LUND UNIVERSITY

Linear Control and Estimation Using Operator Factorization

Hagander, Per

1971

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Hagander, P. (1971). Linear Control and Estimation Using Operator Factorization. [Licentiate Thesis,
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/3ede2f2d-e076-4ff3-af4c-0daaf68a91dd

LINEAR CONTROL AND ESTIMATION
USING OPERATOR FACTORIZATION.

PER HAGANDER

REPORT 7114 JULY 1971

LUND INSTITUTE OF TECHNOLOGY
DIVISION OF AUTOMATIC CONTROL




LINEAR CONTROL AND ESTIMATION USING OPERATOR

FACTORIZATION

Per Hagander

ABSTRACT

The filtering, prediction and smoothing
problems as well as the linear quadratic
control problems can very generally be
formulated as operator equations using

basic linear algebra.

The equations are of Fredholm type II and
difficult to salve directly.

It is shown how the operator can be factorized
into two Volterra operators using a matrix
Riccati equation. Recursive solution of
these triangular operator equations is then
obtained by two initialvalue differential

equations.

This work has been supported by the Swedish Board for
Technical Development under Contract 70-337/U270.
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1. INTRODUCTION.

Linear estimation and linear quadratic control prob-
lems formulated in linear function spaces require the

solution of integral equation of a certain structure
(I+HH )x = y (1.1)

where H is a Volterra operator and H its adjoint.

The solutions to the estimation and control problems
are known to be simple and possible to obtain recur=-
sively. Thus the integral equation (1.1) must have a
simple solution. It will here be shown how factoriza-
tion of the operator using a matrix Riccati equation

can be used to prove the well-known results.

A Fredholm equation of the second kind
(I+A)x = y

where A is an integral operator is sometimes solved
using successive approximations giving a resolvent

kernel or by discretizing and using matrix inversion.

In (1.1) H is a Volterra operator, i.e. its kernel
h(t,s) is zero for s > t, and furthermore the kernel

is degenerated

C(t)e(t,s)B(s) t 2 s
h(t,s) =
0 t < s

where ¢(t,s) is the fundamental matrix of an ordina-

ry differential equation.

Then the symmetric solution R(t) of a Riccati equa-

tion can decompose I+HH"



I + HH® = (I+HR)(I+RHX) (1.2)

R is here regarded as an operator.

The solution of (1.1) is now obtained by recursive

solution of the Volterra equations
(I+RH' )z = y
and

(I+HR)x = =z

The idea of decomposition, which very much simplifies
calculations, comes from the theory of systems of li-
near equations, and is here applied to the theory of

linear dynamic systems.

The essence of the decomposition will be given in the
next chapter, where also the main results are presented.
Chapter 3 contains a rigorous treatment of the operator
definitions and their major characteristics. In the
following three chapters the fundamentals of linear
dynamic systems: the estimation, the optimization,

and the separation theorem are deduced by means of

the operator decomposition technique.



2. BASIC IDEA.

In this chapter I want to demonstrate the main facts

that are exploited throughout the thesis.

Consider the functional equation
(I + LL)x =y (2.1)

where x and y are continuous vector functions on

(tO’t1)’ and the operator L is defined by

t
z = Lu, z(t) = [ p(t,s)ulsl)ds, t€ Eto,t1] (2.2)
t

0

with the kernel ¢(t,s) satisfying the differential

equation
d -
— ¢(t,s) = A¢(t,s)
dt
¢(s,8) = 1

L" means the adjoint operator of L:
t
b 1 T
z = L u, z(t) = [ ¢ (s,t)ul(s)ds, t € {to,t1]
t

Since the upper limit of the integral in (2.2) is t,
L is a Volterra operator, a triangular operator. Its
kernel vanishes for s > t. LL  can also be considered

as an integral operator, but it is no longer triangular.

The integral operator LL" now corresponds to a two point
boundary value problem instead of an initial value prob-
lem and thus (2.1) illustrates a quite complicated rela-

tionship between the functions x and y. My objective is



now to offer a procedure to solve (2.1) for x with-

out trying to invert (I + LL").

This can easily be accomplished if it is possible to

write (2.1) as

(I + LR(I + LR)'x = y (2.3)

with R simple enough.

In order to demonstrate that R can be chosen merely

as a multiplication with a time varying matrix P, con-
sider the matrix Riccati equation

d T

— P(t) = AP + PA
dt

+ I - P2

P(to) =0

which has a unique, symmetric, nonnegative definite
solution for all t € [tgstyl.

Regard this as an operator equality:

d popd - ap 4+ pAT 4+ T - P2
dat at
P(to) = 0

where the operator P is defined by
y = Px, y(t) = P(t)x(t) P(t) symmetric

Now let L operate from the left and L* from the right:

as

d d L” = LLT (2.4)

L[—— - AJPLx + LP{— 4 . AT}Lx + LP?

dt dt




Look at

Then

t
(
2(t) j oct,s) [ - A|P(s)x(s)ds =
H ds

0

Ut EIPCEIXRCE) = o(t,t )Pt Ix(ty) =

P(tix(t)

by partial integration noticing that

4 4t,s) = - o(t,s)A

ds
and that

P(ty) = 0

Likewise

da ¢T(q,t) z - AT¢T(q,t)

dt

implies that




y(t) = [- 4 - ATJ J ¢T(q,t)x(q)dq =
t

T, E)x(t) = x(t)
Thus the equation (2.4) veduces to

2

PL” + LP + LP°L" = LL’

and summarized:

Theorem 2.1: The operator
I + LL™

operating in the space of continuous functions on
(to,t1) with L defined by (2.2) can be decomposed in-
to

»

I+ LLY = (I + LPY(T + LP)"

where the operator P is a multiplication with the

symmetric solution of the matrix Riccati equation
b= AP + PAT + T - P2
P(ty) =0 O

Now that the decomposition is done equation (2.1) is

easier to solve. Introducing z by

(I + LP)z = vy (2.5)




then x is the solution of

(I + LP) % = z (2.6)

Since L is triangular, I + LP is also triangular be-
cause of the very simple structure, and since L cor-
responds to an ordinary differential equation, y is
the solution of a linear dynamic system with bounda-
ry value at the initial time. z is the solution to
the adjoint system with its boundary value at the fi-

nal time.

Notice that instead of somehow trying to solve the
resolvent kernel of (2.1) and then computing the
function x by an integral operation on y, the prob-
lem is decomposed by solving the Riccati equation
and then compute z from a dynamic system. The func-
tion x is then obtained from the stored z by the ad-
joint system. Both storage and computer time is re-

duced enormously.

Notice also the resemblance to the Gauss decomposi=-

tion of linear equations (Forsythe-Moler [31). The
major work, the decomposition, the solution of the
Riccati equation, can be done once for all, and the
minor work, the recursive solution of the two trian-
gular systems of equations, is done for each right

hand side y. The words '"wherever an inverse appears,
something must be wrong" is even more true in the con-
tinuous case. Notice that the special structure of (2.1)

very much simplifies the decomposition.

Theorem 2.1 or modification of it will in the sequel
be used to solve the estimation and optimization prob-
lems as well as the separation theorem for linear dy-
namic systems, starting with very basic linear algeb-
ra lemmas. See for instance Brockett [1] , Luenberger

[ul.



The basis and the results are now formulated as lem-
mas and theorems (all well-known). The new proofs ap-

pear in the later sections.

Lemma 2.1 (projection theorem):

Let x and y be stochastic variables with zero mean,
and let x have the components Xs and y the comp?nents
Yy Then the minimum variance, linear estimate x of X
given y is the orthogonal projection of x on the 1li-
near subspace, spanned by the yi:s. By minimum vari-
ance of a vector is meant minimum variance of each
component. The orthogonality is defined by the scalar

product

(xi,xk) = Ex;xp

If the yj:s are linear indepéndenn x is given by
3 -1

= R R [}
* xy"y Y

This now gives the following three estimation theorems

for the dynamic system
dx = Axdt + de

x(tg) having zero mean and covariance Ry, with the ob-

servation process
dy = Cxdt + dv

e and v independent Wiener processes with incremental

covariance R,dt and det, R, > 0.

Theorem 2.2 (= Theorem 4.5):

~

The best filtering estimate Xe is given by

~ _ ~ T 1 ~
dxf = Axgdt + PC R2 (dy - fodt)

xf(to) =0



with P from

p = AP + PAL + Ry - PCTR;1CP

P(to) = R, []

Corollary: The best predictor ﬁ(t+T|t) of x(t+T) by

use of the outputs up to time t is given by

X(t4T| 1) = 94T, £)xp(t)

where ¢(t,s) is the fundamental matrix for the sys-
tem. O

Theorem 2.3 (= Theorem 4.6):

The best smoothing estimate x(tlt1) of x(t) with in-

formation up to t,, tgt is given by

1°

x(t]t,) = x (£) + PCOACE)

with ;f and P from Theorem 2.2 and A defined by the ad-

joint equation

Tr-Tepynat+ cf

= (Al _
-dx = (A C 9

-1 ~
R, (dy - fodt)

A(t1) = 0 O
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. . . v .
The smoothing estimation error, X, has the covariance

function

¥(t,s)P(s) - P(tIA(t)Y(t,s)P(s) t 2 s
r;(t,s) =

| peorvTes,t) - Pe)vT(s,t)A(s)P(s) t < s
where the fundamental matrix ¥ is defined by

d T

— Y(t,s)
dt

(A - PC

R;1C)W(t,s)

i
—

¥(s,s)

P defined in Theorem?2.2 and A by

-9 4= a - petTRITOTA 4 aca - peTRZTey + cTRTTC
2 2 2
dt
A(t1) = 0 O
Lemma 2.2:

Minimize the quadratic functional
V=X ¢« PXx + 2r « x + b
where P is a self adjoint, positive definite linear

operator. Then the minimizing x is a solution to the

linear equation

The solution x is unique. [J
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under the linear constraint
Ux =y

where U is not invertible, has, if the compound ope=

rator UP™U% is invertible, the solution

1 1

x = p ey Ty 1

These two lemmas give the following two theorems on

minimizing
t1 t1
V = xTQ xdt + XT(t JQ x(t,) + uTQ udt, Q,, > 0
1 1770 1 2 > 9
o o

for the system
x = Ax + Bu

x(to) = a
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" Theorem 2.5 (= Theorem 5.2)

Let S be the solution of

- 95 _ ATg 4 sa Q, - SBQ;1BTS
dt
s(t;) = Q

Then V is minimized for the strategy

u = - Q;1BTSx

giving the closed loop system

d x = - BQ;1BTS)X
dt
x(ty) = a O

Theorem 2.6 (= Theorem 5.5)

Under the additional constraint

1 O]x(t1) = ¢

V is minimized for the strategy

u o= - Q£1BTSX + By
where
v = - ;18T - [




L .
E(t1) = W (to)y

provided that

t
1
1. T T I
W(to) = [I 0] J W(t1,S)BQ2 B~ Y (t1,s)ds
0
to

is invertible,.

¥(t,s) is the fundamental matrix for the closed loop
system in Theorem 2.5, and I is the (n-q) dimensional
identity matrix.

Further use of the operator technique gives the sepa-
ration theorem for minimizing EV when disturbances
are accounted for in the system

dx = Axdt + Budt + dv

and the observation process is given:

dy = Cxdt + de

The available information when choosing u(t) is the

observations up to time t.




.

Theorem 2.7 (= Theorem 6.2):

The loss function has its minimum

Ty

EV = mTS(tO)m + tr S(t )R, + J tr S(t)R,(t)dt +

to

Ty
+ J £ PSBQ;1BTSdt
t

0

(with the information above available) for the strate-

gy

u = - Q;1BTSXf

~

where x,. is the filter estimate of Theorem 2, and

f
where P and S are defined by the dual Riccati equa-

tions in Theorems 2.2 and 2.5 respectively. [J

Exactly the same program can be performed for the disc-
rete time systems starting with the same three lemmas.

The concepts are only much easier since the spaces in-
volved are finite dimensional. The differential equa-
tions are replaced by difference equations and the trouble
with the Wiener process calculus is avoided, since it is

possible to use discrete white noise.

The operators Ry and (Q2 + LﬁQ1L) (see Chs. 4-5) are
decomposed by the two quadratic difference equa-

tions
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-1
P(t+1) = @P(t)¢T + R1 - ¢P(t)eT[eP(t)eT + R2] .
3 . eP(t)¢T
\ P(to) = Ry
and
T T T -1
S(t=1) = ¢ S(t)¢ + Q1 - ¢ S(t)r[Q2 + I s(tirl .
! . tTs(t)e
s(t1) = Qq

\

giving the results in the form of discrete dynamic
systems.

If the operator

I+ A

cannot be written as

I+ LL"

but only as

I + CH

then a corresponding decomposition into

(I + GR)(T + HR)"

might be possible, but further conditions must be im-

posed in order to guarantee a global solution to the

corresponding Riccati equation.
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3. DEFINITIONS, NOTATIONS AND OPERATOR CHARACTERISTICS.

" 3,1, Introduction.

In this chapter I present the notation I am using in
the analysis. I also introduce the mathematical frame-

work that I have found suitable for this purpose.

3.2. Notations and Definitions, Scalar Products and

Adjoints.

The elements I am interested to describe are functions
of time on a finite interval [t09t1]' Sometimes I will

let the limits vary.

In the filtering problem the basic elements are ac-
tually Wiener processes and some concepts have to be
generalized to handle these, but as I restrict myself
by assuming normality or by additional structuring of
the allowed filters to linear, most characteristics
and objectives can be described by the functions

mean value and covariance.

The state space approach is utilized, i.e.

ke
u

X Ax + Bu x(tO) = a
(3.1)

[
£}

Cx + Du t & [to,t1]

where x(t), u(t) and y(t) are elements of the usual

euclidian vector spaces Rn, RP and R™ respectively.

It is now convenient to consider x as a continuous

vector function of time, i.e. an element of a space

LZ[tO,t1] with the root of the square integral as
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norm. Bu is also an element of the same space.

No new notation is introduced to cover the space of

Wiener processes in the case of a noisy system.

The description (3.1) of a dynamic system is in some
respects inconvenient! Many theoretical deductions

need closed expressions for the state variables.

If the initial value is zero, the solution x of
X = Ax + z (3.2)
can be viewed as the result of a linear operation in

the space L,[tg,t ]

t
x = Lz x(t) = [ $(t,s)z(s)ds (3.3)
t

0

where ¢(t,s) is the fundamental matrix of (3.2).

L is thus a Volterra operator with its kernel being

¢(t,s) when t 2 s and 0 when t < s.

The adjoint operator.

Introduce in.Ltho,t1]a scalar product by

t

X vy = f xT(t)y(t)dt
t

0

Then it is possible to define the adjoint of L by
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with

¢T(s,t)y(s)ds (3.4)

b
i
t_‘ »
<
b
~~
+
p
o

ot ——

The corresponding adjoint differential equation is

- x = ATx +y (3.5)
with
x(t1) = 0

Initial values.

In order to introduce initial values it is convenient
to define operators g and h from R" to Lz[to,t1];

v = ga: v(t) = ¢(t,t0)a (3.6)
and
w = hb: w(t) = ¢T(t1,t)b (3.7)

The solution of (3.2) with x(to) = a will be
x = Lz + ga
and of (3.5) with x(t1) = b

s
o

x = L y + hb



Operator i and its adjoint.

An ordinary differential equation like (3.2) can be

viewed as an oDeratlon on an initial value in R and

on a forcing function in Lz[t0°t 1, i.e. on L [t t1]an,

giving the solution in Lz[to,t1].

T+ is favourable, however, for the sake of symmetry
to give special emphasis to the value of the solution
at the end point Tty Thus the differential equation
(3.2) implies an operation, say L, in the space

L [tO, 1xR". Let (z,a) and (x,b) be elements in

L [to,t 1xR"”, then (x,b) = L(z,a) means

b
u

Lz + ga
(3.8)

o
"

x(t1)

With the scalar product ian[tO,t1]xRp defined as
the sum of the scalar products inLQ[tO,t1] and R"

t
1
(z,a) * (x,b) = j zT(t)x(t)dt +apzze+sx+ach
to

it is possible to express an adjoint to L by

(y,e) = L (x,b)

<
§
[
be
4+
=3
o

(3.9)
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Operators T0 and T1.

Recause of the special emphasis on the end points of
the time interval, I have found it suitable with auxi-

liary operators from Lz[toﬂtq] to RM:

w
n
!
o
b
u
i

x(to)

o
T
x|
. Y
b
oy
i

x(tq)

Examgle

TO and T1 can for instance be used for relating the

A
>~

adjoints of g and h to L and L. With the usual sca-

lar product in rR"
b T _
g z = [ ¢ (s,tO)z(s)ds = TyL z
t

and

ty
h'z = J ¢(t1,s)z(s)ds = T1Lz
t

LY

0

Thus it is possible to avoid the operators g and h,
<T0L")" =g, (TyL)" =h

but I have decided to use them for the sake of simp-
licity in notation.
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3.3, Inversion

Next problem to focus is that of inversion and solu-

tion of linear equations.

Tn the finite dimensional case, when an operator cor-
responds to a matrix, an equation is especially easy
to solve if the matrix is triangular. The solution

can be obtained by recursion.

The operator L is triangular, and the recursion when
solving (3.3) for z corresponds to an operation con-

taining differentiation.

(3.2) gives

B
2(t) = [9_ - A}x(t)

dt
Obviously
9—-—A]L=I
at

that is d/dt - A is a left hand inverse of L.

Inverse of L.

The range of L is not the whole space Lz[to’t1]' It
is restricted by the zero initial condition and by
the fact that x from x = Lz is differentiable. This
defines & linear manifold in L2[t0,t1]. When restric-
ted to this manifold

is also a right hand inverse of L, i.e.
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t
(
x(t) = J ¢(t,s)[%§ - A}x(s)ds
t

0

Therefore introduce the notation

AL [Q— - A] (3.10)

although it is dangerous and must be handled with

greatest care, since

Lt = 1 - g7, (3.11)

if the initial value is different from zero.

Ambiguity of (3.2),

If the initial value condition 1is not imposed then
the solution of (3.2) is not unique, which can be
seen from the fact that the homogeneous equation has

nontrivial solutions
a . Alx = 0

dt

z> x(t) = ¢(t,t0)x(t0)

Thus, with no boundary restrictions, the solution x
of

4 _ Alx(t) = z(t)
dat

can be written like
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t
x(t) = J $(t,s)z(s)ds + ¢(t,t0)a
t

0

or
X = Lz + ga

where a is an arbitrary element of rR™.
This means that z = L-1x <=> x = Lz + ga if there

are no restrictions on x!

Inversion of L.

The operator L made it possible to handle boundary
conditions to (3.2) and offered a logical way of
introducing adjoint boundary conditions. There exists

an inverse to L too in the same sense as to L.

(x,b) = L(z,a) (3.8)
x = Lz + ga
b = T1x
gives
z(t) = 4 Alxt)
dt
a = x(to) = Tyx

defining a left hand inverse to L.

On the linear manifold in LZ[tO’t1]XRn restricted by
x differentiable and b = T1x this also defines a right
hand inverse.
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L T 1(x,b) = (x,b), L '(x,b) = (z,a)

t
x(t) = J ¢(t,s)[é~ - A}x(s)ds + ¢(t,t0)T0x
t ds

Also the notation L | is somewhat dangerous. If no
restriction b = T, x:

1

(z,a) = L~ '(x,b) <=> (x,b) = L(z,a) + (0,c)

with ¢ arbitrary in R

The adjoint operators L and T have inverses under

adjoint boundary conditions!

and

ar
"~ e

T Ny, = (x,b)

means

%
11}
t-dﬂf‘

@
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Inversion of a dynamic system,

Next problem to be considered is that of inverting a

dynamical system.

x = AxXx + Bu x(to) = a
(3.1)
y = Cx + Du t e <t0’t1)
In the introduced notation this can be written
y = CLBu + Du + Cga (3.12)
Now specialize to a = 0 giving
y = (CLB + D)u (3.13)

Since y(t) and u(t) have different dimensions it is
generally not meaningful to speak about the inverse
of (CLB + D). A left hand inverse might, however,
exist as an operator producing u from y (and a = 0).
This is the question of invertability described for
instance by Silverman [7] and Sain & Massey [6].

Note that the operator is not necessarily unique. If,
however, y(t) and u(t) belong to the same spaces then
the existence of a left hand inverse and a right hand
inverse are dual problems and the same criteria are

applicable [6].

Consider the special case when D is a regular matrix.

Then the inversion is always possible and quite simple:

(A - BD 'C)x + BD—1y x(tg)

bl
i
"
o

1

u=D 'y - D_1Cx
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which written in operator notion provides the inverse

of (3.13)

u = (CLB + D)'ly =
= (0™ - plew™ 4 B ey TED )y (3.14)

where the notation

SR BD 1c)

must be regarded as a differential operator with ini-
tial value zero, so that its inverse is uniquely de-

fined. Notice that(3.1u4)is exactly an operator equi-

valence to the well-known matrix lemma.

If D is singular or even zero, the equation (3.13)

might still be unique. It will, however, contain de-

rivatives of some components of y. For instance in

the special case B = C = 1, D = 0

y = Lu => u = g—-—Ay
dt

Another special case is the single input, single out-

put case where CLB is invertible if its kernel,

Co(t,s)B, is not identically zero.
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4, FILTERING.

4.1, Introduction, Problem Formulation.

First application of the "triangularization lemma"

is made in the field of linear filtering.

Best estimate of the state vector, as a function of

time, is found for the linear stochastic system

dx = Axdt + de
(4.1)

Cxdt + dv

dy

where Xg has mean value m and covariance RO, and

where e and v are independent, zero mean Wiener pro-
cesses with incremental covariance R1dt and det res-
pectively. When otherwise not explicitely pointed out

it is assumed that R, is nonsingular.

Since the system (4.1) is linear and the determinis-
tic effect of the initial mean value m can be added
by superposition, it is no restriction to specialize
to

“Essential is, however, the initial arbitrariness des-
cribed by RO'
My object is to find the best estimate of the func-
tion x based on measurements of the function y in the
time interval [tO’t1]° If possible the solution
should be made using a minimum of storage. By best
estimate is understood any linear estimate minimizing
the variance of a linear combination of the estima-

tion error.
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This problem can be recognized as the dual of an op-
timization problem, which opens one way for solution
[81. I will here present another solution where x and
y are regarded to be stochastic variables over a func-
tion space, and the best estimate is found directly

by a generalization of the projection theorem.

4,2. The Projection Theorem.

I will first formulate the projection theorem for
stochastic variables over real numbers, and then I

will generalize [U4 Chapter 4].

Let x and y be two stochastic variables with zero

mean. By introducing the scalar product
<xX,y> = covi(x,y)
they can be regarded as elements of a vector space.

Since ||x]|]| = <xyx> = 0 requires x = 0, equality is

defined in the mean square sense.

Theovem 4.1:

The minimum variance estimate x of x with x = ay 1is
the orthogonal projection of x on the line spanned

by y. Thus
<X = i,y» = 0

and if sy,y» $ 0

X = {sx,y>/3y,y>}y _ (4.2)
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1x = x112 = |Ix|]? = sx,92 2/ |y]]? O .3

This can be extended to give an estimate of x as a
linear combination of m stochastic variables yj. X
is then the orthogonal projection of x on the linear
subspace spanned by the yj:s, and the orthogonality

condition says

<X“X, Yj> = 0 j =1, ‘..’m

Now define
T
Vv o= Yy eees )
and let x consist of n components

- T
x = (x coos xn)

1°

then by repeating this for each component of x.

Corollary 4.1:

S

The estimate ; of x, with x = ay, minimizing the es-
timation variance in each component is the orthogo-
nal projection of x (or to be correct of its compo-
nents) on the subspace spanned by the yj:s. Thus

~

<X = . N

3 i Yy 1, voeyny J =1, c0vy M

1]
o
=

i

and if the yj:s are linear independent
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Remark 1:

. . T~ . . . .
It 1s obvious that a x is the minimum variance esti-

mate of aTx for ail a.

Remark 2:

If the yy:s were linearly dependent some of them could
be eliminated and the dimension of the problem reduced.
Computationally this can be done using a pseudoinverse

instead.

Even further generalization is necessary. Let y and

X be stochastiec vector functions on the intervals

I, = [tgety] and I, = Itg,t,]

respectively, i.e. they are indexed both by some na-
tural numbers and by an interval of real numbers.

Corollary 4.2:

The estimate x of x with

ty
x(t) = J al(t,s)dy(s) te I
t

0

minimizing the estimation variance in each component, i,
and at each time, t, is the orthogonal projection of x
(or to be correct xi(t)) on the closed linear subspace

spanned by dyj(s), s e I, =1, oy m.
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Thus
{xi(t) - x; (), dyj(s)> =0 i=1, ..., n;

j=1, ...’m

t e IZ; s € I1
which gives for dyj(s) linear independent

s =1
X = Rxddeydy O (4.4)

Remark 3:

Also equation (4.3) of Theorem 4.1 can be extended:

E(x-x)(x-x)T = R_ - R 1 (4.5)

X xddedeyx

The meaning of R Ry, and R, of (4.4) and (4.5)

xdy? “dy dy
must be defined properly.

Let

T
rxdy(t,s) = Ex(t)dy (s) t € 12, s €1,
r. (t,s) = Edy(t)dy (s) t,s ¢ I
dy y y s 1

and

T
rdyx(t,s) = Edy(t)x (s) te Iy, sel,

Then




means
ty
z(t) = J
tg
dz = Rdyu
means
ty
dz(t) = [
to
and

dyx
means

Ty

z(t) = J

%

where the

32.

rxdy(t,s)u(s) t eI2
rdy(t,s)u(s) t 611
rdyx(t,s)u(s) t eI,

integrals exist since the covariance func-

tions contain differentials. The covariance matrices

of for instance Corollary 4.1 correspond to linear ope-

rators in
(4.4) and
means for
such that

finite dimensional spaces. The inverse in
(4.5) must be interpreted with care. (4.4)

instance that there exists a kernel h(t,s)
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t
f

rxdy(t,s) = J h(t,q)rdy(q,s) t €I,, s €1,
t

giving
T4

x(t) = [ h(t,s)dy(s) t el
t

0

4.3, Derivation of the Covariance Operators.

In order to apply the results of 4.2, when x and y

are stochastic processes - i.e. stochastic variables
with their values in a function space - connected by
the stochastic system equations (4.1), it is neces-
sary to develop the covariances. As mentioned above
the correspondence to a covariance matrix as a linear
tpransformation in the finite dimensional space is the
covariance integral operator with the covariance func-

tion as its kernel.

Therefore state the following well-known theorem.

Theorem W.2:

Let the stochastic process x be defined by a differen-

tial equation driven by a Wiener process V.

dx(t) = Ax(t)dt + dv, Ex(to) = m,Var{x(t )] = Ry

where v has the incremental covariance R1dt.
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Then the covariance function is

W
0]

rx(t,s) = [ ¢(t,s)rx(s,s) t

A
9}

1 rx(t,t)¢T(s,t) £

with

t
r (t,t) = J 6Ct, Q)R 8 (t,a)da + 6 (t,t IR (t,t,)
t

0

and ¢(t3s) being the fundamental matrix. [

An immediate consequence of
dy = Cxdt + de
where e is a zero mean Wiener process with incremen-

tal covariance R,dt and independent of v and X5 is

now:

Corollary L4.3:

The covariance functions for the system (4.1) are

Pyay(ts8) = r (t,s)C (s)ds
rdy(t,s) = [ C(t)rx(t,s)CT(s)dtds if t ¢ s

C(t)rx(t,t)CT(t)dtdt * R,dt if t = s O
It is now possible to express the operators defined
in 4,2 in the formalism of Chapter 3. Notice that
when operating on Wiener processes it is sometimes
necessary to interpret the operators with stochastic

integrals.
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Theorem W4.3:

Let I, < I,, that is t, € t,, then the operators RXdy

2
and R can be written as

dy
R_. = (LR, + gT . ROLCT (4.6)

xdy 1 00 '
_ %o

Ryy © dt{C(LR1 + gT RHOLTCT + Rz} (4.7)
For t2 > t1
z = Rxdyu

defines z(t) by (4.6) for t € (tO’t1)’ and'by
. T
z(t) = ¢(t?t1)T1(LR1 + gTyRyIL Cu

for t € (t1,t2).

Proof:

Assume first t, £ ty, and t € I, = (to,tz).

means

ot

z(t) r

Xdy(t,s)u(s) =

]
[ ey

¢(t,q)R1¢T(s,q)dq +

1]
rt— t
t ——
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¥ ¢(t,tO)RO¢T(s,to)}CTu(s)ds +
1{

T
+ 9 Ct,t R4 (s,to)}CTu(s)ds -

s

+ $(t,q)R 0" (s,q)dq +

ot

t———

0

[by changing the integration order] =

t +
J ¢(t,q)R1{J ¢T(s,q)CTu(s)ds}dq +
tO q

t T4
T T
+ J ¢(t,q)R1[J ¢ (s,q)C u(s)ds}dq +
t t

0

t
+ ¢(t,tO)RO{J ¢T(s,t0)CTu(s)ds +

Ty

ty
+ J ¢T(s,t0)CTu(s)ds} =
t
t ty
T T
J ¢(t,q)R1{J ¢ (s,q)C u(s)ds}dq +
tO q

ty
+ ¢(t,t0)R0 J ¢T(s,t0)CTu(s)ds

Ty
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Thus

LcTu + gr.T. L cTy =

z = R yu = LR 0lo

1

:CT
(LR, + gTyRIL C'u

Similarly
T
dz(t) = J rdy(t,s)u(s) =
to
t
= dtC(t) J rx(t,s)CT(s)u(s)ds + dtRZu(t) =
g
t Ty
= dtRzu(t) + dtcC J ¢(t,q)R1 f ¢T(s,q)CTu(s)ds dq +
to q
tq
T T
+ dtC¢(t,t0)R0 J ¢ (s,tO)C u(s)ds
to
and

- _ :CT
dz= Ryou = dt{C(LR1 + gTgROLTCT + Rz}u

Now assume t2 > t1.

Note that R is not affected.

dy
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means
ty

z(t) = J rxdy(t,s)u(s) tel,s= (to,tz)
t

0

which for t e I, = (to,t1) is evaluated above and
for t e (t1,t2) can be rewritten like

Ty

z(t) = @(t,t1) j
t

rxdy(t1,s)u(s) O

0

4,4, Triangularization of the Two Point Boundary

Value Problem.

I will now further calculate the estimate of the
state of the stochastic system (4.1). The operators
from 4.3

T

Rogy = (LRy + gT Ry ILC (4.6)

Ray dt{chR1 + gT RHOLCT + R2} (4.7)

inserted in the expression for the estimate

x = R, Ri‘dy (4.4)
xdy dy

yield

ar
A

-1
A ® T T
x = (LR, + gT RL'C {dt(chR1 + gTRILCT + Rz)} dy
(4.8)
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This expression is unusable as it stands! It contains

the inversion of & complicated Fredholm integral ope-

rator.

However, there is great resemblance to the operators
in Chapter 2, which opens up possibilities for a so-

lution via the Riccati equation.

Theorem 4,4

Let P(t), te I = (to,t1), be the unique solution of

the matrix Riccati equation

T,=1
1" PC R2 CP

T + R

P = AP + PA
(4.9)

P(tO) = RO

If P is interpreted as an operator in C[to,t1],
y = Px,meaning y(t) = P(t)x(t), t¢ [to,t1], then the
following triangularizations are possible:

X T N T\ p=1 % T
C(LRy + gT R(IL'C™ + Ry = (R, + CLPC R, (R, + CPLCT)

(4.10)

and

T T T

(LR, + gTORO)L"c = PL'C" + LPC R;1(R2 + cpr el

(4.11)

Proof:

Regarding the solution P of (4.9) as an operator P,

the commutator between P and d/dt can be written:

d p - pd - ap 4 pal 4 g

dt dt

- pcTr1

1 5 CP
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Now let L operate from the left and L" from the right.

s
o

L[Q— - AJPL" + LP{— a _ AT}L" + LPCTR;1CPL" = LR, L

dt dt

In Chapter 3 I showed that

L[Q— - AJ = T - gT

P(t0)= Ry implies T,P = TyRy, thus

PLY - gT R.L + LP + LPC R, CPL" = LR,L°
0~0 2 1
or
® % x® T. =1 %
LR,L + gT Ry L~ = PL  + LP + LPC'R, CPL

Consequently

(LR L~ + gTDROL")cT = PL CT + LPCTR;1(R2 + CPL CT)

and

% R_T ) T. -1 2T
C(LR1L + gTOROL JC o+ R2 —(R2 + CLPC )R2 (R2 + CPL C™)

which completes the proof. [
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This theorem gives the nucleus of my argumentation.
The complicated operator Rdy is decomposed into two
"triangular" operators and the inversion of Rdy will

be simplified.

Rewrite (4.8) by means of (4.10) and (4.11).

x = {PL"CT + LPCTR (R, + CPL"CT)} .

. {(R2 + CPL"CT)'1R2(R2dt + dtCLPCT)"1}dy

Consequently

X = [LPCT + PL”CT(R2 + CPLxCT)-1R2) .

» (Rydt + dtCLPCT)—1dy (4.12)

Notice that the analysis of Chapter 3 concerning dy-
namlc systems implies that (R + cLpct ) and (R +
+ CPL C ) are invertible at least if R2 is a nonsin-

gular matrix.

Notice also that some of the operators must be inter-

preted as stochastic integrals!

A sufficient condition for Rdy to be invertible is
now obvious. When R, is nonsingular then, according
to Chapter 3, both the factors of the right hand side
of (4.10) are invertible and consequently also the
left hand side and Rdy' Eq. (4.12) is a main result.

In the following it will be simplified in different special

cases.
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4,5, Specializing to t = t1.Filtering.

The result of 4.4, eq. (4.12), is very general. It

tells how to obtain the best estimate of the function
%X in the whole interval I, = (to,tz) on basis of mea-
surements during the interval I1 = (to,t1) (if tzst1).

This is the general smoothing problem,

What is more interesting is that the upper limits of
the intervals I2 and I, have no special significance!
Therefore it is possible to let them vary and study

the effects on the estimation function.

In this section I will specialize to t = ty, that is
I am only interested in x(t1). This is the filtering
problem. I want to estimate the current state relying

on the measurements up to now.

The equation (4.12) is rewritten

X = LPCT(Rth + atcreeTy ay +

# PL CT(R, + CPL C¢T)7"R,(R,dt + atcLpeT)'ay

Notice that the last term will vanish.
Call it PL Xdy
or
Ty
T
P(t) J ¢ (s,t) X ds
t

which is obviously zero for t=t,.

Denote

z = (Rydt + dtCLPCT)-1dy (4.13)
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meaning

(R,dt + atcLpc )z = dy
and

zdt = R;1(dy - CAtLPC z) (4.14)

Introduce

~

%, = LPCT(r at + atcLpch) tay
N f 2 +
and N . :

§ x(t]t) = xe(t)
Thus
S T
Xg = LPC 2z
with z from the inverse dynamic system (4.13).
Now © the term LPCTz is recognized in the expression
(4.14) for z and

. p-l o
zdt = R, (dy Cdtxf)

Thus instead of solv1ng the two dynamic systems giv-

ing first z then X¢ it is pOSSlble to solve X direct-
ly

° T,=1|dy ° understood as a stochastic
Xg = o |== - Cx

= LPC'R
at integral

which is equivalent to the differential

Cdx(t|t) = AxCt]t)dat + PCTR;M(dy - Cx(t|t)dt)
‘ - a - pcTR Tkt oar + TRy Tay 418

| xCtylty) = 0
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The best linear filter estimate for (4.1) is given by
the differential (4.15).

Remark 1: In this deduction there are three crucial

points.

1. The original Fredholm equation (4.8) is separated
into two Volterra equations (4.12) by the Riccati

equations.

2. Half of the problem, the one with boundary condi-

tions at final time vanishes for t = t1.

3. The two systems
Xe = LPCTZ

and
(R,dt + dtCLPC )z = dy
can be united into one dynamic system (4.15).

Using the matrix analogy this means that instead
of first solving z with (3.14), the identity

T T, -1

~1y -1
R,” ) TPCR,

could be used to obtain Xp directly. The inverse on

LPCT(R2 + CLPCT)‘1 = (L’l + PC

the right hand side must be understood with zero
initial condition.

Notice also that the inverse system giving z obtained
?y (3.14) has the same dynamics as (4.15). In fact
Xe would be egual to the state variables of the
z-system.

Remark 2:

Note that with the definition
dy(t) = dy(t) = Cx(t|t)dt

it can be proven that dy(t) and d;(s) are uncorrela-

ted {mutually orthogonal and linear independent), if
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t 3 s, and since x is a linear function of dy, dy is
an orthogonal base of the subspace spanned by dy. For

Y
this reason dy are often called the innovations.

The equation (4.15) can be regarded as another system
representation for the output {y(t)} of (4.1),

the innovations representation

dx(t]t) = Ax(t|t)dt + PCTR}

ay, x(tglty) = 0
dy = Cx(t]|t)dt + 4y

. . . A"
The incremental covariance of the Wiener process y

can be proven to be det.

4,6, Prediction t > t1.

When having solved the filtering problem, it is easy
to solve the prediction problem, that is to estimate
x(t) on basis of measurement up to t, for t > ty. The

notation x(t|t1) is suitable.

This case was not covered in 4.4, but the expression

for Rxdy’ given in 4.3, can easily be used, giving

. ) % -1
x(t|t1) = ¢(t,t,; )T, (LRy + gT RHIL C Rdydy

and

xCtlt,) = olt, e 0x(t [t), 2ty (4.16)

The interpretation of this is natural. Since no extra
information is available compared with the filtering
case, nothing better can be done than to assume that
Q(t1[t1) is correct and than to let it follow the gi-

ven state equation with zero noise.
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It is also here possible to let t, increase, and for

instance predict the state h time units ahead of this

x(t, + hlt,l) = ¢ty + h,t1)x(t1[t1), h >0

where x(t1|t1) is obtained recursively according to
b,5,

4,7. Smoothing.

Next application of equation (4.12) is smoothing.
x(t) is estimated on basis of measurements up to t,
with t less than t;,. The symbol §(t|t1) will be used.

The simplification from filtering and prediction,
that the term containing backward integration is ze-
ro, is no longer valid. The full effect of the tri-

angularization will be seen.

Still referring to (4.12)

x = LPCT(R,dat + datcLpc’) dy + pL¥cT(r, + cprch)7 'R,

1

. (Rydt + dtcLpC)™'dy

Introduce the function A by

1

'R, (Rydt + atcLpe’)'ay

\ = L"cT(R2 + cpL¥ely”




47,

In the same way as in 4.5 it is possible to modify the

inverses:

% T T, =1 A S B B
L'CT(R, + CPL'CT)T'R, = (L + C'Ry CP)™'C
and
cT(r at + atcLpre’) lay = cTR;TAY - cx

2 2 at f

Thus

- da(t) = (AT - CTR;1CP)A(t)dt + T

_1 ~
R2 (dy - fodt)
Aty) =0

and the following theorem can be formulated.

Theorem 4.6:

The smoothing estimate g(t|t1) for the system (4.1)
is obtained by first calculating the filtering esti-
mate x(t|t) from the information available at time t:

T T

R;1dy(t)
(4.15)

ax(t]t) = (A - PeTR}TOIxCt]t)at + PC
x(tylty) = 0

The innovations d§ = dy - fodt during(t,t1) are then
calculated by further integration of (4.15) up to ty -
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The adjoint equation

T -1
Ry

- ae) = @’ - cTRy eracerar + TRV
(4.17)

A(t1) = 0

is then solved from t,I and backwards,

Finally

x(t]ty) = xCe]t) + P(EIACE) O (4.18)

Remark:

This is one of many formulations, and it has the
great advantage that both the integrations are stable
under mild observability conditions. It is also rea-
sonable to start to find a rough estimate é(tlt),
which is then improved by adding the presumably small
correction term P(t)r(t).

The limit t, can also here be varied and formulas
giving best estimate of x(t), t fixed or x(t1 - T)
for example can be deduced from (4.18),

4.8. The Covariance Function of the Estimation Error.

The projection theorem in 4.2 also gives an expres-
sion for the covariance operator for the estimation

Y]
error X.

-1

R¥ = Ry - Rxddedeyx
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Eliminate the prediction case by assuming I, = 12’

t1 z t2’ In 4.3 was shown

_ XT
R = (LR, + gT RyIL'C

_ % T
Ryy = dt|{C(LRy + gTRHIL'CT + RQJ

and similarly

R, = (LR, + gT Ry)L

&1

AT ® 1

- . ::_ ::T.
=> R%ds = (LR1 + gTORO)L (LR1 + gTORO)L C

%7 -1
. C(LR1 + gTORO)L C

Using the decomposition of u4.4:

LR,L" + gT R,L" = PL" + LP + LPC

T,-1

R2 CPL

the following expression is obtained:

LP + PL™ + LPCTR51CPL“ -

11

Rgds

T 1

+ PLYCY (T + R; cPL C

- [LPC T)’1] o

Terp + RO

2 CPL ]=

. [(R2 + cLpcl)”

TepLcTy-1 .

IH

PLx{I - cT¢r 4 RS

T %
+ RZ} C™(LR; + gT,Ry)L
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Terp + r71

2 CPL ]} +

© [(R, + cLPCT )~
+ LP - LPCT(R2 + cupey Tewp -

LP - LPcT(R2 + cupey leLp +

1]

1

+ LY - PLYcT(R, + cPL¥cT) T epL” -

1 1

- PL"CT(R2 + cpLe)” R,(R, *+ cLret )y TeLp =

".'1 T

P+ P(LY 4 C RE“

1

1 T cp)”! -

™ + pctryTer

=1

- P(LY + CT

Te=Tey-Tp

R—1CP)—1CTR;1C(L—1 + PC'R;

2
(4.19)

where the last equality is obtained by the matrix lem-
ma. The inverses must be properly understood as integ-

ral operators having the fundamental matrix

4 y(t,s)

dt

(A - TR O, )

(4.20)

[}
[

¥(s,s)

and its transpose as kernels (cf. Chapter 3).

Now interpret Ry as an integral operator with the co-

. . n,
variance function of x as the kernel:

Ty

z = Rydu, z(t) = J P%(t,s)du(s)
t

0

giving
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The smoothing estimation error for the system (4.1)

has the covariance function

r

¥(t,s)P(s) - P(tIA(t)Y¥(t,s)P(s)

t > 8, ¢ t1
r;(t,s) = (4.21)

P(t)¥T(s,t) - P(t)¥T(s,t)A(s)P(s)

t < s, £t

1

where the fundamental matrix ¥ is defined by (4.20)

and where A(t) satisfies the differential equation

-4 Ae) = (A - PCTR;1C)TA(t) "
dat
) + a(e)a - pCTR;TC) + cTRYTC (4.22)
A(t1) = 0 O
\
Remark 1:

An interesting special case is t = ty the filtering
case. Then A = 0 and the covariance function is the
well-known ¥(t,s)P(s), t

(4.21) describes how the extra information in the

s. The second term of

B\

smoothing case, obtained from (4.17), decreases the

egtimation variance.

Remark 2:

The form of the covariance function (4.21) is possible
to obtain directly from the structure of the estimate,

(4.18), and the estimation error
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X = X. - PA

Since X is a linear function of d;(s), s > t, and
since the projection theorem construction says that
% and d§ are uncorrelated (orthogonal) for all times,

it follows that A and % are also uncorrelated and

r%(t,s) + rk(t,s) = rgf(t,s)

with r, being the covariance function of the stochas-
tic process defined by (4.17). Noting that § has the
incremental covariance R,dt the theorem follows imme-

diately.

4,9, Correlated e and v.

One major restriction on the original problem formu-

lation is in the model assumption

dx = Axdt + de

(4.1)
dy = Cxdt + dv
x(to) = X,

where XO has mean value m = 0 and covariance R0 and

where e and v are independent.

This will now be generalized so that correlation bet-

ween e and v is allowed

T
E dedv = R12dt
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Just as: in 4.3 Rxdy and Rdy can be derived and ex~

pressed in the operator notation of Chapter 3.

R.LcY + LR.L ¢T

oRo , + LR

R = gT

xdy 12

T * T T
+ CLR,L C” + CLR12 + R12

R.LC ] Loely

Ry, = dt(R, + CgT R,

dy
When calculating

o =1
X = Rxddeydy

a Riccati equation should be determined in order to

triangularize the problem.

Theorem 4.8:

Let P(t), te (to,t1), be the solution of the matrix

Riccati equation

T
+ PCT]

(4.23)

P = AP + PAT + R, - [R

Tqp=1
1 + PC ]R2 IR

12 12

P(to) = R0

and interpret P as an operator inLQ[tO>t1], then the
following decompositions are valid:

T T

12

Lcl + R, =

C(LR, + gT RL'C )

+ CLR + R

12
- T -1 T.T. % T
= |R, + CL(PC" + R12)]R2 [Rz +@Ry, + PCTILC }

and
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% T _
(LR, + gTyRyIL'C™ + LRy, =

T YRZT|R

T
+ L(PC™ + R 5 )

_ 3 T T. % T
= PL C 19 +(R12 + PCTY'L C ]

The proof is equivalent to that of Section 4.3.

The estimate is now

-1
~ T T
x = L(PC™ + R12){R2dt + dtCL(PC™ + R12)} dy +

-1
% T T.T. % T
+ PL C [RZ + (R12+ PC™)'L C ] RZ[Rth +

-1
+ dtCL(pPcT + R12)] ay (4.24)

and like in 4.5

-1
x. = L(PCT + R12){R dt + dtCL(PCT + R12)} dy

£ 2
Thus
S To-1 =1 ay=1, o T =1 -1, dy
xg = (L + PCTR, + Ry, R, C) (PC'R, + Ry, R,") E;
or
(.2 _ T,—1 =1 AN
dx(t|t) = (A - PC'R, C - R, R, C)x(t|t)dt +
2 1272
T -1 -1
+ (PC R2 + R12R2 Ydy
J (4,25)
' Al To-1 -1 .
= Ax(t]t)dt + (PC'R, + R,, R, )|dy - Cx(t[t)dt
\ x(tolto) = 0
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I want to emphasize that P is now defined by (4,23).
The prediction and smoothing could be obtained just

as for the special case with independent e and v.

The above calculation only showed the possibility to
generalize the decomposition with an extended Ricca-

ti equation.

There is, however, an interesting special case, that
gives further insight in the nature of the Riccati
equation decomposition, and that has consequences

for the system description.

It is the case when de = Kdv (in mean square sense!).

dx = Axdt + Kdv
(4,26)
dy = Cxdt + dv
x(t,) = x Ex. = 0 Ex x. = R
0 0° 0 ? 0”0 0
This implies
R, = KR,K* and R,, = KR
1 2 12 2
giving
_ T. % T ® T
Redy = LKRy(I + K'L'CT) + gT R/L'C
(4.27)
R = dt{(I + CLK)R,(I + KTLKCT) + CgT R LxCT
dy 2 0%
Note the special structure if R, = 0.

0
The decomposition of the estimation expression now

requires the Riccati equation
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T 4 xr k¥

P = AP + PA )

Typ=1 T\T
- (KR2 + PC )R2 (KR2 + PC™)

P(tgy) = R,

or rewritten

T,-1

P=(a-xo)P + Pa - k)T - pcTr}"cp
(4,28)
P(to) = RO
Note the solution P(t) = 0 for R0 = 0,
The correspondence of (4.24) is
x = L(PC* + KRQ){RZdt + dtCL(PC™ + KRZ)} dy +
) 7., %)
+ PL C IR, + (KR, + PC")'L C R, -
2 2 2
T -1
o {det + dtCL(PC™ + KR2)} dy (4,29)
and
. T -1 T 1)
xf = L(K + PC R2 ){Tdt + dtCL(X + PC R2 )] dy
Thus
( ~ _ T,-1 ~ T,=~1 _
dx(t|t) = (A - KC - PC R, CH)x(t|t)dt + (K + PC R, )dy =

-1

> ) (dy - Cx(t]t))

(4,30)

4 Ax(t|t)dt + (K + PCTR

x(t0|t0) = 0

S
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(4.29) also implies

~

X = xf + P

with

+ KR

2

v oy
, + pehHTL cT] R,

-1
. [R dt + datCL(pcl + KRQ)J dy

or

HS T.T

A= (L0 o+ clk T

. -1.T —1[dy

-1 -
R, CP) 'C°R - - (Cx
2 2 dt f}

Now state:

Theorem 4.9:

The best linear estimate of the state of (4.26) is
given by

x(t]ty) = x(t]t) + P(OIA(E)

with P obtained from (4.28), x(t|t) from (4.30) and
A(t) given by the adjoint equation

- dr(t) TR;1C)TA(t)dt + CTR;1

(A - KC - PC lay - c§<t|t)]

§
o

A(t.]) O
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Remark 1:

It is interesting to observe what happens in (4,28)
with constant A, C, K, R2, when ty > == If (A - KC)
has all its eigenvalues in the left half plane, is
stable, then P approaches zero, but if A - KC has an
eigenvalue A, > 0 then P f 0, and such that (A - KC -

- PCTRE1C) has the eigenvalue =%, instead (cf. [51).

Remark 2:

If RO = 0, then P(t) = 0 and

x(t]ty) = x(t]t)
given by

dx(t]t) = Ax(t|t)dt + K(dy - Cx(t|t)dt)
(4.31)
x(tglty) = 0

which is equal to the state equation (4.26) (in mean
square sense) with dv solved from the observation

equation.,

Note also that (4.28) is not continuous in the ini-

tial value. Even a very small change in R_ may cause

0
a considerable change in P(t) for unstable (A = KC).

Remark 3:

The innovations representation for (4.1) described

in Remark 2 after Theorem 5 is of the form (4.26)

. Ty~ .
with x(ty) = o, Ed?d?T = Rydt, K = PC R21 and with

stable (A - KC)., The state in (4.26) is (in mean
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square sense) equal to the filter estimate of the

state in (4.1).

The filter estimate and the smoothing estimate of
the state in (4.26) are equal and in mean square
sense equal to the state itself, since they are de-
fined by the same differential equation.
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5. OPTIMIZATION.

5.1. Introduction.

Next application of the triangularization lemma is
the optimization problem. The well-known case with
linear dynamics and quadratic loss is worked out both
with unrestricted and restricted end state vector.

The end time is considered to be fix.

Like in the filter case half of the problem vanishes

with the free end state.

When the end point is somewhat restricted it results
in a two point boundary value problem and the full
effect of the triangularization becomes obvious. It
is also showed how the controllability is needed

for the posed problem to make sense.

5.2. Free End Point Problem.

Let the performance of a system

x = Ax + Bu
(5.1)

x(to) = Xg

be described by the functional

ty

Vo= % J (xTQqx + uTQuidt + & x7(t,)Qpx(ty)  (5.2)
t
0

Q4 and Q0 are nonnegative definite and Q2 positive

definite,
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The problem is now to find the best input signal
u = u(t), te (to,t1), to the system (5.1) so that
the measure V is minimized.

Using the nomenclature of Chapter 3:

Minimize the quadratic functional expression

2V = (x,x(t1)) . (Q1x, QOx(t1)) *u -+ Qyu (5.2")

under the linear constraint

x = LBu + gx, (5.1")
or
(x,x(t)) = L(Bu,x;) (5.1")

Define also a new operator Q on Lz[to,t1]an by
Q(x,x(t1)} = (Q1X,Q0x(t1))
Thus

2V = L(Bu,x,) ¢ QL(Bu,xy) + u * Q

0 24

and using adjoint operators:
2V = (Bu,xo) - L Qi(Bu,xO) +u o Qyu

- £%

L. was computed in Section 3.
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Thus
. L Q1L + hQOT1L L Q1g + hQ0T1g
L QL = =
~TD{L Q1L + hQOT1L} TO{L Q1g + hQOT1g}J
My M)
= (5.3)
M My
and
1 T T,
vV = 7 U e (Q2 + B M1B)u t5u B MZXO +
+ l X~ ¢ M,Bu + l X ¢ M, x
2 70 3 2 0 40

The adjoint of

M3B = TOL Q1LB + TOhQ0T1LB
is equal to

T, * T
B'L"Q.g + B'hQ,T,g

since according to Chapter 3

ar  mp
CA 1Y

g = (TgL)
and
h = (T1L)
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as well as

T.g = (Toh)

This can also be seen from the fact that L QL is self-

adjoint. Consequently

T 1

- 1 (3 L] T L]
V = 5 U (Q2 + B M1B)u + u B M2x0 o X, MHXO

(5.4)
Now remains the unconstrained minimization of a quad-

ratic functional for which the following well-known
theorem [1] is directly applicable.

Theovem 5.1:

Consider the quadratic functional
V=x9+¢Px+2re«x +b (5.5)

where P is a self-adjoint, positive definite linear
operator. Then the minimizing x is the solution of the

linear equation
- Px = r (5.6)

The minimizing x is unique.
The proof is done by "completing squares". [J

Inserting from (5.4), (5.3)

an
'2s

P=0Q, + B (L Q, + hQyT,)LB

and
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_ T o
r = B (L Q + hQ0T1)ng

gives u = u_. from
min

T b4 - T P
[Q2 + BI(L Q + hQ0T1)LB}u = - BT(L Q; + hQ,T,)ex,

(5.7)

The left hand operator contains Fredholm operators
and the solution is hard to obtain. The "triangula-
rization" of Chapter 2 can, however, be used just

as in . Chapter 4.

Regard S = S(t) as the unique matrix solution of

-§=aTs+sa+q - SBQ;1BTS
(5.8)
S(t1) = Qq
and also regard S as a linear operator
-4 s+sL = aTs+saq - SBQ;1BTS
dt dt
Since from Chapter 3
L4 - AT] = I - hT,
dt
and {Q_ - A|L = I as well as d_ - a = 0, this
\dt dt g ’

means that

-1,T

SL + LS + L'SBQ, B'SL = L¥Q,L + hT,QuL

and
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Sg + L SBQ, 'B'Sg = L'Q,g + hT,Qug

Thus

T

T + BTSLB)

T, % _ % -1
Q2 + B (L Qq + hT1Q0)LB} = (Q2 + B'L SB)Q2 (Q2

and

T

T.7sB)q; B sg

BT(L 0, + nT,0 g = (Q, + B

In Chapter 3 it was proven that the dynamic systems

T

TL"sB)  and (Q, + B'SLB)

(Q2 + B

are invertible, provided that Q2 is nonsingular.

Consequently from (5.7)

T T1%sBy"1(q, + BTL sB) -

SLB)u 9

(Q2 + B - Q2(Q2 + B

-1_T
. Q2 B ng0

_ rT
B ngo

as unique solution u = u_. .
h a q min

But

x = LBu + g%

thus

Q2u z - BTS(LBu + ng) = = BTSx
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or

u = - Q;1BTSX (5.9)

The closed loop performance
T

X = - LBQ;1B Sx + gXq

can be written

TOX = Xg
(&' + BQ;'BTS)x = 0
or
Tox = XO
(5.10)
d

4 x(t) = (A - BQ;1BTS)x(t)
dt

which is summarized in the theorem:

Theorem 5.2:

The function u defined by (5.9) uniquely minimizes the
criterion (5.2) subject to the constraint (5.1) giving
the closed loop system (5.10). ]

Remark 1:

Since u(t) according to (5.9) only requires x(t) the
calculation of the control law can be made off line.
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Remark 2:

Like in the filter case the backward integration va-
nishes and the necessary calculation is considerably

simplified.

Remark 3:

The minimum value of V is

N =
Nof =

X o TOSgXO = X, S(to)xo

which is obtained using (5.3), (5.4), (5.7) and the

triangularizations.

5.3. Some Elements of the State Vector Fixed at t1.

An extension of the foregoing problem is to require
that the state vector at the end point lies in some

prescribed hyperplane, parametrized as

x(t1) = b(z)

where z is of lower dimension, say q, than x.

It is of no principal importance to assume that only
the g last components of x(t1) are free while the
first n-q components are fixed. It is then also na-

tural to have

where only Q,, (of order q x q) is different from zero.
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The problem is now to minimize

1 ty
xTQ1xdt + % xT(t1)Q0x(t1) + % J uTQzudt
t

0 0

<
i
N —
ct—— t

with respect to u, under the restriction

4

x = Ax + Bu

x(to)

i
2l

'
o
7~~~
N
Nt
t

x(t1)

c
l }, z arbitrary
\

and rewritten in operator notation:

1
Vo= 5(x,b) ¢ Qlx,b) + Z U+ Qyu (5.11)

(x,b) = L(Bu,a) = 0 (5.12)

The route used in the previous section cannot be app-
lied directly. The equation (5.4) is the same but
there is the additional linear constraint:

c = [I 0]T,LBu + [I 01T;ga (5.13)

which is not solved., Theorem 5.1 is therefore not

directly applicable.

However, completing squares are useful, and use can
thus be taken of the solution of the unconstrained

minimization in the foregoing section.
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Let Ue be that solution:

-1
_ T,. 3 T, %
ug = - {QZ + B (L Q1 + hQ0T1)LB} B™ (L Q1 + hQOT1)ga

and using the Riccati equation triangularization:

T -1,T

SLB) 'B"Sga =

ug - (Q2 + B

- q;'BTs(T + 18Q; '8T$) Tga

The problem (5.11) = (5.13) can now be reformulated

using the previous results and the definition of Ugs

Minimize

1 T -1 T -1
Vv = §(u - uf) . {(Q2 + B'L SB)Q2 (Q2 + B SLB)} (u«uf) +

+ %a . S(to)a (5.14)

Under the constraint

T

[T 0]T,LB(u - u.) =c - [I 0lT,ga + [I O]T1LBQ;1B S

f

o (I + LBQ;1BTS)"1ga

=c - [T 01T,(I + LBQ, B'S) 'ga

(5.15)

Defining

v = Q;1(Q2 + BISLB) (u - ug) (5.16)
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U= [I 0lT,LB(Q, + BTSLBY 'q, =
= [I 0]T1(L_1 + BQ;1BTS)—1B (5.17)
) 1 Ty =1

y =c¢ - [I 0]T,(I + LBQ, B S) '‘ga (5.18)

then (5.14) and (5.15) are shown equivalent to

-1 . 1
Vv = 7 v Qv+ 5 a - S(to)a (5.19)
and
Uv =y (5.20)

This means that after having solved the unconstrained
minimization the constrained minimization was much

simpler.

Theorem 5.3:

The minimization problem (5.11) - (5.12) is equiva-

lent to:

Minimize

Vedyveow +%a.s(t)a (5.19)
2 "2 2 o *

Under the restriction

c = [T 0]T;x (5,20")

where x satisfies
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d x = (a - BQ;1BTS)X + Bv
dt
(5.21)
TOx = a
Proof:
(5.16) gives V = u + Q;1BTSLBu + Q;1BTSga = u + Q;1BTSX

and (5.21) is verified. (5.20') follows then from
(5.17), (5.18), (5.20). O

Define for convenience the fundamental matrix to (5.21)

to be ¥(t,s), which is thus the kernel of the operator

w7l s }3()5"13Ts>"1
It still remains to determine v, which can be done

using the formulation of Theorem 5.3 and a well-known
theorem, see for instance [U4]:

Theorem 5.4

Let P be a positive definite self adjoint linear ope-
rator, and U a not necessarily invertible operator.

If the compound operator U§1U" is invertible then
Ux = vy
has the solution

1 1

xg = P ot p vy

which also minimizes
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under the linear constraint. ™

According to this

v = Q;1U"(UQ;1U")'1y

provided that the inverse exists.

Rewrite:

i

-1,.T )-1 -1,T

uQ;'u” = I1 o]T1(L'1 + B0, 'B'S)7'BQ, BT -

.- I
e (T + L SBQ21BT) 1hH

0
ty
-1,.T,T I
= [I 0] J ‘l’(t1,s)BQ2 B~ ¥ (t1,s)ds = W(to)
0
to (5.22)

where the integral is the controllability gramian for
the closed loop system (5.21).

y=c - [I 0]Tyxf =c - [T o0l¥(ty,tyla (5.23)

if X is the state obtained with u = ug, that is if

no care is taken of the constraint.

Thus

ar o - I -
v = Q;1BT(I f L SBQ21BT) 1h{é}w Yty

or
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v = Q;1BTE

with the backward integration

-4 = (a - BQ;1BTS)T€
! (5.21)

1] 1
T1€ = W (tO)y
\ 0]

Summarize in the theorem

Theorem 5.5:

(5.11) vestricted by (5.12) is minimized by the input

T

u ==, BSx + o, '8¢ (5.25)

with x given by (5.21) and ¢ by (5.24), (5.23) and
(5.22), and

_1 1 . -1:T, .

Vnin "7 @ * To88a * 7 & BQ, B'& =
1T 1 T -1 O
= x> a S(tO)a t W (to)y

Remark 1:

It follows from (5.25) and (5.23) that t_ can be.

variable as long as W(to) has an inverse.
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5.4, Optimization under Other Types of Constraints.

Some other types of constraints are easily handled
with the operator technique. Assume, for instance,

that there is an absolute limit on the input term

u e Q2u g C

instead of being included in the cost function.

V = x o Q1x + T1x . QOT1X; x = LBu + gX4
Inbedding this in the problem

Ve =V + eu o Q2u

having a minimum for Ug s which can be obtained as in

5.2, it is possible to show that
Ue ° QZue

is strictly decreasing with e and either has a finite
limit, when e + 0, which is less than C, or it equals
C for only one e. This ug also minimizes V under the
constraint u - Q2u U, e Q2ue = C since it minimizes

V L]
e

A corresponding analysis can be done for another prob-
lem with integral constraint:
Minimize u -« Q2u under the constraint

X e Q1x g C

Compare Bellman [2].
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6. SEPARATION THEOREM.

6.1. Introduction.

The results of Chapters 4 and 5 can be combined and
the separation theorem is possible to prove using

the operator notation.

Assume that the loss

t1
V=g E j xT(£)Qqx(t)dt + X7 (t,)Qx(ty) +
t

0
Ty
+ J uT(t)Qzu(t)dt (6.1)
Ty

should be minimized when x defined by the stochastic

differential

dx Axdt + Budt + dv

(6.2)
Cxdt + de

4]

dy

and x(to) = a has mean value m and covariance RO'
Like in Chapter 4 v and e are independent Wiener pro-
cesses with incremental covariance R1dt and det res-

pectively. They are also independent of x(to).

Two problems are formulated dependent of what infor-

mation is available for choosing u(t)
1) {x(s) s s t}

2) {y(s) s ¢ t}
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6.2. Reformulation of the Minimization.

In operator formulation (6.2) gives

x = LBu + ga + L av (6.3)

dt

where the last term must be interpreted as a stochas-
tic integral and special care must be taken in the
calculus. (6.1) can be reformulated like

-

Now following Section 5.2 I insert (6.3) into (6.4)
and use the triangularization of Q2 + BTL"Q1L"B by

the Riccati equation

- & =aTs + sA + Q, - SBQ;1BTS
(6.5)
T,S = Q,
with
% _ % % -1_T
L¥QqL + hT,Q,L = SL + LS + L*sBQ, 'BTSL
(6.6)
L*Q. g + hT,0.¢ = Sg + L SBQ. B'S
| 18 1008 = S8 Q, g
leading to
1 T % -1 ~1.T
V=g Bju - (I + B'L'SBQ;")Q,(I + Q B'SLBu +

+ 2u [BTL“S 4 (1 o+ BT sBo; B s(L 9V 4 ga)] +
at dt
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AV . (L o+ L's + L7sBQ; ' BTsL)Y 4
dt at

+

+2 o (sg + LsBQ; B sg)a +

dt

+a + Ty(Sg + L"SBQ;1BTSg)a}

Note that all realistic controls u(t) can be func-
Rdv
dt
only depends of dv after that time and since v is a

tions of the noise dv only up to time t.Since L

Wiener process

Toks v o g (6.7)

dt

Eu ¢ B

Completing squares and introducing

up = - (I + Q;1BTSLB)—1Q;1BTS{L dv , ga]

dt

1 -1 T
V= E{(I + Q, B'SLB)(u - ug) -

“1,T
QQ(I +Q, B*SLB)(u - uf) +
+a - TgSga + . (sL o+ L)Y 4
dt dt
+ 2 9_\,. ® Sga} (6.8)
dt

But a and v are independent and thus
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T

L osga = [ aTeTet,t8(Eavie) = 0
dt %
0

and since all differentials are Ite differentials

t, t,
pdv ., [fsdv . g J avT(t) J 6 (s,t)S(s)dv(s) = 0
at dt
t, %
Ty t
gdv ., gy &V = g J dvI(t)s(t) I s(t,s)dv(s) =
dat dt
to to
t

t
tr S(t) J s(t,8)dv(s)dvi(t) =
t

111
=3}
et

0 0
ty
- J tr S(t)R, (t)dt (6.9)
to
Note also that
1T )
(I + Q2 B"SLB)(u - uf) z
= u o+ Q;1BTSLBu + Q;1BTSfL v 4 gal =
at
=y o+ Q;1BTSX (6.10)

which can be summed up in
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Theorem 6.7:

Assume that x follows the state equation (6.3) and
that S is defined by (6.5) then

<3
m
o=

E{x o Q1x + T1x ° Q0T1x + U e Qzu} =

E{(u + Q;1BTSX) - Qy(u + Q;1BTSX)} +

N -

T
+ m S(to)m + tr S(tO)RO +

t
+ J tr S(tIR,(t)dt (6.11)
to
If u = - Q;1BTSX is an admissible strategy, then this
certainly minimizes V. O
Remark 1:

Since the operator Q;1BTS only implies multiplication
with the corresponding matrices, best u is a function
only of the current state. This is owing to the con-
cept of state, i.e. minimum information about the sys-
tem status, described by (6.2) or (6.3). But it also
accounts for the structure of the loss (6.1) and (6.4).
If Q4 and Q2 were not "diagonal" as operators, best in-
put would not be given by a "diagonal” operation on the

state.

Remark 2:

Note that one major assumption is done. It is eq. (6.7)
saying that no dependence is possible between the cont-
rol u(t) and dv(s) for s > t. If v were for instance a

known forcing function instead of unpredictable noise,
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(6.11) would not be valid. Best input should be a
function not only of the state but also of this
forcing function. The concept state is somewhat du-

bious in this case.

6.3. The Separation Theorem,

In problem 2) of the introduction 6.1.

is not an admissible control.

If u(t) is restricted to linear functionals of y(s)
up to time t the first term of (6.11) can be rewrit-

ten:

1

) -1 T ' -1 T B
5 E(a + Q2 B"Sx) - Q2(u + Q2 B Sx) =

21 -1
= E(u + Q2 B

Tl “1.T. "
Sxf) Q(u + Q2 B Sxf) +

-1 _Ten 1 =1 T -1 . Ten
+ Eu » Q,Q, B'SX, + 5 EQ, B SX. + Q,Q, B SX, =

1 1T —1 T
= = E(u + Q2 B Sxf) Q2(u + Q2 B Sxf) +
ty
+ % J tr PSBQ, B'Sdt (6.12)
to

with if(t) being the "linear projectionf of x(t) onto
l}t = {y(s), s ¢ t} and §f(t) = x(t) - xf(t) being
independent of %Dt and thus also u(t). Xf(t) has the
covariance P(t) defined in Chapter 4.
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Regarding this

u = - Q;1BTSXf

certainly minimizes V for the problem 2),

Theorem 6.2:

The loss function (6.1) for the dynamic system (6.2)
is uniquely minimized under the restriction that u(t)

be a linear functional of y up to time t by

-1 T~
u = - Q2 B Sxf (6.13)
and the minimum loss is
\ =1 mTS(t Jm + tr S(t.)R,. +
min ) 0 0770
t, t,
+ [ tr SCEIR, (t)dt + J tr PSBQ;1BTSdt} (6.14)
to tg
where gf is defined by
dx. = Ax.dt + Budt + PCIR-V(dy - Cx.dt)
£ £ o ‘4Y £
(6.15)
§<<t0) = m

and S by (6.5) and P by
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P = AP + PAT + R, - PCTR;1CP
(6.16)

P(t0)= R, O

Remark 1:

If the linearity assumption on u is omitted the theo-
rem holds only for normal processes. However, if if(t)
means the conditional expectation of x(t) given %ﬂt
and P(t) the conditional variance (6.13) and (6.14)
still hold, but ; is a nonlinear functional of

%’t when normality is not assumed.

Remark 2:

If u(t) is a linear. functlonalof@%t T’X (t) should
be changed to x(tlt -T) ,the best linear predictor.

u(t) being a functional of E%t+T violates (6.7) (see
Remark 2 after Theorem 1). |

Remark 3:

The minimization can also be performed for other
types of information processes glVlng another E%t'
The observations can for instance be performed at

discrete instants during the interval.
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