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Introduction

Control system design is complicated because it is a compromise between many
different factors. Examples of factors that are important are

¢ Command signal following

o Load disturbances

e Measurement noise

o Model uncertainty

e Constraints -

e Regulator complexity

There are few design methods that consider all these factors simultaneously.
Design methods will typically focus on one or two issues. It is then necessary for
the designer to check the other factors by analysis or simulation.

Development of design methods has been a goal for control theory for a long
time. The classical frequency domain methods were developed in the thirties and
forties starting with the breakthrough in stability theory made by Nyquist and
continuing with the work on feedback amplifiers by Black and Bode.

In the classical approach the main concern was to design a feedback com-
pensator such that a certain stability margin was achieved. The emphasis was
then on model uncertainties. Feedback was used to decrease sensitivity to distur-
bances and model errors. The compensator design was done mainly by graphical
methods evolving from the Nyquist stability criterion. There was no a priori spec-
ification of the controller complexity and the compensator consisted of a number
of cascaded lead-lag filters, successively determined from a Bode diagram of the
loop frequency response. The graphical procedure gave good engineering insight
but it was hard to computerize. The method also supplied little information




6 Chapter 1 Introduction

about the transient properties. The development of analytical design methods in
the fifties made it possible to give specifications on the transient performance. At
the same time, less attention was given to robustness and sensitivity issues. In
the last two decades analytical methods has been developed in which robustness
has regained its importance. In the analytical design methods a process model
together with a closed loop specification is given. The design method then gives
a controller, typically of order at least as high as the order of the process model.
Choice of a suitable model complexity therefore becomes a key design issue when
using analytical design methods.

In this thesis we have considered design problems where a process model in
terms of a frequency response is available. There are good experimental methods
to measure frequency responses (see [Astrom, 1975]). In the last decade an
increasing interest has been given to the problem on how to reduce the controller
order while at the same time maintaining a good closed loop performance. In
Fig. 1.1 the different paths leading to a low order controller are shown.

Process
Frequency Response

(PFR)

High Order
Controller
(HOC)

High Order
Process Model
(HOPM)

Low Order
Process Model
(LOPM)

Low Order
Controller
(LOC)

Figure 1.1 Approaches to control system design.

The most important of these are

(PFR) = (HOPM) = (LOPM) = (LOCQ)
(PFR) = (HOPM) = (HOC) = (LOC)
(PFR) = (LOPM) = (LOC)

(PFR) = (LOCQ)

oo w e

In method A the process model is reduced before the controller design is done
while the model reduction is performed after the controller design step in method
B. In methods C and D no intermediate high order models are used. Method

19
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D corresponds to a design where the low order controller is computed directly
from the given process frequency response, like in the classical design methods.
Assuming that instead of having the process represented by a frequency response,
a high order process model has been given. This gives the two modified design
approaches

C' (HOPM) = (PFR) = (LOPM) = (LOC)
D' (HOPM) = (PFR) = (LOQ)

Many of these steps clearly involve approximation. In Chapter 2 some dif-
ferent approximation methods are reviewed. The emphasis is put on the discrete
least squares method and the optimal Hankel norm method (weighted and un-
weighted). The Hankel norm method is used in the approximation step (HOPM)
= (LOPM) while the least squares method operates on a frequency response,
(PFR) = (LOPM). These approximation methods are applied to some dif-
ferent high order process models. A new way to compute the optimal Hankel
norm approximation of a rational SISO transfer function is proposed in Chap-
ter 2. A new algorithm for the classical problem of approximating a transfer
function by a rational transfer function with ime delay, is also presented. Chap-
ter 3 contains a description of the pole placement design method. Some of the
weaknesses of this method are pinpointed by some design examples. Combining
some of the features of pole placement with least squares approximation in the
frequency domain gives a new design méthod which is presented in Chapter 4.
This method follows the scheme D' indicated by dashed arrows in Fig. 1.1. Some
of its properties are: :

e It resembles pole placement in the respect that a desired closed foop model
is specified. '

e The method uses only the frequency response at a finite number of frequen-
cies. These frequencies have to be chosen by the user.

o The order of the controller is relatively independent of the order of the
desired closed loop model.

¢ The approximation can be done at any self-conjugated set in the complex
plane, which means that there is no principal difference between discrete
time design (approximation on the unit circle) and continuous time design
(approximation on the imaginary axis).

o There are no problems with common factors in the polynomials B(s) and
A(s) of the transfer function G(s) = B(s)/A(s) since only the values G(iw)

are used in the design calculations.

Practically all design methods have design variables that the user chooses to
influence the trade-offs in a design. For example, in LQG the design variables are
the weighting matrices characterizing the loss function. In our case the major
design variables are given by

W




8 ’ Chapter 1 Introduction

e A set of approximation frequencies .
o A desired closed loop model G, (s).
® An observer polynomial 4,(s).

e The order of the feedback compensator

The fact that frequencies are chosen establishes a strong link to the basic
ideas of classical control. In Chapter 5 least squares fitting is used to shape the
loop frequency response in a desirable way. This is inspired by the approach of
Bode. It is demonstrated that open loop variations described by one parameter
need not be eliminated by high gain feedback. Instead they can be turned into
closed loop variations of an acceptable nature such as invariance of the damping
in the step response. If an invariant response is desired it can be obtained using a
two degree of freedom structure. This will, however, often lead to slower responses
to command signals. Chapter 6 contains some final conclusions and suggestions
for future research.

V2,
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Preface

Most of the results in this thesis are of empirical nature and has been developed
in the matrix language PRO-MATLAB. The work is motivated by the need of
control synthesis methods which give insight into the relationship between pro-
cess model order, closed loop specifications and controller complexity. One goal
has been to find a design methodology which avoids large and demanding opti-
mization procedures and which operates directly on frequency responses. This
leads naturally to the use of least squares approximation. A collection of MAT-
LAB functions has been written and used as a toolbox for design of low order
controllers.

The thesis contains a review of some different approximation methods and
of the pole placement method. The reader is assumed to have basic knowledge
of automatic control and complex analysis.
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Approximation of
Transfer Functions

2.1 Introduction

In this chapter approximation of transfer functions will be discussed. Given a
transfer function G(s) the problem is to find a transfer function é(s) which in
some sense is close to G(s). The approximation G(s) is in most cases taken to
be a rational function. The reason for this is that much analytic control theory
deals with systems described by rational transfer functions.

In section 2.2 a short overview of different approximation methods is pre-
sented. Section 2.3 is dealing with least squares approximation in the equation
error formulation [Lévy, 1959] and section 2.4 contains some facts about Hankel
norm approximation together with a new way of computing the Hankel norm
approximation of a given degree for a rational function. A non-linear in the error
least squares method is presented in section 2.5.

2.2 Preliminaries

A transfer function G(s) is said to be stable if all the poles of G(s) are located
in the left half plane. A function F(s) is said to be rational of order (m,n) if it
can be written as
2os™ +zy8™ 4 2y,

sTtystT 4ty

F(s) =

\ Y\



10 Chapter 2 Approzimation of Transfer Functions

Let G(s) be a given stable transfer function for which an approximation G(s) is
to be found. There are several ways of measuring how good the approximation
@ is. A common type of distance function is the metric d induced by a norm

- A A
4G, 8) = e - ¢

An often used norm is the L> norm (Tchebycheff norm):

IG ~Clleo = sup |G(iw) — G(iw)]

Finding a fixed order rational approximation in this norm leads to optimization
problems which require iterative techniques. The Hankel norm is much easier to
calculate. It is related to the Tchebycheff norm by

|G|l = inf |G — F|o

where G is a stable rational function and the infimum is taken over all functions
F bounded on the imaginary axis and having all its poles in the right half plane.
This characterization of the Hankel norm immediately yields the relationship

1G]l < |1Glle

for all stable rational functions G. Another popular norm is the L? norm (on the
imaginary axis) defined by

lGIz = / G (i) Pds

PR

All norms have weighted versions defined by
IGllw = WG|

for any norm || - || and weighting function W(iw). Using the L? norm formally
with the special weighting

N
W (iw) = E S(w — wg)
k=1
for a finite set of frequencies {w1,...,wn} gives a discrete seminorm
N
G117 =) |G (s )2
k=1

A seminorm || - || differs from a norm in that there exist nonzero functions f
such that ||f|| = 0. All approximants G fulfilling the interpolation condition

\M




2.2 Preliminaries 11

Giws) = G(iwk), k = 1,...,N are those for which |G — G| = 0. Minimizing
the error @ — G in this seminorm corresponds to least squares fitting of the
parameters A .

0 = (81,82,--+r8nyb15...y0n)T (2.1)

in a rational approximant
~ B(S) 513""1 + 523"“2 + - 'B

Gls) = ——== - - T 2.2
(2) A(s) s+ 18" 1 + a9 2 4. L a, (2:2)

One advantage of using the least squares method in approximation is that the
computation effort is independent of what type of function G is (non-rational
etc) since only the function values at the N points {iw,...,iwy} have to be
known. The approximation problem can be written as

N

moinJl(H) mmZ[G’(zwk)— (Twe)] Z

k=

B (zwk)
A(zwk)
where 0 is given by Eq. 2.1. This gives, however, a least squares criterion that

is non-linear in the error. By using the equation error B — G A, we get the loss
function [Levy, 1959]: s e

G(iwg) —

(2.3)

N
J(6) =D WE|B(iws) — A(iwy)G(iws) 2 (2.4)

instead. This formulation leads to a drastic simplification because the error then
is linear in §. The weightings W} are used to de-emphasize high frequencies and
to emphasize certain frequencies.

2.3 Least squares fitting in frequency domain

Model without time delay

Assume that the frequency response for the process is given at some frequencies
G(iwy), k=1,2,...,N

The problem is to find a rational approximation G(s) of the form (2.2) where
2n < N which minimizes a certain loss function J. As mentioned in Section
2.2, a particularly convenient method is to use the equation error (or “linear-in-
the-error”) least squares criterion (2.4). In Eq. 2.2 the approximant is of relative
degree one but in general, the degrees of the polynomials B and A may, of course,

\§




12 Chapter 2 Approzimation of Transfer Functions

be chosen independently. A common restriction is, however, that deg B < deg A
(i-e. G is proper). The minimization of J has an explicit solution. This gives a
simple optimization problem as opposed to the minimization (2.3). which has to
be solved by optimization methods requiring substantial computation effort. The
weightings W? are often chosen as |W(iwy)|? for some rational function W(s).
This function should decrease with frequency in order to avoid large weighting
of high frequencies. The fitting will else deteriorate at lower frequencies at the
expense of getting a good fitting at higher frequencies. Another possibility is
to use an iterative scheme where the weight function W is updated after each
iteration:

ALGORITHM 2.1—[Sanathan and Koerner, 1963]

1 Make a least squares fitting using some initial weighting Wl(s) giving the
rational transfer function .
B[I]( )
All(s)

2 Update the weight function according to:
wlktil(s) = 1/ Al*(s)
and compute the next least squares approximation

B[k+1](s)
fi[’“‘*‘l](s)

Other approaches using this technique, but with different updating, are found in
[Lawrence and Rogers, 1979] and [Stahl, 1984]. The initial weight function could
sometimes be chosen as Wl = 1 but this may give a too bad fi[l](s). A better
choice of initial weighting is some a priori estimate of 1/A(s). Presently, there
are no convergence proofs available for any of the iterative methods in [Sanathan
and Koerner, 1963], [Lawrence and Rogers, 1979] and [Stahl, 1984].

Let ¢(s) denote the transfer function error G(s) — G(s). To get an error
amplitude |e(iw)| which is almost constant with respect to w a modified version
of the above iterative method can be used.

1’ Tterate according to Sanathan-Koerner until (if possible) & converges (point-
wise at the chosen frequencies).

2’ Make one more iteration but this last time with the updating W[k‘*‘l](.s) =
elFl(s)/ AlM(s).

This heuristic method will be applied in one of the examples later in this chapter.

\b




2.8 Least squares fitling in frequency domain , 13

Continuing with the analysis, we introduce the following notation

(fw1)™™t (fw)*™2 .o 1
b=
(lwn)™™' (iwn)™™2 e 1
and
(deor)™
$=T : o= (-T¢ ¢)
(dwn)™

where I' = diag({G(iwk)}iV:l). The loss function in Eq. 2.4 can now be written
as

J(6) = (20 — ¥)*Q(26 — ¥)

where * denotes conjugate transpose and Q = diag{|W (4w )|?}I_, is the weight-
ing matrix. The explicit solution to this problem is given by

§=(2*Qa®)'e*Qy - - - (29)

Numerically, however, it is more preferable to use QR factorization or singular
value decomposition [Golub and van Loan, 1987].

The points of approximation need not necessarily be located on the imagi-
nary axis. An arbitrary point set Z in the complex plane could be chosen as the
approximation set. Since all transfer functions F(s) considered here, are assumed
to have the property

F(s) = F(3) (2.6)

(equivalent to F(s) having a real inverse Laplace transform), the set Z must be
closed under conjugation. This also implies that the coefficients in the approxi-
mating transfer function, will be real as the following lemma states.

LEMMA 2.1

If the approximation set Z is self conjugate and the weight function W has the
property |W(z)| = |W(Z)| then the solution § in Eq. 2.6 is real.

Proof: Let

( “G(zl)z?~1 e —G(21)21 —G(Zl) zin'_l ceezy 1
@ = : . : :
| —G(en)2ep™t -+ —G(zn)zn —G(zn) zp ' ey 1
( T
b= -Gl - —Glan)ey )

\




14 Chapter 2 Approzimation of Transfer Functions

where Z = {21,...,2~n}. Assuming that Z is closed under conjugation we have
that & = II® and 9 = Hz/) for some N x N permutation matrix II. The assump-
tions Q = d1ag{lW(z)|2 ", In 2.5 and |W(2)| = |W(Z)| imply that IIQ = QII.
Furthermore, since Il is a permutatmn matrix, it is orthogonal. Using these facts
together with 2.5 gives

6= (F'QF)'T Q¥ = (2*ITQU2) & IITQIIY = (8" QB) 18" Qy = §

which is the desired result. B

Remark. The result in Lemma 2.1 can be viewed in the following way. Since
both G and @ have the property (2.6) the error e = G — G will also have that
property. If both z and Z belong to the approximation set Z the corresponding
pair of errors can be rewritten according to

{e(z) = Q(z) — G(z) _ { Ree(z) = Re(G(z) — G(2))
(%) = G(z) — G(3) Ime(z) = Im(G(z) — G(2))

which shows that the complex least squares problem cam besolved as a real least
squares problem. - o

The most common choice of approximation set Z is points on the imaginary axis.
One reason for this is that it is easy to measure the frequency response on the
imaginary axis. Another motivation is that the stability boundary is often chosen
to coincide with the imaginary axis. In the following sections, ) = {wl,  yWm},
w; > 0 will refer to the approximation set Z = {iwy,...,iwmn, —iw;,. vy — W}

Connections with Padé approximations

A Padé approximation at a point { could be thought of as a rational function
analogue for Taylor polynomials [Cheney, 1966]. Given the power series of a
function G(s) at a point s;

G(s) = 9i(s — 1)

it is possible to find a rational function G(s) = B(s)/A(s) of fixed order such that
|G(s) — G(s)| < M|s—s1|™ for some positive integers m and M and in some disc
|s — 51| < p with p > 0. One method to compute the coefficients in the rational
function is to multiply both sides of the equality G(s) = G(s) + terms of order >
m by A(s) and identify coefficients of terms of order less than m—1 on both sides.

Another method is to use continued fraction expansions, that is, expansions of
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type
ag +

a +
az +

L]

K]
as + —
a4

The latter method may have some computational advantages but will not be
treated here.

There is also a generalization to multi-point Padé approximations [Hwang
and Chen, 1987] i.e. the function to be approximated is given as its power series
expansions at different points s;, 2 =1,2,...,n:

G(S)=Zgi,j(s—~si)j, i=1,2,...,n
j=0

and the rational approximant fulfills the condition

mi—1

G()= Y gislo— sV +O0((s =27, i=L2.m  (21)

The special case of m; =1, ¢=1,2,...,n corresponds to interpolation of the
function G(s) with a rational function G(s) at the points s;, i = 1,2,...,n.
The general multi-point Padé approximation problem (m; > 1) can be approx-
imated by the ordinary interpolation problem (m; = 1) by.instead of using the
derivatives G(’“)(s), k=1,...,m; taking m; + 1 points in a neighborhood of s;
but the smaller neighborhood, the more badly conditioned problem is obtained.
The use of QR factorization together with pivoting can, however, yield good
approximations in this way.

EXAMPLE 2.1—[Hwang and Chen, 1987]
Consider the problem of approximating the non-rational function

G(s) = e~ V®

with a multipoint Pad’e approximation of order (1, 4) at s; = i—1 with m; = 5 for
1 =1,2,3. The corresponding interpolation problem is to choose Z = {0,1,1 +
€,2 —€,2,2 4+ €} with a small value of € > 0. With € = 0.001 the result is

é(s) _ 139.474s + 26.11
&% +6.15312s3 + 164.88252 + 251.959s + 26.11

to be compared with

139.437s + 26.09751
5% 4 6.1495553 + 164.8427552 + 251.87964s + 26.09751

éPade' ( S) —
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The multi-point Padé approximation can be further generalized by solving
a least squares problem, namely minimization of the function

n m

7= 169 (s0) - GO(s)? (28)

=1 j=1

over all rational functions of some order (k,£). This establishes a connection
between the multi point Padé approximation and the least squares approximation
(Eq. 2.3) in that they corresponds to the two special cases Y;m; =k +£and
m; =1,1=1,2,...,n respectively. o

Model with time delay

For a process model including a time delay

N B 8 —%3 I;]_Sn—l +3 sn-—2 +"'8n —Fg
G(s) = AT(‘le T an 14 gn—1 - n—2 5 €
(s) s™ +-a;s + ays +-rta,

the ®-matrix in will be dependent of the time delay #. Let D(7) denote the
matrix e,

D(r) = diag({exp(—iws)}iL;)

The modified $-matrix can then be written as ‘
o(r)= (-T¢ D(r)¢) O @9)

and the corresponding loss function with unity weighting to simplify notation.

N
J(6,7) = Z W (1w ) 2| A(iwy ) G iwg ) — B(iwg) |2 = |8(7)8 — 4|”
k=1

This gives a non-quadratic minimization problem in 2n + 1 variables  and .
It turns out, however, that the problem can be separated into a quadratic mini-
mization in # and a non-quadratic minimization in the time delay 7. The scalar
minimization in 7 is carried out first and then 6 is found by the procedure de-
scribed in previous section.

THEOREM 2.1
Let @*® be non-singular and let P denote the matrix valued function

P(7) = I - &(7)(2(r)*®(7)) " &(r)"
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Every local minimum of J with respect to 7 and 8 is given by
§ = 0(7)
where 7 is a local minimum of the function f defined by

f(r) = J(@(T),T) = " P(7)¢ -

where

O(r) = mgin J(6,7)
* -1 *
= (2*(1)®(7)) " &(r)*¢
Proof: A necessary condition for J to have a local minimum at 7 = #,0=20is

[ aJ aJ ] -0
80 Ot ) g=pr=2

For each fixed 7, there exists a unique solution to the quadratic minimization
problem in 8, given by ©(7). Computing the first derivative of f, with respect
to 7 gives

¥ _o1| Lo 4o
dr Ot p=o(ry 00 o=o(r) 4T
aJ ,
s 9=0(r)
where the last step follows from the fact that %el = 0 on the curve (6,7) =

(©(7), 7). This shows that any stationary point of J, with respect to 8 and T,
corresponds to a stationary point of f with respect to 7. If a stationary point
CA ) to J(#, 7) in fact is a local minimum, then J has a local minimum on every
curve (8(v),7(v)), where v is a scalar parameter, passing through (é, 7). One
such curve is (0,7) = (©(v),v) which implies that f has a local minimum at

(8,%). .

An interesting observation is that the scalar function f(7), and thus J(6, 7)
will actually have several local minima. In case G(s) has no poles in the closed
right half plane the interesting minimum occurs for the smallest 7 larger than
zero. If the choice of frequencies and weighting is reasonable this minimum will
give a stable transfer function. Local minima at larger values of 7 corresponds
often to unstable transfer functions.

The minimization of f with respect to 7 can be done for example by the
following modified Newton-Raphson algorithm:
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ALGORITHM 2.2
Update the time delay 7 according to

df
E‘;(Tn)

Tn+1 = Tn — 2
d
+(1- ) F(m)

d2
a Zl;fz—(Tn)

where 0.5 < @ < 1. The modification is done in order to make local maxima
repulsive and local minima attractive. Values of o less than one are chosen to
get a stronger “repulsion” from a maximum. However, if the initial value of 7 is
chosen exactly at a maximum, the algorithm will of course get stuck. Since 1 is
independent of 7, the first and second derivatives of f are given by

df «d

dr ¢ dr
d*f oy d2P
dr? dr?

Recalling the definitions of P,® and D,
D(7) = diag({exp(~iwx7)}11;)
o(r)= (-T¢ D(r)¢ )
P(r) =T~ (r)(2(r)"2(r)) " &(r)’
the first derivative of P is computed according to

dD
o = dlag({—zwk eXP(—WkT)}k 1)

dd [ 0 dD ]
dr dr
dP
=Q+Q* Q:= —P—_(q>*<1>) Lo
and the second derlvatlve of P is given by

d’D
= = diag({—w} exp(—iwyT)},)

&2® d2D
& [0 Iz ¢]
Py = @(cb*@)”@*

d2
Pyi=— (@ 3)"

d’p d
= d‘f d‘f £=P(2P3—P2)+Q*Q+QQ*

1(1)*
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The implementation of the algorithm has been done in the matrix manipulation

package PRO-MATLAB.

EXAMPLE 2.2—Eight cascaded low pass filters

Many finite dimensional system of high order are well described by a low order
system followed by a time delay. One such system is

1
)= tre

A first order transfer function with time delay is found by using Algorithm 2.2
with a initial value 7 = 0 and with Q@ = {0.01,0.1,0.2,0.4}. The iteration is
stopped when the absolute difference between two consecutive values of T is
less than a specified value §pin. In this case the algorithm converges after four
iterations when §,;, = 0.01. The result is

Ary 02838 g5,
Gls) =5 T+ 0.0824°

The Nyquist curves of é(s), and G(s) are shown in Fig. 2.1.

0.4

0.2

-0.6 -0.4 -02 0 0.2 04 0.6 0.8 1 1.2

Figure 2.1 Nyquist curves of G(s) = (s + 1)~® (dashed curve) and a time de-
layed first order approximation G(s) (solid curve). The approximation frequencies
0.01,0.1,0.2 and 0.4 are marked.
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A fairly good approximation is obtained below 0.4 rad/s. To get a better
approximation without time delay a third order model is required. o

2.4 Hankel norm approximation

The Hankel Operator and the Hankel Norm

Consider the linear, time-invariant system

z=Az + Bu
y=Cz

with transfer function G(s) = C(sI — 4)~!B. Assuming that the eigenvalues of
A are in the open left half plane we can define the Hankel operator corresponding
to this system by the operator I'g : L»(0,00) — L3(0,00) given by

(Tav)(t) = /CeA(t"'T)Bv(T)dTM,% »

One interpretation of this operator is that if the input u(t) = v(—t) for t < 0
and u(t) = 0 for £ > 0 is applied to the system then the output for ¢ > 0 will be
(Tav)(t). The adjoint operator I’y is given by - :

oo

(Ta9)(t) = / BreA (1) gy (r)dr
0
The Hankel singular values are defined as the singular values of the Hankel op-

erator I'g, i.e. the eigenvalues of the operator I'tTc. By introducing the con-
trollability gramian P and the observability gramian @ defined by

P:= [ eA*BB*eA tdt

Q: / e4 IC*Cettdt
0

it can be shown [Glover, 1984] that the Hankel singular values can be written as

(T,;(Fg) = 4/ Al(PQ), 1= 1,2,. o,
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As a convention the o;’s are sorted according to decreasing magnitude, oy > oy >
*+ > 05. The gramians can be computed by solving the Lyapunov equations

AP + PA* 4+ BB* =
A'Q+QA+C*C =0

The Hankel norm ||| g is defined as the largest Hankel singular value. In [Glover,
1984] it is shown that the Hankel norm of a function G with all poles in the open
left half plane, can be characterized by

|Gz =inf |G — Fllo

where the infimum is taken over all functions F' having all poles in the right half
plane. This implies that

1G]l < |Gl (2.10)
giving a lower bound on the Tchebycheff norm of G.

Remark. In discrete time, the Ly norm of a transfer function H(z) is

1HE = 5 [ () d

-

For causal functions H the inequality in Eq. 2.10is extended to [Kung and Lin,
1981]

[Hlz < [Hlz < [|Hlloo

Approximation in the Hankel Norm

Let R, denote the set of all proper real-rational functions of order n, i.e. functions
of the form r = p/q where p and ¢ are polynomials with degp < degq < n and
with real coefficients. Introduce the Lesbesgue space Lo, of all complex-valued
functions bounded on the imaginary axis. Furthermore, introduce the Hardy
space H, of all functions F' analytic in the right half plane with

sup |F(s)] < oo
Res>0

Similarly, let H., denote all functions F analytic in the left half plane with

sup |F(s)| < oo
Re s<0

The stable projection of a function G € L, is defined as the stable part G_ € H,
of the decomposition

G(s) = G—(s) + G (s)
and will be denoted by G = Il _G. Given a stable, proper, rational transfer

function G(s), the goal is to find a stable approximant G(s) € R, such that the

Hankel norm of the error ||@ — G|z is minimized. To find the solution we need
the following
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THEOREM 2.2—[Adamjan, Arov, and Krein, 1971]

Let I?LI,‘] denote all functions, bounded on the imaginary axis, which can be
written as H(s) = G(s) + F(s), where G € Ry N Hy, and F € H.,. Given a
function G € L, the infimum

inf (|G — Hljoo
HeHH

is attained by the function H given by the unique solution to
G(s) — H(s) = ox(T'g)Ex(s) (2.11)

where |Eg(iw)| = 1, w € IR. In more detail, Ej(iw) = z(zw)/f(zw), where é(s) is
the Laplace transform of {(t) € Ly(0,00) and £(¢) satisfies the equation ['gé =

ox(Tg)€. The pair of functions (&, €) is called a Schmidt pair.

LEMMA 2.2— Let the polynomials 4, B, X and Y
be defined by

A(s) =s8"+a1s" 1+ fa,

B(s) = bos™ +b1s™ 1 4. 4+ b,
X(s)=s"" 45" 2 4. b, g5 ¢
Y(s)=yos" ' +yas™ P+ ynly

Consider the polynomial equation
A(s)Y (s) — B(s)X(s) = AA*(s) X*(s)~ . S (212)

where the notation P*(s) = P(—s) is used and the polynomials X and Y are un-
known. The solutions to the Eq. 2.12 are found via the eigenvectors {vy,...,v,}
corresponding to the finite eigenvalues of the generalized eigenvalue problem

(@ —AT)w =0 (2.13)

where the matrices ® and ¥ are defined as

(1 0 cer 0 =Dy 0 0 )
ay 1 0 —b1 —bg -0
as ai 0 —bz —bl 0
d =
Qn Qp-1 -+ a1 —by —~by_y .- =by
0 an a3 0 _bn _b2
. 0 0 a, 0 0 —by )
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and
( 0 1 0 0 )
0 —aq -1 0
0 as aj 0
00 0 (D)% (~Lan-y - (=1)%a
0 0 --- 0 0 an ay
(0 0 -+ 0 0 0 oo (=1)2"la, )

For each eigenvector v; the coefficients of the polynomials X and Y are defined
by

T
v = (yO,yl,-"7yn——1a1,m1,---7mn—1)

Proof: Identifying coefficients in both members of Eq. 2.8 gives the result. m

Remark. This generalized eigenvalue problem can always be rewritten as an
ordinary eigenvalue problem. The matrix & is always non-smgular due to the
fact that B(s) and A(s) do not have any common factors. Therefore we can
rewrite the problem as (A7 — &~ 1¥))y = 0. o

Combining Theorem (2.2) and Lemma (2.2) we arrive at the new result

M

THEOREM 2.3— Given a rational function G(s) € Ry, ~
the stable function G(s) € Ry, n < N, minimizing the Hankel norm of the error
G-G,is given by the stable projection of the function

Yos VTt + sV 2 4 “YN-—1

H(S) = SN_l +:B13N_2 +""DN—1

where (y0,%1,..-,YyN—-1,1,21,...,2n-1)7 is the eigenvector corresponding to the
eigenvalue, with the n:th largest finite magnitude, of the generalized eigenvalue
problem Eq. (2.13)

Proof: By definition of H, minimizing |G — G| 5 is equivalent to minimizing

inf (|G- G — Flloo
FeHy

Theorem 2.2 gives the solution

{G(s) — H(s) = ox(I'q)Ex(s)
G(s) = My, H(s)




24 Chapter 2 Approzimation of Transfer Functions

Since G and H both are rational we must have that Ex(s) is rational. Let
G(s) = B(s)/A(s) and H(s) =Y (s)/X(s) with 4, B, X and Y polynomials. By
considering the fact that |E;(iw)| = 1, w € R, we can write Equation (2.11) as

B(s) _¥(s) _ 1 A()X"()
A(s)  X(s) n(T'q) A(s)X(s)

This is precisely Equation (2.12) in Lemma 2.2 with A = —0,(T'g). Since the
generalized eigenvalue problem (2.13) has precisely n finite eigenvalues, we can
identify all the Hankel singular values o;(T'g), % = 1,2,...,n as the absolute
values of these eigenvalues. L]

Remark. A computational advantage with this method is that no realizations
are needed, since the coefficients of the transfer function are used directly. Fur-
thermore, the Hankel norm approximations of all orders 0,...,n — 1 can be
computed from the eigenvectors v1,...,v,. This means that only one general-
ized eigenvalue problem has to be solved to get all Hankel norm approximations.
These features are shared with a similar method [Harshavardhana, Jonckheere,
and Silverman, 1984]. The method presented in that paper has, however, a
slightly more complicated proof. o

Since the optimal Hankel norm approximation is independent of the direct term of
the transfer function, it is not unique. If & »(8) denotes theunique strictly proper,
fixed order Hankel norm approximation of G(s) then every other Hankel norm
approximation (of the same order) is found from G, (s)+D where D is a constant.

The extra degree of freedom obtained by the direct term in the approximation
can be used to reduce the Tchebycheff norm of the error. A _reasonable, heuristic

choice of the direct term is given by D such that |G(0) — é. :(0) — D] |G(o0) —
Gy(o0) - DI.

Weighted Hankel Norm Approximation

Typically the error G(iw) — G(iw) has almost constant magnitude when un-
weighted Hankel norm approximation is used. The error magnitude curve can be
shaped by using a weighting function in the Hankel norm approximation [Latham

and Anderson, 1985], [Anderson, 1986], [Hung and Glover, 1986]. The minimiza-
tion problem then becomes

min [[W(s)(G(s) — G(s))||&

where the minimization is taken over all stable G(s) of a fixed degree k. The
computation is done in the following steps:

1. Find the stable and unstable projections of W(s)G(s):

W(s)G(s) = G (s) + G (s)
where G_(s) is the stable part.
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Find the (unweighted) order k¥ Hankel norm approximation é._(s) of G_(s).
Find G(s) from ) ) R

W(s)G(s) = G (s) + C_(s)
where G (s) is unstable. The function G(s) then minimizes the Hankel
norm of the weighted error W(s)(G(s) — G(s)).

As in the unweighted case the approximation is not unique. A heuristic choice
of direct term is

s _ W(00)G(o0) + W(0)(G(0) — G(0))

D =
W (oo) + W(0)
This implies that
G(oo w(o)
G(0) | W(e)

i.e. the ratio between the error magmtudes at w = oo and w = 0 will be the
inverse ratio of the corresponding magnitudes of the weighting function. A mo-
tivation for this choice is that the error is expected to be larger at frequencies
for which the weighting function magnitude is small and vice versa. Ideally, with
this point of view, the error magnitude should essentially-look like the weighting
function magnitude turned upside down. An important fact is, howeveér, that
the Hankel norm depends not only on the magnitude of the welghtmg function.

Let A,(s) and B,(s) be polynormals with all roots strictly in the left half plane.
The four weighting functions

Wa(s) = AB—ZEX, Wa(s) = w“(’ffj)
Wi(s) = %%, Wiy(s) = Z‘ZE—_%

all have the same magnitude on the imaginary axis. In [Latham and Anderson,
1985] the case W, is analyzed and in [Hung and Glover, 1986] the cases W; and
W, are considered when both 4,(s) and B,(s) are of first order.

EXAMPLE 2.3—Eight cascaded low pass filters
Recalling the eighth order system in Section 1.1 we will in this section illustrate
the different approximation methods reviewed in 2.2. The transfer function

1

M RSV

will thus be approximated by rational transfer functions of different orders using
the following methods:
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& Unweighted Hankel norm approximation
f8 Weighted Hankel norm approximation

& Least squares approximation

Unweighted Hankel norm approximation

The unweighted Hankel norm approximations of orders one to seven are com-
puted. The Nyquist curves and step responses for the system together with the
approximations are shown in Figure 2.2. One observation is that all the approxi-
mating transfer functions has some zeros in the right half plane. This illustrates
the fact that to be able to match the phase decrease at higher frequencies the
low order approximations must have non-minimum phase zeros. The third order
unweighted Hankel norm approximation

—0.0274s® 4 0.0679s% — 0.0864s + 0.0483
5% 4 0.6628s2% + 0.3155s + 0.0470

G(s) =

has zeros in 1.072 and 0.7044 4 41.0726 and poles in —0.2142 and —0.2243 +
10.4114. The heuristic choice of direct term as described in Section 2.4 is used
here. More generally the following three properties have that in common that
they model large phase decrease: T

i Large relative degree
. Non-minimum phase zeros
& Time delay .

When designing controllers of a fixed low order, the non-minimum phase
zeros of the process transfer function approximations put limits on the achievable
bandwidth. The magnitudes of the approximation errors G(iw) — Gr(iw), k =
1,...,7 are plotted in Figure 2.3. Notice that the error magnitudes are almost
constant with respect to frequency.

Weighted Hankel norm approximation

Sometimes greater accuracy is required in a limited frequency range. This is
achieved by using weighted Hankel norm approximation as described in Section
2.4. As an illustration the following four types of weighting functions are consid-
ered:

_ Bu(s) ;= Bals)
R o2 G

where 4,,(s) = s* +wps + w? and By (s) = s? +2wys +w?. The error magnitudes
for the different weightings are shown in Figure 2.4 together with corresponding
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10 20 30 40 50 60

Figure 2.2 Nyquist curves (top) and step responses (bottom) of G(s) =(s+1)"8
(solid curves) and unweighted Hankel norm approximations of orders 1 to 4 (dashed
curves). Markings are done for w = 0.01, 0.1 and 1.




28 Chapter 2 Approzimation of Transfer Functions

100 T T T VT 111§ T T T I TTUITT T T T T ETTTIT T T T T T TETT T T T FTTIT1r
1
10~1_—-—--2- -------------------------------------------------------------------------- 2
........ ettt ee e oot e 2ottt e e
-2 N
e e
-3 .
10 s
104 -
..... € e
10-5}- ]
10"67 ....... 7 ............................................................................................................................ |
10-7 [ EENT L g Ly el 1y Lo a1
10-3 10-2 10-1 100 101 102

Figure 2.3 Magnitude of approximation errors for unweighted Hankel norm approx-
imations of orders 1 to 7 for G(s) = (s +1)~8 ‘

weighting function for the values wy = 0.2 and wy = 1. The smallest L®-error
is obviously obtained by the weighting function with all poles and all zeros in
the right half plane (Wy(s)). The weighting function Wy(s) results in an error
magnitude that is shaped like a mirror image (upside down) of the corresponding
weighting function. '

Least squares approximation

If the exact shape of the error magnitude curve is of less importance, it is sufficient
to use the least squares method as described in Section 2.3. Furthermore, this
method requires only a finite number of values of the full order transfer function.
Let the approximation set be = {0.01,0.1,0.2,0.4} and the weighting function
be W(s) = 1.

The Nyquist curves and error magnitudes of the rational approximations of
orders (3,3), (2,3) and (2,2) are shown in Figure 2.5. In this case the weighting
function W(s) = 1 was used since the transfer function is relatively easy to
approximate with lower order rational functions. The approximation of order
(3,3
) —0.1875s® + 0.3039s% — 0.2602s + 0.1076

8% +1.2358s2 4 0.6009s + 0.1076
has zeros in 0.7842 and 0.4183 + 70.7464 and poles in —0.4108 and —0.4125 +
0.3031. The “notches” in the error magnitudes are typical for pointwise approx-

G(s) =
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Figure 2.4 Magnitude of approximation errors for weighted Hankel norm approxi-
mations of order 3 of G(s) = (s +1)78. wo = 0.2 (top) and wy = 1 (bottom).

imation with few points. In the interpolation case this comes from the fact that
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Figure 2.5 Nyquist curves of G(s) = (s + 1)~2 and least squares rational approxi-
mations of orders (3, 3), (2,3) and (2, 2) (top) and the corresponding error magnitudes
(bottom). The approximation frequencies @ = {0.01,0.1,0.2, 0.4} are marked.
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the error is zero at the approximation points which clearly is seen as notches in
a log-log diagram. By using a larger number of approximation points the error
magnitude can be considerably smoothened.

When incorporating higher approximation frequencies the weighting be-
comes increasingly important. This is due to the fact that the polynomial A(s)
becomes large at large values of s. As mentioned in Section 2.3, the weighting
function w(s) should include some approximation of 1/ fi(s). The heuristic Algo-
rithm (2.1) in Section 2.3 was applied to the transfer function G(s) = 1/(s +1)8,
A rational approximation of order (3,3) was computed using 20 logarithmically
equally spaced frequencies between 0.01 and 100 rad/s. Five iterations were
done in the algorithm. The initial weighting used was W(s) = 1. This choice
of weighting often results in bad conditioning for high order LS-approximations.
In these cases it is recommendable to choose W(s) = 1/p(s) for some polynomial
p(s) not necessarily of the same degree as A(s). Figure 2.6 shows the error mag-
nitude for the iterated LS-approximation together with the error magnitude of
the third order unweighted Hankel norm approximation.

10_1 T T T T T T T T T T T —TT

10-—2 1 L) & g b1 1 1 Lt 1 1 I L S S T B

10-2 10-1 100 10! 102

Figure 2.6 Error magnitudes of two different rational approximations of G(s) =
(s + 1)78. The solid curve shows a rational (3,3) LS-approximation with iteration

in the weights and the dashed curve shows a third order unweighted Hankel norm
approximation.

The advantage with this method is that approximations G(s) for which the
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error magnitude is almost constant (as for unweighted Hankel norm approxima-
tions) can be obtained for non-rational transfer functions G(s). o

Remark. From a control theory point of ‘view, it is sometimes desirable that the
reduced order process transfer function G(s) = B(s)/A(s) has a relative degree
(= deg A — deg B) which is at least one. This is the case when the controller
contains a direct term. If both the process and the controller contains a direct
transmission then the closed loop system can be undefined or non-physical for
certain controller gains. Even if the loop has zero gain at s = 0 there can be
problems as the following example [Willems, 1971] shows. The loop transfer
function is 1—e™"* and the feedback is positive. This gives a closed loop transfer
function which is e”® which is not feasible. The problem lies in the assumption
that the loop is infinitely fast. By assuming that the total loop transfer function
has a relative degree of at least one, such problems are avoided. o

EXAMPLE 2.4—Sixth order doubly resonant system
The transfer function

—s+1

G(s):sﬁ+335+5s4+7s3+5s2+3s+1

has two poorly damped pole pairs. The poles are givenby —1.7549, —0.5698,
—0.2151 £ 71.3071 and —0.1226 =+ :0.7449 and the zero is'located at 1.

Hankel norm approximation

The Hankel norm approximations of order 3 and 4 yields-the error ‘magnitude
curves shown in Figure 2.7 with weighting functions W(s) = 1 and W(s) =

a—"::—zf;'_% respectively. The error magnitudes clearly reflects the shape of the
weighting function. The third order models are given by

G(s) = —0.32932s% + 0.64888s% — 0.86209s + 0.38705
- 5% 4+ 0.6815152 + 0.75731s + 0.29117
. —0.48339s% 4+ 0.76875s% — 1.03365 + 0.45638
Gw(s) =

8% 4 0.73622s2% 4 0.78391s + 0.30766

The poles of the transfer functions are —0.4463 and —0.1176 + i0.7991 in the
unweighted case and —0.4674 and —0.1344 + 70.8001 in the weighted case. It is
interesting to note that the resonance frequencies of the approximants are slightly
higher than the lower resonance frequency of the original model. A plausible
explanation is that this is an influence by the upper resonance frequency in G(s).
The fourth order models are given by

0.14742s* — 0.55034s + 1.217652 — 1.4938s + 0.72253

Gl8) = — T 1431857 1 2.496952 +1.11355 + 0.84746
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Figure 2.7 Error magnitudes for third and fourth order unweighted and weighted
Hankel norm approximations (solid curves) of the transfer function G(s) = (—s +
1)/(s® + 335 + 55% + 743 + 532 4 35 + 1). The magnitude of the weighting function is
also shown (dashed curve). To get good scalings of the axes in the plot, the weighting
function has been multiplied by a constant factor.

T

and -

0.21126s* — 0.61495s3 + 1.329152 — 1.5352s + 0.71603

Gw(s) = — T 133513 1 2514757 T 1.0645s +0.90782

The poles of the transfer functions are given by —0.16304140.7332 and —0.5530 4+
11.0939 in the unweighted case and —0.1588 4 40.7250 and —0.5152 =+ 71.1790 in
the weighted case. In both cases the second pair of complex conjugated poles is
better damped than the corresponding pole pair in G. This could be explained by
the attempt of the approximations to capture the influence of the two real poles
of G. For the same reason, the higher resonance frequency has been decreased
compared to the corresponding resonance frequency in the original model.

Least squares approximation

The least squares method gives rational approximants of orders (2,3), (3,3) and
(3,4) which have the error magnitudes shown in Figure 2.8. The approximation
set used in this case was Q = {0.01,0.1,0.3,0.7,1} and the weighting function
W(s) = 1. The (3,4) approximant is unstable. This is mainly due to the fact
that the fourth order model “lacks” information at frequencies near the second
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resonance. Instead an unstable pole-zero pair appears in the approximation.
The second poorly damped pole pair has imaginary parts +1.3. By extending the
approximation set by the frequency w = 1.4 (for example), the (3, 4) approximant
becomes stable with poles at —0.18474:40.7502 and —0.6617+41.0347 and zeros at
0.5302 and 0.3772+41.2495. As in the 4th order Hankel norm approximations, the
second complex pole pair has a larger damping than the corresponding pole pair
in the original system. Another observation is that the stable (3, 4) approximation
has a larger error magnitude at low frequencies than the (2,3) approximation.
Instead the error magnitude is decreased in the frequency range above w = 1. o
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Figure 2.8 Error magnitudes for third and fourth order least squares approxima-
tions. One of the fourth order approximations is unstable. The approximation frequen-

cies are 2 = {0.01,0.1,0.3,0.7, 1} for all cases except the stable (3, 4) approximation
in which case w = 1.4 is added.

EXAMPLE 2.5—Third order system with time delay
Consider the system with transfer function

1
s3+232+25+1e

—23

G(s) =

The least squares approximations of orders (2,3), (3,3), (3,4), (4,4) and (4,5)
was computed on the approximation set Q = {0.01,0.1,0.2,0.4,0.8} with unity
weighting. Figure 2.9 shows the Nyquist curves and the step responses for the
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system and its approximation. Computation of Hankel norm approximations of
non-rational functions will not be considered here. An approximation very close
to the Hankel norm approximation of a certain order can, however, be found by
first computing a least squares approximation of higher order and then finding
a Hankel norm approximation to this LS-approximation. As an example of this
procedure, a least squares approximation of order (7,7) was computed using the
approximation set Q@ = {wy,...,w;o}, with wy logarithmically spaced between
0.1 rad/s and 10 rad/s. The LS-approximation was computed with initial weight
W(s) = 57° and iterated one step using Wtl(s) = 1/4)(s). A fifth order
Hankel approximation of the seventh order LS-approximation was then com-
puted. The resulting error magnitude curve is shown in Figure 2.10. The error
magnitude of a LS-approximation of order (5,5), using the same approximation
frequencies, is included in the plot for comparison. This LS-approximation was
not iterated and the weighting W(s) = W1%l(s) was used. The error magnitude
for the “combined approximation” deviates not very much from a constant which
is a property shared with Hankel norm approximations. o

EXAMPLE 2.6—Heat conduction

One type of transfer function appearing in connection with diffusion and heat
conduction problems is

G(s)=eV*

Using the approximation frequencies Q = {0.01,0.4,1,2, 4} rational approxima-
tions of orders (2,3), (3,4) and (4,5) were computed with 2 iterations in Al-
gorithm 2.1 (except in the (4,5) case since this corresponds to interpolation).
The Nyquist curves of G(s) and the three approximations-are shown in Figure
2.11. Notice the “bubbles” on the Nyquist curves of the approximations. This
phenomena is probably due to the fact that the slope of the magnitude curve
of G(iw) varies continuously with w, while magnitude curves of rational transfer
functions has constant slope between the cut off frequencies. A requirement on
the rational approximations would then be to have a large “density” of pole-zero
pairs on the negative real axis in order to achieve a continuously varying slope of
the magnitude curve. This phenomena is actually seen in the approximants. The
transfer function é45(s) has, for instance, poles in —0.01460, —0.1013, —0.3937,
—1.192, —3.367 and —18.45 while the zeros are —0.01602, —0.1199, —0.5145,
—1.871 and 27.084. o

’

2.5 Conclusions

Approximation of functions is a fundamental tool in a many areas of applied
mathematics. In control theory the main interest lies in approximation by ratio-
nal functions. Two of the available methods of rational approximation have been
investigated in this chapter, namely optimal Hankel norm approximation and
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Figure 2.9 Nyquist curves (top) and step responses (bottom) of G(s) = e~ 25 /(s3+
2s? + 25+ 1) and its LS-approximations of orders (2, 3), (3, 3), (3,4), (4,4) and (4, 5).
The approximation frequencies are Q = {0.01,0.1,0.2,0.4,0.8}.
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Figure 2.10 Error magnitude for a 5th order Hankel approximation of a 7th order
LS-approximation (solid curve) of the transfer function G(s) = e‘z’/(.93+2.9 +2s41).

The error magnitude of a LS-approximation of order (5,5) is also shown (dashed
curve).

discrete least squares approximation. The former method has been' developed
in the last two decades beginning with the papers [Adamjan, Arov, and Krein,
1971] and [Glover, 1984].

In the Hankel norm approximation case there are L .,-error bounds available
which make this method attractive. By introducing weighting it is possible to
have good control of the shape of the error magnitude curve. Another advantage
is that stable rational functions always have stable Hankel norm approximants.
One drawback is that it is not possible to directly obtain a Hankel norm approx-
imation from frequency response data.

The discrete least squares method is easy to apply to frequency response
data. Thus, there are no difficulties in approximating non-rational transfer func-
tions. However, there are no currently known bounds on the Lo.-error for any
class of transfer functions and distribution of approximation frequencies, except
in trivial cases. One such case is when the transfer function G(s) to be approx-
imated is allowed to have poles arbitrarily close to the imaginary axis. It is
then easily seen that there exist no bounds on the L, -norm of the approxima-
tion error since a G' with poles on the imaginary axis may even be interpolated
by a transfer function G at the approximation frequencies wy assuming that no
pole of G coincides with +iwy. The stability of the resulting approximants is
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Figure 2.11 Nyquist curves of G(s) = e~V? (solid curve) and LS-approximations
of orders (2,3) (dashed curve), (3,4) (dotted curve) and (4,5) (dash-dotted curve).
The approximation frequencies are Q = {0.01,0.2,0.5,1, 2}.

not guaranteed either. In some examples it has been shown that the choice of
approximation frequencies is in fact crucial to get stable approximants.

Least squares and Hankel norm techniques can be combined by first ob-
taining a high order model from a measured frequency response by least squares
fitting and then applying optimal Hankel norm model reduction to the high order
model. A similar suggestion is found in [Wahlberg, 1987, Part I] concerning the
combination of identification methods and model reduction methods.

In this chapter Hankel norm approximation and least squares approximation
have been applied to some different transfer functions. The examples give insight
into some of the properties of the methods. A new method to compute Hankel
norm approximations for rational SISO transfer functions has been proposed.
This method uses the coefficients of the transfer functions directly, without any
transformation to state space. A new non-linear least squares method is also
presented, in which a set of points on a given Nyquist curve is fitted to a rational
transfer function with a time delay.
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Pole Placement
Design

3.1 Introduction

Pole placement is one of the simpler direct design procedures. The key idea is
to find a feedback law such that the closed-loop poles havethe desired locations.
Let the process to be controlled be described by

y= g(u +d) (3.1)

where u is the control variable, y the process output and d a load disturbance.
The symbols A and B denote polynomials in the differential operator % for
continuous-time systems or the forward shift operator ¢ for discrete-time systems.
It is assumed that A and B are relatively prime, i.e. that they do not have any
common factors. Further, it is assumed that A is monic, i.e. that the coefficient
of the highest power in A is unity. The relative degree is defined as deg A —deg B.

~ Let the desired response from the reference signal = to the output be described

by the dynamics
ym = -f—:’[‘ (3.2)

A two degree of freedom linear regulator can be described by

Ru=Tr— S(y+n) (3.3)

39
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—_— — Py G(s) >
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R
Figure 8.1 The block diagram of the closed loop system with disturbances

where n represents measurement noise. The block diagram of the closed loop
system is shown in Figure 3.1. In the rest of the chapter it will be assumed
that the process is strictly proper (deg A — deg B > 1) and that the controller
is proper (deg R > deg$ and deg R > degT). The properness of the controller
implies that the condition

deg A, — deg By, > deg A — deg B (3.4)

must hold. Elimination of v between Eqgs. (3.1) and (34)g1ves

__BT . BR_ . BS _
Y= AR+BS T AR+ BS® ARt BS 5.3
. AT BS AS - '

= AR+ BS" AR+ Bs% AR+ BS"

To achieve the desired input-output response, the following condition must be
true

BT B,
AR+ BS Ap
The denominator AR+ BS is the closed-loop characteristic polynomial. Eq. (3.6)

implies that A, must divide this polynomial. To carry out the design, the
polynomial B is factored as

(3.6)

B=BTB~

where B is a monic polynomial whose zeros are stable and sufficiently well
damped to be canceled by the regulator. When Bt = 1, there is no cancellation
of any zeros. Since BY is canceled, it also divides the closed-loop characteristic
polynomial. The other factors of this polynomial are A,, and A, where 4, is
referred to as the observer polynomial. This gives the Diophantine-Aryabhatta-
Bezout (DAB) equation

AR+ BS = A A, B*
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It follows from this equation that Bt divides R. Hence

R=XB?t

AX+B~S=A4,4A, o (3.7)

The solution of the DAB equation (Eq. 3.7) is equivalent to solving a set of linear
equations (see below).

Equation (3.7) has a unique solution if A and B~ are relatively prime. Fur-
thermore, it follows from Eq. (3.6) that B~ must divide B, and that

T = AgBp/B~ (3.8)

From Eq. (3.5) it is seen that the polynomial 4, is canceled only in the transfer
functions from the reference input r. This means that the dynamics correspond-
ing to 4, is not controllable from r. The polynomial A, will thus influence the

response to the disturbances d and n but not the response to the reference signal
r. ‘

The DAB equation viewed as a matrix equation

In the following we put B~ = B and B,, = byB, wheré b is a constant, for
simplicity. Introduce for brevity P = 4, A,. The DAB-equation

AR+BS=P (3.9)

where R and S are the unknown polynomials, can be written as a linear matrix
equation. For convenient notation, the case deg A —deg B = 1 will be considered.

Let
A(s)=s"+a1s" P+t an
B(5) =bis™ 4 bas™ 2 41t + by
R(s) = s* 478" 4o b1y
S(s) = s9st + 8188 4 sy
P(s) = 6™ + pra™ ook

and introduce 8 = (1,71,...,7k,80,81,-+.,52)7 and ¢ = (1,p1,... ,Pm )T, where
m = n + k. Furthermore, let M = Sylv(4, B,k + 1,£+ 1) denote the (n + k +
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- 1) x (k + £+ 2) Sylvester matrix of the polynomials 4 and B given by

(1 0 «.v 0 0 0 .- 0)
a 1 s 0 bl 0 - 0
as aq N 0 bZ bl . 0

M =

An ap—1 -+ Q1 b'n. bn—l ot bl
0 an - a3 0 by - b

L 0 0 - an 0 0 .- b,)

The DAB-equation, Eq. (3.9) can then be written as
MO =4 (3.10)

The matrix M is non-singular precisely when 4 and B do not have any common
factor. It follows that Eq. 3.10 has a unique solution precisely when M is of full
rank and £=n —1, i.e.

degS =degd —1

Pre-specified controller dynamics

In many situations it is of interest to give some specifications on the controller.
To eliminate a step disturbance in d, for example, it is necessary to increase the
loop gain at low frequencies. This can be done by specifying that the factor s
is to be included in R(s) thus introducing integration in the controller. In the
general case the polynomial R(s) is factorized as R, (s)R;(s) with R;(s) being
the pre-specified part of R(s). In a similar manner pre-specified factors can be
included in the polynomial S(s) so that S(s) = $1(8)S2(s). This is often used to
introduce notch filters into the controller by letting Sy contain poorly damped
zeros located near the resonances to be damped out.

The DAB-equation 3.9 is then modified to
AR Ry + BS,1S, = P (3.11)

with the unknown polynomials being Ry and S,. To get a unique solution to Eq.
(3.11) viewed as a system of linear equations, the condition

deg A + deg R = deg P = deg Ry + deg Sy + 1
must be true. Furthermore, assuming that deg A,, = deg A yields
deg R = deg 4,

and

deg S = deg A, + deg Ry +deg §; — 1
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Robustness of the Design

Consider a pole placement design based on an approximate model

Let G(s) be the transfer function of the system to be controlled. Assume that G
and G have the same number of poles outside the stability region and that G,, =
Bp/Am is stable. A sufficient condition for stability of the closed loop system is
obtained by using the following (generalized) version of Rouchés theorem [Astrém

and Wittenmark 1984]:

LEMMA 3.1

Assume that the functions L(s) and L(s) have the same number of poles outside
the stability region D and that the function 1 + L(s) has no zeros outside D.
Then the function 1 + L(s) has no zeros outside D.

Proof:  Apply Rouchés theorem to the functions 1+ L(s) and 1 + L(s) which
are analytic outside D. [

We then obtain

THEOREM 3.1—Robustness
The actual closed loop system is stable if

G(s)T(s)

R(s)|
6(e) - Gl < [6(e) + B = | LK)

S() |

for s =iw, w € IR.
Proof: By putting L(s) = 1+ G(s)S(s)/R(s) and L(s) = G(s)S(s)/R(s) in
the lemma and using the identity
G(s)T(s)
R(s) + G(s)S(s)

= Gm(s) (3.12)

the result follows. m

This shows that the process has to be more accurate at frequencies where IGm(s)I

is large compared to |G(s)|. Another way to see this is by considering the sensi-
tivity function

where G\
Gals) == (s)T(s) (3.13)

R(s) + G(s)S(s)




44 Chapter 3 Pole Placement Design

is the actual closed loop transfer function. The magnitude of Ggens(s) gives the
gain from the relative error in the process transfer function G to the relative error
in the closed loop transfer function G (s). Some calculations give that

_ R(s)
Giens(s) = (o) T C()5(9) (3.14)
From Eqs. (3.13) and (3.14) it follows that
Grena(s) = Zeil8) B) (3.15)

G(s) T(s)

Assuming that G ~ G,, the sensitivity function is large at frequencies where
|Gm/G| is large. Equation (3.15) also reveals that the sensitivity is smaller
near the controller poles. This is natural since the loop gain is large at those
frequencies.

Solutions to the DAB equation

The solutions to the DAB equation (Eq. 3.9) can be parametrized by a polyno-
mial Q. Assume that one solution is given by R = Rg, § ='Sy. Then all solutions
to Eq. 3.9 are given by '

{R =fa+ B9 (3.16)

S =8, — AQ

This gives a free parameter ) to adjust while keeping the closed loop charac-
teristic polynomial P fixed. The freedom in Q can be used to “shape” the loop
transfer function

B(s)S(s)

= Aoy

to get better stability margins or to decrease the sensitivity to disturbances and
uncertainties in the process model. The inclusion of a pre-specified factor R; in
R as in Eq. (3.11) is done by letting Ry = Ry Ry and Q = R; (2 with Q2 being
the free parameter. The degree of Q must then be chosen such that the controller
is proper. Notice that if the coeficients in Q becomes very large the feedback
compensation S/R approximates —A/B, i.e. the loop transfer function is close
to —1. This gives a very sensitive design.

A generalization of Eq. (3.16) is the Youla parametrization, where the poly
nomials are replaced by certain rings of rational functions [Vidyasagar, 1986].
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3.2 Unstable controllers

Some unstable processes have the property that they can be stabilized by a stable
controller. This property is often called strong stabilizability. The process must
then satisfy the “parity interlacing property” (P.L.P.), i.e. it has an even number
of poles between each pair of right half plane zeros (see [Youla, Bongiorno, and Lu
1974]). The result is generalized to arbitrary domains of stability in [Vidyasagar,
1986]. In pole placement it is often the case that the controller is unstable.
A typical situation is when the specified bandwidth is high compared to the
bandwidth of the process. Unstable controllers can also appear when the desired
bandwidth is significantly lower than the open process bandwidth. It is mostly
undesirable to use unstable controllers. One reason is that the stability margin
is often very small when the controller is unstable (see Section 3.3). Another
drawback is the appearance of limit cycles when using unstable controllers in
servo mechanisms containing non-linearities [Wallenborg, 1987]. This section
treats some special cases where the stability of the controller can be related to
the location of the closed loop poles.

Stability of the controller for special pole placements

The DAB equation (Eq. 3.9) can be extended to a parametrized DAB equation
A(s)R(s,p) + B(s)S(s,p) = P(s,p) (3.17)

equivalent to the parametrized linear equation (compare 3.10)

."’-

Mé(p) = ¢(p)

Equation 3.17 is solved for each fixed value of p. This constitutes an implicit
parametrization of the polynomials R and S. Each coefficient in the polyno-
mials R and S will thus be functions of p. A special one-parameter family of
polynomials P is given by

P(s,p) =p™Pi(s/p), m=degP (3.18)

where p is a real, scalar parameter and P, is some fixed polynomial. Notice that
the parameter p can be interpreted as a scaling parameter for the magnitude of
the roots of P leaving the pattern of the roots unchanged.

LEMMA 3.2

With the parametrization 3.18, the coefficients in the polynomials R and § will
be polynomials in the parameter p.

Proof: Assume that Pi(s) = s™ + ¢;8™ ! + ... + ¢,,. It then follows that
P(s,p) = s™ 4 c;ps™ ! + -+ + cnp™. Assuming that M is invertible, the
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controller parameters can be expressed by

¢ 1 )
r1(p)
1
' c1p .
rn-1(p) | = M1 . _ (3.19)
s0(p)
Cmp™
\ sn—-l(p) /
which shows that 7,(p),...,s,-1(p) are polynomials in the scaling parameter p.

A simple extension of the parametrization in Eq. 3.18 is to have one fixed part
P;(s) of P(s) according to

P(s,p) =PmP1(8/P)P2(8), m=degP1
The formula in Eq. 3.19 is then modified to

( 1 3
r1(p)
1
) . cap
Ta-1(p) | = M7'N : o - (3.20)
so(p) )
Cm, P
\ Sn—l(p) /

where Pi(s) = s™ +¢;s™ 71 4... 4 ¢, and Py(s) =s™ +dys™ 1 ... 4 d,,
and the matrix N is given by the (k 4 n) x my matrix

¢ 1 0 0 \
dl 1 . 0
ds di 0
M=, 4 d
0 dn, dy

L0 o0 dpn, )
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The values of p for which the controller is unstable can be found by checking
the zeros of the Hurwitz determinants of appropriate orders considered as poly-
nomials in p. A necessary condition for R(s) to be Hurwitz is that the coefficients
T1y.+.,Pn—1 are positive. Lemma 3.2 then gives

THEOREM 3.2

A necessary condition for stability of the controller for a certain value of the

scaling parameter p is that the polynomials given by the first n elements of

M~1¢(p) are positive for that value of p.

Proof: The theorem is a trivial consequence of Equation 3.17 and Lemma 3.2.
B

Stability of the controller for special process models

A necessary condition for a polynomial to be Hurwitz is that all its coefficients
are larger than zero. This can be used to prove the following simple result

LEMMA 3.3
A Hurwitz polynomial X (s) must satisfy the condition

X®() >0, seR*

for all & > 0.

Proof: Since X is Hurwitz all its coefficients must be positive. This is true also
for the derivatives of X. Then X (k)(s) is a sum of positive numbers if s is real
and positive which proves the statement in the lemma. .~ . C m

This lemma gives a simple check of stability of the controller when applying
pole placement to some special process models. A special case, which is easy to
analyze, is when the process has a zero of multiplicity 2 on the positive real axis.

THEOREM 3.3
Consider the DAB equation, Eq. 3.9 with B(s) = (s — 8)?, 8 > 0. Then a

sufficient condition for the controller to be unstable is
P'(8)A(B) - P(B)A'(6) < 0 (3.21)

Proof: Expressing the left hand side in Eq. 3.21 using Eq. 3.9 gives the result
since Lemma 3.3 implies R'(3) < 0. ‘m

ExaMPLE 3.1
Consider the process model

_ (s—1)?
R
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Let Am(s)4,(S) = P(s) = (s + p)°® where p > 0. Then Theorem 3.3 gives that
the controller is unstable if p > 7/3 ~ 2.333. Since the controller is only of second
order the exact interval of p for which the controller is stable can be calculated
from Theorem 3.2. The polynomials 71 (p) and r;(p) are given by

r1(p) = (—3p° — 5p* + 10p° + 30p? + 25p — 25)/16
r2(p) = (5p° + 15p* + 10p® — 10p® — 15p +11)/16

The polynomial r5(p) is strictly positive for p > 0 which implies that the con-
troller can never have a single pole in the right half plane. Checking the zeros of
71(p) gives that the values of p for which the controller is stable are p_ < p < P+
where p_ = 0.5678 and p; = v/5 ~ 2.236 which is to be compared with the
approximate value p; = 7/3 =~ 2.667 above. An interesting observation is that
unstable controllers appear both when the closed loop is made “fast” (p > p;)
and “slow” (p < p_). o

EXAMPLE 3.2—FEight cascaded low pass filters
The freedom of choosing arbitrary poles in pole placement may be deceptive.
The following example illustrates this assertion. A controller with integration is

computed for the system
1

=y
Specifying the desired closed loop model as G,,(s) = 256/(s+2)® and the observer
polynomial as 4,(s) = (s + 2)® gives the controller

R(s) = s® + 245" + 260s® + 1672s° + 7050s* + 202645° +"’3979632 + 51480s
S(s) = 39203s® + 325064s" + 1.1858 - 10%5° + 2.4880 - 1055 + 3.2884 - 10854+
+2.8075 - 10%s® 4 1.5144 . 10%5% + 4728085 + 65536
T(s) = 2565° + 40965" + 286725° + 114688s° + 286720s* + 45875253+
+ 458752s% + 2621445 + 65536

As can be seen, the coefficients in the polynomials are very large, which can cause
problems in the implementation of the controller. Moreover, the Nyquist curve
of the loop transfer function B(s)S(s)/A(s)R(s) (Fig. 3.2, top) shows that the
stability margin is rather poor. The Bode plot of the feedback compensation
S(s)/R(s) (Fig. 3.2, bottom) gives some indication on the minimal degree of a
stable controller (with the exception of a pole in s = 0) achieving approximately
the desired closed loop frequency response. The phase increases from —90° to
a maximum of 315°. Requiring the controller to be proper, stable and causal
implies that the minimal order of the controller is larger than 405/90 ~ 4.5. The
controller must therefore be at least of fifth order to match the phase increase. A
compensator §/R of fifth order satisfying these conditions was computed using




3.2  Unstable controllers 49

15 , ;

10() 1 1 (RSN R 1 I N A L [ B I I W W 4 1 [ W
10-2 10-1 100 101 102

400 L) ¥ LI I BN B B I T T T F rerrrr T ¥ T 1 T T rrT ¥ T T
300

200
100

-100
102 10-1 100 101 102

Figure 8.2 The Nyquist curve of the loop using a controller with integration and
with Am(s) = Ao(s) = (s + 2)® (top). The Bode plot of the compensator S(s)/R(s)
shows a phase increase of over 400° (bottom). A fifth order least squares approxima-
tion is also shown (dashed curves).
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- weighted least squares approximation with the approximation frequencies in the
interval [0.1,10]. The resulting polynomials R and $ are given by

R(s) = s® + 3.35689s* + 70.72065° + 71.803652 + 600.409s
5(s) = 130385 + 14062s* + 25070s® + 10430s? + 5572.0s + 528.55

The fifth order controller is stable and gives a stable closed loop system. o

EXAMPLE 3.3—Unstable controllers
One reason to avoid controllers with poles in the right half plane is the problem
of modeling errors. Consider a third order least squares approximation G(s) to

G(s) = (s +1)7® at the frequencies w = 0.01, 0.1, 0.2 and 0.4:

0.11539s% — 0.142385s + 0.072869
53 4 1.005252 + 0.44057s + 0.072836

G(s) =

Using this stable approximation for an RST-controller design with A,,(s) =
Ao(s) =(s+1)* gives:

R(s) = s* — 12.9095% 4 29.64s o
S(s) = 155.15s° + 173.21s2 + 79.528s + 13.723
T(s) = 13.723s® + 41.17s? + 41.17s + 13.723

The controller has two poles in the open right half plane and yields obviously a
stable closed loop system for the approximate third order-process model. The
actual closed loop system is, however, unstable. This is not too surprising, since
the approximation frequencies are low, compared to the bandwidth of the closed
loop system. A clearer view of this can be obtained by checking the Nyquist
curves of the loop transfer functions of the nominal system (the approximation)
and the original system (Figure 3.3, top). Notice the poor stability margins for
the nominal loop. Applying the principle of variation of the argument gives that
since the controller has two right half plane poles, the loop N yquist curve must
encircle the point —1 one time. The actual loop Nyquist curve, however, does
not encircle —1 which means that the closed loop system must be unstable in this
case. The two Nyquist curves start diverging at about w = 0.5 which is above
the approximation frequencies. The large high frequency roll-off and phase shift
of G(iw) above w = 0.7 makes it impossible for the actual loop Nyquist curve to
approach —1. Attempts to match G(s) to G(s) at higher frequencies will, on the
other hand, give larger errors.

Another motivation for preferring stable controllers is robustness considera-
tions. Using Am(s) = 4o(s) = (s +4)° yields an unstable controller (two poles in
RHP). The Nyquist curve of the loop (Figure 3.3, bottom) encircles —1 which is
necessary to get a stable closed loop system since the controller is unstable. Note
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Figure 3.8 The Nyquist curves of the actual loop (solid curve) and the nominal
loop (dashed curve) with a controller design based on a third order approximation of

G(s) = 1/(s+1)® (top). The Nyquist curve of the loop using an eighth order controller
with integration and with An(s) = Ao(s) = (s + 4)® is shown at the bottom.
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that even small perturbations in the process model will cause the encirclement
around —1 to disappear, i.e., the closed loop system becomes unstable. From the
plot it is clear that the stability margin (minimal distance to —1) is ~ 0.1. o

EXAMPLE 3.4—Sixth order doubly resonant system
The system

—s+1
8% 4 355 + 55+ 783 + 552 +3s5 41
has two resonances and has already been encountered in Chapter 2. A sixth order
controller with integration will be designed for the system. The specified closed
loop model poles (roots of 4,,(s)) are evenly spread out on a circular arc with
a minimum relative damping of ¢ = 1/4/2 and for different distances w,, to the
origin (Fig. 3.4). Introduce the shorthand notation

G(s) =

A (s) = Butt(n, wnm, o) (3.22)

with n = 6 and a = 45° in this case. The special modification of the Butterworth
pole pattern is motivated by the fact that it does not yield the poorly damped
step responses for large n as in the ordinary Butterworth pattern (in which case
a = (1-1/n)90° in Eq. 3.22). We could just as well have chosen e.g. a Bessel
pole pattern which also gives better damping. The observer polynormal Ao(s) is
chosen identical to 4,,(s).

‘

Figure 8.4 The pole pattern used in Example 2 with radius w,, = 1.
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Figure 3.5 Open loop compensated Nyquist curves in four design cases for the
process G(s) = (—s +1)/(s® + 3s® + 5s* + 7s% + 552 + 335 + 1. The three first cases
are sixth order controllers where the magnitudes of the model and observer poles are

wm = 1 (solid curve), 1.4 (dashed curve) and 2 (dotted curve). The dash-dotted curve
show a seventh order design with first order roll-off and wy, = w, = 1.4.

The resulting open loop Nyquist curves are shown in Fig. 3.5 (top) for w,, =
1, 1.4 and 2. Notice the case wy = 2, for which the controller has two poles in
the right half plane. This forces the Nyquist curve of the open loop to encircle
the point —1 in order to get a stable closed loop system. This gives a poor
stability margin and a decrease of gain will result in instability. For w,, = 1 the
Nyquist curve passes rather close to —1, while w,, = 1.4 yields a better stability
margin. The case of an unstable controller results in quite large control actions
as can be seen from the plot. The Bode plots of the feedback compensation
S/R (Fig. 3.6) also shows the increase of compensator high frequency gain as
the specified bandwidth increases. Included in both Fig. 3.5 and Fig. 3.6 is a
feedback compensation of relative degree one which means that the degree of
observer polynomial 4, must be increased from 6 to 7. The polynomials A4,,
and A4, are chosen as Butt(6,1.4,45°) and Butt(7,1.4,45°) respectively. The
high frequency roll-off can be motivated by the attenuation of high frequency
uncertainties in the process transfer function. By choosing even higher degree on
the observer polynomial, a steeper high frequency roll-off is obtained. o




54

104

Chapter 8

Pole Placement Design

F ¥ T TTTIIT

T T T T TTTT

T T T TTIT s T | SR M e oy o 22

Lot 10111f]

10t

1 11131

i

500 L] T T TTFET L] L] IR IRELEA T T l".‘.-|~J"-l.'_““..---!.' - L] T ¥ Trr
OF il e
"\l\v;\~
.:““»‘:».
5001 RN E
—1000 a1 L Lo '
102 10t 100 101 102

Figure 8.6 Bode plots of the feedback compensator in four design cases for the
process G(s) = (—s + 1)/(s® + 3s% + 53% + 75% 4 532 + 33 + 1. The three first cases
are sixth order controllers where the magnitudes of the model and observer poles are
wm = 1 (solid curve), 1.4 (dashed curve) and 2 (dotted curve). The dash-dotted curve
shows a seventh order design with first order roll-off and wy, = wo, = 1.4.

3.3 Conclusions

The pole placement design method is popular because of it's"’siinplicity. Given the
process dynamics and a specification of all closed loop poles there are straight
forward procedures to calculate a controller that satisfies the specifications. There
are, however, several situations where the method leads to a poor control design
which has given the method a somewhat bad reputation among practitioners.
The pole placement method has been reviewed in this chapter. It has been
observed that the flexibility in the choice of pole locations is in fact a weakness,
in the sense that it hides some of the important design trade-offs. Firstly, a high
closed loop bandwidth requires a large controller gain. The controller may even
be unstable. This is sometimes necessary in order to stabilize the plant but in
connection with high closed loop bandwidths it may give very poor robustness
as has been demonstrated. Secondly, the order of the controller is determined by
the order of the plant. The controller order may therefore be high which may
cause problems in the implementation of the controller.

Another drawback is that the order of the specified closed loop model must
be of high order and often equal to the order of the process model. This means
that it may be difficult to choose pole locations such that a desired closed loop
performance is obtained.




Frequency Domain
Least Squares Design

4.1 Introduction

In Chapter 3 some of the properties of pole placement design were discussed. A
constraint appearing in pole placement design is that the order of the regulator
is directly determined by the order of the process model, the order of the desired
closed loop model and the order of the observer polynomial. One way to relax this
constraint is to combine pole placement ideas with frequency domain methods.
Many robustness properties are more transparent in the frequency domain. The
idea is to replace the DAB equation Eq. (3.8) with the equation

CTG)
R) £ Glo)5(5) ~ o) (4.1)

for s € Z, where Z is some finite point set in the complex plane. Here, G(s) =
B(s)/A(s) and G(8) = B (s)/Am(s) are the open loop process transfer function
and the desired closed loop transfer function respectively. However, in Eq. (4.1)
there is no reason for restricting G(s) to be rational, since only the values of @
at a finite number of points has to be specified.

Another important observation is, as mentioned above, that the polynomials
R, S and T' and the order of the desired closed loop transfer function G,,(s) may
be chosen relatively independently in contrast to the pole placement design. This
means, for example, that PI and PID controllers can be designed for a large class
of process models.

55
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A simple calculation gives that

B(s) = =1+ Fa(s) 5L + Fa(s)5(5) > (4.4)
where
Fa(s) = =2)_py)
BT G(s)Aq(s)
FS(‘S) = AT:((:)) S(S)

From Eq. 4.4 it follows that the controller parametrization
b= Z;(la'rla- co9ng 180y ,sns)T

gives linearity in E(s). Choose a set of complex numbers Z = {2;}Y¥ , and define
the loss function

N
7= 3 |B(=)P (45)
=1 s
Let ng = deg R and ng = deg S and introduce the notation
#n(s) = Fa(s) (s sma=t . 1)
¢s(s) = Fs(s) (Sns s"s—l 1 )* -
#(s) = (dals) ¢s(s))

w;y ¢(z1) wy
_ wzd’(zz) _ W
wnd(2n) wWN

The loss function can then be written as

J(0) = (20 — 4)*(20 — )
where * denotes conjugate transpose. Since J is a non-negative definite and

quadratic it has a unique global minimum precisely when the matrix & has full
column rank. Column rank deficiency occurs e.g. if

N <np-+ng+2 (4.6)
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Eq. 4.1is solved in a least squares sense as described in Section 4.2. The
number of approximation points may therefore be larger than the number of
parameters.

The design method described in this chapter corresponds to method D’ in
Chapter 1. As an alternative, an intermediate low order process model G(s)
B(s)/A(s) can be used (method C' in Chapter 1). The DAB equation

A(s)R(s) + B(s)S(s) = Am(s)do(s)

yields a low order controller which gives approximately the desired performance
when applied to the model G(s). The approximation G must then in particular
be good at the frequency range where the approximate loop transfer function
GS/R is near the point —1 (cf. Theorem 3.1). The method C' imposes some
degree constraints on the polynomials R and S in contrast to the method D'. One
advantage of using a low order process model G is that the Q parametrization
described in Chapter 3 can be used to shape the loop transfer function.

4.2 Least squares fitting of controller parameters

The process model considered in this chapter will be shghtly more general than
in Eq. (3.1), namely

p .
y = G( dt)(u + d) (4.2)
where G is a meromorph function. The same control structure as in Chapter 3
will be used namely ~.
d d '
(S = ~S(5w+T(E)r (43

where the polynomials R, S and T are given by

R(s)=s™ +rs™  poii b,

S(8) = s08™ +518™ 7 4t fosp,

T(s) = tgAo(s)
The polynomial A,(s),which can be interpreted as an observer polynomial (com-
pare section 3.1), is specified by the user. Let the desired closed loop transfer
function be given by G',(s). The actual closed loop transfer function is given by

G(s)T(s)

R(s)+ G(s)S(s)

Introduce the relative closed loop model error

Gal(s) — Gm(s)
Gals)

Ga(s) =

E(s) =
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This can be avoided by choosing sufficiently many complex frequencies zj. An-
other case, for which @ lacks full column rank, is when there are solutions of
lower order.

The approximation set Z is a finite point set in the complex plane. By im-
posing the condition that Z be self-conjugated it is guaranteed that the resulting
polynomial coefficients will be real (see Lemma 2.1). Natural choices for Z are
points on the imaginary axis (continuous time) or points on the unit circle (dis-
crete time). This corresponds to fitting the ordinary Nyquist curve of the closed
loop system to the Nyquist curve of the desired closed loop system at certain
frequencies. Note that the special case N = deg R + deg.§ + 2 ,i.e. the num-
ber of approximation points equals the number of controller parameters, gives a
controller where the closed loop transfer function interpolates the desired closed
loop transfer function at the specified points.

By a simple modification of the functions Fg(s) and Fs(s) it is possible to
incorporate pre-specified factors in the polynomials R(s) and S(s) by introducing
R(s) = Ri(s)Ry(s) and S(s) = Si(s)S2(s) with R; and S; being the fixed
parts of the respective polynomials. The condition Eq. 4.6 is modified to N <
nR, +ns, + 2. For example, if integration is to be included in the controller, the
pre-specified part of R is chosen as R;(s) = s and the function Fg is modified to
R;y(s)FRr(s) = sFg(s).

Other transfer functions, such as

AS
AR+ BS

(from noise n to output y) can be chosen as the functions to be approximated.
This gives the possibility to “shape” different loops in a simple way.

4.3 Some design considerations

There are several design objectives that has to be specified. Some of the choices
to be done are

o The approximation set Z.
e The desired closed loop model G,,.
e The observer polynomial 4,.

e The order of the controller polynomials R, S and 7.
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The approximation set Z

As mentioned above the approximation points are often chosen on the imaginary
axis (continuous time) or on the unit circle (discrete time). Another alternative is
to choose approximation points near the poles of the specified closed loop model
and the observer poles. The motivation for this is to get a closed loop system
with poles near the specified poles. This will of course be achieved at the cost of
the approximation quality on the imaginary axis (on the unit circle in the discrete
time case). In the following, the notation used in Chapter 2, Q = {w1,...,wn}
for Z = {iwy,...,iwn, —iw;,...,—twy}, will be used and wy, k =1,...,m will
be referred to as the approximation frequencies.

The choice of approximation frequencies strongly affects the stability of both
the controller and the resulting closed loop system. Too high approximation
frequencies often results in an unstable controller depending on the order of the
desired model G, and the order of the controller (see below). Intuitively, this
occurs when the model G, is “too hard to follow” at high frequencies due to
the required amount of phase lead. On the other hand, too low approximation
frequencies may give a controller with poles in the right half plane corresponding
to frequencies well above the approximation frequencies.

EXAMPLE 4.1—Flexible servo
Consider the system (from [Wallenborg, 1987])

2
G(s) = 113.6(s + 0.07s + 16)

(84 0.1)(s? + 045 + 125) (4.7)

to be controlled by a second order controller with integration’ with specifications
given by A,,(s) = Butt(3,4,45°) and 4,(s) = Butt(2,8,45°) (for notation see
Ex. 3.4). The approximation frequencies are chosen as @ = {0,2,4,8}. This
gives the unstable compensator

S(s) _ —0.3059252 — 3.1225s — 4.7401
R(s) s(s —9.9835)

which yields an unstable closed loop system. By decreasing the approximation
frequencies to @ = {0,0.5,1,2} the compensator becomes stable:

S(s) _ 1.9406s2 + 23.304s + 30.627
R(s) s(s + 64.01)

This compensator gives a stable closed loop system which matches the specifi-
cation well as Fig. 4.1shows, where the step response of the closed loop system
(solid curve) is shown together with the step response of the desired closed loop
system (dotted curve). o
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The desired closed loop model G,

From the discussion on robustness in Chapter 3 it is understood that the desired
closed loop model G, should not deviate too much from the process model
G, especially when controllers of low order are used. Let R, S and T satisfy
Eq. (4.1) for some choice of approximation set 2 (mterpolatmn) The feedback
compensation can then be written as

5(s) _ Gm(s) 1
B(s)  G(s) T(s)/S(s) — Gm(s)’

Equation (4.8) shows that the feedback gain must be large at points in Z where
Gm/G is large which is the case when the bandwidth of the closed loop system is
large compared to the open loop system. This also requires large positive phase
in the controller. The order of the controller limits the amount of phase lead in
the loop. For closed loop models of low order compared to the process model
some non-minimum phase must therefore be included. One method is to use
approximations of low order obtained from the methods in Chapter 2. Let

seZ (4.8)

el E

be such an approximation. As observed in Chapter 2, the polynomial B(s) in
many cases has zeros in the right half plane. A method for choosing G, then is

0B(s) o~
m( ) m( )

i.e. the zeros of the model are held fixed thus only varying the poles and the
constant by. In the traditional pole placement this corresponds to keeping all
non-minimum phase zeros of the process. However, since the zeros of B are not
the “real” process zeros it is possible to “move” them in spite of the fact that
they are located in the right half plane. This is another way of “speeding up the
system” instead of moving the poles. It should be noted that no real cancellation
of zeros takes place, but if the “virtual zeros” in the right half plane are moved
too far, the resulting controller will typically be unstable. As pointed out in
Ex. 3.2, this will often result in an unstable closed loop system.

EXAMPLE 4.2—Flexible servo

Continuing with Ex. 4.1 the closed loop specification is changed to A,,(s)
Butt(3,6,45°) to make the closed loop response faster. Still using A,(s) =
Butt(2,8,45°) and Q = {0,0.5,1,2} gives the compensator

S(s)  —0.10872s% — 2.8008s — 4.9363
R(s) s(s — 4.8939)
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which is unstable. Attempts to find a stable compensator by adjustment of the
frequencies ) fails. The closed loop system is also unstable. This means that in
this case the order of the compensator must be increased to three, which ends up
with the ordinary pole placement procedure, since both G and G,, are of third
order. The third order controller is, however, unstable which may explain why
all the computed second order compensators were unstable.

Returning to the second order design with Q@ = {0,0.5,1,2}, 4,,(s) =
Butt(3,4,45°) and A,(s) = Butt(2,8,45°) another modification will be done.
The polynomial By, is modified as B,,(s) = by B(s/p) where p is a constant such
that G (0) = 1. Putting p = 1.4 gives the compensator

S(s)  0.62505s% + 2.3987s + 3.113
R(s) s(s + 1.6429)

The step responses are seen in Fig. 4.1.

0.5} L
-1 1 L
0 1 2 3 4 8 9 10
15
Y P SN,
s 05F J
0 L/"‘*k _
-0.5

1 2 3 4 5 6 7 8 9 10

Figure 4.1 Nyquist curves of the flexible servo with second order compensation
with integration for two cases. The specifications are in both cases given by Q =
{0,0.1,0.2,0.4}, Am(s) = Butt(3,4,45°) and Ao(s) = Butt(3,8,45°). Two cases are
shown, one for which B,,,(s) = boB(s) (solid curve) and one with By, (s) = boB(s/1.4)
(dashed curve). The step response of the desired closed loop model is shown for the
case Byn(8) = boB(s) (dotted curve).

The response to the load disturbance is faster but more oscillative in the
case p = 1.4. o
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The observer polynomial A4,

In conventional pole placement design, the observer polynomial 4, corresponds
to the closed loop dynamics which is canceled from the reference input r to y
and u. This is not the case for the design method described here since the zeros
of A, do not, in general, appear among poles of the actual closed loop system.
The rules for choosing A, is similar to when choosing A;,, namely not to move
the roots too far away from the original poles since this might cause instability
of the controller.

The order of the polynomials R, S and T

The degree of the polynomial T is given by degT = deg A, since it is defined
as a constant multiple of 4,. If degA, is chosen too low compared to degR
and deg S there might be solutions of lower order. As already mentioned, this
results in loss of column rank in ®. In certain cases, a too low order of 4, gives
an unstable controller due to the fact that there may exist an exact solution
which corresponds to a non-proper compensator S/R. In this case deg A, must
be increased. The polynomials R and § could also have almost common factors
due to the fact that the closed loop specification G.n(8) almost admits solutions
of lower order. The orders of R and S should then be decreased, especially if the
almost common zeros of R and § are located in the right half plane. ,
Another situation is that G (s) might require more phase lead than is pos-
sible to achieve with the specified order of the controller. A diagnostic of this
is that R possesses unstable zeros without any counterparts in . By increasing
the orders of R and S the controller will in most cases become stable, '

EXAMPLE 4.3—Flexible servo ;

Keeping 2 = {0,0.5,1,2} and Am(s) = Butt(3,4,45°) from the design in Ex. 4.1
while increasing w, in A,(s) = Butt(2,w,,45°) from 8 to 10 gives the unstable
compensator

S(s)  —0.71795s% —12.421s — 17.105

R(s) s(s — 34.561)
Stability of the compensator is not achieved by modifying the approximation
frequencies. The zeros of S(s) are in the left half plane so there is no “near
cancellation” of poles and zeros in the compensator. To get a stable controller
the controller order must therefore be increased. o

Modification of the polynomial T

In some cases the closed loop response to a step in the reference input results in
a large initial peak in the control signal. For a PID controller this corresponds
to too much derivative action. By modifying the polynomial T while keeping R
and §, this can be eliminated to some extent. The idea is to replace T by Ty,
where Ty(s) is an approximation of T'(s)F(s) for some low pass filter F(s) and
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deg Ty = deg T. A simple method is to use a least squares approximation in some
frequency range. As an alternative to this, a pre-filter may be included after the
reference input. This increases, however, the order of the controller.

Robust Performance

High gain control is a standard way to achieve robust performance. This leads,
however, to sensitivity to measurement noise. Another drawback is that satura-
tion of the control signal will typically occur, which leads to poor performance.
The technique developed in this section can be employed to enhance the perfor-
mance robustness without having to use high gain feedback.

Consider a set of process frequency responses given as transfer functions
{G1(s),G2(s),-..,Gr(s)} evaluated at certain frequencies @ = {wy,wy,...,wx}.
The corresponding closed loop transfer functions are given by

B G;(s)T(s)
Ceti(8) = By ¥ Ga(5)ST5)’

i=1...,M

and the relative closed loop model errors

Grm(s) — Ga,j(s)

E.‘i(s) = Gcl,j(s)

Comnsider the loss function

M N
YOEDIHIZCEY o (49)

j=1 k=

where 6 contains the controller parameters. Minimizing J can be interpreted as
a compromise between M different designs since putting one weighting pi # 0

and the rest of the weightings = 0 gives the loss function in Eq. 4.5 for the single
process G(s) = G;(s).

EXAMPLE 4.4
The process models

1
83 +3s2+a;8+2’

Gj(8)= j=1,2

are given, where a; = 4 and a; = 3 and the frequency responses are given at the
frequencies = {0.02,0.4,0.8,2}. The desired closed loop transfer function is
chosen as

1
83 +2.414s2 4+ 2.414s + 1

and the observer polynomial Ay(s) = s° + 2.414s% + 2.414s 4 1 which gives a
rather small bandwidth of the closed loop system so that the loop gain is kept at

Gm(s) =
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a moderate level. The controller is chosen to be of third order with integration.
Consider the minimization of the criterion Eq.4.9. Introduce the normalization
pz = 1. Two limiting cases are recognized, namely p; — oo and p; — 0. As
p1 — oo the polynomials R and S approaches the solution obtained by the
conventional pole placement method using the process model Gy and similarly
p1 — 0 corresponds to using G5 as the nominal process model. The step responses
for the closed loop systems together with the desired closed loop step response

are shown in Fig.4.2. for p; = 1075, 0.1, 1 and 10000. o
15 . . —£1=0.000001 15 . . —pI01

0 5 10 15 20 25 30 35 40 4 5 10 13 20 285 3.0 3‘5 40

Figure 4.2 Closed loop step responses for 4 different weightings (p1 = 10~5, 0.1, 1

and 10000) for the 2-process example (solid and dashed curves). The approximation
frequencies were chosen as Q = {0.02,0.2,0.4, 2}.

4.4 Some examples

To illustrate the method described in Section 4.2 some controller designs of low
order will be done in this section. Integration is included and each example starts
with the lowest possible order (i.e. one).
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EXAMPLE 4.5—FEight cascaded low pass filters

The system
1
“)=Gre

Starting with the choice of approximation frequencies, it is important to know for
which frequencies the Nyquist curve intersects the real and imaginary axes. These
frequencies will be denoted by w_ggo, w_15¢0,... with obvious notation. For this
specific case we have that w_p.900 = tann{;, n =1,2,.... The numerical values
for the first frequencies are w_gge =~ 0.199, w_1590 ~ 0.414 and w_y7¢0 ~ 0.668.

First order controller

To begin with, a first order controller with integration (a PI-controller) will be de-
signed. The phase of the controller varies between —90° and 0°. This means that
the bandwidth of the closed loop system should not exceed the bandwidth of the
open loop non-compensated system. Taking the values of the “axis frequencies”
into account the approximation frequencies are chosen as 0 = {0.01,0.1,0.2}.
The desired closed loop model is somewhat arbitrarily chosen to be of third or-
der with relative degree one. Before specifying this, a third order process model
is fitted to G(s) at the chosen frequencies. This gives

TR, &

6(s) = B(s)  0.1229s% — 0.1607s + 0.0807
"~ A(s)  $* +1.095552 + 0.4847s + 0.0807

The Nyquist curves for G(s) and G(s) fits very well for frequencies below 0.2
rad/s as Figure 4.3 indicates. The zeros of B(s), 0.653 = i0.479, are kept in the
model Gm(s). The polynomials A, and A, are both chosen to Butt(3,0.3,45°).
A first order controller with integration obtained by fitting at the frequencies
Q2 = {0,0.01,0.1,0.2} results in the closed loop Nyquist curves shown in Figure
4.4. The zero frequency is included in order to get a small error in the closed loop
static gain. By choosing a sufficiently large weighting for this frequency the error
can be made arbitrarily small. In general there may be two sets of frequencies
— {1 at which very small errors are required (nearly interpolation) and Q, with
larger tolerance. This can be achieved by choosing weightings of Q; much larger
than the weightings of 5. The controller output » and the process output y in
closed loop are shown in Figure 4.5 for the case when the reference signal r is a
unit step at £ = 0 and the load disturbance d is a unit step at ¢ = 50. The step
response of the desired model from 7 to y is also included in the plot. The step
responses follows very close. If the desired closed loop poles are moved further
out from the origin the fitting will deteriorate and when the polynomials 4,, and

A, are chosen as Butt(3,wm,45°) with w,, = 1.1 the actual closed loop system
is unstable.
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Figure 4.3 Nyquist curves of G(s) = 1/(s + 1)® (dashed curve) and a third order
approximation G(s) (solid curve). The approximation frequencies 2 = {0.01, 0.1, 0.2}
are marked with o’s.
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Figure 4.4 The plant G(s) = (s+1)~® controlled by a first order controller with inte-
gration. Nyquist curves of desired closed loop system (dashed curve) and actual closed
loop system (solid curve). The fitting frequencies are given by Q = {0,0.01,0.1, 0.2}.

Second order controller

By increasing the order of the controller, it is possible to get more phase lead in
the loop which means that the bandwidth can be further increased. A second
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Figure 4.5 The plant G(s) = (s+1)~8 controlled by a first order controller with inte-
gration. Step responses of desired closed loop system (dashed curve) and actual closed
loop system (solid curve). The fitting frequencies are given by 0 = {0,0.01,0.1,0.2}.

order controller with integration (PID-controller) is computed using the approx-
imation frequencies = {0,0.01,0.1,0.2,0.4}. The desired closed loop poles and
the observer poles are moved to the radius w,, = 0.4 yielding the Nyquist curves
in Figure 4.6. The step response of the closed loop system is well in accordance
with the specified model as Figure 4.7 shows.

When the specified poles are moved further out from’ ‘the origin, the design
procedure gives an unstable controller. The reason for this is intuitively that more
phase lead is required (see Example 3.2). The only way a fixed order controller
can give such a phase advance is to make it unstable.

The resulting closed loop system will also be unstable. This is due to the
fact that the instability of the controller implies that the Nyquist curve should
encircle the point —1. This is not the case, since the approximation frequencies
are much lower than the frequencies for which the loop Nyquist curve is close
to —1. In fact, the instability occurs for much smaller values of w,, (= 0.47)
than in the first order case. The reason for this is that in the first order case the
single controller pole is fixed to zero, so that there is no possibility to have any
controller poles in the open right half plane. This clearly indicates that unstable
controllers are not desirable.

Third order controller

The bandwidth of the closed loop system can be made larger if the controller
order is increased. In the third order case the values w,, = 0.5 and w, = 0.5
were chosen and the approximation frequencies were the same as in the second
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Figure 4.6 The plant G(s) = (s + 1)~ controlled by a second order controller
with integration. Nyquist curves of desired closed loop system (dashed curve) and

actual closed loop system (solid curve). The fitting frequencies are given by 0 =
{0,0.01,0.1,0.2,0.4} and are marked by o’s.
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Figure 4.7 The plant G(s) = (s + 1)~® controlled by a second order controller
with integration. Step responses of desired closed loop system (dashed curve) and

actual closed loop system (solid curve). The fitting frequencies are given by 2 =
{0,0.01,0.1,0.2,0.4}.

order case, namely ) = {0,0.01,0.1,0.2,0.4}. The Nyquist curves of the closed
loop system and the reference model fits well together below w = 0.4 (Fig.4.8).
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Figure 4.8 The plant G(s) = (s + 1)~8 controlled by a second order controller
with integration. Nyquist curves of desired closed loop system (dashed curve) and

actual closed loop system (solid curve). The fitting frequencies are given by 0 =
{0,0.01,0.1,0.2,0.4} and are marked by o’s.

In this case the controller poles are relatively well damped but the controller will
eventually become unstable as the desired bandwidth is increased. The actual
and desired closed loop step responses are shown in Figure 4.9.

.

Higher order controllers .

As the order of the controller is increased, some caution has to be taken. The
number of approximation points (frequencies) must be sufficiently large. Also,
the order of the desired closed loop model may have to be increased to get a
stable controller. Another possibility is to force the controller to be stable by
keeping the polynomial R fixed to a stable polynomial R;. The order of the
controller may then have to be increased to get a good Nyquist curve fitting. As
mentioned in Section 3.2 the freedom to choose R; can be utilized to adjust the
loop Nyquist curve without changing the closed loop Nyquist curve too much. o

EXAMPLE 4.6—Sixth order doubly resonant system
Designing PI or PID compensators for the system

-8 41

G(s):s6+3s5+5s4—|—7s3+552+3s+1

is a non-trivial task mainly due to the fact that the phase decreases rather in a rel-
atively short frequency interval. This is caused by the two resonances, which are
rather close together, and the right half plane zero. Computing the first intersec-
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Figure 4.9 The plant G(s) = (s + 1)~® controlled by a third order controller
with integration. Step responses of desired closed loop system (dashed curve) and

actual closed loop system (solid curve). The fitting frequencies are given by Q2 =
{0,0.01,0.1,0.2,0.4}.

@&

tions between the Nyquist curve and the axes gives the fre&uencies w_gge '~ 0.40,
Ww_180° ~ 0.69 and W_9o700 ~ 0.86.

First order controller

Considering the first “axis frequency” w_gge a reasonable set of app’rox’imation
frequencies is = {0,0.1,0.2,0.4}. A third order unweighted LS-approximation
of the process at these frequencies is given by

_ B(s) _ 0.2784s? — 0.5647s + 0.3107
~ A(s)  s®+0.816s% + 0.678s + 0.3107

G(s)

As Figure 4.10 shows, the approximation is satisfactorily in the range of Q. The
complex conjugated pole pair of the approximate model is rather close to the
slower resonant pole pair of the process. The polynomial B is used in a third order
desired closed loop model. Using a first order controller (PI-controller) means lim-
ited opportunities to damp the resonant modes. The lower resonance frequency
of the process is approximately 0.745. A realistic choice of bandwidth is therefore
below this frequency. A design using the polynomial A4,,(s) = Butt(3,0.4,45°)
and the observer polynomial A,(s) = s + 0.6 gives the Nyquist curves in Figure
4.11. This choice of 4,, gives a desired closed loop bandwidth of wp = 0.32 which
is less than half the lower resonance frequency of the process model. Moving the
observer pole —1 farther into the left half plane gives a more oscillatory response
to the load disturbance. The weighting for w = 0 was increased in order to obtain
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Figure 4.10 Nyquist curves for G(s) = (1—3)/(s® +355 +53% + 753 + 552 + 35+ 1)
(dashed curve) and a (2,3) LS-approximation G(s) (solid curve).
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Figure 4.11 The plant G(s) = (1—s)/(s%+3s%+55%+75%4-5524-35+1) controlled by
a first order controller with integration. Nyquist curves of desired closed loop system
(dashed curve) and actual closed loop system (solid curve). The fitting frequencies
Q = {0,0.1,0.2,0.4} are marked with o’s. The polynomials A,, and A, were chosen
as Am(s) = Butt(3,0.4,45°) and A,(s) = s + 0.6.

the correct stationary gain. The desired and actual closed loop step respomnses
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Figure 4.12 The plant G(s) = (1—s)/(s%+3s°%+55s*+7s3+552+35+1) controlled by
a first order controller with integration. Step responses of desired closed loop system
(dashed curve) and actual closed loop system (solid curve). The fitting frequencies
are given by Q@ = {0,0.1,0.2,0.4}. The polynomials A,y and A, were chosen as
Am(s) = Butt(3,0.4,45°) and A,(s) = s + 0.6.

’

are seen in Fig. 4.12. The resulting feedback compensation is

S(s) _ —0.1181s 4 0.1067
R(s) s

The polynomial S has a zero in the right half plane. The intuition behind this is
that in order to damp the resonances the compensation must have just enough
phase lag in order to “rotate” the loop Nyquist curve clockwise so that the large
magnitude at the lower resonance “points” into the right half plane.

Second order controller

Using Q = {0,0.1,0.2,0.4}, w,, = 0.4 and w, = 0.6 as in the first order case,
gives the closed loop Nyquist curve shown in Figure 4.13. The resonant modes
are, as expected, much better damped than in the first order case. The actual
closed loop system also gives a significantly better approximation of the desired
closed loop system. This is also visible in the closed loop step responses (see Fig.
4.14). In this case the feedback compensation is given by

S(s)  —0.0992s2 + 0.1232s + 0.04725

R(s) 52 4 0.3648s

This corresponds to a PI-compensator similar to the one in the previous case,
cascaded with a lead compensation. The lead compensation has maximum phase
at w & 0.33, which is approximately the bandwidth of the closed loop system.




44

Some ezamples

0.4

e e e ey

/

-1
-0.8

~0.6

-0.4

-0.2

0.2 0.

4

0.6

0.8

73

Figure 4.13 The plant G(s) = (1—s)/(s®+3s%+55%+7s%+552+35+1) controlled by
a second order controller with integration. Nyquist curves of desired closed loop system
(dashed curve) and actual closed loop system (solid curve). The fitting frequencies
Q = {0,0.1,0.2,0.4} are marked with o’s. The polynomials Ay, and A, were chosen

as Am(s) = Butt(3,0.4,45°) and A,(s) = Butt(2,0.6,45°). __ .,
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Figure 4.14 Theplant G(s) = (1—s)/(s%+3s%+5s*+753+55% +-3541) controlled by
a second order controller with integration. Step responses of desired closed loop system
(dashed curve) and actual closed loop system (solid curve). The fitting frequencies
are given by Q@ = {0,0.1,0.2,0.4}. The polynomials A,, and A, were chosen as
Am(s) = Butt(3,0.4,45°) and Ao(s) = Butt(2, 0.6, 45°).
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Increasing wp, and w, will give a poorer damping of the resonances. The
non-zero pole of the controller will eventually move into the right half plane.
This can not be remedied by changing the approximation frequencies.

Third order controller

Increasing the controller order to three gives more phase lead capability. The
bandwidth can be increased a little higher, compared to the second order case,
before oscillations appear in the closed loop step response. A third order con-
troller with integration is computed using @ = {0,0.1,0.2,0.4}, w,, = 0.5 and
wo = 0.7. The closed loop Nyquist curve approximates the desired one rather
well at frequencies in the range of (2 (see Fig. 4.15) but above w = 1 the approx-
imation is not quite as good.
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Figure 4.15 The plant G(s) = (1—3)/(s°+35°+55%+75%+55% +35+1) controlled by
a third order controller with integration, Nyquist curves of desired closed loop system
(dashed curve) and actual closed loop system (solid curve). The fitting frequencies
Q = {0,0.1,0.2,0.4} are marked with o’s. The polynomials A,, and A, were chosen
as Am(s) = Butt(3,0.5,45°) and A4,(s) = Butt(3,0.7, 45°).

The approximation gets slightly better when increasing the approximation
frequencies. It is important to update the approximate process model G when
changing approximation frequencies. Incorporating frequencies above the higher
resonance gives an unstable controller. The step responses are shown in Fig.

4.16.

=}
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Figure 4.16 The plant G(s) = (1—s)/(s®+33s%+55%+7s34+5s24+35+1) controlled by
a third order controller with integration. Step responses of desired closed loop system
(dashed curve) and actual closed loop system (solid curve). The fitting frequencies
are given by Q = {0,0.1,0.2,0.4}. The polynomials A,, and A, were chosen as
Am(s) = Butt(3,0.5,45°) and Ao(s) = Butt(3,0.7, 45°). i e

’

4.5 Conclusions

A new method for design of low order controllers for stable SIS O systems has been
proposed. The method uses a least squares method to find a linear controller of
specified order from a number of points on the Nyquist curve of the process. Since
the design is made in the frequency domain the process model may be of infinite
order. By repeating the optimization for controllers having different complexity
it is possible to find the benefits of increasing the order of the controller. The
design variables consist of the approximation frequencies {} (or more generally
Z), the desired closed loop transfer function G,n(s) = By,(s)/Am(s), the observer
polynomial A,(s), and the orders of the controller polynomials R and S.

The method combines good features of classical frequency domain design
methods and pole placement. The advantage with pole placement design is that
it is possible to understand how the design variables influences the transient
response properties of the closed loop system. The drawback is that it is very
difficult to see the influences on the controller gain. The classical frequency
domain design methods have the opposite properties. In this case it is difficult to
see how the design variables affect the transient response while it is easy to see
the influence on the controller gain. The new method suggested in this chapter
combines the attractive properties from each of the two design techniques.

The proposed method is believed to be a good starting point for design of PI
and PID controllers from measured plant frequency responses thereby continuing

vt
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and refining the well-known method of Ziegler and Nichols. The present method
is illustrated by some examples where the order of the controllers is considerably
lower than the order of the process. The controllers thus obtained are shown to
give good accuracy with respect to the desired closed loop step response.




Robust Control Design

5.1 Introduction s

Ever since the work in [Bode, 1945], frequency domain methods have been used
in the design of control systems. One motivation for Bodes work was to design
feedback systems that are insensitive to process variations. This viewpoint was
further emphasized and developed in [Horowitz, 1963]. The development of state
space methods in the fifties tended, however, to de-emphasize the “classical”
frequency domain techniques. At the same time less interest was given to the
problem of plant variation. A renewed interest in this problem has occurred in
the last decade through the LQG-LTR approach [Doyle and Stein, 1981], [Stein
and Athans, 1987] and the H.-methods [Zames, 1981], [Francis, Helton and
Zames, 1984], [Glover and Doyle, 1988].

In the Horowitz method, a structure with two degrees of freedom is used

(Fig. 5.1).

Prefilter Feedback compensator ~ Plant

+

—1 F(s) —® K(s) G(s)

Figure 5.1 Two degree of freedom structure

7
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The feedback compensator K(s) is designed with respect to the uncertainties
in the process. This is done using graphical methods to account for variations
in the process frequency response. The uncertainties are given as “templates”
(see next section) for a number of frequencies. The idea is to keep the loop
gain just high enough to meet the requirements of robustness against the plant
variations specified by the templates. The actual computation of the compensator
K(s) is done by using a “patching technique” where a number of lead and lag
compensators are successively cascaded. This often results in a compensator
of excessively high order. The pre-filter F(s) is used to shape the closed loop
response and is typically chosen as to decrease the bandwidth of the closed loop
system.

The LQG-LTR procedure consists of an LQG design where the the robust-
ness properties of the loop transfer function from the full state LQ design (infinite
gain margin and at least 60° phase margin) are recovered in the design of the
Kalman-Bucy filter. This is done by introducing fictitious noise with special prop-
erties. The resulting loop transfer function converges pointwise on the imaginary
axis to the LQ loop transfer function as a certain parameter g goes to infinity.
This means that the LQG-LTR loop Nyquist curve will approach K/iw at large
frequencies as ¢ — oo. The sensitivity to noise and high frequency unmodeled dy-
namics is thereby increased. There is also a dual version of this method starting
with the Kalman filter design and then computing a sequefice of LQ-regulators
which recover the loop transfer function of the pure filter case.

The methods involving H,-theory are variations on the theme: Minimize
the Hoo-norm of the weighted sensitivity function

IWi(I + GK) " Wa|oo

over all controllers K(s) achieving internal stability, i.e. for which the transfer
function

[ (I+GK)™  (I+GK)™G ]
K(I+GK)™' K(I+GK)™'G

is stable. In the single input single output case, this corresponds to maximizing
the minimal distance between the open loop Nyquist curve and the point —1.
The uncertainty is thus described by a circular disc at each frequency. This gives
a rather conservative robustness.

The method presented in this chapter is most closely related to the Horowitz
method. The novelty of this approach is that the computation of the compen-
sator is viewed as an approximation problem. Using a least squares criterion
a compensator of specified order is computed to match the desired open loop
frequency response at certain frequencies.

vt
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5.2 Description of plant uncertainty

To describe model uncertainty in the frequency domain it is convenient to intro-
duce sets called templates (compare [Horowitz, 1982]). A template for a certain
frequency w is defined as a subset of the complex plane given by G(iw, P) =
{G(iw,p) : p € P} where P is a possibly infinite index set.

Plant uncertainty can be classified according to

e Structured uncertainty
e Parametric
e Non-parametric

e Unstructured uncertainty
e Additive
e Multiplicative
e Coprime factorization

Parametric structured uncertainty

A plant model with parametric structured uncertainty is given by a family of
transfer functions, e.g.

2

G(s,p) = bls:_l a bzi_z ot b

st 4-a 8"t 4o ay,
where p is a parameter vector containing the coefficients b;and a; together with
the time delay 7. The parameter vector belongs to a subset P of IR?™t1, Often, P
is chosen as a bounded hypercube in IRZ"*!, i.e. a cartesian product of bounded
intervals.

Non-parametric structured uncertainty

Another way to represent structured plant uncertainty is by a number of mea-
sured frequency responses. In a way, this could be classified as a parametric
representation, namely

G(iw, p) = {G;(iw)}3,

where M is the number of frequency responses and p = {1,2,...,M }. Neverthe-
less, it seems more natural to regard this as a non-parametric way to describe
uncertainty. A typical situation is when frequency responses are measured for
different operating conditions. The templates for each frequency consists in this
case of M points in the complex plane.

v
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Additive unstructured uncertainty

Additive unstructured uncertainties are defined by
G(s) = Go(8) + Ag(s)

where Go(s) is the nominal transfer function and Ag(s) is an asymptotically
stable perturbation which is bounded on the imaginary axis according to

|Ag(iw)| < M(w)

for some bounded function M. In this case, each template is a circular disc with
radius equal to M(w).

Multiplicative unstructured uncertainty

Multiplicative unstructured perturbations can be written as
G(s) = Go(s)(1 + ba(s))
where d¢ is asymptotically stable with
ba(ic) < m(w) «

for some bounded function m(w). This relative error formulation is advantageous

when working in Bode or Nichols diagrams. Each template is a circular disc with
radius |Gy (iw)|m(w). -

Coprime factorization unstructured uncertainty

The third and latest approach to unstructured uncertainties is the stable coprime
factorization formulation:

G(s) = N(s)D™"(s) = (No(s) + An(s))(Da(s) + Ap(s)) ™

where N and D are coprime elements of Ho,. A clear advantage with this ap-
proach is that the perturbed model need not have the same number of poles in
the right half plane as the unperturbed model. Also, there is attractive solution
methods available for the corresponding H, sensitivity minimization problem.
There is no simple characterization of the templates for this approach since the
perturbations appear both in the numerator and in the denominator of the trans-
fer function.

In the following, all uncertainties will be of the structured type described by
parameter variations in a transfer function. Instead of using high gain control
to eliminate variations in the open loop transfer function the idea is to shape
the transfer function in such a way that the closed loop behavior varies in a

)
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“pleasant” way. A typical example is to allow the response speed to change while
the damping is kept unchanged as some parameter in the process changes. The
shaping will be done using the weighted least squares method presented in Section

5.3. Different types of parametric structured plant variations are exemplified in
Section 5.4.

5.3 Robust control as an approximation problem

One of the key ideas in Bodes’ work is to shape the loop in such a way that the
closed loop system is insensitive to gain variations in the loop. The ideal loop
transfer function is, according to [Bode, 1945, p. 455]

ko

(\/TTW+ S/WO)a

For w < wp the argument of L(iw) drops from 0 to —an/2 and for w > wy the
argument is constant = —am/2. To get a more realistic loop transfer function high
frequency roll-off must be introduced as Bode remarks on p. 471. A related work
is [Oustaloup and Bergeon, 1987] where loop transfer functions of non integral
order are considered. e

The ideal loop transfer function can be approximated by using least squares
approximation at some frequencies near the cross-over frequency to compute a
compensator of a specified order. The compensator order is related to the length
of the frequency range in which the phase is to be kept constant. By changing the
angle ¢, the phase margin can be adjusted. The Bode ideas.can be reformulated
as an approximation problem which avoids the graphical constructions done in
the Horowitz method.

In general a desired loop transfer function

L(s) =

(5.1)

I(s) = ﬁ%

is specified at certain frequencies. Given the nominal process transfer function
Grom($), a controller

d d
RCEyu(t) = ~S(yy(0
where R and S are polynomials, can be computed such that

am<s>g% ~ I(s)

Using the least squares method the loss function can be written as

S W i) | Blig) — (g Gromlien)
J =) |W(iw)|? | R(iwy) — S(iwy) Tliwg) (5.2)
k=1
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which is minimized with respect to the coefficients in R(s) and S(s). Introducing
a reference input » the control law is modified to

d d
R(Z)ult) = S()(y(t) - (1)
The closed loop transfer function from r to y is then given by

L(s)

Ga(s) = 1T L(s) (5.3)
which is equivalent to )
_ Ga(s

The loss function in Eq. 5.2 could therefore be rewritten as

J ~i W (i) 2 | R(ieog) — S(iwp) Grom (itog ) e cl(ik) 2
c = k=1| (wg)| (twg) (1wr)Grom (iwy _G—cl(“*’—k)

for some desired closed loop transfer function Gef(s).

5, &

5.4 Robustness against parametric plant variations

A rather general description of parametric (and thus structured) plant variations
is given by ( ) S '
B 5,PB -—T38
G(S’p) A(SapA) ‘

where the parameter vector p = (p4,pg, ) belongs to some subset P C IR for
some integer n,. For simplicity, P is assumed to be a closed bounded hypercube.
Each template G(iw) = G(iw,P) consists of a subset of the complex plane. In
the special case n, = 1 the templates are curve segments in €. For np > 1
the templates are given by closed subsets in €. If n, = 2 the boundary of
the template consists of four curve segments. A compensator S/R will alter
the magnitude and phase of the loop transfer function L = GS/R. In a Nichols
diagram the logarithm of the magnitude is plotted against the phase. This means
that each “compensated” template L(iw, P) is just a translation of the “original”
template G(iw, P) when viewed in a Nichols diagram, since the multiplication by
S(iw)/R(iw) corresponds to addition by a vector in the diagram. To get a closed
loop system insensitive to changes in the parameters p, the templates L(iw,P)
which are close —1 must be small. If the templates are small at high frequencies,
a high gain feedback might satisfy the requirements. A system with a time delay
fails to fulfill that condition, since the phase uncertainty becomes larger with
increasing frequency.

et
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Assume that n, = 1. Typical examples are when p is a pure gain or when
p is a time delay. The templates L(iw,P), which consists of curve segments,
are mapped under the closed loop mapping, Eq. 5.3 to “closed loop” templates
G (iw, P) also consisting of curve segments. Robustness means that the closed
loop response varies in an acceptable way as p varies. This can be formalized as

Gcl(S,P) = Gnice(37p(p)) ‘ ' (55)

where Ghice(s, p) is a family of transfer functions parametrized by p which cor-
responds to “nice” step responses. “Nice” could mean, for example, that the
variations in the closed loop step responses are very small. If the high frequency
uncertainty of the plant is negligible and the plant is minimum phase then high
gain feed back could be used to accomplish this. However, if high gain feedback
is unfeasible then some variations in the response of the closed loop system must
be tolerated. The problem is then to decide which closed loop properties that
could be allowed to vary.

One alternative is to allow the speed (bandwidth) of the closed loop response
to vary while keeping a constant damping. This can be expressed by

Ga(57) = Cee (;@) (5.6)

where p(p) is a positive real-valued function. Equation 5.6 can be interpreted as a
frequency scaling where p(p) measures the response speed relative to the nominal
speed p(Pnom) = 1. This “damping invariance” also implies that any two Nyquist
curves Ga(iw,p:) and Gu(iw,ps) consist of the same point set in € but are
equipped with different parametrizations in the frequency w, i.e. the frequencies
are “slided” along the Nyquist curves. The open loop transfer function is given

> (s/p(2)
Ghice(s/p(p . (s
1) = =g e = B (50 &0

The ideal loop transfer function in Eq. 5.7 is approximated in some frequency
range, depending on the variations in p.

The converse is to keep the closed loop bandwidth constant but to allow
the damping to change. There is no general parametrization as in Eq. 5.6. A
simplified version is to keep the natural frequency wo constant in the second order
transfer function family

Wo
52 + 2(wgs + wi

Gnice(37 C) - (58)
which gives roughly the same bandwidth for different relative dampings ¢. The
corresponding open loop transfer function is computed from Eq. 5.4 as

2
Wy

L{s) = s(s + 2¢wo)

e
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EXAMPLE 5.1
An embarrassingly simple but illustrative example is

1
G =
(5,0) = =~
where a is uncertain. The compensator
we
K(s) = —
()= 2

gives the desired closed loop parametrization

Gcl(s, a) = Gnice(s7 C)

with {(a) = 32 o

2wp "
Many other parametrizations of acceptable closed loop variation could be given
in the one parameter case n, = 1 but the main trade-off is between speed and
damping. In the multi parameter case n, > 1 the closed loop variations must
also be parametrized by n, parameters. The function p in Eq. 5.5 is then a
mapping from P C realR™ into R" for a given Gpjce. For the case n, = 2 one
possibility would be to combine the two one-parameter cases*“constant damping”
and “constant bandwidth”. - { o

The most useful of the one parameter cases is the “constant damping” case
Eq. 5.6 since it guarantees a certain stability margin. The rest of the chapter
will therefore be devoted to this case. :

e
-

Variations in the process gain

As a special case of parametric plant variation the gain variation problem will be
considered. The process transfer function is thus assumed to be of the form

_ bBy(s)
- Ao (s)

G(s)

~—T08
e 0

where the scalar parameter b belongs to some interval, [b_,b.] and By(s) and
Ay(s) are fixed polynomials and the time delay 7 is a fixed scalar. Assume that
the design of the loop is done according to the “constant damping” method in
Eq. 5.6. Ideally, this would mean that the phase margin is kept constant over a
certain frequency range. The transfer function '

k
L(S) = = (59)

s
where k is some constant, has the property that the phase is constant, arg L(iw)
= —an/2 for all frequencies w. This is a simplified version of the ideal loop

e
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transfer function of Bode in Eq. 5.1. The transfer function L in Eq. 5.9 is invariant
to gain variations in the sense that

k1L(s) = L(s/p(k1))

where

plkr) = k' .
The phase margin of the loop transfer function in Eq. 5.9 is given by

om=(1—a)r/2 (5.10)

This means that in this ideal case the damping of the closed loop will be inde-
pendent of the gain and only the speed of the response will vary. The exponent
@ is in the Bode case chosen to 1.5 which corresponds to a phase margin of 45°
but any phase margin ¢, can be achieved by choosing a according to Eq. 5.10.

The actual loop transfer function should thus approximate the ideal loop
transfer function given by Eq. 5.9 in the frequency range determined by the gain
variation of the process. This can be achieved with a controller computed by the
least squares method with loss function given by Eq. 5.2 and with approximation
frequencies chosen from this frequency range.

A general loop transfer function with uncertamty in the gain only can be
written as

L(s) = kLy(s) (5.11)
where k varies. The constant &k in Eq. 5.11 is chosen with respect to the desired
closed loop bandwidth wy. -~

By definition, the closed loop bandwidth w is given by
| L(’wa) . 1
14 L('wa) - \/5

which is equivalent to
|L(iws) — 1| = V2 (5.12)

Inserting Eq. 5.11 into Eq. 5.12 gives after some simple calculations

k=g++/1+g? (5.13)

where g = Re Lo(zwb)/|Lo(zwb)|2 and only positive values of k are considered.
For the special case in Eq. 5.9 the formula for % is

k= wy <cos%z+1/1—|—c05292—7r— ’ (5.14)

It is reasonable to choose approximation frequencies in an interval [w—,wy]
around the nominal closed loop bandwidth. The length of the interval must

e
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be chosen with respect to the gain variation of the process. If b € [k—,k] and
the nominal value is k = kyop then a possible choice of frequency interval for L
as in Eq. 5.9 is

w_ = (bnom /b ) %w,
Wi = (bnom /b4 )}/ *wy

which are the closed loop bandwidths for the lower and upper values of &.

(5.15)

EXAMPLE 5.2
Consider the uncertain system

b
=y

where the gain b € [1,10] and the nominal value byom = 2. The frequency range
in which the phase is to be kept constant is determined by the desired band-
width wp of the nominal closed loop system. Let w, = 1. The approximation
frequencies were chosen as = {0.63,1,1.59,2.92} where the values are logarith-
mically spread between w_ and w, according to Eq. 5.15. An attempt to fit a
second order compensator with integration resulted in an unstable compensator.
This motivated a compensator order of three which turnéd ‘out to give a stable
compensator. The resulting compensated Nyquist curve is rather similar to a
straight line in the interesting frequency range (see Fig. 5.2).

15 0
6
1
4
0.5 )
0 : 0
1552 &
-0.5 1 /
-4
0.43
-1 P /
153 05 310 5 5

Figure 5.2 The Nyquist curve of the process G(s) = b/s(s + 2) with a third order
compensator such that the phase margin is kept constant as b varies between 1 and
10. The approximation frequencies are marked with ’o”:s. The Nyquist curve is shown
in two different scales.

To verify the robustness of the closed loop damping with respect to gain
variations the time response of the closed loop system is plotted in Fig. 5.3 for the

—t
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Figure 5.3 Step responses of the process G(s) = b/s(s + 2) with a third order
compensator such that the phase margin is kept constant as b varies between 1 and
10. The values of b are 2 (solid curve), 1 (dashed curve) and 10. (dotted curve). The
desired bandwidth for the nominal case b =2 is w, = 1 i ‘

values b = 1, 2 (nominal) and 10. Clearly, the step responses share approximately
the same relative damping. The slow mode appearing in the load disturbance
response can be partly explained by the relatively low bandwidth, wy = 1., When
increasing ws to 4 in the nominal case b = 2 the step responses in Fig. 5.4 are
obtained instead. Notice the large initial peak in the control signal. This can be
removed by using an RST structure with T' # §. This may, however, destroy the
independence of the relative damping with respect to the gain variation. o

EXAMPLE 5.3—Double integrator
A double integrator with uncertain gain

G(S) = ::%" k€ [1a5]

is to be controlled by a third order controller with integration. Using the desired
loop transfer function in Eq. 5.9 gives a compensator such that the loop Nyquist
curve starts with a phase of —90° instead of —270° which should be the case since
the process contains two integrators and the compensator has one integrator.
This implies an unstable closed loop system (even in the nominal case). The
desired loop transfer function in Eq. 5.9 is therefore modified to

ky ky

§%1 S&2

L(s) =

)
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b/s(s + 2) with a third order

Figure 5.4 Step responses of the process G(s) =
compensator such that the phase margin is kept constant as b varies between 1 and

10. The values of b are 2 (solid curve), 1 (dashed curve) and 10 {dotted curve). The

desired bandwidth for the nominal case b = 2 is wp = 4.
with @7 = 1.5 and a; = 3. At low frequencies L(iw) = k2(iw)™® and at high
frequencies L(iw) = ki(iw)™1°. This gives the required low frequency phase
asymptote —270° while at the same time the “constant phase” frequency range
is maintained. The bandwidth of the closed loop system depends in this case
on two constants, k; and k; which means that the constants are not uniquely
defined. Letting k; = 4 and ks = 2, which corresponds to a bandwidth of wy ~ 4,
gives the loop transfer Nyquist curve shown in Fig. 5.5. The approximation

frequencies were chosen as 2 = {1,2,4,8}. The corresponding step responses are

shown in Fig. 5.6. Notice that the damping varies slightly as the gain varies since
o

the loop transfer function has been modified

EXAMPLE 5.4—Eight cascaded low pass filters
The Bode “constant phase” method will now be demonstrated for the system

b
=y

with transfer function

A controller with integration will be designed such that the phase margin of the
compensated loop is approximately constant as b varies in the interval [0.5,2] and

with the closed loop bandwidth w, = 0.1 at the nominal gain byom = 1. Since
the phase of this system drops rather rapidly in the frequency range of the open
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Figure 5.5 The Nyquist curve of the the process G(s) = k/s? with a third order
compensator such that the phase margin is kept approximately constant as k varies
between 1 and 5. The desired bandwidth for the nominal case k = 1 is wp ~ 4 The
approximation frequencies are marked with 'o’:s. The Nyquist curve is shown in two

different scales.
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Figure 5.8 Step responses of the process G(s) = k/s% with a third order compen-
sator such that the phase margin is kept approximately constant as k varies between
1 and 5. The desired bandwidth for the nominal case k¥ = 1 is wp & 4 (solid curve).
The dashed and dotted curves corresponds to k = 2 and k = 5 respectively.

loop bandwidth, the approximation frequencies Q) have to be chosen rather low
in order to get a stable compensator §/R. With = {0.05,0.1,0.15,0.2} a third
order controller was computed. The desired open loop transfer function had to
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be modified with high frequency roll off:

L(s) =

where B, = 0.05, A.(s) = s* + 35> + 35+ 2 and a = 1.5. The resulting open

loop transfer function is shown in Fig. 5.7.
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Figure 5.7 The system G(s) = (s + 1)~8 with a third order compensator giving
almost constant phase over the range of approximation frequenc1es 2 = {0.05,0.1,0.15,
0.2}. The approximation frequencies are marked with ’o:is. The Nyquist curve is
shown in two different scales.

-
o

Figure 5.8 shows that the closed loop is considerable slower than the un-
compensated open loop system and it seems not worthwhile to have “damping
invariance” with respect to the process gain in this case.

Variations in the time delay of the process

Another type of plant variation is a varying time delay. The process model can
then be written as

G(s) = %—%e-”

where 7 in[7_, 74| and the polynomials By and A, are fixed. Using the “constant
damping” method as in Eq. 5.6 an ideal loop transfer function would be

L(s) = ke™™=* (5.16)

since this has the invariance property

L(s)e™™" = L(s/p(m1))




5.4 Robustness against parametric plant variations 91

1.5 T T T T T T T

0 50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

Figure 5.8 Step responses of the process G(s) = b/(s + 1)® with a third order
compensator such that the phase margin is kept constant as b varies between 0.5 and
2. The values of b are 1 (solid curve), 0.5 (dashed curve) and<2 (dotted curve). The
desired bandwidth for the nominal case b = 2 is wp = 0.1

where
(n) = ——
P STt T , _
The gain margin for this choice of loop transfer function is given by
1
gm = %

A change in the time delay of the loop will merely change the speed of the closed
loop response while the damping is kept constant. Asin the case of gain variation
the actual loop transfer function approximates the ideal loop transfer function in
a certain frequency interval. In this case, the frequency interval depends on the
interval [7_, 7]

EXAMPLE 5.5—First order system with time delay

The process model
1

—T3
(8) = s57e
has a varying time delay 7 € [0.5,2] which has the nominal value Tyom = 1. A
second order controller without integration will be designed which gives approx-
imate damping invariance with respect to the variation in the time delay. The

ideal loop transfer function for the nominal case 7 = 1 was chosen as

L(s) =0.3e7%*
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Figure 5.8 The system G(s) = e~*/(s+1) with a second order compensator (with-
out integration) giving almost constant magnitude over the range of approximation
frequencies 2 = {0.01,0.2, 0.4, 0.8,1.5,2}. TRLLE

with the approximation frequencies Q = {0.01,0.2,0.4,0.8,1.5,2}. The approx-
imating loop transfer function is shown in Fig. 5.9. The resulting compensator
K(s) is computed as :

-

S(s) _ —0.47807s? + 0.73557s + 1.7069

K(s) = Rs) s2 + 2.807s + 5.6816

The reference input 7 is introduced in the controller in such a way that the transfer
function G from r to y has the stationary gain G(0) = 1. The step response of
the closed loop system is shown in Fig. 5.10for 7 = 0.5, 1 and 2. The simulations
were carried out using a fifth order rational least squares approximation of G (s) =

e~"*/(s+1) for each value of 7. The step responses have approximately the same
da,mpmg as the time delay 7 varies.

The reason for not introducing integration in the controller in Ex. 5.5 is that

the loop transfer function in Eq. 5.16 lacks the required large low frequency gain.
One way to circumvent this is to introduce the “trade-off”

1
L(s) = k1e™™" + ks (5.17)

Unfortunately, this will not give the desired property due to a slow mode which
appears in the closed loop system. This slow mode will destroy the “damping
invariance” property since the second term in Eq. 5.17 will dominate at the
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Figure 5.10 Step responses of the process G(s) = e~ 7%/(s +1) with a second order
compensator such that the amplitude margin is kept constant as 7 varies between 0.5
and 2. The values of = are 1 (solid curve), 0.5 (dashed curve)-and 2 (dotted curve).

corresponding low frequencies, no matter what values of k; and k, that are
chosen. ]

5.5 Conclusions

Robust control can be viewed as transforming variations in the plant by feed-
back to variations in the closed loop system of benign nature. As an alternative
to high gain feedback, the approach found in [Bode, 1945) has been considered.
Some examples have illustrated that plant variations of different types can be
turned into closed loop variations in such a way that the bandwidth varies with-
out change of damping. The controller accomplishing this is computed by least
squares curve fitting at a number of frequencies. The advantage with the method
is that a certain acceptable closed loop variation can be obtained to any degree
of accuracy. The accuracy is determined by the order of the compensator. It is
therefore natural to start with a compensator of low order and then increasing
the order until the desired accuracy is achieved. The method is similar to the
Horowitz method but the new ingredient is the application of least squares curve
fitting. This gives an easy way to compute the controller and may also give a
controller of lower order compared to the Horowitz way of successively cascading
lead-lag compensators.




Conclusions

A common way to obtain a process model is to measure the frequency response
of the process. At this stage it is not necessary to make assumptions about
the order of the process. It has therefore been of interest to find design methods
which operate directly on frequency response data. Such methods are the classical
frequency domain methods developed by Nyquist, Black, and Bode during the
thirties and the forties. In these approaches the main concern was to achieve
robustness against variations in the process characteristics. This was done by
introducing lead-lag compensation in the loop. It was not straightforward to see
how the closed loop transient properties were influenced by 4his compensation. In
the pole placement method the situation is otherwise. The transient performance
is specified while the robustness properties have to be checked after the design.

In Chapter 4 a design method has been proposed which shows similari-
ties with both the classical frequency domain approach and the pole placement
method. The parameters in a two degree of freedom controller are computed by
least squares fitting to a desired closed loop transfer function at certain frequen-
cies. The design specification consists of the set of approximation frequencies Q,
the desired closed loop model Gr(s), the observer polynomial A,(s), and the
orders of the controller polynomials R and S. The weighting of the least squares
method could also be regarded as one of the design specifications. Both the order
of the regulator and the order of the desired closed loop model can be chosen
much lower than the order of the process. Thus, only the “essential dynamics”
has to be specified (cf. the dominant pole design in [Astrém and Hégglund,
1985]). Examples have been given where the closed loop step responses are well
in accordance with the specifications. The trade-off between the performance
and the regulator complexity has also been demonstrated.

Loop shaping has been treated in Chapter 5 where the least squares method
is used to compute a compensator such that the loop approximates some “ideal

94
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loop characteristic” in a certain frequency range. The goal is to turn open loop
variations into “harmless” closed loop variations. These ideas originates from
the work [Bode, 1945] where process ideal loop gain in the case of process gain
variations was considered. Some examples are given where variations in the open
loop gain gives closed loop step responses which differs only by a change in time
scale.

The design methods described in Chapter 4 and 5 are not straightforward to
extend to the multivariable case. The major importance of the methods is that
much insight is gained about different trade offs in SISO control design. Design
of low order controllers such as PI and PID controllers is conveniently done with
the method in Chapter 4. The design methods are also believed to be instructive
to use in education.




References

ADAMIAN, AROV and KREIN (1971): “Analytical properties of Schmidt pairs for
a Hankel operator and the generalized Schur-Takagi problem,” Math. USSR
Sbornik, 15.

ANDERSON, B. D. O. (1986): “Weighted Hankel-norm approximation: Calcula-
tion of bounds,” Systems Control Lett., 7.

AsTR6M and WITTENMARK (1984): Computer Controlled Systems, Pren-
tice-Hall.

AsTr6M and HAGGLUND (1985): “Dominant pole design,” Technical report
TRFT-7282, Department of Automatlc Control, Lund Institute of Technology,
Lund, Sweden. N

AsTROM (1975): “Lectures on System Identification: Frequency Response
Analysis,” Technical report TRFT-7504, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

AsTrROM (1988): “Dominant pole placement design of PI regulators,” Technical
report TRFT-7381, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

BobE, H. W. (1945): Network Analysis and Feedback Amplifier Design, D. Van
Nostrand, New Jersey.

CHENEY, E. W. (1966): Approximation Theory, McGraw-Hill Book Company,
pp. 173 - 189.

DOYLE, J. and STEIN, G. (1981): “Multivariable Feedback Design: Concepts for
a Classical/Modern Synthesis,” IEEE Trans. of Autom. Control, 26.

FrANcis, B, and ZAMES, G (1984): “On optimal sensitivity theory for SISO
feedback systems,” IEEE Trans. Automatic Control, 29.

GLoVER, K. (1984): “All optimal Hankel-norm approximations of linear
multivariable systems and their L°-error bounds,” Int. J. Control, 39.

96




5.5 Conclusions 97

GLOVER, K. and DoYLE, J. (1988): “State-space formulae for all stabilizing
controllers that satisfy an H, bound and relations to risk sensitivity,” Systems
and Control Letters, 11, 167 — 172.

GoruB, G. H. and vaN Loan, C. F. (1987): Matrix Computations, John
Hopkins University Press, Baltimore, Maryland, pp. 162 — 169.

GooDWIN, G. and SALGADO (1989): “Quantification of uncertainty using
an embedding principle,” Proc. American Control Conference, June 1989,

Pittsburg USA.

HARSHAVARDHANA, JONCKHEERE and SILVERMAN (1984): “Eigenvalue and
generalized eigenvalue formulations for Hankel norm reduction directly from

frequency response data,” Proc. IEEE Conf. on Decision and Control, Las
Vegas, NV, Dec. 1984.

HwaNG and CHEN (1987): “Solution of General Padé Fitting Problem Via
Continued Fraction Expansion,” IEEE Trans. of Autom. Control, 32.

Horowitrz, 1. (1963): Synthesis of feedback systems, Academic Press, New
York.

Horowitz, I. (1982): “Quantitative feedback theory,” IEE Proc., 129-D, 6.

KUNG, S-Y. and LIN, D. W. (1981): “Optimal Hankel-Norm Model Reductions:
Multivariable Systems,” IEEE Trans. of Autom. Control, 26.

LATHAM, G. A. and ANDERSON, B. D. O. (1985): “Frequency-weighted optimal
Hankel-norm approximation of stable functions,” Systems and Control Letters,

LAWRENCE, P. J. and ROGERS, G. J. (1979): Proc. Inst. Electr. Engrs., 126,
p. 104.

LeEvy, E.C. (1959): “Complex curve fitting,” LR.E. Trans. of Autom. Control,
4, p. 37.

OusTALOUP, A. and BERGEON, B. (1987): “Frequency space synthesis of a

robust dynamic command,” Proc. IFAC 10th world congress on Aut. Control,
Munich.

PRO-MATLAB (1987): PRO-MATLAB User’s guide, The MathWorks, Inc.,
Sherborn, Mass., USA.

SANATHANAN, C.K. and KOERNER, J. (1963): “Transfer function synthesis as'a
ratio of two complex polynomials,” IEEE Trans. of Autom. Control, 8, p. 56.

STAHL, H (1984): “Transfer function synthesis using frequency response data,”
Int. J. Control, 39, p. 541.

STEIN, G. and ATHANS, M. (1987): “The LQG/LTR Procedure for Multivariable
Feedback Control Design,” IEEE Trans. of Autom. Control, 32.




98 Chapter References

VIDYASAGAR, M. (1986): Control System Synthesis — A Factorization Approach,
MIT Press, Cambridge, Massachusetts, USA, pp. 53 — 59.

WAHLBERG, B. (1987): “On the identification and approximation of linear
systems,” Ph.D. Thesis, Department of Electrical Engineering, LinkSping
University, Linkoping, Sweden.

WALLENBORG, A. (1987): “Control of Flexible Servo Systems,” Technical report
TRFT-3188 (Licentiate thesis), Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

WILLEMS, J. C. (1971): The Analysis of Feedback Systems, The M.LT. Press,
Camridge, Massachusetts, p. 95.

YouLa, D. C., BONGIORNO, J. J., and Lu, C. N. (1974): “Single-Loop Feed-
back-Stabilization of Linear Multivariable Dynamical Plants,” Automatica, 10.

ZAMEs, G. (1981): “Feedback and optimal sensitivity: Model reference trans-
formation, multiplicative seminorms, and approximate inverses,” IEEE trans.
Automatic Control, 26, 301 — 320.




(VAN

Some MATLAB
functions

Most of the computations in the thesis have been done in PRO-MATLAB. During
the work it has been found convenient to include some new MATLAB functions
listed in this section, each with a short description.

Least squares approximation

abtau Least squares fitting to a rational function times.an exponential
abz Least squares fitting to a rational function

ISz Least squares fitting of a one-degree-of freedom controller

rstz Least squares fitting of a two-degree-of freedom controller

Hankel norm approximation

hankelu Unweighted Hankel norm approximation
hankelw  Weighted Hankel norm approximation
Polynomials

besselpoly Bessel polynomial
butterpoly = Butterworth polynomial (with generalization)

dab Solution of the DAB (Diophantine-Aryabhatta-Bezout) equa.tlon
meconv Product of more than two polynomials
polyadd Sum of two polynomials
polyder Derivative of a polynomial
polystr Formatting of a polynomial as a TEXstring
rloc Root locus plot with special choice of step length
rstpoly Pole placement using the DAB equation
tmodify Modification of the polynomial T
99
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Appendiz A Some MATLAB functions

Transfer functions and frequency responses

ampl Amplitude plot of a transfer function
bandwidth  Approximate bandwidth from a frequency response

bpl Bode plot in a fresh diagram

bopl Bode plot in an old diagram

gadd Sum of two transfer functions :

gval Computation of frequency response of e~"? B(s)/A(s)
nipl Nichols plot of a transfer function

nypl Nyquist plot of a transfer function

phpl Phase plot of a transfer function

arg Argument of complex vector (in degrees)

Time responses

apparent Computes apparent time delay and apparent time constant
stepresp Step response of e”"*B(s)/A(s)

stepplot Plots a step response computed with stepresp

perit Frequency scaling test of controller stability

yucl Step response of closed loop system

yupl Plots a step response computed with yucl

yup Same as yupl but in an old diagram

A convenient way of using MATLAB is to use the text macro facility. This

consists of command execution by evaluation of strings. As an illustration a start
up file with text macros is listed below.

i=sqrt(-1); ~
lgwlow=-2;1lgwhigh=2;nww=300;
dozz=’ww=logspace(lgwlow,lgwhigh,nuw)??;zz=i*ww;*;
eval(dozz);

doam = ’am=conv(anfix,butterpoly(nam-length(amfix)+1,wm,phin));’;
doao = ’ao=conv(aofix,butterpoly(nao-length(aofix)+1,wo,phio));’;
phim = 45;
phio = 45;
aofix = 1;
amfix = 1;

doz=’z=ixw;’;
dog=’g=gval(b,a,tau,z);’;
dof=’f=abs(gval(bf,af,0,z));?;

bf = 1;

af = 1;

abh=’ [ah,bh,eabh]=abz(z,g,f,na,nb,ahfix,bhfix) ; tauh=0;’;
ahfix = 1;

bhfix = 1;

dorstz=’[r,s,t,erst]=rstz(z,g,f,an,bm,a0,ri,nr,ns);’;
dorst=’[r,s,t]l=rstpoly(a,1,b,an,1,a0,rl1);’;
dorsth=’[r,s,t]=rstpoly(ah,1,bh,am,1,a0,r1);’;
dogm=’eval(doan);eval(dobm);’;

dobm = ’bn=real(poly(kbh*roots(bh)));?’;

dobm = [dobm ’bm=bn/bn(max(size(bn)))*amn(max(size(am)));’];
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kbh = 1;

dol = ’eval([doz dog dof abhl);’;

do2 = ’eval([doz dog dof dogm doao dorstzl);’;
do3 = ’eval([dogm doao dorst]);’;

dob = ’eval([dogm doao dorsth]);?’;
¢lp=’clpo=roots(polyadd(conv(a,r),conv(b,s))),’;
clph=’clpoh=roots(polyadd(conv(ah,r),conv(bh,s))),?;
clpn=’clop=roots(conv(am,ao)),’;
dogg=’gg=gval(b,a,tau,zz);’;
doggh=’ggh=gval(bh,ah,tauh,zz);’;
doggm=’ggn=gval(bm,am,0,2zz);?;

pli=’eval([dozz doggh dogg dowmark]);’;

pli = [pl1l ’nypl([ggh ggl,’’ *’,’’c’?,umark,wu);’];
pl2=’eval([dozz doggm dogcl dowmark]);’;

pl2 = [pl2 ’nypl([gcl ggml,’’ ??,?’0%?,wmark,ww);’];
np = 300;

docl=’cl=yucl(a,b,r,s,t,tid,np);’;
doclh=’clh=yucl(ah,bh,r,s,t,tid,np);’;




A sample session

The MATLAB functions and text macros in Appendix A are used in the following
interactive session. The design method in Chapter 4 is illustrated by a PID-
design for the system G(s) = 1/(s + 1) (cf. Ex. 4.5). The designer starts with
an indirect method (Method C' in Chapter 1) where a sécorfd order approximant
G’(s) is used in a second order pole placement design. After expenmentmg with
different choices of approximation frequencies { and observer polynomial A o(8)
the designer decides to increase the order of the closed loop model @ m(s). He
then uses the direct method D’ and finally arrives at a PID- controller mth which
he is satisfied. 4

>> % Process model: G(s) = 1/(s+1)"8

>> b=1;a=poly(-ones(1,8));tau=0;

>> % Find LS approximation of order 2 at Omega={0.1,0.5,1}
>> w=[0.1 0.5 1];

>> na = 2; nb = 1;

>> eval(doi);ah

felet =

0.7600 0.3281 0.0787

ah =

1.0000 ~-0.0035 0.0541
>> % Unstable model. Maybe the approximation frequencies are too high.
>> % Check axis intersections of the Nyquist curve of G(s)

>> waxes = tablel([arg(gg) wwl,-[90 180 270 360])

vaxes =

102
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0.1989 0.4142

>> Y Either decrease approximation frequencies or increase model order

0.6684 1.0011

>> % Let’s try the first alternative

> w=w/2

0.0500 0.2500
>> eval(doi);ah
felet =

0.2103 0.3526

ah =
1.0000 0.2288

>> % The approximant
>> eval(pll)

>> J Bad curve fitting! Decrease approximation frequencies further

>> w=w/2

0.0250 0.1250
>> eval([doi pl1]);ah
felet =

0.0140 0.0186

ah =

1.0000 0.4295

0.5000

0.0520

0.0615

is stable! What about the quality of it?
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>>
>>
>>
>>
>>
>>
>>

Appendiz B A sample session

04

% This is better. Now, let’s try pole placement design

% based on this model

% Reasonable pole locations: A_m=Butt(2,0.3,45) and A_o=Butt(2,0.6,45)
nam=2;nao=2;ri=[1 0];

wm=0.3;phim=45; wo=0.6;phio=45;

eval(dob)

r,s,t

1.0000

5.2315

1.2161

1.6962 0

2.3362 0.4378

1.0319 0.4378

>> ¥ Check stability of closed loop system

>> eval(clp)

clpo =

~2.3029
-2.3029
-1.6230
-1.,6230
-0.6827
-0.6827
-0.0573
-0.0573
-0.1821
-0.1821

+

>> % One of
>> % Let’s check the closed loop Nyquists

>> eval(pl2)

>> grid

0.4621i
0.4621i
1.12761
1.12761
1.1397i
1.13974
0.4384i
0.43841
0.1604i
0.16041

the complex pole pairs is very poorly damped




>>
>>
>>
>>
>>
>>
>>

fe

cl

>>
>>
>>
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% Hmmmm... This doesn’t look nice at all
% Maybe we should have increased the model order after all.
na = 3; nb = 2;
% No, wait —-— Let’s decrease wo instead
na=2;nb=1;
wo = 0.4;
eval([do2 clp p12])
let =
0.0048 0.0015 0.0003
po =

-2.1201 + 0.4368i
-2.1201 - 0.4368i
~-1.5118 + 1,0568i
-1,5118 - 1.0568i -
-0.6586 + 1.0626i
-0.6586 - 1.06261i
-0.1023 + 0.40431i
~0.1023 - 0.4043i
-0.1679 + 0.1549i
-0.1679 - 0.1549i

. N yd
* g ity

-1 0B 06 04 02 0 02 04 06 0F 1

% Slightly better but not enough. Try inceasing process model order
na=3;nb=2;
eval([do1l pli])
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Appendiz B A sample session

felet =
1.0e-15 x*

0.2238 0.1110 0.1110

e

§/

yd

A )
\
\
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X5 o4 oz [ 0z 04 0.6 [

>> % Not bad ...
>> % Now we have to use the Chapter 4 method (controller still of 2nd order)
>> % Increase order of desired closed loop model
>> nam=3;
>> eval(do2)
felet =
0.0013 0.0004 0.0000
>> r,s,t

r =

1.0000 0.5883 0

0.7459 0.4157 0.0743

0.4643 0.2627 0.0743
>> eval([clp pl2])
clpo =

-1.8977 + 0.3690i
=-1.8977 - 0.36901
-1.3778 + 0.8905i
-1.3778 0.89051
-0.6464 + 0.8874i
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-0.6464 - 0.88741

-0.1732 + 0.2879i

-0.1732 - 0.2879i

-0.1991 + 0.1211i

-0.1991 - 0.1211i
>> grid

02

)]

b
\

o6 -0.4 ~02 o 02 04 0.6 08 1

>> % Quite acceptable curve matching

>> % Let’s have a look at the step responses
>> tid=100; np=300;

>> aval(docl);yup(cl)

15 —

>> % This is good enough
>> exit



