedings, Kobe, Japan.

ANDERSSON, L. and A. RANTZER (1997a): “Frequency dependent error
bounds for uncertain linear models.” To appear in American Control
Conference, Albuquerque, New Mexico.

ANDERSSON, L. and A. RANTZER (1997b): “Frequency dependent error
bounds for uncertain linear models.” Journal article under prepa-
ration.

ANDERSSON, L., A. RANTZER, and C. BECK (1996): “Model comparison
and simplification.” Submitted to the Int. Journal on Robust and
Nonlinear Control.

BECK, C. (1996): Model Reduction and Minimality for Uncertain
Systems. PhD thesis, California Institute of Technology.

BECK, C. and J. DOYLE (1996): “A necessary and sufficient minimality
condition for uncertain systems.” Submitted to IEEE Trans. on
Automatic Control.

BEck, C., J. DoYLE, and K. GLOVER (1996): “Model reduction of
multdimensional and uncertain systems.” IFEE Transaction on
Automatic Control, 41:10, pp. 1466--1477.

DovLE, J. (1982): “Analysis of feedback systems with structured
uncertainties.” In IEE Proceedings, volume D-129, pp. 242-251.

90




ENNS, D. (1984): Model Reduction for Control System Design. PhD
thesis, Stanford University.

FERNANDO, K. and H. NICHOLSON (1982a): “Singular perturbational

model reduction in the frequency domain.” IEEFE Transactions on
Automatic Control, 27, pp. 969-970.

FERNANDO, K. and H. NICHOLSON (1982b): “Singular perturbational

model reduction of balanced systems.” IEEE Transactions on Auto-
matic Control, 27, pp. 466—468.

GAHINET, G., A. NEMIROVSKI, A. LAUB, and M. CHILALI (1995): LMI
Control Toolbox. The Math Works Inc.

GLOVER, K. (1984): “All optimal hankel-norm approximations of linear

multivariable systems and their L*®-error bounds,.” Int. J. Control.,
39, pp. 1115-1193.

HELMERSSON, A. (1995): Methods for Robust Gain Scheduling. PhD
thesis, Linkoping University.

HINRICHSEN, D. and A. PRITCHARD (1990): “An improved error estimate

for reduced order models of discrete-time systems.” IEEFE trans. on
Automatic Control, 35, pp. 317-320.

JONSSON, U. (1996): Robustness Analysis of Uncertain and Nonlinear

Systems. PhD thesis ISRN LUTFD2/TFRT--1047--SE, Department
of Automatic Control, Lund Inst. of Technology.

L1u, Y. and B. D. O. ANDERSON (1989): “Singular perturbation approxi-
mation of balanced systems.” Int. Journal of Control, 50, pp. 1379—
1405.

MEGRETSKI, A. (1993): “Power distribution approach in robust cotrol.”
In Proceedings of the IFAC Congress, pp. 399—402.

MEGRETSKI, A. and A. RANTZER (1995): “System analysis via integral
quadratic constraints, part I.” Technical Report, Department of
Automatic Control, Lund Institute of Technology.

MOORE, B. (1981): “Principal component analysis in linear systems:
Controllability, observability and model reduction.” IEEFE Trans. on
Automatic Control, 26, pp. 17-32.

91




Chapter 5. References

NESTEROV, Y. and A. NEMIROVSKI (1993): “Interior point polynomial
methods in convex programming.” Studies in Applied Mathematics,

SIAM, 13.

PERNEBO, L. and L. SILVERMAN (1982): “Model reduction via balanced
state space representations.” IEEE Trans. on Automatic Control,

27:2, pp. 382-387.

RANTZER, A. (1995): “Error bounds for nonlinear model truncation.”
Presented at Bernoulli Workshop, Groningen.

RANTZER, A. and A. MEGRETSKI (1994): “System analysis via integral
quadratic constraints.” In Proceedings of the IEEFE Conference on
Decision and Control, volume 3, pp. 3062-3067, Lake Buena Vista,
Florida.

SAFONOV, M. (1982): “Stability margins of diagonally perturbed multi-
variable feedback systems.” In IEE Proceedings, volume 129 of 6,
pp. 251-256.

SKELTON, R. (1989): “Model error concepts in control design.” Int. J.
Control, 49:5, pp. 1725-1753.

VANDENBERGHE, L. and S. BOYD (1996): “Semidefinite programming.”
SIAM Review, 38, pp. 49-95.

WaNG, W, J. DoYLE, C. BECK, and K. GLOVER (1991): “Model reduction
of LFT systems.” In 30th CDC Proceedings.

ZHou, K., J. DoyLE, and K. GLOVER (1996): Robust and Optimal
Control. Prentice-Hall.

92




