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Abstract Sorption isotherms describe the relation

between the equilibriummoisture content of a material

and the ambient relative humidity. Most materials

exhibits sorption hysteresis, that is, desorption give

higher equilibrium moisture contents than absorption

at equal ambient climate conditions. Sorption hystere-

sis is commonly evaluated by determination of an

absorption isotherm followed by desorption starting

from the highest relative humidity used in the

absorption measurement (typically 95%). The latter

is often interpreted as the desorption isotherm but is in

fact a scanning isotherm, i.e. an isotherm obtained

from neither dry nor water-saturated state. In the

present study, we investigated the difference between

desorption isotherms and scanning isotherms deter-

mined by desorption from different high relative

humidity levels reached by absorption and how this

difference influenced the evaluation of sorption hys-

teresis. The measurements were performed on Norway

spruce (Picea abies (L.) Karst.) using automated

sorption balances. Hysteresis evaluated from desorp-

tion isotherms gave linear absolute sorption hysteresis

for the studied relative humidity range (0–96%),

whereas hysteresis evaluated from scanning isotherms

gave non-linear curves with a peak between 50 and

80% relative humidity. The position of this peak

depended on the relative humidity from which

desorption was initiated. Consequently, understanding

and evaluation of sorption hysteresis might be chal-

lenging if scanning isotherms are used instead of

desorption isotherms, hereby increasing the risk of

misinterpreting the results.
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Graphical Abstract
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Introduction

Water influences most physical wood properties such

as mechanical properties and dimensional stability,

and additionally plays an important role in wood

degradation processes. The interaction between wood

and water has therefore been widely studied, and this

is often done by measuring sorption isotherms. These

depict the equilibrium moisture content of a material

as a function of ambient relative humidity (RH) at

constant temperature. Typically, the path to equilib-

rium, i.e. whether equilibrium is obtained through an

increase (absorption) or a decrease (desorption) in

moisture content, influences the moisture content at

given climatic conditions; desorption to equilibrium

results in a higher moisture content than absorption to

equilibrium with the same ambient climate conditions

(Masson and Richards 1906). This phenomenon is

termed sorption hysteresis and can be observed in

many chemically and structurally different materials,

e.g. polymers (Watt 1980), cement based materials

(Espinosa and Franke 2006a), food (Wolf et al. 1972)

and wood (Pidgeon and Maass 1930). Several mech-

anisms have been proposed to explain sorption

hysteresis such as the ink-bottle or pore-blocking

effect (McBain 1935), differences between absorption

and desorption in principal radius of condensation

(Cohan 1938), or free volume in swelling polymeric

materials (Vrentas and Vrentas 1996). Sorption

isotherms initiated from non-extreme conditions (nei-

ther dry nor saturated state) are generally referred to as

scanning isotherms (Espinosa and Franke 2006a, b;

Peralta and Bangi 1998; Velasco et al. 2016). Scan-

ning isotherms connect the desorption and absorption

isotherms and describe the moisture content of a

material when it is exposed to alternate absorption and

desorption.

Wood can take up water both in the polymeric cell

walls and in the macrovoid structure (pits, lumina

etc.), and it exhibits sorption hysteresis in the entire

RH-range, see Fig. 1. The RH-range from 0% up to

97–98% is commonly referred to as ‘‘hygroscopic’’

and the range above as ‘‘over-hygroscopic’’. The exact

intersection between these two ranges is not well-

defined (Espinosa and Franke 2006a), but for wood the

differentiation reflects a change in the way water is

taken up. In wood, water is predominantly found as

bound water in cell walls in the hygroscopic range,

whereas the over-hygroscopic range is dominated by

capillary condensation of liquid water in the macro-

void structure (e.g. lumina and pits). Hence, the

suggested mechanisms behind sorption hysteresis in

wood are different in the two moisture ranges. In the

over-hygroscopic range, the main suggested mecha-

nism is the ink-bottle effect (Fortin 1979; Salin 2008)

where pits act as bottlenecks to the cell lumina. In the

hygroscopic range, sorption hysteresis is related to

internal changes in cell walls as the amount of liquid

water in the void structure is minuscule. Based on the

conceptual framework of Vrentas and Vrentas (1996),

it has been suggested that sorption hysteresis is related

to the mechanics of shrinkage and swelling of the
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cellulosic cell walls during changes in moisture

content (Engelund et al. 2013; Hill et al.

2009, 2012a, b). The exact mechanism is not fully

understood, but an important aspect is assumed to be

the glass transition (softening) of constituent cell wall

polymers (Engelund et al. 2013; Keating et al. 2013;

Salmén and Larsson 2018).

Sorption hysteresis in wood and cellulosic fibres is

commonly evaluated by determination of the absorp-

tion isotherm after initially drying the material,

followed by determination of an isotherm in desorp-

tion starting from the highest RH used in the absorp-

tion measurement (Ammer 1963; Higgins 1957;

Jeffries 1960a; Kelsey 1957; Peralta 1995; Pidgeon

and Maass 1930; Seifert 1972; Sheppard and New-

some 1929; Urquhart and Eckersall 1930; Wahba and

Nashed 1957; Wangaard and Granados 1967; Wei-

chert 1963). In recent years, when the use of

automated sorption balances has become more wide-

spread, the high RH from which desorption is initiated

is typically between 90 and 96% (Ceylan et al.

2014, 2012; Cordin et al. 2017; Hill et al. 2009, 2012b;

Himmel and Mai 2015; Hosseinpourpia et al. 2016;

Jalaludin et al. 2010; Kymäläinen et al. 2015;

Okubayashi et al. 2005a, b; Popescu et al. 2014;

Popescu and Hill 2013; Shi and Avramidis 2017;

Simón et al. 2017; Xie et al. 2011). However, using

this measurement procedure, it is not hysteresis

between desorption and absorption isotherms that is

evaluated, but hysteresis between a scanning isotherm

and the absorption isotherm. This difference is

important to consider when interpreting a phe-

nomenon like sorption hysteresis. In this study, we

show how the use of scanning isotherms instead of

desorption isotherms for characterising sorption hys-

teresis yields complex results which may lead to

misinterpretations of the mechanisms behind sorption

hysteresis.

Materials and methods

Material

Norway spruce (Picea abies (L.) Karst.) from an

experimental forest in Southern Sweden was used, see

Fredriksson et al. (2016) for further information.

Samples of earlywood tissue from mature sapwood

were cut and vacuum saturated with deionised water

using the following procedure: The samples were

subjected to vacuum (1–2 mbar) in a glass desiccator

for 1 h, deionized water was then added while running

the vacuum pump (20 mbar), and finally atmospheric

pressure was re-established. Specimens corresponding

to a dry mass of 3–6 mg were then cut using a razor

blade. In addition, some measurements were per-

formed on specimens of latewood from mature

sapwood and on early- and latewood specimens from

mature heartwood, see Supplementary Information

(SI). Before the specimens were placed in the sorption

balance, each piece was wiped with a moist cloth to

remove excess surface water.

Sorption measurements and hysteresis evaluation

Sorption isotherms were measured at 20 �C using

automated sorption balances (DVS Advantage, Sur-

face Measurement Systems Ltd., London) which

monitor the mass of a specimen (balance resolution

0.1 lg) while the RH is incrementally changed in pre-

programmed steps, see e.g. Williams (1995). The time

necessary to reach equilibrium at each RH level is

specified either as a fixed period of time or by a mass
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Fig. 1 Sorption isotherms for Norway spruce (Picea abies (L.)

Karst.) as a function of pore water pressure based on data from

Fredriksson and Johansson (2016). The insert show a magnifi-

cation of the hygroscopic part as a function of RH on a linear

x-axis, i.e. as sorption isotherms are most commonly presented

in literature. Note that the tranformation from relative humidity

to pressure is made based on the Kelvin equation which is not

necessarily valid in the whole hygroscopic range (Sing et al.

2014)
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stability (dm/dt) criterion where the mass change in a

given time window is below a threshold value defined

by the user. Specific levels of RH are generated by

mixing dry and water-saturated streams of nitrogen

gas. Here, the accuracy of generated RH was validated

using themethod described byWadsö et al. (2009). All

measurements started with water-saturated specimens.

Experiment 1 Desorption isotherms were deter-

mined by conditioning water-saturated specimens to

the following RH levels: 97-95-90-85-80-70-60-50-

40-20-10-5-0%. Subsequently, absorption isotherms

were determined by increasing the RH to 97%

followed by a scanning desorption isotherm from

97% RH, both using the same RH levels as for the

initial desorption. These measurements were part of

the study reported by Fredriksson and Thygesen

(2017) and used a dm/dt criterion of 0.001% min-1

over 10 min for defining equilibrium at each step. It

should be noted that the dm/dt in the sorption balance

used is calculated based on a reference mass. If the

measurements starts with absorption, this reference

mass is generally the dry mass. However, since

desorption isotherms were determined in the present

study, the reference sample mass was the mass after

the first step at 97% RH. The same experimental

protocol was also used on latewood specimens from

mature sapwood and early- and latewood specimens

from mature heartwood, see SI.

Experiment 2 Four additional desorption isotherms

were determined after conditioning water-saturated

specimens to the following RH levels: 95-80-65-50-

35-0%. For two specimens, the absorption isotherms

up to 95% RH were then determined followed by a

scanning desorption isotherm from 95% RH, both

using the same RH levels as for desorption. For two

other specimens, the absorption isotherms were

determined up to 80% RH before scanning desorption

was initiated. Also here, the same RH levels were

used. Due to uncertainties related to the use of dm/dt-

criteria (Glass et al. 2018, 2017) and the fact that

starting with desorption makes the reference mass

used to calculate dm/dt more uncertain, fixed periods

of time at each RH level were used: 60 h at 95% RH,

24 h at 80% RH and 0% RH, and 12 h at all other RH

levels. For all measurements, the specimen was finally

dried for 8 h by using the pre-heater to locally increase

the temperature while purging with dry nitrogen gas.

The temperature was slowly ramped to 60 �C over 1 h

and kept constant at this level for 6 h before it was

slowly ramped to 20 �C over 1 h. Finally, this drying

protocol was followed by a 2 h thermal stabilisation

period at 20 �C before the dry mass was taken. The

equilibrium moisture content at each RH level was

evaluated as mass of water divided by the dry mass of

the specimen.

After the measurements had been performed, the

dm/dt criteria based on dry mass were calculated for all

RH steps in order to estimate the error in moisture

content. In absorption, all steps had in the end a dm/dt

of less than 3 lg g-1 min-1 with a 2 h regression

window, meaning that the moisture contents reported

for absorption is less than 0.004 kg kg-1 lower than

the true equilibrium value, based upon the errors

indicated by Glass et al. (2018). The exception was the

absorption step to 95% RH which had a dm/dt of

around 6 lg g-1 min-1 with a 2 h regression window

which gives an error in moisture content within the

range 0.004–0.008 kg kg-1. In desorption, all steps

had in the end a dm/dt on average in the range

3–4 lg g-1 min-1 with a 2 h regression window,

which indicates that the reported moisture contents are

around 0.002–0.008 kg kg-1 higher than the true

equilibrium value. Given that the moisture content

error for a given dm/dt increases with increasing RH,

the calculated absolute sorption hysteresis is estimated

to be up to 0.004 kg kg-1 too high at 35% RH and up

to 0.012 kg kg-1 too high at 95% RH.

Sorption hysteresis was evaluated between absorp-

tion and desorption isotherms as well as between

absorption and scanning isotherms. The evaluation

was made both as absolute difference in moisture

content at each RH level and as relative difference.

The latter was determined by dividing the absolute

moisture content difference by the absorption equilib-

rium moisture content at each RH level. For the

measurements performed using a dm/dt criterion, the

moisture content at 97% RH was not included when

evaluating hysteresis due to a lack of equilibrium.

Results and discussion

Sorption isotherms

Figure 2a, b shows the sorption isotherms determined

in desorption, absorption, and scanning for Norway
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spruce earlywood. All isotherms and additional data

for other tissue types can be found in SI. As expected,

desorption initiated from a non-saturated state reached

by absorption gave a lower sorption isotherm than if

initiated from the water-saturated state; isotherms

initiated from 95 to 97% RH and 80% RH did not

merge with the desorption isotherm until around

50–60% RH and 50% RH, respectively. This has also

previously been shown by Hoffmeyer et al. (2011);

here the scanning isotherm of Norway spruce initiated

from a high RH merged with the desorption isotherm

around 70% RH. If the hygroscopic desorption

isotherm is placed in the context of the full desorption

isotherm (Fig. 1), it is clearly seen that due to the large

sorption hysteresis, the initial moisture content needs

to be substantially higher than the equilibrium mois-

ture content at 95% RH reached by absorption for the

specimen to follow the desorption isotherm. Conse-

quently, starting desorption from a high hygroscopic

RH reached by absorption, yields scanning isotherms,

and the moisture content in the upper part of the

hygroscopic range is underestimated if these scanning

isotherms are interpreted as actual desorption iso-

therms. In addition, water-saturation is necessary in

order to re-open the cell wall structure in Norway

spruce after drying and make all hydrophilic func-

tional groups accessible for water (Thybring et al.

2017). Thus, initiating desorption from less than

water-saturation might not provide sorption data

representative of the actual desorption isotherm at

any RH level due to insufficient re-opening of the cell

wall structure.

Sorption hysteresis

Figure 2c–f show absolute and relative sorption

hysteresis, respectively, evaluated from the sorption

isotherm data presented in Fig. 2a, b. The sorption

hysteresis calculated from desorption isotherms was

markedly different than sorption hysteresis calculated

0.00

0.10

0.20

0.30

0.40

re
la

tiv
e 

hy
st

er
es

is
 (-

)

e

0.00

0.02

0.04

0.06

ab
so

lu
te

 h
ys

te
re

si
s 

(k
g/

kg
) c

0 50 1000 50 1000 50 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
oi

st
ur

e 
co

nt
en

t (
kg

/k
g)

a

RH (%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
oi

st
ur

e 
co

nt
en

t (
kg

/k
g)

b

RH (%)

0.00

0.02

0.04

0.06
ab

so
lu

te
 h

ys
te

re
si

s 
(k

g/
kg

)

0 50 100 0 50 100 0 50 100
RH (%)

0.00

0.10

0.20

0.30

0.40

re
la

tiv
e 

hy
st

er
es

is
 (-

)

fd

Fig. 2 Sorption isotherms for Norway spruce earlywood:

a Experiment 1: desorption (upper solid line), absorption

(lower solid line), and scanning from 97% RH (dashed line).

b Experiment 2: average desorption isotherm (upper solid line),

average absorption isotherm (lower solid line), and average

scanning isotherms from 95% RH (dashed line) and 80% RH

(dotted line). c, d absolute sorption hysteresis, and e, f relative
sorption hysteresis calculated from the sorption isotherms in

a and b
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from scanning isotherms. While desorption isotherms

in the hygroscopic range gave a linear absolute

sorption hysteresis and fairly constant relative sorption

hysteresis, the same quantities were complex, non-

linear curves when calculated based on scanning

isotherms. The latter had a peak in absolute hysteresis

around 75% RH when desorption was initiated from

95% RH, but the position of this peak depended on the

RH from which the scanning isotherm was initiated

(Fig. 2d). That the hysteresis pattern depends on the

RH from which desorption is initiated, has also

previously been observed by Peralta (1995) who

evaluated the ratio between the absorption isotherm

and isotherms determined in desorption initiated from

different RH levels.

In literature, desorption is most often initiated from

95% RH and a peak in absolute hysteresis is observed

around 75% RH (Cordin et al. 2017; Hill et al.

2009, 2012b; Himmel and Mai 2015; Hosseinpourpia

et al. 2016; Jalaludin et al. 2010; Kymäläinen et al.

2015; Okubayashi et al. 2005a, b; Popescu et al. 2014;

Popescu and Hill 2013; Shi and Avramidis 2017;

Simón et al. 2017; Vahtikari et al. 2017; Xie et al.

2011) in accordance with the present study. This is

also clear from Fig. 3, where average absolute sorp-

tion hysteresis from the present study (Fig. 2c, d) is

compared to sorption hysteresis evaluated from liter-

ature data for spruce. Here, it is also seen that the

absolute sorption hysteresis is generally higher for the

literature data and data from Experiment 1 than for

data from Experiment 2. This is most probably due to

that tougher equilibrium criteria were used in Exper-

iment 2.

Evaluating sorption hysteresis based on scanning

isotherms is not necessarily less correct than by use of

desorption isotherms. However, it is important to

consider how the sorption isotherms were determined

when interpreting the hysteresis curves. The currently

favoured theory for sorption hysteresis in polymeric

materials (Hill and Beck 2017; Hill et al.

2009, 2012a, b; Vrentas and Vrentas 1996) explains

the phenomenon as a result of hysteresis in volumetric

swelling due to kinetic retardation during shrinkage/

swelling. According to this theory, sorption hysteresis

is expected to decrease with increasing temperature

and only be seen when the constituent polymers are

below their softening point. Several studies on water

sorption in various cellulosic materials have shown a

decrease in hysteresis with increasing temperature

(Hill et al. 2009, 2010; Jeffries 1960b; Kelsey 1957;

Salmén and Larsson 2018; Weichert 1963) which

supports this theory. However, a few studies on wood

report insignificant changes in relative hysteresis

between 35 and 50 �C (Esteban et al.

2008a, b, 2009). For wood, the cell wall polymers

that undergo softening at normal temperature are the

hemicelluloses. This occurs around 65–75% RH at

room temperature (Engelund et al. 2013; Irvine 1984;

Kelley et al. 1987; Olsson and Salmén 2004). For

instance, Keating et al. (2013) reported sorption

hysteresis to vanish in man-made hemicellulose

(galactomannan) films above 75% RH at 25 �C, and
this RH level corresponded with the softening point

characterised by dynamic mechanical analysis. It can

therefore be tempting to associate the decrease in

hysteresis for wood above 75% RH, as observed in

several studies when desorption was initiated from 90

to 95% RH, with softening of the hemicelluloses.

However, as clearly seen in Fig. 2d, the peak in

sorption hysteresis for wood is a result of scanning

isotherms being used to calculate hysteresis, and the

peak position changes with the RH from which
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Fig. 3 Absolute sorption hysteresis for Norway spruce (Picea

abies (L.) Karst.) from literature (grey intervals) and data from

Fig. 2c, d (black lines). The absolute sorption hysteresis from

literature data was evaluated from absorption and desorption

isotherms fromwater saturated state (Ahlgren 1972; Fredriksson

and Johansson 2016), between absorption and desorption from

94 to 95% RH (Gilani and Schwarze 2015; Gilani et al. 2014;

Kymäläinen et al. 2015; Zillig 2009) and between absorption

and desorption from 80% RH (Zillig 2009)
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desorption is initiated. Whether this is also the case for

other biopolymeric materials remains to be

investigated.

Conclusions

Determination of desorption isotherms require that the

measurements starts at water-saturation. Desorption

from an initial moisture content reached by absorption

at high RH will generate a scanning isotherm.

Evaluating sorption hysteresis for Norway spruce

wood based on scanning isotherms instead of desorp-

tion isotherms, gave a non-linear behaviour and a peak

in hysteresis, which depended on the RH from which

desorption was initiated. No peak in hysteresis was

however seen in the studied RH range (0–96%) when

the sorption hysteresis evaluation was based on

desorption isotherms, i.e. sorption isotherms initiated

from water-saturation. Consequently, understanding

and evaluating the mechanisms behind sorption hys-

teresis is further challenged if scanning isotherms are

used instead of desorption isotherms, hereby increas-

ing the risk of misinterpreting the results.
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