LUND UNIVERSITY

Knowledge-Based Methods for Control Systems

Larsson, Jan Eric

1992

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Larsson, J. E. (1992). Knowledge-Based Methods for Control Systems. [Doctoral Thesis (monograph),
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/97d527c9-e7a2-4408-8fb5-0b63a5991871

Knowledge-Based Methods
for Control Systems

Jan Eric Larsson

Thermal energy transport .

Department of Automatic Control, Lund Institute of Technology

Document name

Department of Automatic Control Doctor’s thesis
Lund Institute of Technology Date of issue
P.O. Box 118 November 1992
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--1040--SE
Author(s) Supervisor
Jan Eric Larsson Karl Johan Astrém

Sponsoring organisation

STU, project no. 85-3042
1T4, project no. 3403
TFR, project no. 92-956

Title and subtitle
Knowledge-Based Methods for Control Systems

Abstract

This thesis consists of three projects which combine artificial intelligence and control.

The first part describes an expert system interface for system identification, using the interactive identification
program Idpac. The interface works as an intelligent help system, using the command spy strategy. 1t contains
a multitude of help system ideas. The concept of scripts is introduced as a data structure used to describe the
procedural part of the knowledge in the interface. Production rules are used to represent diagnostic knowledge.
A small knowledge database of scripts and rules has been developed and an example run is shown.

The second part describes an expert system for frequency response analisis. This is one of the oldest and most
widely used methods to determine the dynamics of a stable linear system. Though quite simple, it requires
knowledge and experience of the user, in order to produce reliable results. The expert system is designed
to help the user in performing the analysis. It checks whether the system is linear, finds the frequency and
amplitude ranges, verifies the results, and, if errors should occur, tries to give explanations and remedies for
them.

The third part describes three diagnostic methods for use with industrial processes. They are measurement
validation, i.e., consistency checking of sensor and measurement values using any redundancy of instrumen-
tation; alarm analysis, i.e., analysis of multiple alarm situations to find which alarms are directly connected
to primary faults and which alarms are consequential effects of the primary ones; and fault diagnosis, i.e.,
a search for the causes of and remedies for faults. The three methods use multilevel flow models, (MFM),
to describe the target process. They have been implemented in the programming tool G2, and successfully
tested on two small processes.

Key words
Alarm analysis, artificial intelligence, expert systems, fault diagnosis, frequency response analysis, help sys-
tems, system identification, intelligent front-ends, measurement validation, model-based reasoning, modeling,
multilevel flow models, real-time, parameter estimation.

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
| . 0280-5316 o .
Language Number of pages Recipient’s notes \
English 236

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Fax -+46 46 110018, Telex: 33248 lubbis lund.

Knowledge-Based Methods
for Control Systems

Immanuel Kant pondering the nature of reality.

The illustration on the front page shows a screen dump of an alarm situation in the
Steritherm energy network. Several MFM functions are alarmed, but a single failure,
. (shown in a darker red shade), can explain all the other alarms. The alarm analysis
methiod is described in CHapter 5.

The quote in the preface translates to: “When the end is allowed, then the means are
also allowed, excluding violence and injustice.” See Pelle Holm, Bevingade ord och
andra talesédtt, Albert Bonniers Forlag, Stockholm, 1939.

7

Document name

Department of Automatic Control Doctor’s thesis

Lund Institute of Technology Date of issue
P.O. Box 118 November 1992
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--1040--SE
Author(s) Supervisor
Jan Eric Larsson Karl Johan Astrém

Sponsoring organisation

STU, project no. 85-3042
IT4, project no. 3403
TFR, project no. 92-956

Title and subtitle
Knowledge-Based Methods for Control Systems

Abstract

This thesis consists of three projects which combine artificial intelligence and control.

The first part describes an expert system interface for system identification, using the interactive identification
program Idpac. The interface works as an intelligent help system, using the command spy strategy. It contains
a multitude of help system ideas. The concept of scripts is introduced as a data structure used to describe the
procedural part of the knowledge in the interface. Production rules are used to represent diagnostic knowledge.
A small knowledge database of scripts and rules has been developed and an example run is shown.

The second part describes an expert system for frequency response analysis. This is one of the oldest and most
widely used methods to determine the dynamics of a stable linear system. Though quite simple, it requires
knowledge and experience of the user, in order to produce reliable results. The expert system is designed
to help the user in performing the analysis. It checks whether the system is linear, finds the frequency and
amplitude ranges, verifies the results, and, if errors should occur, tries to give explanations and remedies for
them.

The third part describes three diagnostic methods for use with industrial processes. They are measurement
validation, i.e., consistency checking of sensor and measurement values using any redundancy of instrumen-
tation; alarm analysis, i.e., analysis of multiple alarm situations to find which alarms are directly connected
to primary faults and which alarms are consequential effects of the primary ones; and fault diagnosis, i.e.,
a search for the causes of and remedies for faults. The three methods use multilevel flow models, (MFM),
to describe the target process. They have been implemented in the programming tool G2, and successfully
tested on two small processes.

Key words
Alarm analysis, artificial intelligence, expert systems, fault diagnosis, frequency response analysis, help sys-
tems, system identification, intelligent front-ends, measurement validation, model-based reasoning, modeling,
multilevel flow models, real-time, parameter estimation.

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316
| “-Language " | Number of pages Recipient’s notes ,
English 236

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
. 5-221 03 Lund, Sweden, Fax -+46 46 110019, Telex: 33248 lubbis lund.

Knowledge-Based Methods
for Control Systems

Jan Eric Larsson

Department of Automatic Control, Lund Institute of Technology
November 1992

Department of Automatic Control
Lund Institute of Technology

Box 118

S—221 00 LUND

Sweden

ISSN 0280-5316
ISRN LUTFD2/TFRT--1040--SE

© 1992 by Jan Eric Larsson. All rights reserved
Printed in Sweden by Lunds offset ab
Lund 1992

L
3

Contents

Preface

Introduction to the Thesis
Intelligent Front-Ends
Standard Diagnostic Expert Systems
Model-Based Diagnosis Using MFM
Knowledge-Based Methods Versus Search
Programming Environments
Organization

PART I
An Expert System Interface for an Identiﬁcgtion Program

PART II
An Expert System for Frequency Response Analysis

PART III
Diagnostic Reasomng Strategies for Means-End Models Coe .

1.2 BasicIdeas of MFM
1.3 An Example of an MFM Model
1.4 Multiple Views
1.5 Three Methods for Diagnostic Reasoning

1.6 The Architecture of a Control and Supervisory System ..
1.7 A Guide for the Reader e

2. Related Work e e e e e e e e e e e e
2.1 Projects Using MFM
2.2 Projects Using Other Functional Models
2.3 Projects Using Qualitative Behavioral Models
2.4 Projects Using Quantitative Behavioral Models
2.5 Projects Using Integration of Different Models

~ °72.6 Other Referénces C e e

T

3.5 Flow Structures
3.6 Means-End and Part-Whole Relations
3.7 The Structure of MFM Models
3.8 Building MFM Models
3.9 Modeling Control Systems
3.10 Modeling Biochemical Reactions
3.11 Extensionsof MFM
3.12 Other Developments of MEM
3.13 A Summary of the Theoretical Contributions

4.4 Consistent Subgroups
4.5 Flow Propagation
4.6 Validation T
4.7 Implementation
4.8 Examples of How the Method Works
4.9 A Comparison with Classical Data Reconciliation
410 Conclusions L

5. Alarm Analysiso
5.1 Introduction

5.4 A Method for Alarm Analysis
5.5 Assumptions of Flow Function Behavior
5.6 A Rule Set for Possible Secondary Alarms
5.7 Different Rule Sets for Different Domains v
5.8 Higher Order Rules
5.9 An Alarm Analysis Algorithm
5.10 Unknown Alarm States
5.11 Conflict Resolution
5.12 Measurement Faults
5.13 Usingthe Results

- .~5.14 Implementation,

'5.15 Examples of How the Method Works b
5.16 A Comparison with MIDAS
5.17 Conclusions e e e e e

6. Fault Diagnosis
6.1 Introduction
6.2 An Example of a Rule-Based Expert System
6.3 Problems with Rule-Based Expert Systems
6.4 The MFM Data Structure for Fault Diagnosis
6.5 The Search Strategy
6.6 Implementation
6.7 Examples of how the Method Works
6.8 A Comparison with PERFECT
6.9 Conclusions

7. An MFM Toolbox
7.1 Architecture of a Supervisory and Control System .
7.2 The Toolbox RuleBases
7.3 The Implementation Tool G2
7.4 Using G2 to Implement the MFM Toolbox
7.5 The Simulation Model
7.6 Conclusions L.

8. Graphical Presentation
8.1 Introduction e e

8.4 The Implemented System
8.5 Some Examples of Graphical Presentation
8.6 Diagnostic Algorithms
8.7 Conclusions

9. Conclusions L.
9.1 Diagnostic Methods
9.2 Secondary Contributions
9.3 Further Developments

10. References

oooooooooooooooooooooooo

10

Preface

Quia cum finis est licitus etiam media
sunt licita, preecisa vi et injurio.

HERMANN BUSENBAUM, Medulla the-
ologiae moralis, 4, 3, dub. 7, 2, § 3, 1650.

Der Zweck heiligt die Mittel.

J. G. BUHLE, Lehrbuch der Geschichte
der Philosophie 6, 471, 1800.

Nobody expects the Spanish Inquisition.

MonTY PyTHON’S FLYING CIRCUS, 2,
15, 1970.

-~

Carelessly, we humans may think that we are in contact with the world
itself, when we see things and people and feel the wind on our faces. And
all the time it is a matter of models, generated to explain and foresee our
own impressions and perceptions. What would you say, Prince Hamlet,
about the very nature of existence? “Models, models, models.”

It is rather trivial to realize that, for example, a mathematical model
is not the real thing. However, it may take some insight to understand
that making more correct models will not bring us closer to reality it-
self. Every time we think of a more “real” representation, it is still just
another model in our thoughts. And even the distinction between the
outer world and our mind rests on a model of reality.

The German philosopher Immanuel Kant thought that this was a
problem. Thus, he came up with the idea of the thing as such. Of course,
we cannot know anything about it, Kant admitted, but we can believe in
its existence. Well, what Kant did was to provide us with yet another
representation for the elusive reality, once again a new model.

In this thesis I will proudly follow in the footsteps of the good Kant,

- .. and present another type of model, MFM. This three letter acronym,
(TLA), stands for multilevel flow models, or maybe Morten Lind’s funny
‘models, after thecreator, (of MFM). As early as in the late 15th century,
‘or indeed as late as in the early 16th century, the Spanish Inqu1s1t10n
1s said to have proposed the thesis that a laudable purpose justifies
intrinsically evil means, (this is probably not correct history, though).

11

MFM has the same general structure, but the relation between means
and ends is not one of justification, but one of achieving, goes in the
opposite direction, and is yet to be used for religious repression.

As an example of a means-end model: one of the author’s goals
has been to be awarded with a doctor’s title, and a means whereby to
achieve this would be the presenting of a doctor’s thesis. It is the sincere
hope of the author that this proposed means-end model will have some
predictive power in the near future.

Talking about models, maybe it is a good idea to tell what the con-
cept of “model” will mean in this thesis. It does not adhere to the com-
mon idea in control theory of assuming that a model must be mathe-
matical, for example a set of linear differential equations on the form:

x = Ax + Bu
y = Cx + Du.

This is not the only form for a model in this thesis. Instead, Minsky’s
definition, see Minsky (1965), comes closer to the truth:

A model (M) for a system (S) and an experiment (E) is anything
to which E can be applied in order to answer questions about S.

Well, there you are. This definition may seem a bit too general. For
example, any system is a model of itself, if it is possible to investigate.
But this generality is exactly what is needed, because MFM is entirely
another beast than the differential equations. So be warned! From now
on, a model is a chunk of knowledge that describes a system; a formal
chunk of knowledge, but nothing more, nothing less.

And now for something completely different, a syllogism:

P1 No man is an island.
P The author is a man.
Ci2 The author is not an island.

Thus, I have not been working in a mental vacuum, but owe my pre-

sumable success to many people.
o First of all, I do want to give a great thanks to my supervisor,
Professor Karl Johan Astrom. He was the one who encouraged me to
start on a research cdreer in the first place, he had the first ideas of the
expert system for Idpac, he brought me in contact with Morten Lind,
and he suggested that I try to do something with MFM. He has been a
formidable well of ideas, inspiration, and support, and without him this

12

thesis would not have come into existence. He has also given me the
opportunity of many useful contacts with people from all over the world.

I am very grateful to Professor Morten Lind, the originator of the
multilevel flow modeling technique. His ideas and work are essential for
all research in MFM, and my contributions rest firmly on that basis. He
has been an invaluable source of ideas, information, and encouragement,
and I have had many useful discussions with him.

I would also like to thank Doctor Karl-Erik Arzén, who has been a
combined supervisor and colleague. Apart from giving invaluable advice
in technical matters, he has been a good comrade, both when working,
when traveling, and when drinking Duvel on late nights in different
EEC countries.

A very special thanks goes to Doctor, (sic/), Per Persson, with whom
I spent many days in front of the DT80, looking at endless, (or rather:
finite but very long), Franz Lisp traces, and with whom I hanged out
in Miinchen and Swansea, as well as at Clemens. Those were the days,
when hackers were real hackers, when expert systems still soared the
heavens of science, and the (ihs) system was finally born.

I would also like to thank all the staff at the Department of Au-
tomatic Control in Lund for providing, or rather constituting, the “nice
human environment” that is so important for all research. Especially,
I would like to mention Professor Bjorn Wittenmark, whom I thank for
never having to worry about my financial situation.

During my time at the department, I have had contacts with many
researchers around the world; too many to list. However, I would like
to mention Thomas Petti and Marcel Schoppers, who not only are nice
guys, but who have helped me with many references, details, etc. .

Furthermore, I would like to thank Jan Creutzfeldt, Morten Norby
Larsen, and Ashraf Osman, all at the Institute of Automatic Control
Systems at the Technical University of Denmark. They took good care
of me on my visits in Lyngby.

During my work, I have been nicely influenced by the group of
the Swedish IT4 project “Real-Time Knowledge-Based Control Systems,”
and I would like to thank Oddbjorn Evjen, Nick Hoggard, Borje Rosen-
berg, Claes Rytoft, Martin Uneram, and Anders Aberg for valuable in-
“spiration and somefimes animated discussions.

Several other people have contributed in different ways Mats An-
dersson, Bernt Nilsson, and Per Persson has given me valuable input,
both concerning the MFM project and on topics of general interest.

13

-Bernt also investigated how to take photos of the computer screen, and

gracefully helped me to make dia slides for my presentations.

In addition to many other uses, a thesis can also be read, and I
would like to thank Karl Johan Astrﬁm, Karl-Erik Arzén, and Bernt
Nilsson, the actual readers of this thesis.

The more cooks, the worse the soup? Anyway, that was the recipe
for the expert system for frequency response analysis, and I would like
to mention the cooks that provided the main ingredients of the rather
tasty knowledge acquisition soup: Jan Peter Axelsson, Ola Dahl, Kjell
Gustafsson, Ulf Hagberg, Mats Lilja, Michael Lundh, Bernt Nilsson, Per
Persson, Anders Wallenborg, Karl-Erik Arzén, and Ann-Britt Ostberg,
all of whom produced written recommendations on frequency response
analysis in general and running the Solartron 1250 analyser in partic-
ular. Also, I would like to thank Sven Erik Mattsson for good advice
during the project.

This thesis has been typeset on a digital (!) computer, (WYGIWYS,
what you get is what you see), using the magic program TgX and some
excellent local additions. For these, and for handling the computer fa-
cilities in general, I would like to thank Leif Andersson and Anders
Blomdell. I would also like to mention Eva Dagnegérd for her help with
the design and printing of this thesis.

A typical property of human life is that a large part of it goes on
in physically limited space, usually a set of rooms, each more or less
important. I would like to mention my two roommates, Mats Lilja and
Anders Nilsson, who not only have shared physical space with me, but
mental and computational space as well, and in a very nice fashion.

Next to last but not next to least, I would like to mention my fellow
graduate students at the Department of Automatic Control, for spread-
ing good feelings, and making the local atmosphere a nice and friendly
one here in Lund.

Last of all, my mother Berta, my brother Anders, and my wife Anu.
They are my closest relatives, my support in everyday life, and my best
friends. To them I dedicate this work.

So far about this topic. Now only the details remain.

J.E.L.

, \\
“¥

14

Introduction to the Thesis

This thesis uses ideas and methods from artificial intelligence, (AI), and
computer science for solving control problems. The methods developed
give useful solutions for the particular problems considered and they
indicate the possibility and viability of such approaches in general.

Al and control theory are young sciences, and when they started
they both belonged to the area of cybernetics, see Wiener (1948) and
Ashby (1956). But since then cybernetics as a subject has broken up,
and there has been academic boundaries between Al and control. On the
other hand, it is clear that there is room for cross-fertilization between

the fields.

A general development in control systems is to try and achieve au-
tomation on higher and higher levels, and the problems accountered
here need more knowledge to be solved. Thus, in later years, there
has been a renewed interest in combining Al and control. Astrom et al
(1986) gives some early ideas on the use of Al in low level control loops.
Sandewall (1988) describes the need to join Al with robotics and con-
ventional systems software, such as operating systems. Verbruggen and
Astrom (1989) states the usefulness of Al techniques in control. Arzén
(1989, 1990, 1993) and Arzén et al (1990) describe the need for inte-
gration of conventional and knowledge-based techniques in control sys-
tems. Krijgsman et al (1990, 1991), Krijgsman and Jager (1992), Vina
and Hayes-Roth (1991), and Crespo et al (1991, 1992) describe similar
projects, all using blackboard architectures as a means to join conven-
tional and Al techniques and to use them in real-time. The SCWERE
project of Delft Technical University aims at using Al in real-time to
support plant-wide supervision and diagnosis, see van den Ree et al
(1991 a, b) and Terpstra et al (1991, 1992).

The IEEE and IFAC organizations have a joint project “Facing the
Challenge of Computer Science in the Industrial Applications of Con-
trol,” the results of which will be published at the 12th IFAC World
‘Congress in Sydney 1993, and in a special issue of Automatzca and
'IEEE Transactions of Automatic Control. Some prehmmary findings
are given in Astrém et al (1991), Benveniste (1991), Cohen (1991), and
Astrom et al (1993). These efforts attempt to analyze the possibilities to

15

-join control, signal processing, and computer science, and to determine

what demands that must be met in the process.

Hamscher et al (1992) provides a good overview of current research
areas, from an Al point of view. Forbus (1988) and Weld and de Kleer
(1990) give overviews of the state of the art in qualitative physics. Iser-
mann (1984) and Frank (1990) give overviews of fault detection and di-
agnosis in the more classical control area. Lees (1983) gives an overview
of alarm and disturbance analysis from a chemical process point of view.

There are also several conferences and workshops which combine
interests in Al and control problems, such as the IFAC International
Workshops on Artificial Intelligence in Real-Time Control, see for exam-
ple Verbruggen and Astrém (1989), James and Herget (1991), MacLeod
and Lun (1991), and Métus (1991); the IFAC Workshops on Computer
Software Structures Integrating AI/KBS in Process Control, see Arzén
(1991); the IFAC/IMACS Symposia on Fault Detection, Supervision, and
Safety for Technical Processes; the IFAC Symposia on On-Line Fault De-
tection and Supervision in the Chemical Process Industriés, see Frank
(1992); and the International Workshops on Principles of Diagnosis, sup-
ported by ECCAI see Struss (1991). The 8th National Conference on
Artificial Intelligence, (AAAI-90), had a special part on diagnosis and
control called “AI On-Line.” Workshops on knowledge-based real-time
control systems has also been arranged in conjunction with the AAAI
conferences in 1990 and 1991. The research area of intelligent control
investigates the possibilities of using AI methods in on-line control al-
gorithms, see for example Saridis (1977), Antsaklis et al (1991), and
Astrém et ol (1992). The American Control Conferences have had regu-

lar sessions on intelligent control and applications of Al to process con-

trol. The 12th IFAC World Congress to be held in Sydney 1993 will have
a mini-symposium on Real-Time Computing for Control. Several of the
information theory programs in Europe are also addressing problems in
the area.

Real-time expert system shells such as COGSYS, G2, and RTworks
have also started to appear as commercial products. Some of these are
intended to be used together with conventional automation and control
systems.

e L

16

Intelligent Front-Ends

The user interface is an important part of automation systems and soft-
ware for control system design. It strongly affects the usefulness of
the system and the productivity of an engineer using a Computer-Aided
Control Engineering, (CACE), program.

The first part of the thesis describes a help system based on expert
system techniques. It works as an interface to Idpac, an interactive
program for identification. The main features of the help system are
that it is non-invasive, that it keeps track of what the user has done, and
that it has procedural and diagnostic knowledge about identification.

There are several different kinds of knowledge involved in system
identification using Idpac. A large part of this must be available in the
expert system interface. The knowledge of the expert system interface
can be divided into two groups:

o Knowledge of theory and practise of system identification. This in-
volves knowledge about modeling, data validation, estimation meth-
ods, interpretation, validation of results, diagnosis of errors, etc.
This knowledge is mostly interpretative and diagnostic in nature,
and it suits well to be implemented with rules. ‘

o Knowledge of Idpac. This involves knowledge about the methods
supported by Idpac, the command language, the data representa-
tion, and several practical aspects of running Idpac. To a large
part, this knowledge is concerned with command sequences, and
does not fit very well for a rule-based implementation. The concept
of scripts, see Schank and Abelson (1977) and Schank and Riesbeck
(1981), was originally developed for natural language analysis. A
simplified version of scripts was used to describe and interpret the
command sequences of Idpac.

Several experiences were gained from the project. In order to preserve
the target system’s way of communication and to make the help system
non-invasive, a knowledge-based help system should be designed as an
interface to the target system. An expert system need not be imple-
mented with rules only; in the project scripts were successfully used for
deseribing command. sequences. Some drawbacks were found in imple-
‘menting a help system for an existing program. Idpac has no support for
interfacing to other software, while CACE programs should be open and
modular so that a help system can be successfully integrated. Ideally,

17

‘they should include the intelligent help system in their design. This
will also mean that some functions of current CACE programs, such
as simple help systems, can be taken over by the front-end. The help
system was tested in a course on process identification, and it proved
to be a working and efficient solution; more efficient than the written
guidelines normally used in the course.

Later efforts in developing knowledge-based help systems for iden-
tification are found in Nagy (1992), Nagy and Ljung (1989, 1991), and
Szafnicki and Gentil (1991).

To interpret the command sequences of a program like Idpac is a
much simpler and more well defined problem than natural language un-
derstanding, and the implemented system provides a successful solution
of how to build an intelligent help system for Idpac. However, the idea
of a help system using scripts and rules to track the user and give him
knowledge-based help can be generally useful:

o It provides a solution for help systems for. all kinds of CAD pro-
grams, and indeed for all programs that need at least reasonable
amounts of knowledge to be used.

o It provides a general solution for how to use expert systems in man-
machine communication, giving non-invasive help that is sensitive
to what the user has done and suggestions based on what his plans
may be.

o It provides a solution for supervising actions of operators of indus-
trial processes, in order to help them in operation of the plant and
warn them for erroneous and dangerous operating sequences. This
task is called plan recognition. Here, the target system is not a CAD
program with complex command sequences, but an process with
complicated operating sequences. Still, exactly the same structure
1s useful for describing the knowledge domain.

Standard Diagnostic Expert Systems

The second part of the thesis describes a standard expert system, used as
a guide for setting up, performing, and analyzing a frequency response
éxperiment. For such a task, a rule-based system using backward chain-
ing is very well fitted, and the resulting system provides a simple and
efficient solution.

18

The experience gained from this project is that it is possible to
increase the functionality of an instrument like a frequency analyser
considerably with a moderate effort. The developed system runs stand-
alone on a separate computer, while it would be an obvious advantage to
integrate it in the frequency analyser itself. However, current hardware
and software does not support Al tools, and the integration is problem-
atic. Thus, future hardware and software tools such as frequency analy-
sers should ideally accommodate for some type of knowledge-based tools
also.

Once again, the results may be generalized. Rule-based expert sys-
tem can be used with success whenever there is a clear diagnostic task
to be performed off-line, and they have an extra strength in that they
allow the use of empirical knowledge, such as experiences gathered by
operators.

The approach naturally imposes a way of structuring the knowledge
needed to operate complex instruments. It is likely that small, embed-
ded expert systems will be extensively used in advanced instruments in
the future.

Model-Based Diagnosis Using MFM

The third and largest part of the thesis describes a model-based ap-
proach to diagnosis. Explicit means-end models are used instead of a
rule-based system. This solution clearly shows the strength of model-
based methods. Instead of using a complex rule base, the implemented
algorithms work on MFM graphs, which makes the database construc-
tion quicker and less error prone, and the algorithms more efﬁc1ent
Several experiences were gained from the project:

o New model types are useful in control. Classical control theory
is almost exclusively concerned with mathematical models, usually
differential equations. New model types, such as MFM, can be suc-
cessfully used to solve control systems problems; indeed they can
be used to solve problems that sometimes cannot be efficiently han-

_dled with conventlonal techniques, such as alarm analysis, fault

e

- ““diagnosis, planning, and transfer of knowledge to operators.

o There is a considerable effort in introducing new model types, and
much research is needed before they can be efficiently used.

19

o A mixture of different models can be used to solve problems which
cannot be handled by one model type only. Once it is realized that
different model types fit well to solve different types of problems, it
1s obvious that a control and supervisory system should use a whole
set of different models, each for some different task or tasks that
the system should be able to support.

o MFM clearly has a strong capability of describing diagnostic knowl-
edge, which the three implemented methods show. But its use in
different areas has also revealed some shortcomings. Thus, MFM
provides a good basis for model-based diagnosis, but should be ex-
tended to handle, e.g., biochemical reactions and mechanical con-
cepts such as momentum.

o Using MFM once again puts demands on the possibility of integra-
tion in the surrounding system’s software and hardware.

The implemented methods all fit as building blocks in a modularized
control and supervisory system. It is the intention that they should
match an object-oriented system design, and this should ideally be the
case for all algorithms developed for control systems.

The measurement validation method belongs on a rather low level.
It takes its input data from filtered and estimated measurements, per-
forms a consistency check, and sends validated values on to higher sys-
tem levels, as well as to operators, and process engineers. The output
information gives an immediate picture of the presence of sensor faults,
and thus supports the operators in assessing the fault state of the pro-
cess.

The alarm analysis operates on a higher level, on top of a measure-
ment validation or alarm system, where it selects the primary alarms.
The output data may be sent to other algorithms, but is primarily in-
tended to help the operators in finding the important alarms and thus
the most appropriate actions.

The fault diagnosis also operates on a high level in the control sys-
tem. If run on-line, it uses data from measurement validation and
alarm systems, and if run off-line also questions from the operators,
and presents a description of faults and consequences. It also outputs
explanations and, remedies. The latter can be in the form of advice to
the operator or automatic actions taken by the system. ‘

The methods have been tested on two small examples, including
one process of realistic size. They were successful in performing their

20

‘tasks and quite efficient. Due to the hierarchical nature of MFM models,

size 1s not a problem. The main limitation is that MFM can only de-
scribe mass and energy flows, and thus other effects cannot be handled.
Further practical testing of the algorithms is also needed.

Knowledge-Based Methods Versus Search

The task of joining AI and control brings some difficulties with it. The
academic borders between the two subjects have hampered progress.
For example, control people sometimes fail to recognize that some of
their problems are not handled well by classical control techniques, and
the people of Al sometimes tend to pose complicated problems when
simpler solutions are both more useful and easier to solve. But there
are solutions that avoid both extremes.

As an example, consider the task of operations planning for a pro-
cess plant. Control theory has been focussed on control loop behavior,
and logic and sequencing has traditionally been handled by systems like
programmable logic controllers, (PLCs), often giving ad hoc solutions to
planning problems. Currently, new techniques are being utilized, e.g.,
Petri nets, see Peterson (1981), and Grafcet, see GREPA (1985) and
David and Alla (1992). There is also a new interest in discrete event dy-
namic systems, (DEDS), see for example Ziegler (1990), Pollacia (1989),
or the IEEFE Proceedings special issue on Dynamics of Discrete Even Sys-
tems 1989, Ho (1989). Still, these attempts aim at representing plans,
but not generation of new ones.

Turning to Al for help is not necessarily successful, however. Al
planning usually involves defining the possible states, including initial
and goal states, the possible operations, and designing a plan genera-
tion algorithm. This generally leads to an exponentially complex prob-
lem, and severe and unintuitive limitations must be put on the allowed
states, operations, etc., in order to produce a viable algorithm. For an
example of a formal method that often leads to very large complexity,
see Ramadge and Wonham (1989).

However, there are solutions from Al that fulfill the demands of
'pra;ctlcal applicability, if the following points are satisfied:

o Existing knowledge can be used to battle the exponentlal complex-
ity of general AI methods. Instead of search, knowledge-based so-
lutions should be used. For the planning example, this implies that

21

the knowledge that already exists should be used to produce a sim-
pler and more efficient plan generator, for example using ready-
made plans or plan fragments. The use of scripts in the expert sys-
tem interface and the use of MFM as a database for the diagnostic
methods are examples of such approaches.

o Deep knowledge should be preferred over shallow. Model-based ap-
proaches are better during development and use, because they rep-
resent the knowledge in a fashion that is closer to the designers’ and
operators’ view of the process. In addition, the use of models often
allow a crisper, more compact, and more consistent representation
than a rule base. Once again, MFM provides a good example.

o The Al software must be integrated with the control system and the
conventional control software, otherwise it will never be taken into
practical use. Thus there is a need for a system architecture that
can accommodate both conventional and Al techniques.

-

Programming Environments

One of the main results of Al over the years is the development of new
programming methods, tools, and environments. Early examples are
symbolic data processing, (Lisp), and time-sharing, while object-oriented
programming, rule-based expert systems, and exploratory programming
are more recent contributions. These tools are often powerful enough to
be useful outside “pure” Al, e.g., in control.

The expert system interface was implemented in Lisp and used a
standard expert system shell. This way of implementing the system
was much more efficient than a conventional one would have been; the
difference in effort was probably in the order of a magnitude. -

The implementation of the MFM toolbox described in the third part
of the thesis was done in G2. This is an expert system shell which
provides hierarchical data structures, rules, sequential programming,
simulation, and a graphical interface, all in a real-time environment.
G2 is the state of the art for expert systems and rapid prototyping tools.
The use of G2 in implementing MFM was a success. The reasoning on
graph structures needed matched G2 very well, and the 1mp1ementat10n
effort has been modest.

99

Organization

The thesis consists of three parts, whereof two are previously published
papers, and the third based on three conference papers.

o An Expert System Interface for an Identification Program
o An Expert System for Frequency Response Analysis
o Diagnostic Reasoning Strategies for Means-End Models

The first part is a paper from Automatica, Larsson and Persson (1991).
It describes the design and implementation of an intelligent help system,
(ihs), based on expert system techniques. The system acts as an inter-
face to Idpac, an interactive program for system identification. The main
points of this work are knowledge-based operator help and support, plan
recognition, and the general idea of a command spy used as an intelli-
gent front-end. However, system identification, knowledge acquisition
and knowledge engineering also form a large part of the effort. The main
documentation of the project is a licentiate thesis, Larsson and Persson
(1987 a). A full description of the implementation is found in Larsson
and Persson (1987 b), while the complete knowledge database devel-
oped is described in Larsson and Persson (1987 ¢). Two other papers
were also published, Larsson and Persson (1988 a, b). The beginning
of the project was the author’s master’s thesis, Larsson (1984), see also
Larsson and Astrém (1986), while some earlier, intermediate efforts are
described in Larsson and Persson (1986).

The second part is a paper from the 11th Triennial World Congress
of IFAC, held in Tallinn 1990, see Larsson (1991 d). It treats an expert
system that helps a user to perform a frequency response analysis exper-
iment, taking him through the phases of knowledge gathering, experi-
ment planning, range setting, performing the experiment, validation of
the results, fault diagnosis, and finding remedies. The project involved
knowledge acquisition and engineering by a team of graduate students,
the construction of a small expert system shell with forward and back-
ward chaining, and an implementation of a standard diagnostic expert
system using backward chaining. The project has also been described
in a technical report, Larsson (1990 c), while the expert system shell
developed and used is described in Larsson (1988).

* "The third part is a monograph about three new diagnostic meth-
ods using the MFM framework. The use of MFM means a model-based
approach to knowledge-based techniques. The main contributions are

23

three invented and implemented methods: measurement validation,
alarm analysis, and fault diagnosis. These have been described in three
papers, Larsson (1991 ¢, 1992 a, b). The main documentation of the
project is this thesis, while a more technical description is found in
Larsson (1992 c).

The intelligent help system project has been supported by the Na-
tional Swedish Board for Technical Development, (STU), project no. 85—
3042. The MFM project has been supported by the IT4 project no. 3403
and the TFR project no. 92-956.

The gray area between computer science, Al, modeling, and control
is a vast and largely untracked field. It is the intention of the author that
these three projects together should form an interesting excursion into
that field. Hopefully, one or two treasures may also have been brought
home from the excursion, in the form of useful scientific results.

Sy .

24

Part 1

An Expert System Interface for
an Identification Program

26

Automatica, Vol. 27, No. 6, pp. 919-930, 1991
Printed in Great Britain.

0005-1098/91 $3.00 +0.00
Pergamon Press pic
© 1991 International Federation of Automatic Control

An Expert System Interface for an
Identification Program™

JAN ERIC LARSSONY+ and PER PERSSONTY

System identification requires skill and experience and the validity of the
results strongly depends on the user’s knowledge. An expert system used as
an interface to a program for identification can give valuable help.

Key Words—Artificial intelligence; expert systems; parameter estimation; system identification; (help

systems); (intelligent front-ends).

Abstract—This paper describes an expert system interface,
named (ihs), for the interactive data analysis and system
identification program Idpac. The interface works as an
intelligent help system. The system is completely noninvasive
and uses the previous command history to understand what
the user is doing and gives help according to this. This way of
monitoring the user’s activities is called the command spy
strategy. Scripts are used for representing procedural
knowledge, and production rules for diagnostic knowledge.
The system has been implemented and a knowledge database
handling system identification with the maximum-likelihood
method has been developed. An example run with the
system is included.

INTRODUCTION
THE WORK PRESENTED in this paper is a part of the
Computer-Aided Control Engineering (CACE)
project at the Department of Automatic Control
in Lund. The CACE project aims at the
development of a new generation of software
tools for control engineering.

Today’s CACE programs usually are quite
complex and demand the user to know a lot,
both about the program and the problem
domain. For this reason, there is a need for help
systems with knowledge about these areas. We
believe that an expert system is well suited for
the implementation of such a help system. It is
our opinion that, in order to build a knowledge-
based help system for a CACE program, the
following goals should be satisfied:

o CACE programs usually have a flexible
command dialogue. This way of com-
munication should be retained when the
expert system is added to the program.

* Received 14 June 1989; revised 18 July 1990; revised 2
January 1991; received in final form 4 March 1991. The
original version of this paper was not presented at any IFAC
meeting. This paper was recommended for publication in
revised form by Editor H. Austin Spang III.

. ~fDepartment of Automati€ Cofitrol, Lund Institute of

Technology, Box 118, S-221 00 Lund, Sweden.
1 Author to whom all correspondence
addressed.

should be

919

e The expert system should be totally
noninvasive, allowing the user to fall back
on the plain CACE program in case it is not
able to give the user any help.

» An inexperienced user often has a general
idea of what he wants to do, but does not
know exactly how to do it. The expert
system should be able to guide the user
from general ideas to specific commands,
i.e. it should give goal-related help.

» An intelligent help system should have
facilities to teach the user about the target
program and to transfer knowledge from the
knowledge database to the user.

» An expert system used as an intelligent help
system interface must be able to trace the
user’s command sequences, and to give help
with the interpretation of results. Thus it
must be able to handle both knowledge
about sequences and diagnostic knowledge.

» Existing software for control engineering
contains much reliable knowledge. There-
fore it is an obvious advantage to use an
already developed program such as Idpac or
Matlab, over producing new algorithms.

According to these design criteria an expert
system interface has been developed for the
command driven system identification package
Idpac, Wieslander (1980). The system contains a
command parser, a script-matching device with a
database for scripts and rules, a query module, a
file system, an on-line dictionary, and interfaces
to the user and Idpac. A script is a data structure
for representing command sequences.

The project has been focussed on a nonin-
vasive, goal-related help system for Idpac, not
on developing new forms of man-machine
interaction. Therefore, we were satisfied with
using the Idpac command language,'instead of a
window-and-mouse type of interaction.

27

920 J. E. Larsson and P. PerssoN

This project was originally outlined in Larsson
(1984). A previous system was described in
Larsson and Persson (1986). Thorough descrip-
tions of this project are given in Larsson and
Persson (1987a,b,c,d).

OVERVIEW OF RELATED WORK

Other work has been done in this and related
areas. System identification is described in Cox
(1958), Eykhoff (1974; 1981), Fedorov (1972),
Ljung (1987a), Ljung and Soderstrom (1983),
Astrém and-Eykhoff (1971) and Astrém (1980).
Idpac is built with the interaction module Intrac,
a framework that provides an interactive
environment for numerical Fortran routines.
Idpac and Intrac were developed at the
Department of Automatic Control, Lund Insti-
tute of Technology, Wieslander (1979a,b; 1980).
More about Idpac can be found in Gustavsson
(1979) and Gustavsson and Nilsson (1979).

Other projects address the problem of using
expert system techniques in system identifica-
tion: the French project SEXI (Gentil and
Conraux, 1985); another French project.(Mon-
sion et al.,, 1988) and the Belgian ESPION
(Haest et al., 1988).

The program in the

expert system shell CRIQUET,
numerical identification program.

and uses a
Instead of

working as a help system, the expert system is .
run in a “batch” mode, taking over the complete

responsibility of acquiring a reasonable model.
In this way, the need for good communication
with the user is avoided. On the other hand, the
system can no longer “fall back” on the user if
anything goes wrong, and the system’s ability to
teach identification to the user is probably
impaired. When identifying, the SEXI system
performs a heuristic search through,fdifferent
possible model structures, increasing and de-
creasing the order of nominatof and de-
nominator until the best model is’ found. The
benefits of this search procedure are not
altogether obvious. The prolect of Monsion et al.
is in a similar vein.

The Belgian project ESPION is an expert
system for identifying multlple input, single
output models from industrial data. The system
is implemented with the expert system shell OPS
83 and the identification package SYSID,
developed at Université Catholique de Louvain.
The system takes ASCII data sets as inputs and
generates modelfsff The system organizes an
intelligent search through the model space and
performs identificatiops of different model
* stfuctures. The best model is picked according to
a quality index, which consists of several

project SEXI 1s‘:
implemented in Lelisp, contains the rule-based *

standard model validation methods. Like SEXI,
the system runs in batch mode and does not
teach the user anything about ideqtiﬁcation. The
system is reported to generate as/good results as
a human expert, but in much shérter time.
Another project which focusés on general help
systems is the Esprit project, EUROHELP (see
Skogg Hansen et al., 1988; B‘reuker et al., 1989).
The project is carried out by a consortium
consisting of Computer Resources International
(Denmark), ICL (UK) Courseware Europe
(Netherlands), the University of Amsterdam
(Netherlands) and the University of Leeds
(UK). The size of the project is 120 man-years.
The EUROHELP prOJects aims at constructing
a shell which will be located between the user
and the appliqaﬁon program. By constantly
monitoring the user’s dialogue with the target
program, the/shell will be able to correct the
user and to give him advice on the correct usage
of the target program. The plans necessary for
describing an Idpac session would be rather
long, and many facts would have to be gathered
and used during a session. It is not clear whether
the /EUROHELP shell is well fitted for
representing this. If it is, EUROHELP might be
an alternative tool for a future implementation.
Furthermore, a set of tools enabling the

\‘y"’development of an application model and
" “allowing the shell to be refitted to certain

hardware dependencies, dnd-a methodology
descrlbmg the usage of these tools in an
intelligent help system will be developed.
Applications for the help system can be text
editors, ‘spreadsheets, database management
systems, etc. A prototype of the system has been
developed on a Xerox Lisp machine, but the
final result of the project is intended for target
machines running Unix.

Two further projects addressing similar prob-
lems are the Unix Consultant and the
Knowledge-Based Emacs. The Unix Consultant
is an intelligent help system for Unix. It reads
questions in natural language and uses scripts to
tell the user how to perform different tasks,
Wilensky et al. (1986). Knowledge-Based Emacs
is an Al system built into an editor. It allows the
user to work on a higher level of programming
than the ordinary Lisp or Ada level, Waters
(1985a,b).

KNOWLEDGE REPRESENTATION
There are several different kinds of knowledge
involved in system identification using Idpac.
Ideally, most of this knowledge would be present
in the knowledge database of the expert
interface. The knowledge can be diyided into the.
following groups.

920 J. E. LArssoN and P. PERSSON

This project was originally outlined in Larsson
(1984). A previous system was described in
Larsson and Persson (1986). Thorough descrip-
tions of this project are given in Larsson and
Persson {1987a,b,c,d).

OVERVIEW OF RELATED WORK

Other work has been done in this and related
areas. System identification is described in Cox
(1958), Eykhoff (1974; 1981), Fedorov (1972),
Ljung (1987a), Ljung and Soderstrom (1983),
Astrém and Eykhoff (1971) and Astrom (1980).
Idpac is built with the interaction module Intrac,
a framework that provides an interactive
environment for numerical Fortran routines.
Idpac and Intrac were developed at the
Department of Automatic Control, Lund Insti-
tute of Technology, Wieslander (1979a,b; 1980).
More about Idpac can be found in Gustavsson
(1979) and Gustavsson and Nilsson (1979).

Other projects address the problem of using
expert system techniques in system identifica-
tion: the French project SEXI (Gentil and
Conraux, 1985); another French project (Mon-
sion et al., 1988) and the Belgian ESPION
(Haest et al., 1988).

The program in the project SEXI is
implemented in Lelisp, contains the rule-based
expert system shell CRIQUET, and uses a
numerical identification program. Instead of
working as a help system, the expert system is
run in a “batch” mode, taking over the complete
responsibility of acquiring a reasonable model.
In this way, the need for good communication
with the user is avoided. On the other hand, the
system can no longer “fall back™ on the user if
anything goes wrong, and the system’s ability to
teach identification to the wuser is probably
impaired. When identifying, the SEXI system
performs a heuristic search through different
possible model structures, increasing and de-
creasing the order of nominator and de-
nominator until the best model is found. The
benefits of this search procedure are not
altogether obvious. The project of Monsion et al.
is in a similar vein.

The Belgian project ESPION is an expert
system for identifying multiple input, single
output models from industrial data. The system
is implemented with the expert system shell OPS
83 and the identification package SYSID,
developed at Université Catholique de Louvain.
The system takes ASCII data sets as inputs and
generates models. The system organizes an
intelligent search through the model space and
performs identifications @f different model

- ‘structures. The best model is picked according to

a quality index, which consists of several

28

standard model validation methods. Like SEXI,
the system runs in batch mode and does not
teach the user anything about identification. The
system is reported to generate as good results as
a human expert, but in much shorter time.

Another project which focuses on general help
systems is the Esprit project EUROHELP (see
Skogg Hansen et al., 1988; Breuker et al., 1989).
The project is carried out by a consortium
consisting of Computer Resources International
(Denmark), ICL (UK), Courseware Europe
(Netherlands), the University of Amsterdam
(Netherlands) and the University of Leeds
(UK). The size of the project is 120 man-years.
The EUROHELP projects aims at constructing
a shell which will be located between the user
and the application program. By constantly
monitoring the user’s dialogue with the target
program, the shell will be able to correct the
user and to give him advice on the correct usage
of the target program. The plans necessary for
describing an Idpac session would be rather
long, and many facts would have to be gathered
and used during a session. It is not clear whether
the EUROHELP shell is well fitted for
representing this. If it is, EUROHELP might be
an alternative tool for a future implementation.
Furthermore, a set of tools enabling the
development of an application model and
allowing the shell to be refitted to certain
hardware dependencies, and-a methodology
describing the wusage of these tools in an
intelligent help system will be developed.
Applications for the help system can be text
editors, spreadsheets, database management
systems, etc. A prototype of the system has been
developed on a Xerox Lisp machine, but the
final result of the project is intended for target
machines running Unix.

Two further projects addressing similar prob-
lems are the Unix Consultant and the
Knowledge-Based Emacs. The Unix Consultant
is an intelligent help system for Unix. It reads
questions in natural language and uses scripts to
tell the user how to perform different tasks,
Wilensky er al. (1986). Knowledge-Based Emacs
is an Al system built into an editor. It allows the
user to work on a higher level of programming
than the ordinary Lisp or Ada level, Waters
(1985a,b).

KNOWLEDGE REPRESENTATION
There are several different kinds of knowledge
involved in system identification using Idpac.
Ideally, most of this knowledge would be present
in the knowledge database of the expert
interface. The knowledge can be divided into the
following groups.

An expert system interface 921

* Knowledge of the theory and methods of
system identification, i.e. knowledge about
modeling, data validation, estimation meth-
ods, interpretation and validation of results,
ete.

» Knowledge about Idpac, i.e. knowledge
about the methods supported by Idpac, the
Idpac command language, Idpac’s data
representation, and a lot of practical aspects
of running Idpac, such as naming conven-
tions for data files, setting internal para-
meters right, and so on.

° Knowledge of the process to be identified,
i.e., knowledge about the real world process
and the experiment design. For a certain
process it might be known whether it is
fairly linear or very nonlinear, its time-
scales, reasonable limits of the model order,
and so on. There may also be a priori
demands on the results, e.g. a limit of the
complexity of the model, that the best
second-order model is desired, etc.

The implemented system tries to work as an
expert in system identification and as an Idpac
expert. The user’s a priori knowledge of the
process is taken care of by a group of rules in the
beginning of the session. If needed, these rules
could be extended for new types of processes.

Running Idpac requires a lot of procedural
knowledge, i.e. knowledge about sequences of
commands, and, on a higher level, knowledge of
sequences of subtasks of Idpac sessions. In order
to represent sequences, the concept of scripts
was introduced. We were inspired by a data
structure used in natural language understand-
ing (Shank and Abelson, 1977; Shank and
Riesbeck, 1981). It should be noticed that our
script concept is different from Shank’s.

Of course, it would be possible to handle the
knowledge of command sequences with produc-
tion rules. One way of doing this would be to
implement a finite state machine with rules. The
current state would be represented as a fact in
the database, and each transition described by a
rule, where a transition would correspond to a
command given to Idpac. Very soon this
approach becomes quite complex. It is very hard
to add new commands to the command
sequences, and it is also very hard to read and
understand existing rules.

The scripts are implemented as Lisp lists. The
system matches the incoming commands with the
scripts in its database, and updates them
incrementally. The commands must have certain
. attributes, e.g. parameters, in order to match a
* sctipt. Implementing scripts with lists makes
them easy to understand, write, and modify.

Here is an example of a script.

((command plot
(infile INSI) (infile OUTSI))
(repeat
((command mlid (outfile SYST) (infille INSI)
{infile OUTSI) (number N))
{kscall
(Estimation of order (parameter N} performed})
(or
({command residu (outfile RES) (infile SYST)
(infile INSI) (infile OUTSI)))
({command sptrf (outfile FREQ) (infile SYST))
(kscall
(Recommend Bode plot with (parameter FREQ)))
(command bode (infile FREQ))))))
(kscall (Give advice onmost probable order))).

This script describes a way of performing a
parameter estimation with increasing order of
the fitted model. First the user should inspect the
signals with the PLOT command. The input files
corresponding to INSI and OUTSI should
already exist. A model is produced with MLID.
The output file SYST is created and N, the order
of the model, is associated with the actual
argument used. Next, a fact stating that a
parameter estimation has taken place is sent to
the production rule database. This is done with
the KSCALL clause. Kscall stands for Knowl-
edge Source Call and puts a fact in the fact
database of the production rule system, which is
associated with each script, and activates the
inference engine. After this, the user may either
look at the residuals with the RESIDU
command, or produce data for a Bode plot of
the transfer function, with SPTRF and plot it
with BODE. This is expressed with the OR
clause. The REPEAT clause means that this
whole procedure may be repeated, and every
time the rule system gives advice on whether the
order is sufficiently high. During the process it
may use facts put into the database by previous
kscalls. This script is of course far too small to be
realistic, but it shows what a script may look
like. For a script of reasonable size, see Larsson
and Persson (1987c).

Other clauses in the script language are the
ALL clause, which expresses that all the
following commands must match, but the order
of them is not essential, and the
SCRIPTMACRO clause, which is a subroutine
facility.

OVERVIEW OF THE SYSTEM
How does one combine a CACE program with
an expert system while keeping the good
features of both? The solution proposed in this
paper is the command spy strategy, see Fig. 1.
The expert system is used as an interface to

29

922 J. E. Larsson and P. Persson

Idpac. In our solution it is placed before the
command decoder of Idpac, but an alternative
would be to build it into the outermost level of
Idpac.

We keep the command language of Idpac. In
this way a question and answer (Q/A) dialog is
avoided. The expert system traces the user
without asking any questions, and gives help
only on demand. Thus the expert system never
forces the user to do anything. A user that does
not need or want any help is not bothered and
one can still use Idpac in case the help system
does not have enough knowledge to work
properly. The expert system may also use a Q/A
dialog to find out facts about the experiment and
expected results, but only if the user initiates it.

The command spy uses scripts in order to
understand what the user is doing. By matching
scripts against the actual command history, the
expert interface is able to guess what the user
wants to do. The scripts also provide information
on the next sensible step for reaching a desired
goal (Larsson and Persson, 1987a). The knowl-
edge database may contain several scripts, each
designed to take care of a special task. There
may be scripts for maximum-likelihood estima-
tion, frequency analysis, correlation analysis,
etc. Several scripts may be active at the same
time, as long as they match the commands typed
by the user. This is typically the case when the
system is started.

Diagnostic reasoning is needed at certain
points in an identification, notably when a result
is difficult to interpret, a method did not give an
appropriate result, or when there is a choice of
what to do next. Based on what the user has
done earlier, the results may have to be
interpreted in different ways. This taken care of
by production rules associated with each script.
The rules also allow for automatic documenta-
tion by writing script based information to a text
file.

The user can get different kinds of help.
Typing “?” asks for advice on what to do next.
The system will give comments on what has
happened so far and suggest what to do next,
usually together with some motivation, espe-
cially when alternatives are available. It will also
give advice on how to interpret the results of

EXPERT
@ INTERFACE [DPAC
S

L LA &
FIG. 1. The expert system is used as an interface to Idpac.

30

commands, e.g. Bode plots. When the system is
allowed to ask questions, the user may be asked
to pick out information from results, e.g. a
frequency range in a Bode plot. The user may
enter and exit the “‘questions allowed” mode at
will. Via the query mode, a context-sensitive
defaulting facility, the user will be helped with
remembering trivial things, such as file names,
previous parameter and result values, lengths of
data series, etc. This has proved very useful and
we call it the “on-line note book”.

At any time the user may ask for the next
sensible command. The command spy then looks
at the next possible commands in all the active
scripts, and gives these commands as the answer.
If, however, the user does not follow this advice,
some error recovery actions are taken. One
possibility is to assume that the user wants to
start all over again, so the initial scripts are tried
once more. If one of them should match, the
current script gets suspended and the new script
becomes the current script. If the user’s
command does not match any of the initial
scripts, the command spy checks whether the
command matches any previously suspended
scripts. If so, the current script’ gets suspended
and the script which matched the command
becomes the current script. If none of this is the
case, the command spy stays in its current script,
sends the (for the command spy unintelligible)
command to Idpac, and from the next command
on it tries to restart. In this way the user can
issue a few ‘“‘off-the-track” commands for his
own purposes, and then return to the original
script.

When several scripts are active and the user
demands help, information from all active scripts
is displayed. The help is tagged so that the user
can see to which script a certain help message
belongs.

System identification theory and the intelligent
help system use many technical terms. The user
may ask about such terms via the on-line
dictionary. This is a simple ‘“‘standard” help
system, which reads a word and writes a small
explanation of it. Ideally, the help texts
produced by the on-line dictionary should vary
according to the script context. It would also be
useful if more complex questions could be
handled. No such things have been imple-
mented, however.

Architecture of the system

The command grammar describes the com-
mand language of Idpac. The knowledge
database is composed of scripts and rules, and
describes the domain knowledge of the Idpac

An expert system interface 923

-
COMMAND SCRIPTS W ON-LINE
GRAMMAR AND RULES DICTIONARY
\ -

| bib l

EXPERT
INTERFACE IDPAC

<._.-—

_

¥
) |
SESSION USER IDPAC DATABASE
ODEL MODEL MODEL MODEL
y o

FIG. 2. The architecture of the intelligent help system.

experts. The on-line dictionary contains ex-
planations of the vocabularies of system
identification and Idpac. These databases are the
sources of the help system’s knowledge.

The intelligent help system also uses several
models by which it tracks the user and Idpac
(Fig. 2). The session model keeps track of the
session, i.e. what commands have been per-
formed, what method is currently utilized, what
is known about the process, etc. This model is
implemented with scripts and rules.

This system also has a model of the user. This
model is currently very naive and only
characterizes the user as being in one of two
states, expert or beginner. In expert mode the
system is totally passive and gives help on
demand only. In beginner mode the system
always gives as much help as possible, and it is
allowed to ask the user questions, to be able to
give better help. The user state is not changed
automatically. The user himself decides in what
state he is, i.e. how good he is.

Idpac has many internal state variables, and
thus the expert interface must have a model of
Idpac. Almost all of Idpac’s states change due to
certain commands. The help system checks
whether a command affects any internal Idpac
state, and, if so, updates the Idpac model
accordingly. This is done at the end of the query
phase.

The expert interface also has a model of the
database of files used by Idpac. Whenever a file
is created or deleted, this model is updated. This
file model also tracks the dependencies between
files. This information would otherwise be lost,
as Idpac does not take care of it.

IMPLEMENTATION OF THE SYSTEM
The expert interface is made up from several
independent parts (see Fig. 3). Most of the parts
work on a common database.
““The user interface module reads a command

| ~] PARSER }={ MATCHER QUERY =

IDPAC
INTERFACE

USER
INTERFACE T f ‘ T ‘

DATABASE

FiG. 3. Layout of the system.

from the user and transforms it into a Lisp list. It
provides all input and output functions used in
other parts of the interface. In this way, all of
the system’s dependence on terminal types,
graphics, etc. is collected in one place.

The command parser module checks the
command for syntax and supplies defaults in the
same way that the parser of Idpac does. Of
course this means that parsing of a command will
take place twice, once in the interface and once
in Idpac. This is inefficient, but there is not much
we can do since Idpac is a closed program. In
this process, the parser transforms the command
into a more convenient form. The parser accepts
commands with the arguments left out, as the
other routines will fill information in, by
defaulting from scripts and asking the user.

The script matcher module kegps track of the
scripts incrementally and updates them as it gets
commands from the parser. The commands once
again are transformed, and files may be
defaulted using knowledge from the scripts, i.e.
filenames given earlier in the session are filled in.
This is the only way that filenames are defaulted.
New filenames are not created automatically.

The query module goes through the command
description and tries to fill in the remaining
unknown entries by asking the user about them.
In this way the user may give only the command
name. Some parameters will be filled in from the
scripts and, if necessary, the user will then be
prompted for any parameters still unknown. The
query module also sends messages to the file
system about created files.

The database contains the command grammar
used by the parser, the scripts and rules used by
the script matcher, the file tree of the file system,
and state variables for keeping track of the user
state, setting a debug mode, etc.

The file system keeps track of all the data files
created and used during an Idpac session. It does
this by storing data about the files in a directed
graph structure. This enables the file system to
show, e.g. the “ancestors” or ‘“descendants” of a
file.

Software tools

The expert interface and Idpac reside in two
different VMS processes. The Idpiac interface

31

924 J. E. Larsson and P. PBRSSON

sends the processed command to Idpac via a
VMS mailbox. In this way no changes had to be
done to the Idpac program itself. The inter-
process communication routines are written
in C.

The system is written in Franz Lisp (Foderaro
and Sklower, 1981), extended with Flavors
(Allen et al., 1984), and YAPS (Allen, 1983).
Flavors is a system for object oriented
programming added to Franz Lisp. YAPS is an
expert system shell, written in Flavors. The
expert system interface consists of about 8100
lines of code and runs under VMS on a VAX
11/780. The system is documented and the
complete source code given in Larsson and
Persson (1987b). The time of handling one
command in (ihs) is typically 1-5 seconds,
which is about the same as for most of Idpac’s
commands.

The choice of Idpac as the target program was
made in 1985. More recently, Matlab has
become very popular, and an identification
toolbox has been developed for it (Moler e al.,
1987; Ljung, 1987b). Had this been available
when the project started, we would probably
have chosen it instead of the more old-fashioned
Idpac. Also, a workstation environment would
have been preferred over the VAX implementa-
tion. Matlab and the identification toolbox have
been used in another tool for intelligent system
identification (see Nagy and Ljung, 1989).

THE KNOWLEDGE DATABASE

One major knowledge database has been
constructed during the project. It deals with
parameter estimation wusing the maximum-
likelihood method, and thus only covers a part
of everything that Idpac may be used for. Still,
we believe that this database shows that our
solution will indeed work. The system is used for
demonstrations and has also been used in an
undergraduate level course on system identifica-
tion. The database is thoroughly described in
Larsson and Persson (1987c). The full script is
about 330 lines long, and the rule base contains
some 135 rules. This makes up somewhat more
than 28 pages of code. The database handles the
interactive session reasonably well. It was
written by the authors during three months in
the summer of 1987.

We have learned that it takes quite some time
to build even a relatively small database.
Knowledge acquisition, converting knowledge
into scripts and rules, and testing is a
__complicated and lengthy process. Thus, the
. construction of a complete knowledge databse
~ for Idpac is certainly a major effort.

32

Idpac uses sampled input and output signals to
find the parameters of the A, B and C shift
operator polynomials of a difference equation of
the following form.

Ay = Bu + Ce.

Here, u and y are the input and output signals,
and e a white noise disturbance. All of this is
well described in Eykhoff (1974), Ljung and
Soderstrém (1983), Astrém (1980), and others.

The script

The method for identifying a system, as
described in this section, has been compiled into
the script and rules database, which is used in
the expert system interface.

It is assumed that the measured data is
available in two separate ASCII text files. These
files are first converted to Idpac’s internal binary
format, and the binary files are examined with
the command STAT. This command displays
some statistics of a data file, e.g. the mean value,
the variance and the length of the file. The files
are then plotted to see if the signals are
reasonable. Now. it is possible for the user to
change data points which are dbviously wrong
with the command PLMAG. The script guides
the user through the subcommands of PLMAG .

When this is done, both files are plotted in the
same diagram to get a feeling for the interaction
between the signals. If the data files have been
sampled with too high a frequency there is now a
possibility to resample the signals internally in
Idpac with the command PICK.

If the files are long enough they may be cut in
two parts; one for identification and the other
for cross-validation. If the user intends to make
a cross-validation, it is assumed that he will use
the first half of the signals for the first part of the
cross-validation and the second half for the
second part. A natural choice is to cut the signals
in two equal halves, but if the system is affected
by some unknown disturbance it may be wise to
cut out pieces of the signals which are not
affected by it. After the files are cut, their trends
are removed with the command TREND, and
after this the files are plotted again to see that
the new signals look reasonable.

Before the actual parameter estimation, the
user has the option to carry out some tests on
the signals. He may compute the coherence
between the input and output signal, and the
autospectrum of the input signal, and display the
result in Bode plots. The autospectrum is
computed to see if the input signal contains
sufficient energy for excitation of the system.
These computations are done in ordar to get an
estimation of a frequency range in which the

An expert system interface 925

model will be reliable. It is recommended that
the coherence between input and output signal
should not be less than 0.7 in the frequency
range in which a purely deterministic and linear
model should be reliable. The user can also
prewhiten the input and output signals and
compute the cross-correlation of these to get an
estimation of the impulse response, from which
it may be possible to detect a time delay. If a
time delay is detected, it is possible to slide the
signals relative to each other with the macro
SLID, and then once again compute the
prewhitened signals and the cross correlation.

After this, parameters of models of different
orders are estimated and the residuals are
examined. The expert system keeps information
of the models’ AIC values (Akaike, 1972),
continuously computes the minimum value and
keeps track of the corresponding model.

After a successful identification we should get
“white” residuals, i.e. residuals with zero
autocorrelation except for T =0. It can also be
useful to calculate the cross-correlation between
the residuals and the input. A successful
identification should give zero cross-correlation
for positive lags. The presence of feedback in the
experiment is seen from correlation at negative
lags. The actual residuals are also plotted in
order to detect outliers.

It is also recommended to compute the
frequency responses of the estimated models and
display them in a Bode plot. When the curves
coincide well in regions with high coherence, this
is a sign that the order of the transfer function is
sufficiently high. The script handles computation
and plotting of frequency responses of models
relating input signal to output signal and from
noise to output signal.

When a sufficiently high model order,
according to the AIC test and the Bode plots,
has been found, it is time for the cross-
validation. The cross-validation consists of two
parts. The first part starts by removing the trends
of the complete input and output signal. After
that, the residuals of these signals are computed
using the models estimated earlier and the loss
function of the residual files is computed using
parts of the residual files not used in the
parameter estimation of the models. In the
second part of the cross-validation the second
half of the signals are cut out, and trends are
removed from these signals. The rule system
suggests the use of the same order of trend
polynomial as used on the first half. Then
models of the same orders as in the first part of

thé cross-validation arevestimated on the second

half. Residuals and loss functions are computed.
The loss functions are computed using the last

80% of the residual files in order to avoid initial
transients. The models generated from the
different parts of the data sets should agree in
order for the cross-validation to be successful.

During the cross-validation, the values of the
loss functions and their corresponding models
are stored as facts. Actually, the rule system also
computes a set, containing the model with
minimal loss function and all models with loss
functions less than

minimum_value + 0.05 * |minimum _value)|.

Using these sets, the rule system chooses the
best model. For details, see Larsson and Persson
(1987c).

After the parameter estimation, some tests are
carried out on the model chosen. If a covariance
matrix has been stored during the parameter
estimation, it is possible to compute a random
distribution set of models based on these
statistical measures, and compute step responses
from the models. A plot with a number of step
responses is shown as a result of the macro
RANDSTEP, and the user is asked if it looks
reasonable. .

Another possibility is to compute a random
distribution of the frequency response of the
different models, and plot them in a Bode
diagram to see if they coincide. This is done with
the macro RANDTF. ,

The third, and perhaps best, test is to compute
the output signal from the model using the input
signal and then plot it together with the real
output signal, and see if they look reasonably
similar.

At last the chosen model is listed and if the
leading B-coefficients are very small the user can
now fix them to zero and make a new parameter
estimation. This part of the script could have
been more elaborated.

Most of the motivations presented in this
section is available in rule form, and these rules
are triggered from the script during the session.

The rule database

Some rules are useful in all scripts. They
might, e.g. be rules for generating output,
automatic documentation, etc. Therefore a list
of global rules was introduced. These rules are
added to all scripts at startup time.

Throughout the session with the system the
user gets a lot of information from the expert
system, and is also occasionally asked questions.
This happens when the expert system needs
information which is displayed on the screen and
not written to any file, or when it. needs
information, which is a resuit of the user’s

33

926 J. E. LarssoN and P. PERssoN

judgement, e.g. “In which region does the plot
look reasonable?”

Currently the rule base contains only a small
part of all knowledge needed in identification. A
lot of rules must be added to take care of all
special cases that may arise. For example, the
system assumes that the user wants do to a
cross-validation if he cuts the signals. However,
it may be the case that he cuts them in such a
way that it is impossible to carry out a parameter
estimation on the remaining parts, after the first
CUT. Much more of this safety net remains to
be implemented in the rules.

AN EXAMPLE RUN

As an example of a session with the system,
the slightly edited output from a terminal is
given in Fig. 4. The example shows the
identification of the dynamics of a ship, using the
script presented in Section 7. The data was
gathered during an experiment with the freighter
‘“Atlantic Song” on Sunday, 21 December 1969,
off the west coast of Denmark. The complete
session can be found in Larsson and Persson
(1987c). In this example the system is run in
beginner mode, which automatically outputs the
help texts, without the user having to ask for
them. In beginner mode, the system is allowed
to ask the user questions.

The input provided by the user is shown in
italics, and the output from the system is shown
in typewriter font. All information
starting with ML: comes from (ihs), and
indicates that we are following the maximum
likelihood script. The IHS) prompt comes from
the user-interface module, while the rest of the
output is from Idpac.

INTEGRATING THE INTERFACE WITH A CACE
PROGRAM

During the entire project, there has been a
focus on ideas and general facilities for help
systems and we have tried to avoid Idpac specific
things as far as possible. This means, among
other things, that most of the ideas in the system
would, hopefully, work with other programs
also, e.g. Matlab and the identification toolbox.

The Idpac language is somewhat old-fashioned
and has several shortcomings. Some commands
have a syntax different from the usual one and
there is quite a lot of special cases, some of
which have the typical look of “programming
tricks.” Part of an explanation is that Idpac has
been rebuilt and added to in several steps. It
would be much easier to build an expert

-~ interface for Idpac if some changes were made in

Idpac itself.
Idpac is designed as a stand-alone program

34

with a top level that is only useful for
communication with a user at a terminal. There
are no facilities that enable another program to
get values of parameters, results or error
messages from Idpac. The only way that the
expert interface can get such data is either to
analyse the resulting data files or to ask the user.
Neither of these alternatives is really satisfying.
Currently, the expert interface cannot even find
out if Idpac has had an error without asking the
user. If a user specifies a column number in a file
as being say 10000, the interface just sees an
integer and accepts it, but Idpac will not. It is
very difficult to make sure that the interface will
never send anything that would cause an error in
Idpac. Therefore a help system must have the
possibility to check for errors in the target
program. This could be done by supplying
functions in Idpac whereby values could be sent
to another program, making it easy to transfer
results to the expert interface. This would have
the beneficial effect of heavily reducing the
number of questions asked by the help system.
Most questions concern results of different
operations, and these could instead be read into
the expert interface automatically.

When the expert interface is to be built into a
CACE program, there may be reasons for
implementing it in some other language than
Lisp, e.g. Fortran, C or Pascal. We believe that
once it is known what features should be
available, implementing an expert interface in C,
say, is no problem. It will not be very easy to
make large changes in the code, and the size of it
will grow considerably. However, if the CACE
program would use Lisp as its interactive user
interface, the incorporation of an expert
interface would be very straightforward. At the
present stage it would be a big mistake to leave
the Lisp environment.

CONCLUSIONS

The main conclusion of the project is that if
one wants to combine an expert system with a
CACE program, a good possibility is to use the
expert system as an intelligent and noninvasive
help system. This retains the advantages of both
the CACE program and the expert system. It
may be accomplished by implementing a
command spy, as outlined in this paper.
Secondly, not all knowledge need be imple-
mented with production rules. Scripts may be a
better way of representing sequences, especially
in problems where both methods and goals are
well known. Scripts are much easier to read and
understand than a rule representation of
sequences. A good rule is to use as much as

An expert system interface 927

ML: This script assumes that the input signal is ML: Use the TREND command to remove any trends in
available in ASCII format, use CONV to convert it songlc.
to binary format. ML: trend
ML: conv IHS> trend songlct < songlc O
IHS> conv songl < songl 1 ML: The last trend polynomial you removed was of
ML: stat . order 0. Use the TREND command to remove any
IHS> stat trends in song2c.
ML: trend
MEAN = =-1.14047611 IHS> trend songZct < songZc 0
VARIANCE = 49.3786011 MIL: Check that it is possible to get reasonable
LENGTH = 126) results by making a coherence test. The coherence
must be larger than ~ 0.7 if you are going to use
What is the the length of the file songl? > 126 the results in a parameter estimation and you use
ML: Set appropriate plot width with LET NPLX. = 126. one input signal and expect a deterministic
IHS> let nplx. = 126 linear model. Use number of lags = 20 - 25% of
ML: This script assumes that the output signal is the number of data points.
available in ASCII format, use CONV to convert it Parameter estimation may be started. Use the
to binary format. MLID command to fit models of INCREASING order.
ML: conv ' Look at the parameters and the estimated
IHS> conv song2 < song2 1 uncertainties. A minimal AIC is a sign that the
ML: The length of the file song2 is unknown. This model order is high enough.
may lead to trouble later on. ML: coh, mlid
* ML: stat THS> stat songlct (The user diverts from the script)
IHS> stat
MEAN = -5.671668798E-02
MEAN = 210.736511 VARIANCE = 35.8573837
VARIANCE = 266.270721 LENGTH = 90
. LENGTH = 126
ML: coh, mlid
What is the the length of the file song2? > 126 IHS> coh(ﬂﬁu}userremnnesghescﬁpﬂ
" ML: Plot the files songl and song2 with one PLOT coh ... < songlct song2ct
command. GIVE THE COMMAND PLOT songl / song2. coherence outfile? > c¢f
ML: plot coh cf < songlct song2ct
IHS> plot songl | song2 number of lags? > 25
plot song1 / song2 BODE(p)ct
10 08
o
0.6
~10]
0 50 100 :
250 ‘ 04
240
: 0.2
220
200 /\/\
0 50 100 ¢ o1 1
ML: Select two regions. If you can’t find any Lower limit of interval where the coherence is
good choice, just take the first and second half greater than ~0.7 2 > 0.5
of the data files. You must CUT out two regions Upper limit of interval where the coherence is
if you want to do cross validation later. . greater than ~0.7 2 > 1.0)
Use CUT to cut out the first half of the input Parameter estimation may be started. Use the

signal in the file songl. Use first record = 1 MLID command to f£it models of INCREASING order.
and number of records = €3. Look at the parameters and the estimated

ML: cut uncertainties. A minimal AIC is a sign that the
IHS> cut 190 model order is high enough.

cut ... < songl 1 90 ML: mlid

resultfile? > songlc THS> mlid ssl 1

ML: The last file you CUT was songl , the starting

column 1 and the record length 90. Use CUT to cut Al -0.980296 +- 3.511994E-02
out the first half of the output signal in the . Bl 0.316539 +- 5.112291E-02
file song2. . c1 0.107419 +- 0.101487

ML: cut

IES> cut song2c 1 90 LOSS FUNCTION 292.482

- W

AIC 429,866

FI1G. 4. An example session.

35

928 J. E. LarssoN and P. PERSSON

ML: You have identified the model ssl with order 1. ML: residu

aic = 429.87 and loss function = 292.48.
ML: residu
IHS> residu
residu < ssl songlct song2ct
residuals outfile? > rsl

1

05

RESI rsht <4y xqp!
o1

] 4 8

ML: If the order is high enough, the residuals
will be white, i.e., their autocorrelation close
to zero except at tau = zero. Note that small
residuals due to quantization will not be white.
Use SPTRF < ss1 B / A to produce a
frequency response file from ssl. You have
identified the model ssl with order 1 aic =
429.87 and loss function = 292.48.
ML: mlid, sptrf
IHS> spirffsl <ssl b/ a
ML: Plot the frequency responses for all systems
in one diagram. Use the command BODE fsl. The
0.7 limits of the insignal and outsignal which
you have identified from (songlct song2ct) are
0.50 to 1.00. This is the interesting region in
the Bode diagram.

ML: bode
IHS> bode fsl
bode fs1

104

0.01 0.1 1

~1004

~1504

T T

0.01 0.1 1

ML: You have identified the model ssl with order
1 aic = 429.87 and loss function = 292.48. You
may perform ancther estimation with a higher
model order.

ML: mlid, sptrf

IHS> mlid ss2 2

Al ~1.75515 +- 5.400475E-02
A2 0.780311 +- 5.314677E-02
Bl 0.386883 +~- 3.848762E-02
B2 -0.119482 +- 5.575246E-02
Cc1 ~1.03639 +- 0.123959

c2 0.180254 +- 0.111139
LOSS FUNCTION 182.110

AIC. 393.224

LA O

s

IHS> residu rs2

L}

RESID r3p<}a2 sqpil

0 4]

ML: If the order is high enough, the residuals
will be white, i.e., their autocorrelation close
to zero except at tau = zero. Note that small
residuals due to quantization will not be white.
Use SPTRF ... < ss2 B / A to produce a frequency
response file from ss2.

You have identified the model ss2 with order 2
aic = 393.22 and loss function = 182.11 and the
model ssl with order 1 aic = 429.87 and loss
function = 292.48.

ML: mlid, sptrf

IHS> spirffs2<ss2b [/ a

ML: Plot the frequency responses for all systems
in one diagram. Use the command BODE fs2 fsl.
The 0.7 limits of the insignal and outsignal
which you have identified from (songlct song2ct)
are 0.50 to”1.00. This is the interesting region
in the Bode diagram. g

ML: bode
IHS> bode fs52 fs1
bode fs2 fs1

10-1\|~<2x\—'\-1—\1
2\ l\
1
l\

—1004

-150 e

0.01 0.1 1

ML: You have identified the model ss2 with order
2 aic = 393.22 and loss function = 182.11. You
have identified the model ssl with order 1 aic =
429.87 and loss function = 292.48. You may
perform another estimation with a higher model
order. Probably the best model is that in the
file ss2, according to the AIC.

The length of songl is 126. You must simulate 126
points in DETER.

ML: mlid, sptrf, deter

IHES> deter 126

deter ... < ss2 songl 126

outfile? > det

ML: To remove irrelevant biases in the plots,
remove trends of order 0 from det and song2.

ML: trend

IHS> frend dett < det 0

ML: trend

. F16. 4. (continued)

36

An expert system interface 929

Maryland Artificial Intelligence Group Franz Lisp

IHS> trend song2t < song2 0 environment. Technical report, TR-1226, Department of
“ML: Plot the simulated and real output signal Computer Science, University of Maryland, Baltimore,
~in the same diagram. Give the command PLOT dett Maryland.

song2t. Breuker, J., C. Duursma, R. Winkels and M. Smith (1989).

ML: plot Knowledge representation in EUROHELP. Proc.

IHS> plot dett song2t ESPRIT ’89. Bruxelles, pp. 258-270.

Cox, D. R. (1958). Planning of Experiments. New York.

Eykhoff, P. (1974). System Identification, Parameter and

P State Estimation. Wiley, London.

Eykhoff, P. (1981). Trends and Progress in System
Identification. Pergamon Press, Oxford.

© Fedorov, V. V. (1972). Theory of Optimal Experiments.
Academic Press, New York.

Foderaro, J. K. and K. L. Sklower (1981). The Franz Lisp
Manual. University of California, Berkeley, California.

plot dett song2t

20
Gentil, S. and Ph. Conraux (1985). SEXI: Systéme Expert
en Identification. DEA Report, Laboratoire
ol \ d’Automatique de Grenoble, Institut National Polytech-
nique de Grenoble, Grenoble.
Gustavsson, I. (1979). Négra macros f6r Idpac (Some macros
a0l for Idpac). Technical report, TFRT-7170, Department of

0 50 o0 Automatic Control, Lund Institute of Technology, Lund.
Gustavsson, 1. and A. B. Nilsson (1979). Ovningar for Idpac
ML: The simulated signal, dett should agree well (Exercises for Idpac). Technical report, TFRT-7169,
with the real output from the system, song2t. If Dep;iirtment of é\utomatlc Control, Lund Institute of
not, try another model. Probably the best model Technology, Lund.

. . . . Haest, M., G. Bastin, M. Gevers and V. Wertz (1988). An
:4; th:t in the file ss2 , according to the AIC. expert system for system identification. Proc. Ist IFAC
: stop

Workshop on Artificial Intelligence in Real-Time Control.
IHS> stop Swansea, Wales, pp. 101-106.

i Larsson, J. E. (1984). An expert system interface for Idpac.

FIG. 4. (continued) Masters thesis, TFRT-5310, Department of Automatic

Control, Lund Institute of Technology, Lund.

Larsson, J. E. and P. Persson (1986). Knowledge

L. representation by scripts in an expert interface. Proceed-

possible of the structure of the problem in its ings of the 1986 American Control Conference, Seattle,

solution. The use of scripts will also reduce the Washington.

. : Larsson, J. E. and P. Persson (1987a). An expert interface
size of the knOWIedge databases ConSIderably' for Idpac. Licentiate thesis, TFRT-3184, Department of

We believe that the knowledge database built Automatic Control, Lund Institute of Technology, Lund.
ing our project clearly shows that it is Larsson, J. E. and P. Persson (1987b). The (ihs) reference
dur .g proj Yf 1 hel ¢ £ manual. Technical report, TFRT-7341, Department of
poss1ble to an_StruCt a usetul help system ior Automatic Control, Lund Institute of Technology, Lund.
Idpac, containing knowledge about system Larsson, J. E. and P. Persson (1987c). A knowledge
identification theory. The database we built can database for system identification. Technical report,
ide . lyk lihood t ti TFRT-7342, Department of Automatic Control, Lund
handle maximum-li elihood parameter estima- Institute of Technology, Lund.
tion. Another conclusion is that knowledge Larsson, J. E. and P. Persson (1987d). Experiments with an
engineering demands a large effort, and thus a expert system interface. Final report, TFRT-3196,
. . . Department of Automatic Control, Lund Institute of
full knowledge database for system identification

Technology, Lund.

will not be constructed easily. Ljung, L. (1987a). System Identification: Theory for the User.
Prentice-Hall, Englewood Cliffs, New Jersey.

Ljung, L. (1987b). The System Identification Toolbox for Use
With Matlab, User’s Guide. Math Works, Sherborn,

Acknowledgements—We would like to thank our supervisor Massachusetts.

Karl Johan Astrom for initiating the project and our Ljung, L. and T. Soderstrom (1983). Theory and Practice of
colleagues Sven Erik Mattsson and Karl-Erik Arzén for Recursive Identification. MIT Press, Cambridge,
supporting us in our work. Massachusetts.

This study has been part of the Computer-Aided Control Moler, C., J. Little and S. Bangert (1987). PC-Matlab for
Engineering (CACE) project at the Department of MS-DOS Personal Computers. Math Works, Sherborn,
Automatic Control, Lund Institute of Technology, supported Massachusetts.
by STU, the National Swedish Board for Technical Monsion, M., B. Bergeon, A. Khaddad and M. Bansard
Development, under contract no. 85-3042. (1988). An expert system for industrial process identifica-

tion. Proc. Ist IFAC Workshop on Artificial Intelligence in
Real-Time Control. Swansea, Wales, pp. 95-99.

Nagy, P. A. J. and L. Ljung (1989). An intelligent tool for
] REFERFNCES i]) system identification. Proceedings of the 1989 IEEE
Akaike, H. A(1972) Use of an information theoretic quantity Control Systems Society Workshop on Computer-Aided
for statistical model identification. Proceedings of the 5th Control System Design, Tampa, Florida.
Hawaii International Conference on System Science, Schank, R. C. and R. P. Abelson (1977). Scripts, Plans,
Honolulu, Hawaii. Goals and Understanding. Lawrence Erlbaum Associates,
Allen, E. M. (1983). YAPS: yet another production system. Hillsdale, New Jersey.
"% =Xechnical report, TR-1146," Départment of Computer Schank, R. C. and C. K. Riesbeck (1981). Inside Computer
Science, University of Maryland, Baltimore, Maryland. Understanding. Lawrence Erlbaum Associates, Hillsdale,
Allen, E. M., R. H. Trigg and R. J. Wood (1984). The New Jersey.

37

930 J. E. LarssoN and P. PErsson

Skogg Hansen, S., L. Holgaard and M. Smith (1988).
EUROHELP: Intelligent Help Systems for Information
Processing System. Computer Resources International,
Birkergd, Denmark.

Waters, R. C. (1985a). KBEmacs: A step toward the
programmer’s apprentice. Technical Report 753, MIT
Artificial Intelligence Laboratory, Cambridge,
Massachusetts.

Waters, R. C. (1985b). The programmer’s apprentice: A
session with KBEmacs. IEEE Trans. Software Engng,
SE-11, 1296-1320.

Wieslander, J. (1979a). Interaction in computer-aided
analysis and design of control systems. Doctorial
dissertation, TFRT-1019, Department of Automatic
Control, Lund Institute of Technology, Lund.

W
“«
¥

38

Wieslander, J. (1979b). Design principles for computer-aided
design software. Preprints -of the IFAC Symposium on
CAD of Control Systems, Ziirich.

Wieslander, J. (1980). Idpac commands—user’s guide.
TFRT-3157, Department of Automatic Control, Lund
Institute of Technology, Lund.

Wilensky, R., J. Mayfield and A. Albert (1986). UC—A
progress report. Report no. UCB/CSD 87/303, Computer
Science Division (EECS), University of California,
Berkeley, California.

Astrom, K. 1. and P. Eykhoff (1971). System identification—
A survey. Automatica, 7, 123-162.

Astrom, K. J. (1980). Maximum likelihood and prediction
error methods. Automatica, 16, 551-574.

Part 11

An Expert System for
Frequency Response Analysis

40

Copyright © IFAC [1th Triennial World
Congress, Tallinn, Estonia, USSR, 1990

AN EXPERT SYSTEM FOR FREQUENCY
RESPONSE ANALYSIS

J. E. Larsson

Department of Automatic Control, Lund Institute of Technology, Box 118,
§-221 00 Lund, Sweden

Abstract

Frequency response analysis is one of the oldest
and most widely used methods to determine the
dynamics of a stable linear system. Though quite
simple, it requires knowledge and experience of
the user, in order to produce reliable results.
Available equipment will perform an experiment
automatically, but does not support the user in
designing the experiment nor in validating the
results. The expert system FREX is designed to
help the user in performing the analysis. It checks
whether the system is linear, finds the frequency
and amplitude ranges, verifies the results, and,
if errors should occur, tries to give explanations
and remedies for them.

Introduction

FREX is a small expert system for frequency
response analysis. It is intended to be used as
an advisory system together with a frequency
response analyser. The system is completely
stand-alone, i.e., it runs separately from the

frequency analyser, "and the user handles all !
communication between the two. The idea is that

of an expert advisor guiding the user through an
experiment, with a Q/A dialog.

The system is supposed to be useful for all
non-expert users, e.g., students in undergraduate
identification courses, and engineers in industry.

The idea of building an expert system
for running a frequency analyser was kindled
during a graduate course in identification,
in the fall of 1985. During this course, all
participants performed a frequency response
analysis experiment, and gave a small recipe for
the method. The knowledge database of FREX
originates partly from these recipes. Thus, the
knowledge acquisition was performed in part by
more than 10 persons.

The knowledge database is quite small,
consisting of 65 rules. These are run using
backward chaining and a Q/A dialog. The expert
system was built with MESS, a very small and
simple shell, Larsson (1988). Some minor changes
has_been made in the MESS somrce code.

This project has also been described in
Larsson (1989).

Frequency Response Analysis

Frequency response analysis is used to find a
mathematical model of a real world process with
one input and one output signal. A linear model
describing the gain and phase shift as functions
of the input signal’s frequency will be obtained.
In the experiment, the process to be identified is
driven by a sinusoid input signal,

u(t) = up sin(wt).

As the method demands the process to be linear,
time invariant, and asymptotically stable, the
output will become sinusoid when all transients
have decayed. The output will be

y(t) = |G (iw)|uo sin(wt +’arg_G(iw))4,

where G is the transfer function of the system
and w the input frequency. Normally, the phase
difference, arg G(iw), is negative. By measuring
the amplitude gain and the phase difference at
several different frequencies, w;, it is possible to
obtain, e.g., a Bode diagram.

v The procedure outlined is very sensitive
to noise, and it is seldom possible to use it
in this simple form. However, the method can
be improved by a correlation technique. The
output is multiplied with sin(wt) and cos(wt),
and integrated.

sin ot
l
y@® - * 1/s Ys(T)
* 1/s Ye(T)
cos wt

Figure 1. The correlation method setup.

41

This experimental setup will result in the
computation of the folowing integral values:

Y,(T) = /0 " (0 sin(wt)it
and r
Y(T) = /o y(t) cos(wt)dt.

The integration time, 7', should be a whole
number of periods, i.e.,

T = 27rn.
w
This gives
T .
Y, (T) = EuoReG’(zw)
and

Y(T) = %uoImG(iw).

From Y, and Y. the amplitude gain and phase
difference may easily be computed:

G (iw)| = _2—- Y2(T) ¥ Y2(T)

and
Y. (T)
Y, (T)

An intuitive way of looking at this method is to
view it as a filtering of the output signal, using a
band pass filter at the frequency w, with the filter
width proportional to 1/T". The problem with the
method is that it often requires long experiments.
Of course, it can only be used if it is possible
to disturb the process with a sinusoid input.
For readings on frequency response analysis in
general and this method in particular, see for
example Astrdm (1975) or Séderstrdm (1984).
Frequency response analysis was used by the
physicist Angstrém as early as 1861. It enabled
him to make a significant improvement in the
determination of thermal diffusivity, Angstrém
(1861).

Commercial equipment exists for perform-
ing frequency response analysis using the method
described above, In this project, a Solartron
1250 frequency analyser, Solartron Instrumen-
tation Group (1983 a, b), was used. Before an
experiment is performed, one must decide a fre-
quency interval, decay and integration times, and
a suitable input signal amplitude. Then the anal-
yser runs experiments at a number of frequen-
- Cles, covering the frequemcy interval, computes
“the 1ntegrals the amplitude gains and the phase
differences, and plots a Bode diagram. Thus, the

arg G(iw) = arctan

42

user has to make several experiment design de-
cisions. The expert system is mainly concerned
with these decisions, and leaves the numerics to
the frequency analyser.

The Knowledge Database

The knowledge database consists of rules, used
by the expert system to monitor the frequency
response analysis and to diagnose the results.
The system performs the analysis in several
stages. First, the expert system checks whether
the process is stable or must be stabilized. Then
it tries to establish that the process is fairly
linear, at least in a certain range of amplitudes.
After this, the expert system proposes tests
that will find the limits of the frequency
and amplitude ranges. Then the experiment is
performed and several validation tests are made.
The validation includes checking with a priori
knowledge, verification of frequency limits, and a
comparison between the process and a simulation
of the model obtained. If, somewhere in this
process, anything goes wrong, there are rules
for explaining probable causes of the errors. The
error diagnostic rules make up a large part of the
database.

o The stabilization is given a simple treat-
ment. If the process is not stable from the
beginning, the systém suggests a propor-
tional regulator to stabilize it. If, when the
results have been obtained, the model does
not agree with the a priori knowledge, the
system may guess that the experiment has
led to the identification of the inverse of the
controller. In this case it recommends a new
experiment with better noise suppression, a
different controller or a different input con-
nection place.

o In order to assess the linearity properties of
the process, the system tries several things.
A visual inspection of the signals is used if
possible. A dual step test is proposed, i.e.,
the results of two step inputs with the same
amplitude, one positive and one negative,
are examined. Also, several small step inputs
are tried at different signal levels. All the
outputs should look essentially the same in
the linearity range. If there is friction in
the process, this can usually be seen in the
output signal. Thus, if the user knows that
there is friction in the process, or the output
signal is deformed, the system recommends
the use of a bias in the experiment, in order
to avoid friction.

o If the user knows or has an kducated guess
on the frequency range, the system uses

this in the experiment. If the result is
not satisfactory, the error diagnosis tries to
adjust the frequency limits. In cases where
no guess is available, the system uses a step
Tesponse experiment to get a suggestion for
the cut-off frequency. The frequency limits
are centered around this frequency. The
system may also be designed for a certain
frequency. If so, an interval around this
frequency is included.

The amplitudes of the signals used in the
experiment must ‘be larger than the noise
level of the process, and, in case the process
is digital, larger than the quantization level.
On the other hand, the signals must be
small enough not to reach linearity or other
boundaries. In order to check this, the static
gain of the process transfer function is
measured. Should the model obtained not
be satisfactory, the system checks whether
the signals reaches some kind of amplitude
limitation. A smaller amplitude is then
recommended.

The frequency response analysis experiment
is executed using the gathered information.
First a quick experiment with frequencies
covering the whole frequency range is
performed. A rather low amplitude is
recommended. If there are points in the
Bode diagram where the curves change
rapidly, new experiments with a frequency
range fitted rather closely around these
points are suggested.

When a result has been obtained, it must
be tested and validated. For this reason the
system compares the model against any a
priori knowledge available. If the frequency
range has only been guessed, that guess
must also be checked afterwards. In this case
the system suggests a new experiment with
a wider frequency range. Finally, the system
recommends that the model obtained is used
in a simulation. In this way it is possible to
make sure that the process and the model
has the same behavior for some selected
input signals.

If the analysis should fail, or the results
be incompatible with a priori knowledge,
several errors may be diagnosed. If the
process has been used in a closed loop, the
inverse controller may have been identified.
When the signal to noise ratio is low in
the higher frequencies, the method will only
produee reliable results at lowerfrequencies,
and the upper frequency limit must be
lowered. If the signals reach amplitude

43

limitations the experiment should be rerun
with a smaller amplitude; and vice versa:
if the amplitude is close to the noise or
quantization level, the experiment should
be rerun with a larger amplitude or longer
integration times. If there is backlash or
hysteresis in the process, making it strongly
non-linear, frequency response analysis may
be unable to provide a good result. If
there is friction in the process, the linearity
properties may have been destroyed. In this
case the experiment should be rerun with
a bias if possible. Another explanation may
be that the a priori knowledge is wrong.
Finally, if the cut-off frequency differs quite
a lot from the desired working frequency,
very tight control will be needed, and it
will probably be a good idea to run the
experiment with a feedback to speed up the
process. '

Structure of the Rule Base

The knowledge database currently consists of 65
rules, running in backward chaining. The rules

are

split into seven groups, each of which is

concerned with a different task.

o]

The phase control rule is the only one in
its group, and it executes the other rule
groups, one after the other. ‘

The linearity rules are concerned with
checking whether the system is linear or not.
Ifit is, they try to establish a linearity range.

The frequency range rules try to find
the frequency range, i.e., the lower and
upper frequency limits to be used in the
experiment.

The amplitude range rules try to find
lower and upper limits for the amplitude
of the input signal. They then pick an
amplitude close to the lower limit.

The perform experiment rules take care
of telling the user to actually run the
experiment. First, an experiment covering
the whole frequency range is perfqrmed,
then, if there are any points of special
interest, e.g., where the transfer function
changes very rapidly, experiments are made,
which cover these points more closely.

The verify rules propose some tests to
verify the results. Any a priori knowledge is
checked, if the frequency range was guessed,
it is increased, and a simulation is suggested.

The explain errors rules are invoked if
the analysis does not end with success,‘and
certain error conditions are present. These

43

rules try to guess the source of the error and,
if possible, suggest a remedy.

The rules are written in the MESS rule
format, which should make them rather easily
understood. Three examples of actual rules are
shown below.

(rule phase-control
(if
(the
(the
(the
(the
(the
(the
(then
(the

system is
linearity

stabilized)

range is known)
frequency range is known)
amplitude range is known)
experiment has been performed)
result is verified))

frequency analysis has been performed)))

The phase control rule schedules the other
rules, so that the different phases of a frequency
response analysis are performed, one after the
other. Next, here is an experiment design rule.

(rule stabilize-2
(if
(not (the system is stable))
(* the system can be stabilized with a
feedback loop))
(then
(action (use a proportional regulator
to stabilize the system))
(action (connect the input to the reference
signal of the controller))
(the system is stabilized)))

This rule takes care of stabilizing the system
before the experiments take place. This is
necessary if the process is unstable. The next rule
is concerned with error diagnosis.

(rule explain-errors-ii
(it
(not (the resulting transfer function is
confirmed by the a priori knowledge))
(the system is digital)
(a priori kmowledge about the transfer
function is available)
(* the transfer function is wrong close to
the sampling frequency))
(then
(it is not possible to get good results close
to the sampling frequency)
(action (lower the upper frequency limit and
rerun the experiment))
(an error has been diagnosed)))

This last example shows a rule that tries to
explain erroneous results due to sampling. The
error diagnosis rules are tried in order from more
specific to more general error, until a likely one
is found. The expert system then reports this
diagnosis as the probable cause of error.

_Some Example Runs

-1 Ve .
" #The expert system communicates with the user

through a Q/A dialog. The questions will

44

44

concern the user’s knowledge about the process
and the results of the experiments. Here is an
example of part of a typical dialog.

Is it true that the frequency range is kmown a
priori? (y/mn)

n .

Is it true that you have a good guess about the
limits of the frequency range? (y/n)

n

Is it true that a step response frequency range
experiment has been performed? (y/n)

n
PERFORM: perform a step respomnse
frequency range experiment
Deduction/advice: the results of a step response
experiment are available
Deduction/advice: the cutoff frequency is appr.
omega = 1 / rise time
Deduction/advice: center the frequency range
around the cutoff frequency
Deduction/advice: checking of the frequency
range is needed afterwards
Deduction/advice; the frequency range is known

This example shows how the system tries to
establish a frequency range for the experiment.
First, it checks whether the wuser already
knows or has an educated guess about this
range. Aftef negative answers, the system
proposes a step fest experiment, and uses
the result to guess a reasonable frequency
range. This range may be changed later on,
though. The fact (checking of the frequency
range is needed afterwards) actually forces
the system to consider changing the range after
the experiment has been performed.

The next dialog part shows the error
diagnosis of a session.

Is it true that the resulting transfer function
is confirmed by the a priori knowledge? (y/mn)

n

Is it true that the amplitude is as small as the
noise or quantization level? (y/n)

n

Is it true that the resulting transfer function

is wrong in the lower frequencies? (y/m)

n

Is it true that the resulting transfer function

is wrong in the higher frequencies? (y/n)

n

Is it true that the signal to noise ratio is low

in the higher frequencies? (y/n)

n

Deduction/advice: the friction probably destroys
the experiment

PERFORM: rerun the experiment with a
bias, to avoid the friction

Deduction/advice: the signals are not linear

Deduction/advice: an error has been diagnosed

Here, the experiment has already been per-
formed, and at a certain stage the validation
goes wrong. Therefore the system tries several
guesses of what might be the problem. Earlier
it has been established that sombk unknown fric-
tion is present. As no specific explanation works,

the system shows good expertise, and blames the
unknown friction.

The Inference Engine

The expert system shell used is the MESS
system, Larsson (1988). It is a small, (192 lires
of source code), Scheme system that provides the
user with forward and backward chaining. The
backward chaining strategy is used in FREX.
Some changes in the source code of MESS have
been made. All fact deductions are traced, and
there are some new clauses allowed in the then
parts of the rules. The input and output has
been changed so that the Q/A dialog gives
an impression of semi-natural language. This
demands the facts to be written in appropriate
syntactic versions, i.e., all facts to be asked must
fit after the phrase “Is i true that...”.

The MESS system has obvious strengths in
that its source code is short, simple and easy to
change. Its main drawback is that it does not
use an effective matching strategy, which makes
its execution slow for larger rule bases. As the
present rule base is rather small, the speed has
not been a problem, though.

The FREX system was originally imple-
mented in Chez Scheme on a SUN 3/50, but it
has also been moved to PC Scheme on an IBM
PC/AT, and to MIT Scheme on a Macintosh+.
The response time on the SUN is immediate, and
on the AT it is a matter of a few seconds. On the
Macintosh+, however, FREX is quite slow, often
using close to a minute per query.

Conclusions and Further Developments

The chosen target domain, frequency response
analysis using a frequency analyser, is a good,
clean area for an expert system project. There
are very few interactions with other areas; most
of the tasks can be solved at the site of the
frequency analyser. This has made it possible to
produce a rather complete knowledge database,
and a system that is useful for most non-experts.
There exists only a few written descriptions of
both the theoretical and practical problems of
frequency response analysis, Astrdm (1975) is an
exception, but this knowledge may now be found
in this system. Thus, the project has also resulted
in valuable knowledge refinement.

The system probably needs more testing
before it will be robust enough for production use
or inclusion in a frequency analyser. Currently,

it runs completely stand-alone. Work has been
~ done to improve the front-ends of frequency
analysers see for example Wichtel (1989), and
- a better way would be to embed the system in

45

the analyser, making it an integral part of an
intelligent instrument.

Acknowledgements

I am indebted to Karl Johan Astrém, who gave
the identification course and forced his students
to try a little knowledge acquisition, and to
Jan Peter Axelsson, Ola Dahl, Kjell Gustafsson,
Ulf Hagberg, Mats Lilja, Michael Lundh, Bernt
Nilsson, Per Persson, Anders Wallenborg, Karl-
Erik Arzén, and Ann-Britt Ostberg, all of whom
produced written recommendations on frequency
response analysis in general and running the
Solartron 1250 analyser in particular. Also, I
would like to thank Sven Erik Mattsson for good
advice during the project.

References

Larsson, J. E., (1988): “MESS—A Minimal
Expert System Shell,” Technical report,
TFRT-7380, Department of Automatic Con-
trol, Lund Institute of Technology, Lund.

Larsson, J. E., (1989): “Knowledge-Based Fre-
quency Response Analysis,” jn Larsson,
J. E., (Ed.) Proceedings of the SAIS '89
Workshop, Department of Automatic Con-
trol, Lund Institute of Technology, Lund.

Solartron Instrumentation Group, (1983 a):
“1250 Frequency Response Analyser, Op-
erating Manual,” Solartron Instrumenta-
tion Group, Schlumberger Electronics (UK)
Ltd., Farnborough, England.

Solartron Instrumentation Group, (1983 b):
“1096 Data Management System,” So-
lartron Instrumentation Group, Schlum-
berger Electronics (UK) Ltd., Farnborough,
England.

Séderstrom, T., (1984): Lecture Notes in Iden-
tification, Automatic Control and Systems
Analysis Group, Department of Technology,
Uppsala University, Uppsala.

Wichtel, E., (1989): “A Control Programfor a
Frequency Analyser,” Master thesis, TFRT—
5400, Department of Automatic Control,
Lund Institute of Technology, Lund.

Angstrém, A. I, (1861): “Neue Methode, das
Varmeleitungsvermdgen der Korper zu bes-
timmen,” Annalen der Physik und Schemie,
114, pp. 513-530.

Astrém, K. J., (1975): “Lectures on System Iden-
tification, Chapter 3, Frequency Response
Analysis,” Internal report, TFRT-7504, De-
partment of Automatic Control, Luhd Insti-
tute of Technology, Lund.

45

46

Part I1I

Diagnostic Reasoning Strategies

for Means-End Models

48

CHAPTER 1

INTRODUCTION

Industrial processes can be described and modeled in several ways, and
the models obtained are used for many different tasks. Designers, op-
erators, and process engineers often reason about the goals of a process
and the means available for achieving these goals. However, most model
types contain little or no means-end information, and thus provide no
good support in these tasks.

This work utilizes one type of explicit means-end models, multilevel
flow models, (MFM), which were proposed by Lind (1990 a). Lind has
suggested a syntax for a formal language and given general ideas on how
to use the MFM representation. The contributions of this work are de-
scriptions of three methods or strategies for diagnostic reasoning using
MFM, and a set of examples of presentation of means-end information;
altogether four parts: “

o Measurement validation

o Alarm analysis

o Fault diagnosis

o Presentation of means-end information

The measurement validation algorithm takes a set of measured values
and uses any available redundancy to check consistency. A single er-
roneous flow measurement will be marked and corrected; if there are
several conflicting values, the consistent subgroups of measurements
will be marked but no flow value corrected.

The alarm analysis algorithm takes as input a set of alarm states

such as normal, low flow, high flow, low volume, and high volume. Each
alarm is associated with a part of an MFM model, and the method recog-
nizes some of the alarms as primary, while the others are either primary
or consequences of the primary alarms.
. ~The fault diagnosis algorithm uses an MFM model to produce a
“backward chaining” style of diagnosis. The input can come from ques-
tions answered by the user, from measured signals, or triggering of rules.
The system will trace faults, provide explanations, and give remedies.

49

Chapter 1 Introduction

The MFM models have a graphical representation themselves, but
it is also possible to use other types of pictures and diagrams to present
the means-end information to the user. This includes showing goal hier-
archies, using special flow diagrams to show the thermal flows through
the process, highlighting mass and energy flows in flow sheets, and us-
ing block diagrams to show the control systems.

1.1 Means-End Models

Today’s control and supervisory systems almost exclusively use mod-
els based on physical topology and mathematical and logical behavior.
However, the problems handled and the questions asked by designers,
operators, and process engineers often involve other categories of infor-
mation, equally important for the different tasks performed. In partic-
ular, a large part of the reasoning performed concerns means and ends,
1.e., the goals of the process in question, and the functions available to
achieve these goals. This reasoning is needed in planning of operation,
supervision, and fault diagnosis. It should be noted that the same kind
of reasoning is extensively used in knowledge-based systems.

The models available today give limited support only for diagnostic
tasks. The continuing use of topological and behavioral models for di-
agnostic reasoning tasks has sometimes led to an unawareness of the
important and fundamental difference between different types of mod-
els.

Which components are present? Where is a component located?
How are they connected? How large is the component?

What do the signals look like? How is this task performed?
What is the value of K? What does the component do?

Figure 1.1 Questions of different information categories. The examples con-
cern physical topology, (upper left), geographical properties, (upper right),
behavior, (lower left), and means-end information, (lower right). All these
questions may be important for design, operation, and diagnosis, but they
belong to different model categories.

Examples of a number of questions concerning different inforn'nation cat-
egories have been gathered in Figure 1.1. There are questions about
physical structure, geographical properties, behavior, and means and
ends.

)

Chapter 1 Introduction

“current state will be viewed as a fault. This approach is quite common
in model-based diagnosis.

Of course, all model types are more or less normative, as they de-
scribe only a subset of all possible properties and behaviors of the target
system, but the degree of explicitness may vary. Thus, in some modeling
descriptions, such as, e.g., simulation equations, the normative nature
is not always obvious, while in MFM, it is both essential and explicit.

1.3 An Example of an MFM Model

The following example will be used to explain the basic concepts of MFM.
The target process consists of a plate heat exchanger, which is used
to heat a product medium to a certain temperature, see Figure 1.2.
Water is heated through injection of steam and then pumped through a
heat exchanger. The product medium is also pumped through the heat
exchanger where it is heated by the water. '

Water 1
Pump Steam injector
Steam —»%—
Valve
Water -~
Product B Product
HTX
Pump

Figure 1.2 A heat exchanger system. The flowsheet shows how water is
pumped through a steam injector, where it is heated with steam, and through
a plate heat exchanger. The product is pumped through at the other side of
the heat exchanger.

‘The primary goal is-to heat the product to a certain temperature. But
‘there are also two subgoals: having water and product available, i.e.,
bringing the media to the heat exchanger:

o G1l: Heat product to a certain temperature

52

1.1 Means-End Models

Once it is understood that diagnostic reasoning tasks are concerned
as much with means-end information as with physical topology and be-
havior, the benefit of explicit means-end models becomes apparent. This
is the rationale for MFM. It provides a way of explicitly capturing the
goals of a process, the functions available, and the relations between
goals and functions: a goal can be achieved by a set of functions, and a
function may be conditioned by a subgoal.

1.2 Basic Ideas of MFM

In multilevel flow modeling, a system is modeled as an artifact, i.e.,
a man-made system constructed with some specific purpose in mind.
Thus, MFM contains some concepts from the natural sciences, (math-
ematics and physics), and some from the human sciences, (cognitive
science and psychology), and in a way forms a bridge between these
sciences. /

The purposes of a system are modeled with the MFM concept of
goals, i.e., objectives of running a system or using a process. The physi-
cal components of a system are used to provide one or several functions.
These functions are the means with which the goals are achieved. The
concepts of goals, functions, and components are explicitly represented
in the MFM models.

Just as important are the different relations between goals, func-
tions, and components. In MFM, these relations are explicitly described.
A set of functions used to fulfill a goal are grouped together and con-
nected to that goal via an achieve relation. If a subgoal is a necessary
condition for a function to be working, it will be connected to the function
via a condition relation. If a physical component is used for a certain
function, the component object is connected to the function object via a
realize relation. These relations connect the objects into a graph, i.e., the
MFM model proper. Algorithms can then traverse this graph in order
to perform different reasoning tasks. The graph will contain multiple
levels of goals, functions, subgoals, and subfunctions. It should be noted
that all the relations are many-to-many; thus the graph is not a tree, as
deseribed in Chapter 3.

" Tt is important to observe that MFM models are normative, i.e.,
they describe how the system is supposed to work, not how it is actually
working in the present state. Each difference between the model and the

51

1.3 An Example of an MFM Model

~o G2: Bring product to heat exchanger
o G3: Bring water to heat exchanger

It would be possible to define more goals, as the modeling depends on
the designer’s intent, but in this example, three goals are chosen for
simplicity.

The given example process is rather small, but there are many func-
tions present. Most of the physical components have well known tasks
to perform, which makes it straightforward to produce a list of functions.
Keeping the goals in mind can also help discovering functions:

o F1: Provide product

o F2: Transport product

o F3: Transfer thermal energy between media
o F4: Provide thermal energy

o F5: Transport thermal energy

o F6: Transport water

o F7: Provide water

o F8: Provide stream

o F9: Transport steam

o F10: Mix water and steam

As with the goals, more functions could be defined, e.g., keeping the
water and product separated, but the set presented will suffice for the
example.

It is quite uncomplicated to produce the list of components. Note
that the product and water tanks do not actually appear in Figure 1.2.
As with goals and functions, a selection has been done here too, mainly
on the basis of detail. Thus single pipes, bolts, machine parts, etc., has
been left out:

o C1l: Product tank

o C2: Product pump
C3: Heat exchanger

~C4: Water tgnli

- ,"/

- C5: Water pimip ‘

C6: Steam system

o C7: Steam valve

53

Chapter 1 Introduction

‘o C8: Steam injector

These are the sets of goals, functions, and components. However, the
relations between these objects are as important as the objects them-
selves. First, the goal G1 is superior to G2 and G3, i.e., the latter are
subgoals of G1. Thus, there is a goal hierarchy, formed by goal-subgoal
relations. There are also relations between goals, functions, and com-
ponents. For example, the heat exchanger component is used to realize
the function of transferring thermal energy from water to product, and
this function is used to achieve the goal of heating the product. Thus,
there is an abstraction hierarchy in the means-end dimension. In Figure
1.3, both the goal hierarchy and the means-end relations are shown in

a graph.

F1 F2 F3 F4 F5 F6 F7 F8 F9 FI10

Cl C2 C3 C4 C5 C6 C7 C8

Figure 1.3 Goals, functions, components, and relations of the heat exchanger
system The goals are achieved by several different functions, while the func-
tions in turn are realized by several different components. In addltlon the
three goals also form a goal-subgoal hierarchy, (dashed lines).

As can be seen, the graph of objects and relations is quite complex, even
for a small process as the one in the example. In an MFM model, the
goals, functions, and relations are represented in a graphical language.
A model of the example process is found in Figure 1.4. Note that the
symbols used will be described in the following chapters.

= -z The top level goal is achieved by a network of flow functions, de-
scrlbmg the flow of thermal energy through the system. The energy
initially contained in the water and steam is transferred to the product.
In order to transfer the thermal energy, both product and water must

54

1.3 An Example of an MFM Model

be available, thus the function for transporting energy is conditioned by
two subgoals. These goals in turn are achieved by networks of functions
for transporting product and water through the system.

? Heat product

Injector

Heat transfer

Water

Stearn) Product

Water available Product available

(®—O Water ﬂow\ / Product flow\
—>

Water Pump -

0 oy

Steam Valve Injector HTX Cooliny \Tank HTX Paqkingj

Figure 1.4 An MFM model of the heat exchanger system. The goals and
goal hierarchy is shown in the tree structure of the graph, while the functions
are connected into flow paths in three networks. The topmost goal, to heat
the product, is achieved by the energy flow path, (upper network), while the
subgoals, to bring water and product to the heat exchanger, are achieved by
the water flow path, (lower left), and the product flow path, (lower right). The
components and realize relations are not shown.

1.4 Multiple Views

It is beneficial to model a process in several ways, and the different
models should be used for the tasks that they are best suited for. This
means that the process must be represented and presented in several
ways at the same time; there should be multiple views or perspectives of
it. The different views would then contain models belonging to different

~ model categories or abstraction levels. ‘
= Multiple views have been used previously in knowledge representa-
tion. In qualitative physics it is necessary to separate physical topology

55

Chapter 1 Introduction

from function, as is pointed out in de Kleer and Brown (1984). Several
diagnostic expert systems use a multiple view representation, see for
example Struss (1987, 1991, 1992) and Marifio et al (1990). The project
described in Larsson (1990 a), Arzén (1989, 1990, 1993) and Arzén et
al (1990), has proposed an integrated multiple view system for control,
supervision, and diagnosis.

SIMULATION-SCHEMATIC STERITHERM PROCESS

S -

S-vaq

S-T-STIN

holding-cell

Figure 1.5 The Steritherm flow sheet shows a typical example of a small in-
dustrial process. The diagram contains information about the physical topol-
ogy of the process, showing what components it consists of and how they are
connected.

The most common way of presenting a process is probably with a flow
sheet; see Figure 1.5 for an example. This is a picture which contains ob-
jects and connections, roughly corresponding to the physical components
of the process and the connections between them. A flow sheet may con-
tain other types of information as well, but this is seldom clearly stated
nor obvious to the user. For example, it is usually unclear whether there

is ‘any geographical information in the layout of the flow sheet, e.g., if
- the components in the physical world are arranged in the same way as
the flow sheet objects. The lack of clear knowledge of what is shown

56

1.4 Multiple Views

or not is an obvious drawback, and it can be potentially dangerous, if,
e.g., an operator misreads a diagram for information which really is not
there.

It is possible to resolve this problem with the help of a multiple
view representation, in which it is clearly stated exactly what kind of
information there is in each type of picture. Thus, several types of views
can be recognized.

The Geographical View

In this view, the representation contains information about which phys-
ical components that are present and how they are connected. In ad-
dition, there is some kind of geographical information, i.e., the repre-
sentation may describe the physical location of the components and the
connections, how they look, their relative size, etc. Thus, the geograph-
ical view has some geometrical similarity to the physical world. Typical
examples of models that could be used in a geographical view are 2D and
3D pictures, technical drawings, photographs, etc. A simple example of
a lamp circuit is shown in Figure 1.6. The geographical property here
is mainly that the icons look more or less like the physical components,
which could be the case in some flow sheet presentations.

\\ //

Figure 1.6 A geographical view of a lamp circuit. The diagram shows the
physical components and how they are connected, but in addition it gives
some hints about the physical outlook of the components. Other versions of
the geographical view would be photos, technical drawings, or 3D graphics.
In this example, the geographical information is simply that the icons look
similar to the real world objects.

- U

57

Chapter 1 Introduction

The Topological View

In this view, the representation contains information about the physical
components and how they are connected, but nothing else. Specifically,
there is no geometrical information in the pictures. Thus, the icons used
may or may not resemble the physical components, and components and
connections may be arranged in a completely different way than in the
real world. The most typical example of a model used in a topological
view 18 probably the standard flow sheet, but circuit diagrams, block dia-
grames, etc., are also of a topological nature. A topological representation
of the lamp circuit can be seen in Figure 1.7; in this case a standard
circuit diagram.

Figure 1.7 A topological view of the lamp circuit. The components and con-
nections are shown, but there is no information about size, placement, or
physical outlook of the components.

The Behavioral View

So far, the different views have been of a graphical nature. However,
it is also useful to have behavioral descriptions, which contain informa-
tion about the temporal development of states of the process. The most
common forms are mathematical and logical models, such as algebraic
and differential equations, transfer functions, state transition graphs,
qualitative models, Petri and Grafcet nets, etc. A set of equations for
the lamp circuit is shown in Figure 1.8.

U=RxI
U =45V
R = 0.5Q

‘Figure 1.8 A behavioral view of the lamp circuit. The equations may'be used

to predict the behavior of the system’s state. Other versions of the behavioral
view would be Grafcet nets, alarm logic, etc.

58

1.4 Multiple Views

‘The Means-End View

The information about means and ends can also be represented in a
view of the process, the functional or means-end view. The obvious
choice of model type is of course MFM. Other types of representations
capture some of the information present in an MFM model, e.g., function
block diagrams, and fault trees. However, none of these provide all the
information of MFM, nor do they always present it in a clear and logical
fashion. An MFM model of the lamp circuit is found in Figure 1.9.

Goal 1 ? Light up environment

Light flow

Lamp

Goal 2 ? Keep lamp burning

Electrical energy

Battery Cords Lé&lp

Figure 1.9 A means-end view of the lamp circuit. The purposes of the process
are described, together with the functions that must be available to obtain the
desired goals, while the physical components and topology are unimportant.
The top level goal, to light up the environment, is achieved by an energy flow,
(of light), from the lamp to the environment. The lamp’s function as a source
of light depends on a subgoal, to keep the lamp burning, which in turn is
achieved by another energy flow, of electrical energy from the battery to the
lamp.

There are many other possible views of a process, such as function block
diagrams, sequential logic charts, etc. In a multiple view system, the
different representations may be given their own views. Such a system
1s needed for the integration of MFM with other models.

Thus, the ideas presented in this work are not supposed to replace
the standard techniques. Instead, several of the standard techniques
should be joined into one system, and extended with means-end mod-
els,-in order to obtain a system with greater capabilities than what is
_ available today: '

59

Chapter 1 Introduction

1.5 Three Methods for Diagnostic Reasoning

So far, MFM has been presented as a modeling and representation lan-
guage, with a defined syntax and graphical representation. A general
semantics, i.e., some advice on how to interpret the different MFM sym-
bols is also available, see Lind (1990 a). With some minor modifications,
these suggestions will be used in this work.

However, the usefulness of MFM is still an open question. What
tasks can it be used for, what reasoning methods can be successfully
implemented with MFM, and what specific semantics is needed to ac-
complish it? The main contributions of this work are three diagnostic
reasoning methods, which are easily and efficiently implemented with
the help of MFM: measurement validation, alarm analysis, and fault
diagnosis.

Measurement Validation

-

Industrial processes usually have many sensors which directly or in-
directly measure the same variables. When mass and energy balance
equations are taken into account, the set of measurements gives rise
to redundancy. The proposed method uses some of this redundancy to
check the measurements of a mass or energy flow, and is thus called
measurement validation or data reconciliation. A typical situation is
illustrated in Figure 1.10.

1.0 1.0 1.0 0.5 10

Figure 1.10 A flow path with flow values. The numerical values of the flows
are shown above the corresponding MFM symbols. One flow deviates from
the rest. Thus, at least one of the measurements must be faulty; either the
single one, the four, or all five are wrong. The method developed presents all
these three hypotheses.

There are five flow measurements that should agree, i.e., have more or
less the same value. However, one of them clearly deviates from the
rest. Three hypotheses could explain the situation:

o “~The single méasurement is wrong, and the rest are correct.

o The single measurement is correct, and the rest are wrong.

o All measurements are wrong.

60

1.5 Three Methods for Diagnostic Reasoning

A failure to consider any of these possible explanations could be poten-

‘tially dangerous, thus the method uses the sensor values to assign the
different measurements to consistent subgroups. For each value there
is a validated value, which can be set to a value different from the one
actually measured. The method outputs the following information:

o Each consistent subgroup is presented. Thus the user can get an
impression of the general agreement or disagreement of the mea-
surements.

o A single deviating measurement is highlighted. Thus a probable
fault can be detected and isolated quickly.

o If a single deviating measurement is surrounded by several consis-
tent ones, the validated flow value corresponding to the deviating
one will be set to that of the surrounding group.

Several other decisions could be made; the main aim of presenting the
method is not to give the best solution of what decisions to make based
on a redundancy analysis, but to show the possibilities of using MFM
as a tool for automated measurement validation. The presented method
has more features; for example it uses a flow propagation algorithm to
handle the case when no sensor is connected to a part of the model. A
thorough description of the algorithm is given in Chapter 4.

Alarm Analysis

Most processes are equipped with a large number of alarms, and in a fail-
ure state many of these will trigger. Some of them will be directly con-
nected to the primary sources of faults, but other may be secondary, i.e.,
due only to consequential effects of the primary failures. The method
helps to separate primary alarms from those that might be secondary,
a task which can be vital in a fault situation.

(-~

F1 F2

Figure 1.11 A source connected to a transport function. If the capacity of the
source goes down, the transport flow will be forced out of its working interval,
while if the desired flow of the transport increases, the source may or may
not be able to supply it. If the desired flow through the transport decreases,

*. =~however, the source”is not affected. Thus, a low capacity in the source will
cause a low flow through the transport; a high flow through the transport may
cause a low capacity in the source; but a low flow through the transport will
not cause any fault in the source.

61

Chapter 1 Introduction

'Each flow function is associated with a working condition, which will
give rise to an alarm when violated. Due to the semantic interpretations
of the flow functions, certain faults may or will cause consequential
faults in connected flow functions. An example is given in Figure 1.11.

The function F1 is a source that provides mass or energy for F2,
a transport function. If F1 would loose its capacity of delivering the
required amount of mass or energy, the transport would not be able to
keep a sufficiently large flow. If, on the other hand, F2 was to require
too large a flow, F1 might not be able to provide it. Thus, two causation
rules can be formulated for the connection of a source and a transport:

o A low capacity alarm in a source will cause a low flow alarm in a
connected transport function.

o A high flow alarm in a transport function may cause a low capacity
alarm in a connected source.

The method uses a set of causation rules like the ones above to analyze
alarm situations and separate out those alarms that must be primary
from those that might be secondary. However, no alarm is hidden from
the operator, as there is always the possibility of multiple faults, i.e., a
primary fault could look as if it was caused by another one.

The method uses a consequence propagation algorithm in order to
handle unknown alarm states when parts of the process are not equipped
with alarms. It is further described in Chapter 5.

Fault Diagnosis

This method uses the MFM model of a process to search for faults and
give explanations and remedies, much like a standard rule-based expert
system would do. The MFM model contains information about the goals
of a process, how these goals are achieved by networks of functions, how
the functions depend on subgoals, and how they are realized by physical
components. In a standard rule-based expert system, this information
structure is implemented in rules, but in MFM it is explicitly described.
Thus, a fault diagnosis can be implemented as a search in the model
graph. The strategy used is as follows:

o -The user choopses a goal for diagnosis. If this is a top-level goal, the

- “whole model, (and thus the entire process), will be investigated.
However, the goal chosen could also be a subgoal, in which case
only part of the process will be diagnosed.

62

1.5 Three Methods for Diagnostic Reasoning

o A search propagates downward from the goal, via the achieve rela-
tions, into the networks of flow functions, each of which is investi-
gated.

o As in the alarm analysis, the flow functions are associated with
working conditions, and each function may have a diagnostic ques-
tion, which is asked in order to find out whether it is working or
not. Alternatively, there can be a rule or a relation to a physical
component to find out whether the function is in order.

o If a flow function conditioned by a subgoal is found to be at fault, or
has no means of being checked, the connected subgoal is recursively
investigated. If, however, a function is working, that part of the
subtree can be skipped.

The method uses a search that propagates along static connections.
Thus neither global search, pattern matching, nor conflict resolution
is needed. It works together with the alarm analy31s method and is
described in Chapter 6.

1.6 The Architecture of a Control and Supervisory System

The three methods for diagnostic reasoning fit into different parts of a
control and supervisory system. The measurement validation algorithm
typically belongs on a rather low level, where it can be used to feed
validated signal values to higher-level algorithms, such as the alarm
analysis, the fault diagnosis, and other tasks dealing with supervisory
diagnosis and control, see Figure 1.12.

The inputs needed can be obtained in several different ways. They
can be direct or filtered signals from sensors. It would be more probable,
though, that they were the outputs of some low level data filtration
on the direct signals, e.g., outputs from a Kalman filter or from some
statistical algorithm.

The measured flow values are assigned to the attributes of the ap-
propriate flow functions. It is these flow values that the measurement
validation algorithm operates on. The validated output values could
,then be used by algerithms on higher levels.

" The alarm analysis would be found in the higher levels bf the sys-
tem, together with supervisory control, user presentation, etc. The fault
diagnosis method would also be placed here.

63

Chapter 1 Introduction

A more thorough discussion about the architecture of a control and

supervisory system is given in Chapter 7.

Alarm analysis
Fault diagnosis

Measurement validation

Data filtration

(Process)

-

Figure 1.12 The places for the diagnostic methods in a control and super-
visory system. Raw data from the process is treated by filters and low level
numerical routines before it is sent on to the other algorithms. The measure-
ment validation algorithm works on an intermediate level, while the alarm
analysis and fault diagnosis algorithms belong in the topmost, supervisory
level of the system.

1.7 A Guide for the Reader

This chapter gives an introduction to multilevel flow models and multi-
ple views, and then presents three newly developed diagnostic methods.
The chapter is suggested as an overview of the work. Chapter 2 contains
an overview of literature and other projects.

Chapter 3 gives a description of the MFM concepts, the graphical

language, syntax, and semantics. Examples of how to use MFM are also
provided. This is intended as a quick course in multilevel low modeling.
The second half of the chapter describes some new developments of this
work.

,Chapters 4, 5, and 6 describe three new diagnostic methods, pro-

i‘Vldlng definitions, explanations of the algorithms, and examples. Chap-
ter 4 treats measurement validation, while Chapter 5 handles alarm
analysis and Chapter 6 fault diagnosis. These chapters are the main

64

1.7 A Guide for the Reader

contributions of the work. Each may be read separately, but all need
the introduction to MFM given in the first half of Chapter 3.

In Chapter 7, the implementation of an MFM toolbox is described.
Here, information about the G2 implementation is found, together with
a short overview of the G2 system itself.

Chapter 8 treats the problem of how to present means-end infor-
mation in general and MFM in particular to users and operators. Some
ideas and suggestions are given, together with several examples.

Chapter 9 contains the conclusions of the project and Chapter 10
references.

65

CHAPTER 2

RELATED WORK

MFM is a young and largely unexplored research area. This work is re-
lated to several other areas of research, such as (model-based) diagnosis,
model-based reasoning, qualitative physics, and general modeling. This
chapter will give an overview of previous work and related projects, and
some overview papers and books are also mentioned.

MFM Functional Qualitative Quantitative Integrated
General Lind de Kleer Isermann Arzén
Forbus Frank Krijgsman
Kuipers Woods . Crespo
Woods
Validation Larsson Mah
Creutzfeldt
Alarms Larsson Modarres Kramer Lees
Padalkar
Diagnosis Lind Modarres Dvorak Petti Vina
Creutzfeldt Padalkar Ng Struss
Sassen Allen Marifio
Larsson
Walseth
Planning Norby Larsen Tomita
Presentation | Lind Rasmussen
Duncan Modarres
Larsson
Simulation Chéruy Kuipers
Bond graphs

Figure 2.1 An overview of some different projects, according to model type
used, (columns), and the type of problem solved, (rows).

In the following overview, the different projects has been sorted accord-
ing to to the type of models they use, and in each group they are sepa-
rated into different problem areas, such as fault diagnosis, simulation,
“’prgéentation, etc. This has been summarized in Figure 2.1.

66

2.1 Projects Using MFM

2.1 Projects Using MFM

Linp. Morten Lind is the creator of MFM. The most important doc-
ument about MFM itself is Lind (1990 a), where the basic ideas, the
syntax, and semantics are defined. The report gives a short introduc-
tion to the background of MFM, and works as the definition of Lind’s
current version. Some examples are also given. Chapter 3 of this work
relies heavily on this publication. Lind (1987) is an earlier version of
the report, while Lind (1979) is the original paper of MFM.

Lind (1990 b) describes Lind’s solution for the data structures and
diagnostic algorithms to be used under the MFM top layer. The im-
plementation is done in Smalltalk 80. The use of Smalltalk gives the
freedom to design the system precisely as wanted, but the program-
ming effort needed is large compared to using a higher level tool such
as G2, see Moore et al (1987, 1991). The basic data structures have
already been implemented, while inference engines for diagnostic algo-
rithms are under development. Together with a graphical interface for
building MFM graphs, also written in Smalltalk, see Osman (1990) this
forms the main effort of Lind’s group.

Measurement Validation

LARSSON. The only MFM method that treats measurement validation
as a separate problem is the one described in Chapter 4 of this work.

CREUTZFELDT. The project described in Creutzfeldt (1990) is partly con-
cerned with measurement validation. The project treats sensor valida- -
tion together with alarm analysis and fault diagnosis. It is a real-time
diagnostic system, with low level data collection routines written in For-
tran. MFM models are manually translated into Nexpert Object rules,
which handle the high level processing. The system generates hypothe-
ses and tests them by propagating values through the MFM graphs,
thus performing a mixture of measurement validation, alarm analysis,
and fault diagnosis. A working demonstration of the system exists, with

a sglall heat distribution plant as target process, but the thesis is yet to
bepublished. ~ 7

i

67

Chapter 2 Related Work

- Alarm Analysis

LARSSON. A method for alarm analysis with MFM is presented in Chap-
ter 5 of this work, and it seems to be the only one separately concerned
with alarm analysis. However, the project of Creutzfeldt, (see above),
partly treats this problem.

Fault Diagnosis
Several projects use MFM for fault diagnosis.

Lmvp. Lind has described his approach to real-time diagnosis in Lind
(1990 c), where it is argued that the structure of MFM models is well
suited for fault diagnosis under time constraints. By searching top down
in the MFM graphs, it is possible to obtain algorithms that produce an
answer with low resolution quickly and then can use any additional
time to increase the resolution of the diagnosis. Each goal corresponds
to a part of the diagnostic task, and as lower level subgoals are met,
the diagnosis becomes finer and finer, thus giving a behavior similar to
that of any-time algorithms, see Dean and Boddy (1988) and Boddy and
Dean (1989). No implementation has been suggested, though.

CREUTZFELDT. Fault diagnosis is also the main aim of the Creutzfeldt
project, (see above).

SASSEN ET AL. The Dutch project PERFECT uses a preprocessor to
translate MFM models into COGSYS programs for diagnosis, see Sassen
et al (1991, 1992) and Sassen and Jaspers (1992). The implemented
method uses external measurement values to check the working con-
dition of every leaf node in the MFM graph, and then propagates the -
fault information upwards, thus enabling the system to quickly find low
level faults, and then to use any additional time to give descriptions of
the consequences on higher levels. An advantage with checking all leaf
nodes is that they may be ordered according to failure likelihood, but a
drawback is that all leaf nodes must be continually checked. The project
has several points in common with the method described in Chapter 6
«. of this work, and further comparisons will be made there. COGSYS is
a real-time expert system shell developed as a cooperation between 35
;jBrﬁish and Eurdpefn companies. It is written in POP-11 and C, uses
the text-based language KRL, (Knowledge Representation Language), to
describe the knowledge database, uses a blackboard architecture, and
is designed to be quite efficient, see COGSYS (1990). The PERFECT

68

R — D

2.1 Projects Using MFM

-system works as a compiler and translates MFM models into code for
the COGSYS system.

Sassen is part of the SCWERE project, (Supervisory Control With
Embedded Real-time Expert systems). This is a joint project between
the faculties of Informatics, Electrical, Mechanical, and Chemical Engi-
neering of Delft Technical University. The aim of the project is to support
plant-wide control systems on a supervisory level using Al techniques
in real-time, see for example van den Ree et al (1991 a, b), and Terpstra
et al (1991, 1992).

LARSSON. Chapter 6 of this work presents a method for fault diagnosis
using downward search in MFM graphs.

WALSETH. The Norwegian project of Walseth et al uses MFM for diag-
nosis of a water/ammonia separation unit, see Walseth et al (1992). The
main contribution so far is the idea of connecting MFM goal satisfaction
with tests of quantitative state variables in the functions. This implies
a change in the semantic rule for goal satisfaction in MFM. The project
1s still in the starting phase.

Planning

NORBY LARSEN. One project of Lind’s group uses MFM to control the
production of STRIPS plans for startup of plants, see Norby Larsen
(1990). The standard way of using STRIPS for planning is to perform a
search among applicable operators, in order to construct a viable plan,
i.e., a sequence of actions that takes the process from initial to goal
state. MFM contains information about which functions that must be
available for a goal to be achieved, and the implemented system uses
this information to control the, (otherwise blind), search through op-
erators. Sometimes this needs guessing and backtracking, and truth
maintenance techniques are used. For readings on STRIPS, see Fikes
and Nilsson (1971).

Presentation

LmND. Lind has also treated presentation of means-end information and
thedesign of operatdr interfaces, see Lind (1989). The main idea is to
% use the graphical representation of the MFM models, combined with

flow sheets and highlighting of functions and corresponding physical
components. Another set of symbols and a graphical environment were

69 '

Chapter 2 Related Work

developed in the SIP project, see Lind et al (1987), but the new symbols
have not been put to further use; this thesis uses Lind’s older versions. A
part of the effort of Lind’s group is the development of a general graphics
environment for MFM, see Osman (1990).

DuNncaN AND PRETORIUS. Duncan and Preaetorius (1989) use MFM as
an alternative way of presenting diagnostic information to operators,
and have made very interesting comparative experiments with students
acting as unexperienced operators. The students received a few hours
of training to find faults in an example process using either a standard
flow sheet or an MFM model, and in this test, MFM proved to be more
efficient than a flow sheet as a fault diagnosis aid. It should be noted,
however, that the test did not involve trained operators, and that the
test series was small. In spite of this, the result is very interesting, and
clearly provides a good reason for further work with MFM as a means
of presentation. To perform the test, Duncan and Pratorius developed
a graphical presentation system for MFM. .

LARSSON. Some ideas about and examples of presentation of means-end
information are shown in Chapter 8 of this work. The conclusion is that
MFM may be suitable for presentation, when integrated in a multiple
view system, allowing several ways of presenting the same and related
information.

2.2 Projects Using Other Functional Models

Several projects have used means-end and functional models, which are
not pure MFM, but closely related. This means that some representation
of goals, functions, or both is used; usually a tree or graph describing a
hierarchy of goals or functions.

Alarm Analysis

MODARRES ET AL. The Goal Tree Expert System, (GOTRES), project
uses a database of goal trees and success trees to perform diagnostic
tasks. The representation consists of tree structures containing goals
“and subgoals on the higher levels, and hardware requirements, i.e., what
components that must be working, on the lower ones. Thus, it clearly
resembles MFM. This data structure has been used to implement the
UMPIRE-I program, that helps to evaluate alarm systems, see Modarres

70

Pléfnnlng v o

2.2 Projects Using Other Functional Models

~and Cadman (1986). The system is written in CommonLisp and runs

on an IBM-PC/AT. It has been successfully tested on real processes.

PADALKAR ET AL. The Intelligent Process Control System, (IPCS), uses
hierarchical models of structure and function to perform fault diagno-
sis, see Padalkar et al (1991). The system models fault propagation in
graphs, and thus in fact performs an alarm analysis. The target process
is described in hierarchical tree structures with a functional represen-
tation of functions and subfunctions, and a structural representation of
systems and subsystems. Constraints are used to find faulty compo-
nents, and this information is then propagated downwards in the hi-
erarchies, to find the lower level causes. In this way, a diagnosis with
low resolution is quickly available, and then any extra time is used to
improve the granularity of the diagnosis. The system has been tested
successfully on a small power plant producing electricity and steam at
the Senboku Works of Osaka Gas Company in Osaka, Japan.

Fault Diagnosis

MODARRES ET AL. The GOTRES system has also been used to perform
fault diagnosis. The implemented program uses a depth-first search
downwards in goal trees to find failures in equipment found in the leaf
nodes, see Chung and Modarres (1989). The system has been used to
construct an on-line fault diagnosis expert system for an experimental
nuclear reactor facility, and the results seem to have been satisfactory.

PADALKAR ET AL. The IPCS system of Padalkar et al (1991), deserves
to be mentioned under fault diagnosis too, as it performs a mixture of
alarm analysis and fault diagnosis. \

ALLEN AND RA0. Fault trees describe a process and its possible faults in
a tree structure, where the top levels of the trees contain alarms, while
the lower levels contain components and subcomponents. A diagnosis
consists of a search path through the tree from the root to one or several
leaves, where the primary faults are found. See for example Allen and
Rao (1980).

}

ToMITAET AL. The project of Tomita et al describes an automatic synthe-
sizer of operating procedures based on functional models of plants. The

71

Chapter 2 Related Work

system uses a heuristic search through automatically generated sub-
goals to construct operating sequences for chemical plants. The goal is
to give operator support. The database contains directed graphs to give
a qualitative description of the plant behavior, fragments of operating
sequences, called scopes, which are used to construct plans in a bottom-
up fashion, and scripts to help build plans top-down. Working plants
are described as networks of scopes, where each scope corresponds to an
abstract function or subfunction of the plant. Scripts describe the con-
ditions for scopes to work, and are used as guidelines for constructing
plans, consisting of sequences of scopes. The system has been applied
to the startup of a practical chemical plant: a subprocess of an existing
ethylene plant, and this application seems to have been successful, see
Tomita et al (1989).

Another system is specifically aimed at batch processes, see Tomita
et al (1986). Here the data structure used is a tree of tasks and subtasks,
which must be performed to ensure successful operation. The process
itself is described as a directed graph, showing the physical topology of
the plant. The operational knowledge is contained in a table of recipes,
i.e., description of how to perform each possible task. The system uses
the tree of needed subtasks to schedule a set of operations, using a linear
programming technique, and then performs a quick simulation to check
the result. |

Presentation

RAasMUSSEN. Rasmussen has thoroughly discussed the design of man-
machine interfaces and describes the importance of presenting means-
end information in order to accomplish this, see for example Rasmussen
(1986) and Rasmussen and Goodstein (1988). Rasmussen has done a
greatly original work of structuring the tasks of operators and other
users of man-machine systems, and of the behavior used for the tasks.
Some tasks are usually performed on a skill-based level, which means
a more or less automated or reflexive behavior. Other tasks, notably
some kinds of diagnosis, are performed on a rule-based level, where rea-
soning is needed but the knowledge is expressed on a rather simple,
symptom-action form. Yet other tasks, and especially the most complex
“and difficult ones; are performed on a knowledge-based level, which im-
plies complex reasoning with the use of models. This structure is of
paramount importance, since the different task levels fit differently well
to be performed by operators and for being automated. The demands on

72

2.2 Projects Using Other Functional Models

an implementation are also very different depending on the task type;
~ thus a skill-based task may be solved by conventional control techniques,
while a rule-based task may be better solved by an expert system, and
a knowledge-based task by a more advanced system for automated rea-
soning. Rasmussen’s contributions are very rich; the reader is referred
to, e.g., Rasmussen (1986) for an extensive overview. Rasmussen and
Lind (1981) is a starting point for the ideas behind MFM.

MODARRES ET AL. The GOTRES representation has also been utilized
as a database for an operator advisory system for operation of nuclear
power plants, see Kim and Modarres (1987). In this project, a Prolog
implementation was used for building a small expert system.

Simulation

Several projects use functional models for generation of equations and
simulation. The general idea here is to use a more abstract representa-
tion of a system’s behavior, and to move away from physical detail which
is not needed, in order to produce equations, which then may be used
in modeling or simulation.

CHERUY ET AL. The system CAMBIO uses graphical diagrams to give
a functional description of biochemical reactions. The different types of
reactions and media affected by the reactions are represented by graph-
ical symbols, and the reaction structures are described by connections.
Thus, the system lets a user design a compound reaction by building
a graph on a computer screen. The system reads this graph and can
produce equations semi-automatically and then perform a simulation.
Some extra information must be given manually, e.g., about the order
of the different reactions. The CAMBIO representation may provide an
interesting connection to MFM, as described in the latter half of Chap-
ter 3. For readings on CAMBIO, see Chéruy, et al (1989), Montellano et
al (1990), and Farza and Chéruy (1991). The system has been imple-
mented in Pascal, but it is unclear how successful it has been.

BOND GRAPHS. From the study and systematic use of block diagrams as
process representation comes the concept of bond graphs, see Paynter
(1961), Karnopp and Rosenberg (1975), or Thoma (1975). They display
b_pt}_% energy and signal exchanges between components in processes.
Each connection is described as a product of two variables, the effort
and the flow. The bond graphs serve as a graphical representation in
several disciplines, often corresponding to equations. In electronics, the

73

Chapter 2 Related Work

effort corresponds to the voltage, while the flow corresponds to the cur-
rent; thus, the product is the effect. In mechanics, the effort is the
force or torque and the flow the velocity of rotation frequency, while in
thermodynamics the effort is the absolute temperature and the flow the
entropy, see Thoma (1975).

The elements connected are functional components of several kinds.
They may be simple bonds corresponding to wires, shafts, or rods, re-
sistance elements describing for example resistors, inertia elements cor-
responding to inductors, flywheels, or masses, capacity elements which
match condensors or springs, effort sources, flow sources, transformers,
etc. There are also two kinds of junctions, p and s junctions, for parallel
and series connection. The causality between different components are
shown with a system of arrows and bars.

'

VA r i]

Figure 2.2 A simple mechanical system with a mass, a spring, and friction.
The mass is seen as a point mass, and the excitation is a force independent
of velocity. From Thoma (1975).

With these building blocks, it is possible to describe electrical, mechan-
ical, thermodynamical, and other systems. A mechanical system is
shown in Figure 2.2.

Se

—_—]

J
C R

“Figure 2.3 A bond ?Pgraph of the system in Figure 2.2. The excitatign is S..
The spring is modeled as a capacity element, the friction as a resistance, and
the mass as an inertia element. The connection is a series junction, as the
velocities are equal and the different forces added. From Thoma (1975).

74

2.2 Projects Using Other Functional Models

This system is a simple example from mechanics, and has a point mass,
a linear spring, and some friction. It may be described by a simple bond
graph, see Figure 2.3.

An augmented bond graph of the system is shown in Figure 2.4.
Here the causality in the system is also described. The forces and ve-
locities are shown in the graph.

vi|F
:sE——VI%AII:m
vy By vN3

| 3
C:il/k R:f

Figure 2.4 An augmented bond graph of the system. The force of the effort
source acts on the mass which responds with the veloeity vg, but after deduct-
ing the spring and friction forces, which are functions of the velocity. From
Thoma (1975).

From bond graphs it is possible to automatically generate differential
equations or transfer functions. Bond graphs have some superficial
properties in common with MFM, thus they are both built from abstract
functions connected into flows, and may be used to generate balance
equations. There, however, the similarities end. The major differences
between bond graphs and MFM are as follows:

o Bond graphs have no achieve or condition relations, and thus can-

not represent the means-end dimension, which is the main point of -
MFM.

o The functions are not the same. Thus, bond graphs have no ibarriers,
while MFM have no capacity elements, etc.

o The flow paths of bond graphs are described by efforts and flows,
and the actual values are usually not decided beforehand but solved
for, as equations are solved. MFM flows are built from pure flow
variables, and the flow values must be known beforehand; the nor-

. mative nature of MFM.

o The intended use is vastly different. Bond graphs are often used
as a graphical representation of equations, while MFM is mainly
concerned with diagnostic reasoning.

75

Chapter 2 Related Work

This leads to the clear conclusion that bond graphs and MFM has very
little to do with each other. As bond graphs do not encompass the most
important aspect of MFM, it would be misleading and potentially dan-
gerous to use them in trying to understand it.

One connection is possible, though. If good bond graph descriptions
of a process are available, they represent energy balances. These flows
may be used when building the MFM models, provided that the construc-
tor is aware of the danger of such an approach, as will be described in
Section 3.8, on building MFM models.

2.3 Projects Using Qualitative Behavioral Models

There are many model-based diagnostic methods based on combinations
of Al techniques and behavioral models. As the automatic reasoning
usually does not need the quantified detail of ‘a mathematical model,
and because sometimes only knowledge about qualitative behavior is
available, several qualitative representations have been suggested to
replace mathematical models in physics. The common approach is to
use some representation based on, e.g., logics, constraints, or directed
graphs. This area of qualitative physics is nicely described in Forbus
(1988) and Weld and de Kleer (1990).

The main approaches to qualitative reasoning have been taken by de
Kleer and Brown (1984), which points out the need for both topological
and functional models and formulates a theory based on confluences,
by Forbus (1984), which describes a modeling method starting with a
physical description of a system and giving a set of constraints, and
by Kuipers (1984, 1986, 1989), which describes a qualitative simulation
method, starting with a set of qualitative constraints and an initial state,
and which can predict the set of possible futures for the system.

In the Hybrid Phenomena Theory, (HPT), Woods describes a com-
bination of qualitative and quantitative models, see Woods (1991) and
Woods and Balchen (1991). HPT is an attempt to combine state space
models with a symbolic framework derived from the Qualitative Process
Theory, (QPT), see Forbus (1984).

76

2.8 Projects Using Qualitative Behavioral Models

Alarm Analysis

KRAMER ET AL. The Model Integrated Diagnosis Analysis System, MI-
DAS, basically performs alarm analysis, with extensions towards fault
diagnosis. It uses qualitative information about process variables de-
scribed in graphs. For readings on MIDAS, see Oyeleye (1989) and
Finch (1989). An alternative implementation in G2 of part of the MI-
DAS system is described in Nilsson (1991), from where the example
below is taken.

MIDAS is a qualitative method for finding deviations from a nomi-
nal steady state. The incoming measurements are turned into alarms,
which are grouped into clusters that belong to the same primary fault.
In order to do this, MIDAS uses a chain of different models, where each
is translated into the next one more or less automatically.

The first type of model used is the Signed Directed Graph, (SDG),
which is derived from the physical equations of the process. State vari-
ables are represented by nodes, and qualitative relationships by arcs.
SDG also contain the total set of root causes, the possible primary faults.
The SDG graphs are transformed to Extended SDGs to handle global
feedback loops. The ESDGs are used to generate Event Graphs. In
these, a set of events, i.e., qualitative state changes, are linked together
with a root cause.

B

9o

Figure 2.5 A small gravity tank. The level, L, of the tank is controlled by
the inflow, q;, and outflow, q,, and there is a flow resistance, R, in the outflow

pipe.

Consider the gravity tank in Figure 2.5. The level, L, of the tank is
controlled by the inflow, q;, and the outflow, q,. In the outflow pipe,
there is a flow resistance, R, that may vary. The balance equations of
‘the tank are v .

| L = c¢19; — c2q, |
and

do = f—(R)\/z

77

Chapter 2 Related Work

The SDG produced from these equations is found in Figure 2.6.

Outlet blockage +
Upstream leak Tank leak R
- — QU]
+1) +0)

q—L —= 4,

D
0

Figure 2.6 A Signed Directed Graph describing the gravity tank. The vari-
ables qi, L, q,, and R are shown, together with arcs that describe how a
change in one of the variables will affect the others. From Nilsson (1991).

The SDG model is translated into an Extended SDG to handle global
feedback loops and then used to produce an event graph of the gravity
tank, see Figure 2.7.

;High Inflow ; Downstream Leak
éLevel Sensor High Bias Flow Sensor High Bias

s
H

Level :NOT Level Sensor Bias Flow

Normal-High Ot B ok g Normal-High
- ONLY-IF- :NOT Flow Sensor Bias
TRANSIENT High Inflow
Level Flow
High-Normal High—-Normal

Level Flow
Low-Normal Low-Normal

:NOT Flow Sensor Bias

:ONLY-IF-
TRANSIENT Low Inflow
Tank Leak
Level :NOT Level Sensor Bias Flow
Normal-Low A A Normal-Low
} Tank Leak ;
] Low Inflow i Outlet Blockage
e v gLevel Sensor Low Bias "Flow Sensor Low Bias

i

Figure 2.7 An event graph describing the gravity tank. There are eight
events and four root causes. This is the data structure that MIDAS uses
on-line. From Nilsson (1991).

78

2.3 Projects Using Qualitative Behavioral Models

'MIDAS supervises all measured variables with a set of monitor proce-
dures. These send qualitative messages to an event interpreter, which
uses the event graph representation to construct an on-line graph of the
actual events, their links, and root causes. Thus, the alarms are ana-
lyzed and connected. The architecture of the MIDAS on-line system is
shown in Figure 2.8.

Data from sensors

Qualitative events
Event User
Interpreter Interface

Hypothesis
Model

Interrogation

Human
Operator

Process
Model

SDG =—®¥ESDG

Figure 2.8 The architecture of the MIDAS on-line system. The input signals
are sent to monitors, which turns them into qualitative events. The event
interpreter receives all events and uses them to construct an on-line event

graph, which represents the current situation in the process. From Nilsson
(1991).

The MIDAS system has some similarities to the alarm analysis algo-
rithm of Chapter 5, and the two algorithms will be compared in that
chapter.

Fault Diagnosis

Several projects within AI have used model-based reasoning to perform
fault diagnosis. Davis and Hamscher (1988) gives a good overview, fo-
cusing on diagnosis of electronic circuits. Torasso and Console (1989)
gives a more theoretlcal overview and relates to standard expert system
_techmiques. ‘

DVORAK AND KuiPERS. The MIMIC system, see Dvorak and Kuipers
(1991), Dvorak (1992), is based on the QSIM modeling language. It uses

79

Chapter 2 Related Work

QSIM models to perform a semi-quantitative simulation of a system, i.e.,

a qualitative simulation which uses quantitative information about some
values and relationships. The system compares the simulation and the
real process, and can track one or several models, each corresponding
to a working or fault state. The system introduces several new ways of
using alarms, basing them on the model instead of the process. It has
been tested on small example processes and seems to be working well
on these.

NG. The Inc-Diagnose project described in Ng (1991) uses a set of QSIM
qualitative states and a new version of the diagnostic algorithm of Re-
iter, see Reiter (1987), to perform fault diagnosis of simple physical
systems. Reiter’s theory describes a diagnosis problem as a system de-
scription, SD, a set of components, Comp, and a set of observations,
Obs. In Reiter’s formulation, SD is usually a set of first-order logical
formulas, but Ng instead uses QSIM constraints. Viewed as a formal
problem, diagnosis is a NP-complete problem, but Ng gives an algorithm
that he claims is reasonably efficient. The method has been tested on a
temperature controller, a pressure regulator, and a toaster; small pro-
cesses, where the execution times were a few minutes on an Explorer
Lisp machine. ' -

Simulation

KuIipERS. Kuipers has developed the language QSIM for qualitative
simulation, see Kuipers (1984, 1986, 1989). A system is described as a
set of qualitative constraints with a given initial state, and QSIM can
then compute the possible future behaviors of the system, by produc-
ing a tree of all possible, qualitative states. The expressive power of
QSIM supports such relationships as addition, subtraction, and deriva-
tion, while others only state a monotonical functional relationship. This
idea can be seen as an abstraction of differential equations. The QSIM
representation has been used to build the MIMIC diagnostic system,
(see above).

2.4 Projects Using Quantitative Behavioral Models

The classical models of control theory are quantitative; usually differ-
ential equations. Process fault detection using mathematical models

80

2.4 Projects Using Quantitative Behavioral Models

-and parameter estimation, extended with knowledge-based reasoning,
so called observer-based methods, is overviewed in Isermann (1984).
Fault detection with classical methods is given excellent overviews in
Frank (1990, 1991, 1992). The HPT theory of Woods deserves to be men-
tioned here too, as it is an attempt to join qualitative and quantitative

models. In this group there are many results and only a few examples
will be described.

Measurement validation

MaH ET AL. The classical form of data reconciliation uses statistical
methods in order to find the most probable values of a set of interdepen-
dent sensors, see for example Mah (1990) for an instructive description.
There are essentially two kinds of methods, those that handle small,
random errors and those concerned with finding gross errors.

An example of the first type of method is found in Mah (1990). The
assumed model is

y=Xx+E,

where y is a vector of measurements, x is a vector of true flow rates,
and ¢ is a vector of random errors. The system is described by an
incidence matrix, A, which describes the process as a set of nodes and
directed arrows. The nodes correspond to the rows and the arrows to the
columns of the matrix, and a —1 marks an inflow to and a 1 an outflow
from a node. The errors, ¢;, are described by a covariance matrix, @,
which should be positive definite and known. The data reconciliation
problem can then be formulated as a constrained weighted least-squares
estimation problem:

min[(y — x)7 Q7 (y - x)]

subject to the constraint
Ax = 0.

An approximation, x, of the true flow values, x, is given by

e « v X=y-QAT(AQAT) 1Ay

The use of linear programming techniques, interval arithmetic, see Him-
melblau (1987), and fuzzy logic has also been suggested.

81

Chapter 2 Related Work

V The most common techniques for treating gross errors are based on

statistical hypothesis testing, for example chi tests. There are global
tests, see Almasy and Sztano (1975), and nodal tests, see Mah et al
(1976), which finds out whether a gross error is present, but which re-
quire some other method to find out where the fault is, and direct tests
on each measurement, see Mah and Tamhane (1982), which instead
require a previous data reconciliation. These methods are usually com-
bined with a search for the erroneous measurements using some kind of
elimination of suspicious values and retesting. Common to all methods
are that they need a preset significance level, a covariance matrix must
be known, they are probabilistic and thus may fail, and they usually find
the most probable fault hypothesis only, instead of giving all possibili-
ties. In Chapter 4 these methods will be compared to the MFM-based
method developed in this work.

Alarm Analysis

There are many methods for alarm analysis based on quantitative tech-
niques. See for example Lees (1983) for an overview.

Fault Diagnosis

PETTI. The Diagnostic Model Processor method has been developed by
Tom Petti at the University of Delaware, see Petti et al (1990), Petti and
Dhurjati (1991), and Petti (1992). This system uses quantitative equa-
tions to find a set of violated working assumptions, i.e., a set of faults,
and its internal structure in much resembles a neural network. Petti
et al (1990) describes the DMP methodology, while Petti and Dhurjati
(1991) shows an implementation and some examples of the use of the
method.

%o

L >

: "’h § ¢

i
Figure 2.9 A tank with a gravity outflow. The outflow depends on the level

as Qour = @+/2gh. Both the level and the outflow are measured, and can thus
be used in a model equation.

82

2.4 Projects Using Quantitative Behavioral Models

DMP uses model equations and available measurements to arrive at the
most likely fault conditions. It assumes that during fault free operation,
all model equations agree with the real measurements. By analyzing
in what direction and to what extent each model equation is violated,
the most likely failed assumptions can be deduced, and each case of re-
dundancy helps to make the diagnosis more certain. The process model
consists of a set of equations written on residual form, i.e., so that they
ideally equal zero. Each equation also has tolerance limits, representing
the upper and lower limits for which the equation is satisfied. With the
use of the tolerance limits and a sigmoidal function, the residual of each
equation is turned into a number between —1 and 1, telling how much
the equation deviates from the ideal value. An example of a tank with
a gravity outflow is given in Figure 2.9.

The outflow of the tank is given by:

E =qout— & zgh’

which is written in residual form. Each equation depends on a number
of assumptions, i.e., conditions which must be fulfilled in order for the
equation to be satisfied. The assumptions may be explic¢it, such as cor-
rect sensor readings for values immediately visible in the equations, or
implicit, e.g., that there are no leaks or blocks in the piping, etc. The
assumptions for the tank equation are:

o The level sensor is working
o The outflow sensor is working

o No leaks in the tank or pipe

Each equation is related to assumptions via connections, which state
the sensitivity of the equation for a fault in this assumption.

Finally, failure likelihoods, F;, for each assumption may be com-
puted, by a combination of the satisfaction values of the connected equa-
tions. The deviation from zero indicates both how much and in what
direction the assumption fails, i.e., whether a fault has been found. A
DMP model of Steritherm is shown in Figure 2.10.

DMP has been shown to be a simple and useful diagnostic method.
An-advantage is thatit is relatively easy to change the DMP data struc-
ture when a process is rebuilt. Due to the summing and Welghtmg
methodology, it is rather insensitive to the setting of tolerance levels,
and there are no problems of turning quantitative measurements into

83

Chapter 2 Related Work

boolean values. DMP can handle multiple faults, but it will find only
one possible hypothesis, which may be potentially problematic.

MASS—BAU op -
r ~\JPROD-L EVEL-SENSOR ~F-=—
MASS-BALZ- op PUMP-ME L R1-DIFF-PRESS-CHECK
. 4 LEVEL-NORM
L A

VALVE 78

%

MASS-BALANCI

PUMP-M3 ~*-F~ l HEAT-TRANSFER-HX-|
. ASSUMPTION --> ; V]
A A

ENEX ! R1-HEAT-TRANSFER-HX-1
=
-- o
Suon MODEL EQUATION -->
R1-ENERGY-BAL-HX-1 I
4= 1 A Rz-HEAT-TRANSFER-HX-|
0
reenerav-aLkxt DEPENDENCE --»
ENERGY-BALANCE-HX-V|
/Aj FLOW-SENSOR <]
—+_=
DP-SENSOR EA} 0N N bvq
DIFFERENTIAL-PRESS-CHECK A — AN TTE4-SENSOR S
~—— VALVE-65 T
¥63-CHECK
£ A
"4 ZAZ TT-Y-SENJOR 7‘AT VM TN
N cw-sQURCE N -
DP-CHECK-OP TT-M3-SENSOR TT44-SENSOR VN CONT-44
- CONTROLLER-44-CHEC
— Y
>.~ < TT-STIN-SENSOR
PN B A4 TTaz-SENSOR
TT45-5ENSOR o= R3-TEMP-REDUND
TEMP-M3-REDUND
R2-TEMP-REDUND
-t.=
TEMP-STIN-REDUND - - -m -TEMP-REDUND

TT45-NORMAL
TEMP-V-REDUND TT44-NORMAL TT42-NORMAL

Figure 2.10 A DMP model of Steritherm. The picture contains the model
equations and the assumptions, and some of the connections are also shown.

2.5 Projects Using Integration of Different Models

As different model types are more or less well suited for different tasks,
it would be advantageous to use several model types in a mixed repre-
sentation. Some projects have focussed on the integration of different
methods and model types.

ARzEN ET AL. The Knowledge-Based Control System project described
in Asea Brown Boveri et al (1988, 1990, 1991), Larsson (1990 a), Arzén
(1989, 1990, 1993), and Arzén et al (1990), suggests a general architec-
jAture for a knowledge-based system accommodating all the tasks needed
in a full control and supervision system. The tasks currently handled
are low level loop control, sequence control, alarm and control logic, and
quantitative simulation, as well as supervision and diagnosis based on

84

3.1 Means-End Modeling

‘components for realizing the functions. This use of abstraction is as
common in human understanding and decision making, but has not yet
come to much use in modeling or programming.

Means-end
ENDS A

Goals
Functions

Components

MEANS | Components Subsystems Systems>
PART WHOLE Part-whole

Figure 3.1 The means-end and part-whole dimensions. Abstraction in the
part-whole dimension allows for composition of smaller components into larger
systems, and decomposition of the systems into subsystems. In the means-end
dimension, goals are related via achieve relations to functions, and functions
via realize relations to components.

It is important to observe that the two dimensions actually are sepa-
rate, thus a goal could be broken down into subgoals, a function into
subfunctions, and a component into subcomponents.

A Motivation for MFM

The use of multilevel flow models can be motivated in several ways, al-
though the basic one is that they provide a basis for design of intelligent
control systems. In this, four tasks can be recognized:

o Design of real-time knowledge-based systems
o Design of man-machine interfaces

o Design of control systems

o Models for control systems development

The design of man-machine interfaces to processes and control systems

is leaving the one sensor-one indicator philosophy, with more or less suc-

cess. A natural objective here is to use new techniques for presenting

information about the process state to the operator, and also to present

new types of information. As an operator often reasons about the goals

. ‘and functions of a process, MFM can provide a basis for explicitly rep-
resenting this kind of information, and maybe also for the presentation
of the information to the operator, see Lind (1989).

89

Chapter 3 Multilevel Flow Models

- MFM is a powerful tool for constructing knowledge databases, and
it enables the writing of algorithms that can safely and efficiently han-
dle real-time demands, both -when concerning concurrent execution of
diagnostic tasks and when it comes to hard real-time, i.e., when a task
must be finished inside a specified time interval. The methods described
in this work are all good examples of knowledge-based real-time algo-
rithms. Hard real-time problems and solutions, i.e., the problem of mak-
ing sure that a diagnostic system will have a satisfactory solution ready
in a certain time, have been described in Lind (1990 c).

MFM can also be useful as a design tool, both for process design
and for control system design. In the latter, the following phases can be
more or less clearly observed:

o Analysis of demands, goals, functions, and components
o Design and choice of algorithms
o Hardware and software implementation

The first phase is usually performed in an informal way, while the other
two will have to be formal. However, MFM could be used for a formal
description of all the three phases, thus turning the informal design
engineering into a well-defined task and making the knowledge involved
become explicit. |

The design of processes and control systems rests firmly on the use
of laws of physics, chemistry, etc. These models are well aimed at de-
scribing the behavior of a system, but they are not so good for some
problems concerning diagnosis and supervision, that demands strategi-
cal and tactical decisions on management of resources. Here MFM could
also provide the corresponding modeling language.

3.2 The Basic Concepts

An MFM model is a normative description of a system, a representation
of what it has been designed to do, how it should do it, and with what
it should do it. Thus, the three basic types of objects in MFM are:

o Goals
o /‘Functions
o “Physical components '

The goals are the objectives or purposes of the system, i.e., the ends that
the constructors and operators want the system to reach. The functions

90

3.2 The Basic Concepts

‘are the means by which the goals are obtained, i.e., the powers or capa-
bilities of the system. The physical components are what the system is
constructed from, the equipment of which it consists.

The goals, functions, and components depend on each other in spe-
cific ways. Thus, in MFM there are different types of relations, that can
be used to connect the objects:

o Achieve relations
o Condition relations
o Realize relations

An achieve relation connects a set of functions to a goal, and it signifies
that these functions are used to obtain that goal. For example, the
function of transporting water into a tank could be used to achieve the
goal of keeping the volume of water in the tank at a certain value.

A condition relation connects a goal to a function, and signifies that
the goal must be fulfilled in order for the function to be available. For
example, this would be the case for a mass transport function realized
as a pump, where the subgoal of transporting electrical power to the
pump must be fulfilled in order for the pump to drive the mass flow.

A realize relation connects a physical component to a function, and
signifies that the component is used to realize or implement the function.
For example, a pump could be used to realize a mass transport function.

Goals

Functions

Components

Figure 3.2 Goals, functions, components, and relations. The functions are
connected to goals via achieve relations, while the components are connected
to functions via realize relations. Subgoals may be connected to functions via
condition relations, but this is not shown in the figure. All three kinds of
relations are many-to-many.

It is important to ohserve that all the relations can be many-to-many.
- ‘Several functions can be used to achieve one goal, one function may
satisfy several goals, one goal can be a condition to several functions,
one function may be conditioned by several goals, one function can be

91

Chapter 3 Multilevel Flow Models

realized with many different components, and one component can im-
plement several different functions, see Figure 3.2.

3.3 Goals

The concept of a goal is central to MFM. It is important to be able to
recognize and describe goals, as they play an important part in every
activity using means-end information. Without knowing the goals, it
1s more or less impossible to know the available functions. A broad
definition of a goal is as follows:

A goal is the outcome towards which certain activities of a sys-
tem are directed.

However, this definition is very general, and it will be useful to try and
narrow it down to more specific descriptions. Thus, three different types
of goals will be recognized: .

o Production goals
o Safety goals
o Economy goals

Production Goals

A production goal is used to express that to enable production, some
specific process variable should be kept within a specified interval, i.e.,
that an inequality of the following general form should be satisfied:

X9 £ x < x1.

Of course, one of the limits could be infinitely small or large. This
means that the system will be kept in a certain state, where production
is indeed possible.

Safety Goals

A safety goal is used to express that for reasons of safe operation, some
specific process variable should be kept above or below some value, or
inside or outsideram interval, i.e., essentially the same test as for a
* production goal. However, a more common case is probably a one-sided
interval. In practise, this means that some process variables should be
kept within safe regions, far enough from dangerous values.

92

2.5 Projects Using Integration of Different Models

fault trees, symptom-based diagnosis, MIDAS, MFM, and DMP. All this
is contained in a multiple view data structure. A demonstration system
has been implemented in G2.

KRiJGSMAN ET AL. The DICE system, Jager (1990), Krijgsman et al
(1990, 1991), and Krijgsman and Jager (1992), is a real-time expert
system for control systems. It is based on a blackboard architecture
and represents its knowledge with production rules. Boolean and mul-
tivalued logic based on fuzzy logic ideas are available, together with

a truth-maintenance system. The system is written in C and runs on
VAX/VMS platforms.

Crespo ET AL. The RIGAS system, see Crespo et al (1991, 1992), is
a real-time expert system based on a blackboard architecture. Some
knowledge sources are assigned to solve control subproblems, while oth-
ers, called processes, handle the activities needed, such as responding to
external and internal stimuli. They may be either periodic or sporadic,
and react to, e.g., requests from the operators. ~

Fault Diagnosis

VINA AND HAYES-RoTH. Vina and Hayes-Roth (1991) use a set of differ-
ent models to build a real-time knowledge-based system using a black-
board architecture. The prime models, (each describing a component),
are organized in five levels of information: a structural level, which de-
scribes the physical structure of the component; a functional level where
the processes performed by the component are represented; a parame-
ter level, where all parametrization of the component takes place; a sign
level, which is a qualitative description of the system and its parame-
ters; and a fault level, which defines all causes of faults, i.e., erroneous
signs. With the prime models, domain models are constructed. These
have three levels of information: physical connectivity, functional con-
nectivity, and sensor location. The system uses these models off-line to
precompute a hierarchy of abstract models which are analyzed to find
a worst-case timing estimate. This information is then used on-line, to
choose the appropriate model for real-time simulation and diagnosis.
Vina and Hayes-Roth test this system on two control systems, RCIC,
an- auxiliary subsystem for a power plant cooling system, see Hewett
(1990), and GUARDIAN, a system for patient monitoring in a surgical
intensive care unit, see Hayes-Roth et al (1989). The precomputed mod-
els enable the system to perform simulation and model-based diagnosis

85

Chapter 2 Related Work

in real-time. The system has been implemented in a blackboard archi-
tecture developed for control problems, see Hayes-Roth (1985, 1990).
This blackboard architecture is specifically designed to handle reason-
ing with hard and soft deadlines, i.e., when the result of some Al-based
algorithm will be useless or less valuable after a certain time. The sys-
tem has been used in real-time control applications in semiconductor
manufacturing, see Murdock and Hayes-Roth (1991).

STRUSS. Struss (1987, 1991, 1992) describes a fault diagnosis system
using multiple representation of physical structure and function. The
system is concerned with diagnosis of electronic circuits, and the im-
portance of using multiple views is pointed out. An assumption-based
truth maintenance system, (ATMS), see de Kleer (1986 a, b), is used
to keep track of constraints between different levels in the structural
and functional hierarchies, and it seems to work well in the domain of
analyzing simple electronic circuits. The long term goal of the work is
to arrive at a general theory of diagnosis.

MARINO ET AL. Marifio et al (1990) describes a fault diagnosis expert
system with a general multiple-view representation. The system is
object-oriented and used for classification problems. Here, the inference
engine is designed to switch between different views during the diag-
nostic search, and the contact points between the views are described
by bridge objects.

2.6 Other References

The main documentation of the current project is this work, while some
more detailed information about the implemented toolbox is found in
Larsson (1992 c¢). The three main chapters each correspond to a con-
ference paper. Thus, Chapter 4, measurement validation, has been pre-
sented as Larsson (1992 a), Chapter 5, alarm analysis, as Larsson (1991
c), and Chapter 6, fault diagnosis, as Larsson (1992 b). The alarm anal-
ysis has also been presented in Larsson (1991 a), and the fault diagnosis
in Larsson (1991 b). The early plans and ideas was presented in Larsson
(1990 b, d, e,). * ‘

‘ For readings about expert system techniques in general, see Brown-
ston et al (1985), Harmon and King (1985), Hayes-Roth et al (1983), Ste-
fik et al (1982), and Waterman (1986). Torasso and Console (1989) also

86

2.6 Other References

contains information about standard expert system techniques, while
Shortliffe (1976) describes MYCIN, the premier example of rule-based
diagnosis using backward chaining.

A full overview of model-based diagnosis, mainly form the AI point
of view, is given by Hamscher et al (1992).

The ideas for modeling information flows used in this work are taken
from Lind (1988).

The basic idea of MFM, to give an formal and explicit description
of means and ends, is interesting in other contents too, for example in
the philosophy of mind. Dennett (1987) contends that while all systems
may be described in physical terms, some systems, (for example human
beings), can also be described in terms of intentionality, i.e., as having a
goal-directed behavior. The latter is an essential property of intelligent
life. Dennett have no formal way of describing intentionality, however,
but it is possible that MFM may provide some useful ideas. The philos-
ophy of mind will not be further pursued in this work, however.

W
¥

87

CHAPTER 3

MULTILEVEL FLOW MODELS

Multilevel flow modeling, (MFM), is a systematic and reasonably well-
developed technique for building means-end models. It consists of a
set of concepts, a graphical representation of these, a specified syntax,
and some suggestions for semantics. This is the base for the methods
developed in this work. Thus, before the methods can be described, the
basic facts about MFM will be presented.

Fuller descriptions and discussions can be found in Lind (1990 a,
b). The basic syntax and semantics are thoroughly described in Lind
(1990 a), while Lind’s suggestions for semanties and data structures
for diagnostic reasoning are found in Lind (1990 b). These two works
are the basis of MFM, and the present chapter is a condensed version
of Lind (1990 a). The version of MFM described here differs from the
original formulation of Lind in a few minor details. These will be noted
when they occur.

3.1 Means-End Modeling

The basic idea of MFM is to model a system as an artifact, i.e., a man-
made system designed and used with certain purposes in mind. It pro-
vides hierarchical abstraction in two different dimensions, the means-
end and part-whole dimensions. The part-whole decomposition of a sys-
tem is well known and used in many hierarchical representation Sys-
tems, while the means-end decomposition is typical of MFM, see Figure
3.1.

In the part-whole dimension, the abstraction means that a system
can be viewed as a whole or decomposed into subsystems. The subsys-
tems can be further decomposed, until the leaf-components are reached.
Thi%ilSG of abstraction is a well-known way of understanding and oper-
ating complex system; to avoid being drowned in complexity.

In the means-end dimension the global goals of a system are related
to functions for achieving the goals, and the functions are related to

88

3.3 Goals

- Economy Goals

An economy goal is used to express considerations of overall process
optimization. Thus, it is typically connected to a rather complex func-
tion G(x1, x2, x3, ...), depending on operational constraints and economi-
cal efficiency. The satisfaction could be expressed as satisfaction of the
following inequality:

Go < G(xl,.’XIz,x3,...) < Gi.

It would also be possible to define an economy goal as an optimization,
i.e., an inequality of the following form:

|G - Gmaxl S 8]_.

Often, however, it is impossible to use this form directly. Instead, the
test must be translated into one of the earlier forms in order to be useful.

Representation of Goals

In MFM, a goal has a graphical representation of the following form,

see Figure 3.3.

Figure 3.3 The MFM goal symbol.

The goal object may have attributes that describe the goal expression,
whether it is failed or not, a textual description, etc.

In the current work, goals have no immediate use in the imple-
mented algorithms, except as starting points for diagnostic searches and
as connection points between levels of functions. Thus, the internal data
structure is quite simple, see Table 3.1.

S . failure state working or failed
B diagnose true or false !
description a textual description

Table 3.1 'The attributes of a goal.

93

Chapter 3 Multilevel Flow Models

failed, (due to faults in the achieving functions). The diagnose param-
eter is used by the fault diagnosis and indicates whether this goal and
the parts of the MFM model connected to it should be investigated or
not. In addition, there may be a text giving a short verbal description
of the goal.

3.4 Functions

The second important concept of MFM is that of a function. In the
context of processes it is possible to find three interpretations of the
function concept:

o The function of a part is the réle it plays in fulfilling the goals of a
system, i.e., what it is doing in order to further the purpose of the
system. An example of this could be the heating of Water with the
explicit goal of cooking an egg.

o A function is a capability of parts of the system, which will enable
the system to operate safely, efficiently, or at all, e.g., lubrication
of moving parts, power supply, and cooling systems. An example of
this would be the heating of the kettle when cooking an egg. This
heating is not needed to fulfill the goal, but it cannot be avoided
when heating the water.

o A function is a process going on in the system. An example of this
could be the bubbling in the water when cooking an egg.

In MFM the first definition is used. Thus, a function is always associ-
ated with a goal, and correspondingly, goals are always associated with
functions. '

The second definition is a common one when concerning biologi-
cal systems. However, in artifact systems, where the capabilities are
present for a purpose, the second definition can be reduced into the first
one.

The third definition disagree with the function concept of MFM. It
will be sorted under the concept behavior instead. Sometimes, one might
;vobserve “functions without goals,” in a system, but these are not treated
in MFM.

In general, a function of a system could be given the following defi-
nition:

94

3.4 Functions

A function is a role that a system has in the achievement of a
goal.

MFM describes the functional structure of a system as a set of inter-
related flow structures on different abstraction levels. The levels are
connected via achieve and condition relations, and the flow structures
consist of connected functions. The types of flow structures currently
treated in MFM are:

o Mass flows
o Energy flows
o Information flows

These flows are of completely different types, but they have many prop-
erties in common. Most flow functions can appear in each type of flow
structure, thus, there are three flow types of flow functions.

There are also several function types, which are treated in MFM.
First, there are the following mass and energy flow functions:

o Source

o Transport
o Barrier

o Storage

o Balance

o Sink

These functions can be used for describing information flows also. There
are also some specific information flow functions:

o Observer
o Decision maker

o Actor

In addition to the flow functions proper, some organizational functions
are also used. They are concerned with expressing support and control:

o Network
o Manager

The network function is used to group a flow structure and connect it
to a goal, while the manager function describes control and supervisory
systems, including human operators.

95

Chapter 3 Multilevel Flow Models

The Choice of Flow Functions

The flow functions chosen in MFM are specifically aimed at describing
certain aspects of physical systems, primarily mass and energy flows.
This choice is a limitation, but it is not arbitrary. The motives for choos-
ing flow functions are as follows:

o Interchange of mass and energy is responsible for the causal inter-
action between physical components.

o Controlling the flows of mass and energy is important for safety.

o Controlling the flows of mass and energy is important for production
efficiency.

o Flow concepts applies to a wide range of physical processes.

Thus, while the choice of flow functions is a limitation, it will be general
and useful enough to be interesting. MFM could be extented with other
types of functions, see Sections 3.10 and 3.11 of this chapter.

-

Source Functions

A source function represents the capability of a physical system to act as
an infinite reservoir of mass, energy, or information. Of course, this is an
idealization of the behavior of a physical system, but it is often useful.
Typical examples of source functions are provided by tanks, storages,
power supplies, information transmitters, etc.

O

Figure 3.4 The symbols for mass, energy, and information source functions.

A source function is characterized by an output flow F, and it can have
capability limitations which maximize F. It has one output port where
it can be connected to other flow functions, and it can also be connected
to subgoals via condition relations. The symbols for source functions are
shown in Figure 3.4.

Transport Functions

A tiénsport function represents the capability of a system to transfer
mass, energy, or information from one part of the system to another or
from one medium to another. Typical examples of transport functions

96

3.4 Functions

are provided by pumps, pipes where liquids are transported by gravity,
heat exchangers, information channels, etec.

<_,>

Figure 3.5 The symbols for mass, energy, and information transport func-
tions.

A transport function is characterized by a throughput flow F, and it can
have capability limitations, e.g., an interval in which F must lie. It has
one input and one output port where it can be connected to other flow
functions, and it can be connected to subgoals via condition relations.
The symbols for transport functions are shown in Figure 3.5.

Barrier Functions

A barrier function represents the capability of a system to prevent the
transfer of mass, energy or information from one part of the system to
another or from one medium to another. Typical examples of barrier
functions are provided by traps in water systems, heat isolating mate-
rials, the safety encasing of nuclear reactors, encryption devices, etc.

7

Figure 3.6 The symbols for mass, energy, and information barrier functions.

A barrier function is characterized by a throughput flow F, that should
be close or equal to zero. It has one input and one output port where
it can be connected to other flow functions, and it can be connected to
subgoals via condition relations. The symbols for barrier functions are
shown in Figure 3.6.

Storage Functions

A storage function represents the capability of a system to accumulate
mass, energy, or-information. Typical examples of storage functions
are provided by tanks where liquids are stored, the water in a central
heating system where energy is stored, memory where information is
stored, etc.

97

Chapter 3 Multilevel Flow Models

(>

Figure 3.7 The symbols for mass, energy, and information storage functions.

A storage function is characterized by a state variable V, representing
the amount of mass or energy accumulated, and one input flow F; and
one output flow F,. These attributes should fulfill the inequality:

if it can be defined. A storage function has one input and one output
port where it can be connected to other flow functions, and it can be
connected to subgoals via condition relations. In the original formulation
of Lind, see Lind (1990 a), a storage function may have several inputs
and outputs. For simplicity, this has been disallowed in the current
work. The symbols for storage functions are shown in Figure 3.7.

Balance Functions

A balance function represents the capability of a system to provide a
balance between the total rates of incoming and outgoing flows. Typical
examples of balance functions are provided by forks in pipes, injection
of steam in heated water, channel selectors, etc.

<

Figure 3.8 The symbols for mass, energy, and information balance functions.

A balance function is characterized by a set of input and output flows.
These flows should fulfill the inequality:

|Fi1+ Fo + -+ Fp| < é&1.
A balance function has several input and output ports where it can be
connected to other flow functions, and it can be connected to subgoals

via condltlon relations. The symbols for balance functions are shown in
Figure 3.8.

98

3.4 Functions

Sink Functions

A sink function represents the capability of a system to act as an infi-
nite drain of mass, energy or information. As with sources, this is an
idealization of the behavior of a physical system, but it is often use-
ful. Typical examples of sink functions are provided by tanks, storages,
energy dissipation, information receivers, etc.

o

Figure 3.9 The symbols for mass, energy, and information sink functions.

A sink function is characterized by an input flow F, and it can have
capability limits which maximizes F. It has one input port where it
can be connected to other flow functions, and it can also be connected
to subgoals via condition relations. The symbols for sink functmns are
shown in Figure 3.9.

Observer Functions

An observer function represents the capability of a system to trans-
late physical observations to information. Typical examples of observer
functions are provided by measurement devices, but they can also be

performed by operators.

Figure 3.10 The symbol for an observer function.

An observer function has one output port where it can be connected
to other flow functions, and it can also be connected to subgoals via
condition relations. The symbol for an observer function is shown in
Figure 3.10.

Deczszon Functzons
A b

‘A dec1smn function represents the decision making capabilitiés of a sys-

tem. Decision functions are performed by both control systems and op-
erators. In this work, even low level control algorithms will be modeled

99

Chapter 3 Multilevel Flow Models

with decision functions, which differs from the intentions of Lind (1990
a). Lind does not view simple control algorithms as decision making.

A

Figure 3.11 The symbol for a decision function.

A decision function has one input and one output port where it can
be connected to other flow functions, and it can also be connected to
subgoals via condition relations. The symbol for a decision function is
shown in Figure 3.11.

Actor Functions

An actor function represents the capability of a system to turn infor-
mation into physical consequences. Typical examples of actor functions
are provided by valves and motors, but they can also be performed by

operators.

Figure 3.12 The symbol for an actor function.

An actor function has one input port where it can be connected to other
flow functions, and it can also be connected to subgoals via condition
relations. The symbol for an actor function is shown in Figure 3.12.

Network Functions

A network function represents the property of a system to provide the
conditions necessary to allow another system to perform its function. It
is used as a way of grouping several connected flow functions into a flow

structure.

;' Figuré 3.13 The symbol for a network function.

}

A network function can be connected to goals via achieve relations. The
symbol for a network function is shown in Figure 3.13.

1100

3.4 Functions

Manager Functions

A manager function is used to represent resource management and con-
trol. A typical example would be the description of a control system, not
as an information flow, but as a system intended to manage a certain
task. In the current work, manager functions may be connected to an
information flow path, see Section 3.9 of this chapter.

i)

Figure 3.14 The symbol for a manager function.

A manager function has one port where it can be connected to an achieve-
by-control relation. It can contain a network of flow functions describing
an information flow. The symbol for an manager function is shown in
Figure 3.14.

All the flow functions have several attributes associated to them, but
as these depend on the algorithms that use them, they will be described
together with the reasoning methods, in Chapters 4 to 6.

3.5 Flow Structures

Flow functions may be connected to each other into flow paths or flow
structures. These structures are used to model how mass, energy, or in-
formation flows from function to function. In fact, flow functions always
belong to a flow path and may never be used in isolation.

A flow structure is a graph of connected flow functions. The func-
tions can be connected via three different types of relations, called links
in the terminology of Lind:

o Mass flow connections
o Energy flow connections

o Information flow connections

The Flow Function Connection Syntax

Flow functions may enly be connected according to specific syntax rules.
Most of these are simple and involve only direct connections. The last
one is more complex, however, and may require an analysis of a larger
part of the flow structure:

101

Chapter 3 Multilevel Flow Models

o A flow function can only be connected at its specific connection
points.

o A flow function may only be connected to functions of the same flow
type, i.e., mass, energy, or information.

o Sources may only be connected to outgoing transports.

o Transports may be connected to sources, storages, balances, sinks,
observers, decision functions, and actors. They must be outgoing
from sources and observers, and incoming to sinks and actors, but
may have any direction when connected to storages, balances, and
decision functions.

o Barriers may only be connected to balances.

o Storages may only be connected to transports.

o Balances may only be connected to transports and barriers.
o Sinks may only be connected to incoming transports. /

o Observers may be connected to outgoing transports and decision
functions.

o Decision functions may be connected to transports, observers, and
actors.

o Actors may be connected to incoming transports and decision func-
tions.

o Flow functions may not be connected so that any node is filled or
emptied only.

The original formulation of Lind allows storages and barriers to be con-
nected, and storages may have multiple inports and outports, but for
simplicity this has been disallowed here. A storage with multiple con-
nections can always be replaced by a storage connected via transports
to one or two balances with many ports.

Lind also allows a storage node to be filled or emptied only. This
seems to be an unusual and somewhat unsound case, so it has been
disallowed in the current work. The syntax checking rules implemented
in the toolbox described in Chapter 7 do not check this case, however,
-as-it requires a more complex analysis of the connections around every
‘storage node. ‘

The rationale for these connection rules may be formulated in the
following points:

102

3.5 Flow Structures

o Some rules are needed in order to ensure intelligible models, e.g.,
the demand that only flow functions of the same type be connected.

o Some rules are motivated by consistency, e.g., that sources may not
be connected to incoming transports, or that transports may not be
directly connected to each other.

o Some rules derives from the assumption that transports are ac-
tive and other functions passive, i.e., the transports drive the flows.
Thus sources, storages, balances, and sinks must be connected to
transports, to produce flows. This is also the reason for why trans-
ports may not be connected directly to barriers.

ExampLE 3.1

Let us illustrate the construction of flow paths with an example. The
process used consists of a storage tank, a pump, and two cylindrical
tanks. Water is pumped from the storage tank into the upper tank.
From there it flows through a hole in that tank’s bottom to the lower
tank, and back to the storage tank, see Figure 3.15. The level of one
of the cylindrical tanks can be measured, and the pump flow can be
controlled. A controller is used to keep a specified level.

Figure 3.15 The tanks process. It consists of a storage tank, a pump, and

two cylindrical tanks. Water is pumped into the upper tank, from where

it flows through a hole in the bottom to the lower tank, and then back to

the storage tank. The water level of the cylindrical tanks can be measured,

and a controller is used to control the flow through the pump. This is a

standard experimental process used for teaching and laboratory exercises at
- ..the Department of Automatic Control in Lund.

\

The primary flow of this process is the water that flows from the storage
tank, via the pump, the upper and lower tanks, and back to the storage

103

Chapter 3 Multilevel Flow Models

‘again. The type of this flow is “mass.” A flow structure describing this
flow can be seen in Figure 3.16.

(A)OH A

Storage Pump Upper tank Lower tank Storage

Figure 3.16 The primary water flow of the tanks process. The storage tank
has both a source and a sink function. The pump and the two gravity outflows
are modeled by transport functions, while the cylindrical tanks are modeled
by storages.

The storage tank has been modeled as both a source and a sink. If
the volume would have been interesting, it could just as well have been
described with a single storage function instead. This exemplifies that
the same system can be described with different MFM models. The
pump is modeled by a transport function and the upper and lower tanks
as storages. The outflows of water through the bottom holes, (driven by
gravitation), also appear in the flow path, as transport functions. These
transport functions could be easily overseen when using a topological or
geographical model. , - ‘ O

ExAMPLE 3.2

The power supply system of the pump is quite complicated but has been
modeled simply as a source, a transport, and a sink. The source could
correspond to the power supplying part of the system, from power plant
and all the way up to, say, the power switch, which is described with a
transport function. It should also be noted that in the electrical system
the pump motor acts as a power sink. The type of this flow is “energy,”
see Figure 3.17. O

Power Switch Pump

Figure 3.17 The electrical power flow of the tanks process. The flow has been
greatly simplified; the whole power network up to the switch is modeled with
a single source. Also, the pump shows up again, now as an energy sink.

e ¥
=

{

104

3.5 Flow Structures

ExamMPLE 3.3

The water level of the upper tank is measured and a PID controller is
used to control the flow of the pump. Thus information flows from the
level sensor to the controller, and from the controller to the pump motor.
The type of this flow is “information,” and the MFM model can be seen
in Figure 3.18. O

OHAKE

Sensor PID Pump

Figure 3.18 The information flow of the tanks process. The level sensor is
modeled by an observer function, while the PID controller is modeled by a
decision function and the pump flow control by an actor function.

Composition of New Flow Functions .

The construction of flow structures from single flow functions could be
interpreted as the creation of larger, more complex flow functions. Some
general constructs could be common enough that they should be viewed
as standardized building blocks, macro flow functions. They could be
given names and put into model libraries. There are two different types
of useful macro flow functions. First, there are some very general con-
cepts as distribution, collection, etc., see Figure 3.19.

S O
OO KO
LS O

Figure 3.19 Macro flow functions for distribution and collection. Many such
macro functions could be defined and put in a macro function library.

Secondly, some flow.structures might be useful because they describe
~ ‘some common physical component. In Figure 3.20 the mass'flows of a
heat exchanger can be seen. Flow structures like this could be put in a
special component library.

105

Chapter 3 Multilevel Flow Models

Figure 3.20 A macro flow function for the mass flows of a heat exchanger.
Flow structures like this could be put into a component library.

The construction of macro and component libraries can be taken a step
further. It would be possible to use this information in building flow
models also. If a topological or geographical model is available, a large
part of the mass, energy, and information flows are already available.
If all components in the topological flow descriptions had corresponding
macro flow functions associated to them, the flow networks could be
automatically generated, and the MFM model designer would only have
to provide the connections between the levels, i.e., the goals and the
achieve and condition relations.

Equivalence of Flow Structures

It is often the case that the same physical flow path can be described by
different flow structures. Take the process part shown in Figure 3.21 as

an example.

Pump Valve

Figure 3.21 A pump and valve on a water pipe. This process part may be
modeled in several different ways in MFM.

This part of the process could be described with two transport func-
tions, corresponding to the pump and valve respectively, with a balance
function in between, for syntactical reasons, see Figure 3.22.

A

“Figure 3.22 One flow structure describing the pump and valve. The pump
and valve are modeled as separate transport functions. The balance must be
present for syntactical reasons. In this model, the pump and valve may be
conditioned by different subgoals.

106

3.5 Flow Structures

‘'This way of modeling is good, e.g., when the pump or valve have differ-
ent working conditions, so that it is useful to describe them separately.
However, a formally equivalent model is shown in Figure 3.23.

_<__>

Figure 3.23 Another flow structure describing the pump and valve. Here,
the pump and valve are seen as a single transport. They can no longer have
different working conditions.

It is important to notice that this formal equivalence holds only if the
separate flow functions of Figure 3.22 are not differently conditioned by
subgoals, as described in the next section.

One possibly useful extension of the MFM syntax would be to allow
transport-to-transport connection. This would be beneficial under the
following circumstances:

o Aflow line is made up of several parts of equipment, such as pumps,
valves, etc., which are connected in series.

o The parts are modeled as transport functions.

o The different parts should be separated and treated distinctly from
each other in the diagnosis.

In this case it would be desirable to model the flow line as a series of
transport functions, each with its own conditions. In order to avoid a
large number of balances, which appear because of syntactical reasons
only, direct transport-to-transport connection might be allowed. This
thread has not been investigated further in the current work, but it is
left here as a suggestion.

The next step on the way to a complete MFM model of the tanks
process is the connection of the separate flow structures into an MFM
model graph. For that, several relations are needed.

3.6 Means-End and Part-Whole Relations

So far, one type of relations have been described, the links that connect
flow functions into flow structures. However, another type of relations is
more important for MFM; the means-end relations. These help connect
the flow structures into new structures with several abstraction levels.

107

Chapter 3 Multilevel Flow Models

It is from this the name multilevel comes. Another type of relations are
the part-whole relations, which describes hierarchical decomposition of
entities into subentities.

Part-Whole Relations

The part-whole relations describe a hierarchical decomposition of a sys-
tem into subsystems, and of subsystems into further subparts. This is a
well known structuring concept and will not be further described. It is
important to note that it applies to all levels in the means-end hierarchy,
thus there are several categories of part-whole relations:

o Goal-subgoal
o Function-subfunction
o Component-subcomponent

An example of goal and subgoals was given in Chapter 1, see Figure
1.3, where, among other things, the goal hierarchy of a tanks process
is shown. It is equally common that functions and components have
part-whole relations, i.e., that they have an inner structure. This type
of decomposition is commonly accepted and there will be no further ex-
amples given in this work.

Means-End Relations

The means-end relations are used to connect the different flow struc-
tures, and are thus the most important original characteristic of MFM.
The means-end relations are of three kinds:

o Achieve relations
o Achieve-by-control relations
o Condition relations

The simple achieve relations connect a goal with the flow structure pro-
vided for the achievement of the goal.

ExAmMPLE 3.4

The flow structure of Figure 3.17 is used to fulfill the goal of keeping
the pump running, see Figure 3.24.

~ " The implicit interpretation of an achieve relation is that if all the
flow functions in the structure are currently in working order, the goal
will be fulfilled. It would, however, be possible to define a more complex

108

3.6 Means-End and Part-Whole Relations

“interpretation of the achieve relations. This will be further dealt with
in Section 3.12 of this chapter. O

? Keep pump running

Power Switch Pump

Figure 3.24 A means-ends structure with an achieve relation. The goal of
keeping the pump running is achieved by a network of flow functions describ-
ing a flow of electrical energy, from a source, the power supply system, via a
transport, the power switch, and to a sink, the motor of the pump. If all the
flow functions are available, the goal will be satisfied.

The achieve-by-control relations also connect a goal with the flow struc-
ture that achieves the goal. The difference is that a manager function
is also involved. This represents the fact that an active management of
resources is needed to achieve the goal.

ExamPLE 3.5

The water flow structure of Figure 3.16 achieves the goal of keeping the
correct level in the upper tank, but a control system is also involved in
this, by controlling the actual value of the flow, see Figure 3.25. o

O Correct level

5—()
(DA A AR

Storage Pump Upper tank Lower tank Storage

Figure 3.25 A means-end structure with an achieve-by-control relation. The
goal of keeping the correct level is achieved by a network of mass flow func-
tions, but the resources of that mass flow are also controlled by a manager
function, in this case a PID controller controlling the flow through the pump.

EXAMPLE 3.6 . -

“The manager function depends on the information flow of Figure 3.18,
and thus that flow structure could be connected to the manager, via a
subgoal or directly, as suggested in Figure 3.26.

109

Chapter 3 Multilevel Flow Models
O Correct level
s—0-OWG)

PID Sensor PID Pump

Storage Pump Upper tank Lower tank Storage

Figure 3.26 The manager function connected to an information flow. The
dashed line marks that the manager function, PID, contains an information
flow, from the sensor via the controller to the pump.

It should be observed that Lind never makes the connection between
manager function and information flow structure. This way of repre-
senting a control system is new to the current work. O

The third kind of means-end relation, the condition, is used to con-
nect a flow function to a goal it depends on. This means that the function
will only be available if the goal is fulfilled. In this way it is possible
to describe that the existence of one flow function depends on a set of
other functions in the system.

ExAmMPLE 3.7 :
The transport function of the pump is dependent on the goal that the
pump power support is working, see Figure 3.27. O

PN
5

Keep pump running

Figure 3.27 A transport function conditioned by a subgoal. The fulfillment
of the goal, (keep pump running), is a condition for the transport function to
be available.

Flow functions can sometimes be conditions for themselves. This is the

case with, e.g., a chemical reactor which uses energy produced in the

reaction in order to keep the reaction going. In these cases the flow
model will not be ‘trée-like but contain loops. \

110

3.7 The Structure of MFM Models

3.7 The Structure of MFM Models

MFM models are built with the structures presented in the earlier sec-
tions. Basically, an MFM model is a graph of flow structures, connected
into several levels via achieve and achieve-by-control relations, over
goals, and further on via condition relations to flow functions belong-
ing to higher level flow structures.

ExXAMPLE 3.8

The full MFM model of the tanks process can be found in Figure 3.28.
It should be noted that the figure does not show the components, which
is the standard way of presenting MFM models.

O Correct level

H(G

Sensor

]

Storage Upper tank Lower tank Storage

Keep pump running

Power Switch Pump

Figure 3.28 An MFM model of the tanks process. All networks have been
connected, with achieve, achieve-by-control, and condition relations. Here,
the multilevel structure is clearly seen.

It 1s easy to recognize all the different goals, flow structures, énd rela-
tions binding the parts together. O

In Figure 3.28 it is easy to see the typical multilevel structure of
MFM models, with different layers of goals and functions. The general
form of an MFM model is the following:

One or several top level goals

o -ZAchieve relations from the goals to networks of flow functions

Condition relations from functions to subgoals

o Achieve relations from the subgoals to the next level, etc.

111

Chapter 3 Multilevel Flow Models

This concludes the basic description of MFM. The rest of this chapter
will describe the theoretical contributions made in this work. A large
part of this is in the form of sketches or ideas, rather than developed
theory.

3.8 Building MFM Models

The first problem for someone coming in contact with MFM is trying
to understand what it means, i.e., what it can represent and what an
available model can be used for. Hopefully, the previous parts of this
chapter and Lind (1990 a) will serve as a description of what MFM can
represent, and the following chapters provide examples of what it can

do. However, another question is just as important; how does one build
MFM models?

MFM as a Modeling Tool

Modeling in general is a complex task, which to a large extent rests on
experience, and must be learned by doing. The following observations
are based on the limited practical experience of the author, and should
be considered with this fact in mind:

o The basic difficulty in multilevel flow modeling is that the concepts
are quite different both from topological and behavioral ones. Thus,
the means-end nature of MFM must always be kept in mind, and
instead of starting to put together a set of mass and energy balances,
one should try to focus on the goal hierarchy.

o MFM is well suited for a top-down analysis. Actually, the first action
when constructing an MFM model should always be to define the
top level goals of the entire process. Then either the goal hierarchy
could be developed downwards, or the top level functions defined
and the next level of goals looked for.

o Functions are often ascribed to systems and subsystems without ex-
plicit mentioning of goals. For each such function, a goal should be
searched. Sometimes one knows that one function is a condition for

< another on a‘higher level. In this case an intermediate “c‘onnection”
goal should be defined.

112

3.8 Building MFM Models

Each topological subpart of the process, i.e., each subsystem and
component, probably has a subgoal associated to it, together with
one or several functions. By analyzing the subsystems, more goals
can be found. But it is important to observe that the topological and
means-end hierarchies have no simple correspondence, and many
goals will not be found in this way.

Each flow of mass and energy should be investigated, as they could
correspond to MFM flow structures. Here it is important to ob-
serve, however, that MFM is not thermodynamics. The purpose of
thermodynamic models is to accurately represent what is actually
happening in physical reality, while MFM represents a normative
view of the process. This leads to two important differences. First,
the level of abstraction needed can be very different. Secondly, the
models might actually be quite different, as the thermodynamics
would treat flows not supposed to be in the design.

No heuristic modeling strategy will be strictly followed in practise,
no matter what its academic merits. Thus, the actual strategy most
oftenly used would be a combination of a more or less top-down
construction of a goal tree and building flow structures and putting
them in place in the tree structure; and this would sometimes be
interrupted by some bottom-up construction and global connection
of larger parts of MFM models.

Power supply Pump Lubrication

Figure 3.29 A cooling system. The tank is cooled by water, which is circulated
through the tank and a cooler. The water is driven by a circulation pump,
which needs electrical power and lubrication. The lubrication system consists
of an oil tank and a circulation pump.

s L
’ ‘_,f‘ -

113

Chapter 3 Multilevel Flow Models

General Modeling Considerations

Building MFM models is similar to other types of modeling, and several
concepts can be “borrowed” from those disciplines. Thus, MFM models
may be simpler than reality and parts may be ignored; approximative
models may be useful, model reduction is possible; and the flow models
will strongly depend on the supposed use. To see some examples of this,
consider the small process shown in Figure 3.29.

? Cool the tank

Supply electricity %/ ¥ Lubricate pump
l Circulator Pump Oil tank l

P(:;;cr Switch Pump
Figure 3.30 An MFM model of the cooling system. Here the electrical energy
network is much simplified, consisting of just a source, a transport, and a sink,
while the power supply of the real process consists of many more parts. This
is an example of the use of an approximative model.

An MFM model of this process is shown in Figure 3.30. The top level goal
is to cool the tank, and this is achieved by an energy network. In this
network, the energy transport is conditioned by the subgoal of keeping
water circulating. The active transport function is realized by the pump,
while the tank and cooler is modeled as balances. The second transport
function is needed for syntactical reasons. The active transport, (the
pump), is conditioned by two subgoals, that electrical energy is supplied
and-that the pump is lubricated. The power supply and lubrication
networks are also shown. ‘

Here the power supply network is an example of how an MFM model
may be simpler than reality. The power supply has been modeled as a

114

3.8 Building MFM Models

source, a transport, and a sink, corresponding to the external power
system, a switch, and the pump motor. The real process is much more
complicated and contains a power plant, power lines, transformers, a
power plug, cords, more transformers, switches, safeties, and so forth.
The consequence is that the MFM model is much simplified, and that
the diagnostic resolution capabilities are lessened. A system using this
simpler model cannot recognize any fault in the unmodeled parts of the
power system. Thus, this also shows the use of an approximative model,
where the simplification depends on the model’s supposed use.

? Cool the tank

\

Tank Pupp Cooler
. J

Lubricate pump

Circulator Pump

Figure 3.31 Another MFM model of the cooling system. Here the electrical
energy network has been completely taken away, thus giving an example of
how parts of an MFM model may be ignored.

Figure 3.31 shows a somewhat smaller version of the MFM model. Here

the power supply system has been completely ignored, which is another

form of simplification, once again dependent on the supposed use. With

this.model, the system of course cannot diagnose any fault in the power

supply system. ‘

= In Figure 3.32 the lubrication network has been simplified. The full
model contains a transport, a balance, another transport and a storage,

115

Chapter 3 Multilevel Flow Models

corresponding to the oil pump, the main water pump, the return pipe,
and the oil tank. If the diagnostic resolution demanded is only to find
that the lubrication system is at fault, but not exactly where the fault
has occurred, it is possible to replace the more complicated network with
the rudimentary circulation shown in Figure 3.32, in which is only found
the lubrication pump and a balance modeling the rest of the equipment.
This could be called the MFM equivalent of model reduction.

Cooler

? Circulate water

AN

o6

Pump Cooler

Supply electricity { % Lubricate pump
Power Switch Pump ‘ Circulator Pump I

Figure 3.32 A third MFM model of the cooling system. Here the lubrica-
tion oil network has been simplified to a rudimentary circulation. This is an
example of MFM model reduction.

It is important to keep in mind the approximative nature of MFM mod-
els. But once it is understood that MFM may use simplifications similar
to those used for other model categories, these properties may be uti-
lized to make the models smaller and thus simpler both to build and
understand. Model reduction is not a goal in itself, however, but should
only be used when there is an obvious gain in simplification. Often it
is beneficial to keep those parts of MFM models that help the user to
interpret them. This may be illustrated by an example. In Figure 3.33
is shown an MFM network describing the biological life cycle of micro
organisms growing in milk. Bacteria are created from spores, resides
for a while in the milk, but are then killed by heating, i.e., sterilizing it.

116

3.8 Building MFM Models

Spores Growth Bacteria Killing

Figure 3.33 An MFM model of the life cycle of milk bacteria. The bacteria
are created from spores, reside for a while in the milk, and are then killed by
a sterilization procedure.

Under the assumption that the growth of bacteria can be neither affected
nor directly measured, it may seem reasonable to perform a model re-
duction by removing the growth part, see Figure 3.34, where only the
killing part of the network remains.

O

Bacteria Killing

Figure 3.34 A simplified model of the bacterial life cycle. As the growing
of bacteria cannot be affected, it has been removed. Instead the model only
shows that bacteria are present and that they are killed. However, this sim-
plification gives a less clear view of the bacteria’s life cycle, and it is possible
that the model reduction should not be performed.

This kind of simplification may not be very useful, though, as the de-
scriptive power of the model is reduced. The picture of the total life
cycle of the bacteria is lost, while the gain from simplification is quite

small. Thus, it is sometimes a good idea not to use model reduction in
MFM.

MFM as a Graphical Programming Language

It is also fruitful to view MFM as a graphical programming language.
In this way, all the knowledge about programming tasks can be used in
the building of flow models:

o Knowledge on how to structure the construction task can be used
“off the shelf.” This includes structured and object-oriented pro-
gramming, etc. The part-whole dimension of MFM lends itself im-
mediately to an object-oriented way of thinking. The goal-oriented
nature of MFM will actually make the use of such techniques easier
than with conventional programming languages.

- ,The special techniques of building knowledge-based systems, ie.,
‘knowledge acquisition and formalization can also be utilized. Here
the model-based nature of MFM will make the tasks easier than
with most other tools.

117

Chapter 3 Multilevel Flow Models

o Thereis a danger in using MFM simply as a programming language.
A conventional programming language is quite general, and mainly
adapted to the computer, rather than to the problem task. Thus,
a complex interpretation is needed in order to go from the problem
formulation to the implementation. It would certainly be a misuse
of MFM to do the similar thing, as MFM is specifically aimed at de-
scribing a class of flow processes; i.e., MFM is a modeling language,
not a programming language.

o MFM lends itself to a graphical implementation, and the toolbox
described in Chapter 7 allows an easy construction of MFM model
graphs. With its help the user can quickly build the graphical rep-
resentations in a window and mouse based fashion, and then write
rules and procedures to connect the MFM data structures to sensors,
other algorithms, presentation code, etc. In fact, with the toolbox
the actual implementation effort can hopefully become quite modest,
compared to the time needed for problem formulatlon knowledge
acquisition, and model construction.

3.9 Modeling Control Systems

MFM is a young and not fully developed modeling technique. One area
where more work is needed is the modeling of control systems. The tasks
of these systems may be provided by physical hardware, by external
computer systems, or by human operators. The systems can be viewed
as supervisory systems, situated outside the process proper, observing
its states and making the right decisions and control actions. At the
same time they are part of the process itself and may thus also need
supervision, fault diagnosis, and so on. There is an inherent problem of
self reference here, as the control system is part of any complete model
of the system it may be using. Lind has given his view in Lind (1990
d).

For this project, a simple but useful solution was needed. The devel-
oped solution differs slightly from the suggestions of Lind. It provides
the followmg good properties:

5 FA simple way of modeling low level controllers |

o A uniform way of mixing information flows with other MFM models

o The use of the manager function

118

3.9 Modeling Control Systems

'The solution is to use Lind’s manager function to describe any control or
management of resources. As opposed to Lind, this allows the manager
to describe the most low level control tasks, e.g., single loop PID control.
Agreeing with Lind, the manager is also used to represent high level
decision making.

ExAMPLE 3.9

Figure 3.35 gives a small example. A circulation flow is controlled by a
simple controller. The goal is to keep a constant flow, and this task is
performed by, say, a PID controller. The flow itself is represented in a
mass flow network, while the control task is represented by a manager
function. The goal, mass network and manager are connected by an
achieve-by-control relation, all according to Lind.

‘ Maintain circulation

I Pump System I

Figure 3.35 A circulating flow controlled by a controller. The flow is rep-
resented by the mass network, while the control task is represented by the
manager.

The implementation of a control task involves an information flow, and
MFM provides a way of modeling such flows, Lind (1988). The simplest
control tasks use the information flow shown in Figure 3.36.

HAKE

Sensor PID Pump

Figure 3.36 The simplest information flow of a control task. Some state of
the process is observed, control decisions are made, and the proper actions
performed. This may correspond to an operator seeing an alarm state, de-
ciding to shut down the plant, and the shut down procedure, but it may also
correspond to a sensor, a PID controller, and a servo.

Lind’s group have made some tests with mixing the observers, decision
~ functions, and actors with other flow functions, putting therh into the
networks, in close contact to the functions connected to observed states.
The results were not fully satisfactory.

119

Chapter 3 Multilevel Flow Models

| The solution used in this project is as follows. The information flow
corresponding to the task of a manager function is placed “inside” that
manager, 1.e., the manager is treated like a network, and may contain
flow functions. An example is shown in Figure 3.37

Here, the “inside” relation is shown with a dashed line, thus differ-
ing from the presentation of a network containing flow functions. In the
G2 toolbox implementation, however, the two are exactly alike. Here,
one selects to zoom in on either a network or a manager, and a new
window with the inner structure of flow functions is shown.

Maintain circulation

(ONCE

PID Sensor PID Pump

Pump System

Figure 3.37 The manager and its information flow are connected with a re-
lation. This is the same “inside” relation that connects a network with the
flow functions it contains, and is a new contribution of this project.

The choice of putting information flows inside managers provides a sim-
ple solution to the problem of connecting information and other flows,
and it makes all implemented diagnostic algorithms work, in exactly the
same way as they do concerning a network containing flow functions.
The solution violates the principles of Lind in that it views low
level PID control as decision making. Bearing this difference in mind,
the solution seems to be a viable one, however. O
The connection of information flow functions to subgoals is trivial,
see Figure 3.38. Here the standard condition relations may be used

without problems.
Sensor I Pump

Supply power for controller

- 7,/" e ¢
Figure 3.38 Information flow functions may be conditioned by subgoals in the
same way as other flow functions. Here the decision function is implemented
as a PID controller, which needs a power supply network in order to work.

120

3.10 Modeling Biochemical Reactions

3.10 Modeling Biochemical Reactions

MFM is primarily concerned with mass, energy, and information flows.
However, other types of processes may take place in a system, and be
vitally important for supervision and diagnosis. Thus, one objective of
MFM research is to extend the set of function types, in order for MFM
to be able to accommodate more types of processes.

One very important extension would be to include descriptions of
biological and chemical reactions, together with operations such as mix-

ing, separation, phase changes, etc. Some new ideas will be suggested
in this work.

Using MFM Mass Flows

The first suggestion, which has also been investigated by Lind, is to
use MFM mass flow functions to represent some biological and chemical
reactions. An example may illustrate this idea, see Figure 3.39.

SIMULATION-SCHEMATIC STERITHERM PROCESS |

P 7,’
T

i
Figure 3.39 Steritherm is a small process which sterilizes a product, e.g.,
milk, by heating it to a high temperature for a short while. Thus, all the
micro organisms in the product are killed.

121

Chapter 3 Multilevel Flow Models

-Steritherm is a small-scale mass and energy flow process for ultra-high

temperature, (UHT), treatment of dairy products such as milk or cream.
It has been developed by the Alfa-Laval company and is the target
process used in the Swedish IT4 project “Knowledge-Based Real-Time
Control Systems,” see Asea Brown Boveri AB et al (1988, 1990, 1991),
Larsson (1990 a), Arzén (1989, 1990, 1993), and Arzén et al (1990).
Steritherm is an operating process and large enough to provide a good
target for testing diagnostic algorithms, but it is important to notice
that it is still small compared to many chemical processes and power |
plants.

The top level production goal of Steritherm is to deliver sterile prod-
uct. Unsterilized product contains spores, from which micro organisms
grow. The bacteria reside in the milk until they are killed by heating.
This bacterial life cycle is represented by the MFM mass flow in Figure
3.40. Here, the spores are modeled by a mass source, the growing of bac-
teria by a transport, the living bacteria by a storage, representing the
total amount of live bacteria in the milk, the killing by another trans-
port, and the dead bacteria by a sink. Lind has used this methodology
for developing models of water treatment plants.

A

Spores Growth Bacteria Killing

Figure 3.40 The bacterial flow in Steritherm. Micro organisms are created
from spores, reside in the milk, and are killed by heating. In this case, an
MFM mass flow may be used to describe a biological process.

Using the CAMBIO Graphical Representation

The group of Chéruy et al, the Biosystems Group in the Automatic Con-
trol Laboratory of the Institut National Polytechnique de Grenoble, has
developed a graphical language for describing biological and biochemical
processes. It is suggested that this language may be used as a basis for
- .. developing new flow functions, and thus extending MFM to incorporate
such processes.
- ~The intended*usé of CAMBIO is modeling and simulation. The
graphical language is used to describe a biochemical reaction. The user
enters a functional scheme, i.e., a graphical description of the reaction,
and the computer system can check the syntactic legality and then pro-

122

3.10 Modeling Biochemical Reactions

duce differential equations, e.g., mass balance equations. The user sup-
plies some of the equations that cannot be deduced from the graphi-
cal description, after which the system is able to perform a simulation.
Thus, this system provides the user with an easy and uniform way of
setting up new biochemical reactions, as well as with a representation
that is both easy to read, free from inconsistencies, and which works
well as documentation.

Slateolt

Substrate Biomass Enzyme Inhibitor Activator Chemical Final product

Figure 3.41 The 7 different objects used to build CAMBIO reactions. These
are the symbols available to construct the functional schemes.

CAMBIO recognizes 7 different basic building objects, or variables of
the functional scheme, see Figure 3.41. They are substrates from which
biomass may grow and enzymatic reactions may take their needed ma-
terial, biomass, i.e., micro organisms, enzymes, inhibitors which hinder
or slow down a reaction, activators which start or speed up a reaction,
chemicals, and final products.

EF
BE —— PE
Biological growth reaction Biological enzymatic reaction
BF - PF cee-
,,,,,, - e
: Biological biosynthesis reaction Physico-chemical reaction

Figure 3.42 The 4 basic CAMBIO reactions. These are the legal connections
of the basic objects, but inhibitors and activators may also be involved.

123

Chapter 3 Multilevel Flow Models

The basic building objects may only be connected into certain allowed
biochemical reactions, and the computer checks this at construction
time. There are four basic reactions: growth, enzymatic, biosynthesis,
and physiochemical reactions, see Figure 3.42.

The variables and reactions may be combined to build more complex
reactions. In Figure 3.43 is shown a description of a yeast fermentation,
producing ethanol from starch. The starch is broken down into glucose
by an enzymatic reaction. The yeast grows from the glucose in a growth
reaction, and produces ethanol in a biosynthesis reaction. The diagram
in Figure 3.43 gives a functional description of the three reactions, with
inhibition, and from this representation CAMBIO can produce simula-
tion equations.

BIO

Figure 3.43 A CAMBIO description of yeast fermenting from starch. Glucose,
(GLU), is produced from starch, (STR), via an enzyme, (ENZ). The glucose
functions as a substrate for the yeast, (BIO), and as an inhibitor for the
enzymatic reaction, (rl), if its concentration becomes too large. The yeast
grows from the glucose in a simple growth reaction, (r2), and uses the glucose
to produce ethanol, (ETH), in a biosynthesis reaction, (r3). The ethanol works
as an inhibitor to the yeast growth when its concentration becomes too high.
The combination of symbols used in CAMBIO is also seen here.

Here, it is suggested that the CAMBIO language may be used together
with MFM, to describe biochemical reactions. The idea is that the vari-
ables of the CAMBIO functional schemes should form the basis for new
functions, biochemical functions, and that the processes, inhibitions, and
activations be added to the set of relations. In this way it seems possible
to-capture a large-part of all biochemical reactions and enabl‘e MFM to

handle them.
A CAMBIO representation of the Steritherm example can be found
in Figure 3.44. Here bacteria grow from spores in milk, then to be killed

124

3.10 Modeling Biochemical Reactions

by heating. The sterilization has been modeled as an inhibitor, which
goes beyond the ideas of Chéruy’s group.

Figure 3.44 A CAMBIO description of bacterial growth in milk. The bacteria,
(BACT), grow from the milk, (PROD), in a simple growth reaction, but this
growth is inhibited by the sterilization, (STER).

It seems to be straightforward to incorporate the CAMBIO models in
MFM. Figure 3.45 shows how the reaction of Figure 3.44 may be en-
closed in a network and connected to an achieved goal, and how the
sterilization function can be conditioned by a subgoal. This subgoal
would then be achieved by a thermal energy network.

? Produce sterile product

PROD T -1 |BACT
]
1
)

Heat product to sterilizing temperature

Figure 3.45 The CAMBIO functions can be enclosed in an MFM network and
connected to goals and subgoals.

Tomita et al (1989) describes a system for automatic generation of oper-
ating procedures, based on models of functional hierarchy. These func-
tions include reaction, separation, blending, and storage. Furthermore,
Padalkar et al (1991) describes a system for alarm analysis and fault
diagnosis, based on structural and functional hierarchies. Among these
functions chemical treatment and separation is mentioned. 'It is pos-
sible that some of these functions may form another platform for new
chemical functions to be used in an extended MFM representation.

125

Chapter 3 Multilevel Flow Models

3.11 FExtensions of MFM

It would be valuable to extend the flora of MFM functions further, be-
yond that of biochemical functions. The following categories immedi-
ately suggest themselves:

o Chemical reactions, which often occur together with mass and en-
ergy flows.

o Geometrical functions fulfilling physical constraints, for example
the function of the wheels of a car to keep it at at certain distance
from the ground.

o Other physical functions, described by differential equations, e.g.,
momentum.

It is possible that the CAMBIO representation is extendible to encom-
pass purely chemical reactions, but there may also be a possibility to
produce new function concepts from scratch. These may be based on
the mass flow functions of MFM, (viewing the reactions as either trans-
ports or balances), or on other functional schemes similar to those of
CAMBIO. As CAMBIO has been developed with the help of much bio-
logical competence, it is clear that a similar effort is needed to solve the
description of pure chemical reactions.

‘ Move robot arm

Power Cables Motor

Figure 3.46 'To solve geometrical problems from, e.g., robotics, MFM may be
extended with sets of constraints.

Another area which MFM currently does not handle is the problem of
geometrical or physical demands of a system, e.g., an industrial robot.
Here it is important to reason about pure geometrical demands, such
as the position of the robot arm, etc. MFM can describe some of this
as flows of mass and energy, but this is probably quite unintuitive and

126

3.11 Extensions of MFM

apart from that, many concepts still cannot be captured at all. For
example, a robot arm may provide the same mass and energy transport,
while having very different geometrical positions.

A possible solution is outlined in Figure 3.46. Here, a goal is
achieved by the ordinary mass, energy, and information flow networks,
but in order for it to be satisfied, a set of constraints must also be
fulfilled. The constraints could be represented in the form of mathe-
matical or logical equations. Then the algorithms could work on these
constraints too. The development of such a constraint representation
demands an effort of its own, however.

3.12 Other Developments of MFM

During the project, several ideas for changes and enhancements of MFM
has come up. Some of these may be worth mentioning.

The Isolation Problem

Sometimes a barrier function is important for a system, while there is
no tightly coupled flow or flow path. An example of this would be an
airtight container for sterile milk. The package clearly has a barrier
function, but there is no associated flow. In this case and other cases it
would be useful to allow the simple connection shown in Figure 3.47.

ON7a%

Bacteria Packing Milk

Figure 3.47 A simple network showing a barrier function. This construction
is illegal in current MFM, but could be useful to describe some simple cases
of isolation.

An easy solution would be to allow barriers wherever transports would be
syntactically correct. But sometimes, the picture is still complicated, as
in the isolation of sterile milk in Steritherm, see Figure 3.48. Here extra
transports must normally be inserted between source and balance, and
balance and sink. It may seem a bit awkward to put in extra barriers
for syntactical reasons, however.

127

Chapter 3 Multilevel Flow Models

?Keep product sterile

(Biological barrier \
Heat exchangers

Environment Pipes Product

\ Valves -/

Figure 3.48 The isolation of sterilized milk from the environment, as is
needed in the Steritherm process. Several components must be able to iso-

late the product from the environment, and it is unclear what a flow network
describing this should look like.

No solution has been given to this problem in the current work. How-
ever, it is important to notice that this problem does exist.

Complex Goal Satisfaction g

In real processes, the logical function, f, from the status, F;, of the
flow functions to the status or satisfaction of an achieved goal, Gy, is
complicated: “

Gs = f(F1,..., Fy).

The simple assumption currently used in MFM is that all the functions
must be working, i.e., all the F;’s must be true:

G =F{n...\NF,,.

This guarantees that when the goal is fulfilled, all the functions are
working, and thus ensures the validity of any conclusions using this
assumption. However, it is sometimes too strong a demand.

Cool motor

Motor Circulation Cooler

. 7777}}

ES

igure 3.49 A simple energy network for a cooler. The goal is achieved if
all three functions are available, but it would also be satisfied if the source
function stopped working. This could be described if more complex goal sat-
isfaction functions were used.

128

3.12 Other Developments of MFM

The energy network of a simple cooling system can be seen in Figure
3.49. The source produces extra energy, which must be transported to
the sink in order to achieve the goal. But the goal of keeping the process
cool would be satisfied if the source was not working, regardless of the
status of the other functions. This could be described in MFM, but would
demand a more complex goal satisfaction function:

Gs =—lF1VF2/\F3.

This subject will not be further elaborated here, but it may be interesting
to note that Walseth et al (1992) outlines a system where goals are
connected to continuous variables, and thus a different goal satisfaction
algorithm is used.

3.13 A Summary of the Theoretical Contributions

In this chapter, several changes and extensions of MFM have been de-
scribed, and more have been proposed or outlined.

Differences in Syntax

Some minor changes in syntax have been used in this project. Lind al-
lows a storage function to have several inputs and outputs, which has
been disallowed here. The reasons are simplicity and an implementa-
tion that fits more closely to G2. The change is not an important one,
however, as a multiply connected storage may always be replaced by a
storage, one or two transports, and balance functions, where the multi-
ple connections are made.

Two more syntactical changes has also been proposed, transport-
to-transport connection and allowing barriers where transports are al-
lowed. The former would be convenient in describing long flows of con-
nected transport functions, to avoid the use of several balances to be
put in for syntactical reasons only. The latter proposal addresses a real
problem, however, that of how to model a barrier function without an
associated flow. The proposal is to allow barriers to be allowed wher-
ever transports are allowed. Some examples have been shown, but the
* problem has not been pursued further.

129

Chapter 3 Multilevel Flow Models

Modeling of Control Systems

In the original version of MFM, the modeling of control systems is un-
clear. Two simple decisions was taken in this project: to use the manager
function for representing all control systems, low level, as well as high
level, and to let the manager contain information flow functions, just
like a network. This allows for a simple and uniform solution of how to
join the information flows with the rest of the MFM models.

New Types of Flow Functions

Several suggestions of how to extend MFM with new types of flow func-
tions have been given. The most elaborated proposal concerns biochem-
ical processes, where the solution is either to use MFM mass flow func-
tions to represent the processes, or to use the CAMBIO functional lan-
guage, adapted to the syntax of MFM.

Some further extensions have also been outlined. Purely chemical
reactions may possibly be described by MFM mass flow funetions or by a
CAMBIO-like language, while it is suggested that geometrical functions
are best described by constraints, to be connected to the goals.

Other Contributions

A small example has been given to show the advantage of more com-
plex goal satisfaction rules. The current MFM assumption is that all
functions in a network must be available for the goal achieved by the
network to be fulfilled, while in practise, this is seldom the precise truth.
Thus, more complex conditions for goal satisfaction could be used. No
further investigations have been performed in this project, however.

Finally, there are some remarks on the building of MFM models.
So far, this area is largely uninvestigated, and every user of MFM must
learn it by himself. The sections given here do by no means remedy
this situation, but they may have some value in that they described the
experiences gathered during this project.

P

130

CHAPTER 4

MEASUREMENT VALIDATION

The problem of measurement validation or data reconciliation is the
following: given a set of redundant and possibly inconsistent measure-
ments, decide whether there are any inconsistencies, and find out which
measurements are correct and which ones are not.

By propagating the measured values into the networks of flow func-
tions of an MFM model of the process, the problem of measurement vali-
dation can be solved. The proposed solution will find all inconsistencies,
and give as a result all the hypotheses that can explain the current
state. That is, the method will take care of all :theoretlcal possibilities
instead of guessing on the most probable.

4.1 Introduction

Most industrial processes are equipped with a large number of sensors,
of which several directly or indirectly measure the same variables. Es-
pecially when material and energy balance equations are taken into
account, the total set of measurements commonly gives rise to redun-
dancy, which can be used to check the consistency of the signals, i.e., to
validate them.

If a process is described by an MFM model, a simple version of
measurement validation can be automatically implemented. The avail-
able measurement values are treated, for example by different forms of
filtering. Then they are sent to the corresponding flow functions. As
the MFM model describes the process as a set of flow networks, where
each flow should obey some simple flow balances, inconsistent values of
mass and energy flows can easily be found. Through further propagation

- of consistent information, a subset of singularly inconsistent measure-

ment points may be” computed. Unknown flow values can be supplied
by guessing; a flow propagation algorithm.

131

Chapter 4 Measurement Validation

4.2 Flow Semantics

In order to use MFM as a basis for measurement validation, a semantics
has been defined that assigns flow values and grouping information to
the different flow functions. Four of the flow functions have their at-
tributes in common, and have thus been grouped into one class, called
flow carrier. Sources, transports, non-forking balances, (i.e., balances
with only one input and one output), and sinks are all flow carriers.
Storages, barrier functions, and forking balances are given a separate
treatment. The following attributes are used:

o Flow carriers have one flow value; a quantitative variable that cor-
responds to a physical flow of mass or energy. Its unit of measure
could be, e.g., m?/s or J/s. A flow carrier is connected to a single
measurement device, and its flow attribute is set to the value of the
measured signal.

o Storages have three flow values. There are input and output flows,
which are connected to corresponding measurements. There is also
a third attribute, corresponding to the rate of change of the mass
or energy contained in the storage, i.e., the derivative of the stor-
age’s volume. Thus, a storage can be connected to at most three
measurements.

o Barriers have no flow value, as they do not transport any matter or
energy in working states, and they serve only as borders between
separately analyzed flows.

o Forking balances have no flow value. Instead, the sum of the inflows
should equal the sum of the outflows.

In addition to the flow attributes, each flow function contains informa-
tion about whether it belongs to a group of several flow functions with
consistent flow values, and also a validated, or reconciled, flow value,
which can be different from the measured one.

4.3 Generation of Flow Measurements

The’measurement‘ validation method takes a set of flow s1gnals as in-
~ puts. These inputs can be obtained in several different ways. They can
be direct or filtered signals from sensors. It would be more probable,
though, that they were the outputs of some low level data filtration on

132

4.3 GGeneration of Flow Measurements

the direct signals, e.g., outputs from a Kalman filter or from some sta-
tistical algorithm. Figure 4.1 shows the general architecture of a system
using the measurement validation algorithm. An example of the use of
a Kalman filter that can also detect sensor failures is given in Section
5.3 of Killstrom (1979). The signals could also come from any other
hardware or software that produced flow values; the origin of the flow
values does not matter for the method.

Supervision and diagnosis

Measurement validation

Data filtration

C Process)

Figure 4.1 The architecture of a system using measurement validation. Low
level data filtering and treatment should be done before the algorithm is used.
The results of the method may be passed on to higher level algorithms.

The measured flow values are assigned to the attributes of the appro-
priate flow functions. It is these flow values that the algorithm operate
on. The validated output values could be used in high-level supervision
and diagnosis.

4.4 Consistent Subgroups

With use of the semantics above it is possible to split an MFM model,
(i.e., a set of connected flow functions), into internally consistent sub-
groups. This is done via use of the following rules:

1 ~< For the flows: F; and F,, of two connected flow carriers the following
inequality should hold:

|F1—F2| < €1.

133

Chapter 4 Measurement Validation

2.

3.

4.

134

If it does, the two flow carriers belong to the same, (consistent),
subgroup; they support each other. If, however, the flow values
should disagree, they belong to separate subgroups. This latter
situation indicates that at least one of the measurements is in error.

If the input flow F; of a storage is equal to the flow F' of the flow
carrier connected at the input of the storage, i.e., the following in-
equality holds:

lF = F I < €1,

the input part of the storage belongs to the same subgroup as the
flow carrier. Should the two flows disagree, the storage and the flow
carrier belong to different subgroups. The corresponding is true for
the output flow, F,, of a storage and the flow, F, of the flow carrier
connected to it.

For each storage, with volume V, inflow F;, and outflow F,, the
following inequality should hold:
dv
|W —Fi +F0‘ < €1.
If it does, the input and output parts of a storage belong to the same
subgroup, if not, they belong to separate subgroups. Note that this
requires some separate measurement of the derivative. If this is

not available, the flows connected to the inlet and the outlet must
be treated as two completely separate flows.

For each balance, with inflows and outflows F;, the following in-
equality should hold:

|F1+ Fo + -+ Fp| < 1.

If it does, the flow carriers connected to the balance all belong to the
same consistent subgroup. If not, at least one of the connected flow
carriers belong to another subgroup. In this case, the balance should
be given a special marking, telling the user that one or more of the
flow carriers are not consistent, while others may be. However,
all connected flow carriers will be marked as belonging to different

groups.

If the flow values of two flow functions agree, and the ﬂovy functions

are in the same flow path, but separated by one or more inconsistent
subgroups, they still belong to the same subgroup. However, flow
functions that are not in the same flow path do not form subgroups.

4.4 Consistent Subgroups

Application of the five rules above will enable a splitting of each flow
into smaller groups with consistent measurement values. It should be
noted that the fifth rule means that there can be groups with holes in
them; they need not be directly consecutive. This is the case in Figure
4.2. Here the flow values are shown above the flow functions and the
subgroup information is shown with a shading of the graphical symbols.
There are two subgroups, and one encloses the other.

1.0 1.0 L0 0.5 1.0

Figure 4.2 An example of a flow path. Here the flow functions form two
consistent subgroups, where one group is surrounding the other. The three
possible fault hypotheses are that the four measurements are correct and
the one is faulty, that the one is correct and the four are faulty, or that all
measurements are faulty.

The last rule uses information about several flow functions'connected in
line; the other four only look at directly connected flow functions. This
enables the algorithm implemented to be incremental and almost local.

Each flow function has a group attribute, (a storage has tWo). The
algorithm goes through the flow values of the connected flow functions,
and assigns every function to a subgroup of the flow path, with use of
the rules described above. This is done by incrementally updating the
group attributes.

The fact that all flows obey simple balance equations and are single
component, and the local nature of the algorithm means, among other
things, that there will be no local nor global ambiguities. Thus, for
example, loops and forks pose no particular problems.

4.5 Flow Propagation

The description so far has used the assumption that all flow functions
have measurements. This is quite seldom the case. Many of the flow
values needed in the algorithm will usually be unknown.

_~The MFM flow paths can be used, however, to propagate flow infor-
. matlon 1.e., to guess the unknown flow values. The idea is quite simple:
if an unknown flow value is connected to a known one, the known value
is propagated to the unknown. However, as different flow values can

135

Chapter 4 Measurement Validation

be more or less trustworthy, it is necessary to have several propagation
rules. The implemented algorithm uses the following rules.

1.

A flow value from a subgroup of more than one flow function is said
to be validated. It has precedence over all flow values supplied by
single flow functions, when propagated both upstream and down-
stream in flow paths.

A single measured flow value will be propagated to unmeasured
flows, both upstream and downstream, if there is no other informa-
tion available.

If two validated flow values should meet, the one which is prop-
agated downstream has precedence over the one propagated up-
stream. This does not imply that downstream propagation is better
In any sense; it only serves to make the flow propagation behave
consistently.

If two flow values from single flow functions should meet, the one
which is propagated downstream has precedence over the one prop-
agated upstream. Once again, this is only to make the propagation
work.

Guessed values will not be propagated over balance functions, ex-
cept when only one value is currently unknown or unguessed.

Using these propagation rules, the system can provide both validated
flows whenever there is enough redundant information, and guessed
values for most flow functions in a network. The only case when guesses
will not be available is when several forking paths, i.e., paths between
balances, have no measured value connected to them.

AN
AN
<

F2

Figure 4.3 A forking flow path. If neither of the flows of F1 and F2 are

measured, it is not possible to guess the flow values in the flow propagation
algorithm.

This would be the case in Figure 4.3, if neither flow functions F1 and F2

" had any measurement connected to them. In such cases it is impossible
to tell how much of a flow that goes through one forking path, and how
much goes through the other.

136

4.6 Validation

4.6 Validation

Each flow value has a corresponding validated flow attribute. This is
set according to the following rules.

1.

If a flow value is the only one in its subgroup, and it is surrounded
by a consistent subgroup, its own flow value is overridden, and the
flow of the surrounding group becomes the validated flow of the flow
function.

In all other cases, the validated flow is equal to the corresponding
measured flow.

In addition to the presentation of validated flow values, the implemen-
tation also presents some subgroup information to the user.

o}

o}

A coloring scheme is used to separate the inconsistent subgroups in
the graphical representation of the MFM model. Thus, the symbols
of the flow functions in the different subgroups receive a light gray,
gray, or dark gray rim, depending on which group they belong to.

Each flow function that is alone in its group is highlighted in red.

The decision to explicitly mark all single subgroups is only one possible
alternative of many. It is derived from the obvious possibility that the
measured value in question probably is in error. It is very important
to observe, however, that this is only probable, not certain. It is also
possible, albeit with a lower probability, that all measurements of a
larger, consistent subgroup is in error, while the single value is correct.
The third possibility is that all the measurements are wrong. It is very
important that these cases be taken into account when the results of the
analysis are presented to the operator or higher level algorithm. This is .
the reason why the implemented system primarily displays mformatlon
about the different consistent subgroups.

In situations with many inconsistent subgroups, the number of hy-

potheses grows very quickly due to the combinatorial nature of the prob-
lem. However, the recognition of the less likely fault hypotheses may be
vitally important in order to make a reliable fault diagnosis, that any
situation with more than one consistent subgroup is so suspicious that
often the only reasonable action will be to perform an emergency shut-

;{d@WIl and that if'a normative steady state is known, all hypothesm but
‘one may be discarded.

It should be noted that this measurement validation algorithm only

uses information about the flow paths, not the means-end relations.

137

Chapter 4 Measurement Validation

Thus, each flow network is treated separately, and only part of the in-
formation of the MFM model is used.

4.7 Implementation

The algorithm has been implemented with two rule groups. One is con-
cerned with the measurement validation and consists of 59 rules, the
other takes care of the flow propagation and consists of 12 rules. These
rule bases use a database of connected flow functions to yield a incre-
mental and basically local algorithm, i.e., the flow values are updated
as soon as new values are available, and only local information about
neighboring functions is needed, except in case one consistent subgroup
encloses another. Further information about the G2 implementation is
given in Chapter 7. The algorithm works by updating a set of attributes
of each flow function, see Table 4.1.

flow quantitative flow value
group first, second, or third
measured frue or false

Table 4.1 The attributes of a flow carrier. Storages has a double set of at-
tributes, for input and output, together with a derivative value. Barriers and
balances have no flow values.

For simplicity, the current version of the method uses a single value to
describe a flow measurement, and one global value, €1, for comparison.
If the signals differ less, they are considered to be equal. It would be
possible, however, to include more information about, e.g., uncertainties,
variances, etc. This would also enable more reliable comparisons of
signals. "

Due to the local and incremental nature of the algorithm, it is very
efficient. Whenever a new flow measurement is received, updated values
spread in the local environment around the concerned flow function.
The search starts at the points where new data enters and follows static
links along single flow paths. This makes the method very unsensitive to
increasing complexity. In the worst case, where the MFM model consists

“of one long flow path, the effort needed grows linearly with, the model
complexity, (i.e., the number of flow functions). In the normal case,
however, the model grows by comprising more and more flow paths, and
then the effort stays constant in spite of the growing complexity.

138

4.8 Examples of How the Method Works

4.8 Examples of How the Method Works

Let us now demonstrate the method on a small example. The process
used is the same one as in Chapter 3; the tanks process. For simplicity,
the control system will be ignored here, see Figure 4.4.

BUNANENANAARNGARRARAARAR A A AR,

Figure 4.4 The tanks process. Water is pumped from a storage tank, to a
cylindrical tank, from where it flows down into another tank, and then back
to the storage again.

The main goal of the process is to keep the water level in the tanks at
a specified level. The MFM model of the process can be seen in Figure

Gl ? Correct level in tanks

Water flow

O OHOOK

F1 T F2 F3 F4

G2 Keep pump running

Energy supply

Figure 4.5 An MFM model of the tanks process. The main goal is to keep
the level of the upper tank correct, and it is achieved by a water flow. In order
for the transport function F2 to be available, i.e., to keep the pump running,
- .-energy must be supplied.
) A

139

Chapter 4 Measurement Validation

ExampLE 4.1
Now assume that flow measurements are available from the outflow
of the storage tank, the throughput flow of the pump, and the inflow,

derivative, and outflow of the upper tank, and that these flows have the
following values.

flow of F1 20x107®* m®/s (outflow from storage)
flow of F2 10x 107 m3/s (flow through pump)
inflow of F3 20x107° m®/s (upper tank inflow)
deriv of F3 0x10~8 m3/s (volume change)

outflow of F3 20x 107 m?/s (upper tank outflow)

Table 4.2 A set of flow measurement values for Example 4.1.

The situation described in Table 4.2 is also shown in Figure 4.6, where
only the concerned flow functions are found. The flow values are shown
above the flow function symbols; the storage function realized by the
upper tank has three values, corresponding the inflow, derivative of
volume, and outflow.

20 10 20 0 20

F1 F2 F3

Figure 4.6 A flow path corresponding to Table 4.2. The flow of F2 disagrees
from the rest, and there are two consistent subgroups, whereof ones is single
and surrounded.

The flow of F1 and all the flows of F3 agree, and thus they form a con-
sistent subgroup. The flow of F2 disagree, however, forming another
subgroup, with only one function in it. The system marks the two sub-
groups in different colors, thus notifying that there is an inconsistency.
In this case it will also mark F2 specially, as it is a single function group,
and the validated flow value of F2 will be set to 20x107¢ m3/s, (the flow
of the surrounding group). O
The consistent subgroup information has been shown in Figure 4.6
~with a shading system. In addition to this, the flow function F2 should
“also have a special marking, for forming a single function group.

140

4.8 Examples of How the Method Works

ExXAMPLE 4.2
Now assume instead that the flow value of F1 is 10x107% m3/s and that
the flow of F2 is not measured; a situation which is shown in table 4.3.

flow of F1 10x10¢ m®/s (outflow from storage)
flow of F2 unmeasured (flow through pump)
inflow of F3 20x107® m®/s (upper tank inflow)
deriv of F3 0x107% m?®/s (volume change)

outflow of F3 20x 107 m3/s (upper tank outflow)

Table 4.3 A set of flow measurement values for Example 4.2.

The situation in Table 4.3 corresponds to the flow function description
of Figure 4.7.

Figure 4.7 A flow path corresponding to table 4.3. The flow value of F2
is propagated from the storage, where the measurements form a multiply
validated and consistent subgroup. Then it can be seen that F1 forms a single,
(but not surrounded), subgroup. '

In this case the system will propagate the validated value of 20 x 10~
m3/s from the inflow, derivative, and outflow of F3 upstream to F2, (the
value from the validated subgroup has precedence over the value of the
single function F1). It then observes that the flow of F1 does not agree
with the guessed value of F2, and F1 is marked as a single failure. Its
validated flow is not reset, however, since it is not surrounded by other
flow values. O

ExAmPLE 4.3
Further assume the situation described by Table 4.4.

flow of F1 20x107% m3/s (outflow from storage)
flow of F2 20x 107 m3/s (flow through pump)
inflow of F3 10x10"® m3/s (upper tank inflow)
deriv of F3 5x107% m®/s (volume change)

. outflow of F3 5x107®* m®/s (upper tank outflow)

- 5 e

i
Table 4.4 A set of flow measurement values for Example 4.3.

This situation is also found in Figure 4.8.

141

Chapter 4 Measurement Validation

20 20 10 5

F1 F2 F3

Figure 4.8 A flow path corresponding to table 4.4. Here there are two con-
sistent subgroups which both consists of more than one measurement. The
algorithm signals that the flows do not agree, but it cannot guess as to which
ones that are correct.

Here we have two consistent subgroups, each with more than one mea-
surement to support it. This situation is difficult to assess, as many
sensor values must be wrong. The system will mark the two inconsis-
tent groups, but will take no further action. Marking any particular
value as wrong could be misleading and potentially dangerous. O

4.9 A Comparison with Classical Data Reconciliation

In Chapter 2 some other forms of data reconciliation were described.
Basically, one type of method uses least-squares estimation to compen-
sate for small errors, assuming known covariances of the measurements.
The other type of method uses statistical hypothesis testing to find gross
errors, once again assuming known measurement covariances and sig-
nificance levels. The method presented in this chapter is more quali-
tative in nature and therefore, a comparison may be quite interesting.
These are the main points:

o}

o}

(o}

RN

The MFM method is designed to find large deviations. Thus there is
no use to compare it with the first type of method mentioned above.

The MFM method demands knowledge of how to set the comparison
limits for the tests of whether one flow value is equal to another or
not, while the hypothesis testing methods must have information
about the auto- and covariances of all measurements in order to
perform the statistical tests.

The hypothesis testing demands a large computational effort, espe-
~cially during the fault isolation by elimination and retesting, and it

- “7-must be started by outside actions, e.g., by an operator or at speci-

142

fied intervals. The MFM method is simple and efficient, and works
incrementally by updating its results as soon as new measurements
are available.

4.9 A Comparison with Classical Data Reconciliation

o The hypothesis testing finds only the most probable fault hypothe-
sis, while the MFM method is able to display information about all
possible hypotheses.

4.10 Conclusions

This chapter describes a method for using redundancy in measurements
to find measurement errors and validated measurement values. An im-
portant aspect of the method is that it will not make any guesses as
to which measurement that may be in error when inconsistencies are
found. Instead it will present the different subsets of measurements that
are internally consistent. The operator will then be able to investigate
all possible alternatives, which is quite important for safe operation and
decision-making. Currently the method uses simple quantitative flow
values and a global comparison uncertainty, but the algorithms could
be extended to include more complex information about the flow values,
such as noise levels, variances, etc.

It should be noted that the presentation of single subgroups as
less trustworthy than validated groups rests on the assumption that
all failure likelihoods are in the same order of magnitude. However,
the method could be extended to use explicit measures of failure likeli-
hood, and then a single value could be more trustworthy than a group
of values. The same assumption is found in the flow propagation, where
validated values have precedence over single values. These guessed val-
ues are only used to isolate single groups, however, and the assumption
has no other effects on the method. |

The method has been tested on two G2 simulations of processes, the
small laboratory process shown in the example above, and Steritherm.
It was successful in both cases.

The method works under rather general conditions; there should
be an MFM model of the process and this model should capture the
important aspects of the process. Under these conditions the method
provides a simple solution to the problem of measurement validation.

143

CHAPTER 5

ALARM ANALYSIS

Alarm analysis is the task of analyzing an alarm situation in a pro-
cess, and separating out primary alarms, i.e., those directly connected
to faults, from secondary ones, which are only consequences of the pri-
mary ones.

MFM models describe how different functions of the process are
connected and depend on each other. By propagating alarm informa-
tion into this relational structure, it is possible to find out which of the
alarms that must be primary, as opposed to those that may be primary
or caused by consequential faults. This yields-an algorithm that can
handle multiple faults in a theoretically correct way.

5.1 Introduction

Most industrial processes are equipped with a large number of alarms.
In a failure state it is quite usual that many of the alarms will trigger.
Some of them will be directly connected to the primary sources of error,
but others may be secondary, i.e., not connected to any failed equipment,
but due only to consequential effects of the primary failures. In a fail-
ure state it is vital for the operator to separate the primary from the
secondary alarms. The rest of chapter describes a new method, based
on MFM, for automatically recognizing the primary failures.

i Oae

Tank Pump

f"FLgure 5.1 A simple process, consisting of a connected tank and pump. A
tank underflow may cause a pump low flow, a tank overflow may' cause a
pump high flow, a pump low flow may cause a tank overflow, and a pump
high flow may cause a tank underflow. The alarm analysis algorithm builds
on a generalization of causation rules like this.

144

5.1 Introduction

~ An example of how the algorithm works is given in Figure 5.1. Here it

is reasonable to assume that a too low volume in the tank may cause a
too low flow though the pump; that a too high volume in the tank may
cause a too high flow through the pump; that a too low flow through the
pump may cause a tank overflow, and that a too high flow through the
pump may cause a tank underflow. These four causation rules describe
how one fault may cause another.

Assume that the tank becomes empty, and that a level alarm is
activated. As a consequence of the low level in the tank, the pump flow
will become too low, and activate another alarm. With the use of the first
causation rule above, it is possible to conclude that the tank underflow is
the cause of both alarms, the primary fault, while the pump low flow is
a consequential or secondary fault. The alarm analysis algorithm uses
an MFM model of a process to find out which alarms that are primary
and which that may be secondary.

Of course it is possible that the pump motor has stopped for another
reason, at the same time as the tank became empty. Thus, a secondary
fault may always hide a primary one. Still, the alarm analysis method
will be valuable in separating out those alarms that must be primary. In
case one alarm is potentially much more important than another one, it
1s always possible to inform the operator to treat that alarm first, even
though it is presented as secondary.

5.2 Failure Conditions for Flow Functions

Every flow function may or may not be alarmed, i.e., be connected to a
corresponding part of the process, in such a way that a measurement
tells whether the function is currently available or not. However, the
alarm conditions are limited according to the following rules:

o A source is working if the current outflow F is less than the source’s
maximum capacity Fq,:

F < Foqp.

_If this condition is not fulfilled, the alarm locap is true.

o “A transport is vgorking if the current flow F lies within an interval,
specified in the design:

Fij, < F < Fy;.

145

Chapter 5 Alarm Analysis

If the flow F is below F, the alarm loflow is true; if it is above FY;
hiflow is true.

A barrier is working if the current flow F is low enough, (approxi-
mately zero):

F < g.
If this condition is not fulfilled, the alarm leak is true.

A storage is working if the current volume V lies within a specified

interval:
Vlo <V <V,

and the following inequality is fulfilled:
dV
|E —Fi +F0| < €1.

If the volume V is lower than V;,, the alarm lovol is true, if it is
higher than V};, hivol is true. If the expression within bars is less
than —e; the alarm leak is true; if it is larger than £, the alarm fill
is true.

A balance is working if the following inequality is fulfilled:
|F1+ Fo + -+ Fp| < €.

If the expression within bars is less than —&; the alarm leak is true;
if it is larger than &; the alarm fill is true.

A sink is working if the current inflow F' is less than the sink’s
maximum capacity Fqp:

If the condition is not fulfilled, the alarm locap is true.

It is important to observe that an MFM model is normative instead
of descriptive, i.e., it describes how the process is intended to work,
and failures in the process are found by noting differences between the
intended model and the actual state. This guarantees completeness,
i.e., we will catch every failure if the model captures the important
aspects of the process. However, all differences from the intended state
;jaref';treated as failutes, even if there can be other states in‘ which the
process is partly or fully operational. Thus, if several flow functions
violate their conditions, they are failed by definition, even though the
process might still be running in a new state.

5.3 Generation of Alarms

5.3 Generation of Alarms

The method needs a set of measured flow signals as inputs. These inputs
can be obtained in several different ways. They can be direct or filtered
signals from sensors. It would be more probable, though, that they
were the outputs of some low level data filtration on the direct signals,
e.g., outputs from a Kalman filter or from some statistical algorithm, as
already described in Chapter 4.

A model-based validation of the flow values could also be performed
before the values were sent to the algorithm, see Figure 5.2. Of course,
the method described in the previous chapter may be used for measure-
ment validation.

Alarm analysis

Measurement validation

Data filtration

(Process)

Figure 5.2 The architecture of a system using the alarm analysis algorithm.
The incoming data must be treated in several ways before it is turned into
qualitative alarm information. This could involve low level filtration as well
as measurement validation algorithms.

It is also important that the alarm limits be set properly, with respect
to the properties of the supervised signal as well as with the limits of
other alarms. The alarm limits should obviously depend on the specific
properties of the signal in question, such as time derivative and vari-
ance, and several methods have been suggested for taking these into
consideration, some of which allow the limits to vary in time, see for
;,éxéhlple De Mar€é (1980), Lindgren (1985), and Hansson and Nielsen
(1991).

The implemented method uses crisp alarm limits, i.e., there is a
fixed value where each alarm condition is activated. It would be inter-

147

Chapter 5 Alarm Analysis

esting to consider the use of fuzzy limits, but the qualitative nature of
the rest of the algorithm makes this a complicated task. This is clearly
an area that deserves further research, however.

The limits of different alarms also depend on each other. Assume
that both the volume and the outflow of a tank are alarmed. As the
outflow is largely a function of the volume, the limits of the two alarms
should be tuned so that the alarms are activated at approximately the
same time. If they are set otherwise, so that, e.g., the outflow alarm can
be activated while the volume is still inside the limits, the method will
not know that there is anything wrong with the volume, and, thus, it
cannot recognize the flow alarm as a consequence of the fault in volume.

5.4 A Method for Alarm Analysis

Failures can only propagate from flow function to flow function in certain
ways. This is a consequence of the failure conditions described above.
Thus, some primary failures in some types of flow functions may cause
secondary failures in the connected functions, while failures in others
may not. '

ExampLE 5.1

An example of fault causation is given in Figure 5.3, where a source F1
is connected to a transport function F2. This could correspond to, e.g.,
a tank connected to a pump.

(-~

F1 F2

Figure 5.3 A connected source and transport. The source has a maximum
outflow capacity, Fc,p, and the transport has a working interval, Fj, < F; <
Fy;. If the wanted outflow of the source goes over its capacity or if the actual
flow trough the transport leaves the working interval, alarms occur.

The source has an output flow F, which must lie beneath the maximum
capacity, F.,p, of the source. Thus, the following inequality must hold:

= ”;—,,;_; LU
[FS S Fcap. i

If it does not, either because the capacity, F.,, has fallen or because the
output flow Fg has risen, the source will have a locap alarm.

148

5.4 A Method for Alarm Analysis

The transport has a throughput flow F;, which must lie in between a
lower and an upper limit, Fj,, and F';, which are set during the design.
Thus, the following inequalities must hold:

F,, < F; < Fy;.

If they do not, the transport will cause one of two alarms. If F; < Fy,,
the alarm will be loflow; if F; > F};, the alarm will be Aiflow.
Note the normative character of these assumptions. Here, the work-
ing interval of the transport must be decided during the design phase.
Assume further that the output flow of the source is controlled by
the throughput flow of the transport, so that during normal operation:

F s = F ts
and that the working interval of the transport:
Fi, < Fy < Fy,

is small enough so that F,, is always outside it during normal working
conditions. Then the following analysis can be performed:

o If the capacity F.q,, of the source should fall below the desired
outflow, the transport will not get enough flow medium, and its
throughput flow F; will be forced out of and below the working in-
terval. Thus, if the source loses its capacity, the transport cannot
keep its flow within the correct limits. This implies that a locap
alarm of a source will force a loflow alarm in the connected trans-
port function.

e}

If, on the other hand, the current throughput flow of the transport
should become higher than the upper limit of the working interval,
i.e., F; rises above F; because of some fault, this may or may not
lead to the output flow of the source going above the maximum
capacity F.qp Thus, a hiflow alarm of a transport may cause a locap
alarm in a connected source.

o If the current throughput flow of the transport should fall below

“ -7 the lower liniit 6f the working interval, the flow demanded from the
transport will still be below the source’s capacity, and the source
will not be affected. Thus, a loflow alarm of a transport will not
cause any alarm in a connected source.

149

Chapter 5 Alarm Analysis

This analysis can be expressed very simply and crisply in two rules,
where all the quantitative information is suppressed and only the alarm
information used:

1. A source locap alarm will force the connected transport to have a
loflow alarm.

2. A transport hiflow alarm may cause a connected source to have a
locap alarm.

With the use of these two rules for how faults may cause other faults,
and thus, how alarms may cause other alarms, any alarm situation
concerning a source connected to a transport may be analyzed. If either
function is in an alarmed state but the other is not, that alarm is a
primary one. If both functions are in an alarmed state, however, one
of the situations above will apply, and accordingly, it is possible to tell
which of the alarms that must be primary, and which that may be either
primary or a consequence, a secondary alarm.

It is also interesting to note that some alarms will force consequen-
tial alarms to occur, while some may cause them, a fact that can be
used to recognize some situations where the measurements must be at
fault. ~ O

EXAMPLE 5.2

An analysis like the one above can be performed for every combination |

of connected flow functions. Take for example a transport connected to
the input of a storage, as shown in Figure 5.4.

ol

F1 F2

Figure 54 A connected transport and storage. The transport is working
when its flow lies within the interval Fj, < F; < Fj;, and the storage is
working when its volume lies within the interval Vi, < Vs < V3i. Otherwise,
alarms occur.

Here, the working interval of the transport, i.e., the interval within
which the throughput flow F; must lie, is:

= FZOSFtSth

s L S
. ¢

“and the working interval of the storage, the interval within which the
volume V, must lie, is:
Vie £ Vg £ Vi,

150

5.4 A Method for Alarm Analysis

- The design must have the property that a flow value of F; within the
allowed interval will keep the volume V; in its allowed interval. This
has the consequence that if the flow F; should be too low, (less than F},),
the volume V may also be forced out of and below the allowed interval,
while if it should be too high, this could cause the volume to become too
high also. This can be described by two rules:

1. A transport loflow alarm may cause a storage lovol alarm.
2. A transport hiflow alarm may cause a storage hivol alarm.

One more fault causation may be possible in this situation. This con-
cerns the case when the storage is overfull. If the storage is realized
by a balance tank with a finite volume, say, this tank may become com-
pletely filled up. If so, the transport may not be able to keep its flow
value. In that case the following rule should also be added:

3. A storage hivol alarm may cause a transport loflow alarm.

In other cases an overfill will lead to an overflow of the storage, while
the transport is not affected. This would be the case for dn open tank,
where the medium could spill over at the top. Thus, a choice has to be
made as to whether the last rule should belong to the set of analysis
rules or not. o O

In the following, a whole set of rules for analysis of alarm situa-
tions will be presented. They have been arrived at in the same fashion
as shown in the previous examples, and it is important to notice that
they assume more specific properties in the flow functions than given
in MFM. For example, it is assumed that a storage overfill can cause a
loflow in a transport connected at the inlet of the storage, i.e., the third
rule above has been included.

As there are several possible rule sets, a choice has been made. This |
is probably not the final solution to the problem. Instead, several rules
sets could be used, each better fitted for certain types of processes and
situations.

5.5 Assumptions of Flow Function Behavior

In the examples above, the different working conditions gave rise to a
“set of assumptiohs of how the flow functions involved will react when
connected to each other. Such assumptions have been listed below for
all flow functions, where the faults they can cause and the reactions
they have on faults are given:

151

Chapter 5 Alarm Analysis

o A source can send a low flow downstream, and will react with a
locap on a high flow wanted from downstream.

o A transport can send low and high flows downstream and it can
demand low and high flows upstream. It will react with a loflow on
a low flow demanded from downstream and on a low flow provided
from upstream. It will react with a hiflow on a high flow demanded
from downstream and a high flow provided from upstream.

o A barrier can send high flows upstream and downstream and de-
mand high flows upstream and downstream. It will not react to any
demand.

o A storage can send low and high flows downstream and it can de-
mand a low flow upstream. It will react with a lovol on a high
flow demanded from downstream and a low flow provided from up-
stream. It will react with a hivol on a low flow demanded from
downstream and on a high flow provided from upstream.

o A balance can send low and high flows downstream and it can de-
mand low and high flows upstream. It will not react to any demand.
It will pass on demands upstream and downstream.

o A sink can demand a low flow upstream, and it will react with a
locap on a high flow provided from upstream.

Using these assumptions, a small G2 program was written to automati-
cally generate rules for all possible alarm causations, see Larsson (1992
c). In fact, a set of rules was first generated by hand; and when the auto-
matic rule generation program was ready, the previous hand-generated
rules where checked and found to be correct.

5.6 A Rule Set for Possible Secondary Alarms

The examples in Section 5.4 can be extended to all the allowed connec-
tions of flow functions. This will give a set of rules for how an alarm
in one flow function may or will cause consequential alarms in the con-
nected functions. A complete set of rules is as follows:

1. A source locap will force the connected transport to have a loflow.

2. A transport loflow may cause a storage connected at the inlet of the
transport to have a hivol, and a storage connected at the outlet to
have a lovol. It may cause another transport connected in the same

152

5.6 A Rule Set for Possible Secondary Alarms

direction via a balance to have a loflow. If the balance has no other
connections the same alarm will be forced.

3. A transport hiflow may cause a connected source or sink to have a
locap. It may cause a storage connected at the inlet of the transport
to have a lovol, and a storage connected at the outlet to have a
hivol. It may cause a transport connected in the same direction via
a balance to have a hiflow. If the balance has no other connections,
the same alarm will be forced. It may cause another transport
connected in the opposite direction via a balance to have a loflow.

4. A barrier leak may cause a transport connected via a balance to
have a loflow or a hiflow.

5. A storage lovol may cause an outgoing connected transport to have
a loflow.

6. A storage hivol may cause an incoming connected transport to have
a loflow, and it may cause an outgoing connected transport to have

a hiflow.
7. A storage leak may cause the same storage to have a lovol.
8. A storage fill may cause the same storage to have a hivol.

9. A balance leak may cause a connected outgoing trahsport to have a
loflow, and a connected incoming transport to have a hiflow.

10. A balance fill may cause a connected incoming transport to have a
loflow, and a connected outgoing transport to have a hiflow.

11. A sink locap will force the connected transport to have a loflow.

12. An alarm in a network will force a function depending on this net-
work to fail.

5.7 Different Rule Sets for Different Domains

The rule set presented above is one reasonable solution of how to choose
the possible secondary alarms. However, it rests on several assump-
tions about the behavior of flow functions. If these assumptions are
changed, new rule sets are needed. This point may be illustrated by
-sore examples: . -

‘o One possible assumption is that active transports will not be forced
into a hiflow state, even if they are connected via a balance to an-
other transport which has a Aiflow. This corresponds to the case of

153

Chapter 5 Alarm Analysis

two rotor pumps connected with a pipe, and the assumption is that
the first pump cannot force the medium to flow quicker through the
second one. The obvious counter-assumption is to allow one trans-
port Aiflow to cause another further down the line. The latter is the
normal case in the rules above.

o Another assumption is that storages have a limited volume and
are closed, i.e., a storage hivol may cause a loflow in an incoming
transport. If a storage may overflow, this causation will not take
place. The first assumption was used in the rules above.

The solution to these ambiguities is to allow several types of flow func-
tions, e.g., as has been shown above, in the separation of active and
passive transports. Likewise, it would be possible to allow closed and
overflowing storages. However, this may lead to a plethora of almost
similar flow functions and make it more difficult to understand the MFM
models.

Another possibility is to design different rule sets, and use the most
appropriate one for specific processes, equipment, and design tasks. In
this case, the choice of flow function assumptions is made once and for
all in the beginning of the modeling process. This would still leave the
problem of how to mix MFM models from different domains, however.

ExAmMPLE 5.3

In the presented rules there is the implicit assumption that a transport
can be forced to have a hiflow. However, it is often reasonable to assume
that an active transport cannot be forced to such an alarm state. In this
case, three of the rules above only concern passive transports, not active
ones.

3.b A transport Aiflow may cause a passive transport connected via a
balance to have a hiflow.If the balance has no other connections,
the same alarm will be forced.

4.b A barrier leak may cause an outgoing passive transport connected
via a balance to have a hiflow. '

9.b A balance leak may cause a connected incoming transport to have

a hiflow.
10.b A balance fi/l may cause a connected outgoing passive transport to
-7 have a hiflow. ‘ O

154

5.8 Higher Order Rules

5.8 Higher Order Rules

The rule set shown contains only rules involving two or three tightly
connected flow functions. At a first glance, it would seem possible that
there could exist cases where a fault causation either involved more flow
functions, or involved flow functions separated by two or more other
functions.

There are no such cases, however, as can easily be seen from the
fact that the only type of flow function that allows propagation of a
faulty flow value without having an alarm of its own is the balance.
As balances may not be connected to each other, the longest chain of
fault causation is three flow functions long, and there is a balance in
the middle. All other causations involve only pairs of directly connected
flow functions.

5.9 An Alarm Analysis Algorithm

The rules in Section 5.6 can be used for automated alarm analysis.
Given a set of alarms, it is possible to decide which of the alarms that
must be primary ones, and which ones that may be secondary. It is
important to observe, however, that one cannot be certain that a fault
is indeed secondary; there might be multiple faults. Thus, the method
will differentiate between positively primary alarms, and alarms that
may be either primary or secondary.

As soon as a new alarm value is discovered, the corresponding alarm
of the concerned flow function is set to an alarm value, e.g., a transport
loflow, a storage hivol, or a balance fill. Then all rules that can be ap-
plied to the new alarm are tried, in order to see if they match the new
situation. If so, the failure state of one or several flow functions may
change, from normal to primary failed or secondary failed. It should
be noted that the failure state secondary really means primary or sec-
ondary.

The rules will only be applied locally and involve two or three closely
connected flow functions. The only way global information is propagated
s via the connectiohs in the MFM graphs. Thus, the efﬁciepcy is pro-

portional to the length of the networks and the depth of the abstraction
hierarchies. For any reasonable MFM model, this will make the algo-
rithm very fast. Furthermore, the rules can be applied in any order

155

Chapter 5 Alarm Analysis

~and in a “real-time” fashion. The implementation is actually done as a
real-time algorithm, acting as soon as new values drop in.

5.10 Unknown Alarm States

When some alarm states are unknown, the flow networks can be used
to guess the missing values. This method will be called consequence
propagation. The idea is simple. Given a set of known, (primary and
secondary), alarms and a set of unknown alarm states, the unknown
values are filled in with secondary alarms according to a set of rules.

The rules used for this are very similar to the ones used for alarm
analysis. An example is shown in Figure 5.5.

OS>

F1 F2

Figure 5.5 A connected source and transport. If the source has a locap while
the alarm state of the transport is not measured, it is still possible to know
that its alarm state is loflow. Further, if the alarm state of the source is not
measured, while the transport has a hiflow, it is reasonable to guess that the
source has a locap alarm.

Here we, once again, have a source connected to a transport. Assume
that the alarm state of the source is known, while the alarm state of
the transport function is not measured. If the source is working, i.e., is
In a normal state, there is no way of knowing whether the transport is
working or not. Unless any other information is available, a reasonable
guess here is to assume that the transport is actually working.

If the source would have a locap alarm, the transport would not be
able to move enough of the medium, and the only reasonable guess is to
assume that it would have had a loflow alarm.

Likewise, if the transport’s alarm state is known, while the source’s
1s not measured, the situation is as follows. A normal state or a loflow
alarm is no reason to believe other than that the source is working. A

“hiflow, on the other-hand, may or may not force the output ‘ﬂow of the
“source above its maximum capacity. In this situation, the source may
have a locap alarm.

Thus, two consequence propagation rules may be formulated:

156

5.10 Unknown Alarm States

o If there is a source locap alarm, then guess a loflow alarm in a
connected transport.

o If there is a transport hiflow alarm, then guess a locap alarm in a
connected source.

As can be seen, these rules exactly correspond to the alarm analysis
rules. Every alarm analysis rule can be converted to a guessing rule, to
be used in case the flow function in question is not given an alarm state
from measurements.

The guesses can have two different degrees of certainty. In the
case of a source locap, we know that, assuming a correct design of the
working intervals, the connected transport must have a loflow. On the
other hand, a hiflow in a transport may cause a locap in the connected
source, but this is not necessary, as the actual flow may or may not rise
enough as to go over the source’s capacity.

However, both types of guesses are equally useful for the alarm
analysis. The result of the algorithm is a separation of the alarms into
two subsets, one containing alarms which are known to be primary, and
one with alarms that are either primary or secondary. This interpreta-
tion of the results allows for uncertain guesses.

s

F1 F2

Figure 5.6 A connected transport and storage. The guessed alarm state of
F1 is loflow, and the known alarm state of F2 is lovol. The alarm of F2 may
thus be consequential, i.e., it is either primary or secondary. If the guess is
wrong, the alarm state would be known to be primary. However, the first case
covers the second one. Thus, an erroneous guess may mean loss in diagnostic
resolution, but will never give a faulty result.

Assume that the alarm state of the transport F1 in Figure 5.6 is not
measured, and that the storage F2 has a lovol alarm. An guess is made
that ¥1 has a loflow alarm. The algorithm uses the guess and decides
that the lovol of the storage may be caused by the guessed loflow of the
transport. The conclusion is that the storage’s lovol is either primary
“or-gecondary. If F1had been known to be working, i.e., the guess was
wrong, the conclusion would have been that the lovol alarm was primary.

Thus, an erroneous guess by the consequence propagation results
in a loss of discrimination; a primary alarm will be presented as either

157

Chapter 5 Alarm Analysis

primary or secondary. It is important to notice, however, that the inter-
pretation of the result is still correct. The primary case is covered by
the primary or secondary case. Thus, the consequence propagation will
never give rise to an erroneous result.

Here it was also shown how the consequence propagation mixes with
the alarm analysis. As soon as a new alarm value has been guessed, it
can be utilized in the alarm analysis. The two methods interleaves in
a local, real-time fashion, to form a single algorithm. Thus, unknown
alarm states may also be treated.

5.11 Conflict Resolution

There are cases where conflicting guesses are possible. Consider the
situation shown in Figure 5.7.

F1 F2 F3

Figure 5.7 A storage connected to two transports. If the alarm state of the
storage is not measured, while both transports receive loflow alarms, the order
of the alarms will determine which of them that will be considered primary.
This can be solved by a conflict resolution mechanism, however, which recog-
nizes the case and sets both transport alarms to secondary failed.

Assume that the alarm state of the storage F2 is not measured, while
those of the transports F1 and F3 are. Further assume that first F1 and
then F3 has loflow alarms. The guess for the alarm state of F2 would
be a lovol, and the alarm of ¥3 could be a consequence of this.

If, however, the loflow of F3 came before that of F1, the guess would
be a hivol for F2, and now the alarm of F3 would be considered primary
instead. Thus, there are cases where the order of the alarms would give
rise to different results.

This situation can be remedied with a conflict resolution strategy,
which is quite simple; it gives preference for as many secondary alarms
as possible. For example, in the case above, the first alternative inter-
‘pretation of the situation should be preferred. This conﬁlct resolution
will give rise to some further diminishing of the dlagnostlc resolution

and more complexity in the rules, but the resulting interpretation will
always be correct.

158

5.11 Conflict Resolution

At a glance, there may seem to be several possibilities for conflicts.
There are, however, only two types of cases, concerning storages and
passive transports. This follows from the fact that, for a conflict to be
possible, there must be multiple and different alarm causations for the
same flow function. Storages may be caused to have both lovol and
hivol alarms, and passive transports may be caused to have loflow and
hiflow alarms, but no other type of flow function may be caused to have
more than one type of alarm. Thus, there are possibilities of conflict
in transport-storage-transport connections, as well as around passive
transports, but nowhere else. These cases can be recognized and treated
with special rules.

It is an open question whether this conflict resolution should be
used or not. Sometimes it may be good to use timing information and
the order of incoming alarms in the diagnosis. A reasonable solution
would probably be to allow conflict resolution only if the alarms appeared
within a small time interval, but not otherwise.w

5.12 Measurement Faults

Sensor faults are common sources of false or uncorrect alarms. In such
cases the state of the process will not be correctly shown in the alarm
presentation, and situations where this occur can be very dangerous.
The method described is not aimed at discovering uncorrect alarms.
Instead it is sensitive to false alarms and largely dependent on correct
sensor values. However, some cases can be detected as situations where
the alarm state contains a sensor fault. This is true when one alarm
will force another. If the latter alarm is not active, something is wrong
with the measurements leading to one, (or more), of the alarm states.

(-~

R F2

Figure 5.8 A connected source and transport. If the source has a locap, the
transport must have a loflow. If this is not the case, something is wrong with
_the measurements.

s ¥

T

{’If, for example, a source and a transport is connected, as shown in Figure
5.8, and the source has a locap alarm, the transport must have a loflow
alarm. Should this not be the case, then either of the flow functions

159

Chapter 5 Alarm Analysis

18 in an incorrect alarm state, and the algorithm can issue a warning
about this. However, it can give no answer as to which alarm that may
be incorrect, and a more thorough measurement validation will have to ;
be performed with other methods, see for example Chapter 4. |

5.13 Using the Results

The result from applying the described method is that alarms will be
marked as either primary or primary/secondary. An operator or algo-
rithm can then use this information in the task of finding the primary
faults in a fault situation.

An obvious strategy for the user is to first check the faults known
to be primary. When these have been remedied, most of the secondary
faults will also be gone, while some may instead have become primary.
These should then be taken care of.)

It is possible, however, to use other knowledge to guide the search
through the alarms. If failure likelihoods are known or can be guessed,
they can be used for ordering the actions of the operator. Likewise,
if one alarm is more important or dangerous than ancther, it may be
investigated first, although it is secondary and other primary alarms
remain. This knowledge is heuristic in its nature, and should be clearly
separated from the results of the alarm analysis. It may be implemented
using a standard rule base to discriminate between different situations
and giving advice on which actions to take first.

Water Pump Supply tank Pump Reactor Pump Sink

loflow lovol loflow lovol loflow

Figure 5.9 An MFM model of the main water flow through a nuclear reactor.
The water is pumped from a source to a supply tank, and from there on
through the reactor tank itself, and further on to a sink. In the situation
shown, all pumps have loflow alarms, and both the supply and reactor tanks
have lovol alarms. The alarm analysis recognizes that the first pump must
have a primary fault, while the others may be consequences of this. However,
the lovol of the reactor tank is by far the most dangerous alarm, and this may
. be treated first by the operator, by activating a reserve filling system.‘

An MFM model of the main moderating and cooling water flow through
a nuclear reactor is shown in Figure 5.9. In the current situation all

160

5.13 Using the Results

pumps have loflow alarms and both the supply tank and the reactor
itself have lovol alarms. The alarm analysis algorithm singles out the
first pump as the only primary fault, while all the other alarms may
be consequences of this. The normal operating procedure could now be
for the operators to investigate and fix the pump fault, and then see
whether any other alarms remain.

In this example, however, the low volume of water in the reactor
may be a much more dangerous fault than the others, and the operators
may use this knowledge to first investigate the condition of the reac-
tor, checking whether there are any leaks or other problems, and using
separate water systems to remedy the situation in the reactor, before
taking care of the other alarms.

5.14 Implementation

The algorithm is implemented with two rule groups. One is concerned
with the alarm analysis and consists of 39 rules, the other takes care of
the consequence propagation including conflict resolution and consists
of 25 rules. These rule bases use a database of connected flow functions
to yield an incremental and local algorithm, i.e., the alarm states of the
flow functions are updated as soon as new values are available, and
only local information about neighboring functions is needed. Further
information about the G2 implementation is given in Chapter 7.

The algorithm works by updating a set of attributes, see Table 5.1.

alarm state locap, loflow, hiflow, lovol, hivol, leak, or fill
failure state normal, primary failed, or secondary failed
alarmed true or false

Table 5.1 The alarm analysis attributes of a flow function. The alarm
state is set by external measurements or guessing, and the algorithm sets
the failure state with the help of the causation rules. The alarmed attribute
tells whether the flow function is question is connected to an alarm, or if its
alarm state must be guessed by the flow propagation algorithm.

The local and incremental nature of the algorithm makes it very effi-
cient. The updating starts at the points of data entry and follows static
links though theMFM model. Thus, the effort is at worst linear in
model complexity, i.e., how many objects the model consists of. In the
normal case, however, only smaller parts of the model is traversed, and
the algorithm is even more efficient.

161

Chapter 5 Alarm Analysis

5.15 Examples of How the Method Works

Let us now demonstrate the method on an example. Once again the
small tanks process will be used, see Figure 5.10.

Figure 5.10 The tanks process. Water is pumped from a storage tank, to a

cylindrical tank, from where it flows down into another tank, and then back
to the storage again.

-

The MFM model of this process is shown in Figure 5.11.

G1 ? Correct level in tanks

Water flow

Oé.é.%ﬂ'

F1 T R F3

Keep pump running

Energy supply

Figure 5.11 An MFM model of the tanks process. The main goal is to keep
the level of the upper tank correct, and it is achieved by a water flow. In order

for the transport function F2 to be available, i.e., to keep the pump running,
energy must be supplied.

ExAMPLE 5.4

Assume that the functions F1, F2, F3, and F5 have measurements
‘connected to their alarm states, while F4 and Fé have not. Further
assume that F1 has a locap, F2 a loflow, ¥3 a lovol, and F5 a lovol
alarm. This alarm situation is shown in Figure 5.12. The shading of

162

5.15 Examples of How the Method Works

‘the flow function symbols is used to indicate the failure state, (a dark
shade means a primary alarm, a lighter shade a primary or secondary,
and white a normal or unalarmed state).

Figure 5.12 An alarm analysis situation. The functions ¥1, F2, F3, and
F5 have locap, loflow, and lovol alarms. The alarms of F4 and Fé6 have been
guessed. In this situation, the locap of F1 is the only primary alarm.

This would correspond to the plethora of alarms that could appear in,
say, a complicated fault situation in a larger plant, although this situa-
tion is, of course, far simpler.

An application of the presented method will result in that the locap
of F1 must be a primary alarm, while the loflow of F2 and the lovol of F3
may be secondary. The consequence propagation.implies that ¥4 and Fé
might have had loflow alarms, had they been measured. Thus, assuming
that F4 has a loflow alarm, the alarm analysis can also conclude that
the lovol of F5 may be a secondary alarm. The result is that the locap of
F1 is the only primary alarm, while all the others may be consequences
of it. F1 is the source function of the storage tank, and the sole cause

of the fault situation could thus be that there is too little water in that
tank. O

locap loflow lovol _ lovol

Figure 5.13 Another alarm analysis situation. Here the loflow of F2 must
be primary, as there is an alarm in the achieving network, (the loflow of F9).

EXAMPLE 5.5 . o

If the function F9, (transport of electrical energy to the pump motor),
was to have an alarm also, the last rule in the rule set, (the rule con-
cerning causation via the achieve and condition relations), would imply

163

Chapter 5 Alarm Analysis

that F2, (the pump), also had had a primary fault, i.e., there would
now be at least two primary faults: no power supply for the pump and
too little water in the storage tank, see Figure 5.13. O

F1 F2

Figure 5.14 A third alarm analysis situation. Here there are three primary
alarms. The situation is highly dynamic.

EXAMPLE 5.6

If instead F3 had a hivol alarm, the algorithm would conclude that there
were three primary alarms, the locap of ¥1, the hivol of F3, and the
lovol of ¥5, see Figure 5.14. This would correspond to a dynamic process
state, where the pump flow and the volumes of the lower and storage
tanks were too low, while the volume of the upper tank was too high. O

5.16 A Comparison with MIDAS

The MIDAS system of Kramer et al, see Finch (1989) and Oyeleye
(1989), analyzes measurements to find deviations from a nominal steady
state. All measurements are turned into alarms, which are grouped in
clusters, each connected to one primary fault, or root cause. MIDAS uses
several types of models, where each type is translated into the next one
more or less automatically. An event interpreter uses the final repre-
sentation to construct an on-line graph of the actual alarm events, their
links, and root causes. Thus, the alarms are analyzed and, if possible,
connected. The root causes in the on-line graph represent the actual
faults. :

MIDAS has similarities with the alarm analysis algorithm pre-
sented here. There are several important differences, however, and the
main ones are:

o MIDAS allows equations of any form to be the basis of the sys-
T tem representation, i.e., the Signed Directed Graphs, while MFM
imposes a strong structure, allowing flow balance equations only.
-7 This means that MIDAS gives a lot of freedom, but that it is quite
complicated to handle the equations with satisfactory results. The
corresponding MFM algorithms may be much simpler and more ef-
ficient, as they have a simpler problem to solve.

164

5.16 A Comparison with MIDAS

o MIDAS has a memory of events, while the MFM alarm analysis
algorithm, (like the DMP system of Petti), only shows a snapshot of
the current situation, and updates its outputs whenever new events
occur.

o MIDAS demands a large computational effort, both in model trans-
formation and during runtime, while the MFM algorithms are very
efficient.

5.17 Conclusions

This chapter describes a method that can distinguish positively primary
alarms from those that may or may not be primary. An important aspect
of the method is that it will not make any guesses as to which interpre-
tation is the most likely; instead the resulting separation of alarms is
guaranteed to be correct if the modeling assumptions and measurements
are valid. ’

The algorithm has been implemented and tested on the same two
G2 simulations as the measurement validation: the small laboratory
process and Steritherm. It could successfully distinguish between pri-
mary and secondary alarms in all test situations.

The method works under rather general conditions; there should
be an MFM model of the process, this model should capture the impor-
tant aspects of the process, and there should be no faults in the alarm
measurements. Under these conditions the method provides a simple
solution to the problem of alarm analysis.

Y

165

CHAPTER 6

FAULT DIAGNOSIS

Expert systems have been used with good results in fault diagnosis.
However, a large rule database is not easy neither to build, maintain,
nor document. Furthermore, a standard rule-based system can only
diagnose faults that were considered during the design of the knowledge
database. This chapter presents a method for fault diagnosis that uses
MFM models instead of specially designed rule bases. This allows the
knowledge database to be built, updated, and documented in the MFM
graphical language, and internal consistency is also guaranteed. In
addition, the normative nature of MFM enables the system to detect
any fault that is a deviation from the working state of the process.

6.1 Introduction

The classical use of knowledge-based systems in process control is to
aid the process operator in diagnosing faults. This is usually done by a
rule-based expert system, running the rules in backward chaining. The
techniques are well-known, a good example being MYCIN, see Shortliffe
(1976).

The development of an expert system for fault diagnosis comprises
several phases, each demanding a large effort:

o An initial phase consisting of problem definition and the search for
knowledge sources, i.e., written information and, most important,
the right experts.

o A knowledge acquisition phase, where the available information is
retrieved and structured so that it can be used for the implementa-
tion of a rule base.

©o .Animplementation and testing phase, where the knowledge is writ-
~~ “ten in rule form and the resulting system is tested. ‘

(o]

A validation phase, where the system is further tested and evalu-
ated, to see whether it meets all desired specifications.

166

6.1 Introduction

These phases are all quite demanding in effort, and for each new project
they must be performed once more, i.e., each process and task needs a
new rule base, and therefore new knowledge acquisition and implemen-
tation.

6.2 An Example of a Rule-Based Expert System

A small example of a target process for fault diagnosis is the tanks
process, which is shown in Figure 6.1.

2o
- L]
-
.E;z
- .
: éé
: .
:
: o
:
:
:
:
:
:
L4
: e

Figure 6.1 The tanks process. Water is pumped from a storage tank, to a
cylindrical tank, from where it flows down into another tank, and then back
to the storage again.

A small rule base for fault diagnosis using backward chaining is shown
in Figure 6.2—4. The rules are written in the format used by the small
expert system shell MESS, Larsson (1988). This shell is written in
the Lisp dialect Scheme and allows for simple pattern matching, and
forward and backward chaining.

The goal satisfaction rules, see Figure 6.2, simply define the rela-
tions between the goals and the supporting functions, i.e., the achieve
relations. It should be observed that one rule is needed for each goal,
and that every flow function in a supporting network must be mentioned
in the premisses.

(rule goal-1
(if
(F1 is working)
= (F2 is working)
‘- (F3 is working) \
(F5 is working))
(then
(Gl is satisfied)))

167

Chapter 6 Fault Diagnosis

(rule goal-2
(if
(F8 is working)
(F9 is working))
(then
(G2 is satisfied)))

Figure 6.2 Rules for goal satisfaction. These rules correspond to the achieve
relations of MFM, and are used to guide the backward chaining search down-
wards from goals to flow functions. Note that goals and functions have the
same names as in the MFM examples.

The rules of Figure 6.3 are responsible for going through the single flow
functions of the water flow network and finding out their fault status.

They also contain the remedies needed for fixing them, should these
functions be at fault.

(rule waterflow-1l-a .
(if .
(* there is water in the storage tank))
(then
(F1 is working)))

(rule waterflow-1-b

(if
(not (there is water in the storage tank)))

(then
(action (fill water in the storage tank))
(remove (not (there is water in the storage tank)))
(there is water in the storage tank)
(F1 is working)))

(rule waterflow-2-a
(if
(* the pump is pumping water))
(then
(F2 is working)))

(rule waterflow-2-b
(if
(not (the pump is pumping water))
(G2 is satisfied))
(then
= (remove (nof (the pump is pumping water)))
(the pump is pumping water) !
(F2 is working)))

(rule waterflow-3-a

168

6.2 An Example of a Rule-Based Expert System

(if

(* the upper tank water level is correct))
(then

(F3 is working)))

(rule waterflow-3-b

(if
(not (the upper tank water level is correct)))

{then
(remove (not (the upper tank water level is correct)))
(the upper level is fixed by other actions)
(the upper tank water level is correct)
(F3 is working)))

(rule waterflow-4-a
(if
(* the lower tank water level is correct))
(then
(F5 is working)))

(rule waterflow-4-b .
(if ,
(not (the lower tank water level is correct)))
(then

(remove (not (the lower tank water level is correct)))
(the lower level is fixed by other actions)

(the lower tank water level is correct)

(F5 is working)))

Figure 6.3 Rules for diagnosing the water flow. These rules take care of
diagnosing each flow function, by asking questions, suggesting remedies, and
concluding that the flow function in question is working. Two rules are needed
for every flow function; one for the working case and one for the corrective
action case.

In a like manner, the rules of Figure 6.4 go through the flow functions
of the power support network for the pump, finding faults and giving
remedies.

(rule power-support-1l-a
(if
(* power is supplied))
(then
(F8 is working)))

_#(rule power-support-1-b
Y0 (if o »
(not (power is supplied)))
(then
(action (power must be supplied))

169

Chapter 6 Fault Diagnosis

(remove (not (power is supplied)))
(power is supplied)
(F8 is working)))

(rule power-support-2-a
(if
(* the power switch is on))
(then
(F9 is working)))

(rule power-support-2-b

(if
(not (the power switch is on)))

(then
(action (switch on the power))
(remove (not (the power switch is on)))
(the power switch is on)
(F9 is working)))

Figure 6.4 Rules for diagnosing the electrical energy flow. These rules di-
agnoses each flow function in turn, and once again two rules are needed for
each function.

The rules can be used to perform a simple fault diagnosis, by asking
questions about the state of the equipment and issuing remedies for
how to fix the possible faults. The backward chaining tries to prove the
hypothesis “G1 is satisfied” and moves down viarule goal-1, goes
through the water flow rules, and via the rule goal-2 further down into
the electrical energy flow rules. An example run is found in Figure 6.5.

> (diagnose)
Is it true that there is water in the storage tank? (y/n)
n
PERFORM: fill water in the storage tank
Deduction/advice: there is water in the storage tank
Deduction/advice: £l is working
Is it true that the pump is pumping water? (y/n)
n
Is it true that power is supplied? (y/n)
y
Deduction/advice: f£8 is working
Is it true that the power switch is on? (y/n)
n
~ PERFORM: switch on the power
:_n§peduction/adﬁic%: the power switch is on
" Deduction/advice: £9 is working
Deduction/advice: g2 is satisfied
Deduction/advice: the pump is pumping water
Deduction/advice: £2 is working

170

6.2 An Example of a Rule-Based Expert System

Is it true that the upper tank water level is correct? (y/n)
n

Deduction/advice: the upper level is fixed by other actions
Deduction/advice: the upper tank water level is correct
Deduction/advice: f£3 is working

Is it true that the lower tank water level is correct? (y/n)
n

Deduction/advice: the lower level is fixed by other actions
Deduction/advice: the lower tank water level is correct
Deduction/advice: £5 is working

Deduction/advice: gl is satisfied

ok

Figure 6.5 A fault diagnosis session. The expert system shell MESS uses the
rules presented above to perform the diagnosis. The search starts from the
top level goal and moves down via the water flow rules and into the electrical
energy flow rules. PERFORM means that an action should be taken, while
Deduction/advice is a more general comment or advice.

In the session shown in Figure 6.5 several faults are found. The system
goes through the different parts of the process, discovers the faults, and
offers remedies. As the pump is not working, the diagnosis must be
taken down into the pump power support system.

6.3 Problems with Rule-Based Expert Systems

The example above was included to show how a standard, rule-based
expert system would be used for fault diagnosis. The techniques of
building and using such systems are now more or less mature. They
have, however, several shortcomings, some of which MFM can be used
to remedy:

o Each rule base is specific for a certain process and task. Thus, é
new system must be designed, built, and validated each time fault
diagnosis is needed for a new process.

o Arule base may contain inconsistencies, and a large rule base most
probably will do so. It is very difficult to guarantee consistency
between the rules in an automatic fashion.

> _A large rule base is difficult to overview, both in building and up-
e dating. a

[e]

A rule-based system can only diagnose the faults anticipated in the
design of the rule base.

171

Chapter 6 Fault Diagnosis

‘These shortcomings can be solved to a large degree by using MFM. The
whole process of design, construction, and updating of the knowledge
database becomes much more efficient, as the MFM models are easy to
present graphically, and thus quicker to build and change. The other
definite advantage of MFM is that consistency within the model is guar-
anteed. The graphical syntax makes inconsistencies in the database
impossible. In addition, MFM can find any deviation from the working
state.

Thus, MFM gives the following advantages over a standard rule-
based system:

o Kach task can be handled by a general rule base, using an MFM
model as data. Thus, the same generic rules may be used for many
different target processes.

o The graphical syntax of MFM guarantees internal consistency of
the database; only correct couplings can be made. Of course, the
modeling can differ from reality, and thus cause faults is the diag-
nosis, but there cannot be any conflicting rules in the constructed
model.

o The MFM model can be presented graphically to the designers and
users. Thus, the problem of orientation in a maze of rules in a large
rule base is avoided.

o Any fault that means a deviation from the working state can be
discovered by the MFM algorithm.

6.4 The MFM Data Structure for Fault Diagnosis

In MFM the means-end dependencies are explicitly represented,; so when
a certain control goal fails, i.e., a fault occurs, the model will provide
information on which functions that may be in error, and thus, in which
component sub-systems the reasons for the failure can be found.

The working conditions for flow functions used in the fault diagnosis
algorithm are the same as used in the alarm analysis, see Chapter 5.
Thus, each flow function might be in a normal, (or working), state, or
hayve a fault, more orrless directly corresponding to a locap, loﬂow hiflow,
flovol hivol, leak, or fill.

The fault diagnosis algorithm must have a way of finding out the
failure states of the physical components corresponding to the different

1792

6.4 The MFM Data Structure for Fault Diagnosis

flow functions. Thus, each flow function may have a question to be
asked, or a check or test to be performed, in order to investigate the
failure state of the function.

Each flow function can also have a remedy of the fault, in the form

of a text string to be output by the algorithm.

Gl ? Correct level in tanks

Water flow

(DO A IO

F1 T F2 F3

G2 ? Keep pump running

Energy supply

s

Figure 6.6 An MFM model of the tanks process. The main goal is to keep
the level of the upper tank correct, and it is achieved by a water flow. In order
for the transport function F2 to be available, i.e., to keep the pump runmng,
energy must be supplied.

In Figure 6.6 we once again see the MFM model of the tanks process.
In order to enable a fault diagnosis, the different flow functions should
be assigned questions:

o

f g

The source F1 could have the question “Is there enough water
in the storage tank?” associated to it, together with the rem-
edy “Fill water in the storage tank.”

The transport F2 could have the question “Is the pump trans-
porting water?” but no remedy, as the pump has a supporting
system enabling it to run. The remedies would probably be taken
care of down in that system.

The storage F'3 could have the question “Is the water level of
the upper tank correct?”, but it could also have a special rule
associated to it. This rule could be activated by the algorithm and
use an external measurement to set the failure state of the flow

o ,functlon The remedy could be “The water level of the up-

‘per tank will be corrected by other actions.? This im-
plies that once the pump and controller is working, the level will
soon be regulated to its desired value.

173

Chapter 6 Fault Diagnosis

The rest of the flow functions in the water network could have sim-
ilar questions and remedies. It is also possible, however, that some
of the flow functions had no questions or remedies. These would
simply be skipped by the algorithm.

The source F8 in the electrical energy network could have the ques-
tion “Is power available?”

The transport F9 could have the question “Is the power switch
on?” and the remedy “Switch on the power.”

These are the data necessary for the fault diagnosis algorithm to work;
to give it information from the outer world, either by asking questions
to the operator of the process, or by activating rules, which in turn

can

cause measurements to be made or demon processes, (data event

activated processes), to be executed. The final result of the activation
should be that the failure state of the flow function concerned is set
correctly.

6.5 The Search Strategy

An MFM model consists of information about the goals of a process, how
these goals are achieved by networks of functions, how the functions
depend on subgoals, and how they are realized by physical components.
In a standard rule-based expert system, this information structure is
implemented in rules, but in MFM it is explicitly described. Thus, a
fault diagnosis can be easily implemented, as a search in the model
graph. The strategy used for this search is as follows.

The fault diagnosis algorithm traverses the MFM graph, and when

it comes to single flow functions it uses the questions or rules to find
the failure state of those flow functions. Depending on the answers to
the diagnostic questions, parts of the MFM model may not have to be
traversed. The algorithm is combined with the alarm analysis and con-
sequence propagation, which is performed incrementally as information
comes in, and interleaves with the fault diagnosis algorithm. The simple
rule for successful matching of diagnosis and consequence propagation,

(i.e.,

guessing of consequences), is that every flow function should have

ezther a dlagnostlc questlon or be subject to guessing.
- ““The specifics of the diagnostic search are as follows: ;

o}

174

The user chooses a goal for diagnosis. If this is a top-level goal,
the whole model, (and thus the whole process), will be investigated.

6.5 The Search Strategy

However, the goal chosen can also be a subgoal, in which case only
part of the process will be diagnosed.

o The search propagates downwards from the goal, via achieve rela-
tions, into the connected network of flow functions, each of which is
now investigated.

o Each flow function may have a diagnostic question, which is asked
in order to find out whether the corresponding physical component
1s currently realizing the function, i.e., whether the function is avail-
able or not. Alternatively, there can be a rule or relation to a physi-
cal component, whereby information about the working order of the
function may be found.

o The appropriate alarm state of the flow function is set, and the
alarm analysis and consequence propagation algorithms are acti-
vated.

o If a flow function conditioned by a subgoal is found to be at fault, or
has no means of being checked, the connected subgoal is recursively
investigated. If, however, a function is working, that part of the
subtree is skipped.

The fault diagnosis method can be implemented quite easily, with a
group of generic rules, which yields an incremental and local algorithm.
It should be noted that the search propagates along static connections.
Thus neither global search, pattern matching, nor conflict resolution is
needed, and the algorithm is quite efficient.

6.6 Implementation

The diagnostic search is implemented with 12 rules and 7 procedures,
and uses the MFM model as database. The algorithm works by updating
a set of attributes, see Table 6.1.

diagnose true or false

ask true or false

question a text string

explain true or false

L explanation a text string
T fault state locap, loflow, hiflow, lovol, hivol, leak, or fill,

Table 6.1 The flow function attributes used by the fault diagnosis algorithm.
The diagnose attribute is set to true by a downwards search along condition

175

Chapter 6 Fault Diagnosis

and achieve relations and is used to tell which parts of the MFM model that
should be investigated. The ask attribute tells whether there exists a diag-
nostic question for the concerned flow function, and question contains that
question string itself. Likewise, the explain attribute tells whether there ex-
ists an explanation or remedy, and explanation contains that explanation or
remedy. The fault state is used to track the fault condition of the flow functions
during the search.

The local and incremental nature of the algorithm makes the method
more efficient than a rule-based expert system. The search starts at the
goals selected for diagnosis by the user, and follows static links though
the MFM model, as a standard depth-first search. When subtrees are
skipped, which happens when a conditioned flow function is known to
be working, the search uses the geographical placement of the objects
on the screen to select the next goal or function to be investigated. This
makes the effort linear in model complexity, except during skip opera-
tions. In the normal case, a large part of the time is spent in the quick,
linear search, and the algorithm is quite efficierit.

The method uses the the same alarm state variables as the alarm
analysis algorithm. As the latter is activated whenever an alarm state
changes, the two algorithms interleaves without any additional commu-
nication needed. The fault diagnosis traverses the MFM graph and sets
the alarm states according to the questions and test results, and as soon
as new information is available, the failure states are updated by the
alarm analysis and consequence propagation algorithms. Thus a picture
of the fault causation develops during the diagnostic search.

The method of this chapter has been described as an off-line algo-
rithm, using queries to the operator of the process. Apart from that,
however, there is nothing in the algorithm that demands execution off-
line. In fact, if all queries can be settled by automatic tests instead
of questions, the method works fine on-line. In this case, the top-down
search makes the algorithm be as efficient as possible, testing only faulty
parts of the MFM model.

6.7 Examples of how the Method Works

Letfus now demoﬁsigrate the method on a small example. Ohce again,
the tanks process, see Figure 6.1, will be used. An MFM model of the

process is shown in Figure 6.6.

176

6.7 Examples of how the Method Works

OO

G2 . Keep pump running

Energy supply

Figure 6.7 The diagnostic search has started from the goal G1, followed the
achieve relation down into the water flow network, and reached the source
Fl.

ExamprLE 6.1
Assume that the level of the upper tank is not correct, i.e., the goal G1
is violated, and that the user asks for a diagnosis of that goal. The
algorithm starts at the goal 61, i.e., the topmost goal, and moves down
into the network describing the mass, (water), flow and checks the flow
functions in turn.

The source F1 describes the source function of the storage tank, and
is the first flow function to be reached by the search algorithm. The cur-
rent position is marked in the graphic representation of the MFM model,

see Figure 6.7. The source F1 has the following question associated to
it:

Q: Is there water in the storage?

The user checks this and discovers that there is almost no water left
in the storage tank. Thus he gives the answer ‘no’ and F1 is marked
with a locap. The alarm analysis is activated but can draw no further
conclusions, see Figure 6.8.

Gt ? Correct level in tanks

Figure 6.8 The diagnostic search has concluded that the source F1 is faulty.
Then it has moved on to reach the transport F2.

177

Chapter 6 Fault Diagnosis

'The algorithm now moves on to F2 and asks the following question:
Q: Is the pump running?

Once again, the answer is ‘no’ and F2 is marked with a loflow alarm.
The alarm analysis is activated and deduces that the locap of F1 must
be a primary fault, while the loflow of F2 may be caused by the fault of
F1, see Figure 6.9.

Gl ? Correct level in tanks

Figure 6.9 The diagnostic search has concluded that the transport F2 was
at fault, and the alarm analysis signals that the fault of F1 is primary, while
the fault of F2 may be secondary. Then the search has reached the storage
F3.

The storage function F3 corresponds to the upper tank. It could have
a question associated to it, that asked whether the volume of that tank
was within the correct limits. Assume, however, that it is connected
to a level alarm sensor. It will automatically be assigned a lovol alarm.
Before the diagnosis has started, this alarm was considered primary, but
once the loflow of F2 has been established, the alarm analysis algorithm
decides that it may be a consequential fault.

Gl ? Correct level in tanks

Water flow

G2 . Keep pump running

Energy supply

FIO

Figure 6.10 The diagnostic search has finished its investigation of the water
“flow network, and the alarm analysis concludes that there is one primary
fault, three secondary, and two guessed faults, at F4 and Fé. As the transport
F2 was at fault and there is a condition relation, the search has continued
down to the energy supply network and has reached the source ¥8.

178

6.7 Examples of how the Method Works

The transport function F4 corresponds to the gravitationally caused out-
flow from the upper tank. It has no alarm and no question, so here the
consequence propagation will be used to guess the alarm state, which
will be a loflow.

The storage F5 corresponds to the lower tank, and is also connected
to an alarm sensor. Under the reasonable assumption that the level of
this tank is too low, it is automatically marked with a lovol, and the
algorithm can now use the guessed loflow of F4 to decide that the lovol
of ¥5 also is a consequential fault.

The flow functions F6 and F7 are neither alarmed or have questions;
thus the algorithm would guess that F6 ha a loflow alarm, while F7 is
in a normal state. All this can be seen in Figure 6.10.

As there was a fault in F2, the algorithm now goes down in the
subtree below it, and starts diagnosing the goal G2. It moves further
down, finds the source F8, see Figure 6.10, and asks the question that
belongs to it:

rs

Q: Is power supplied?

The user checks that the power line is connected to the wall, and that
other equipment seems to have electrical power; then he gives ‘yes’ as
the answer.

G1 ? Correct level in tanks
ater 110!

Figure 6.11 The diagnostic search has concluded that the source F8 is work-
ing and reached the transport F9.

When the algorithm comes to the transport F9, see Figure 6.11, which

corresponds to the power switch of the pump, it asks the following ques-
tion:

it v

fQ Is the powér switch on? '

The user discovers that the power switch is in the ‘off’ position and
answers ‘no’ to this question. The transport function F9 is marked with

179

Chapter 6 Fault Diagnosis

~a loflow alarm. The alarm analysis now deduces that the fault of
F2 was indeed primary, as there is a fault in its support system. The
total fault situation is thus that there are two independent causes of the
level being to low; there is not enough water in the storage tank, and
the pump power switch is not on, see Figure 6.12.

Gl ? Correct level in tanks

Water ﬂo\j

Figure 6.12 The state after the fault diagnosis. As the transport F9 is at
fault, the fault in F2 is also a known primary fault. The user may now ask
for explanations and remedies, and the algorithm will search through the
graph and output the appropriate text strings from the failed flow functions.

This system state will probably not last very long, however, as the water
presently in the two cylindrical tanks will flow down into the storage
tank and fill it up, thus making the source function F1 available again.

The implemented system also allows the flow functions to have ex-
planations and remedies associated with them, and these can now be
asked for. In the example, the algorithm would go through the differ-
ent primary faults. When F1 is reached, it would output the following
remedy:

R:Fill water in the storage tank.
When it reaches the power switch, F9, it would output another remedy:
R: Switch on the power. VA

Instead of writing out a remedy in text form, the system could also
activate rules or procedures to perform any actions needed. These rules
and procedures should be written in the general G2 rule format. O

6.8 A Comparison with PERFECT

LT £ i

The PERFECT project of Sassen et al has several similarities with the
method presented in this chapter, but it also differs in many important
aspects:

180

6.8 A Comparison with PERFECT

o The PERFECT system operates continuously on-line. The method of
this chapter may either be activated by the operator or a supervision
algorithm, or operate continuously.

o As it is an on-line method, PERFECT uses only measured values,
while the method presented here can use either questions asked to
the operator or measurement values. Thus, the latter method allows
for more freedom in input data and greater diagnostic resolution.

o PERFECT continually checks the working condition of every leaf
node in the MFM graph, which may become computationally ex-
pensive, and then propagates the fault information upwards. The
method presented here searches downwards, skipping large parts
of the MFM model; thus only a fraction of all leaf nodes must be
examined. While PERFECT tests every possible fault, the latter
method performs a knowledge-based search directly aimed at the
faulty parts of the process. However, the PERFECT strategy has
the advantage that sometimes it may discover a fault which has not
yet lead to the violation of a goal. /

6.9 Conclusions

This chapter describes how MFM models can be used for fault diagnosis.
The method works under rather general conditions; there should be an
MFM model which captures the important aspects of the process. The
advantages of the method are that the knowledge database is easy to
construct, modify, and describe, that consistency is guaranteed, and that
the search performed is quite efficient.

The method has been implemented and tested on G2 simulations of
two processes, the small laboratory process and Steritherm. The method
was successful in all test situations.

The efficiency of the method is shown by a simple implementation
in C, executing on-line using only tests and no questions, see Larsson
(1992 c). Searching through the whole Steritherm model, (more than
100 MFM objects), takes only 200 microseconds on a SPARC station 2,
while finding a fault in the thermal energy network takes less than 50
: ;:miféroseconds. Thie Worst case of executing time can easily be found out;
for the Steritherm it is 200 microseconds. Clearly, the presented method
enables knowledge-based fault diagnosis in an on-line control algorithm.

181

CHAPTER 7

AN MFM TOOLBOX

The algorithms described in the previous chapters have all been imple-
mented in G2, and tested on the tanks process and Steritherm. This
implementation is a starting point for a toolbox for building and using
MFM models in G2.

The implementation consists of definitions of data structures and
graphics for building topological models and MFM graphs, a set of rule
bases that perform the diagnostic reasoning tasks, and a set of equations
used for simulation of the processes. In total, the program contains the
following:

o Definitions of a class hierarchy of the objects in an MFM model.

o Rule bases for syntax control of MFM models, measurement valida-
tion, alarm analysis, consequence propagation, and fault diagnosis.

o Definitions of a class hierarchy of the components in the processes.
o Generic simulation equations for the physical components.

The implemented program may be taken to pieces and the MFM specific
parts saved separately, with no definitions left for any specific process.
Thus, only the MFM model definitions and the rule bases are kept, as an
MFM toolbox. The user may define his own components and construct a
topological simulation model, which is the standard way of using G2. He
then builds an MFM model using the toolbox definitions, and when that
model is ready, he immediately has available the diagnostic algorithms
described in previous chapters, instead of having to construct a rule
base for the specific process. Thus, the general ideas is to replace the
construction of a rule-based expert system with the building of an MFM
model using the toolbox, see Figure 7.1.

MFM model + Toolbox = Expert System

e % @
T]

'} Figure 7.1 With the help of the toolbox, it is possible to replace the large

effort of building a rule base for an expert system with the construction of an
MFM model.

182

'This chapter will describe a suitable general architecture for a system for
diagnostic reasoning with MFM: it will give an overview of the different
rule bases, it will describe G2, and it will go through the different parts
of the implemented toolbox.

7.1 Architecture of a Supervisory and Control System

In the previous chapters only the methods or algorithms for the three
diagnostic reasoning tasks have been described. However, to use such
methods, they must be successfully implemented and built into a system
which also provides data collection, user presentation, other algorithms,
and a systematic way of connecting the different parts with each other.
In order to design such a system, the architecture of it must be defined.
This is a special case of the standard problem of writing a computer
program, and several well known concepts can come to use.

A monitoring and supervisory system must perform many different
types of tasks, in widely different time scales, and preferable imple-
mented with different techniques:

o Data collection at sensor level

o Data filtration and other low level treatment

o Estimation, reconstruction, and statistical treatment
o Data reconciliation and measurement validation

o Supervision and diagnosis, automated reasoning

o Advice generation

o Presentation for the user or operator

o User help and support

Here, the data collection and filtration tasks will usually be distributed
to smaller processors and performed in fast software or even specially
designed hardware, and be working in time scales from microseconds to
seconds. The more complicated statistical analysis is usually performed
on computers, and operates in the time scale of seconds.

Tasks on the supervision and diagnosis level is usually performed
- by humans, but can also be taken care of by knowledge-based systems,
' running on larger workstations and operating in the time scale of sec-
* onds or minutes. The presentation for the human operator, and any
help and support for him must also operate in this time scale.

183

Chapter 7 An MFM Toolbox

Thus, a system that can handle all these different tasks efficiently
should be constructed out of several hardware and software techniques,
and be designed in several layers, see Figure 7.2.

Intelligent front-end

Presentation system

Diagnostic reasoning

Measurement validation

| [1

Data filtration

C Process)

Figure 7.2 A control and supervisory system should have a.layered archi-
tecture, as the tasks of different levels are performed at different time scales
and by different hardware and software.

In such an architecture, the different layers may be implemented in
different hardware and software. The only strong provision is that there
be clear interfaces between each level, and that the whole system is
built in a clear and systematic fashion, which certainly implies a strong
hierarchical design.

All the standard concepts for structuring a design task may and
should be used here. These are, for example, the use of class hierar-
chies, object-oriented programming, or at least an object-oriented pro-
gramming style, and the clear separation of different programming con-
cepts such as task driven and data driven activation, the use of demons,
and so on.

It should be noted that on top of the diagnostic level there should
be a presentation and communication level. The use of more advanced
;’“an’WIedge-based*-‘diagnosis methods demands and enables a ‘better and
more user-friendly interface. Thus, it is in no way certain that the
standard supervisory system communication is good enough. It would
certainly be useful to have available several new ways of presenting

184

7.1 Architecture of a Supervisory and Control System

process information to the operators in a human way. Here, at least two
problems are worthy of notice:

o The problem of presenting means-end information

o The possibility of giving knowledge-based help and support

Presentation of Means-End Information

An MFM model of a process may, as have been shown in the previous
chapters, be useful in that it allows a simple and uniform way to build a
database for different diagnostic reasoning tasks. In this case the model
must be constructed but is only used internally by the algorithms. When
the process is redesigned or changed, however, the MFM model must
also be updated.

However, the MFM models contain more information than is used
by any of the different algorithms, and this information remains hidden
in the MFM graphical data structure. This means-end information is
not available through any other type of model; it is a separate view
containing original information, but which may be of vital importance
for the process operators in their tasks.

Thus, it would most certainly be of great benefit if the means-end
information could be presented in an understandable way. On the other
hand, means-end information is very different from physical topology,
. and its nature is often rather complex and hard to understand at a first
glance. Therefore, it is not clear that the current graphical language
used to represent MFM models is a good alternative for presentation
of means-end information for the operator. Chapter 8 of this work will
treat these problems closer, and give some examples of alternate pre-
sentations of MFM models. It is clear, however, that a solution to this
problem would be very valuable.

Intelligent Help Systems

The tasks handled by process operators usually require both knowledge
and experience, and the production efficiency and safety depends to a
large degree on how well the operators perform. Therefore, the following
points are of great importance:

5 The operator should be given information on as high a levél as possi-
ble. This will make it easier for him to use it in the problem solving
tasks.

185

Chapter 7 An MFM Toolbox

o The operator should be provided with as much help as he may wish
for, not only about the available commands of the computer system,
which is usual today, but also with knowledge about the process
itself and about the operating sequences.

o The operator should be able to look at the process from several
different views, and to have help in interpreting all these presenta-
tions.

o The operator should be helped with the operating sequences of the
process, i.e., the help should take into consideration the action se-
quence history, and be able to reason and give information about
past and future.

o The help should be non-invasive, so that the operator can use it if
he wants, but can ignore it if he finds that appropriate.

The ascent of expert systems has provided a new technology which is
very well suited for handling knowledge not only about the computerized
control system’s commands, but also about the process, the operating
sequences, the possible past and future, and about causes and effects
of different actions. Thus, they form a good basis for constructing new
and better help systems.

Intelligent Front-Ends

A standard rule-based expert system is not very well adapted to be used
as a help system. It usually lends itself to some kind of question and
answer dialog, and thus it fails in the demand of non-invasiveness. Also,
it is usually rather cumbersome to handle planning and plan recognition
in this way.

_>
Front-end Target system
<—n <—

Figure 7.3 The command spy idea. By putting an expert system between the
user and the target system, as an intelligent front-end, it is possible to make
_the help system pon:invasive.

T

¥

In order to overcome these drawbacks, the concept of an intelligent
front-end has been created. The idea is simple; put the help system

186

7.1 Architecture of a Supervisory and Control System

as an interface between the user and the target system, and let the in-

telligent front-end analyze the communication and act according to the
information obtained, see Figure 7.3.

This setup enables the system to monitor the communication be-
tween the user and the target system. It may then use the command
history to understand what has happened and why the operator has
done certain actions, plan recognition. This means that the system will
know the goals of the operator’s actions and the action or command se-
quences necessary to reach these goals. This, in turn, will enable the
system to give dynamical help about past and future, and about the nec-
essary operating sequences. By making the intelligent front-end quiet
until asked for help, the system becomes non-invasive, the so called
command spy idea.

A typical example of a system for plan recognition is the intelligent
help system for process identification, (ihs), see Larsson and Persson
(1987, 1988 a, b, 1991; the latter to be found in this volume). This sys-
tem uses an intelligent front-end architecture to implement a command
spy for Idpac, an interactive program that performs numerical calcula-
tions for fitting mathematical models to pairs of measured input and
output signals. ‘

7.2 The Toolbox Rule Bases

The algorithms described in the previous chapters have been imple-
mented in G2. The MFM graph structure is built with G2 graphical
objects and connections, thus giving both a graphical presentation and
an underlying data structure on which the G2 rules and procedures can
operate. The construction of the flow models is simple and user friendly,
as it uses G2’s possibilities of graphical editing, creation, and cloning of
objects, etc.

There are several groups of rules and procedures, each implement-
ing one or a part of an algorithm. Thus, the main contribution in the
implementation is to be found in these rule groups. It should be noted
that G2’s rules and procedures can be mixed and work well together.

Thus, a rule set may.really be a set of rules and procedures. The differ-

- ent rule sets will now be described. '

187

Chapter 7 An MFM Toolbox

Syntax Control

There are many rules of syntax that say how the MFM objects may
or may not be connected. These have been stated in Chapter 3. The
G2 connections cannot be mixed, and therefore mixing of flow types is
prohibited even from the initial design of the graphical structure. Within
a flow path, however, flow functions may only be connected according to
certain rules; for example, a source may only be connected to a transport.
A small rule set is used to check this part of the syntax. These rules
must be invoked by the user, however, and without doing so, it is possible
to violate the MFM syntax. It should also be noted that the rules do not
check the more unclear syntax rules that state that a node may not be
filled or emptied only, see Section 3.5 of Chapter 3.

Measurement Validation

The measurement validation algorithm is implemented with four rule
sets. One handles the updating of group information, i.e., it keeps track
of consistent and inconsistent subgroups. Another rule set controls the
flow propagation. The flow values of the flow functions with no mea-
surement connected to them must be guessed, and known flow values
are propagated to them. Multiply supported flow values have prece-
dence over singularly supported ones, and downstream propagation has
precedence over upstream propagation.

A third rule set handles the recognition of singular inconsistent
subgroups, which should be specially marked. If the single group is
surrounded by another, consistent group, its flow value is also changed.
The fourth and last group handles dynamic color coding of the informa-
tion. Thus, the different inconsistent subgroups are shaded in different
hues of gray, and the singular failures are marked with red.

Alarm Analysis

The alarm analysis rule set handles the recognition of the different
alarm situations and sets the failure states accordingly. These rules
only look at the flow functions two and two, or in some cases three and
three. Thus, they work locally and efficiently.

R

1188

7.2 The Toolbox Rule Bases

- Consequence Propagation

The consequence propagation rules handle the guessing of alarm states
of flow functions which are not connected to physical alarm sensors.
Similar causation rules to those in the alarm analysis are used. This
rule set works locally and mixes with the alarm analysis rules.

Fault Diagnosis

The fault diagnosis algorithm performs a downward search in the MFM
graphs and uses a dialog of questions and answers. The dialog part
has had the consequence that most of the implementation is done with
procedures. Thus, rules handle the search and decisions about which
subtrees that need further investigation, while procedures handle the
dialog and setting of fault values. The implemented search is not strictly
local, (the diagnosis may skip parts of the graph altogether), but as the
trees are graphically represented, the geographical coordinate values
are used to make the search move in a left to right direction over the
screen, and no additional reasoning over global paths is needed.

7.3 The Implementation Tool G2

The data structures and algorithms have all been implemented in G2.
Some extra insight into the problems of developing Al software may be
gained if some details of this implementation are described. First, a
short description of G2 itself will be given. The following description is
based on Nilsson (1991).

The expert system tool G2 has been developed by Gensym Corpo-
ration, and is probably the most advanced real-time expert system tool
currently available. It is implemented in Common Lisp, which is auto-
matically translated to C, and it runs on many different computers. A
Sun Sparcstation 2 was used in this project. G2 consists of several main
parts:

o A knowledge database

A real-time inference engine
- S

A procedure "laﬁguage interpreter |

o]

S

A simulator

o

(o]

A development environment

189

Chapter 7 An MFM Toolbox

o An operator interface

o Optional interfaces to external on-line data servers

Classes and Objects

G2 is an object-oriented programming environment. All G2 components,
including rules, procedures, graphs, buttons, objects, etc., are items,
and organized into a class hierarchy with single inheritance. All items
have a graphical representation through which they may be manipu-
lated by mouse and menu operations. Operations exist for moving an
item, cloning it, changing its size and color, etc. The user defined items
are called objects in G2.

Objects are used to represent the different concepts needed in a spe-
cific application. The object definition defines the attributes specific to
the class and the look of the icon. Attributes of many types are sup-
ported, such as constants, variables, parameters, lists, arrays, and G2
objects. The constants, variables, and parameters may be ‘quantitative,
(integer or real), symbolical, logical, or text strings.

Objects are either static, i.e., they are explicitly created by the devel-
oper, or dynamic, i.e., created and deleted dynamically during runtime.
G2 contains operations for moving and rotating an object, and changing
its color. With these facilities, simple animations can be created. Each
G2 object may have an associated subworkspace. Here arbitrary items
may be positioned, and thus the internal structure of an object may be
represented on its subworkspace.

Relations Between Objects

G2 has different ways of defining relations between objects. One way is
to have lists containing other objects as attributes. Another way is to
use connections, which have a graphical representation and may have
attributes. Connections can be used in G2 expressions for reasoning
about interconnected objects in a variety of ways.
A third way of relating objects is to use relations. These may only be
created at runtime and have no graphical representation. They have no
_corresponding relation hierarchy and cannot have attributes. Relations
-aré used in G2 expressions in the same way as connections. !

190

7.3 The Implementation Tool G2

The Inference Engine

G2 rules can be used to encapsulate an expert’s heuristic knowledge of
what to conclude from conditions and how to respond to them. Five
different types of rules exist:

o Ifrules

o When rules

o Initially rules

o Unconditionally rules
o Whenever rules

If rules my be invoked by forward and backward chaining, by scanning
at a specified time interval, and by explicit invoking. When rules are a
variant of If rules that may not be invoked through forward chaining or
cause backward chaining. Initially rules are executed at initialization
time only. Unconditionally rules are equivalent to If rules with a true
premiss. Whenever rules trigger when a variable receives a new value,
fails to receive a value within a specified time-out interval, when an
object is moved, or when a relation is established or deleted, i.e., they
acts as demons. '

The rules contain references to objects and their attributes in a
natural language style syntax. Objects may be referenced through con-
nections with other objects, thus utilizing the connection structure of
the objects instead of explicit names. G2 supports generic rules that
apply to all instances of a class.

In addition to forward and backward chaining, rules may be invoked
explicitly in several ways. A rule may be scanned at even time intervals. -
A focus statement invokes all rules associated with a certain focal class
or object. An invoke statement triggers all rules belonging to a specified
rule category.

Internally the G2 inference engine is based on an agenda of actions
to be performed by the system. After execution, scanned rules are in-
serted into the agenda queue at the time slot of their next execution.
Focus and invoke statements causes the invoked rules to be inserted in

the agenda at the current time slot.

191

Chapter 7 An MFM Toolbox

~Procedures

G2 contains a Pascal-style procedural programming language. The pro-
cedures are started by rule actions, they are reentrant and each invoca-
tion executes as a separate task, and they may have input parameters
and return one or several values.

The set of procedure statements include all rule actions, assign-
ment, branching, (if-then-else and case), iteration, (repeat and for), exit
if to exit loops, the infamous go to, call to call a procedure and wait
for its result, and start to call a procedure without waiting. The for
loops may be either numeric or generic for a class, i.e., they execute a
statement or set of statements once for each instance of the class.

Simulation

G2 has a built-in simulator which can provide simulated values for vari-
ables. The simulator is intended to be used both during development
for testing the knowledge base, and in parallel during on-line operation.
It allows for differential, difference, and algebraic equations on explicit
form. These may be specific to a certain variable of apply to all instances
of a variable class. Each first-order differential equation. is integrated
individually with an individual, user defined stepsize. The numeric in-
tegration algorithms available are a simple Forward Euler algorithm
and a fourth order Runge-Kutta, both with fixed stepsize.

7.4 Using G2 to Implement the MFM Toolbox

MFM models have a strong graphical nature and consist of objects con-
nected together and collected in different networks. Diagnostic algo-
rithms using MFM will use information about these objects and how
they are interconnected. Thus, G2 is ideally suited for implementing
the basic MFM data structures, as well as the diagnostic algorithms.
The MFM concepts have the corresponding implementations shown in
Table 7.1.

The animation facilities of G2 have been used to present results of
;_fth,éialgorithm. For 'example, the primary and secondary failure states
from the alarm analysis are shown in red and bright red, and a quick
glance will give the operator a good idea of the total failure state of the
process.

192

7.4 Using G2 to Implement the MFM Toolbox

Goals and flow functions G2 objects

Relations and links G2 connections
The “inside” relation Subworkspaces
Diagnostic methods Rules and procedures

Table 7.1 MFM concepts and the corresponding G2 concepts used to im-
plement them. The “inside” relation refers to the case when a path of flow
functions resides in a network or manager function.

The time efficiency has not posed any problem during the project. As
all the algorithms themselves are linear in effort, the main obstacle to
overcome when scaling up the size of the knowledge database is the in-
ternal G2 representation. However, the G2 inference engine uses static
links, and no decrease in efficiency has been observed when tackling
somewhat larger processes as Steritherm.

All in all, it can be concluded that G2 is a very good programming
tool, provided it is used to solve a fitting problem, and MFM is one such
problem. ’

A MFM object
A flow function

A flow carrier

source balance sink transport storage barrier observerdecision maker actor condition goal network manager

Figure 7.4 The MFM class hierarchy, which is a part of the G2 object hier-
archy. Thus, the superior class of MFM object is the G2 object.

The Data Structure and Class Hierarchy of Objects

The MFM objects lend themselves to be put in a class hierarchy with
single inheritance, see Lind (1990 b). This is easily done in G2, and the
resulting classes are shown in Figure 7.4. Actually, it would be quite
natural to use multiple inheritance to express that each flow function is

\;‘eitﬁer of type madss,"energy, or information, but this is not supported in

G2.

193

Chapter 7 An MFM Toolbox

Rules

The different algorithms are easily implemented with G2 rules. As an
example, consider once again, connected source and transport, see Fig-

ure 7.5.

F1 F2

Figure 7.5 A connected source and transport. In the alarm analysis algo-
rithm, this connection is treated with three rules.

In Chapter 5 the following rules to find out the failure state of the source
were presented:

o A transport Aiflow alarm may cause a connected source to have a
locap alarm.

o An alarm in a network will force a function depending on this net-
work to fail.

Taking the normal situation into consideration also, three rules for the
failure state of a source may be formulated.

1. If a source has a locap alarm and any connected transport does not
have a hiflow alarm, then the alarm of the source is primary.

2. If a source has a locap alarm and any connected transport has a
hiflow alarm and there is no alarm in the network that the source
may depend on, then the alarm of the source may be secondary.

3. If a source is not alarmed, its failure state is working.

if the alarm-state of any source S is locap

and the alarm-state of any transport
connected to 8 i1s not hiflow

then conclude that the failure-state of § is
primary-failed

Figure 7.6 A rule from the alarm analysis rule set, as it looks in the G2

implementation. It handles the case when there is a primary failure in the

fsource, and it is-quite similar to the text version of the same rule, presented
earlier in this chapter.

194

7.4 Using G2 to Implement the MFM Toolbox

ExAmPLE 7.1

These rules are surprisingly easily implemented in G2. The possibility
to reason about objects and their connections make the G2 rules look
very much like the textual rules above. For example, the G2 rule corre-
sponding to the first rule is shown in Figure 7.6. 0

EXAMPLE 7.2

The G2 version of the second rule is shown in Figure 7.7. Note that
the locap alarm is secondary only if there is no fault in the supporting
network, i.e., a fact from the second rule. This test must be included in
the G2 rule, as otherwise two rules could be in conflict and trigger each
other infinitely. O

if the alarm-state of any source S is locap
and the alarm-state of any transport
connected to S is hiflow and not (there
exists a condition C connected to S
such that (the alarm-state of C is
alarmed))

then conclude that the failure-state of S is
secondary-failed

Figure 7.7 Another rule from the alarm analysis rule set. It corresponds to
the second rule above, and treats the case when the source has a primary or
secondary failure.

ExampPLE 7.3

If the source should be in a normal state, (i.e., not alarmed), the failure
state must be set to working. This is handled by a more general rule,
valid for all flow functions, see Figure 7.8. O

if the alarm-state of any mfm-object M is
normal
then conclude that the failure-state of M is

working

Figure 7.8 A third rule from the alarm analysis rule set. This rule is valid
for any MFM object and shows the use of the “any” construction allowed in G2
_ .xules. This enables the writing of rules that apply to whole classes of objects.
- “7The rule is used to Set all MFM objects which are not alarmed to the working
state.

195

Chapter 7 An MFM Toolbox

Procedures

Parts of the algorithms are more easily expressed with procedures than
rules. This is the case especially in the fault diagnosis.

ExXAMPLE 7.4

A short procedure from the fault diagnosis algorithm is shown in Figure
7.9. This particular procedure treats the case when the user has been
given an explanation or remedy and clicks the OK button. O

TREAT-OK, a procedure

Notes OK

User restrictions none

Tracing and breakpoints default

Default procedure priority 6

treat-ok (b: class action-butt, w : ciass g2-
window)

F : class flow-function = the flow-function
named by current-obiject;

begin
focus on F;
conclude that the explain of F is false;
conclude that current-object is none;

hide the subworkspace of explanation-
subws;

Figure 7.9 A procedure from the fault diagnosis algorithm. This specific pro-
cedure is called when an explanation or remedy has been shown and the user
clicks the OK button. Then the explain attribute is set to false, so that the
explanation will not be activated again, the search variable current object
is set to none so that the search may go on to look for more explanations, and
the subworkspace upon which the explanation was given is hidden.

Programming Effort

It is somewhat difficult to estimate the time or effort used for “coding”
the toolbox, as this work has been intertwined with algorithm develop-
‘ment and testing. With this in mind, it can be stated that‘the imple-
mentation time is about three months, spread out over a period of about
a year. The G2 database is not very large; around 350 Kilobytes.

196

7.5 The Simulation Model

7.5 The Simulation Model

In order to develop and test the MFM toolbox, two target processes were
used, the tanks and Steritherm. G2 simulation models were built for
these two processes. This includes a class hierarchy of physical compo-
nent definitions, generic simulation equations, and some rule bases for
transferring values between the simulations and the MFM models. The
Steritherm simulation model was constructed in a master’s project, see
Christiansson and Ericsson (1989).

The construction of the physical component and simulation model
is a standard G2 task and will not be further described here. Some of
the resulting representations, (such as physical topology views), can be
seen in Chapter 8.

7.6 Conclusions

It is necessary to implement and test algorithms in order to investigate
their value and to see further possibilities of development. Usually, the
implementation of diagnostic algorithms for control systems is a major
effort in itself. However, as MFM is very well suited for implementa-
tion in G2, the implementation has been a minor part of the current
project. All the algorithms have been tested and work well, and the test
implementation is easily turned into a G2 toolbox for MFM modeling
and diagnosis.

) W“ Ty

197

CHAPTER 8

GRAPHICAL PRESENTATION

So far, MFM has only been used as a representation language for build-
ing knowledge databases for computerized algorithms. However, it is
also important to show means-end information to users. This chapter
presents some different ways of using MFM and other representations
for presentation.

Thermal energy transport

INJ

Figure 8.1 An alarm analysis situation in the main energy flow of Steritherm.
Primary faults are shown in a darker and secondary faults in a lighter shad-
ing. This picture gives a compact overview of the fault situation, and it would
be useful to present it to an operator. There are several faults, but a single
primary fault in the steam system is able to explain the whole situation.

8.1 Introduction

‘ Onée the importance’ of means-end models has been understood, it is also
obvious that the information they contain should be presented to oper-

ators, in order to help them understand the processes more thoroughly,

198

8.1 Introduction

see Figure 8.1. It is not clear, however, how means-end information
should be presented, as it is a difficult task. In order for a user to un-
derstand MFM, the ideas behind means-end relations must be grasped,
and there are no easy ways around this. Thus there is a basic difficulty
in making any means-end information understood. Several alternative
ways of presentation are possible:

o]

Use the concepts of flow sheets and other presentations, which are
already well-known to the operators. In this way, user acceptance
and easy introduction will benefit. However, the danger is that
the means-end information is not seen as such, but mistaken in
different ways.

Use MFM itself. Means-end information is inherently different from
topological information, and must be presented with special means.
MFM is, so far, the only graphical language available, and it is
possible for operators to learn to use it. This standpoint have been
proposed by Lind and by Duncan and Preaetorius, see Duncan et al
(1989). Critics, for example Rasmussen, have proposed that user
acceptance may be low, though.

Use computer graphics to develop new ways of presentation, which
are more well-suited to show means-end information. This may
include the choice of a metaphor, i.e., a complete framework of in-
terpretation. The Apple Macintosh metaphor of viewing the screen
as a writing desk with documents on it is probably the most suc-
cessful example of this. However, no such metaphor of means-end
models have been presented so far.

8.2 Presentation of MFM

The suggestion of this project is that it is indeed possible to present
means-end information by using MFM graphs, provided they are inte-
grated in a full presentation system in which several other represen-
tations of the process are also available; a multiple view system. This
implies that together with the MFM graphs there should be available
topological, geographical, and behavioral descriptions, see Section 1.4

of Chapter 1, and that the user should be able to navigate through the
models and get help with interpreting and connecting the different parts

of them to each other. A system like this has been described in Lars-
son (1990 a), Arzén (1989, 1990, 1993), and Arzén et al (1990). This

199

Chapter 8 Graphical Presentation

system contains several models of Steritherm, including an MFM model
built with the toolbox presented in Chapter 7. Basically, such a system
should fulfill the following points:

o The different kinds of models should be integrated together into
one environment, making it easy for the user to use any type of
representation he wishes.

o The presentation interface must be designed so that it is clearly vis-
ible what kind of view the user is currently looking at. For example,
it is vitally important that the user knows whether the presented
pictures contains geographical, topological, or means-end informa-
tion.

o Navigation tools must be available. For example, it should be pos-
sible to select an object or set of objects in one view and have the
corresponding objects in other views highlighted. In the same way,
it should be possible to move from one object or environment in one
view to the corresponding objects or environment in other views,
and the possible paths must be clearly and simply presented.

o Knowledge-based help should be available in all environments and
concerning all changes of views.

With these aids, a multiple view system should be able to provide sup-
port for using MFM for showing means-end information. The system
described in Larsson (1990 a), Arzén (1989, 1990, 1993), and Arzén et
al (1990) gives a good demonstration of the possibilities, once the whole
system has been designed for a full integration of several model types.

8.3 Different Abstraction Hierarchies

An integrated multiple view system will contain a large amount of data.
This data should be structured, in order to make it practically possible
for the users to navigate through it, and find the information impor-
tant for specific tasks. This implies that several different abstraction
hierarchies should be used:

o Part-whole decomposition. This is the simple aggregation of smaller
- ..~ components inte large building blocks, and the possibility of zoom-
" ing in on a composite object and see its inner parts. ‘

o Specialization. This is the standard class-subclass structure, with
inheritance and specialization of subclasses.

200

8.3 Different Abstraction Hierarchies

Functional abstraction. This is the decomposition of a model into
means-end hierarchies described in Chapters 1 and 3.

Multiple views. This is not a proper hierarchical decomposition
as the three others, but it still deserves to be treated in a similar
way. There is a definite advantage in designing a system so that all
orientation and moving through the models is done with the same
type of techniques. Only then will a view change be as natural as
moving up and down in the other abstraction hierarchies.

This general structure, based on several information hierarchies and
multiple views, implies the following navigation operations:

(o]

1o “1<
Ay

Up and down in the part-whole hierarchies. For example, if the
current presentation is centered on a certain machine, the down
operation means zooming in on the machine and moving to a pre-
sentation of the inner parts of the machine in question, while going
up form inside the machine is the reverse operation.

Go to class and go to instances. This means that the user
should be able to move to the definitions of any object and from any
definition to the corresponding instances.

Up and down in the means-end hierarchies. This means moving
along the condition and achieve relations of MFM, from goals vias
networks and flow functions to subgoals, and vice versa.

Other view is the operation of staying in more or less the place in
the part-whole and class hierarchies, but changing the model type,
for example from topological to means-end representation. This op-
eration is not always possible, as the different models may have
parts not found in other models. Where there is a possible connec-
tion, there should also be a possibility to change view, a so called
bridge, see for example Marifio et al (1990).

In addition, other obvious operations should be provided, such as
quick commands for moving to the top levels, to the previous screen,
etc.

201

Chapter 8 Graphical Presentation

8.4

The Implemented System

The MFM toolbox described in Chapter 7 has been used in the imple-
mentation of the system described in Larsson (1990 a), Arzén (1989,
1990, 1993), and Arzén et al (1990), and to implement a demonstra-
tion system for two processes, the tanks process used in the previous
chapters, and Steritherm. The latter system includes several examples
of how to use graphics and different other ideas to present means-end
information:

(o]

o

202

The MFM graphical language has been changed from the definitions
given by Lind, so that color is now used to separate between mass,
energy, and information flows. The new graphical language is also
more clearly readable, (on screen), using icons with depth effects
and shadowing, etc.

Colors are used to show the results of the diagnostic algorithms.
Thus, primary and secondary alarms are shown with deeper and
lighter shades of red respectively, and the object currently under
fault diagnosis investigation is highlighted in grey. In the pictures
shown in this work, the colors have been changed to gray scales
instead. The front page illustration shows how the pictures look on
a color screen.

The mass flows of MFM may be shown in the corresponding topo-
logical presentations, i.e., the pipes and equipment where the mass
flow is lowing may be highlighted, see Figure 8.9.

The energy flows can be shown with arrows in the topological view,

describing how energy is transported through the system, see Figure
8.8.

The energy networks may also be shown with some of the details
of MFM, such as conditions and subgoals, taken away, and with
more natural icons. An example of this has been developed for the
top level energy network of Steritherm, see Figure 8.7. The same
solution could of course be used for mass flows, but as these are
more easily shown in a topological presentation, it has not been
done here.

-~ The goal-subgo&l hierarchy may be broken out of MFM and shown

separately, see Figure 8.5.

8.6 Some Examples of Graphical Presentation

8.5 Some Examples of Graphical Presentation

All the ideas described in the last section above have also been im-
plemented in a demonstration system built on the toolbox described in
Chapter 7. The following shows how the different models and results of
algorithms actually look on the computer screen. Hopefully, the exam-
ples serve both as a documentation of the diagnostic algorithms and as
a collection of ideas of how to present means-end information.

ExamMPLE 8.1
Figure 8.2 is a simple, geographical presentation of the tanks process.

Process

Figure 8.2 A flow sheet of the tanks process. The storage tank, the two cylin-
drical tanks, the pump and the controller are shown, together with alarms
used by the alarm analysis algorithm. The icons look quite similar to the real
process; thus, this is a good example of a geographical view. Some animation
is also used, e.g., in the level pipes immediately to the left of the smaller tanks.
Also, the pipes changes their color depending on whether they are empty or
contain water.

‘ T};g"picture g‘ives‘ a ‘good example of the graphical possibilities of G2.
Thus, the icons look quite similar to the real process. Some animation
is also used in this picture. The level pipes beside the cylindrical tanks

s

203

Chapter 8 Graphical Presentation

use color to indicate the level of the tanks; the pipes change color when
they contain water, and the alarms light up when they are activated.

MFM model

Controller

F F1z F13

Water flow

Controller power support

F13

Pump power support

Figure 8.3 An MFM model of the tanks process. The top level goal is shown,
as well as the water flow, pump energy, control information, and control power
supply networks. The networks and manager are shown as icons, while their
contents appear on new workspaces.

The MFM model of the tanks process has been shown several times
before in this work. The toolbox version is found in Figure 8.3. Note that
the contents of the networks and manager appear on new workspaces,
the subworkspaces of the corresponding objects. O

ExXAMPLE 8.2
Now we move to the Steritherm process. A topological presentation
of the Steritherm process is shown in Figure 8.4. It is the standard

| flow- sheet, but with more elaborated icons, as it appears in the G2

implementation.

204

8.5 Some Examples of Graphical Presentation

Figure 8.4 The Steritherm flow sheet, as it appears in the MFM toolbox
implementation. An older version, more like the technical drawings, may be
found as Figure 1.5 in Chapter 1.

The five heat exchangers, (numbered from right to left), can be seen in
the lower right of the diagram, with the product balance tank in the
upper left and the packing machine in the lower left. The product flow
is white while the water flows are shown in a darker shade. O

Goal hierarchy

Provide sterile a qled product Operate efficiently

Kill bycteria Isolate product

Cold water 1 Cold water 2 Provide steam Circulate product Circulate water

C e ¥
Figure 8.5 The Steritherm goal hierarchy. Here, both production and econ-
omy goals are shown, while in the following examples, only the hierarchy
under the production goal is used. The goal hierarchy can be found by break-
ing out a part of the full MFM model.

205

Chapter 8 Graphical Presentation

ExampLE 8.3

The Steritherm goal hierarchy is found in Figure 8.5. This is a picture
of the goal-subgoal hierarchy of the MFM model, broken out from the
rest of the MFM representation. In this figure, all the different goals of
Steritherm, down to a certain level of detail, are found. O

Biolagicel life aycle

Flow model .

HTHE

Thermel energy transport

STEAM 1NJ WATER HTH 5=

Figure 8.6 The top levels of the Steritherm MFM model. The top levél pro-
duction goal resides on one workspace, the bacterial life cycle network on the
next, and the main thermal energy network on the third.

ExAMPLE 8.4

In Figure 8.6 the three top levels of an MFM model of Steritherm can
be found. Here only.the most important operational goal, that of ster-
ilizing the product, has been put into the model. The topmost network
describes the bacterial life cycle, and the next level is the main energy
transportation network. O

206

8.5 Some Examples of Graphical Presentation

Thermal diagram

Steam

HTX6 Cold water

Figure 8.7 The energy transportation in Steritherm. The MFM icons have
been changed to symbols of the physical equipment, and the condition and
achieve relations have been omitted together with the subgoals. Thus, an
easily interpreted diagram has been produced.

ExXAMPLE 8.5 ,

An equivalent representation of the energy network is shown in Figure
8.7. The idea of this “thermal flow sheet” is to exemplify how MFM can
form a basis for pictures that might indeed be successfully shown to a
process operator. Here some detail has been taken away, and the MFM
symbols have been exchanged for icons that show the corresponding
physical object. The result is an easily read and understood diagram
that shows the energy transport and reuse in the process. O

Flow sheet

¥

Figure 8.8 The flow sheet of Steritherm with the energy flow marked. This
is an alternative way of showing the energy flow through the process.

207

Chapter 8 Graphical Presentation

ExamMPLE 8.6

The energy flow through Steritherm can also be shown directly in the
flow sheet, see Figure 8.8, where the energy transportation is marked
with arrows along pipes and heat exchangers. In the implemented sys-
tem, both this and the presentations of Figures 8.6 and 8.7 are available,
side by side, so that the user can switch between them and have as much
help as possible in understanding the energy flow. O

Flow sheet

Figure 8.9 The flow sheet of Steritherm with the water flow marked. Show-
ing mass flows is usually a simple question of highlighting in a topological or
geographical presentation.

ExAmMPLE 8.7

Flows of mass can also be shown in flow sheets. In Figure 8.9 the
primary water flow of Steritherm has been highlighted. It is, of course,
easier to show a mass flow, as it will always be confined in pipes, etc. O

ExAMPLE 8.8

There are two control loops in Steritherm. One measures the product
temperature in the holding tube and controls the steam inlet valve to
~ the steam injector; the other measures the return water temperature
and controls the cooling water valve to heat exchanger number 5. The
MFM model of these two control loops is shown in Figure 8.10.

1208

8.5 Some Examples of Graphical Presentation

Pl control loops

Figure 8.10 An MFM model of the control loops in Steritherm. The two
temperature loops, regulated by PI controllers, are modeled as information
flows, with observers, decision functions, and actors.

Block diagram

o—{()—]pPiD G(s) ——o0

-1

The primary control loop controls the steam
injector valve V44 and reads its temperature
in the holding cell sensor T44. Should the
temperature drop below 137 Degrees Cel-
sius, the product may no longer be sterile.

o—(F)—IPiD G(s) —p—o

-1 d

The secondary control loop reads the temp-
erature of the returning heating water on
the sensor T64, and controls the ice-water
valve V64 to cool it. This is to keep the
overall water temperature down,

T LA
S

) {

igure 8.11 A block diagram of the control loops in Steritherm. This is an
alternative diagram for presenting information about the control loops, more
easily accepted by engineers.

209

Chapter 8 Graphical Presentation

‘Figure 8.11 shows an alternative way of presenting control loop infor-
mation. Here a simple “control theory” style block diagram is used. The
idea here is to give a more familiar way of presenting the same system
as in Figure 8.10. .

8.6 Diagnostic Algorithms

The three methods described earlier has been implemented and tested.
In earlier chapters they were demonstrated using the tanks process.
Here follows some further examples, this time using Steritherm.

ExAmPLE 8.9

A detailed MFM model of the product flow of Steritherm is shown in
Figure 8.12, together with a panel of flow values, to be used for mea-
surement validation of the product flow. Note that the example uses
several measurements that are usually not present in a real Steritherm
process. In the first snapshot, all flow measurements are equal and form
one single, consistent group. Some flow values, e.g., those of the heat
exchangers, have been guessed with the flow propagation algorithm.

| Steritherm product flov,q

Tank Mz V20 HTX3 va20 M3 HTX1 Htube HTX2 HTX3 HTX4 V78 V71 Packer

[Data reconciliation I
Tank outflow Valve V20 [veo[oa] Valve V78
Pump M2 Pump M3 Valve V71
Valve V20 Holding tube Packer inflow

Figure 8.12 A flow situation in the Steritherm product flow, together with a
control panel, for use with the measurement validation method. This is the
normal situation and all flow values agree.

In %f;i’gure 8.13 we see the case of a single, surrounded subgroup, the flow
through the pump M2. It has been highlighted in red and its validated
flow value set to that of the surrounding group.

210

[Steritherm product flow]

Tank M2 V20 HTX3 Va0 M3 HTX1 H-tube HTX2Z HTX3 HTX4 V78 V71 Packer

I Data reconciliationw o

Tank outflow Valve Va0 [ven[oa] Valve V78
Pump M2 Pump M3 Valve V71 [v71]oa |
Valve V20 Holding tube Packer inflow

Figure 8.13 A second flow situation in the Steritherm product flow. Here is
an example of a single, surrounded subgroup, the transport M2.

In Figure 8.14 the pump M2 and the valve v20. deviates from the rest
of the measurements, to form a consistent subgroup of their own. The
flow value of the heat exchanger HTX3 is propagated downstream, and
these three flow functions forms one subgroup, while the rest forms the
other. In this case the system only notices the discrepancy, but makes
no guess as to what may be the most likely fault hypothesis. O

I Steritherm product flow l

Tank M2 V20 HTX3 vao M3 HTX1 H-tube HTX2 HTX3 HTX4 V78 V71 Packer

l Data reconciliation l
Tank outflow Valve V20 (veofo4a | Valve V78

Pump M2 Pump M3 Valve V71
Valve V20 Holding tube [0.4] Packer inflow [0.4]

_Figure 8.14 A third flow situation in the Steritherm product flow. Here both
‘M2 and V20 deviates, to form a consistent subgroup. In this complicated
situation, subgroup information only is presented.

211

Chapter 8 Graphical Presentation

ExAamMPLE 8.10
The alarm analysis algorithm is easily demonstrated in the Steritherm
energy network. The normal situation is shown in Figure 8.15.

Thermal energy transport

STEAM INJ

< DD

Figure 8.15 The main energy network of Steritherm. In this figure, the
alarm situation is normal, i.e., there are no alarms.

An alarm situation is shown in Figure 8.16. The active alarms are:

(o]

A low temperature in the holding tube

e]

A low temperature out from HTX1

(o]

A low temperature in the primary water flow, measured by T64
o An indication that the steam system is out of order

The steam system alarm is marked as positively primary, while the oth-
ers may be secondary effects. It should be noted that all these alarms
are not normally available in a standard Steritherm process, but they
have been added in the modeling to enable a more complicated exam-
ple.- Without them the methods still work, but most of the diagnostic
resolution is lost. ‘

9212

8.6 Diagnostic Algorithms

Thermal energy transport HIXZ

STEAM INJ WATER HTx1 == PROD HTX4

Figure 8.16 An alarm situation shown in the Steritherm energy network.
Four alarms are present: low temperature in the holding tube, a low tem-
perature out from HTX1, a low temperature in the primary water flow, and

a steam system fault. The alarm analysis method concludes that the steam
system fault may explain all the other alarms.

In Figure 8.16 it can be seen how the steam system alarm may be the
cause of all the other malfunctions. O

Biological life cycle

Diagnosis question

| Are bacteria being kllled? —I

i No Quit

Figure 8.17 A snapshot of a fault diagnosis on Steritherm. The top level
goal is under investigation, and the search has reached the first flow function,

which is the transport corresponding to the killing of bacteria in the bacterial
life cycle network,

£

213

Chapter 8 Graphical Presentation

ExampLE 8.11

At last we have the fault diagnosis applied to Steritherm. In Figure 8.17
the bacterial life cycle network of Steritherm is shown. The product has |
not been properly sterilized, and a fault diagnosis is started from the |
topmost goal. The first question is:

Q: Are bacteria being killed?

and the answer is no. The search now moves down into the thermal
energy network.

HTX2

Thermal energy transport

STEAM 1N WATER

............

Diagnosis question

Is the steam Injector working?]

Yes Quit

) SUPPLY-WATER SUPPLY

Figure 8.18 A second snapshot of the fault diagnosis on Steritherm: The
search has moved down into the thermal energy network and found the trans-
port corresponding to the steam injector.

In Figure 8.18 the diagnosis search has reached the steam injector and
asks:

= -7Q: Is the steam injector working?
- g i

The answer is no, which means that the search must continue down
via the condition relation to the water mass flow.

214

8.6

Diagnostic Algorithms

Water flow

Diagnosis question

Is the pump M9 working?

Quit

Yes

Figure 8.19 A third snapshot of the fault diagnosis on Steritherm. The
search has moved down from the steam injector into the primary water flow

and reached the water pump M9.

/

In Figure 8.19 the search has reached the pump M9 and asks:

Q: Is the pump M9 working?

Here the answer is no, and the search continues down into the energy
support network of the pump.

Power support for M9

T

pump M9.

Diagnosis question

Is the power switch on?

Yes

Quit

e

¥

Figure 8.20 A fourth snapshot of the fault diagnosis on Steritherm. The
search has reached the transport corresponding to the power switch of the

215

Chapter 8 Graphical Presentation

‘The search now reaches the power switch, see Figure 8.20, and asks:
Q: Is the power switch on?

Here the answer is no. The current MFM model has no further levels,
and the diagnostic search stops this branch.

Flow model Biologicel life cycle
S

Thermal energy tmnsport HTAz

STEAM 1N WATER HTHy PRODO * HTHa (1

Weter flow

Power support for M3

Figure 8.21 A fifth snapshot of the fault diagnosis on Steritherm. Here, all
;fhe levels of the MFM model is shown, and the fault situation is clearly and
" compactly described by the shading of the faulty flow functions. !

When the diagnostic search is over, the whole fault situation has been

216

8.6 Diagnostic Algorithms

‘investigated, and the result is shown in Figure 8.21.

Power support for M9

Explanation / remedy

|Swilch on power for pump MS. [

Figure 8.22 A sixth snapshot of the fault diagnosis on Steritherm. The rem-
edy to be found after the diagnosis is to switch on the power for the pump
M9.

After the search, the user may ask for remedies and explanations. In
this case the output is simple, see Figure 8.22: '

R: Switch on power for pump M9.

This concludes the examples of measurement validation, alarm analysis,
and fault diagnosis on Steritherm. O

8.7 Conclusions

Means-end information is both important to use and difficult to un-
derstand, while the MFM language may be hard to interpret for an
unexperienced user. In spite of the latter, MFM may form a basis for
presenting information about goals and functions, if the graphs them-
selves are enhanced by different other pictures, such as goal hierarchies,
thermal flow sheets, etc., and if the MFM models are integrated into a
multiple view system. Examples of how this could look has been given
in this chapter. In this case, the user should be able to learn the MFM
graphical language gradually, and understand both what information it
conveys, and what the MFM models can be used for.

P o 57 >
e

217

CHAPTER 9

CONCLUSIONS

This work describes model-based diagnosis using multilevel flow models,
MFM. The first chapter is an introduction to the idea of means-end mod-
els, and to the concept of multiple views. The second chapter gives an
overview of related work and Chapter 3 contains an introduction to the
MFM language, together with some new ideas. Then three new diagnos-
tic methods are described, followed by a chapter about the implemented
toolbox, and a last chapter concerning presentation of means-end infor-
mation for the user.

9.1 Diagnostic Methods

The main contributions of this work are the invention, implementation,
and testing of three new diagnostic methods. The methods use MFM
as a database and performs measurement validation, alarm analysis,
and fault diagnosis. They have been implemented in G2, and tested
on two target processes. One of these, Steritherm, is a small industry
process with about 30 sensors and more than 100 major components.
The implementation is of moderate size, see Table 9.1, and forms a
toolbox for MFM models. Note that the rules are generic for MFM, and
thus the same rules can be used for all processes.

Measurement validation 71 rules
Alarm analysis 64 rules
Fault diagnosis 19 rules

Table 9.1 The three diagnostic methods have been implemented with small
G2 knowledge databases. The rules are generic for all processes.

The algorithms are local and incremental. They work in reaf—time, and
propagate information along static links. This makes them quite effi-

cient, and the execution effort increases at worst linearly with the size

218

9.1 Diagnostic Methods

of the models. A C implementation of the fault diagnosis takes 200 mi-
croseconds to search through an MFM model of Steritherm. The other
methods could be equally efficiently implemented.

The implementation has given a valuable test on how the methods
work in practise. It also works as a test experience in implementing
a knowledge database and in using G2. The conclusion is that G2 is
excellently suited for the task. There is probably no other tool that
would come close to the same ease and efficiency.

9.2 Secondary Contributions

In addition to the primary conclusions, several smaller contributions
can also be found in the work.

One goal has been to evaluate MFM. It is quite clear that means-end
models are important and useful, both in diagnostic tasks in general and
for presentation to operators. Thus they are a valuable complement to
other types of models. MFM works reasonably well in modeling of many
processes, but enhancements are needed. The work suggests several
additions and changes to the syntax and semantics. These include the
modeling of biochemical processes and of control systems. The main
conclusion here is that the new diagnostic algorithms show the strength
of the MFM framework. However, it is also possible to generalize the
three methods to use other model frameworks than MFM.

The project also shows the strength of and the need for multiple
view representation and presentation. It is not true that one type of
model will suffice for all the tasks demanded of supervision and control
systems. Thus several model types must be allowed to live side by side.

9.3 Further Developments

The results of the work certainly need further corroboration. The imple-

mented rule databases need testing and development, both concerning

theory and specific details of implementation.

= =7 A major issu& it MFM is to include more types of functions, and to

-~ describe processes not entirely based on flows. In that case the three
diagnostic methods should also be further developed to handle the new
functions.

219

Chapter 9 Conclusions

The ideas of the three diagnostic methods could also be extended
to use models other than MFM. For example, a new graphical language
with more differentiated objects could be developed. The graphical lan-
guage in question should probably be closer in look to existing topological
and geographical descriptions.

Several issues within MFM modeling need further attention. The
modeling of control systems, and the inclusion of non flow-based pro-
cesses are two obvious cases. Many minor details should also be further
investigated, e.g., concerning the connection syntax. It is also important
to develop a practise for modeling with MFM.

MFM may be used for several other methods within diagnostic rea-
soning. One example is the automatic generation of simulation equa-
tions from the flow networks and another is planning. It would also be
possible to generate data for different methods in qualitative reasoning,
etc.

The implementation leaves several questions unanswered. For an
implementation like the one done in this project, G2 has proved ex-
cellent. However, to make the methods available in realistic control
systems, it is necessary to look for other, more ordinary ways of imple-
mentation, for example in a standard programming language like C.

Finally, the diagnostic methods proposed should be further com-
pared with other methods, both concerning similar, competing proper-
ties, and concerning how the different methods could be combined, to
provide better diagnostic resolution.

In spite of all that remains to be done, however, it is the hope of
the author that this thesis will bring knowledge-based diagnosis in gen-
eral and MFM in particular forward, and thus form another small step
among all the steps taken by science in the long but steady march to-
wards the future.

220

CHAPTER 10

REFERENCES

The purposes of this reference collection are threefold: to give a back-
ground to the methods developed in this work, to give a selected overview
of the model-based diagnosis and means-end model research area, and
to give a complete list of references for the project behind the third part
of the thesis.

ALLEN, D. J. and M. S. M. Rao (1980): “New Algorithms for the
Synthesis and Analysis of Fault Trees,” Ind. Eng. Chem. Fundam.,
19, 1, 79-85.

ArLmasy, G. A. and T. Sztano (1975): Problems of Control and Infor-
mation Theory, 4, 1, 57-69.

ANTSAKLIS, P. J., K. M. PASSINO, and S. J. WANG (1991): “An Introduction
to Autonomous Control Systems,” IEEE Control Systems, 11, 4, 5-13.

AseA BRrROWN BOVERI, SATTCONTROL, TELELOGIC, and DEPARTMENT
OF AUTOMATIC CONTROL, LUND INSTITUTE OF TECHNOLOGY (1988):
Knowledge-Based Real-Time Control Systems—IT4 Feasibility Study,
Studentlitteratur, Lund.

ASEA BROWN BOVERI, SATTCONTROL, and DEPARTMENT OF AUTOMATIC
CONTROL, LUND INSTITUTE OF TECHNOLOGY (1990): Knowledge-Based
Real-Time Control Systems—IT4 Project: Phase 1, Internal report,
Lund.

AseA BROWN BOVERI and DEPARTMENT OF AUTOMATIC CONTROL, LUND IN-
STITUTE OF TECHNOLOGY (1991): Knowledge-Based Real-Time Control
Systems—IT4 Project: Phase 2, Internal report, Lund.

AsuaBY, W. R. (1956): Introduction to Cybernetics, Chapman & Hall,
- 7_I}ondon.

W g

‘BENVENISTE, A. (1991): “Meetings Held with Thomson-CSF, GEC-
Alsthom, and Siemens-AG,” IEEE Control Systems Magazine, June
1991, 86-92.

221

Chapter 10 References

Boppy, M. and T. DEAN (1989): “SolVing Time Dependent Planning
- Problems,” Proceedings of the 11th International Joint Conference on
Artificial Intelligence, pp. 979-984.

BROWNSTON, L., R. FARRELL, E. KANT, and N. MARTIN (1985): Program-
ming Expert Systems in OPS5: An Introduction to Rule-Based Pro-
gramming, Addison-Wesley, Reading, Massachusetts.

CHERUY, A., R. MONTELLANO, and M. P. BERNIER (1989): “Computer-
Aided Design in Modeling of Biotechnical Processes,” in Breedveld, P.
et al (Eds.): Modeling and Simulation of Systems, J. C. Baltzer AG,
Scientific Publishing Co., pp. 235-237.

CHRISTIANSSON, M. and P. EricssoN (1989): Knowledge-Based Control
and Modeling with G2, Master’s thesis, TFRT-5411, Department of
Automatic Control, Lund Institute of Technology, Lund.

CHUNG, D. T. and M. MoODARRES (1989): “GOTRES: An Expert System
for Fault Detection and Analysis,” Reliability Engineering and System
Safety, 24, 113-137. ’

COGSYS (1990): COGSYS Manual, COGSYS Ltd., Salford, United
Kingdom.

COHEN, G. (1991): “Meetings with Electricité de France,” IEEE Control
Systems Magazine, June 1991, 92-94.

Crespo, A., J. L. NAvARRO, R. VivO, A. Garcia, and A. ESPINOSA
(1992): “RIGAS: an Expert Server Task in Real-Time Environments,”
Proceedings of the 1992 IFAC/IFIP/IMACS International Symposium
on Artificial Intelligence in Real-Time Control, Delft, Nederland,
pp. 631-636.

CRrESPO, A., J. L. NAVARRO, R. VIvO, A. ESPINOsA, and A. GARCiA (1991):
“A Real-Time Expert System for Process Control,” Proceedings of
the 3rd IFAC International Workshop on Artificial Intelligence in
Real-Time Control, Rhonert Park, Sonoma, California.

CREUTZFELDT, J. (1990): Sensorvalidering, alarmbehandling, og fejldiag-
nose 1 stgrre processanlaeg, (Sensor Validation, Alarm Analysis, and
Fault Diagnosis in Large Processes), Ph. D. thesis, preliminary status

= -veport, Institute 6f Automatic Control Systems, Technical University

of Denmark, Lyngby, Denmark, in Danish.

Davip, R. and H. ArLrLA (1992): Petri Nets and Grafeet: Tools for Modeling

292

Discrete Event Systems, Prentice Hall, New York.

Davis, R. and W. HAMSCHER (1988): “Model-Based Reasoning: Trouble-
shooting,” in H. Shrobe, (Ed.): Exploring Artificial Intelligence, Mor-
gan Kaufmann Publishers, Inc., San Mateo, California, pp. 297-346.

DEaN, T. and M. Boppy (1988): “An Analysis of Time Dependent
Planning,” Proceedings of the AAAI ‘88, pp. 49-54.

DE KLEER, J. (1986 a): “An Assumption-Based Truth Maintenance
System,” Artificial Intelligence, 28, 2.

DE KLEER, J. (1986 b): “Problem Solving with the ATMS,” Artificial
Intelligence, 28, 2.

DE KLEER, J. and J. S. BROWN (1984): “A Qualitative Physics Based on
Confluences,” Artificial Intelligence, 24, 1-3, 7-83.

DE MARE, J. (1980): “Optimal Prediction of Catastrophes With Applica-
tions to GauBlian Processes,” The Annals of. Prébabj]it)c 8, 4, 841-850.

DENNETT, D. C. (1987): The Intentional Stance, Bradford Books,
Cambridge, Massachusetts.

Duncan, K. D. and N. PrR&TORIUS (1989): “Flow Displays Representing
Complex Plant for Diagnosis and Process Control,” Proceedings of the
Znd European Meeting on Cognitive Science Approaches to Process
Control, Siena, Italy.

DvoRraAk, D. L. (1992): Monitoring and Diagnosis of Continuous Dynamic
Systems Using Semiquantitative Simulation, Doctor’s Dissertation,
Al 92-170, Artificial Intelligence Laboratory, University of Texas at
Austin, Austin, Texas.

Dvorak, D. L. and B. Kurpers (1991): “Process Monitofing and
Diagnosis,” IEEE Expert, June 1991, 67-74.

FArzA, M. and A. CHERUY (1991): “CAMBIO: A Software for Modeling
and Simulation of Bioprocesses,” Computer Applications in the
Biosciences, 7, 3, 327-336.

‘FIKES R. E. and N. J. NiLsson (1971): “STRIPS: A New Approach to

‘the Apphcatlon of Theorem Proving to Problem Solving,’ Artificial
Intelligence, 2, 189-208.

FincH, F. E. (1989): Automated Fault Diagnosis of Chemical Process

223

Chapter 10 References

Plants Using Model-Based Reasonjng,‘ Doctor’s thesis, Massachusetts
Institute of Technology, Cambridge, Massachusetts.

ForBus, K. D. (1984): “A Qualitative Process Theory,” Artificial
Intelligence, 24, 85-168.

Forsus, K. D. (1988): “Qualitative Physics: Part, Present, and Future,”
in H. Shrobe, (Ed.): Exploring Artificial Intelligence, Morgan Kauf-
mann Publishers, Inc., San Mateo, California, pp. 239-296.

Frank, P. M. (1990): “Fault Diagnosis in Dynamic Systems Using
Analytical and Knowledge-Based Redundancy—A Survey and Some
New Results,” Automatica, 26, 3, 459—474.

FraNK, P. M. (1991): “Enhancement of Robustness in Observer-Based
Fault Detection,” Proceedings of the IFAC/IMACS Symposium SAFE-
PROCESS 91, Baden-Baden, pp. 275-287.

FrANK, P. M. (1992): “Robust Model-Based Fault Detection in Dynamic
Systems,” Proceedings of the IFAC Symposium on On-Line Fault
Detection and Supervision in the Chemical Process Industries,
University of Delaware, Newark, Delaware.

GREPA (1985). Le Grafcet — de Nouveaux Concepts, Groupe Equip-
ment de Production Automatisée réuni a TADEPA, Cepadues-éditions,
111, rue Nicolas-Vauquelin, 31100 TOULOUSE, France.

HaMscHER, W., L. CONSOLE, and J. DE KLEER, (Eds.) (1992): Readings
in Model-Based Diagnosis, Morgan-Kaufmann Publishers, Inc., San
Mateo, California.

HANSSON, A. and L. NIELSEN (1991): “Control and Supervision in

Sensor-Based Robotics,” Proceedings of Robotikdagar 1991, Linkoping

University, Linkoping, Sweden.

HARMON, P. and D. KNG (1985): Expert Systems, Artificial Intelligence
in Business, John Wiley & Sons, New York.

Haves-RoTH, B. (1985): “A Blackboard Architecture of Control,” Artifi-
cial Intelligence, 26, 251-321.

Hayes-RoTH, B. (1990): “Architectural Foundations for Real-Time
-Performance in Initelligent Agents,” Real Time Systems, 2, 1,2

Haves-RotH, B., R. WasHINGTON, R. HEWETT, M. HEWETT, and A.
SEIVER (1989): “Intelligent Real-Time Monitoring and Control,”

294

Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence.

Haves-RoTtH, F., D. A. WATERMAN and D. B. LENAT (1983): Building
Expert Systems, Addison-Wesley, Reading, Massachusetts.

HewEeTT, R. (1990): “ICE Manual,” BB1 Internal report.

HiMMELBLAU, D. M. (1987): “Interval Analysis as a Tool for Data
Rectification,” Proceedings of the AIChE Annual Meeting, Houston,
Texas.

Ho, Y. C. (Ed.) (1989): Proceedings of the IEEE Special Issue on the
Dynamics of Discrete Event Systems, 77, 1.

ISERMANN, R. (1984): “Process Fault Detection Based on Modeling and
Estimation Methods—A Survey,” Automatica, 20, 4, 387—404.

JAGER, R. (1990): “Direct Real-Time Control using Knowledge-Based
Techniques,” Proceedings of the ESS ’90 Intelligent Process Control
Design, Ghent, Belgium.

JAMES, J. R. and C. J. HERGET (1991): “Software Tools for Distributed
Intelligent Control Systems,” Proceedings of the 3rd IFAC Interna-
tional Workshop on Artificial Intelligence in Real-Time Control, Rhon-
ert Park, Sonoma, California.

KARNOPP, D. and R. ROSENBERG (1975): System Dynamics: A Unified
Approach, John Wiley and Sons, New York.

KM, I. S. and M. MODARRES (1987): “Application of Goal Tree — Success
Tree Models as the Knowledge-Base of Operator Advisory Systems,”
Nuclear Engineering and Design, 104, 67-81.

KrygsMAN, A. J. and R. JAGER (1992): “DICE: a Real-Time Toolbox,”
Preprints of the 1992 IFAC/IFIP/IMACS International Symposium
on Artificial Intelligence in Real-Time Control, Delft University of
Technology, Delft, the Netherlands, pp. 637-641.

KRIJGSMAN, A. J., R. JAGER, H. B. VERBRUGGEN, and P. M. BRULN (1991):
“DICE: a Framework for Real-Time Intelligent Control,” Proceedings

_ of the 3rd IFAC International Workshop on Artificial Intelligence in
- "Real-Time Contro] Rhonert Park, Sonoma, California.

KR1JGSMAN, A. J., H. B. VERBRUGGEN, P. M. BRUIN, and E. G. M. HoL-
WEG (1990): “DICE: a Real-Time Intelligent Control Environment,”

225

Chapter 10 References

Proceedings of the ESS 90 Intelligent Process Control Design, Ghent,
Belgium.

KUIPPERS, B. J. (1984): “Commonsense Reasoning About Causality: De-
riving Behavior From Structure,” Artificial Intelligence, 24, 169-204.

KurppERs, B. J. (1986): “Qualitative Simulation,” Artificial Intelligence,
29, 289-338.

KUrIPPERS, B. J. (1989): “Qualitative Reasoning: Modeling and Simula-
tion with Incomplete Knowledge,” Automatica, 25, 4, 571-585.

KALLSTROM, C. G. (1979): Identification and Adaptive Control Applied to
Ship Steering, Doctor’s thesis, TFRT-1018, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

LARSSON, J. E. (1984): An Expert System Interface for Idpac, Master’s
thesis, TFRT-5310, Department of Automatlc Control Lund Institute
of Technology, Lund. /

LArssoN, J. E. (1988): “MESS—A Minimal Expert System Shell,”
Technical report, TFRT-7380, Department of Automatlc Control,
Lund Institute of Technology, Lund.

LARSSON, J. E. (1990 a): “A Knowledge-Based Control System Concept,”
Workshop on Methods for Measuring, Monitoring, and Controlling
Aseptic Processing, The Swedish Institute for Food Research, Lund
Institute of Technology, Lund.

LARssoN, J. E. (1990 b): “A Multilevel Flow Model of Steritherm,”
Proceedings of the SAIS '90 Workshop, Institute of Computing and

System Science, Stockholm University / Royal Institute of Technology,
Stockholm. .

LARSSON, J. E. (1990 c): “An Expert System for Frequency Response
Analysis,” Technical report, TFRT-7469, Department of Automatic
Control, Lund Institute of Technology, Lund.

LARSSON, J. E. (1990 d): “A Multilevel Flow Model of Steritherm,”
Proceedings of the ESS °90 Intelligent Process Control Design, Ghent,
fgelgium. L

. {

% LARSsSON, J. E. (1990 e): “A Multilevel Flow Model of Steritherm,” Pro-
ceedings of Reglermote °90, Division of Automatic Control, Linképing
University, Linkoping, p. 41.

226

LARSSON, J. E. (1990 f): “A Multilevel Flow Model of Steritherm,”
Proceedings of the Nordic CACE Symposium, Technical University
of Denmark, Lyngby, Denmark.

LARSSON, J. E. (1991 a): “Model-Based Alarm Analysis Using MFM,”
Technical report, TFRT-7470, Department of Automatic Control,
Lund Institute of Technology, Lund.

LARSSON, J. E. (1991 b): “Model-Based Fault Diagnosis Using MFM,”
Proceedings of the SAIS 91 Workshop, Computer Science Depart-
ment, Uppsala University, Uppsala.

LARSSON, J. E. (1991 c): “Model-Based Alarm Analysis Using MFM,”
Proceedings of the 3rd IFAC International Workshop on Artificial
Intelligence in Real-Time Control, Rhonert Park, Sonoma, California.

LARSSON, J. E. (1991 d): “FREX—An Expert System for Frequency
Response Analysis,” Proceedings of the 11th Triennial IFAC World
Congress 1990, Tallinn, Estonia, pp. 41-45. °

LARSSON, J. E. (1992 a): “Model-Based Measurement Validation Using
MFM,” Proceedings of the IFAC Symposium on On-Line Fault
Detection and Supervision in the Chemical Process Industries,
University of Delaware, Newark, Delaware.

LARSSON, J. E. (1992 b): “Model-Based Fault Diagnosis Using MFM,”
Proceedings of the IFAC Symposium on On-Line Fault Detection
and Supervision in the Chemical Process Industries, University of
Delaware, Newark, Delaware.

LARssoN, dJ. E. (1992 c): “An MFM Toolbox,” Technical report,
TFRT-7493, Department of Automatic Control, Lund Institute of
Technology, Lund.

LARSSON, J. E. and P. PERSSON (1986): “Knowledge Representation by
Scripts in an Expert Interface,” Proceedings of the 1986 American
Control Conference, Seattle, Washington.

LARSSON, J. E. and P. PERSSON (1987 a): An Expert System Interface
for Idpac, Licentiate thesis, TFRT-3184, Department of Automatic

\T!LARSSON J. E. and P. PERSSON (1987 b): “The (ihs) Reference Manual,”
Technical report, TFRT-7341, Department of Automatic Control,
Lund Institute of Technology, Lund.

227

Chapter 10 References

LARSSON, J. E. and P. PErRSSON (1987 c): “A Knowledge Database for
System Identification,” Technical report, TFRT-7342, Department of
Automatic Control, Lund Institute of Technology, Lund.

LARSSON, J. E. and P. PERSSON (1988 a): “An Intelligent Help System for
Idpac,” Proceedings of the 8th European Conference on Artificial Intel-
ligence, Technischen Universitdt Miinchen, Miinchen, pp. 119-123.

LARSSON, J. E. and P. PErssoN (1988 b): “The Knowledge Database
Used in an Expert Interface for Idpac,” Proceedings of the IFAC
Workshop on Artificial Intelligence in Real-Time Control, Swansea,
Wales, pp. 107-112.

LARSSON, J. E. and P. PERSSON (1991): “An Expert System Interface for
an Identification Program,” Automatica, 27, 6, 919-930.

LARSSON, J. E. and K. J. ASTROM (1985): “An Expert System Interface
for Idpac,” Proceedings of the 2nd IEEE Control Systems Society Sym-

posium on Computer-Aided Control System Design, Santa Barbara,
California.

LEES, F. P. (1983): “Process Computer Alarm and Disturbance Analysis:
Review of the State of the Art,” Computers and Chemical Engineering,
7, 6.

LvD, M. (1979): “The Use of Flow Models for Design of Plant Operating
Procedures,” IWG/NPPCI Specialists Meeting on Procedures and
Systems for Assisting an Operator During Normal and Anomalous
Nuclear Power Plant Operation, Garching, Deutschland.

LD, M. (1987): “Multilevel Flow Modeling—Basic Concepts,” Technical
report, Institute of Automatic Control Systems, Technical University
of Denmark, Lyngby, Denmark.

LD, M. (1988): “Issues in Modeling Information Flow,” Workshop on
New Technology, Distributed Decision Making, and Responsibility,
Bad Homburg.

LD, M. (1989): “Human-Machine Interface for Diagnosis Based on
; Multllevel Flow Modeling,” Proceedings of the 2nd European Meeting
" on Cognitive Sczence Approaches to Process Control, Siena, Italy.

LD, M. (1990 a): “Representing Goals and Functions of Complex
Systems—An Introduction to Multilevel Flow Modeling,” Technical

228

report, Institute of Automatic Control Systems, Technical University
of Denmark, Lyngby, Denmark.

LD, M. (1990 b): “Abstractions Version 1.0—Descriptions of Classes
and Their Use,” Technical report, Institute of Automatic Control
Systems, Technical University of Denmark, Lyngby, Denmark.

Linp, M. (1990 c): “An Architecture for Real-Time MFM Diagnosis,”
Technical report, Institute of Automatic Control Systems, Technical
University of Denmark, Lyngby, Denmark.

LD, M. (1990 d): “Modeling Control Tasks in Complex Systems,”
Technical report, Institute of Automatic Control Systems, Technical
University of Denmark, Lyngby, Denmark.

Linp, M., E. HARDER, H. JENSEN, and S. AGGER (1987): “Systembeskriv-
else og prasentation i proceskontrol, (System Representation and Pre-
sentation in Process Control),” SIP project technical report, Institute
of Automatic Control Systems, Technical University of Denmark, Lyn-
gby, Denmark, in Danish.

LINDGREN, G. (1985): “Optimal Prediction of Level Crossings in Gauflian
Processes and Sequences,” The Annals of Probability, 13, 3, 804-824.

MacLeop, I. M. and V. Lun (1991): “Towards Distributed Real-Time
Intelligence,” Proceedings of the 3rd IFAC International Workshop on
Artificial Intelligence in Real-Time Control, Rhonert Park, Sonoma,
California.

Mag, R. S. H. (1990): Chemical Process Structures and Information
Flows, Butterworths, Boston, Massachusetts.

Mag, R. S. H., G. M. STANLEY, and D. M. DowNING (1976): “Reconcili-
ation and Rectification of Process Flow and Inventory Data,” I & EC
Proc. Des. Dev,, 15, 175-183.

Mag, R. S. H. and A. C. TAMHANE (1982): “Detection of Gross Errors in
Process Data,” AIChE Journal, 28, 828-830.

MARINO, O., F. RECHENMANN, and P. UViETTA (1990): “Multiple Perspec-

tives and Classification Mechanism in Object-Oriented Representa-
. tion,” Proceedings, of the 9th European Conference on Artificial Intel-
- ligence, Stockholm, pp. 425—430. '

MiNsKY, M. (1965): “Models, Minds, Machines,” Proceedings of the IFIP
Congress, pp. 45—49.

229

Chapter 10 References

"MobARgres, M. and T. CADMAN (1986): “A Method of Alarm System
Analysis for Process Plants,” Computers and Chemical Engineering,
10, 6, 557-565.

MONTELLANO, R., M. P. BERNIER, A. CHERUY, and M. FARzA (1990): “A
Knowledge-Based System in Modeling and Control for Biotechnologi-
cal Processes,” Preprints of the 1990 IFAC World Conference, Tallinn,
Estonia, pp. 54-58.

Mooreg, R. L., L. B. HawriNsoN, M. LeviN, A. G. HOoFFMANN, B. L.
MATTHEWS, and M. H. Davip (1987): “Expert System Methodology
for Real-Time Process Control,” Proceedings of the 10th IFAC World
Congress, Miinchen, pp. 274-281.

MoorE, R. L., H. RosENOF, and G. STANLEY (1991): “Process Control
Using a Real-Time Expert System,” Proceedings of the 11th Triennial
IFAC World Congress 1990, Tallinn, Estonia, pp. 241-245.

MoTUS, L. (1991): “Artificial Intelligence in Hard Real-Time—A New
Paradigm Needed?,” Proceedings of the 3rd IFAC International
Workshop on Artificial Intelligence in Real-Time Control, Rhonert
Park, Sonoma, California.

MURDOCK, J. L. and B. HAvEs-RoTH (1991): “Intelligent Monitoring and
Control of Semiconductor Manufacturing Equipment,” IEEE Expert,
December 1991, 19-31.

Nagy, P. A. J. (1992): Tools for Knowledge-Based Signal Processing
with Applications to System Identification, Doctor’s thesis, No.
280, Department of Electrical Engineering, Linkoping University,
Linko6ping, Sweden. |

Nagy, P. A. J. and L. LsunG (1989): “An Intelligent Tool for System
Identification,” Proceedings of the 1989 IEEE Control System Society
Workshop on Computer-Aided Control System Design, Hyatt Regency,
Tampa, Florida, pp. 58-63.

Nagy, P. A. J. and L. LsunGg (1991): “An Intelligent Tool for
System Identification,” Proceedings of the 1991 IFAC Symposium

. .on Identification,. and System Parameter Estimation, Budapest,
" pp. 918-923. ‘

Ng, H. T. (1991): “Model-Based, Multiple-Fault Diagnosis of Dynamic,
Continuous Physical Devices,” IEEE Expert, December 1991, 38-43.

230

NILSSON, A. (1991): Qualitative Model-Based Diagnosis—MIDAS in G2,
Master’s thesis TFRT-5443, Department of Automatic Control, Lund
Institute of Technology, Lund.

NorBY LARSEN, M. (1990): “Strips as a Planning Method Within Ab-
stractions and MFM Modeling,” Technical report, Institute of Auto-
matic Control Systems, Technical University of Denmark, Lyngby,
Denmark.

OsMAN, A. (1990): “The Interface Substrate,” Technical report, Institute
of Automatic Control Systems, Technical University of Denmark,
Lyngby, Denmark.

OYELEYE, O. O. (1989): Qualitative Modeling of Continuous Chemical
Processes and Applications to Fault Diagnosis, Doctor’s thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts.

PADALKAR, S., G. KARsal, C. BiecL, J. SztipANOVITS, K. OKUDA, and N.
MivASAKA (1991): “Real-Time Fault Diagnosis,” IEEE Expert, June
1991, 75-85.

PAYNTER, H. M. (1961): Analysis and Design of E’ngmeermg Systems,
MIT Press, Cambridge, Massachusetts.

PETERSON, J. L. (1981): Petri Net Theory and the Modeling of Systems,
Prentice Hall, New York.

PerTI, T. F. (1992): Using Mathematical Models in Knowledge-Based
Control Systems, Ph. D. Dissertation, University of Delaware,
Newark, Delaware.

PeTTI, T. F. and P. S. DHURJATI (1991): “Object-Based Automated Fault -
Diagnosis,” Chemical Engineering Communications, 102, 107-126.

PerTL, T. F., J. KLEIN, and P. S. DHURJATI (1990): “Dlagnostlc Model
Processor: Using Deep Knowledge for Process Fault Diagnosis,”
AIChE Journal, 36, 4, 565-575.

PoLracia, L. F. (1989): “A Survey of Discrete Event Simulation and
State-of-the-Art Discrete Event Languages,” Simulation Digest, 20,
3, 8-25.

?RATVIADGE P.J. G. and W. M. WoNHAM (1989): “The Control of Discrete
Event Systems,” Proceedings of the IEEE, 77, 1, 81-98.

RASMUSSEN, J. (1986): Information Processing and Human Machine

231

Chapter 10 References

Interaction: An Approach to Cognitive Engineering, North Holland,
New York.

RASMUSSEN, J. and L. P. GOODSTEIN (1988): “Information Technology
and Work,” in M. Helander (Ed.): Handbook of Human-Computer
Interaction, Elsevier Science Publishers B. V. North-Holland, New
York.

RASMUSSEN, J. and M. LiND (1981): “Coping with Complexity,” Technical
report, Risg National Laboratory, Roskilde, Denmark.

REITER, R. (1987): “A Theory of Diagnosis from First Principles,”
Artificial Intelligence, 32, 1, 57-95.

SANDEWALL, E. (1988): “Future Developments in Artificial Intelli-
gence—A Personal View,” Proceedings of the 8th European Confer-
ence on Artificial Intelligence, Technischen Universitdt Miinchen,
Miinchen, pp. 707-715.

SARIDIS, G. N. (1977): Self-Organizing Control of Stochastic Systems,
Marcel Dekker, Inc., New York.

SASSEN J. M. A. AND R. B. M. JASPERS (1992): “Designing Real-Time
Knowledge-Based Systems with PERFECT,” Preprints of the 1992
IFAC/IFIF/IMACS International Symposium on Artificial Intelligence
in Real-Time Control, Delft University of Technology, Delft, the
Netherlands, pp. 625-630.

SASSEN J. M. A., A. OLLONGREN, and R. B. M. JASPERS (1992): “Predicting
and Improving Response-Times of PERFECT Models,” Preprints of
the 1992 IFAC/IFIP/IMACS International Symposium on Artificial
Intelligence in Real-Time Control, Delft University of Technology,
Delft, the Netherlands, pp. 709-714.

SASSEN J. M. A, P C. RIEDUK, AND R. B. M. JASPERS (1991):
“Using Multilevel Flow Models for Fault Diagnosis of Industrial
Processes,” Proceedings of the 3rd European Conference on Cognitive
Science Approaches to Process Control, Cardiff, United Kingdom,
pp. 207-216.

B (el

SCﬁANK, R. C. and R. P. ABELSON (1977): Scripts, Plans, Goals
and Understanding, Lawrence Erlbaum Associates, Hillsdale, New
Jersey.

232

'SCHANK, R. C. and C. K. RIESBECK (1981): Inside Computer Understand-
ing, Lawrence Erlbaum Associates, Hillsdale, New J ersey.

SHORTLIFFE, E. H. (1976): Computer Based Medical Consultations:
MYCIN, Elsevier Science Publishers B. V. North-Holland, New York.

STEFIK, M. et al (1982): The Organization of Expert Systems—A Pre-
scriptive Tutorial, Palo Alto Research Centers, Palo Alto, California.

STRUSS, P. (1987): “Multiple Representation of Structure and Function,”
in Gero, J. (Ed.): Expert Systems in Computer-Aided Design, Elsevier
Science Publishers B. V. North-Holland, New York.

STRUSS, P. (1991): “What’s in SD? Towards a Theory of Modeling for
Diagnosis,” “Working notes of the Second International Workshop on
Principles of Diagnosis,” CISE-Tecnologie Innovative, Milano.

STRUSS, P. (1992): “What’s in SD? Towards a Theory of Modeling for
Diagnosis,” in Hamscher, W., L. Console, and J. de Kleer, (Eds.):
Readings in Model-Based Diagnosis, Morgan-Kaufmann Publishers,
Inc., San Mateo, California.

SZAFNICKI, K. and S. GeNTIL (1991): “An Object-Oriented Knowl-
edge-Based System for Process Identification,” Preprints of the IFAC

Symposium on Computer-Aided Design in Control Systems, Swansea,
Wales, pp. 188-193.

TERPSTRA, V. J., H. B. VERBRUGGEN, and P. M. BRULN (1991): “In-
tegrating Information Processing and Knowledge Representation in
an Object-Oriented Way,” Proceedings of the Workshop on Computer
Software Structures Integrating AVKBS Systems in Process Con trol,
Bergen, Norway, pp. 19-29.

TERPSTRA, V. J., H. B. VERBRUGGEN, M. W. HooGLAND, and R. A. E. FICKE
(1992): “A Real-Time, Fuzzy, Deep-Knowledge Based Fault Diagnosis
System for a CSTR,” Proceedings of the IFAC Symposium on On-Line
Fault Detection and Supervision in the Chemical Process Industries,
University of Delaware, Newark, Delaware.

THoMa, J. U. (1975): Introduction to Bond Graphs and Their Applica-
. tions, Pergamon Press, New York. '

Tomita, S., K. S. HwanGg, E. O'SHIMA, and C. MCGREAVY (1989):
“Automatic Syntheziser of Operating Procedures for Chemical Plant

233

Chapter 10 References

by Use of Fragmentary Knowledge,” Journal of Chemical Engineering
of Japan, 22, 4, 364-372.

Tomita, S., H. Yunki, M. Mounri, T. Sawa, and E. O’SHiMA (1986):
“Development of Batch Process Operating System,” Proceedings of the
3rd World Congress of Chemical Engineering, Tokyo.

TorAsso, P. and L. CoNsoLE (1989): Diagnostic Problem Solving, North
Oxford Academic, Kogan Page Ltd., London.

VAN DEN REE, R., H. KOPPELAAR, and E. J. H. KERCKHOFFS (1991 a):
“Knowledge Management in Process Modeling. Engineering Systems
with Intelligence: Concepts, Tools, and Applications.,” Proccedings of
the Furopean Robotics and Intelligent Systems Conference, Kluwer
Academic Publishers, Dordrecht, Nederland, pp. 83-90.

VAN DEN REE, R., H. KOPPELAAR, and E. J. H. KERCKHOFFS (1991 b):
“Proposal for Process Modeling,” Proccedings of the IMACS MCTS
91, Modeling and Control of Technological Systems, Lille, France,
pp. 732-7317.

VERBRUGGEN, H. B. and K. J. AstroM (1989): “Artificial Intelligence
and Feedback Control,” Proceedings of the 2nd IFAC International
Workshop on Artificial Intelligence in Real-Time Control, China.

VINA, A. and B. Haves-RotH (1991): “Knowledge-Based Real-Time
Control: The Use of Abstraction to Satisfy Deadlines,” Proceedings
of the 3rd IFAC International Workshop on Artificial Intelligence in
Real-Time Control, Sonoma, California.

WALSETH, J. A, B. A. Foss, M. LD, and O. OGaARD (1992): “Models
for Diagnosis—Application to a Fertilizer Plant,” Proceedings of the
IFAC Symposium on On-Line Fault Detection and Supervision in
the Chemical Process Industries, University of Delaware, Newark,
Delaware.

WATERMAN, D. A. (1986): A Guide to Expert Systems, Addison-Wesley,
Reading, Massachusetts.

WELD, D. S. and J. pE KiLEER (Eds.) (1990): Readings in Qualitative

. Reasoning aboyt Physical Systems, Morgan Kaufmann Publishers,
* Inc., San Mateo, California. ‘

WIENER, N. (1948): Cybernetics, MIT University Press, Cambridge,
Massachusetts.

234

-Woobs, E. A. (1991): “The Hybrid Phenomena Theory,” in J. Mylopoulos
and R. Reiter (Eds.): Proceedings of the 12th International Joint
Conference of Artificial Intelligence, Morgan Kaufmann Publishers,
Inc., San Mateo, California.

Woobs, E. A. and J. G. BALCHEN (1991): “Structural Estimation with the
Hybrid Phenomena Theory,” Preprints of the 3rd IFAC International
Workshop on Artificial Intelligence in Real-Time Control, Rhonert
Park, Sonoma, California.

ZIEGLER, B. P. (1990): Object-Oriented Simulation with Hierarchical,
Modular Models, Academic Press, Inc., San Diego.

ArziN, K. E. (1989): “Knowledge-Based Control Systems: Aspects on the
Unification of Conventional Control Systems and Knowledge-Based
Systems,” Proccedings of the 1989 American Control Conference,
Pittsburgh, Pennsylvania.

Arzin, K. E. (1990): “Knowledge-Based Control Systems,” Proccedings
of the 1990 American Control Conference, San Diego, California.

Arzin, K. E. (1991): “Knowledge-Based Applications in the Process
Industry: Current State and Future Directions,” Proceedings of the
Workshop on Computer Software Structures Integrating AI/KBS
Systems in Process Control, Bergen, Norway.

Arzin, K. E. (1993): “A Model-Based Control System Concept,”
manuscript, to appear.

Arzgn, K. E., C. RyTorT, and C. GERDING (1990): “A Knowledge-Based
Control System Concept,” Proceedings of the ESS 90 Intelligent
Process Control Design, Ghent, Belgium.

Astrom, K. J., J. J. ANTON, and K. E. ArzEN (1986): “Expert Control,”
Automatica, 22, 3, 277-286.

AstrOM, K. J., A. BENVENISTE, P. E. GAINES, G. COHEN, and L. LJUNG
(1993): “Facing the Challenge of Computer Science in the Industrial
Applications of Control,” to appear as an IFAC report at the 12th
Triennial World Congress of IFAC in Sydney 1993.

AstroM, K. J., Av BENVENISTE, P. E. GAINES, G. COHEN, L. LJUNG, and
~ P. VARAIYA (1991): “Facing the Challenge of Computer Science in the
Industrial Applications of Control,” IEEE Control Systems Magazine,
June 1991, p. 86.

235

Chapter 10 References

AstrOM, T. HAGGLUND, C. C. HaNG, and W. K. Ho (1992): “Automatic
Tuning and Adaptation for PID Controllers—A Survey,” Proceedings of
the 4th IFAC International Symposium on Adaptive Systems in Con-
trol and Signal Processing, Ecole Nationale Superieure D’Ingenieurs
Electriciens de Grenoble, Grenoble, France, pp. 121-126.

236

