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SUMMARY

When a notched specimen of a linear elastic material becomes subjected to
load, the region in front of the notch tip will be highly stressed. A·~real

material cannot stand these high stresses and a damage zone will develop
in front of the notch tip. For concrete and other non-yielding materials,
the damage zone is caused by the development af micro-cracks. ·The material
in this micro-cracked material volume, or f:racture zone, is partly de.stroyed
but is still able to transfer stress. The stress transferring capability
normally decreases when the local deformation of the zone increases, i.e.
when the number of micro-cracks increases. This· thes i sdea1s with the de­

velopment of fracture zones and how the fracture zones affect the crack pro­

pagation and the fracture process for plain concrete and similar materials.

In the calculation model presented here, the fracture zone is modelled by
a crack that is able.to transfer stress and the stress transferring capa­
bility depends on the width of the crack in the stressed direction (see
Fig 3.6). As the .. stress transferring crack i·s not a real crack but a ficti­
tious crack, the model i·s called the Ficti.tious Crack Model. In the calcu­
lations the fictitious crack (i.e. the fracture zone) is assumed to start
developing ·at one point when the·first principal stress reache$ the tensile
strength and the fictitious crack·develops perpendicular to the first prin­
cipal stress. The deformation properties are given by two telations; one re­
1attan between the stress and the relative strain, i.e. a cr-E curve, "for the
material outside the fictitious crack and one relation between the st~ess

·and the opening of the fictiti.ous crack, i·.e. a (j-W curve (seeF·ig 3.4).
These curves ·are considered as material properties and they are, together
with Poisson's ratio, the only parameters necessary to know when carrying
out calculations by ·using the Fictitious Crack Model.

The Fictitious Crack Model cannot normally be treated analytically but nu­
merical methods have to be used. In this thesis calculation methods are pre­
sented which are based on the finite element method.

A number of calculations have been carried out by using the Fictitious Crack
Model and the results seem to be in good agreement with experimental results
(cf Tables 6:1 and 6:3, Fig:s 6.33, 6.35, 7.1~and 8.16).

Calculation results are presented which indicate that up to 150 mm long
fracture zones develop in front of notches in concrete structures (see
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Fig 5.6). These results are in good agreement with test results presented
in li.terature·.

The applicability of linear elastic fracture mechanics to concrete an~ simi­
lar materials is analysed by use of the Fictitious Crack Model·. It is found
that linear elastic fracture mechanics is too dependent on~ among other
things, specimen dimensions to be useful as a fracture approach~ unless the
dimensions, for concrete structures, are in order of meters. The usefulness
of the J-integral, the Crack Opening 'Displacement-approach and the R-curve
analysts is also found to be very limited. where cementitious materials are
concerned.

The a-s and a-W curves can be approximately determined if the tensile

. strength (ft)~ the Young's moduZus (E) and the fracture energy (GF) are
known (see Fig 4.10). GF is defined as the amount of energy necessary to
create one unit of area of a crack and consequently GF equals the area un­
der the a-W curve. GF can be determined by use of a stabZe three-point bend
test on a notched beam and this test method is dealt with in detail. Among
other things, the stability conditions for the .three-point bend test are gi­
ven and test results are presented which imply that GF is suitabl~ for use
as a material property for concrete. The direct tensi'le test is also dealt
with and a new type of clamping grips is presented~ which can be used for
determination of' the tensile strength on prismatic concrete. specimens (see
Fig 7.3)

Test results of ft~ E and GF are presented for a number of concrete quali­
ties (see Fig:s 7.31-7.35). GF normally appears to be 70-140 N/m and is
especially dependent on the quality of aggregate,'water-cement-ratio and age.

The (J-W· curve can be directly determined from t·he stable tensile stress­
strain curve and in the last Chapter a new type of very stiff testing ma­
chine is. presented by which it ·is possible to carry out stable tensile tests
on .concrete (see Fig 8.5). The complete stress-deformation curves, and thus
the (J-W curves, have been determined for a number of concrete qualities (see
Fig:s 8.10-8.13). It was found that·the shapes of the cr-W curves are similar
for the different concrete qualities. A result of this is that'no "compli­
cated" stable tensile tests have to be carried ··out' in order to determine
(J-W curves for concrete but good approximations of 'the curves can be deter­
mined by us·e of the "simple ll f t - and GF-tests. F'urthermore, due to the small
variations of the shapes of the a-W curves for concrete, the fracture pro-
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perties can be expressed by a single parameter called the characteristic

Zength (Q'Ch). ~chis defined as GFE/ff and the smaller the value of £ch is,
the more "brittle ll the material is. For most concrete qualities £ch seems
to be 200-400 mm.

The description above covers a complete system for analysing crack propaga­
tion in concrete as it includes a realistic material model, a functional cal­
culation model and methods for determining- the material parameters necessary
for the calculations. Therefore this work ought to be of use as a base· for
further studies of the fracture process of concrete and similar materials.



-x-



-1-

INTRODUCTION

In the field of fracture mechanics stresses and strains around crack tips in
loaded structures are analysed. The fracture of non-yielding materials is al­
ways caused by crack propagation and therefore it was logical when Kaplan
(1961) started to study the fracture process of concrete by means of fractu­
re mechanics. Since then numereous reports have been published about crack
stability, crack propagation, fracture mechanical test methods and so on for
concrete and similar materials. Almost all of these publications have one
thing in common; concrete is treated as a linear elastic material and the well­
known K- and G-approaches, more or less modified, are used. A few researches"
have used other methods such as the J-integral appro~ch and R-curve analysis.

The results of all these efforts are discouraging; in fact, to date there exist
no working fracture mechanical calculation models for concrete, no well defi­
ned fracture mechanical material parameters, no well established test methods
and so on. This has given rise to some doubt regarding the usefulness of frac­
ture mechanics when applied to concrete. However, the fracture of concrete is
caused by cracks and consequently it is necessary to use" fracture mechanics
when describing the fracture process of concrete but one has to be aware of
the fact that fracture mechanics is not the same as linear elastic fracture
mechanics. As linear elastic fracture mechanics seems unsuitable for contrete
it is consequently necessary to develop approaches that take material proper­
ties other than the linear elastic ones into consideration, especially the
properties of the highly strained region in front of the crack tip. Such an
approach is presented in this thesis.

The work presented in this report is a part of a research program aimed at
developing a fracture mechanical model suitable for analysing the micro- and
macro-fracture of plain and reinforced concrete and similar materials. In con­
nection with this research program a number of papers have been published,
for example Hillerborg, Modeer and Petersson (1976), Modeer (1979), Petersson
(1980a, 1980b, 1980c), Petersson and Gustafsson (1980), Hillerborg (1980),
Hillerborg and Petersson (1981).

This report deals with the macro-fracture of platn concrete and similar mate­
rials. The physical properttes of the fracture zone in front of a crack tip in
a stressed material are discussed and a calculation model is presented by
which the crack growth and the development of local fracture zones can be ana­
lysed. The calculation model can however be used for quantitative estimations
only if a number of essential material parameters are known. For this reason
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the work, to a large extent, ;s concentrated on the development of suitable
methods for determining the fracture mechanical properties of cementitious
material~ and such properties are. also presented for a number of qualities
of plain concrete.

This project has, as all other projects, a number of limitations of which
some are listed and discussed below.

a) Concrete ,is a composite'material where the cdmponents are':cement
paste, aggregate particles and pores but in the calculations con­
crete and other cementitious materials are assumed to be homogeneous
and isotropic. This ought to be a fair assumption when the dimensions
of the structure exceed the dimensions of the larg,e'st irregularities
in the material by a few times.

b) In the calculations only the development of a single crack (opening
mode) is analysed but in principle the model can also be used when
two or more cracks develop simultaneously.

c) For a yielding material plastic deformations take place close to the
cracktip~nd so called shear lips develop. Due to these plastic de­
formations the fracture mechanical properties of yielding materials
are strongly affected by the state of stress; plane stress or plane
strain. For non-yielding ma~erials the irreversible deformations are
due to the formation of micro-cracks and therefore no plastic de­
formations take place :and the difference between plane stress and
plane strain is smal'l. In the calculations presented in this report
plane stresS" is Used and Poisson's ratio (v) is assumed to be 0.2.

d) Most of the calculations and tests are relevant for wet specimens,
;).e. the effect of'shrinkage'stresses is'not dealt with, although
this can be done with the model, see 4.2.
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2 FRACTURE MECHANICS

2.1 Introduction

The reference list in this Chapter is incomplete. However, most of th~ defini­
tions and expressions are well known in the field of fracture mechanics and
can be found, for example, in Knott (1973) and Carlsson (1976).

Fig 2.1 illustrates an infinitely large plate of linear elastic material and
the plate is subjected to a uniform tensile stress 0'0. The stress distribut'ion
will be disturbed if there is a circular hole in the plate. At the most criti­
cal point of the boundary of the hole, the stress will, independently of the
size of the hole, reach three times the applied stress. This means that holes
or other irregularities will considerably reduce the strength of a material.

oot t t t tt t t t t t t

to -..... 00 when b--O

Fig 2.1 The stress distributions close to a circular hole~ an elliptical
hole and a crack in an infinitely large plate subjected to the
uniform stress 0

0
•



(2: 1)

-4_00

If the circular hole is replaced by an ,··:ell·i.pt;-cal hole, the stress at the tip

of the elliptical hble becomes 1 + 2a/b times the applied stress, where a
and b are the major and minor axes of the elolipse respectively. If the minor

axis is much smaller than the major axis, i.e. b « a, then the elliptical

hole is a crack and the stress at the crack tip grows unlimitedly as the ratio

alb approaches inffnity. This means that ordinary stress criterions cannot be
used in this case as the material would then fail as soon as it became subjec­
ted to load.

A material always contains irregularities. However, a real material is never

perfectly linear elastic, at least not at high stresses, and crack tips are
never infinitely sharp and these are the reasons why materials can exist at all.

2.2 Linear elastic fracture mechanics

2.2.1 Energy criterion

Even if materials never behave perfectly linear elastic it is sometimes possib­
le to approximate the material behaviour with a linear elastic model. As stress
criterions cannot be used, one has to use so called fracture mechanics approa­
ches. The first approach of this type was proposed by Griffith (1921).

Fig 2.2 shows an infinitely large plate subjected to a uniform tensile stress
cro• The plate contains a 2a long crack, which is oriented perpendicular to
the applied stress. By equating the elastic strain energy that is released
when the crack advances a small distance ~a at each crack tip and the energy
necessary to create the new crack surfaces, Gri ffi th founod an express i on for
the critical stress (ac ) at which the crack propagates:

= V2yE
l

a
ac 1fa

where E is the Young1s modulus and y is the surface energy per unit area. a is
1 for plane stress and V1/(1-v2) for plane strain, where v is Poisson1s ratio.
For concrete v is normally less than 0.2, which means that 1 < a < 1.02. The
discrepancy between plane stress and plane strain is so small for concrete
that it can be neglected and below all the relations are relevant for plane
stress, i.e. a=1.

B~ introducing the critical strain energy release rate (Gc)' (2:1) can be ex­

tended to be relevant also for materials where small, irreversible deforma­
tions take place close to the crack tip. Gc includes not only 2y but also the
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Fig 2.2 An infinitely large plate with a 2a long crack oriented perpendi­
cu.lar to the applied stress 00.

energy consumption due to plastic deformations close to the crack tip and
(2:1) becomes:

(2:2)

Normally (2:2) is seen as:

G = Gc (2:3)

and G, the strain energy release rate is defined as:
2

°ona
G = -E- x g (2:4)

where g is a correction factor dependent on the specimen geometry and the loa­
ding case. g equals unity for the infinitely large plate in Fig 2.2.

2.2.2 Stress intensity criterion

The stress distribution in front of a crack tip, perpendicular to the crack
and on a line parallel with the crack, see Fig 2.3, can be expressed as:

.Kcr=--+

V21TX
•

(2:5)

where x is the distance from the crack tip and K is the stress intensity fac­
tor. The points represent terms that are small compared with the main t-erm for
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=====::::--L----======-----............ x

Fig 2.3 The stress distribution in front of a crack tip in a linear elastic
material.

small values of x and therefore the main term itself describes the stress dist­
ribution close to the crack tip.

As seen in (2:5), the stress distribution is unaffected by the geometry of
the specimen and the intensity of the stress is only dependent on K. For this
reason a stress intensity criterion for initiation of crack growth can be used:

K = Kc (2:6)

where Kc is the critical stress intensity factor. For the infinitely large
plate according to Fig 2.2, K=ao~and thus:

(2:7)

By comparing (2:7) with (2:2) it becomes obvious that a connection between
Kc and Gc (or K and G) for the ihfinitely large plate exists:

(2:8)

(2:8) can also.be shown to be relevant for other geometries and load cases.

Normally Kc is expressed as:

(2:9)
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where f is a correction factor dependent on geometry and type of loading..
f = Vii" for the infinitely large plate in Fig 2.2.

2.2.3 Cohesive tones

In linear elastic fracture mechanics one neglects the fact that the stress at
the crack tip theoretically approaches infinity, while the stress in reality
can never exceed the cohesive strength of the material. Barenblatt (1962)

found that a small cohesive zone must exist in a region close to the crack
tip, i.e. a zone, where closing stresses act between the crack surfaces.
Barenblatt assumed the zone to be very small (the "length of the zone «',length
of the crack) and therefore' the 1inear elastic appr.oaches previously discus­
sed can be used for calculation purposes but the existence of cohesive zones
explain why linearelas.tjc fracture mechanics can be used at all

2.3 Elastic plastic fracture mechanics

2.3.1 Introduction

A perfectly linear elastic material follows a straight-lined stress-strain
curve (a-8 curve) all the way to fracture. A more realistic 0-8 curve for a
real material is shown in Fig 2.4.

The material in front of a propagating crack will be highly strained and all
the points of the 0-8 curve will be represented. Three different zones can be
separated around the crack tip, see Fig 2.5.

1. The linearela.sticzone: Far from the crack tip the stress is so
low that the material still behaves in a linear elastic way.

2. The plastic zone: In this zone the stress-strain relation is non­
linear and the stress increases or at least remains constant as the
strain increases

3. The fracture zone (or process zone): In this zone the stress decreases
as the strain increases.

If the plastic zone and the fractu~e zone are small compared with the speci­
men dimensions and the crack depth, then linear elastic fracture mechanics
can be used but otherwise other methods have to be used. For yielding mate­
rials, for example most metals, a large plastic zone develops and, one has to
use elastic-plastic fracture mechanics" approaches. In these approaches the
extent 'of the fracture zone is normally reduced to a point, which is probab-
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a

-------4----------+------~-__...£.

CD

Fig 2.4 A schematic illustration of a cr-s curve. Three parts of the curve
can be separated; (1)=linear elastic deformations, (2)=plastic
deformations and increasing stress, (3)=plastic deformations and
decreasing stress.

Fig 2.5 In front of a crack in a stressed material there is a plastic zone
(2) and a fracture zone (3). Far from the crack tip the material
behaves in a linear elastic way (1).
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ly a fair approximation for most yielding materials. For non-yielding mate~

rials, however, the .influence of the fracture zone is much more important,
while the plastic deformations are small. This thesis in fact de~ls with
how the fracture zone affects the fracture process of concrete and'sim~lar

materials.

2.3.2 The Dugdale model

For an elastic-ideal plastic material the stress can never exceed the yield
stress (cry). In the model according to Dugdale (1960) it is assumed that a
narrow yield zone develops in front of the crack tip along the line of the
crack, see Fig 2.6. Th~ stresses in the yield zone never exceed the yield
stress and consequently loadcase a) in Fig 2.6 equals the sum of the load­
cases b) and c).

The stress at the tip of the yield zone will approach infinity unless the sum
of the stress intensity factors for the loadcases b) and c) is zero and this
condition gives the extension of the fracture zone asa function of the app­
lied stress. The Dugdale model is, for example, suitable for describing the
development of fracture zones in thin sheets of yielding materials.

Loadcase 0) Loadcase b) Loadcase c)

Fig 2.6 The loadcase a) according to Dugdale is identical with the sum of
the loadcases b) and c).
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2.3.3 The J-integral

A fracture approach similar to the Gc-approach can of course also be used for
non-linear elastic materials. For this reason a parameter called the J-in­
tegral ~has been proposed (Rice, 1968). This method is based on the cha~ge in
potential energy when a crack extends:

1 aUJ :: - -­b aa (2:10)

where b is the the specimen width, U is the potential energy and a is the
crack length. When using the J-integral the criterion for crack propagation is:

J :: J
c

where Jc is a material property for elastic materials.

(2:11)

The J-integral is only strictly relevant for elastic materials where the loa­
ding and unloading take place along the same curve. Normally this is unrealis- '
tic for real materials and this considerably restricts the applicability of I

the J-integral. However, as long as no unloading takes place in any point of
the specimen, the material itself "does not know" whether it is elastic or
not and then the J-integral can also be used for 'materials where irreversib­
le deformations take place. In all real materials a fracture zone develops in
front of the crack tip before the crack starts to propagate. In the fracture
zone, and in the material volume close to this zone, unloading takes place and
consequently the fracture zone must be small compared with the specimen dimen­
sions and the crack length if the J-integral is to be useful as a fracture
mechanical approach.

2.3.4 Tbe Crack Opening Displacement (COD)

COD represents the widen;'ng of the crack tip when a,cracked specimen is sub­
jected to load, see Fig 2.7. It has been suggested that there exists a criti­
cal value, CODe' of the crack opening displacement that, at least for some
materials, can be used as a criterion for the initiation of crack growth.

2.3.5 R-curve analysis

Sometimes it is possible to observe stable crack growth even if K increases.
The only explanation for this is that Kc increases as the crack propagates.
This is observed es.pecially for metals in the intermedia'te range, i.e. in
the range, where neither plane stress nor plane strain is dominating and the
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Fig 2.7 The Crack Opening Displacement (COD) representing the widening of
the crack tip.

explanation is that the plastic deformations (width of the shear lips) in
front of the crack tip increase as the crack advances.

The resistance to crack growth (KR) has been introduced as a material parame­
ter in order to describe the variation of the critical strain energy release
rate when the crack advances. KR is defined in the same way as Kc but instead
of the original crack length one uses the actual crack length, i.e. the ori­
ginal 'crack length (a) + the crack advance (~a).

Some test results indicate that plots of KR against the crack advance, (i.e.
R-curves), are, for a specific specimen width, independent of the specimen
geometry and method of loading and therefore might be used as a material pro­
perty. An example of such a plot is shown in Fig 2.8.

When using the R-curves for predicting crack growth the curves are put into a
diagram where the axes represent the resistance to crack growth (KR) and the
actual crack length (a + ~a) respectively, see Fig 2.9. R-curves starting at
different original crack lengths (a, and a2 in the Figure) are identical as
they are supposed to be independent of the specimen geom·etry (except for the
width). The R-curves are compared with curves representing the stress inten­
sity factor (K) as a function of' the actual crack length. In the Figure the
K-curve representing the load F1.tbuches the R-curve for the original crack
length a1 at a point where the K-curve increases more than the 'R -curve and
thus the crack propagation will be unstable. For the load F2 the crack propa­
gation will be stable if the original crack length is a, but unstable if the
original crack length is a2.
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l1a

Fig 2.8 An example of a crack growth resistance curve (R-curve).

'unstable

a ---/1a2 (o+/1a)

Fig 2.9 The principles of predicting crack propagation by use of R-curves.
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KR-curves can be used only if linear elastic fracture mechanics is applicable
for each value of the crack advance but the R-curve analysis of course can
also be relevant for JR-curves, CODR-curves ~nd so on.

2.4 Fracture mechanical models considering the influence of the fracture
zone

The crack model presented in Fig 2.10'a was used by Andersson and 'Bergqvist
(1970). A layer of thickness d was inserted'between two semi-infinite, li­
nearly elastic media and by interrupting the layer a ~rack could be modelled.
The layer was given a stress-deformation relation according to Fig 2.10b.
The slope of the ascending part of the stress-deformation curve was chosen
so that it was in agreement with the stress-strain curve for the semi-infini­
te media. For different assumptions of the slope of the descending part of
the curve in Fig 2.10b, the stress-distribution in front of the crack tip
could be calculated by use of numerical methods. However, the results are
primarily of theoretical interest due to poor knowledge about the material pro­
perties necessary to determine the stress-deformation curve in Fig 2.10b.

a)

Stress

Deformation

b)

Fig 2.10 a) The crack model according to Andersson and Bergqvist (1970).
b) Stress-deformation relation for the thin layer in Fig 2.10a.
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In damage mechanics (Kachanov, 1958) the strength of a loaded structure is de­
termined by the deterioration of the material caus~d by the loading. The value
of the deterioration is characterized by a parameter w, which is a measure of
the decrease in the load carrying internal area of the material. The net
stress in the undamaged material (s) then:equ'als a/(1-w) where a is the con­
ventional stress applied to the material.

Janson and Hult (1977) combined damage mech~nics and the Dugdale model. In the
Dugdale model the stress is constant along the plastic zone in front of ,the
crack tip. Janson and Hult replaced the constant stress by a constant net
stress (s) and let w be dependent on the distance from the crack tip, which
resulted in a varying stress along the yield zone. The same principles as used
for the Dugdale solution could then be used for calculating the length of the
yield zone as a function of the applied stress for different assumptions of
the distribution of w. All the calculations were carried out on an infinite
plate containingaslit~ In another paper (Janson, 1978) calculations were
presented, where w increases li:ne-ar.ly·wi;-~th the widening, in the stressed direc­
tion, of the fracture zone. The calculation results are in good agreement with
the solution according to Dugdale for small values of the crack length and in
good agreement with the solution according to linear elastic fracture mecha­
nics for large values of the crack length. However, in an intermediate range
the varying stress along the yield zone,.or fracture zone, affects the calcu­
lation results considerably.

Naus and Lott (1968) used a crack model similar to that in Fig 2.10 in order
to estimate the length of the fracture zone in front of a crack tip in cement
paste. However, they did not relate the stress in the thin layer to the defor­
mation of the layer but assumed a certain stress distribution along the frac­
ture zone.

By use of damage mechanics and the finite element method Mazars (1981) studied
the development of fracture zones in plain and reinforced concrete specimens.
The method is not a pune fracture mechanical method and so far only initially
unnotched specimens have been analysed.
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3 THE FICTITIOUS CRACK MODEL

3.1 The t~nsile fracture of cont~~te

By using a very stiff tensile testing machine and small specimens it IS pos­
sible to determine the complete tensile stress-strain curve of concrete, see
for example Hughes and Chapman (1966), Evans and Marathe (1968) and Chapter 8
below. An example of such a curve is shown in Fig 3.1.

At first the material behaves almost linear elastic but when the stress in­
creases, the curve becomes non-linear due to micro-cracks, which are distri­
buted over the entire specimen. When the maximum stress is reached, one cross
section is unable to carry more load and it is fair to assume that the deve­
lopment of micro-cracks will be concentrated on a small material volume close
to this cross section when the specimen becomes more deformed. This means
that, after the maximum load is reached, additional deformations will take
place in the micro-cracked material volume, or fracture zone, while the ma­
terial outside the fracture zone will be elastically unloaded. The load de­
creases when the first fracture zone develops and consequently only a single
zone develops.

Some very interesting results regarding local deformations at direct tensile

E

Fig. 3.1 An example of ~he complete tensile stress-strain curve (a-£ curve)
for concrete.
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tests were presented by Heilmann, Hilsdorf and Finsterwalder (1969). ResultS
from one of their tests are presented in Fig 3.2~ Strai~ gauges were "gl~ed :
at different positions on a 600 mm long concrete specimen with a ~ross sec­
tional area of 80 x 150 mm2, see Fig 3.2a. The load was elXcentrically-app'" .

lied, which made it possible to achieve a stable fracture. In the Figure the
position of the final crack is shown.

In Fig 3.2b the local 'strains are shown as a function of the mean strain of
the specimen. The local strains are separated into two groups; one group re­
presenting the cross section where the final crack develops (gauges 2-3) and
one group representing the material outside the position of the final crack
(gauges 1, 4-9). As can be seen in the Figure, the strain represented by the
gauges crossing the final crack increases rapidly from the moment when the
maximum stress is reached. At the same time the strain outside the fracture"
zone decreases." This clearly shows that a local fracture zone starts deve~

loping when the tensile stress is reached. In this case the fracture zone tn
fact starts developing already before the maximum stress is reached, but this
is explained by the excentricity of the load, which means that the fracture
zone propagates from one side of the specimen, through the material, to the
other side. However, the development of the fracture zone mainly takes place
after the maximum stress is reached.

In Fig 3.2c the local strains for the individual gauges are shown for diffe­
rent stress levels. The strains increase very !rapid1y for the two gauges over
the fracture zone while the strains over the other gauges remain fairly low.
This implies that the fracture zone is located to a narrow band across the
specimen.

As the width of the fracture zone in the stressed direction seems to be small
it ought to be possible to describe the tensile test by a simple model accor­
ding to Fig 3.3.

In the model the fracture zone is replaced by a slit that is able to transfer
stress and the stress transferring capability depends on the width (w) of the
slit. The width of the slit is zero when it starts opening and consequently
the length of the specimen outside the slit (or "fracture zone) equals the o~

riginal specimen length (t)+strain deformations. The total deformation {At}
of· :the specimen .then becomes:

(3: 1)

where ~o is the strain in the material outside the fracture zone.
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Fig. 3.2 a) The position of the 9 strain gauges.
b) Strains for the gauges crossing the fracture zone (2-3) and for

those outside the zone (1, 4-9). &i=strain for gauge No i, Em=
=mean strain for the specimen.

c) Strains for the individual gauges for different stresses.
(Heilmann, Hilsdorf and Finsterwalder, 1969)
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Fig. 3.3 A ~imple model of the direct tensile test. The fracture zone is
replaced by a slit that is able to transfer stress. The stress
transferring capability depends on ·the width (w) of the slit.

From (3:1) it is obvious that the mean strain (8m) of the specimen in Fig 3.3
is:

(3:2)

w is zero before the tensile strength is reached and consequently the mean
strain is independent of the specimen length for the increasing part of the
stress-strain ~urve. However, after the maximum stress is reached, the defor­

mation of the fracture zone affects the mean strain and consequently the
stress-strain curve of concrete, and of other non-yielding materials, is
dependent on the specimen length. This means that it is unsuitable to use the
stress-strain curve as a material property. A better way of describing the
deformation properties of a material therefore is to use two relations; one
e~lation .between ·the 'stress and the relative sttain .for::the material outside
the fracture zone (Fig 3.4a) and one relation between the stress and the ab­
solute deformation of the fracture zone (Fig 3.4b)

The fracture zone of a non-yielding material can be compared with the necking
of a yielding material. However, there is one fundamental difference. The
necking is caused by shear deformations and therefore the properties of the
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Fig. 3.4 a) The deformation properties of the material outside the frac­
ture zone are given by a relation between the stress and the
relative strain, i.e. a cr-£ curve.

b) The deformation properties of the fracture zone are given by
a relatinn between the stress and the absolute widening of the
zone in the stressed direction, i.e. a a-W curve.

necking zone .are..stron~ly~affected by the· state of stress,.pl~ne stress or
plane strain, which means that the properties of the necking zohe depend on
the specimen thickness. The fract~re zone· of a .non-yiel~ing material is cau­
sed by the development of micro-cracks and no shear deformations take place.
This means that the difference between plane stress and plane strain is small
for concrete and therefore the a-£ and·:a-w;curves ought to be independent of
the ~pecimen thickness and, consequently, the curves in Fig 3.4 can be consi­
dered as material properties.

3.2 The Fictitious Crack Model and its applicability

When· a notched specimen of a linear elastic material is subjected to load,
the stress in front of the notch will, at least theoretically, approach in­
finity. This of course is impossible for a real material. In the case of con­
crete, or other non-yielding materials, a zone of micro-cracks will develop
in front of the notch and this fracture zone considerabl~y reduces the stress
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concentration and this results in a much more realistic description of the
stress distribution than the linear elastic solution~ see Fig 3.5.

The fracture zone in front of a notch normally develops in a tensile ~tress

field and consequently the properties of this zone are similar to those of
the fracture zone in a direct tensile test. This means that it ought to be
possible to approximate the fracture zone in front of a notch with a slit, or
crack, that is able to transfer stress, see Fig 3.6. The stress transferring
capability depends on the width of the slit in the stressed direction. In the
Figure the load is represented by a point load but of course this description
is re1evant for all types of loads, including volume stresses due to shrin­
kage _. or temperature gradients.

The stress transferring crack is not a real crack but can be considered as a
fictitious crack and therefore the model described above is called the Fic­
titious Crack Model. When using the Fictitious Crack Model the following as­
sumptions are made:

* The fracture.zone';starts developing at one point when the first
principal stress reaches the tensile strength. Of course other
more complicated fracture criteria can be used but often the simple
tensile strength criteria is sufficient.

* The fracture zone develops perpendicular to the first principal
stress.

* The material in the fracture zone is partly destroyed but is still
able to transfer stress. The stress transferring capability depends
on the local deformation of the fracture zone in the direction of
the first principal stress. In the calculations the fracture zone
is normally replaced by a stress transferring crack and the stress
transferring capability depends on the width of the crack in the
stressed direction according to a cr-W curve, see Fig 3.4b.

* The width of the fracture zone in the stressed direction is assumed
to equal the· Widening of the zone, i.e. the width of the zone is
zero when it starts developing. For non-yielding materials this
should be a fair assumption.

* The properties of the material outside the fracture zone are given
in a a-g curve, see Fig 3.4a.
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Fig 3.5 Probable stress distribution in front of a notch for a linear
elastic material (a) and for a non-yielding material with a
micro-cracked zone in front of the notch tip (b).

a) b)
Fig 3.6 When using the Fictitious Crack Model, the fracture zone in front

of a crack tip (a) is replaced by a crack that is able to trans­
fer stress (b).'.: The stress transferring capaliJil ity :depends >.Oh the
width of the craok according to a.d-W curve.
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The fracture zone starts developing in one point when the first principal·
stress reaches the tensile strength even if the high stress is due to other
reasons than a stress concentration in front of a notch tip. This means that
the Fictitious Crack Model is not a pure fracture mechanics model but~ini­

tially unnotched structures can also be analysed. This is one thing that
makes the Fictitious Crack Model differ from most other approaches. Another
advantage is that, by using the Fictitious Crack Model, it is possible to
study the development of the fracture zone, the initiation of crack growth
and the propagation of the crack through the material. When other models are
used, normally only the initiation of crack growth is analysed.

The description of the Fictitious Crack Model above is relevant for a homo­
geneous material, i.e. a material that has the same properties in all points.
In reality no materials are perfectly homogeneous, at least not in the atomic
scale. However, if the analysed structure is a few times greater than the
largest irregularities in the material, then the material in the structure
can be assumed to be approximatively homogeneous and the o-W curve is then a
function of the fractions and the properties of the components of the mate­
rial.

In this thesis the materials are always assumed to be homogeneous but the
Fictitious Crack Model can be used for analysing heterogeneous materials as
well. For example, the Barenblatt model is identical to the Fictitious Crack
Model when applied on the atomic scale, where, as mentioned above, materials
can never be considered as homogeneous. When studying materials that are he­
terogeneous on the macroscale, for example reinforced concrete, it is neces­
sary to know the material properties, including the a-W curves, for the dif­
ferent components of the material as well as the properties of the contact
zones between the components. Some results from such calculations are presen­
ted by Modeer (1979) and Petersson and Gustafsson (1980).
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4 THE FINITE ELEMENT METHOD APPLIED TO THE FICTITIOUS CRACK MODEL

4.1 Introduction
J.

The Dugdale model is a special example of the Fictitious Crack Model which
can be treated analytically. However, the Fictitious Crack Model normally has
to be treated by using numerical methods and the Finite Element Method (FEM)
then seems to be the most suitable method. When using FEM the closing stres­
ses acting across the fracture zone (Fig 4.1a) are replaced by nodal forces
(Fig 4.1b). The intensity of these forces of course depends on the width of
the IIfictitious" crack according to the a-W curve of the material. l~hen the
tensile strength, or another fracture criterion, is reached in the top node,
see Fig 4.1b, this node is "opened ll and forces start acting across the crack
at this point. In this way it is possible to follow the crack growth through
the material.

a)

-
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TOQnode
r-:

I
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I \ \ ,
u c

b)

Fig 4.1 When using FEM, the stresses acting across the Ilfictitious"
crack (a) are replaced by nodal forces (b).

4.2 Calculation method I: substucture

In Fig 4.2" a schematic illustration of a deeply cracked structure that is
subjected to load is shown. This type of structure is used as a base in this
calculation method and at the calculations the fracture zone can develop only
along the crack, ~see below. The dots on the boundaries of the crack represent
finite element nodes. The position of the two nodes in each node pair (a node
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Fig 4.2 A schematic illustration, of the finite element nodes along the
crack boundaries in a deeply cracked specimen.

pair is the two nodes on the opposite crack surfaces at the same distance
from the crack tip) will coincide when the structure is unloaded. The node
pairs are numbered from 1 at the base of the crack to n+1 at the crack tip.
The distance between two pairs of nodes i and i+1 is denoted ai .

As the development of the fracture zone is restricted to take place along the
crack it is favourable if the crack is as 'deep as possible. However, to de­
scribe the stresses and strains in a realistic way, a sUfficiently number of
nodes must be left between the'o,ra.ck tip and the loading point and for a gi­
ven finite element mesh this is the only restriction for the largest possible
value of the crack depth.

By introducing closing forces over the crack it is possible to make the struc­
ture in Fig 4.2 relevant for an arbitrary notch depth, see Fig 4.3 where an
example of a notch with the tip at node k is illustrated. If the material is
linear elastic and if the deformations are small, the 'widening of the crack
at each node point from node 1 to node n can be expressed by the n equations:

n
w(i) = L K(;,j)P(j) + C(i)F

j=1
(4: 1)
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Fig 4.3 A schematic illustration of the first load"step in calculation
method I.
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Fig 4.4 A schematic illustration of the second load step in calculation
method I.
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Fig 4.5 A schematic illustration of the third load step in calculation
method I.

where w(i) is the width of the crack at node i, p(j) is the closing force
acting at node j, F is the load applied to the structure, K(i,j) is the wi­
dening of the crack at node i of the structure in Fig 4.2 when unity load is
acting at node j and C(i) is the widening of the crack at node i of the struc­
ture in Fig 4.2 when the applied load equals unity load.

There are no closing stresses acting across the notch and the widening of the
crack is zero at the nodes in front of the notch. This gives:

for the nodes i=1 to k-1
P(i) = 0

"and fO,r' th'e no'des" ~·i =k' to n
w( i) = 0

(4:2)

(4:3)

For a given load F it is possible to find the n deformations w(i) and the n
closing forces P(i) by solving the system of 2n equations defined by (4:1),
(4:2) ·and (4:3).
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The displacement (8) of the loading point is:

n
8 = E O(i)P(i) + OFF (4:4)

i =1

where O(i) is the displacement of the loading point of the structure in
Fig 4.2 when unity load acts at node i and OF is the displacement of the
loading point of the structure in Fig 4.2 when the applied load equals
unity load.

All the constants above, K(i,j), C(i), O(i) and DF, are determined by means
of finite element calculations. When determining the constants a number of
different load cases are solved but the same global'~st;ffness matrix can be
used for all the load cases and consequently it is only necessary to carry
out a single inVe~tation of the stiffness matrix.

The solving of the system of equations above, which is the first step of
this calculation method, "results in the initial slope of the load-displace­
ment curve (F-8 curve).

The structure in"Fig 4.3 is linear elastic and consequently the stress at
th~no~tch tip will exceed the tensile strength as soon as the structure be­
comes subjected to load (unless the structure is initially unnotched). There­
fore the second step in this calculation method is to "open ll the node pair k
at the notch tip and to introduce a closing force at this point, see Fig 4.4.
The intensity of this closing force depends on the widening of the crack
accordingto the a-W curve:

(4:5a)

where ak is the distance between the nodes k and k+1, b is the width of the
structure and a(w) is the stress transferring capabil ity as a function",of
the .widening of the crack according to the:'d~w curve.~ ····As the closing stres ....
ses are zero on the IInotch ll side of the node k, it is only the stresses ac­
ting on the area akb/2 that affect the force P(k).

In order to facilitate the calculations it is suitable to approximate the
o-w curve with straight lines. The simplest approximation is a single, de~

scending, straight line, see Fig 4.6a. In the Figure f t is the tensile
strength and Wc is the maximum widening of the fracture zone when it is still
able to transfer stress. The area under the curve represents the amount of
energy necessary to create one unit of area of a crack and consequently the
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Fig 4.6 a) The simplest approximation of the cr-W curve is a single, de­
scending, straight line.

b) The a-W curve approximated with -two straight lines.

area equals the fracture energy (GF). This means that in the example in
Fig 4.6a Wc equals 2GF/ft .

If the simple single line approximation of the cr-W curve is used then:

'
·f 0 < <- w - Wc

if w > Wc
(4:6)

This relation can be used for calculating P(k) in (4:5a). If more complica­
ted straight-lined approximations are used, then rel~tions similar to those
presented in Fig 4.6b can be .used. These of course can be extended to
straight-lined a-W curves with an arbitrary number of break-points.

As the deformation of the structure in Fig 4.4 increases, the stress at the
top of the fracture zone increases and finally it reaches the tensile
strength which means:

(4:7)



-29-

During the first step of the calculation the deformation at node k was zero.
If this condition is replaced by (4:5a), th~n. (4:1)~ (4:2), (4:3) and (4:7)
result in a system of 2n+1 equations and by solving this system it is pos~·

sible to determine the n nodal deformations, the n nodal forces and the load
for the moment when the tip of the fracture zone will advance. After this one
has to check the widening of the fracture zone at node k. If this exceeds a
critical point of the cr-W curve, see Fig 4.6, it is necessary to change
(4~5a) so it fulfils the a-W relation, and then this new system of equations
has to be solved. This ;s repeated until the a-W relation is fulfilled.

The displacement at the point of the applied load is calculated by using
(4:4), which together with F produces the first point of the load-displace­

.ment curve. All the calculations in this second step can be carried out with­
out any finite element calculations as all the constants are the same as for
the first step.

During the third step the node pair k+1 is lIopenedll and a closing force
starts acting at this point, see Fig 4.5. For this interior node pair, clo­
sing stresses act on both sides of the node and therefore the closing force
becomes:

(4:5b)

The criterion for propagation of the fractur~~zone 1s that P(k+2) exceeds

ftb(ak+1+ak+2)/2 (compare (4:7)). This criterion plus (4:1), (4:2) and
(4:3) (where the conditions w(k)=O and w(k+1)=O are replaced by (4:5a) and
(4:5b) respectively) give the necessary 2n+1 equations. After solving this
system of equations the widening of the fracture zone is controlled and even­
tually some adjustments of the system of equations have to be carried out.
The calculated value of F together with (4:4) give the second point of th~

load-displacement curve. Note that no new finite element calculations are
necessary for this third step either.

The development of the fracture zone and ~he growth of the real crack can
then be followed step by step in the same way until the fracture zone reaches
node n and the load-displacement' curve of the structure is derived.

The node number (k) for the position of the notch tip can be chosen between
1 and n and consequently it is possible to change the initial notch depth
without changing the constants in the system of equations. If k=1 then the
structure is initially unnotched.
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The stresses along the crack can, for each step, be calculated as:

a(;) =

2P(i)
a·b,
2P(i)

for ;=k (at the notch tip)

for i ! k

(4: 8) ~.

where o(i) is the stress at node i. The stresses and strains in the elements
outside the crack propagation path can be derived from equations similar to
(4:4).

All the constants K(i,j), C(i), D(i) and DF are determined on structures si­
milar to the one presented in Fig 4.2. When the material in the structure is
linear elastic, the constants can be converted, by using simple linear elas­
tic relations, to be relevant also for other dimensions and other deforma-:
tion properties (Young's modulus). In Table 4:1 the proportionality factors
are given for the different constants. In the Table the proportionality fac­
tor for the distance (a i ) between two nodes is also shown.

Table 4:1 Proportionality factors for the constants in (4:2}-(4:8).
d=some characteristic dimension of the structure in the plane.
b=the width of the structure perpendicular to the plane,
E=Young's modulus.

Constant Proportionality
factor

K( i ,j ) 1/bE
C(i) 1/bE
D(i) 1/bE

OF 1/bE

a. d,
The proportionality factors in Table 4:1 are relevant only if the dimensions
in the plane are uniformly changed. For example, where a beam is concerned
it is necessary for the ratio beam depth/beam length to remain constant. How­
ever, in some cases it ;s possible to approximately convert the constants to
be relevant for .other dimensions even if the dimensions i~·the plane are non­
uniformly.. ctia-ngetf.~ For a notched beam in three-point bending the values. of
K(i,j) ought to be independent of the beam length, at least when the ratio
beam length/beam depth is not too small. The opening of the crack depends
only on the moment at the notched cross section. This moment increases 1;-



"nearly with the beam length and therefore C(i) ought to be proportional to
the length. Then according to the Maxwell-Bettis theorem D(i) is also pro~

portional to the beam length. DF is the defle~tion of the loading point whe~

the applied load F equals unity load. The value ofDp for a linear elastic
material can be calculated for an arbitrary' beam leng~h (Ca~lsson, 1976):

(4:12)

where b=beam width, d=beam depth, l=beam length, a=notch depth,E=Youngls mo­
dulus. The function 91(a/d) is shown in Fig 4.7. In (4:12) the influence of
Poisson's ratio is neglected which, at least where concrete and similar ma­
terials are concerned, affects the value of OF very little.

Cementitious materials are often subjected to volume stresses due to drying
shrinkage and temperature gradients for example. Most available FEM-programs
can be used for treating this type of loading for linear elastic materials.
When the structure in Fig 4.2 is subjected to shrinkage stresses for examp~

le, the separation of the nodes in each node pair along the crack can be de-

1.0
aId

0.5
0.1 &0..-_--...11-- -----'- ..-.

o

10

Fig 4.7 The function g1(a/d) used in (4:12)
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termined. By introducing these values in (4:1), the influence of volume
stresses can be analysed by means of the Fictitious Crack Model:

w(i) =.~.K(i,j)P(j) + C(i)F + wV(i) (4:13)
J=1

where wV(i) represents the separation of the nodes in the node pair i when
the structure is subjected to a certain distribution and intensity of volume
stresses. The values of WV(i) are derived from linear elastic FEM calcula­
tions and .consequently they can easily be converted to being relevant also
for other intensities, specimen dimensions and for other values of the
Young1s modulus.

One limitation of the calculation method described above is that it is ne~

cessary to know the crack propagation path in advance. However, this is of­
ten the case due to symmetry of geometry and loads, existence of weak zones,
test results or experience for example. If the crack propagation path is
known in advance, then there are_many advantages for using this method. When
the values of the constants K(i,j), C(i)~ O(i) and OF are determined once,
the calculations can easily be carried out by solving the system of 2n+1
equations for different notch depths, different specimen dimensions, diffe­
rent values of the Young1s modulus and different shapes of the a-W curve.
The influence of volume stresses can also be analysed. The solving of the
2n+1 equations (normally n<40 is sUfficient) requires much less computer ca­
pacity than analysing the global stiffness matrix of the structure and con­
sequently the calculation costs are reduced considerably.

4.3 Ca1cul atiotl' method' II: ' the' 5up.er', tlosi tibn' pri nc'; pl e

Sometimes it is impossible to predict the crack propagation path in advance,
in which case the calculation method I ·is useless. When using the method of
superposition the first step is to apply the load F1 to the linear elastic
structure in Fig 4.8a, which gives the stress a(1,i) in each node i. The
load F1 is chosen so that the tensile strength is reached at the crack tip,
i. e. cr( 1, 1) =ft.

The second step is to "open ll node 1 and to introduce opening forces across
.... ..-

the crack at this no,de, see Fig 4.8b. The intensity of the forces must de-
pend on the width of the IIfictiti'ous ll crack accordi.ng'to the a-Wcurve and
on the area which is represented by the forces. For the simple straight-li­
ned a-W curve in Fig 4.6a, the intensity of the forces increases linearly
from 0 to a1bft /2 when w increase from 0 to Wc and the forces are 0 when
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Fig 4.8 Schematic illustration of the three first load steps in
calculation method II ·(superposition).
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w'·> wc. b is the width of the structure perpendicular to the plane and a1
is defined in Fig 4.8a. The load F2 is chosen so that:cr(1,2)+cr(2,2)=ft which
means that, when loadcase 1 and 2 are combined, the tensile strength is )
reached at node 2. The total load is then F1+F2 and the stresses at the dif­
ferent nodes are given as 0(1,i)+cr(2,i). The stress at node 1 due to load F2
is negative (the forces at this node want to widen the crack) and conse­
quently the total stress at node 1 decreases according to the cr-W curve.

The third step, see Fig 4.8c, is to "open u node 2 and to introduce opening
forces across the crack at this point. The intensity of these forces increa­
ses linearly from 0 to (a1+a2}bft /2 when w increases from 0 to Wc (if the
cr~w curve' is approximated with a single, straight line). The load F3 is cho­
sen so that a(1,3)+a(2,3)+a(3,3)=ft and the calculations are carried out
exactly as for the second step. In this way it is possible to follow the
crack growth through the material.

The simple example above illu'strates a crack propagating along a straight
'line.'However, by using this method it is possi,ble, to chose the propagation
direction of the fracture zone after each calculati'on step. Then the first
principal stress is calculated at'the tip of the fracture zone and the pro­
pagation takes place along a path perpendicular to the first principal
stress or, as the possible directions of propagation are limited to the di­
rections of the element sides, along the element side which deviates less
from the theoretical propagation direction.

This calculation method is much more expensive than caleulation method I as
it is necessary to invert the global stiffness matrix of the structure for
each calculation step. Also, there are no simple methods of converting the
calculation results for one specific dimension so that they are relevant
for other dimensions. Therefore method I is much more efficient when it can
be used.

4.4 Element wide fracture zones

For the calculation methods described in 4.2 and 4.3 inter element fracture
zones and cracks ar~ used. This means that the crack propagation path is
bound to follow the sides of the elements. This gives rise to some problems
if the direction of the propagation path is unknown. In Fig 4.9a an example
of a theoretical direction of crack propagation is shown in a finite ele­
ment mesh with square elements. The elements are numbered from (a,1) to
(j,10,). Normally the theoretical propagation path does not follow the ele-
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Fig 4.9 a) When inter element crack propagation paths are used, the crack
is bound to follow the sides of the elements.

b) When element wide fracture zones are used, the stiffness of the
elements is changed when the crack passes through.
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ment sides but an approximate crack propagation path according to the Figure
must be used in the calculations. The element mesh in the Figure is coarse
and a finer mesh normally gives a better approximation. It is also possible
to use other element shapes, for example, triangular elements sometimes give
better possibilities to follow the theoretical propagation path more exact­
ly. Another, but more complicated, method is to change the element mesh af­
ter each load step so that the element sides coincide with the direction of
the propagation path.

For each load step nodes have to be lIopenedli. This means that the number of
nodes increases as the fracture zone propagates. This affects the stiffness
matrix and complicates the calculations.

The problems·d-lscu-s.sed above are not unique for the Fictitious Crack Model
but apply also to linear elastic finite element calculations. Some of the
problems are solved for the linear elastic case if the Blunt Crack Band Mo­
del (Bazant and Cedolin, 1979) is used. In this model an element wide crack
is used. When a crack passes through an element, the stiffness of the ele­
ment is reduced to zero perpendicular to the direction of crack propagation
but the stiffness parallel to the crack is not changed.

If the Blunt Crack Band Model is applied to the Fictitious Crack Model some
problems are bound to arise. First, the a-W curve is related to the abso~ ,
lute deformation of the fracture zone which means that the curve will be .
dependent on the element size if element wide fracture zones are used. This
is a small problem as long the fracture zone propagates along a straight·
line parallel to the sides of rectangular elements, see Fig 4.9b. However,
when the direction of the propagation path deviates from the direction of
the element sides, for example when the fracture zone pr9pagates from ele­
ment (c,6) to (d,5), then the width of the e1ement- perpendicular to the pro­
pagation path varies along the path. This gives rise to difficulties when
choosing the o-w curve. Furthermore, when the fracture z~ne advances from
element (c,6) to (d,S), the fracture zone will be tied at the node between
the elements and consequently it is necessary to change the properties of
at least one more element, in this case element (c,5). The same problem ari­
ses for elements (e,5), (e,3) and (g,4).

According to the discussion above it seems doubtful if there are any advan­
tages in using element wide fracture zones for Fictitious Crack Model calcu­
lations. Inter element propagation paths are preferable, at least when the
direction of the cr'ack p·ropa·gatian pa-·th .;-s· known·.i ..n ·advance.
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4.5 Material parameters affecting the choice of the finite element mesh.

When representing high stress gradients by means of FEM it is necessary to
use a fine element mesh. For a linear elastic material the stress in front
of the crack tip increases very rapidly as the distance from' the notch tip
decreases and consequently, in order to describe the stress distribution in
a proper way, one has to use a.great number of small elements and sometimes
even a special crack tip element. The ~tress singularity disappears when'
there is a fractu~e zone in front of the crack tip and the stress distribu­
tion around the tip becomes smooth. This means that the stress field around
the crack tip can be properly described by FEM even if a rather coarse ele­
ment mesh is used. When discussing the choice of element size for Fictitious
Crack Model calculations it is therefore necessary to consider the proper~

ties and behaviour of the fracture zone in the discussion.

The properties of the fracture zone are determined by the a-W curve (Fig I

3.4b). The behaviour of the fracture zone is also affected by the properties
of the material outside the zone. These properties are determined by the
a-£ curve (Fig 3.4a).

In all the calculations presented in this thesis the a-8 curve is approxima­
ted with a straight line according to Fig·4.l0a, which ought to be reasonable
for most cementitious materials except when they are highly fibre-reinforced.
The straight-lined a-£ curve is defined by the Youngls modulus (E) and the
tensile strength (ft ).

In the calculations stepwise linear a-W curves are used, see Fig 4.10b. The
area under the curve corresponds to the amount of energy that is necessary
to create one unit of area of a crack and consequently the area equals the
frac~ure energy (GF). This means that when the shape of the .curve is known,
the position of the a-W curve is defined by the fracture energy and the ten­
sile strength. The shape of the curve is defined by a function h(w/wc) and
the a-W curve can be expressed as:

(4:14)

The notations in the equation are given in Fig 4.10. h(w/wc)=l when w=o and
h(w/wc)=O when w=wc.

The br"ittleness of a material is characterized by the a-£ and the o-W curves.
However, sometimes it is possible to replace these curves with a single, cha-
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Fig 4.10 a) The a-£ curve apprqximated with a single, straight line.
b) Normally stepwise linear a-W curves are used in the cal­

culations.

racteristic parameter. When a crack propagates, energy is consumed by the
fracture zone. At the same time elastic energy is rele~sed from the material
outside the fracture zone. When the maximum .load in a direct tensile test is
reached, the elastic energy available for crack propagation is Fco/2=F~/2k,

where Fe is the maximum load, 0 is the corresponding ·deformation and k is
the stiffness of the specimen. For a specimen with constant cross section k=
=AE/i where A is the cross sectional area and .1 is the specimen length. This
means that the energy available for crack propagation is F~t/2AE. The amount
of en~rgy that can be consumed by crack propagation is GFA. By equating the­
se two expressions for energy, we find that t*= 2GFA2E/F;= 2GFE/~, where
i*is the length of the specimen when the energy available for crack propaga­
tion, at maximum load, equals the capability of energy consumption of the·
fracture zone. For a given shape of the a-W curve the· material then becomes
more. sensitive to crack propagation, and therefore ·more brittle, when the
value of i*decreases. For practical reasons it is more suitable to use half
this length to characterize a material and then the characteristic length
(ich ) is defined as:

(4:15)
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It must be observed that l ch should only be used for comparing materials
with similar shapes of their cr-W curves. However, for materials with similar
shapes of their a-W curves, l ch is probably the best way of characterizing
the brittleness; the shorter l ch is, the more brittle the material is~

In this work the well-known three-point bend test on notched and unnotched
beams is analysed and the calculation method I (substructure) is normally
used. For most of the calculations the necessary constants (K(i,j), C(i),
D(i), OF) were det·ermined by use of the finite element mesh shown in Fig
4.11. As the three-point bend test is symmetrical it was only necessary to
use half the beam in the calculations. The line of symmetry in the Figure de­
fines the middle of the beam. The length/depth ratio of the beam is 4.

The finite elements are four node isoparametric membrane elements and trian­
gular constant strain membrane elements respectively. For the FEM-ca1cu1a­
tions the program EUFEMI was used, which was developed at the Division of
Solid Mechanics at the Lund Institute of Technology (Hernelind and Parle­
tun, 1974).

In order to study how well the behaviour of the material is described when
the element mesh in Fig 4.11 is used and to see how the calculation results
are affected wh·en···v·a~rYing distances between the closing forces in the fract~­

re zone are used, the load-def1ecti~n curves for three different beams were.
determined. The depths (d) of the beams were 0.2, 0.8 and 1.6 m respectively.
For all the beams the ratio notch depth/beam depth (a/d) was 0.4 'and the beam
width (b) was 1 m. The cr-W curve was approximated by a single, straight line
and the values of GF, E and f t were 100 N/m,:4~OOO MPa and 4 MPa respective­
1y, whi ch gi ves .a t ch-va1ue of 250 mm. These materi a1 properti es represent a
normal concrete quality (see Chapter 7).

The calculation results are presented in Fig 4.12. The unbroken curves repre­
sent calculations where closing forces act at each node in the fracture zone
which means that the distances between the forces are d/40. The dashed curves
represent calculations where closing. forces act at each second node in the
fracture zone and the distances between the closing forces are then d/20. In
the Figure the initial slope according to the linear elastic solution is al­
so shown. This slope was calculated by use of (4:12)~

The agreement between the initial slope of the curves and the slope accor-.
ding to the linear elastic solution seems excellent. This implies that the
finite· elemeht mesh used is sufficiently fine for describing the behaviour
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ces in the fracture zone. The straight line represents the linear elastic solution according to (4:12).
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of the material outside the fracture zone.

There are differences between the curves representing different distances be­
tween the closing forces. The differences increase as the beam depth ipcrea­
ses but the agreement also seems suprisingly good for the largest beam. This
implies that the properties of the fracture zone can be described in a reaso­
nable way even when the distances between the closing forces are wide. For
the largest beam the distances between the closing forces are 40 and 80 mm
respectively which correspond to about 15 to 30% of the characteristic
length. However, these figures are naturally also dependent on the absolute
dimensions of the structure. For example, for small structures (d/tch<l) it
is necessary to decrease the distances between the closing forces.

Other calculation results presented by Petersson and Gustafsson (1980) sup~

port the results above which prov~ .that the Fictitious Crack Model describes
the crack propagation in a proper way, even if the finite element mesh is re­
latively coarse and the distances between the closing forces are wide. How~

ever, it seems unsuitable to use larger distances between the closing forces
than 0.2 t ch ' which for concrete corresponds to 40-80 mm.
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5 THE FRACTURE ZONE

5.1 The width of the fracture zone

The strain measuremen.ts presented in Fig 3.2 indicate that the fracture zone
in concrete propagates along a narrow band and that the width of the zone is
small in the stressed direction. Direct observations of stable crack propa­
gation in fine-grained mortar (maximum aggregate particle size = 0.3 mm) was
reported' by Mind~ss and Diamond (1980). They used a scanning electrone micro­
scope (SEM) in order to study the region in front of a notch in compact ten­
sion specimens. Their results show that branch cracks exist and sometimes
also two or more parallel cracks develop simultaneously but the width of the
cracked zone is very limited, in this case less than a few tenths of a mil­
limeter, i.e. similar to the size of the maximum aggregate particles.

Mod~er (1979) used an indirect method in order to study the development of
the fracture z·one in front of a 'notch in a bent mortar.":beam. The surface of
the beam was covered with a wate~ film. When the widening of the fracture
zone reached a certain value the micro-cracks absorbed water from the sur~

face. This reduced the reflexions from the surface which could be registra­
ted by use of a camera. According to these tests it seems that the width of
the fracture zone is limited to a band less than a few millimeter wide.

In order to study the development of the fracture zone, stable tensile tests
were carri.ed out. The tests were performed in the very stiff tensile testing
machine presented in Chapter 8. The material used was concrete with a maximum
aggregate particle size of 8 mm and the water-cement-ratio was 0.6. The spe­
cimens were cast in steel moulds and stored in lime saturated water (+20oC)
until one day before testing. During the last day before testi'ng the speci­
mens were ins·ulated with plastic foil. The tests we·re performed 7 days after
casting. The specimens were kept in' the air'for a few minutes while they
were fixed into the testing machine which means that the surfaces became
slightly dry. During the tests water was sprayed on all the 'surfaces but one.
When the fracture zone developed, water was absorbed by the zone due to ca­
pillary forces and the zone could be observed as a dark area on the "dry"
surface.

The results from two tests are presented here. The mean stress-deformation
curve for the two tests is shown in Fig 5.1. The "dry ll surface was photogra­
phed in the 9 positions defined on the curve in the Figure.
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Fig 5.' The mean stress-def~rmation curve for the two .tests presented in
Fig:s 5.2-5.3. The figures on the curve correspond to the posi­
tions for the photos in Fig:s 5.2-5.3. W·: widening of the frac­
ture zone.

The results from.one of the tests are presented in Fig 5.2. The surface is
cast against a steel mould which means that the surface is covered with a
thin layer of cement paste and. therefore no aggregate particles can be seen.
The first sign of a fracture zone can be observed in photo No 3 where small,
dark lines have developed on both sides of the specimen. This photo is taken
when the widening of the fracture zone is about 15 pm and the stress has de­
creased to about 60'% of the tensile strength. The fracture zone ought to
start developing already when the tensile strength is reached but the micro­
cracks are too narrow to be able to transport water until the position of
~he load-deformation curve corresponding to photo No 3 ~s reached. In photo
No 4 the wet band has spread through the specimen. In photo No 5 there is a
small jump in the wet band and at this position a narrow crack can be distin­
guished and in photo No 6 the crack can be seen very clearly. This means
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Fig 5.2 The development of the fracture zone during a direct tensile test.
The surface is cast against a steel mould. The photos correspond
to the positions on the load-deformation curve in Fig 5.1.
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Fig 5.3 The development of the fracture zone during a direct tensile test.
The surface is sawn. The photos correspond to the positions on the
load-deformation curve in Fig 5.1.
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that the crack becomes visible when the widening of the fracture zone is
about 25-50 pm. It can be observed that the material is still able to trans­
fer 25 %of the maximum stress when a visible· crack has developed across the
specimen. In photo No 9 the widening of the fracture zone is 170 pm but the

.material is still able to transfer some percentage of the maxi~um stress~ In
this photo a branch cra.c·k has developed on ·the left side of the specimen.
T·hi·s bran·ch 'crack is probably caused by the extraction of an ag.gregate par­
ticle'from the cement paste inside the specimen.

The results in Fig 5.2, and also the other test results discussed: above, in~:

dicate that the width of .the fracture zone ·is small 'in the stressed direc~~

tion. However, these obs~rvations are made on surfaces which are cast against
ste~l moulds and therefore the results are not representative for the mate~

rial inside the ·specimen. ·For this reason ·a specimen was divided by using a
-saw and then: tested in the stiff testing machine. The results for the sawn
surface ~re presented in Fig 5.3. Unfortunately the -surface was already part­
ly wetted at the start of the test and the dark areas in photo No 1 have no­
thing to do With the. fracture zone.•

The fracture zone -is first seen in photo. No 3 when the.wi4ening of the zone
is about 15 ~m. In photo No"4 it can' ~e seen how the fracture zone starts de­
veloping around an aggr~gate particle and in photo No 5 the zone has deve­
loped almost comple:tely around the aggregate particle.' This me·ans that the
fracture zone is considerably wider in this case compared with the case in
Fig 5.2. The width of the fracture zone seems- to be of the same magnitude as
the size of the maximum ag·gregat-e -particles, i.e. about 8 mm in thi~ case.
This is quite natural as the 'aggregate particles have to be -extracted from
the cement' paste bef~re the final collapse .ofthe specimen. However, normal­
ly a width of the fracture zone corresponding to ·the maximum aggregate par­
ticle size can be.cons·idered:·as smal.l and therefore the Fictitious Crack Mo­
del should be usable for describing the develppment of the zone.

5.2 The deve.lopment· of the fracture zone
. .

The development of the fracture z~ne can be· ..analysed by use of the Fi'cti~'

tious Crack Model. In Fig 5.4 the fracture zone and the stress distribution
in front of a notch tip in a beam subjected to three-point bending are shown
f.or,di.fferent 'positions on th-e load~deflection curve. The beam depth is
0.2 m, the n6tch depth 50 mm and the beam length 0.8 m. In the calculations
the a-W curve is .approximated with a single, descending, straight line and



-48-

0(-)
-3 o "0(+) 0(-)

+3 '-3 o +30(+)

CD

"~----I

®

Ol-)
-3 o 0(+) 0(-)

+3 -3 o

" ~----I

ft =3 MPa
G,:=75 N/m

E =30,000 MPa
lch=O.25 m

F

~ ~ J
*- 0.8 -----*

.04

FIb (MN/m)

.02

.00 L--__---..Ir....-__--..& ..

.06

50 100 150 Deflection (,urn)

Fig 5.4 The fracture zone and the stress distribution in front of the
notch tip for "different positions of the load-deflection curve.
The Figure is relevant for a 0.2 mdeep notched beam (a/d=0".25)
in three~point bending, and the material properties correspond
to a normal concrete"quality.
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ft~ E and. GF are 3 MPa, 30~OOO MPa and 75 N/m respectively, i.e. R,ch::= 0.25 m,
whic~ corresponds to a normal concrete quality. The a-s curve is approximated

with a straight line~

In this Chapter all the diagrams are ~elevantfor 1ch = 0.25 .m~ They can how­

e·ver easily be' c:onverted to, .be relevant also for other values of R,ch by use

of the proportionality factor d/~th.

The fracture zone starts developing as soon as the specimen in Fig 5.4 be­
comes subje.cted to load. In the first position of. the load.-deflection curve.

i.n the Fi gure, a sma11 .fracture zone ha.s deve loped. No stresses exceed the ­

tensile strength •. This gives a much more realistic description of the stress
distributi.on than the linear elastic solution which always, at 'least theore~~"

tically, includes a stress singularity. When the. maximum load is reached, the

depth ofthe'fracture zone is about 50 .mm· and~' the' stress distribution is qui'~~~

te different compared with the linear elastic one •. These calculations are re­
levant for' a .2'00 mm deep beam. For sma11 er beam depths., 50 mm is not unusua1
in tests, the i"nfluence of ·the .fracture z·one wi 11 be· even more pronoun.ced

and it seems' quite obvious that it is necessary. to consider the effect the
fracture zone has on the fracture process. It"can b~ obs~rvedthat the mate­
rial at the notch·' tip is able to transfer stress even' when the maximum load
is reached and a real crack, i.e. a crack with stres~-free surfaces, will not.
prop.agat.e until' position 3 of the load'-deflection cUr've is rea-ched. This is
very i.nterest.ing as it c'learly indicates that ·it is necessary to separate the

cri·teri·on for' the fracture load, whi"ch is normally the most interesting, from
the criterion for crac·k propa.gatlon·~. Finally, at position 4 a: real crack has
advanced. a distance of about 30 mm~

In' Fi-g 5.5 the.10,ad. is shown..as. a function of the position of the .tip of .the

fracture zone (defined as the distance from·the notch tip) for differentre~' .,

lative notch depths. The curves··are relevant for 0.2 m deep, normal quality
concrete beams ';-n three-po.int. be·nding. For' the curve re·p·resentin.g the. un·not~·

ched. beam (a./d=O) the fracture zone will .not propagate until' the tensi.le·.

strengthi s r'eached at the bottom of the beam but for the notched beams the

fracture z·one., due to the stress concentrati.ons, starts developing as soon as

the specimen becomes loaded. The circles on the curves correspond to the po­

sitions where a real' track starts propagating and consequently, b~fore :these

points are reached~ "the curves show the depth of the fracture' zon.e. The depth
of. the fracture zone decreases as the notch' depth incr~ases which 'is explai~ .:'
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Fig 5.5 The load ~s a 'functi9n of the position of' the.tip of the :fracture
zone (defihed as the distance from the .notch tip). for different re­
lative notch .depths. The curves are relevant for 0•.2 mdeep beams'
in three-po·i·nt ben.ding. The dimensions and the material properties
are ·the same as those used'in ·Fig 5.4. The dots represent the posi­
tions .where real. cracks start propagating.

ned by the 'simple fact that the available sp.ace for the fracture zone decrea­
ses as the notch. depth increases.

In Fig .5.6 the depth of the fract~re zone at the max'imum lo~.d·is shown as .. ~

functions of the beam depth for a normal concrete quality. Also here the .,
available space plays an important role·and the ~epth of the fracture zone in­
creases with increasing beam depth. However, the increase in' the depth of the
fracture zarie is less than proportional to the increase in the beam depth and
consequent~y.the ratio depth of the fractur~ zone/beam depth decrea~es with
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Fig 5.6 The depth of the fracture zone.at the maximum .load as function of
beam depth for different relative notch depths. The curves are re­
levant for three-point bendin~ and the material properties are the
same as those used in Fig 5.4.

increasing beam depth. This'means that the fracture behaviour of concrete and
similar m'aterials is· size .dependent wh·ich is il'lustrated by a number of examp­
les in' Chapter 6:. For' deep beams the depth of the ·fractur·e· zon.e seems .to reach
a.limiting value of about 125-150 mm. The limiting value ought to be depend~nt

on the test technique, for example where the direct tensile test is concerned
such a limiting:.value do.es not exist,. Test results presented by Entov and Ya­
gust (-1975) indicate that high, l~cal strains exist 50.-100 mm in front 'of the
notch tip in large, centrally notched ·tensile specimens and results presented
by Sok, Baron and Fran~ois (1979) show high strains several hundreds of milli-
meter in front of the' notch. tip in large double cantilever beams (the results
accordin·g·· to Sok' et al are probab.ly .a· bit overestimated which is d.iscussed in
6'.5). These. results confirm the calculat.ion results showing that deep frac~ .....
ture zones develop in. front of "notches in concrete structures.
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fig 5~t The fracture zone and the stress distribution in front of the notch
tip at the maximum load for different beam depths. The Figure is
relevant for three-point bending (a/d=O.25) and the material proper­
ties are the same as those used in Fig 5.4 (ft =3MPa, GF=75N/m,
E=30,OOOMPa, t ch=O.25 m).
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It i's not only the depth. of the fracture zone that is affecte'dby the beam
depth but also the stress .distribution within the zone. In Fig 5.7 the stress
distribution at the maximum load in front of the notch tip is shown for diffe­
rent beam depths. The relative notch depth is 0.25 and the results ar~ rele­
vant for a normal concrete quality. The stress transferring capability at .
the notch tip decreas.es as the· beam depth in·creases and consequently a real
crack starts propagating closer to the maximum load for deeper ·beams. The '.
fracture zone is more efficient in .reducing the stress concentrations at the
crack tip for low values of the beam depth and the stress distribution becomes
more similar to the di.stribu.tion according to the. 1inear elastic sol:ution as
the beam depth increases. This of course contributes to the size,~ependency

of the fracture behaviour where concrete and similar materials are concerned.
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6 THE FICTITIOUS CRACK MODEL vs OTHER APPROACHES

6.1 Introduction

Linear elastic fracture mechanics is the most frequently used approach'"for ce­
mentitious materials but the J-integral, the COD-approach and R-curves have al­
so been applied to plain and fibre-reinforced concrete.,All these approaches
have, more or less successfully, been applied to metals and most of the work
carried out in the field of fracture mechanics and concrete has therefore been
concentrated on experimental tests, where the relevance for concrete of the
existing approaches has been studied. This has resulted in numereous and often
contradi.ctory test data concerning Kc ' Gc ' Jc ' CODc and R-curves' for' example.
In· th·is Chapter these test data are compared with results derived 'by use of
the Fictitious Crack Model and the usefulness of the approaches when applied
to cementitious materials is also discussed.

Four differentllmodel ll materials have been analysed. The cr-E curve is approxi­
mated with a straight line for all the materials but the cr-W curves are quite
different and are presented in Fig:s 6.1-6.4.

If the shape of the cr-W curve is unknown then the straight line approximation
(SL) according to Fig 6.1 is probably the most rational. For plain concrete
this 'simple approximation often gives ,satisfying results, which is discussed
later. Normal values of GF and f t for concrete are 100 N/rn and 4 MPa respecti­
vely, see Chapter 7, and this means that wc' i.e. the maximum widening of the
fracture zone when it is still able to transfer stress, in this case is 0.05 mm.

The approximation according to Dugdale (0) in Fig 6.2 is probably most suitable
for yielding materials such as mild steels an~ many qualities of plastics.
The curve is used here as it is often referred to in the literature. In some
special cases the curve can be used as a rough approximation for some qualities
of fibre-reinforced concretes.

In Chapter 8 results showing the real shape of the a-W curve for a number of
concrete qualities are presented. According to these results:~ the curve in
Fig 6.3 (C) seems to be the best two line approximation for most normal con~,'

c~··te qual ities. This curve therefore de·g·crib.es the properties of the fracture
zone in concrete in a more realistic and consequently a better way than the
simple approximation in Fig 6.1.

The shape of the a-W curve for fibre-reinforced materials is greatly dependent
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ISTRAIGHT LINE (Sl>l

w

Fig 6.1 The a-W curve approximated to a single~ straight line (SL).

a

I DUGDALE (D) I

w

Fig 6.2 A a-W curve according to Dugdale (D).
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Fig 6.3 A two-line approximation of the q-W curve that seems to be suitable
for most normal concrete qualities (C).

0..7 ft

0.015 we w

Fig 6.4 An example of a a-W curve representing a fibre-reinforced material
(FRC) •
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on the type of fibre and fibre content for example. The curve in Fig 6.4
shows an example of such a curve. If f t is 4 MPa and GF about 1400 N/m, then
the initial slope of the .curve is similar to that of concrete and Wc is about
1 mm. Then this curve ought to represent a fibre-reinforced concrete (fRC)
with a fairly low percentage of short fibres.

The calculations in this Chapter mainly deal with the three-point bend test.
In the calculations the finite element mesh in Fig 4.11 was used. In Fig 6.5
typical load-deflection curves for the four model materials are shown. The cur­
ves represent beams that are 0.2 mdeep, 0.2 mwide, 0.8 m long and the rela­
tive notch depth is 0.4. For all the materials the Yo~ngts modulus and the
tensile strength are 40~OOO MPa and 4 MPa respectively. For the cr-W curve
according to Fig 6.4 GF is 1430 N/rn, which, as mentioned above, corresponds
to a fibre-reinforced concrete with a fairly low percentage of short fibres.

(FRC)

0.5 a f
t

GFd b lei E
(SL).,(Ol.,(C) 40 100

.2 .2 .8 .4 .. 4 -
(FRC) lei 1430

100 200

Fig 6.5 Calculated load-deflection curves for the 'four model materials pre­
sented in Fig:s 6.1-6.4. The curves are relevant for three-point
bend tests on notched beams. The dimensions are mfor d, band t,
MPa for E and f t and N/rn for GF.
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For the other a-W curves GF is 100 N/m, which corresponds to a normal value
for concrete. As can be seen, the shape of the a-W curve considerably affects
.the calculation result. This means that the shape of the a-W curve is an im­
portant parameter that has to be considered when analysing the fractu~~ pro­
cess of a material.

6.2 Linear elastic fracture mechanics

6.2.1 'Notch:sensitiv'ity

In the literature results from a large number of linear elastic fracture meeha­
n.its tests on cementitious materials are repo'rted, which are discussed in
6.2.2. The results from different tests are often conflicting and this has
given rise·to doubts about the usefulness of fracture mechanics, where concrete
and mortar are concerned. Therefore, in order to study the applicability of fr~c­

ture mechanics to cementitious materials, notch sensitivity tests have been
carried out. The notch sensitivity is defined as f~et/ff (net. flexural ten-
sile strength/flexural tensile strength) where f;et for a three-point bend
test on a notched beam is:

fnet_ 31' 1 F
f -2b (d-a)2 c

(6: 1)

where ~ = beam length, b = beam width, d = beam depth, a = notch depth and
net

Fc = fracture load.ff equal s ff when a = o.

The notch sensitivity for linear elastic materials has been dealt with by
Ziegeldorf et a' (Q.980). They showed that the notch sensitiv;'ty can be ex­
pressed as:

=_Kc x ----'---:---
ff va(1-a/d)2f (a/d)

(6:2a)

where f(a/d) for a three-point bend test is (Brown and Srawley, 1967):

f(a/d) = 1.93-3.07(a/d)+14.S3(a/d)2-2S.1l(a/d)3+2S.8(a/d)4 (6:3)

(6:2a) can be expressed as:

f~~t f f vcr
-f- x K =

f c

1
(6:2b)
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By using (6:2b), the notch sensitivity as a function of the relative notch
depth can be described by a single curve according to Fig 6.6.

,net f lid
f fV U

-.--
ff Kc

1.0

0.5 1.0
aid

Fig 6.6 Notch sensitivity as a function of relative notch depth (a/d) and
ffV?/Kc for materials that can be treated by means of linear elas­
tic fracture mechanics.

The curve in Fig 6.6 shows that the beam is most notch sensitive when the rela­
tive notch depth is 0.2-0.3. The notch sensitivity increases with increasing
beam depth and decreasing values of the parameter Kc/ff • However, the curve
is relevant only when linear elastic fracture mechanics is applicable, ~hich

considerably limits its usefulness. For example, when ff Vd/Kc is less than 2,
then the notch sensitivity exceeds 1 for all notch depths, which seems unrea­
listic. Furthermore, the notch sensitivity ought to reach 1 when the notch
depth is zero but this is not the case which is explained by the fact that
linear elastic fracture mechanics is' normally not applicable when the relative
notch depth is too small.
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More realistic notch sensitivity curves can be determined by using the Fic-:·'.
titious Crack Model, see the unbroken lines in Fig 6.7. In the calculations
the a-W curve was approximated with a single straight line.

I(j-w: SL I
2

4

dItch =8

0.5
1

1.0 ......----·

\
0.5 \ /25

\ ~//" ..",..,--\ ""-"':_--""---
\ ",50

\ " ..",..,--"",-"" .

" ---...--\ --- - -- -- ~100" ---...--~""" ...... _-------

0.5o 1.0
aid

Fig 6.7 Notch sensitivity as function of rel·ative notch depth and dItch
calculated by means of the Fictitious Crack Model (unbroken lines)
and linear elastic fracture mechanics (dashed lines) respectively.
In the calculations a a-W curve according to Fig 6.1 (SL) was used.

As can be seen in Fig 6.7, notch sensitivity is not a pure material property
as it is dependent on the specimen dimensions. A normal value of t ch for con­
crete is 250 mm and consequently a 100 mm deep beam is.-relatively -notch insen­
sitive while a t m deep beam is tonsiderably affected by a notch. A probable
value of t ch for cement paste is 5-10 rom (Modeer, 1979) which means that
this material is notch sensitive already at beam depths of 10-20 rom. The re­
sults in Fig 6.7 also imply that for notched beams with dItch-values less
than about 1 the approximative fracture criterion f~et~ff is usable. However,
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when using this simple criterion it must be remembered that ff depends on
specimen dimensions and fracture mechanical properties of the material, see
7.2.

The finite element mesh used in the calculations is too coarse to be used for
d/ich-values exceeding about 8 when the distances between the forces in the
fracture zone are O.2ich . However, when d/ich increases, the material becomes
more "brittle ll and the usefulness of linear elastic fracture mechanics increa­
ses. In 6.2.2 and 7.2 the critical strain energy release rate (Gc) and the ten­
sile strength (~) are discussed and it is shown that when linear elastic
fracture mechanics is applicable, Gc:: GF and ft :: ff. According to (2:8) and

fnet
f

-r,--

2

Lin. elastic

Iaid =0.21

2 4 8 16 32

d/lch

Fig 6.8 The notch sensitivity for the relative notch depth 0.2 as functions
of d/~ch. The curves represent solutions according to the linear
elastic fracture mechanics and the Fictitious Crack Model respec­
tively.
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(4:15) it is then obvious that \/ff=VGFE';ft =VR-chl.This means that the
linear elastic notch sensitivity curve in Fig 6.6 can be related to 1ch • In
Fig 6.8 the notch sensitivity for the relative notch depth 0.2 is shown as
functions of·d/~ch. The two curves represent solutions according to linear
elastic fracture mechanics and the Fictitious Crack Model respectively. The
curves are quite different where small values of d/1ch are concerned but the
difference decreases as d/R-ch increases. For practical applications therefore
the linear elastic solution ought to be usable as an approximation for d/~ch­

values exceeding about 10~20 when the difference between the curves is less
than about 15 %.

fnet
f

If

1.0 -----~

o

0.1

0.5

0.5

1.0

2.0
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ICJ-w: te) I
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Fig 6.9 Notch sensitivity as function of relative notch depth and d/~ch cal­
culated by means of the Fictitious Crack Model. In the'calculations
a two line approximation of the a-.W· curve (C) according to Fig 6.3
was used.
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In Fig 6.7 linear elastic notch sensitivity curves for d/~ch-values exceed­
ing 25 are presented (dashed lines). These plus the curves determined by
means of the Fictitious Crack Model give a complete set of notch sensitivity
curves ranging from d/~ch=O' 1 to d/~ch=lOO.

The notch sensitivity curves in Fig 6.9 represent materials with a two line
approximation of the o-w curve according to Fig 6.3. The differences between
these curves and those presented in Fig 6.7 are small but the two line approxi­
mation of the a-W curves seems to give a somewhat higher notch sensitivity .

. However, for practical applications the curves in Fig 6.7 ou.ght to be suffi­
cient for concrete. For fibre-reinforced materials the a-W curves are often
quite different and then notch sensitivity curves have to be calculated for
each individual material ..

fnet
f

f

•

0.5

•
v

v ,
•
v •

0.5

o Cement paste
Q Mortar
• Concrete

Beam depth: SO mm

1.0
aid

Fig 6.10 Experimental determined notch sensitivity curves for cement paste,
mortar and concrete (Shah and McGarry, 1971)
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In Fig 6.10 test results for concrete, mortar and cement paste are shown
(Shah and McGarry, 1971). The results are derived from three-point bend tests
on 50 mm deep beams. A normal value of i ch for concrete is 250 mm and for mor­
tar 150 mm (see Chapter 7) which corresponds to d/~ch-values of 0.2 aRd 0.33
respectively. The test results show that concrete and mortar are, more or
less, notch insensitive where the attual specimen size is concerned which

,,/
agrees well with the theoretical curves in Ftg 6.7. The results for mortar
also show a minimum on the curve for a/d=0.2-0.3, exactly the same as for the
theoretical curves.

The only available value of i ch for cement paste is 7 mm for a 7 days old
paste (Modeer, 1979). In Chapter 7 it is shown that the ich-value for con­
crete decreases rapidly with increasing age due to the fact that the tensile
strength increases relatively faster than the fracture energy and the Young's
modulus. The same ought to be relevant for cement paste and a d/ich-value of
10-20 seems realistic in this case.

The test results indicate that cement paste is highly notch sensitive where
the actual specimen size is concerned and the notch sensitivity is most pro­
nounced when the relative notch depth is 0.25-0.30. This agrees well with the
theoretical curves. However, the tests indicate a somewhat higher notch sen­
sitivity than the calculations which is probably due to the lack of knowledge
regarding the o-W curve and the i ch-va1ue of the actual cement paste and per­
haps also to the testing conditions where for example shrinkage stresses can
affect the results.

In Fig 6.11 other test results are presented (Gj~rv, S~rensen and Arnesen,
1977), which are also carried out on three-point bent, 50 mm deep beams. In
this case the agreement between the experimental and the theoretical curves
for cement paste is good but the experimental curves indi.cate that both con~

crete and mortar are notch sensitive. This can be explained by the fact that
the materials used were unconventional; the content of cement paste was about
52 % by volume in the concrete and 68 % by volume in the mortar~ This defini­
tely means that the ~ch-values were much lower than those for ordinary con­
crete qualities.

The ich-values for the materials used in the test ought to increase as the
percentage of aggregate increases. Consequently the test results illustrate,
in an excellent way, how the notch sensitivity increases with increasing
ditch-values, exactly as for the theoretical curves. The entire amount of
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Fig 6.11 Experimental determined notch sensitivity curves for cement
paste, "mortar", "concrete ll and 1I1ight-:vJei.ght concrete"
(Gj~rv, S~rensen and Arnesen~1977)

aggregate in the light-weight concrete was expanded clay. The capability of
this type of aggregate in preventing crack propagation is.poor (see Chapter 7)
and therefore the light-weight concrete ought to be almost as brittle as the
cement paste which explains the position of the notch sensitivity curve for
this material.

Experimental results in agreement with those .in Fig 6.10 and Fig 6.11 are also
reported by Higgins and Bailey (1976), Hil1emeier and Hilsdorf (1977) and Zie­
ge1dorf, MUller and Hi1sdorf (1980).
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6.2.2 Kc- and Gc-approac~~s

The critical strain energy release rate (Gc) represents the energy consumption
per unit crack area at the crack tip when the crack propagates, i.e. the amount
of energy necessary to create one unit of area of a crack. However, G~ is
strictly defined only for linear elastic materials and where other materials
are concerned, Gc is always an approximate value of the amount of energy ne­
cessary to create one unit of area of a crack.

The fracture energy (GF) is another measure of the amount of energy necessary
to create one unit of area of a crack. GF equals the area under the cr-W curve
and consequently GF is not only defined for linear elastic materials but in
principle for all materials in which cracks can propagate.

According to the definitions above it is obvious that Gc equals GF where li­
near elastic materials are concerned. For this reason the ratio Gc/GF ought to
be useful as a measure of how well linear elastic fracture mechanics describes
the fracture of a structure; the closer Gc/GF is unity, the better the linear
elastic fracture mechanics approximation is.

In Fig 6.l2--the ratio Gc/GF is shown as function of d/ich and relative notch
depth for a three-point bend test. The calculations are carried out by means
of the Fictitious Crack Model. In the calculations Kc was·firstcalculated
according to (2:9) and (6:3) and then these results were converted to Gc by
using (2:8). The a-W curve was approximated to a single straight line (SL).

As can be seen in the Figures the ratio Gc/GF increases with increasing values
of d/ich and finally it ought to approach unity. This means:

(6:3)

(6:4)

and consequently, according to (2:8):

1im Kc =VGFE'
d/R,ch 4- ex>

(6:3), (6:4) and (2:8) show that K/VGFE'= VG/GF' and consequently the two ra­
tios can be represented by the same curve in log-diagrams where the modulus

of the logscale for Kc/VGFE' is twice the modulus of the log-scale for Gc/GF.
In Fig 6.12 the ratio Kc/VGF[ is represented by the vertical log-scale to
the right.
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Fig 6.12 Theoretical values of Gc/Gr: and Kc!VGFE' as functions of d/R,ch for
different relative notch depths. The curves are .relevant for three­
point bend" tests and the a-W curve is approximated with a single,
straight line (SL) according to Fig 6.1.

Normally the fracture load is the most interesting thing to study when analy­
sing a structure by means of fracture mechanics. The fracture load is directly
related to Kc' see (2:9)~ which means that when Kc deviates from the correct
value by a certain amount then the fracture load, predicted by means of linear
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elastic fracture mechanics, will also deviate from the true value by the same
amount. For practical applications it seems reasonable to accept a deviation
of about 10 % of the fracture load (or Kc) and consequently, according to Fig

.6.12, if this criterion is to be fulfilled when linear elastic fracture mecha­
nics is used, the value of d/~ch should exceed about 10. For concrete, which
normally has a ich-value of 200-300 mm, linear elastic fracture mechanics then
is applicable only for beam depths greater than 2-3 m. In tests it has been
customary to use beam depths of 25-300 mm, which correspond to d/ich-va1ues
of 0.1-1 and then the Kc-va1ue is only 30-60 % of ~GFEi and the Gc-value only
10-40 %of GF. Furthermore, in this region Kc and Gc arestron~ly size depen­
dent. This implies that the applicability of linear elastic fracture mecha­
nics is extremely limited where concrete is concerned.

Cement paste has ich-values less than 10 mm and consequently linear elastic
fracture mechanics is_ useful only when the beam depth exceeds about 100 mm.
However, in real structures cement paste is used only as a part of the con­
crete and mortar and in this case the thickness of the layer of paste never
exceeds a few mm. This means that also where cement paste is concerned, which
is normally considered to be a very brittle material, the usefulness of linear
elastic fracture mechanics for practical purposes is very limited.

In Fig 6.12 curves representing different relative notch depths are shown but
the dependency of the notch depth is more clearly illustrated in Fig 6.13,
where Gc/GF and Kc/ VGFE' are presented as functions of relative notch depth
for different values of d/ich . The curves in the Figure are relevant for a
cr-W curve approximated with a single, straight line (SL). As can be seen in
the Figure, Gc' and thus Kc' reach a maximum when aid is about 0.25-0.30.
In tests it is customary to use relative notch depths between 0.2 and 0.5.
Within this region the influence of aId onGc and Kc is small and it is the­
refore difficult to detect this influence from experimental results.

In Fig 6.14 and Fig 6.15 the dependency of geometry and material parameters
on Kc and Gc is shown regarding another approximation of the a-W curve. In
the calculations a two-line cr-W curve (C) according to Fig 6.3 was used. The
shapes of the curves' are similar to those in Fig 6.12 and Fig 6.13 but the
values of Kc and Gc are lower for the same value of d/ich . This means that
the restrictions for the applicability of linear elastic fracture mechanics
become even harder than when the a-W curve is approximated with a single,
straight line. This is contrary to the conditions accordi.ng to the notch sen-
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Fig 6.13 Theoretical values of GcfGF and Kcf VGFE' as functions of relative
notch depth for different values of d/t

ctl
• The curves are relevant

for three-point ·bend tests and the cr-W c rve is approximated with
a single, straight line (SL) according to Fig 6.1.

sitivity, which give a somewhat higher notch sensitivity for the two-line
approximation of the cr-W curve than for the cr-W curve approximated with a
single straight line. This can be explained by the fact that the notch sen­
sitivity is not only affected by the maximum load of the notched specimen
but also by the flexural tensile strength, which itself is affected by the
shape of the cr-w curve. The ratio GcfGF (or Kcf ~GFE') therefore ought to be
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Fig 6.14 Theoretical values of Gc/Gand Kj VGpE' as functions of d/ichfor
different relative notch d~pthS. the curves are relevant for three­
point bend tests and the a-W curve is approximated with two lines
·(C) according to Fig 6.3.

better as a measure of the applicability of linear elastic fracture mecha­
nics than the notch sensitivity. .

In Fig 6.16 theoretical values of GC/GF and Ke/ VGFE' are shown as functions
of d/~ch for different approximations of the a-W curve. The approximation
according to Dugdale shows an upper limit of the curves but even when this
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Fig 6.15 Theoretical values of Gc/GF and Kc/ V¥ as functions of relative
notch depth for different values of d/lch • The curves are relevant
for three-point bend tests and the cr-W cUrve is approximated with
two straight lines (C) according to Fig 6.3.

cr-W curve is used, the ratio ditch. has to exceed about 3 if the difference
between the calculated and the true fracture load is to be less than 10 %.
For three-point bend tests on metals it is often prescribed that, in order to
obtain relevant values of KG' both the notch depth (a) and the ligament depth
(d-a)' must exceed 2.5(Kcl0yY2 (cfKnott,1973), where 0y is the yield stress.

As discussed previously, Kc=VGFE'when linear elastic fracture mechanics is
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Fig 6.16 Theoretical values of Gc/GE and Kcl ~as function of ditch for
different approximations of the a-W curve. The shapes of the a-W
curves are defined in Fig:s 6.1-6.4.

applicable. With cry = f t this means that (Kc/cry )2= GFE/f~ = tch and for aid =
0.5 the value of ditch has to exceed about 5 in order to obtain a relevant va­
lue of Kc for metals. This restriction of dItch for metals, which often have
a-W curves of the Dugdale type, seems to be in good agreement with the calcu­
lation results in Fig 6.16.
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The more the cr-W curve deviates from the approximation according to Dugdale,
i. e. the more concave the curve becomes, the lower the va1ue of K/ W
(or Gc/GF) becomes for the same value of d/tcn • For fibre-reinforced
concrete (FRC) the GF-value is normally ve~ large (Gustafsson, 1977) ~nd

the ich-value is often several meters. This means that the FRC-curve is of
interest only for very small values of ditch and this implies that linear
elastic fracture mechanics i,s completely useless for this type of material.

It was mentioned 'above that the approximation of the a-W curve according to
Dugdale can sometimes be used for fibre-reinforced materials. This may seem
slightly confusing as the two curves according to Dugdale and FRC are very
different. However, the FRC-curve in the Figure is relevant for a material
with a low content of short fibres. As the fibre content increases the cr-W

curve becomes more similar to the cr-W curve according to Dugdale, but at
the same time i' h increases and the ratio d/i h decreases which means thatc. c
the applicability of linear elastic fracture mechanics is very limited even
if a cr-W curv.e according to Dugdale is relevant for the material.

Linear elastic fracture mechanics 'wa~ first applied to concrete by Kaplan
(1961). Some of his results are presented in Table 6:1. The values are re-

Table 6:1 Gc values determined by Kaplan (1961) and Gr values determined
by three different methods for three concrete qualities and
two different beam depths. W/C=water-cement-ratio.·

Materi'a1 d d/R,ch Gc(N/m) GF (N/m) GF (N/m) GF (N/m)
(mm) .acc to acc to . ace to acc to

Kaplan Gc and Gc and tests
Fig 6.12 Fig 6.14

Quartzite 75 0.2 12 79 97concrete
W/C=0.6 85-105

~ch ::: 350mm 150 0.4 18 78 97

Limestone 75 0.75 18 55 72concrete
W/C=0.5 55-70

-t~h ::: 100mm 150 1.5 27 59 79

Mortar 75 0.5 16 62 76
W/C=O.S 55-90
R,ch ::: l50mm 150 1.0 25 66 .. 87
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levant for three-point bend tests on notched beams with the relative notch
depth 0.5. Gc was calculated from the fracture load by means of ordinary li­
near elastic relations. In the Table three different values of GF are also
presented; two of them are determined from Gc and Fig 6.12 and Fig 6.14 respec­
tively and the third is determined from tests on similar materials, see Chap­
ter 7. The tch-values are estimated from experimental results, which are also
presented in Chapter 7.

The Gc-values determined by Kaplan are markedly size dependent; when the beam
depth increases from 75 to 150 mm the Gc-values increase by about 50 %. This
size dependency almost "disappears when Gc is converted to GF by using the cur­
ves in Fig 6.12 or Fig 6.14. Also, the agreement between the converted GF-va­
lues and those determined in tests seems to be good.

The two-line approximation of the o-W curve used in Fig 6.14 ought to be rele­
vant for normal concrete qualities, which is in good .agreement with the results
for the quartzite concrete. The existenceo.fthe Utail ll of the two-l,i.ne approxi­
mation of the o-W curve probably is due·:to frictional forces when coarse
aggregate particles are extracted from the cement paste, see Chapter 8. As
is shown in Chapter 7, the crack passes through the aggregate particles
where limestone concrete is concerned and no coarse particles are extracted
from the cement paste. Therefore perhaps the single line approximation of the
o-w curve used in Fig 6.12 is better for this material.

Kaplan also carried out Gc-determinations for three different relative notch
depths; 0.17,0.33 and 0.5. The highest value of Gc was obtained.when the rela­
tive notch depth was 0.33, which is in good agreement with the results in Fig
6.13 and Fig 6.15.

Since Kaplan carried out his tests a great number of similar determinations on
concrete have been reported. for example Welsh and Haisman (1979), Moavenzadeh
and Kuguel (1969), Naus and Lott (1969), Walsh (1972), Mindness and Nadeau
(1976), Strange and Bryant (1979) and Carpinteri (1981). All these tests were
performed on bent beams with depths between 25 and 375 mm. The determined
Kc-values vary between 0.4 and 1.1. For a normal value of the Youngls modulus
(35,000 MPa) this corresponds to Gc-va1ues between 5 and 35 N/m. Due to the
small and varying specimen dimensions the results have often been conflicting
and the results differ very much from normal values of VGFE' and GF, which for
concrete are 2 MN/m3/ 2 and 100 N/m respectively.



-76-

Entov and Yagust (1975) reported fracture mechanical tests on large, centrally
notched specimens wh~ro:the loading forces were acting at the notch centre.
For the largest specimen, 100 x 2,000 x 2.,500 mm3, they reported Kc- and Gc­

values of 1.9 MN/m3/ 2 and 100 N/m respectively which is close to the p~.obable

truevalues of VGF[l and GF• For smaller specimen dimensions, 64 x 900 x 1,.o5{)

mm3, the corresponding values were 1.4 ~N/m3/2 and 70 N/m respectively and

this confirms the results above that it is necessary to use very large speci­
mens in order to obtain consistent values of K and G •c c

Also in the case of cement paste a large number of test results of Kc and Gc
are re'porteo, for examp1e Brown and Pomeroy (1973) and Nadeau, Mi ndess and
Hay (1974). Very interesting results are reported by Higgins and Bailey (1976).
They determined Kc of cement paste for different beam depths in three-point
bending and found that Kc increases with increasing beam depth and lias the
specimen size tends to infinity-, so Kc appears to tend towards a li~iting

value ll
• However, not even when the beam depth was 110 mm (which corresponds to

a ditch-value of at least 10) had Kc reath~d its final value. These results
are in good agreement with the theoretical results in Fig 6.12 and Fig 6.14.

Mai (1979) presented results of Kc ' GF, f t and E for an asbestos-cement mortar

composite. This is the only reference found where all the necessary parameters
for the use of the curves in Fi~ 6.16 are determined. For this material Mai
found that the fibres were extracted from the cement paste matrix at crack pro­
pagation. When a notched specimen of this type of material is subjected to
load, one may assume a stress distribution according to Dugdale in front of
the notch.

The material properti~s of the three different qualities of asbestos-cefuent mor­
tar are presented in Table 6:2. In the~Table test results of Kc according to .
Mai are also shown as well as Kc-values calculated from VGFE' and the curve in
Fi 9 6.16 (the tests were performed on three-point bent b.ea~ms with the rel ati ve
notch depth 0.4). As can be seen in t·he Table, the agreement between the test
results and the calculated values is excellent, in spite of the simplified as­
sumptions.This confirms the calculation results above and also implies that the
Fictitious Crack Model is also suitable for fibre~reinforcedmaterials.

According to the calculations, the tests and the discussiqn 'above the useful~·

ness of linear elastic fracture mechanics seems to be very limtted where cemen­
titious materials are concerned. For plain and fibre-reinforced concrete linear
elastic fracture mechanics is. only applicable on large structur~s where the di-
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Table 6:2 Kc-values according to tests and calculations for asbestos-cement
mortar composites with the material properties given in the Table.

mass fraction of fibres

5 % 10 % 15-20 %

d (mm) 26 26 26

f t (MPa) 7.1 10.8 15.8

E (MPa) 17,200 17,200 17,200

GF (N/m) 760 2,300 3,300

J0ch (mm) 260 340 230

d/J0ch 0.10 0.08 o. 11

Kc acc. tOVGFE'
3.1

(MN/m)3/2 and Fig 6.16 1.4 2.3

K test resultsc 1.5 2.2 3.2
(MN/m)3/2 acc. to Mai

mensions are in m~ters. This also implies that it is very difficult to deve­
lop standard test methods that are suitable for laboratory determinations of
Kc and Gc. Such test methods can perhaps be developed for cement paste but as
this material in practice is always only a component of a matrix, where the
properties of the cement paste are quite different from those determined for
pure paste, such test methods would be of limited value.

6.3 The J-integral approach

In Chapter 2 the formal definition of the J-integral is presented (2:10). An
alternative and equivalent definition of J is given by Rice, Paris and Merkle
(1972) :

o F
J = 1 ( (_aF) do =1 ( ( ~L dF (6: 5)

b J aa 0 b J .aa F
o 0

where F is the load, b is the width of the specimen, a is the crack depth, 0

is the deformation and consequently (aF/aa)o is the change of the load when
the crack advances a distance aa and the deformation is o.

(6:5) is illustrated in Fig 6.17 for three-point bending. The two curves in
the Figure represent load-deflection curves for two notched beams with slight­
ly different notch depths; a and a+~a respectively. From these curves the va­
lue of J at deformation ~ can be obtained as (compare 2:10):
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F

Fig 6~:l7 Illustration of (6:5) for athr£e-pointbend test. J= ~(t1U/M) at 0,.

(6:6)

where ~u is the amount of energy represented by the area between the two cur­
ves fro.m 0=0 to 0=0 1•

The two. curves in Fig 6.17 are identical when the deflection exceeds cA- At
0A a real crack, i.e.a crack with no stress-transferring capability, has ad­
vanced to a distance ~a in front of the notch with the original depth a and
in front of the notch with the original depth a+~a a real crack will just
start propagating. ~ (t1U/t1a)o thus represents the amount of energy necessary
to create one unit of area ofAa crack and consequently Jc equals GF when de­
termined at the .deflecti.on corresponding to the start of real crack propaga­
tion. 0A is pro~ably the only point where Jc is a material property.

Unfortunately. it is unsuitable, for several reasons, to define J at cA. In
fact 0A is strictly defined only for elastic materials, i.e. 'for materials
where the unloading outside the fracture zone takes place along the same
curve as the initial loading. For other materials the two curves in Fig 6.17
will never coincide exactly. Also, the J-i.ntegral approach is not relevant tf
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unloading takes place, which is obviously the case if J c is defined at 0A.
This lI un l oading problem" in fact is a problem wherever Jc is defined as un­
loading always takes place in the fracture zone and consequently also in the
material close to the fracture zone.

The most important aim when using fracture mechanics is to predict the frac­
ture load. Unfortunately 0A normally exceeds the deflection at the fracture
load and it is consequently unsuitable to use Jc when determined at 0A. For
example, for fibre-reinforced materials 0A represents the deflection where
all the fibres bridging the crack at the notch tip are completely pulled out
and of course this cannot be used as a fracture criterion for design purposes.
As the most interesting, and only well defined, point of the load-deflection
curve is the maximum load, this point has normally been used for Jc~determi­

nations on cementitious materials. In Fig 6.18 theoretical values of Jc/GF
de~ermin~d at ~he maximum load are shown as functions of d/~ch for the four
model material~ defined in Fig:s 6.1-6.4. The curves are relevant for three­
point bending on notched beams with the relative notch depth 0.25 (in
the calculations the area between the two load-deflection curves represen­

;: ting a/d=0.2 and 0.3 is analysed).

For a material with a cr-W curve according to Dugdale the deflection at the
fracture load equals 0A and consequently Jc then equals GF for this type of
material. Many yielding materials behave more or less as ideally elastic­
plastic materials and this is probably the reason for the usefulness of the
J-integral approach for many metals.

For more realistic cr-W curves of cementitious materials the applicability
of the J-integral approach is more limited, at least for small values of
d/~ch. When the usefulness of the J-integral is compared with that of the
linear elastic approach, the ratios Jc/GF and Gc/GF should be compared. For
example, if the linear elastic fracture mechanics approach is accepted for
Gc/GF-values exceeding 0.8 (corresponds to Kc/~ =0.9), then ditch has
to exceed 8-10 if the cr-W curve is approximated with a single, straight line
(see Fig 6.12). The corresponding value of ditch for Jc/GF is about 1.0-1.5
which implies that Jc is much more, useful" as a fracture criterion than Gc•
However, when the more realistic cr-W curve for concrete (C) is used, the
applicability of the J-integral approach decreases and ditch has to reach 5,
correspondtng to beam depths of about 1.0-1.5 m for concrete, if the ratio
Jc/GF is to exceed 0.8. Also where the fibre-reinforced material is concer­
ned the applicability of the J-integral seems poor but this type of material
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0.5

0.2

0.1

la/d=O.2SI

5 10
d/lch

20.50.2
. 0.05 .......__--1.-_---'-__---'-__.1-.-_--1.-__-1.-_.........

0.05 0.1

Fig 6.18 Theoretical values of Jc/GF .as functions of ditch for the four model
materials defined in Fig:s 6.1-6.4. Jc· is determined according to
Fig 6.17 and the curves are relevant for three-point bending on
notched beams with the relative notch depth 0.25.

has very individual cr-W curves and therefore the FRC-curve in the Figure
should be regarded only as an example.

The irregularity of the (C}-curve' in ~ig 6.18 is due to the break-point of
the a-W curve when w equals 20 pm. When dItch is about 0.5, then the lower
part of the cr-W curve, i.e. when W'~ 20 ~m,affects the fracture load and thus

the Jc/GF-curve.

For experimental determination of Jc for cementitious materials it is custo-
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mary to use a different method than the one described above.

By using moment (M) instead of force (F) and angle change (e) instead of dis­
placement (0), then (6:5),according to Rice, Paris and Merkle (1975),cQn
be written as:

M ae.
J = .1 ~ (- . total) dM

b 0 ddt M
(6:7)

where d~ is the depth of the uncracked ligament (d-a) and:

For a deeply notched specimen it is assumed that

(6:8)

M
8crack = f(-Z-)

d.Q,

and from (6:8) and (6:9) it can be found that

a8total (_d8craCk) = 2M t' (M )
(- ad~ )M = ad~ M d~ ~

(6:9)

(6: to)

Substituting (6:10)into (6:7) and integrating gives:
2 8crack

J = d[D SMd8crack
t 0

(6:11)

If the ligament is sUbjected mainly to bending but the load is applied by
forces, then (6:11) can be written as:

<S
2 (crack

J = ¥ ~ Ftl~tra:ck (6: 12)

(6:12) represents the work done in loading, with the deformations with no
crack present eliminated from the calculations. The evaluation of Jc at the
fracture load when using this method ;s demonstrated in Fig 6.19.

Theoretical values of Jc/GF as functions of d/~oh for the four model materi­
als in Fig:s 6.1-6.4 are shown in 'Fig 6.20. Jc is calculated according to
Fig 6.19 and is relevant for three-point bending on a beam with the~telative

notch depth 0.3; As can be seen in the Figure the ratlo Jc/GF ;s strongly af­
fected by the beam depth and also by the shape of the a-W curve. In order to
explain the completely different behaviour of the material according to Dugdale
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total no crack crack
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f-~~ -
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d-a :. depth of uncracked
ligament

F = load/unit width ~

Fig 6~19 Experimental determination ofJc at three-point bending according
to (6: 12) •

and the three others it is necessary to study the infl uenc·e of the fractu'r'e
zone. For a material according to Dugdale both the load and the deflection due'
to the presence of the crack increase as the fracture zone grows. The value
of J at the start of real crack propagation therefore increases with the
increasing value of the ratio depth of the fracture zone/depth of ligament.
This ratio grows with decreasing values of ditch and consequently, as the
crack starts to propagate when the fracture load is reached for this material,
the ratio Jc/GF decreases with increasing values of ditch- For the other three
materials the crack starts to propagate after the maximum load is reached and
this of course means that Jc determined according to Fig 6.19 becomes less
than GF• The start of crack propagation takes place closer to the fracture
load for higher values of ditch and therefore the three Jc/GF-curves increase
with increasing values of ditch. However, for higher values of ditch the ef­
fect of the relative depth of the fracture zone ought to increase and then all
the curves' ought to decrease with increasing values of ditch- This can be seen
in Fig 6.21 where Jc/GF·~;s shown as' function of ditch for different relative
notch depths when the a-W curve is approximated with a single, straight line.

For small values of aid the curves increase in the beginning but when ditch
exceeds about 1-2 they decrease. High' values of the relative notch depth
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Jc/G F

1.0

0.5

0.2

0.1

IaId =0.31

5 10
d/lch

20.50.20,1
0.05 ....a..-_---.&-__---a..__I---_....a..-__.....a..-_---1

0.05

Fig 6.20 Jc./GE as function of ditch for the four model materials defined
in Fig:s 6.1-6.4. Jc is calculated according to Fig 6.19 and is
relevant for three-point bending.

seem to give the best results for high values of d/tch,··but for small values
of ditch the situation seems to be reversed due to the increased influence

. . .. . . . ., ., ...

of the differ~nce between the fracture load and the start of crack propagation.

-
In literature most Jc-determinations are carried out on fibre-reinforced
concrete but at least one determination for concrete and cement paste is re­
ported (Mindess, Lawrence and Kesler, 1973). By using the method in Fig 6.19
they determined Jc on 75 mm deep beams with the relative notch depth varying
between 0.5 and 0.7. Their results of Jc and Gc are presented in Table 6:3,
where the ratio Jc/Gc is also compared with theoretical values obtained from
Fig~s 6.12 and 6.21. As can be seen in the Table the agreement between the
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Fig 6.21 Theoretical values of Jc/GE as function of d/iCh for different
relative notch depths. Jc is calculated accordlng to Fig 6.19 and
the cr~w~curve is approximated with a single, straight line (SL).

test results and the calculated values is good, in spite of the simplified
assumptions.

Mindess et al·'also carried out Jc-determinations on steel-fibre reinfQ~ced

concrete. They found that Jc is much more sensitive to the fibre content than
Gc and consequently the ratio Jc/Gc increases with increasing fibre content,
see Fig 6.22. Unfortunately it is very difficult to guess the shape of the
cr-W curve for fibre-reinforced materials, which is probably dependent on the
fibre' content, and therefore it is impossible to quantitatively analyse the
curve in Fig 6.22 by means of the Fictiti;QUS Crack Model. However, the i ch­
value ought to increase with increasing fibre content and in Fig 6.23 theo-
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Table 6:3 Test results of JC' Gc and Jc/Gc for cement paste and concrete
(Mindess et a1, 1973), In the Table values of Jc/GF calculated
by using Fig:s 6.12 and 6.21 are shown as well.

Estimations Tests Calculations '.

~ch d/~ch Gc J- Jc/Gc Jc/Gc accordingc
(mm) N/m N/m to Fi g: s 6. 12,

6.21

Cement-
paste 10 7.5 9-15 11-15 0.8-1.6 1.1-1.4

Concrete 250 0.3 17-18 40-43 2.2-2.5 2.7-3.0

retical values of Jc/Gc ' calculated by using the Fictitious Crack Model, are
shown as function of ditch' In the calculations the cr-W curve was approxi­
mated with a single, straight line and the relative notch depth was 0.5.
The horizontal scale decreases to the right, which corresponds "to increasing
fibre content. As can be seen in the Figure, the shape of the curve is simi­
lar to that of the curve in Fig 6.22 and consequently the dependency of the
fibre content on the ratio Jc/Gc can be qualitatively described by means of
the Fictitious Crack Model.

Halvorsen (1980) carried out Jc-determinations for different beam depths on
steel-fibre reinforced concrete. The beam depths were 75 mm and 150 mm respec­
tively. The fibres were brass coated with i'rregular cross sections. The fibre
content was probably 1.5 %. Halvorsen found that the value of Jc for the 150
mm deep beams was about twice the value for 75 mm deep beams. This indicates
that Jc is strongly size dependent, which is in good agreement with the theo­
retical curves in Fig 6.20. The size dependency seems to increase when d/ich
decreases and this can explain the great size dependency reported by Halvor­
sen. In the tests the effect of the relative notch depth was also examined.
No significant difference was obtained between Jc-values determined on beams
with the relative notch depths 0.5 and 0.67 respectively.

Velasco, Visalvanich and Shah (1980) also studied the influence of notch depth
on Jc for steel-fibre reinforced concrete. The beam depth was 76 mm and 1 %

by volume of round, smooth steel fibres was used. Contrary to Halvorsen they
found a substantial dependency on notch depth; Jc increased from 30 N/m to
60 N/m as the relative notch depth decreased from 0.75 to 0.50 and when the
relative notch depth was 0.125 the J -value was 1600 N/m. These completely. . c
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Iaid =0.5 -0.71

5

o

Fibres 0/0....
0.5

Fig 6.22 Jc/Gc as function of fibre content for a type of fibre-reinforced
concrete. (Mindess et al, 1973).

Iaid =0.51

5

d/lch

5 2 0.5 0.2 0.1 0.05

Fig 6.23 Theoretical values of Jc/Gc as function of d/tcb. Jc/Gc is calcula­
ted ace. to Fig:s 6.12 and 6.21. The relative notch depth is 0.5.
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diff~rent results between two, fairly similar tests seem a little confusing.
One explanation could be th~ difficulties in finding the position of the
fracture load on the load-deflection curve, which is demonstrated in Fig 6.24.
In the Figure typical load-deflection curves according to Velasco et a} are

.shown for different relative notch depths. As can be seen, in the Figure, there
is a long horizontal part of the curves close to the fracture load and only a
small, local variation of for example the fibre distribution can considerably
change the position of the fracture load. In the Figure the positions of the
fracture loads according to Velasco et al are shown. If other positions were
chosen, which may be motivated at least where the deeply notched beams are
concerned, then the Jc-values would be completely different.

Load (N)

Ix= peak point I

800 1000
~(tJm)

0=19 mm

0=38

0=57

600

--------x· 0=9.5~

400200o

1000

2000

3000

4000

Fig 6.24 Load-deflection curves for different relative notch depths for a
quality of steel-fibre reinforced concrete (Velasco et al, 1980).

According to the calculations, the test results and the discussion above it
seems unsuitable to use Jc as a fracture criterion for cementitious materials
of normal dimensions. Jc is too dependent on specimen size, notch depth and
the shape of the cr-W curve for it 'to be useful. Also the difficulties of eva­
luating Jc ' especially for fibre-reinforced materials, from the load-displa­
cement curve makes the parameter unsuitable.
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6.4 The crack opening displacement approach (COD)

The fracture zone is able to transfer stress as long as the widening of the
zone is less than a critical value Wc (see Fig:s 6.1-6.4) but when this value
is reached a real crack starts propagating. COD corresponds to the widening
of the fracture zone at the crack tip. If CODc is used as a criterion for the
initiation of real crack propagation then it equals Wc and consequently CODc
is then a material property. However, as discussed before, it is the fracture
load and not the initiation of crack growth that is the most interesting thing
to study and then, when used as a criterion for the fracture load, CODc is

(0)

0.5

0.2

0.1

IaId =0.251

5 10
d/lch

20.50.20.1
0.05....--.---"'-----------a.-----.lI.---...a..---....I..--........

0.05

Fig 6.25 Theoretical values of CODe/we as functions of d/ich for the four
model materials in Fig:s 6.1-6.4. The curves are relevant for
three-point bending where the relative notch depth is 0.25.
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normally an approximation. In Fig 6.25 theoretical values of COD /w are shown
c c

as function of ditch for the four model materials presented in Fig:s 6.1-6.4.
CODc is determined at the maximum load. The curves are relevant for three­
point bending on beams with the relative notch depth 0.25.

Where materials with o-W curves according to Dugdale are concerned, a real
crack starts propagating when the fracture load is reached and consequently
then CODe/we always equals unity. This is probably the explanation for the.:
fact that the COD-approach has sometimes been successfully applied on metals,
which often have o-w curves according to Dugdale. For most cementitious: mate­
rials the o-W curve is quite different and then the COD-approach is less use­
ful, which can be seen in the Figure. COD increases greatly with increasingc
values of d/tth and the more the shape of the a-W curve deviates from the
shape according to Dugdale, the less the applicability of the COD-approach is.
Other calculations, which are not presented here, imply that CODc is also
slightly affected by the relative notch depth; the applicability of the COO­
approach decreases with increasing relative notch depth.

The only application of the COD-approach to cementitious materials found in
literature was published by Valesco, Visalvanish and Shah (1980). They deter­
mined CODc at the fracture load for fibre-reinforced concrete (round, smooth
ste~l fibres) and among other things they studied the influence of the rela­
tive notch depth. It is difficult to measure the displacement at the notch
tip so they measured the Crack Mouth Displacement (CMO) instead, i.e.the
displacement at the base of the notch and then they theoretically converted
the CMOc-values to CODe-values.

Velasco et al found that CODc was dependent on the relative notch depth; it
decreased greatly with increasing rel&tive notch depth. The same tendency,
but less pronounced, can be found from calculations according to the Ficti~~

ttous Crack Model. The very strong influence of the relative notch depth on
CODc reported by Velasco' et al may be due to technical problems when evalua­
ting the tests as it is very difficult, exactly as when determining the J­
integral for fibre-reinforced materials, to .define the position of the peak
load on the load-displacement curve. However, it seems as CODc ' determined
at the fracture load, is too dependent on specimen geometry and the shape of
the a-W curve to be useful as a fracture mechanics' parameter where cementi­
tious materials are concerned.
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6.5 R-curve analysis

When calculating the resistance to crack growth it is necessary to know the
actual crack depth (see 2.3.5), i.e.the notch depth (a) + the crack advance
(~a) and consequently the position of the crack tip has to be well defined.
This is the case for metals which normally have a small fracture zone but for
cementitious materials it is much more difficult to define the position of
the crack f-rorit:; should it be at the tip of the fracture zone, at the tip, of
the real crack (i.e. a crack with no stress-transferring capability) or some­
where in between? As the depth Of the zone is often great, the definition of
the position of the crack tip is of considerable importance.

A number of different methods for detecting the crack tip are reported in
literature. Welsh and Haisman (1969) used ~he compliance technique (complian­
c~=deflection/load). In this method the initial compliances of notched beams
with different notch depths are first determined which makes it possibl~-e'---to

find a relation between compliance and notch depth. Then a notched beam is .
loaded to a certain point of the load -deflection curve. The secant modulus
of this point is compared with the compliance curve and thus the actual crack
depth can be estimated. However, this method can only be used if the depth

1 ~ ,

Of ~he fracture zone is ~mall as otherwise the fracture zone affects _th~!comp-

liance of the test beam but not the compliance curve. Therefore fOf __ cewenti-
. . : .:- ~.. ; -: .

tious materials, with large fracture zones, this method ought to be unsuitable.

The positition of the tip of the visible crack is probably the most natural de­
finition of the location of the crack tip but this location is affected by the
method of observation; by the naked eye, by magnifying glass or by microscope.
Strain measurements, acoustic emission measurements and other methods tan also
be ·used but the different-ways of observi:ng- the crack tip give different crack
depths (cf Sok, Baron and Francois, 1979) and consequently different KR~curves

which is shown in Fig 6.26. In the calculations of the curves the position:
of the crack tip was defined as the point where the widening of the fracture
zone exceeds a critical value and the curves in the Figure represent different
critical values ranging from °to 100 ~m. The curves are relevant for three­
point bending on beams with the relative notch depth 0.25 and the cr-W curve
is approximated with a single, straight line. GF is chosen to 75 N/m, f t to
3 MPa and E to 30,000 MPa, which means that a real crack starts propagating
when the widening of the fracture zone reaches 50 ~m.

As can be seen in the Figure, the curves become quite different for different _
definitions of the position of the crack tip. When the critical value of the
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Fig 6.26 Theoretical KR-curves for three-point bend tests on notched beams.
The a-W curve is approximated to a single, straight line. In the cal­
culations the position of the crack tip was related to a critical
value of the opening of the fracture zone and the six curves are re­
levant for different' critical values ranging from 0 to 100 ~m.

fracture zone is zero this :corresponds to the tip of the fracture zone. This
position can perhaps be roughly detected by means of acoustic emisson measure­
ments or also by strain measurements. 50 ~m correspond, in this case, to the
tip of the real crack and consequently 10 ~m and 20 ~m represent positions
somewhere in the fracture zone. It ought to be possible for the naked eye to
observe "cracks" when their w·idth exceeds about 25-50 ~m, compare Chapter 5.

- '

In the Figure the positions of the peak loads are shown for the curves repre­
senting the three smalle·st ..critical values of the widening of the fracture zone.
As can be seen KR increases also after the maximum load is reached. In the
case of the curves representing the two largest critical values of the wide­
ning of the fracture zone the defined crack will not propagate until after
the maximum load is reached.
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In Fig:s 6.27-6.30 calculated KR-curves for three-point bending are presen­
ted. In the calculations the position of the crack tip was defined as the
point where the widening of the fracture zone equals 10 ~m.

For Fig:s 6.27-6.28 the a-W curve is approximated with a single, straight
line and the material properties, which are given in the Figures, represent
a normal concrete quality. In Fig 6.27 KR-curves for different relative notch
depths are presented and, as can be seen, the curves are just very slightly
affected by the relative notch depth. However, for different beam depths,
see Fig 6.28, the curves are very different. and this implies that the KR-cur­
ve is not useful· as a material property for concrete.

For Fig:s 6.29-6.30 the cr-W curve is approximated according to Fig 6.4. With
the actual material properties the material should then correspond to a fibre­
reinforced concrete with a low percentage of short fibres. Also where this
material is concerned the curves are strongly affected by the beam depth whi­
le the influence of the relative notch depth is less pronounced.

The only example found in literature regarding KR-curves determined on bent
beams of unreinforced cementitious materials was presented by Brown (1972).
He determined KR-curves for mortar and used the compliance technique, though
somewhat modified, to find the actual crack depth. The tests were performed
on 38 mm deep beams and the relative notch depth was 0.5. The results for 6
individual beams are presented in Fig 6.31.

The KR-values are low which is probably due to the small specimen size but
perhaps also to the method of determining the actual crack depth. However,
the shapes of the curves are similar to those presented in Fig:s 6.27-6.28;
the curves first increase with increasing crack advance until they reach a
maximum and then they decrease.

So.k, Baron and Francois (1979) used very large double cantilever specimens,
see Fig 6.32, in order to determine KR-curves for concrete. Prestressed re­
inforcement was used parallel to the crack propagation path. This reinforce­
ment is probably necessary as it prevents crack propagation perpendicular to
the crack due to the high bending ·stresses. Such cracks in fact were also
reported for the reinforced specimens (Sok, 1978) but they were stopped be­
fore they reached the reinforcement. These side cracks and probably also the
reinforcement may affect the results .

. The thickness of the specimen was reduced to one third along the crack propa-·
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Fig 6-.27 Theoretical KR-curves for different relative notch depths. The
curves are relevant for a normal concrete quality.
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Fig 6.28 Theoretical KR-curves for different beam depths. The curves are
relevant for a normal concrete quality.
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Fig 6.29 Theoreti~al KR-curves for different relative notch depths. The
curves represent a fibre-reinforced concrete with a low percen­
tage of short fibres.
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Fig 6.30 Theoretical KR-curves for different beam depths. The curves represent
a fibre-reinforced concrete with a low percentage of short fibres.
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Fig 6.31 KR-curves for six mortar beams (Brown, 1972).
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Fig 6.32 Double cantilever specimen· used by Sok et al (1979) for determina­
tion of KR-curves for concrete.
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gation path. This varying thickness disturbs the stress distribution around
the fracture zone. The fracture mechanics properties of the specimen are al­
so markedly affected. The formal tensile strength is reduced to one third
in the zone where the crack propagates and so is the fracture energy. This
means that the ich-value formally is increased three times and consequently,
according to the results in Chapter 5, the depth of the fracture zone is mar­
kedly increased compared with the depth of the fracture zone in a specimen
with constant thickness. According to the discussion above, this type of
specimen seems unsuitable for fracture mechanics tests on cementitious mate­
rials.

In Fig 6.33 experimentally determined KR-curves for different relative notch
depths are shown for a fibre-reinforced concrete with 1 % round, smooth steel
fibres distributed at· random (Velasco, Visalvanich and Shah, 1980). The cur­
ves are determined Dn 76 mm deep beams in bending. In the Figure theoretical
curves calculated by using the Fictitious Crack Model are presented as well.
In the calculations a simplified a-W curve according to Fig 6.34 was used,
which seems suitable for this material (Hillerborg, 1980). In Fig 6.34 an ex-
perimentally determined (Petersson, 1980a) a-W curve is also shown and the
agreement between the theoreti ca1 and the experimen,ta1 curves seems good.
The Young's modulus is 30~OOO MPa and the matrix crack is assumed to become
visible when the widening of the fracture zone exceeds 10 ~m.

As can be seen in Fig 6.33 the differences between the theoretical curves for
diffe.rent notch depths are small. From experiments it is probably very diffi­
cult to separate these curves and this explains the good agreement between
the experimentally determined KR-curves. However, when the beam depth increa­
ses, the slope of the theoretical KR-curve decreases significantly and this
implies that the KR-curve cannot be used as a material property for this ma­
terial either.

KR-curves for an asbestos-cellulose cement composite have been determined
by Mai, Foote and'Coterell (1980). They studied. the influence of beam depth
on ·the KR-curves anq used beam depths between 25 and 200 mm. The relative
notch depth was 0.3. The material -contained 8 %asbestos fibres and 7 %

cellulose fibres.

In Fig 6.35 the determined KR-curves for the greatest and the smallest beam
depths and corresponding calculated curves are presented. In the calculations
it was assumed that the cellulose fibres did not affect the material parame-
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Fig 6.33 Experimentally (dots) and theoretically (lines) determined KR-cur­
ves for fibre-reinforced concrete with 1 % round, smooth steel
fibres distributed at random. During the calculations the cr-W curve
was approximated according to Fig 6.34.
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::Fig 6. 34 Experimentally and theoreti cally determi ned (J-W curves for a qual i­
ty of fibre-reinforced concrete with 1 %of round, smooth steel
fibres distributed at random.
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ters very much and ft, E and GF were chosen according to Table 6:2, which
means 9 MPa, 17,000 MPa and 1,500 N/m respectively.

6

•
• ••

•

laId =0.31

d=200 mm

10 20 30 40 50 60 l1a(mm)

Fig 6.35 Experimental (dots) and theoretical (lines) Ko.-curves of a quality
of asbestos-cellulose cement compos·ite for dit'ferent· beam depths.
The experiments were carried out by Mai e:t- .al (1980).

The a-W curve was approximated according to Dugdale and the matrix crack was
assumed to become visible when the widening of the fracture zone exceeded
20 lIm.

As can be seen in the Figure, the beam depth markedly affects the KR-curves.
This phenomenon is very well described by the theoretical curves calculated
by means of the Fictitious Crack Model, in spite of the simplified assumptions.

According to the calculations, the test results and the discussion above it
seems unsuitable to use KR-curves as material properties for cementitious '
materials, at least for normally used dimensions. The curves are too depen­
dent on the specimen dimensions and the notch depth.

6.6 Conclusions

The fracture zone significantly influences the fracture process of cementi­
tious materials. The use of a single parameter seems insufficient for descri­
bin~ the. complicated properties of the fracture zone and this explains why
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the fracture mechanics approaches described above seem unsuitable. When the
Fictitious Crack Model is used, the properties of the fracture zone are desc­
ribed by the a-W curve and therefore this model offers a much more realistit
and therefore better way of analysing.the fracture process of cementittous
materials than approaches normally used. Even if very simplified assumptions
are used it is possible, by using the Fictitious Crack Model, to find out the
limitations of the G-, J-, COD- a~d R-curve approaches where cem~ntitious ma­
terials are concerned.
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7 APPROXIMATIVE DETERMINATION OF THE a-s AND cr-W CURVES

7.1 Introduction

When using the Fictitious Crack Model it is necessary to know the cr-s and cr-W

curves for the material. If the cr-s curve is approximated with a single,
straight line, the curve is defined by the Young1s modulus and the tensile
strength. The cr-W curve is, if the shape of the curve is known, defined by
the tensile strength and the fracture energy, see Fig 4.10. In this Chapter
suitable methods for the determination of these properties are discussed and
test results for a number of concrete qualities are also presented. As more
or less standardized test methods already exist for the determination of the
tensile strength and the Young1s modulus, most of the work is concentrated on
test methods by which the fracture energy can be determined.

7.2 Determination of the tensile strengtn (ftl on prismatic specimens

7.2.1 . Introduction

The main difficulty in carrying out direct tensile tests for concrete and
other non-yielding materials on prismatic specimens is to achieve a uniform
tensile stress across a section of the specimen, without inducing stress
concentrations of too high. a magnitude elsewhere. When the specimen is adap­
ted to the testing machine by ordinary clamping grips, the grips give rise
to stress concentrations and multiaxial stresses and the measured strength
becomes less than the real tensile strength. By using sophisticated clamplng
grips (cf Johnston and Sidwell, 1968) the stress concentrations can be reduced
but probably not eliminated. A way of attaching the specimen at the ends is
to use an adhesive (Hughes and Chapman, 1965; Kadlecek and Spetla, 1966).

However, the adhesive and the concrete normally exhibit different lateral
strains when subjected to uniaxial stress due to their differences in Young1s
modulus and Poisson1s ratio. ~hus, shear stresses are produced between the
two materials and in the region of the interface a principal stress that is
greater than the axial tensile stress is then introduced, which most likely

causes the fracture to o~cur at t~is interface. When using wet specimens it
is also difficult to obtain a sufficiently strong joint. Consequently, when
using ordinary clamping grips or adhesives, it is necessary to use necked
specimens. A necked specimen has a varying cross sectional area, which is
smallest at the middle of the specimen.

In order to avoid d·irect tensile tests it ~s customary to carry out indi-
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rect tests, i.e. bend tests or splitting tests. However, these tests are great­
ly affected by specimen dimensions and are therefore~nsuitable. In Fig 7.1
it is shown how the flexural tensile strength (ff) depends on the ratio beam
depth/characteristic length (d/tch ). The curves represent theoretical values,
calculated by m~ans of the Fictitious Crack Model, for wet specimens and spe­
cimens subjected to a certain degree and distribution of shrinkage stresses
respectively, see below, and the dots represent test results. In the calcula­
tions the a-W curve was approximated with a single, straight line. Similar
results, for both bend tests and splitting tests, are presented in the lite~

rature (Wright, 1952; Mayer, 1967; Sabnis and Mirza, 1979; Modeer, 1979).

1

0.1 0.3

- 0 wet
--- 'V dried

1 3 10 dllch

Fig 7.1 Flexural tensile strength/tensile strength (ff/ft ) as a function
of beam depth. The curves are calculated by means of the Fictitious
Crack Model and the dots represent test results.

Some comments ought to be made about the results shown in Fig 7.1. The results
are relevant for three-point bending and the flexural tensile strength is
calculated as:

(7: 1)

where Fc = maximum load, t = beam length, b = beam width and d = beam depth.
This means that the influence of the transverse forces are ignored. This in-
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fluence increases as the ratio beam length/beam depth decreases (Pfeiffer,
1968) and the flexural tensile strength calculated by use of (7:1) is always
somewhat higher than the tensile strength. When the ratio beam length/beam
depth is as high as 4, this influence is small but it explains why the un­
broken curve in Fig 7.1 tends towards a value, which slightly exceeds unity
when the beam depth increases. The disturbance of the stress field around the
position of the applied load probably also affects the results slightly.

When calculating the curve representing beams subjected to drying shrinkage
stresses, the stress distribution according to Fig 7.2 was assumed. In rea­
lity the distribution of course is much more complicated and affected by, for
example, drying time and changes in the environmental climate. The intensity
of the shrinkage stresses shown in Fig 7.2 produced the best agreement with
test results.

\.--......v----J~

as=ft as=0.5 ft

Fig 7.2 The shrinkage stress distribution used fn ·the calculations in Fig
7.1. as =shrinkage stress.

The tests were carried out on beams with square cross sections. The drying
velocity was assumed to be proportional to the square of the beam depth
(Hillerborg~et~1·,19.77) and the beams with the depths 40, 80 and 160 mm were
dried for 6., 24 and 96 h respectively. The specimens were dried on all sur­
faces which means that the stress distribution in the specimens became diffe­
rent compared with the distribution shown in Fig 7.2. The material used in the
tests was a mortar (water-cement-ratio=0.65, maximum aggregate particle size
=4 mm) and the tch-value was assumed to be 150 mm.

In spite of the simplified assumptions the agreement between the calculated
curves and the test results is good and it seems possible to describe the bend
test on unnotched specimens by use of the Fictitious Crack Model. Among other
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things it can be noticed in Fig 7.1 that the dependency of the beam depth on
the flexural tensile strength increases when the specimen becomes subjected
to shrinkage stresses.

7.2.2 Direct tensile tests on prismatic specimens

In Fig 7.3 and Fig 7.4 a new type of grip is presented by which it is possib­
le to determine the tensile strength by direct tests on prismatic specimens.
The grip consists of steel plates on to which wedge-shaped rubber inserts ;are
glued. It is essential that'the inserts are oriented according to Fig 7.3.

F

x

0------(1

c::;> ¢:::l

~. t
Rubber
inserts

•c::> ¢:::l

,50mm l

Fig 7.3 Grips for direct tensile tests.
The wedge-shaped rubber inserts
reduce the stress-concentrations
to a minimum.

Fig 7.4 Tensile test using the
grips in Fig 7.3.
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Each part of the grip is pressed against the specimen at two points; one force
near the end of the specimen and one lesser force close to the free part of
the specimen.

The advantages of these grips compared to ordinary grips may be summarized as
follows:

1. The clamping forces are greatest at the ends of the specimen and
least at the ends of the grips close to the middle of the specimen.
This means that the stress perpendicular to the tensile direction
is small at",the most critical cross section, i.e. at point A in
Fig 7.3, and at this point the stress field becomes almost one di­
mensional.

2. Due to the variable stiffness of the wedge-shaped rubber inserts,
the main part of the load is applied close to the ends of the spe­
cimen and consequently the axial stress grows gradually to its maxi­
mum value, which is shown in Fig 7.3.

3. The loading force at one point gives rise to a non-uniform stress
distribution over the corresponding cross sectional area. The stress
distribution becomes more uniform at a distance 'from the loading
point. As the main part of the loading forces acts close to the ends
of the specimen, the stress distribution becomes fairly uniform at
the end of the grips. Consequently, the stress concentrations at
point A become reduced to a minimum.

4. These grips make it possible to use prismatic specimens,which faci­
litate the manUfacturing of test pieces. Specimens can also be sawn
out from a structure.

The tensile tests presented in 7.5 below were carried out on 177 specimens.
The fracture location distribution for the specimens examined in the test
program is shown in Fig 7.5. The fracture location is defined as the distance
between the position of the fracture load and the centre of the specimen.

In the Figure the position of the clamping grip is shown. As indicated in the
Figure, the rubber insert deforms as the specimen becomes Joaded and the con­
tact between the insert and the specimen is lost over a distance of about 20
rom at the thick end of the insert and consequently the free part of the spe­
cimen increases, in this case, from 80 to about 120 mm in the test.
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Fig 7.5 The fracture location distribution for the 177 direct tensile tests.

As can be seen in the Figure, the fracture locations are well distributed
over the length of the free part of the specimen, which implies that no stress
concentrations or multi-axial stresses affect the distribution and thus the
fracture load. Of course there are a few fracture locations outside the free
part of the specimen but this is quite natural due to the varying tensile
strength along the specimen for an inhomogeneous material such as concrete.

The tensile strength determined by. use of the grips described above has been
compared with the flexural tensile strength for a number of concrete qualities
(Petersson, 1981 and 7.5.5 below) and the ratio ff/f t seems to agree well with
theoretical relations, which also implies that the grips are suitable for de­
termining the direct tensile strength on prismatic concrete specimens.
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7.3 Determination of the Young's modulus (E)

The static Young's modulus is a well defined material property for linear
elastic, non-creeping materials only, otherwise the modulus is affected by,
for example, loading ;'velocity, load i.ntensity and the number of load cycles.
The dynamic Young's modulus (Ed) on the other hand is a well defined mate­
rial property and for this reason it is the dynamic Young's modulus that has
been determined in this work. The dynamic Young's modulus is always higher
than the static Young's modulus, the difference is normally 10-20 %(Bastgen
and Hermann, 1977).

In this thesis a method accord~ng to Vinkeloe (1962) has been used for deter­
mining the dynamic Young's modulus. The method is described briefly below.

According to Vinkeloe there exists a relation between the resonance frequency
of a beam and the dynamic Youngls modulus that can be expressed as:

f2M~3T
Ed = 2 2 (7:2)

C I

where f is the resonance frequency, Mis the mass of the beam, ~ is the beam
depth, T is a correction factor depending on the dimensions and the Poisson's
ratio, C is a constant depending on the mode of oscillation and I is the mo­
ment'.iof inertia for the ,beam.

For the first mode of oscillation the beam will oscillate around two points~

which are located 0.224 ~ from each end.nfthe beam. In the tests these loca­
tions should coincide with the position of the supports. For the first mode
of oscillation, which is used in this work, C is 3.56.

The dimensionless constant T is dependent on the Poisson's ratio and the ra­
tio K/~, where Kfor a beam with a square cross section equals beam depth/
~. In Fig 7.6 T is given as a function of K/~ when the Poisson's ratio is

0.167. However, the curve is very little affected by the Poisson's ratio,
for example, if Poisson1s ratio is changed to 0, the value of T at K/~=0.1

decreases by 1.3 %and when K/~=0.02 (which is the case at the tests presen­
ted in 7.,5) T decreases by 0.4 %•.

In Fig 7.7 a schematic description of the test equipment used for determining
the dynamic Young1s modulus is shown. The specimen (4) is oscillating due to
the vibratiqns caused by the vibrator (3). The frequency of the vibrator is
controlled by a tone generator (1) and a frequency counter (2). The vibrations
of the beam are registered by use of a pick-up (5) and an oscilloscope (6).
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Fig 7.6 Correction factor T as a function of K/i.

®

0.2 KIl

••••
"If'"'''''' ()

® ••••

0"-:"I "

liiiilitiiiiil

•••••

o

Fig 7.7 Testing equipment for measuring the resonance frequency and the
Young I· S modulus on concrete beams. 1=tone generator, 2=frequency
counter, 3=vi brator , 4=specimen, 5=pick-up, 6=oscilloscope.



-109-

The frequency is varied by use ,of the tone generator and the highest amplitude
registered on the oscilloscope gives the resonance frequency and thus the dy­
namic Young1s modulus.

7.4 Determination of the fracture energy (GFl

7.4.1 Introduction

The fracture energy (GF) is defined as the amount of energy necessary to crea­
te one unit of area of a crack and the principle when measuring GF is there­
fore to let a crack propagate a well defined distance and measure the energy
consumption due to the crack propagation. As discussed previously it is very
difficult to define the position of the tip of a propagating crack and for this
reason it seems necessary to measure the total' energy consumption from the
start of crack initiation until the crack has propagated right through the
specimen as this gives a well defined length of the crack propagation path.
It is essential that the fracture, i.e. the crack propagation, is stable as
otherwise uncontrolled energy consumption due to dynamic effects will take
place and it is also essential that the energy consumption outside the fracture
zone is minimized. These problems are discussed in detail below.

There are a number of specimen types that can be used in order to obtain stable
crack propagation, for example double torsion specimenL (cf Wecharatana and Shah,
1980), compact tension specimen (cf Hillemeier and Hilsdorf, 1977), double can­
tilever beam (cf Chhuy, Benkirane, Baron and Francois, 1981) and also direct
tensile test specimens (cf Evans and Marathe, 1968 and Chapter 8 below) ..
However, the most simple specimen that can be used is a notcned beam and in
this case all the work is concentrated on the determination of the fracture
energy by the use of three-point bending on notched beams.

Very few results of ~he fracture energy determined from stable tests are found
in literature. Moavenzadeh and Kugael (1969) measured the energy under the
load-deflection curve for some qualities of cement paste, mortar and concrete.
They related this energy to the actual crack surface and not to the net cross
sectional area and therefore their. results must be considered as some form of
surface energies and not as frac~ure energies. Shah and McGarry (1971) also
measured the energy under the load deflection curve and their results corre­
spond :to values of the fracture energy of 5-33 N/m for cement paste, 20-95 N/m
for mortar and 30-135 N/rn for concrete. It is however doubtful if all their
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tests were carried out in a stable manner and at the evaluation of the tests
the effect of the energy supplied by the weight of the beams was probably
not considered. Harris~ Varlow and Ellis (1972) found values of GF for con~

crete of about 20-120 N/m but also in these tests it is doubtful if the ef­
fects of stability and energy supplied by the weight of the beams were con­
sidered. Modeer (1979) found GF-va1ues of about 10, 60 and 110 N/m for some
qualities of cement paste, mortar and concrete. These tests have been car­
ried out in a stable way and the tests were, at least to some extent, com­
pensated for by the energy supplied by the weights of the beams. Fracture
energy tests have also been carried out on fibre-reinforced materials (cf
Harris, Varlow and Ellis, 1972; Ohigashi~ 1978; Mai, 1979) but these results
are not discussed here.

Even if there are some results of the fracture energy determined on notched
beams, no investigations have been carried out in order to study the applicabi­
lity of the test methods and the usefulness of GF as a material property. For
this reason th~ fracture energy and the usefulness of the three-point bend
test for determining GF are dealt with in detail below.

7.4.2 Stability conditions for three-point bend tests on notched beams

In order to obtain a relevant value of the fracture energy from a three-point
bend test on a notched beam, the amount of energy supplied by the loading
force and the weight of the beam must equal the amount of energy consumed by
the crack propagation. This means that the energy consumption taking place
outside the fracture zone in front of the crack tip has to be minimized. To
fulfil this condition the fracture must be stable, otherwise energy consump­
tion due to dynamic effects will occur.

In order to obtain a stable fracture it is necessary to use a displacement
controlled testing machine as a load controlled machine always produces an
unstable fracture when the maximum load is reached. The crack -must also,
for every point of the load-deflection curve, be able to· consume the amount
of energy that is released from the beam and the testing machine during the.
deformation.

Cooper (1977) and Modeer (1979) calculated conditions of stability for three­
point bend tests on notched beams for the linear elastic case. According to
their results it is almost impossible to obtain a stable fracture for cemen­
titious materials unless the ratio notch depth/beam de.pth (a/d) is very large
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and the test is performed in a very stiff testing machine. However, as dis­
cussed before," concrete is far from being an ideal linear elastic material
and below it is shown how this makes it much easier to fulfil the conditions
of stability.

In Fig 7.8 an example of a stable load-deflection curve (F-8 curve) is shown
for a three-point bend test on a notched beam. The total amount of energy,

Qb' necessary to deflect the be~m a distance 01 can be calculated from the
F-o curve. Qb is affected by the strain energy release of the beam when the
crack propagates as well as the amount of energy consumed by the slow crack
propagation:

·°1
Qb = S' F(o)do

o

(7:3)

In the total test arrangement, the energy release and consumption of the tes­
ting machine must "als.o be considered. The stiffness, k, of the testing machi­
ne is defined as:

F

. Fig 7.8 A load-defl~ttio~. curve for a thr~e-point bend" test on a notched
beam. The energy consumption necessary to deflect the beam a dis­
tance 01 is Qb.



k - F
- oM

-112-

(7:4)

where F is the load applied to the testing machine and oM is the deformation
of the testing machine due to the load F.

The stiffness of the testing machine determines the energy consumption of the
testing machine, QM' when the beam is deflected a distance 0:

(F(0))2

2k (7:5)

In order to obtain a stable fracture, the derivative of the total energy con­
sumption has to be positive for any value of 0:

(7:6) gives the condition of stability:

k->' _ aF(o)
'. ao (7:7)

(7:1) implies that the stiffness of the testing machine has to be greater than
the steepest slope of the descending part of the F-8 curve, in order to obtain
a stable fracture.

By use of the Fictitious Crack Model, F-o curves can be calculated for diffe­
rent beam geometries and material properties. Conditions of stability can;
then be derived from (7:7). Results from such calculations are presented in
Fig 7.9 b-f. In the calculations the cr-W curve was approximated with a.s;-ngle,
straight line (SL). In Fig 7.9a conditions of stability for the linear elastic
case according to Mod~er :(t!79)' are shown.

The geometrical parameters affecting the stability are tid, aid and b (t=beam
length, d=beam depth, b=beam width and a=notch depth). The material proper-
ties affecting the stability, for a given shape of the cr-W curve, are the cha­
racteristic length (tch ) and the Young's modulus. The stability is also affec­
ted by the stiffness of the testing machine (k). The energy stored in the machi­
ne is directly proportional to E, b and 11k and consequently directly pnopor­
tional to Eb/k.

The curves in Fig 7.9 show that the conditions of stability are strongly af­
fected by the ditch-value. A specimen of cement paste with a depth of 25 mm
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Fig 7.9 Conditions of stability for a three-point bend test on a notched beam.
The areas of stability are limited by the curves and the axis. The
Figure is rel~vant when the a-W curve is approximated with a single,
straight line.
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has a ditch-value of about 2-4. Although this material is normally conside­
red to be very brittle, the curves of stability noticeably differ from those
calculated with the assumption of a linear elastic material. A concrete spe­

cimen with a depth of 50 mm has a ditch value of about 0.2.. As seen in the Fi­
gure, these curves differ completely from the linear elastic case and the con­
ditions of stability according to the linear elastic case are much too hard
for concrete.

When determining GF, all the beams have to fail in a stable manner, otherwise
a systematic error will occur. When using the mean~alue of ditch about 50 %

of the beams will fail in an unstable manner. This is a reason why the d/tch ­
value ought to be increased somewhat before using Fig 7.9.

In Fig 7.10 conditions of stability are shown for three different values of
ditch when the cr-W curve is approximated with two straight lines according
to Fig 6.3 (unbroken lines). The dashed lines correspond to the results in Fig
7.9. As can be seen, the conditions of stability are ;'considerab'ly'harder for'
the single liil·e. approximation o-f the eJ-W curve than when the'c~rve is a,pp·roxi-

mated with two straight lines. This can be explained by the fact that the les­
ser the slope of the cr-W curveslis directly after the maximum stress, the
higher the fracture load becomes and, for the same value of GF, the steeper
the descending part of the load-deflection curve becomes, compare Fig 6.5.
However, as the conditions of stability in Fig 7.9 are on the safe side, they
can normally be used for concrete and similar materials, esp.ecially as the con­
ditions are relatively mild. For example, for a concrete beam with the dimen­
sion 100 x 100 x 1000 mm3 and the relative notch depth 0.5, the stiffness of
the testing machine has to exceed about 10,000 N/mm in order to obtain a stable
fracture (ich and E are assumed to be 200 mm and 40,000 MPa respectively). Most
modern testing machines fulfil this condition. Where fibre-reinforced materials
are concerned other conditions of stability naturally have to be used but these
materials normally have such high tch-valqes that there are no problems in
achieving stable ftactures.

7.4.3 Evaluation of the GF-test

When carrying out stable three-point bend tests, energy is not only supplied
by the load but also by the weight of the beam. The effect of the energy supp­
lied by the 'weight of the beam can be eliminated if the length of the beam is
twice the distance between the supports according to Fig 7.11a. Of course shor­
ter beam lengths can be used if the moment caused by the weight of the beam is
compensated for by weights at the ends of the beam according to Fig 7.11b.
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(Specimens according to Fig 7.11 are here called compensated beams). If this
method is used then the fracture energy is directly obtained as:

(7:8)

where A = the area under the stable load-deflection curve, d=beam depth,
a=notch depth and b=beam width.

F

a)

1/4
/

1/2

F

l/4

b)

Fig 7.11 a) The energy supplied by the weight of the b~am can be compensated
for by using a beam with the length equalizing twice the dis­
tance between the supports

b) The energy supplied by the weight of the beam can also be com­
pensated for by:using weights at the ends of the beam.

When using the methods described in Fig 7.11 for evaluating' GF, some 'problems
may arise. The beams have to be long which can give rise to problems in the
performance of the test. Another problem: is that there will be a long Iltail ll

on the load-deflection curve,see Fig 7.12. Theoretically this tail will be in­
finitely long. The area under the curve is preferably measured by using a pla­
nimeter and then the long tail can cause problems. A small fault in the balan­
ce of the system can also give rise to substantial errors due to the long tail.
For these reasons it would be better if the test could be stopped at a certain
moment but this is only possible if the effect of the weight of the beam' can
be estimated.
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Fig 7.12 A load-deflection c~rve for a stable thr~e-point bend test on a
notched beam. The shaded area (A ) defines the area under the load­
deflection curve if there is no ~ompensation for the energy supplied
by the weight of the beam.

If there is no compensation for the effect of the weight of the beam, ; .~e. an
uncompensated beam, then the beam will fail at a point corresponding to the
load Fo on the compensated load-deflection curve, see Fig 7.12. Fo can be found
by equating the moment due to Fo and the moment due to the weight of the beam:

(7:9)

where m = weight per unit length of the beam, M= weight of the beam (between
the supports) and g = 9.81 m/s2•

When using the uncompensated beam for determining GF the area under the load­
deflection curve corresponds to the area A1 in Fig 7.12. This method is use­
ful only if it is also possible to· estimate the energies corresponding to
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A2, A3 and A4 in the Figure. Normally A4 is so small (less than 1 - 2 %of
the total area) that it can be neglected. The area A2 equals F

0
5

0
(where 50

is the deflection at the final fracture of the uncompensated beam) and con­
sequently:

(7:10)

For small values of the load (on the descending part of the curve) it is fair
to assume that the beam is divided into two rectangular pieces which are only
connected by the fracture zone, see Fig 7.13. It is assumed that the sides of
the crack and the fracture zone are plane and that the compression zone is con­
centrated on'l~;a:p:oint "a:t the top of the beam. This of course is an approximation
as there always exists a compression zone at the top of the beam. However, it
can be shown that the discussion below is relevant also when there exists a
compression zone if the stress distribution over the remaining ligament.ds
assumed to be uniformly changed as the depth of the fracture zone decreases.

For a given beam according to Fig 7.13 and defined'~at~rial properties:;the
depth of the fracture zone (dF) is, when a real crack has started to propa­
gate, reciprocally proportional to the deflection of the beam (0), i.e.:

C1
dF =­

o· (7:11.)

whereC1 is a constant. Both the total closing force and the moment arm are
proportional to dF and consequently:

F

Fig 7.13 An approximative description of the last phase of a stable three­
point bend test.
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(7:12)

where C2 is a constant. The area A3 in Fig 7.12 then can be calculated as:
00 00

and consequently, according to (7:9) and (7:12):
Mgo oA3, = F Q,. ' :: ---rr--

0 1 )0 L
(7:13)

This means that the value of A3 equals A2 and, when using the uncompensated
beam, the expression for GF is:

, A1+Mgoo
GF = b{d-a) (7:14)

I~ order to study the relevance of (7:14), tests were performed on beams where
the effect of the weight of the beam was compensated for by using weights ac­
cording to Fig 7.11b. The total area under the load-deflection curve was deter­
mined and Fo was calculated by use of (7:9). After this the areas A1, A2, A3
and A4 according to Fig 7.1'2 could be determined and then the results derived
from (7:14) could be compared with the true values determined by use of (7:8).

Two different beam depths were used, 50 mm and 200 mm respectively. The widths
were 50 mm and the relative notch depths 0.5 for all the beams. Cast notches
were used for the 200 mm deep beams and sawn not~hes for the 50 mm deep beams.
The widths of the notches were 4 mm.

The mix proportions of the concrete used in the tests are presented in Table 7:1.
Tests were performed for two different ages of the concrete, 7 and 28 days res­
pectively.

Table 7:1 Mix proportions for the concrete used for analysing
different evaluation methods of the GF-test.

Cement (ordinary Portland) 367 kg/m3

Water 220 kg/m3

Aggregate 0-4 mm (not crushed) 837 kg/m3

Aggregate 4-8 mm (crushed quartzite) 837 kg/m3
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The 200 mm deep beams were cast in plywood moulds and the 50 mm deep in steel
moulds. The specimens were stored under wet sackcloth until the time for the
test and the beams were kept wet during the testing. The loading velocity was
chosen so that the maximum load was reached about 30 seconds after the test
started.

In Table 7:2 the results for all the beams are shown. Results representing four
alternative evaluation methods are presented. Alternative I corresponds to
the area under the load-deflection curve for the uncompensated beam, which
means that no corrections are made for the energy supplied by the weight of
the beam. Alternative II means that the area A2 is included when calculating
GF but not the area A3. Alternative III corresponds to (7:14), which means that
both A2 and A3 are considered. Alternative IV represents GF-values calculated
by use of the area under the load-deflection curve for beams where the energy
supplied by the weight of the beam is compensated for and these values can
therefore be considered to be true. In the last column of the Table the diffe­
rences between Alternative III and Alternative IV, calculated as ((Alt 111-
Alt IV)/Alt IV).x 100 %, are shown.

As can be seen in the Table the energy supplied by the weight of the beam af­
fects the results considerably. This is illustrated in Fig 7.14, where the
areas A1, A2, A3 and A4 are shown for two of the beams used during the tests.
For the 50 mm deep beam the GF-value according to Alt I must be compensated
for by about 50-60 % in order to correspond to the true value of GF and for
the 200 mm deep beam the compensation has to be about 150-250 %! However,
in spite of the great effect of the weight of the beam, the results according
to Alt III seem to be in godd agreement with the true values. For the 21

50 mm deep beams there are only two GF-values according to Alt III differing
from the true values by more than 5,2 %and the differences between the mean
values according to Alt III and Alt IV are only about 1 %. Due to the wide
scatter in the test results, these small differences can normally be neglected.
For the 200 mm deep beams the differences between the values ac~ording to Alt
III and Alt IV are naturally greater but they are still astonishingly small
compared with the great corrections that have to be carried out. No indivi­
dual corrected value differs more·than 15 %from the true" value, only,3'out'of
12 differ more than 10 % from the true value and the two mean values differ
only by 7,8 %and 3,2 %respectively from the true mean values. The latter dif­
ferences are negative and would decrease to 6,4 %and 1,8 %respectively if
the area A4 was considered, see Fig 7.14.
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Table 7:2 GF values evaluated by using different methods.

Age Beam GF(N/m) Difference between
depth alt III .and.".alt ltV

Alt I Al t II Alt III Alt IV
days mm no cor- no cor- corrected "true va1ue %

rection rection for for weight
GF=A1/ A3 of beam

GF.=(A~+A2)/ acc. to
(d-a)b (;(j-a) Ii (7:14)

62.0 78.1 94.2 90.4 4.2
56.2 71 .1 86.0 87.6' -1.9
47.9 62.5 77 . 1 79.6 -3. 1
53.2 71.5 89.8 88.1 1.9

7 50 48.0 62.7 77.4 79.7 -2.9
65.4 87.5 109.6 106.0 3.4
63.7 83.8 103.8 101.0 2.8
60.2 78.8 97.4 102.0 -4.5
46.1 61.6 77.2 85.6 -9.8
77.8 97.0 116. 1 121.4 -4.4

mean values: 58.0 75.5 92.9 94.1 -1.3

44.2 85.9 127.7 130.5 -2. 1
33.0 64.3 95.5 101.4 -5.8

7 200 31.4 67.2 103.0 116.3 -11 .4
23.2 54.8 86.4 87.2 -0.9
24.2 54.2 84.2 98.8 -14.8
36.8 73.4 110.0 124.0 -11.3

mean values: 32.1 66.6 101 •1 109.7 -7.8

65.3 80.5 95.7 91.0 5.2
65.2 82.0 98.7 96".0 2.8
85.4 103.4 121.4 126.4 -4.0
64.7 79.1 93.4 94.0 -0.6
63.8 77.6 91.4 92.0 -0.7

28 50 58.1 78.6 99.1 109.3 -9.3
70.2 89.0 107.8 107.0 0.7
58.3 74.8 91.3 90.7 0.7
80.7 100.2 119. 7 114.0 5.0
58.2 73.1 88.0 90.3 -2.5
55.2 75.4 95.6 101 •1 -5.4

mean.values: 65.9 83.1 100.2 101 .0 -0.8

41.5 89.1 136.6 138.2 -1 •1
36.7 73.6 110.5 120.3 -8.2

28. 200 44.2 82.4 120.6 119.0 1.3
47.0 84.8 122.7 122.0 0.6
36.4 70.8 105.2 114.4 -8.0
38.2 83.1 128.0 134.0 -4.4

m'ean va1ues 40.7 80.6 120.6 124.6 -3.2
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Fig 7.14 Illustration of the areas A1 , A2 , A3 and A4 for two beams used in
the tests. The curves correspona to beam "depths of 50 mm (top)
and 200 mm (bottom) respectively.
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As mentioned before the evaluation method according to Alt III has some advan­
tages compared with the evaluation method according to Alt IV; smaller speci­
mens can be used and it is easier to measure the area under the load-deflec­
tion curve. As the differences between the results from the two methods are
so small, the test method according to Alt III~ i.e. according to (7:14),
seems preferable in most cases.

7.4.4 GF as a material property

A material property must fulfil two criterions; it must be independent of spe­
cimen geometry and it must be independent of the type of loading. In order to
check whether the fracture energy fulfils these criterions, GF-determinations
were carried out on four different specimen geometries, see Fi.g 7.15, of which
two were subjected to three-point bending and two to direct tension.

The types of specimens denoted I and II are notched beams, which were tested
in three-point bending. The depths of the beams were 50 mm and200 mm respecti­
vely. These beams are in fact indentical to those used in the tests presented
in 7.4.3, which means that the energy supplied by the weight of the beam was
compensated for by using weights and Gr was evaluated by the use of (7:8)i.

The concrete quality used is shown in Table 7:1. The testing procedure and
the preparation of specimens are discussed in 7.4.3 but a few supplementary
comments have to be made. For both the beam dimensions the relative loading
velocity was the same, which means that the ratio load/maximum load as a func­
tion of the time was identical for the two types of beams. Thi maximum ~oad

was reached about 30 seconds after the start of the test. Cast notches were
used for the 200 mm deep beams and sawn notches for the 50 mm deep beams. When
cast notches are used, the material close to the notch tip will be disturbed
during the casting. This disturbance ought to affect the GF-value more for
small beams than for large beams and for the 200 mm deep beams this influence
on the GF-value is assumed to be small. When sawn notches are used there is

. no such disturbance of the material in front of the notch tip.

GF was also determined by using completely different specimen types denoted
III and IV. The specimens were cast in steel moulds and were stored in the
same way as the beams until one day before testing. During the last day these
specimens were insulated with plastic foil and stored in the air.

By using the stiff tensile testing machine described in Chapter 8 stable ten­
sile tests were carried out on the two latter types of specimens. The area
under the load-deformation curve includes not only the amount of energy consu-
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Fig 7.15 The fou'r types of specimens used in the tests. The dimensions are
given in mm. S=length between the supports.
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med by the fracture zone but also the amount of energy consumed by the material
outside the fracture zone before the tensile strength is reached, compare"
Chapter 3. In order to obtain the energy consumed by the fracture zone, the
shaded area in Fig 7.1.6 must therefore be substracted from the total area un­
der the curve. The shaded area is defined by the increasing part of the a-o
curve and the unloading curve for th~ material outside the fracture zone. The
unloading curve is assumed to be parallel with the initial slope of the a-o
curve, compare 8.1. GF then is calculated as the reduced area divided by the
cross sectional area of the specimen. The loading velocity was chosen so that
the maximum load was reached about 60 seconds after the start of the test.
All the tests were" carri"ed'out on;we"t specimens, exactly the same as for the
beams.

The results are presented in Fig 7.17 and Fig 7.18. As can be seen in the Fi­
gures, the mean values. of GF for the 7 days old concrete varies between 86 N/rn
and 109 N/m and for the 28days old concrete between 98 N/m and 124 N/m. These
variations must "be considered "as small, especially if they are compared with
the variations between the values of the critical strain energy release rate
(Gc) for the same specimens, see Fig 7.19. The mean values of Gc vary between
3 N/m and 23 N/m for the different specimen geometries. The Gc-values are
calculated by use of ordinary linear elastic relations (of course there are
no Gc-values for the unnotched specimen as Gc is defined only for notched
structures) and E ;s assumed to be 30~OOO MPa, which ougth to be a normal va-

Fig 7.16 When determining G by using a stable tensile test, the energy con­
sumption due to ir~eversible strains outside the fracture zone, i.e.
the shaded area in the Figure, must be substracted from the total
energy consumption.
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Fig 7.17 G -values for a 7 day old concrete determined on different types of
s~ecimens. Each circle represents a single specimen and the dashed
lines represent mean val~es.

lue of the static Young1s modulus for this material. It can be noted that the
differences between the Gc-values for the different beam depths are in good
agreement with the calculation results presented in Fig 6.14.

According to these test results, GF seems to be useful as a material property
for concrete and it is superior to the critical strain energy release rate.
However, GF seems-to be slightly affected by the beam depth. There are some
possible explanation for this size dependency and one of these is that the
energy consumption outside the fracture zone due to the non-linearity of the
cr~£ curve may affect the GF-value more for deep beams than for low ones. Nor­
mally the energy consumption outside the fracture zone is assumed to be negli­
gible. In order to study whether this ~ssumption is realistic or not, finite
element calculations were carried out on notcned beams wi-th different beam
depths and the development of the stress field around the crack propagation
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Fig 7.18 GE-values for a 28 day old concrete determined on different types
of specimens. Each circle" represents a single specimen and the
dashed lines represent mean values.

path was registered during the propagation of the fracture zone. By comparing
the stress field with non-linear 0-£ curves for concrete, the energy consump­
tion outside the fracture zone can be estimated. Of course more complicated
non-linear finite element calculations would give better results (the non­
linear zone around the fracture zone would probably be slightly larger), but
for rough estimations the simple method described above ought to be useful.

·The finite element mesh used in the calculations is presented in Fig 7.20.
Due to the symmetry only half the" beam had to be considered. The two beams
used in the calculations correspond to the beams used in the tests presented
above (dx b x t = 50 x 50 x 500 mm3 and 200 x 50 x 2000 mm3, aid = 0.5). The
calculations were carried out by use of calculation method II (superposi"tion),
see 4.3, and in the calculations the a-W curve was approximated with a
straight line.
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Fig 7.19 Go-values (critical strain energy release rate) for a 28 day old
concrete determined on different specimen geometries. Each circle
represents a single specimen and the dashed lines represent mean
values. \

The highest value of the first principal stress obtained in the calculations
was registered for each element. In Fig 7.21 lines connecting points with iden­
tical maximum values of the first principal stress are presented for the two
beam depths (observe the different vertical scales). The curves are obtained
by use of in.terpolatfon between the stresses in the middle of the elements.
The results are relevant for a material with a ~ch-value of 250 mm, i.e. a
normal concrete quality. The unbroken lines are calculation results, while
the dashed lines are estimations. It is assumed that the extension of the non­
linear tensile zone is zero at the top of the beam, whicn is explained by the
fact that a compression zone 'must always exist in this region, even when the
fracture zone has almost reached the top of the beam.

The results in Fig 7.21 are of interest only if they can be compared with a
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Fig 7.21 Lines connecting points with identical maximum values of the
first principal stress. The results are relevant for 50 mm deep
(top) ·and 200 mm deep (bottom) beams respectively.
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non-linear 0-8 curve for concrete. According to test results presented by
Hughes and Chapman (1966) and Evans and Marathe (1968) the a-8 curve for conc­
rete seems to be almost linear up to 70 %of the tensile strength and the to­
tal strain seems to be about twice the elastic strain at the fracture stress.
If the unloading curve-for each point is assumed to be parallel with the ini­
tial ~lope of the curve, then the 0-8 curve in Fig 7.22 can be used as an app­
roximation for the concrete quality used in the tests (ft = 3.5 MPa, E= 30~OOO

MPa) .

As the irreversible deformations seem to be very small up to 70 %of the ten­
sile strength, it is only the material volume inside the line denoted 0.7 f t
in Fig 7.21 that has td be considered when estimating the energy consumption
due to the non-linear a-g curve. In order not to underestimate this energy
consumption it can be assumed that· the total material volume inside the line
denoted 0.9 f t has been subjected to the stress f t , the material volume bet­
ween the lines denoted 0.9 f t and 0.8 f t has been subjected to the stress
O~9 f t and ~9 on.

(J(MPa)

E=30J OOO MPa
3.5--.----------r--'----=-------===;;;;;;;;;;iiiii~..,.

O.7ft

0.1

Fig 7.22 An approximate non-linear a-g curve for the concrete quality used
in the tests and the calculations.



-132-

On these assumptions the energy consumption due to the non-linearity of the
0-£ curve is about 3.3 Nmm for the 50 mm deep beam and about 26 Nmm for the

200 mm deep beam, which, means that the GF value is overestimated by about 2.5
N/m for the low beam and by about 5 N/m for the deep beam (b=50 mm for both
the beams). These values are probably overestimations but yet they can be con­
sidered as small and it seems as though the effect of the energy consumption
due to the non-linearity of the 0-£ curve can normally be neglected. However,
as GF is overestimated more for the deep beam than for the low beam, this
explains, at least to some extent, the small discrepancy between the GF-va­
lues determined on beams of different depths.

As mentioned before the'same relative loading v.e·Tocity was used for both the
beam depths when GF was determined by use of the three-point bend test. This
however means that the loading velocity in the fracture zone must be higher
for the 200 rom deep beam than for the 50 mm deep beam as the fracture zone
has to propagate a longer distance in the deeper beam. It has not been inves­
tigated how the loading velocity in the fracture zone affects the results but
it may cause a small size dependency of GF. Furthermore, it is almost impossible

I

to obtain identical curing conditions for concrete specimens of different si-
zes. For example, the temperature always rises more in a large specimen than
in a small one during the curing period and this normally affects the develop­
ment of the material properties. This means that G'F can be slightly different
for different sizes of specimens, even if they are ·cured in the same environ­
ment. These effects can never be eliminated.

As can be seen there are many explanations to why GF for concrete can be size
dependent. For this reason the very small variation of the GF-values determined
by the use of quite different methods and different specimen geometries must be
ac.cepted and GF ~·c·an: be cons·i··de·red ~to·· be a us'e~ful' i11ate~fal proper'ty ·fo·r concrete.

7.4.5 Suitable specimen dimensions for ~the GF test

There are many factors that must be considered when choosing suitable speci~

men dimensions for the GF-test. ~hese factors are listed and discussed below.

1. The capacity and dimensions of the testing machine limit the range
of possible specimen dimensions. It must also be possible to hand­
le the specimen during the test~

2. The fracture must be stable. A suitable specimen geometry can be
chosen from the material properti:es, the stiffness of the testing
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machine and Fig 7.9. Points 1 and 2 often greatly limit the possi­
bilities of choosing specimen geometry.

3. The energy consumption due to irreversible defonmations in the spe­
cimen outside the fracture zone, which is discussed in 7.4.4, must
be minimized. To fulfil this the aid-value ~hould' not be too small.
The aid-value ought to be equal to or larger than 0.5.

4. The scatter ought to be minimized. GF is a mean value o'J"er the area
through which the crack runs. This area decreases and the scatter
increases when the depth of the notch increases. For this reason,
a small aid-value ought to be chosen. However, this opposes point
3. An aid-value of 0'.5 can be used as a compromise.

5. Energy consumption due to irreversible processes at the supports
may occur." 'This is minimized if the beam is long and slender.

6. If the GF-test is carried out on an uncompensated beam, see 7.4.3,
it is then suitable if the fraction of energy supplied by the weight
of the beam is as small as possible, as this is less controlled than
the energy supplied by the testing machine. The fraction of energy
supplied by the weight is' minimized i-f the beam is small and the'
ratio beam depth/beam length is large. This ;'s' contrary to point 5.
The resistance to irreversible processes at the supports, the spe­
cific gravity and the fracture mechanical properties of the mate­
rial will determine from case to case whether point 5 or point 6
is the most important factor. (Point 6 should not be considered if
compensated beams according to Fig 7.11 are used).

7. The beam has to be representative of the material. The dimensions
will then be determined by the largest irregularities in the ma­
terial. A fair assumption is that the smallest dimensions of the
specimen ought to exceed the size of the largest irregularities
(aggregate particles, pores, etc) at least four times.

8. Another factor that has not been discussed so far is the effect of
the radius of the crack tip. This ought to be as small as possible
and not exceed the 'dimensions of the irregularities in the material.

All the points listed above cannot be fulfilled at the same time. One has to
compromise. However, point 2 must always be fulfilled, the fracture has to be
stab1e 'under any condi ti on .'
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7.5 Experimental investigation of the fracture mechanical properties .of
concrete

7.5.1 Testing procedure

Tests were performed in order to study three fundamental fracture mechanical
properties of concrete; the dynamic Young's modulus (Ed)' the fracture energy
(GF) and the tensile strength (ft ). Besides these properties the flexural ten­
sile strength (ff) and the compression strength (f ) were also determined. All. c
these properties can be determined on a single specimen, which is demonstra-
ted in a simple example in Fig 7.23.

MATER.lAL PROPERTY SPECIMEN

c<:

01 Dyn. Young's modulus I
n

2 "Fracture, energy ]I
~ \;~

4d% ~
3 Te.nsile strength

"-

[
.lL

[l4 Flexural tensile strength

1111--- ]5 Compression 5 trength ,I U ~
I 1.1 I

Fig 7.23 Test program for determining most of the fundamental mechanical pro­
perties of concrete on a single speci~en.

In the tests the program describe~ in Fig 7.23 was used for determining all
the properties except the compression strength, which was determined on spe­
cimens with dimensions better fitted for available testing equipment. All the
tests were performed on wet specimens.

First the dynamic Young's modulus was determined by use of the method descri­
bed in 7.3. Th~ specimen dimensions were 50 x 50 x 640 mm3. After this a 4 mm
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wide and 25 mm deep notch was sawn in the middle of the beam. The notched
beam was subjected to three-point bending in order to determine the frac­
ture energy and the test arrangement is presented in Fig 7.24. The distance
between the supports ~as chosen as 600 mm, which with the actual testing
machine (stiffness =5,000 N/mm) always resulted in stable fractures, com­
pare Fig 7.9. ~s this test arrangement does not allow compensation for the
energy supplied by the weight of the beam, the evaluation method according
to (7:14) had to be used. For all the specimens the ligament was measured
after the test by use of vernier callipers. A typical load-deflection curve
for a GF-test on concrete is shown in Fig 7.25.

During the GF-test the beam was divided into two 320 mm long pieces. One of
these was used for determining the tensile strength by use of the method pre­
sented in 7.2. The other piece was used for determining the flexural tensile
strenght by use of three-point bend tests where the distance between the sup­
ports was 200 mm. The supports used in these tests were the same as those
used in the GF-tests, see Fig 7.24.

Finally the compression strength was determined on cubes with a side length
of 40 mm. The" cubes were sawn out from beams with the dimensions 40 x 40 x
160 mm3 and the load was applied to the sawn surfaces.

The five test methods are illustrated in Fig:s 7.26-7.30.

~-'-- --..I~2_5_m_m ....- 150 mm
...Roller BaIt

/

+-------------~,~
600 mm

Fig 7.24 Test arrangement used for th.e GF-test.
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Fig 7.25 A typical stable F-o curve from the GF-tests. The deformation in­
cludes the deformations of the testing machine. The curve is rele­
vant for mix 1 in Table 7:3 below.

Fig 7.26 Determin·ation of the dynamic Young's modulus (Ed).
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Fig 7.27 Determination of the fracture energy (GF).

Fig 7.28 Determination of the flexural tensile strength (ff).



Fig 7.29 Determination of the ten­
sile strength (ft ).
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Fig 7.30 Determination of the compres­
sion strength (fc).

7.5.2 Materials and mix proportions

The experiments were carried out in order to study the effect of the following
factors ·on the fracture mechanical properties of concrete; type of aggregate,
water-cement-ratio, volume fraction' of cement paste, maximum aggregate partic­
le size and age of concrete. The factors were varied one~by one and the mixing
proportions and the testing ages for the concrete qualities that were studied
are presented in Table 7:3. Ordinary Portland cement was used. The same quali­
ty of aggregate 0-4 mm, nature material (not crvshed) with a modulus of fine­
ness of 2.5, was used in all the mixtures and the content of aggregate 0-4 mm
was always 43 %by volume of the total aggregate content. When varying the
maximum aggregate particle size, aggregate >4 mm was composed according to
Table 7:4.

As. can be seen in Table 7:3" there are no differences between the mixtures 1,
7, 10, 13 and 17. This concrete composition and age can be considered to be
a reference concrete quality.
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Table 7:3 The mixtures and testing ages for the concretes used in the
tests. The factor that was studied for each case is marked
with a circle. (Q=crushed quartzite~ G=gravel (sea-bottom
material), LS=crushed lime-stone, EC=expanded clay).

Mixture Type of ~Jater-Ce- Cement Paste Maximum Age of Cement-
aggrega- ment-Ratio Aggregate Particle concrete Sand (0-4)-
te >4 mm (Vol) Size (mm) (days) Grave"l (>4)-

Ratio (by
weight)

1

~
0.5 0.5 12 28 1.0:2.04:2.71

2 0.5 0.5 12 28 1.0:2.04:2.77
3 @ 0.5 0.5 12 28 1.0:2.04:2.64
4 ® 0.5 0.5 12 28 1.0:2.04:0.72

5 Q 0.3 0.5 12 28 1.0:1. 55 :.2 . 05
6 Q 0.4 0.5 12 28 1.0:1.80:2.38
7 Q 0.5 0.5 12 28 1.0:2.04:2.71
8 Q 0.7 0.5 12 28 1.0:2.55:3.38

9 Q 0.5 .4 12 28 1.0:2.60:3.44
10 Q 0.5 0.5 12 28 1.0: 2. 04: 2. 71"
11 Q 0.5 0.6 12 28 1.0:1.68:2.23

12 Q 0.5 0.5

~
28 1.0:2.04:2:71

13 Q 0.5 0.5 28 1.0:2:04:2.71
14 Q 0.5 0.5 @ 28 1.0:2.04:2.71

15 Q 0.5 0.5 12

~
1.0:2:04:2.71

16 Q 0.5 0.5 12 1.0:2.04:2.71
17 Q 0.5 0.5 12

~
1.0:2:04:2.71

18 Q 0.5 0.5 12 91 1.0:2.04:2.71

Table 7:4 Composition of aggregate >4 mm.

Max particle Aggreg"ate Aggreg,ate Aggregate
size (mm) 4-8' 'mm 8-12' mm 12-16 mm

8 100 % - -
12 50 % 50 % -
16 33 1/3 % 33 1/3 % 33 1/3 %
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7.5.3 Preparation of specimens

For each concrete mixture 6 specimens (50 x 50 x 640 mm3) were cast on two
different occasions, i.e. a total of 12 specimens for each mixture. the spe­
cimens were stored in 100 %. RH and +20oC during the first 24 h after casting
and then stored in lime saturated water (+20oC) until the time for testing~'

After the Ed-test the 25 mm deep notch· was sawn by using a diamond saw. All
the tests were carried out on wet specimens. The compression strength was tes­
ted for each mixture on six specimens, which were sawn out from two beams.

7.5.4 Results

The results from the tests are presented in Table 7:5 and Fig:s 7.31-7.35.
In Table 7:5 90 % confidence intervals of the compression strength and the
flexural tensile strength are shown. The 90 %confidence intervals of f t , Ed'
GFand ~ch .are presented in Fig:s 7.31-7.35. When calculating the confidence
intervals of lc~' the mean values and the standard deviations of f t , Ed and
GF were used.

7.5.5 Discussion

As can be seen in Fig 7.31, all the fracture mechanical parameters are great­
ly affected by the quality of the aggregate. The two stronger aggregates,
crushed quartzite and gravel, produce higher values of GF than the t~o wea­
ker aggregates, crushed lime-stone and expanded clay. The explanation being
the difference of the crack propagation path. For the stronger m~terials,

especially for gravel, the crack runs around the aggregate particles,· produ­
cing a large crack surface and a high value ofGF• For the weaker materials
the crack runs through the aggregate particles, consequently making the crack
surface and GF small, see Fig 7.36. A strong aggregate material with a strong
bond probably also causes a more complex micro-crack formation in the paste
than a weak aggregate material with a poor bond. Naturally the fracture ener­
gy is also affected by the GF-value of the aggregate, at least when the crack
passes through the aggregate particles, which explains the very low value for
t~e concrete containing expanded clay.

When a composite is subjected to load there will always be stress concentra­
tions in the material due to the difference between the Young's modul~us of ·the
components. These stress concentrations decrease as the difference between the
Young's modulus of the components decrease. According to the test results it
seems as though the Young"s modulus of the lime-stone is low and this is one
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Table 7:5 The compression strength and the flexural tensile strength for the'
concrete qualities used in the test. The figures represent 90 %
confidence intervals.

Mixture Characteristic Parameter Compr. Flex. tens.'.
No. Stren~th Strength

(MN/m ) MN/m2
40 mm cube Beam depth=50 mm

1 Crushed 52.3-54.8 7.3 -7 . 7

Aggre-
Quarzite

2 gate Gravel agg. 38.2-49.5 6.4-7.0
(Sea-bottom-mat.)

3 Crushed 58.0-61.6 7.5-8. 1
Lime-stone

4 Expanded Clay 17.8-21.8 3.9-4.2

5 0.3 83.1-88.7 8.5-8.9
6 Water- 0.4 71.2-76.8 8.2-8.6
7 Cement- 0.5 52.3-54.8 7.3-7.7
8 Rat'i 0 0.7 28.4-31.1 5.3-5.6

9 0.4 53.7-58.0 7.1-7.6

10 Vol. cern. p. 0.5 52.3-54.8 7.3-7.7
Vol. aggr.

. 11 0.6 51.0-57.7 6.9-7.4

12 Max. 8 47.1-58.3 7.3-7.7
13 Particle 12 52.3-54.8 7.3-7.7
14 Size (mm) 16 53.3-57.2 6.9-7.5

15 Ag·e of 2 24.6-27.5 3.5-3.9
16 Concrete 7 38.6-4.6.2 5.7-6.2

'.

17 (days) 28 52.3-54.8 7.3-7.7
18 91 59.4-66.6 7.8-8.2
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Fig 7.31 Relations between the fracture mechanical properties and the quali­
ty of aggregate. M=c~ushed quartzite, G=gravel, LS=trushed lime­
stone, EC=expanded clay. (Mix 1-4).
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Fig 7.32 Relations between the fracture mechanical properties of the con-.
crete and the water-cement-ratio.(Mix 5-8). Wo/C=water-cement-ratio.
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Fig 7.33 ~elations between the fracture mechanical properti.es of the con­
crete and the ratio volume cement paste/volume aggregate (CP/A).
(Mix 9-11).
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Fig 7.34 Relations between the fracture mechanical properties of the con­
crete and the maximum particle size of aggregate. (Mix 12-14).
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Fig 7.35 Relations between the fracture mechanical properties of the con­
crete and the age of the concrete. (Mix 15-18).
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Fig 7.36 In the gravel concrete (left) aggregate particles are extracted
from the paste, while the fracture surface runs through the par­
ticles in the lime-stone concrete (right).

explanation for the high tensile strength of the lime-stone concrete. Another
explanation is that the adhesion between the aggregate particles and··.thece­
ment paste is probably better for the lime-stone than for the other types of
aggregate.

The low value of GF for the lime-stone concrete together with the high value
of f t produces a low value of ~ch. This material, and also the concrete con­
taining expanded clay, can therefore be considered as much more IIbrittle ll

than the two concrete qualities containing crushed quartzite and gravel respec­
tively.

The tensile strength and the Young1s modulus decrease, as expected, when the
water-cement-ratio increases, see Fig 7.32. Also GF decreases when the water­
cement-ratio increases, at least when the water-cement-ratio exceeds 0.4. ~Gh

seems to be constant for water-cement-ratios up to 0.5 after which' ~ch increa­
ses markedly. This implies that concrete with a high strength is more IIbritt­
leu than a concrete with low strength.

The tensile stre~gth seems to be independent of the volume fraction of aggre­
gate, see Fig 7.33, while the Young1s modulus naturally increases with increa­
sing aggregate content as the Young1s modulus of the aggregate is higher than
the You~gls modulus of the cement paste. GF seems to increase somewhat with
an increasing volume fraction of aggregate. This can be explained by the fact
that the closer the aggregate particles are packed, the more complex the crack
propagation path is and the larger the crack surface and fracture energy be­
come. ~ch also increases somewhat with an increasing volume fraction of aggre­
gate. GF and Ed seem to be insensitive to the maximum aggregate particle size,
see Fig 7.34, while f t decreases and ~~h increases with increasing size of the
largest aggregate particles.



-148-

f t , E and GF increase with increasing age of the concrete, see Fig 7.35. l ch
decreases considerably with increasing age of the concrete up to about one
month, after which it seems to stabilize. The reason for the great age de­
pendency is that ft increases relatively faster than GF and Ed with increa­
sing age, see Fig 7.37.

150

100

50

\
\
\
\
\
\
\

\

",""

0-----'--------'--------'-------''-_.....
2 7 28 91

Age (days)

Fig 7.37 ft increases at a relatively higher rate than GF and Ed as the age
of the concrete increases and therefore ~ch decreases markedly as
the age increases. -

According to the test results above, the fracture energy for most concrete
qualities seems to be 70-140 N/m. The characteristic length varies between
100 and 700 mm but normally it is 200-400 mm.

In Table 7:5 values of the flexural tensile strength (ff) are given for the
concrete qualities used in the tests. This makes it possible to compare the
experimental results of ff/f t with theoretical estimations. In Fig 7.38 the
values of ff/f t for the different concrete qualities are shown as a function
of d/ich and- in the Figure a theoretical relation calculated by use of the
Fictitious Crack Model is also presented. In the calculations th-e cr-W curve
is approximated with a single, straight line (SL).

There is a wide scatter in the test results but it is quite obvious that the
ratio ff/f t decreases with increasing values of d/lch . This effect is well
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Fi g 7.38 ff'/ft ..as .functi on of d/ ich. The dot.s represent di fferent concrete
qualtties (the figures correspond to the mixtures defined in
Table 7:3) and the curve represents a theoretical relation calcu­
lated by means of the Fictitious Crack Model.

described by the theoretical curve in spite of the simplified assumptions (the
a-W curve is approximated to a straight line, the effect of the non-linearity
of the a-E curve'is not considered and so on). This implies that the Ficti­
tious Crack Model, together with the material properties presented above, is
suitable for describing the fracture process for concrete.
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8 DETERMINATION OF THE o-W CURVE FROM A STABLE TENSILE STRESS-DEFORMATION
CURVE

8.1 Introduction

As discussed in Chapter 3, the complete, stable tensile stress-deformation cu~­

ve (0-0 curve) can be considered to consist of two parts; one part representing
the relation between stress and relative strain for the material outside the
fracture zone and one part representing the relation between stress and abso­
lute deformation of the fracture zone, see Fig 3.4. Fig 8.1 illustrates how
the a-£ curve for the material outside the fratture zone and the a-W curve for
the fracture zone can be determined from a stable stress-deformation curve.

The fracture zone does not start developing until the tensile strength is rea­
ched and consequently i equals 8A/lg and w equals 0 for the stress u, on the

Before After
ft ft

E 6A Ilg 6a/lg

w 0 be-os

O"l--t-----a-----o------u

Fig 8.1 Determination of the cr-E curve for the material "outside the fracture
zone and the cr-wcurve for the fracture zone from a stable tensile
stress-deformation curve "(cr-o curve).
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increasing part of the stress-deformation curve. 0 1 and 0A are defined in Fig
8.1 and ~g' is the gauge length for the deformation measurements. The stress
decreases when the fracture zone starts developing and consequently the mate­
rial outside the fracture zone becomes unloaded. In the Figure the unloading
curve for the material outside the fracture zone is assumed to be parallel
with the initial slope of the 0-8 curve. In real materials the unloading curve
may be slightly different due to creep effects for example. However, if the
gauge length for the deformation measurements is not too great, then a small
error in the slope of the unloading curve has a very little effect on the dis­
tance 0C-oB in the Figure for all values of 01' compare test results below.
A small fault in the slope of the unloading curve thus affects the cr-W curve
very little and therefore the assumed slope ought to be useful. On the des­
cending part of the stress-deformation curve t then equals 0B/~9 and wequals

0C-oB for the stress 01.

Very few_ investigations regarding the stable stress-deformation curve (or stab­
le stress-strain curve) for concrete are reported in literature. The reason
for this is probably that it is necessary to use a very stiff tensile testing
machine in order to obtain a stable fracture and ordinary testing machines are
normally too weak; see 8.2.

Hughes and Chapman (1966) reported 5 individual stable stress-strain curves.
The tensile strengths of the concrete qualities tested ranged from 0.75 MPa
to 1.5 MPa, which is much lower than for a normal concrete quality.

Evans and Marathe (1968)r'ep0rt'e<L 9 individual stress-strain curves for con­
crete. The tensile strengths were also low in these tests, between 1.5 MPa
and 3 MPa. The scatter'between the individual curves was wide and for one con­
crete quality they found a value of the strain at the tensile strength of 0.8
0/00 , which seems quite unrealistic.

Heilmann, Hilsdorf and Finsterwalder (1969) carried out tensile tests on a
great number of concrete specimens. Most of their specimens failed in an un­
stable manner but they reported at least two individual stable stress-strain
curves. The tensile strength was less than 1.8 MPa for both the specimens,i.e.
lower than for a normal conrete quality.

It is easier to obtain a stable fracture for a material with a high value of
the characteristic length (tch ) than for a material with a low value, see 8.2.

According to the results in 7.5.4'~Ch seems to increase markedly with decrea­
sing tensile strength and this i's probably the reason why all the stable
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stress-strain curves reported in the literature are relevant for concrete qua­
lities with very low values of the tensile strength (a low value of the ten­
sile strength may be due to shrinkage stresses).

In this Chapter a very stiff tensile testing machine of a new type is presen­
ted by which it is possible to follow the complete tensile stress-deformation
curve also for normal concrete qualities.a-w curves for a number of concrete
qualities are presented as well.

8.2 Stability conditibns,'for"the'dirett tensile test

In Fig 8.2 a schematic illustration of a tensile test is shown. The,testing ar­
rangement consists of a number of springs with different stiffnesses:

k, = the stiffness of the testing machine

k2 = the stiffness of, for example, steel rods, which can be coupled
parallel with the specimen in order 'to make the testing arrange­
ment stiffer (cf Evans and Marathe, 1968).

k3 = the stiffness of the specimen outside the fracture zone

k3-----........
1==:;11:::===1

k,(w)

F(w)

P'i g 8.2 A Schematic illustration 6f a
direct tensile test. k1, k2, k3and k (w) are the stiffnesses
of tha testing machine, of the
rods, which are coupled parallell
with the specimen, of the material
outside the fracture zone and of
th~ fracture zone respectively.

Fig 8.3 The system of springs used
for the calculation of the
stiffness (kg) of the tes­
tin'g arrangement outside
the fracture zone.
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k4(w) = the stiffness of the fracture zone when the widening of
the zone is w. This stiffn~ss depends on the widening of
the fracture zone according to the a-W curve for the mate­
rial.

The amount of energy (QF) necessary to widen the fracture zone from 0 to w is:
w

QF = A ~ cr(w)dw (8:1)
o

where A is the cross sectional area of the specimen at the position of the
fracture zone.

The amount of energy (Qs) stored in the system of springs outside the frac­
ture zone when the widening of the fracture zone is w can be expressed as
(campa re (7: 5) ) :

Q = (F(w))2 A2(cr(w))2
s 2 ks = 2 k

s

where ks is the stiffness of the system of springs shown in Fig 8.3. The
springs with the stiffnesses kl and k2 are parallel as they have to deform by

the same amount when the load F(w) is changed. This means that the stiffness
(ks ) of the system of springs in Fig 8.3 is:

k3(k2+k1)
ks = ---.:--~1 1 . - k

1
+k

2
+k

3k2+k1 + 1<3

If energy is consumed when the width of the fracture zone increases from w
to w + dw, then the fracture will be stable and this gives the condition of
stability for the direct tensile test (compare (7:6) and (7:7»:

~(Q +Q ) = A (w) + A
2

o{W) Clcr(W) >a
aw F s cr ks ClW

k > - A ao(w)
S . clw..'

(8:4)

If the unloading curve for the material ·outside the fracture zone is assumed
to be parallel with the initial slope of the curve (i.e. E) then the stiffness
for the specimen (with a constant cross sectional area) outside the fracture
zone is:
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(8:5 )

where A is the cross sectional area of the specimen and t is the specimen
length.

By use of (8:3), (8:4) and (8:5) the following expressions are derived:

AE (k +k ) > - A .acr (k +k + AE)
t 1 2 aw 1 2 t

=>
-E(k1+k2)< R, ~~(k1+k2) + ~~ AE

~

- .~~ AE-E(k1+k2)
t < d

a~(k1+k2)

=?
t < - I- _-.AE--:-_

~ k1+k2aw
(8:6)

(8:6) is the stability condition when the widening of the fracture zone is w.
However, the fracture must be stable for all values of wand then the condi­
tion of stability becomes:

JL < E __A_E_

- (~~)max kl +k2
(8:7)

where (~~)max corresponds to the steepest slope of the cr-W curve.

If the cr-W curve is approximated with a single straight line, then the slope
of curve is -ft/wc ' where Wc is the maximum widening of the fracture zone,
where 'it is still able to transfer stress, see Fig 6.1. For the single line
approximation of the (J-W curve Wc equals 2 GF/ft and thus the slope of the
curve can be expressed as -1/2 x fi/GF. The single line approximation of the
(J-W curve is the most favourable case and for other shapes of the (J-w'curve
the steepest slope of the cr-W curve can be expressed as -1/C x f~/GF' where
C is a constant between 0 and 2 and C is dependent only on the shape of the
cr-W curve. According to test results below the steepest slope of the cr-W curve

for concrete seems to be about twice the mean slope and then the value of C
becomes about 1 for this material.

The dondition of stability for the direct tensile test can now, according to
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(8:7) and (4:15), be written as:

(8:8)

As can be seen from (8:8)~ the specimen length must be less than etch in order
to obtain a stable fracture, even if an infinitly stiff testing machine is
used. This means that the maximum length of the specimen for concrete is about
200-300 mm and for cement paste about 10-20 mm. However, these lengths are
considerably reduced when the weakness of the testing machine is considered,
which is illustrated in Fig 8.4. In the Figure the condition of stability ac­
cording to (8:8) is illustrated for different values of the cross sectional
area. The'curves are relevant for t ch = 250 mm, E = 40,000 MPa and C = l~ i.e.
a normal concrete quality. The horizontal axis in the Figure represents the
stiffness of the testing machine (kl ) but of course this stiffness can be
replaced by kl+k2, see (8:8), where k2 is the stiffness of the rods~ which
can be coupled parallel with the specimen.

When carrying out tensile tests on concrete, all the specimen dimensions
ought to exceed the size of the maximum aggregate particles a few. times. This
means, that the smallest possible cross sectional area for a fine grained con­
crete should be about 500 mm2 and for practical reasons the specimen length
ought to exceed at least 40 mm. Even for these small specimen dimensions the
stiffness of the testing machine has to exceed about 100,000 N/mm in order
to obtain.a stable fracture and the necessary stiffness increases rapidly
with increasing specimen dimensions.

Normally it is impossible to attach the specimen to the testing machine with­
out introducing weaknesses in the testing system. These weaknesses naturally
affect the stability and in reality the conditions of stability are therefore
harder than those given in (8:8) and Fig 8.4~,

According to the results and the discussion above it seems quite obvious that
ordinary testing machines are too weak to be useful for stable tensile tests
on concrete. In order to obtain a .stable fracture it is necessary to make the
testing machine stiffer by use of rods which are coupled parall~l with the
specimen or to use special, very stiff testing machines. Such a testing ma­
chine, by which the complete tensile stress-deformation curve for concrete
can be determined, is described below.
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Fig 8.4 Conditions of stability for the direct tensile test. The curves repre­
sent the left limits of the areas of stability. The curves are -rele­
vant when 1 h is 250 mm, E=4"O,000 MPa and the constant C in (8:8) is 1.
.t=specimen length, A=cross sectional area of the specimen and k1=the
stiffness of the testi-ng machine.

8.3 A stiff testing machine for:stable·tensile tests On concrete and similar
materials

In Fig 8.5 and ~ig 8.6 a new type of tensile testing- m~chine is shown by which
it is possible to carry out stable. tensile- tests on concrete specimens. Three
al.uminium columns (<1>120 mm) are fixed between two .concrete blocks and cylindri­
cal heating elements are attached to the columns. The specimen is fixed (glued)
in special holders between the concrete blocks. The aluminium columns expand
when they are heated and then the specimen qecomes subjected to load. The load
is registered by strain gauges, which are attached to one of the holders an9
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0.. 1m
I I

CD

Fig 8.5 A stiff tensile testing machine for determination of the complete
"stress-deformation curve. l=concrete block, 2=aluminium column,
3=heating element, 4=strain gauges for load registration, 5=induc­
tive deformation transducer" for deformation registrations, 6=speci­
men.

the deformations are registered by inductive deformation transducers, wnich
are fixed directly on the specimen. During the test the aluminium columns are
insulated with mineral wool in order to keep the temperature around the spe­
cimen constant, see Fig 8.7.

Coils of tubes (inner diameter=4" mm) surround the aluminium columns and kero­
sene tempered by a thermostat can circulate in the tubes. This makes it pos­
sible to keep the temperature in the aluminium columns constant during the
time necessary (about 1 h) to obtain a sufficiently strong·joint between the
specimen and the holders and to cool the column during the test and thereby



Fi9 8.6 The stiff tensile testing machine. One of the hea­
ting elements is removed and the coils of cooling
tubes can be seen on the left aluminium column.

Fig 8.7 During tests the aluminium columns are· insu­
lated with mineral wool.
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Fig 8.8 The specimen between the holders. in the stiff tensile testing machi­
ne. The inductive deformation transducers are attached directly on
the specimen.

cause unloading of the specimen. The columns can also be cooled when a test
is f:intshed, which greatly decreases the required time between two tests.

The thermal coefficient of expansion for aluminium is 24 x 10-6 K- 1 and the
deformation of the testing machine will. be 1 mm if the temperature in the
450 mm long aluminium columns is increased by 93 K. As the temperature of alu~

minium can be raised to at least 200-3000C without losing its elastic beha­
viour at low stresses, the deformation capacity of the testing machine is at
least 2 mm. This can be compared with the deformation capacity necessary to
follow the complete tensile stress-deformation curve for concrete, which is
normally less than 0.2 mm.
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The maximum eff.ect fo.r the 6 heating elements (two on each column) is 2,200 W·,

If all this energy was absorbed' by the columns then the increase of the tem­
perature would be about 6 K/s (the density of aluminium is 2,700 kg/m3 and
the specific heat capacity is 880 Ws/kg K), which corresponds to about 38 ~m!

min. In reality some of the energy is lost and the deformation velocity for
the testing machine can be chosens'~y varying the effect, between 0 and 30 ~m!

min. Of course the loading velocity can be increased if other heating ele~

ments are used.

In Fig 8.8 it is shown how the specimen is fixed between the supports by using
an adhesive (type Epoxy). The part of the holder closest to the specimen is
fixed to the other part of the holder by frictional forces caused by clamping '.
bolts. This means that the gap between the holders can be adjusted, which is
necessary when attaching the specimen.

When the specimen is fixed in the testing machine by using an adhesive,it is
necessary to use a necked specimen, see 7.2. However, even if a necked speci-

. .

men is used it is difficult to obtain a 'sufficiently strong joint if the speci-
men is wet. This problem is solved if the ends of the specimen are allowed to
dry in the air for a couple of hours before the time for the test, while all
the other surfaces are insulated by plastic foil. This method makes it possible
to keep the narrow section of the necked specimen wet and the end surfaces dry.
Before. this drying process the ends of .the specimen ought to be sandpapered
in order to remove the thin layer of weak cement paste, which always exists on
the surface of concrete.

8.4 Experimental determination·bf·th~·~~W cOrV~'fOr~concrete

8.4.1 Testing procedure

By use of the· stiff tensile testing machine presented in 8.3, stable tensile
tests were carried out on a number of concrete qualities. In order to obtain
a stable fracture and to get a sufficiently str6ng joint between the specimen
and the holders in the testing machine, it is necessary to use small, necked
specimens. For this reason the spe~imentype·denoted III.in Fig 7.15 was used
in most tests. The deforll1ations were measured on two opposite sides of the spe­
cimen by use of two inductive deformation transducers '(gauge length 40 mm) and
the mean value was registered. The deformation velocity was about 20 ~m/min,

wh-i:ch means that the duration of .each test was 5-10 minutes.
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Fig 8.9 a-W c~rves for necked and notched specimens respectively for the
concrete quality in Table 7:1 (28 days). The specimens correspond
to type III and type IV in Fig 7.15.

The shape of the stress-deformation curve (a-o curve) is naturally affected by
the geometry of the specimen. In order to study how the shape of the specimen
affects the a-W curve, stable tensile tests were carried out on necked and
notched specimens respectively, corresponding to the specimen types III and
IV in Fig 7.15. The a-W curves were determined according to the method presen­
ted in 8.1. These tests in fact are identical to the tensile tests presented
in 7.4.4 and Fig 7.18. The concrete quality used is presented in Table 7:1 and
the tests were performed when the concrete was 28 days old.

The results are presented in Fig 8.9 and it seems, even if the scatter is wide,
as though there are no significant'differences between the a-W curves represen­
ting the two specimen geometries. The results in Fig 8.9 are in good agreement
with the fact that concrete is normally relatively notch insensitive when small
specimens and small notch depths are concerned, see 6.2. This implies that the
a-W curves are representative for the material, even if· the curves are deter­
mined on notched specimens.
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8.4.2 Materials and mix proporptions

Tests were carried out in order to study the effect of the water-cement-ratio,
the maximum aggregate particle size and· the age of the concrete on the a-W

curve. The four concrete qualities tested are presented in Table 8:1.

Table 8:1 The concrete qualities used in the tests.

Mix 1 Mix 2 Mix 3 Mix 4

Cement (ordinary Portland) k.9Im
3 370 296 296 370

Water 3 185 207 207 185kg/m
Aggregate kg/m3 1755 1755 1755 1755

Max aggr particle size mm 8 8 2 8

Age at the testing days 28 28 28 7

Water-cement-ratio 0.5 0.7 0.7 0.5

8.4.3 Preparation of specimens

For each concrete quality three specimens were cast in steel moulds. The speci­
mens were kept in lime saturated water (+20°) until one day before testing.
During the last day the ends. of the specimens were allowed to dry while the
other surfaces were insulated by plastic foil. The plastic foil was not remo­
ved until the start of the test, i.e. the specimens were also insulated during
the time in the testing machine when the adhesive was hardening. The ends of
the specimens were sandpapered one day before the test.

8.4.3 Results and discussion

Fig 8.10 shows the three stress-deformation 'curves for the concrete quality
corresponding to mixture 4 in Table 8:1. When measuring the deformations a
40 mm effective gauge length was used. As can be seen in the Figure, the con­
crete is able to transfer stress even when it is considerably deformed~and

the curves differ completely from a-o curves for linear elastic materials. It
can also be observed that the descending parts of the curves are far from being
straight lines.

In Fig:s 8.11-8.13 a-o curves for different concrete qualities are shown. Each
curve represents the mean value of three specimens. The values of the tensile
strength (ft ) and the fracture energy (GF) corresponding to these a-o curves.
are slightly higher than expected compared with the values in 7.5.4. However,
the composition of the concretes used for the st.able tensile test is dif·ferent
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Fig 8.10 Stress-deformation curves for the concrete quality corresponding
to mixture;4 in Table 8:1.
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Fig 8.11 Mean stress-deformation curves for concrete qualities with different
water-cement ratios (mix 1 and mix 2 in Table 8:1).
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Fig 8.12 Mean-stress-deformation curves for concrete qualities with different
maximum aggregate particle sizes (mix 2 and mix 3 in Table 8:1).
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Fig 8.13 Mean stress-deformation curves representing different a.ges of the
cdncrete (mi"x 1 and mix 4 respectively).
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comp~red with the concretes used in 7.5. The tensile tests for each concrete
quality are only carried out on three .specimens and this of course gives rise
to rather uncertain values of f t and GF, which is another 'possible explana-:
tion for the differences between the results from the two tests.

In Fig 8.11 curves representing concrete qualities W-j,th different water-cement­
ratios are presented (mix 1 and mix 2 in Table 8:1). The curves differ in the
beginning but when the deformation exceeds 50 11m they become almost identical.

The curves in Fig·8.12 represent concrete qualities with different maximum par­
ticle sizes (mix 2 and mix 3 respectively). The· main di~fference between the
curves is that the concrete with coarse aggregate seems to be able to transfer
stress at higher deformations than the concrete with fine aggregate. This in­
dicates that the stress transferring capability at high deformations is due
to frictional forces when the coarse aggregate partitles are extratted from
the cement paste. These tests are carried out on concretes where the aggregate
particles have a higher strength than the cement paste and consequently the
aggregate particles are extracted from the cement paste when a crack propaga­
tes. Fo~ concretes where the strength of the cement paste is higher than the
strength of the aggregate (for example lime-stone concrete, light-weight con­
crete or high-strength concrete) the crack will pass through the aggregate par­
ticles and it is then probable that these materials will have a lower stress'
transferring capability at -high deformations than materials where the aggre­
gate particles are extracted from the cement-paste.

In Fig 8.13 curves representing different ages of the concrete are presented.
The effect of decreasing age on the 0-0 curve seems to be similar to the effect
of increasing water-cement-ratio, compare Fig 8.11.

In order to describe the properties of the fracture zone it is not the 0-0 cur­
ves but the o-W curves that are of interest. In Fig 8.14 the o-W curves for
the four concrete qualities used in the test are presented.

In Fig 8.15 the o-W curves are shown in an alternative way; 0 and w on the axes
in Fig 8.14 are replaced by o/ft and w/wc ' i.e. Fig 8.15 shows the shape func­
tions (h(w/wc» of the curves according to (4:14). In the Figure a a-W curve
approximated with two straight lines is also presented and this curve is iden­
tical to the cr-W curve (C) in Fig 6.3. For this approximation of the o-W curve
Wc is 3.6 GF/ft and this expression for Wc has also been used for the real
a-W curves. As can be seen in the Figure, the shapes of the o-W curves for the
four different concrete qualities are about the same and the two-line approxi-
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Fig 8.14 a-W curves for the four concrete qualities presented in Table 8:1.
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Fig 8.15 ~/ft as function of w/wc for the f~ur conc~ete qualities presented
1n Table 8:1. The d-W curve approx1mated w1th two straight lines
corresponds to the curve in Fig 6.3.
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mation of the cr-W curve shown in the Figure seems suitable for these concrete
qualities.

For all the concrete qualities used in the test the aggregate particles are
extracted from the cement-paste at crack propagation. The shape of the cr-W

curve may be different if the crack passes through the aggregate particles.
However, the shape of the cr-W curves shown in Fig 8.15 ought to be realistic
for most concrete qualities and this means that the a-W curve can be deter­
mined when the tensile strength (ft ) and the fracture energy (GF) are known,
see 4.5. A consequence of this is that no IIcomplicated" stable tensile tests
have to be carried out in order to determine the a-W curve for concrete but
the curve can be determined by use of the "simple" f t - and GF-tests presen­
ted in Chapter 7.

In Fig 8.16 load-deflection curves for a notched beam subjected to three-point
bending are shown. The unbroken lines represent experimental results from the

F(N)

C-----a-t",,------!---..,II
'a 0

d=0.2
l =2m .
b=0.05m
ft=3.33MPa
~"'124N/m

E=30,000 MPa

400 .

200

600

800

exp.
theor:(C)
theor:(SL)

o 0.5

Fig 8.16 Experimental and theoretical load-deflection curves for three-point
bend tests on notched beams. In the calculations the a-W curve was
appfoXimated according to Fig 6.1 (SL) and Fig 6.3 (C) respectively.
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tests on the 200 mm deep beams presented in 7.4.4 and Fig 7.18. In the tests
six beams were tested in order to determine the fracture energy and the two
experimental curves in Fig 8.16 correspond to the two beams, which produced
the highest and the lowest value of the fracture energy respectively. The theo­
retical curves, calculated by means of the Fictitious Crack Model, correspond
to two different approxJ:mations of the cr-W curve; the single line approxima­
tion (SL) according to Fig 6.1 and the two line approximation (C) according
to Fig 6.3 (which ;s identical to the approximation in Fig 8.15) respective­
ly. The mean value of GF for the concrete quality is about 124 N/m (see test
results in Fig 7.18) and ft is about 3.33 MPa (see results in Fig 8.9, which
are relevant for this concrete quality). These values were used in the calcula­
tions and the Young's modulus was assumed to be 30,000 MPa. As can be seen in
the Figure the theoretical curve according to the two-line approximation of
the cr-W curve is in good agreement with the experimental curves. Together
with calculation results presented in Chapter 6 this implies that the shape
of the cr-W curve presented in Fig 6.3 and Fig 8.15 is suitable for normal con­
crete qualities.
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