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MAXIMUM LIKELIHOOD IDENTIFICATION OF DYNAMICS OF THE AGESTA
REACTOR AND COMPARISON WITH RESULTS OF SPECTRAL ANALYSIS T

I. Gustavsson

ABSTRACT

The transfer function from reactivity to nuclear power has been
determined by identification of dynamic measurements of a nuclear
reactor. Two different methods have been used. A parametric model
of the process has been developed by the maximum likelihood method.
This model is compared with the results of spectral analysis of
the same measurements. Differences in the results show that the
maximum likelihood method may be preferable if the noise to sig-
nal ratio is high. An example with simulated data indicates that
the differences between the results from the two methods may be
remarkable, and that it may be difficult to get a reasonable pa-

rametric model from the results of the spectral analysis.

TThis work has been supported by the Swedish Board for Techni-

cal Development under Contract 68-336-f.



TABLE OF CONTENTS

l.
2.

o

o o 1 >
- . .

Introduction

Physics experiments at Agesta Nuclear

Power Station

Outline of the maximum likelihood estimation
method

The perturbation signal

Results of identification by the maximum
likelihood method

Spectral analysis

Comparison

Ackhowledgement

. References

13
24
28
32
32




1. INTRODUCTION

This work is a part of a systematic investigation of various iden-
tification methods with respect to practical applications to in-
dustrial processes. The purpose of this paper is to compare the
properties of the maximum likelihood estimate with the results of
spectral analysis, when identifying data from dynamic measurements

of a nuclear reactor.

Some sort of identification must be performed if complex control
systems have to be designed or if a theoretically developed model
shall be compared with the real process. The choice of identifica-
tion method depends on what information of the process that is
needed. If a parametric model is required, for instance, there are
twe ways to get it. One method is to estimate the transfer func-
tion and to approximate a parametric model from the Bode diagram.
Another method is to use an identification procedure, such as the
least squares estimate or the maximum likelihood estimate, which
directly gives a parametric model. A parametric discrete time mo-
del is appropriate for determining control strategies and prefe-
rable if a digital computer is to be used to implement the control
law., For such applications the direct methods seem to have many
advantages. If on the other hand only a rough estimate of the sys-
tem is required or if we only want to compare a model of a system
with the real system, perhaps spectral analysis is an appropriate
identification method., Tor such applications the Bode diagram may

be sufficient.

In this work measurements from a nuclear reactor have been analy-
sed. The transfer function from control rod position (approximate-
ly proportional to the reactivity) to nuclear power has been de-
termined. The maximum likelihood estimate of the parameters of a
linear time discrete model with a disturbance with rational spec-
trum, was computed. The spectrum of the disturbance as well as
the transfer function were obtained. This transfer function is
then compared with the results from the spectral analysis of the
same data. It turns out that the two methods give comparable
results, but there are differences in the amplitude estimates of
about 0.5 dB and in the phase estimates of about 59, These diffe-

rences are most probably due to the uncertainty of the estimates



obtained from the spectral analysis. An example is given where

it is shown that the difference between the estimates from the
two methods may differ remarkably. This seems to be the case when
the noise te signal ratio is high. The maximum likelihcod method
may give good estimates even if the disturbances are not small
compared with the input signal, while spectral analysis secems to
be more sensitive in this respect. However, the evaluation of the
coherence function will give a possibility to check the reliabi-

lity of the spectral analysis estimate.

The conclusion is that the choice of identification method is
primarily based on what is the main purpose of the investigation.
Other factors one must have in mind are available computer time
and memory and requested accuracy of the results. And all these
factors ocught to be remembered already when the measurements are
planned together with the usual problems of choosing input sig-

nal, sampling interval etc,.

Furthermore pseudo random binary signals and spectral analysis

are discussed shortly in this report.




2. PHYSICS EXPERIMENTS AT AGESTA NUCLEAR POWER STATION

The data, for which the identification is performed, have been
received from AB Atomenergi, Studsvik Sweden. The measurements
are described and some results of the analysis of these data at
AB Atomenergi are given in {1}. The data are from dynamic mea-
surements performed at the Agesta reactor, the first power reac-
tor built in Sweden. A simplified flow diagram is outlined in
figure 1 (from {11}).

. COOLING
33URISER . : i ' TowER
———
CIRCUITE FROM
ty ~——+—— THC THREE OTHLR
. _ J HEAT EXCHANGERS
[]CONTROL ROD
DRIVE o
rd KECHANIS M e\ S?EADWQ g @
ARRE Rl _ TURBINE [
E ﬁﬁ_% RECULATOR @‘
/f S HEAT
) Uy T RXCHANGER
1oN
CHAMBER DI
Uy :
MAIN
o o TURBOCENERATOR
REACTOR , ' HaO BTCAM
PALSSURE Yo 6,0 MAIN
VESSEL I . CONDENSER CoHD. | [Hq 0
; L
FUEL 5 £ cfo_cnlcns
ASSEHBLY o g !
EQUA PARALLEL MAIN CIRCUITS {ac,e and g) _ ]
£ .INDICATES POINTS IN THE RKACTOR SYSTEM, WHERE ot
PERTURBATIONS WERL INTRODVCED. HE?\TTT:S
PLANT

F'ig, 1 - Simplified flow diagram of the Agesta Power Reactor.



The measurements were performed at different power levels with
the automatic control system switched off. The purpose of the
whole experiment was to measure the dynamic characteristics of
the reactor in order to check dynamic models derived from phy-
sical equations and to give information on the system, which
could be of value for operation of the Agesta reactor and for
design of future reactors etc. The system was disturbed by dif-
ferent perturbation functions in the veactivity and in the load,
The responses of nuclear power, coolant inlet and ocutlet tempera-

ture and control rod position were recorded.

The two series analyzed here, denoted AR60 and AR61, are both

such that the input signal is the control rod position and the
output signal is the nuclear power. It ought to be mentioned that
these two series are only two of many measurements performed in
order to get information on the reactor dynamics. The input sig-
nal was in these two cases a pseudo random binary signal denoted
BDG in {1}, The two input-output sequences are plotted in figures
2-3., The results from the analysis at AB Atomenergi are presen-

ted as transfer functions (Bode diagrams) from reactivity to power,

figure 4 (from {11}).
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3. OUTLINE OF THE MAXIMUM LIKELTHOOD ESTIMATION METHOD

The problem is to determine an appropriate model of a process
from which we have input-output samples. Assuming the process

to be linear of n-th order and to be subject to disturbances that
are staticnary random processes with rational power spectra, we

choose the model

Atz yeo) = Bz™h w) +xcz™h et) (1)
where {u(t), y(t), t = 1,2,...,N} is the input-output sequence
and where {e(t), t = 1,2,...,,N} is a sequence of independent nor-

mal (0,1) random variables. z denotes the shift operator
z x(t) = x(t+1) (2)

and A(z), B(z) and C{z) are polynomials

B n
A{z) = 1 + a7z + .. 4 a.z

_ n
B(z) = blz + ...+ bnz
C(z) = 1 + cpz oLt cnzn (3)

Since the identification is described elsewhere {10}, {8}, {9},
the details are not given here. However, a short summary is pre-

sented.

The problem is solved by determining the maximum likelihood es-
timate of the parameters 8§ = (al""’an’bl""’bn’cl""’cn)'
The maximum likelihood estimate is consistent, asymptotically
normal and efficient under mild conditions given in {11}. Maxi-
mizing the likelihood function is equivalent to minimizing the
loss function
1 N

v(e) = X
2 t=

e2 () (1)
1

where the residuals e(t) are obtained from
Cz™hY) e(t) = Az Y)Y y(b) - Bz 1) u(t) (5)

The identification problem is then reduced on a problem of mini-

mizing a function of several variables.
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has an F(3k, N - 3(nt+k)) distribution under null hypothesis.

When N is large 3k - Fn+k,n tends to a Xz—distribution with 3k
degrees of freedom. Most often the test is used with k = 1, that
is we test the model of order (n+l) against the model of order

n. It is used at a risk level of 5%, that is 1if the test quantity
is greater than 2.6 (N is supposed to be larger than 100), the
loss function has been reduced significantly and the order of the

model is at least (n+l).

FORTRAN programs for the identification procedure are available,
The programs are described in {9}. They can handle the multiple—
input, single output case and are in this sense a bit more gene-
ral than what has been described in this section. But principally
there is no difference. Notice that the input and ocutput signals
should be transformed before the identification procedure as to
have zero mean. There is no loss in generality for the identifi-
cation procedure by assuming the constant term of the B-polyno-

mial, bo’ to be zero or by assuming the time delay k in the model
AGZTY) y(o) = BGTh ule-k) + 4 czTh) e(h) (8)

to be zero. These cases can be handled with by shifting input/
output signals appropriately. On this matter we only point out
that for one run of the identification procedure with reactor
data the convergence was extremely slow when starting from

8 = (0, ..., 0) using the model (1), but when a slightly diffe-
rent model, that is a, = e, = 0, was used no such convergence
difficulty appeared. Even in the bad case fast convergence to a
minimum was obtained when choosing another starting point. How-
ever, for certain cases it may occur that the uncertainty of the
parameters can be remarkably reduced by choosing another struc-

ture,




We solve this problem by a recursive technique, which uses both
the gradient with respect to the parameters, Vs and the matrix
of the second partial derivatives, V... Other minimization me-

thods do not use the second derivatives but this extra work is not

of essential importance because the computations of Vee are done
very economically and increase only linearly with the order of
the model for large N. Furthermore this method directly gives

the accuracy of the parameters, because an estimate of the in-
-1

verse of the information matrix is available (AQ{VSB} ). The
parameter X is determined from
A= — V(e) (6)

N

where 6 is such that V(&) is minimal.

To obtain a starting value for the minimizing algorithm we put

c; = 0, i =1, ..., n. The loss function V(8) is quadratic in a;
and bi and the algorithm converges in one step to the least squa-
res estimate of the a- and b-parameters. This estimate is then
taken as the starting point for the gradient routine. By taking
different starting values of c., i= 1, .:., n we investigate

whether V(8) has several local minima.

This method of identification also gives a possibility to test
the order of the model, when it is unknown. The identification is
repeated for increasing order of the model. Now let V denote the
minimal value of the loss function for the n-th order model. It
follows from {10} that the parameter estimates for large N are
asymptotically normal (6 _, G Veepl)

correct value of 6. Assuming that asymptotic theory may be appliec

, where eo stands for the

we test the hypothesis that the system is of order n, that is the
null hypothesis .is

(eio stands for the correct value of ei).

Then
n ntk | N - 3(n+k)
3 + k

(72
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4, THE PERTURBATION SIGNAL

For the two measurements AR60 and ARG61 a pseudo-random binary
seguence (PRBS) was chosen as the perturbation signal. Such se-
quences may be generated with different methods, generating m-
sequences, quadratic residue codes, Hall-sequences etc, Iy},

Those sequences have the same autocovariance function

1 N 1 if r = 0, modulc N
r () == 2 x(t) x(t + 1) = 1

N t=1 - elsewhere
PXX(T) = the autocovariance function
x(t) = the value of the sequence at time t (+1 or -1)
N = the period of the sequence

The autocovariance function is thus approximately an impulise
function. This fact makes correlation analysis easy, and for
instance it is possible to obtain the impulse response function
out of the measured crosscorrelation function, if the pericd, N,
and the pulse length, At, have been chosen appropriately for the
investigated system. Rules of thumb for this choice+are available
{u4}. Unfortunately you have to compromise because those condi-
tions contradict the conditions for high reliability of the esti-

mates of the weighting coefficients of a system with noise,

An investigation of the spectrum of the PRBS shows that the
spectrum is a line spectrum with a lowest frequency of l/Neat o/s
and that an upper Ifrequency limit of L/4at o/s may be defined
(the 3 dB point is approximately 0.22/4t c/s).

From the rules of thumb it follows for this case, where the
shortest time constant is about 2-3 seconds and the longest one
50-150 seconds, that N should be 500-1000 and At 1-2 seconds.
If you instead of this say that the interesting part of the
spectrum is between 0.001 c¢/s and 0,25 <¢/s, you get At = 1 se-
cond and N = 10040,
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For these experiments one has chosen to investigate the system
in two steps, first in the frequency band 0,0004-0.02 <¢/s and
then in the band 0.004-0.2 <¢/s. The values of N and At are for
ARB0 127 and 2 and for AR61 127 and 20, respectively., The fre-
quency bands were chosen to overlap each others, because a good

estimate was desirable around 0.01 </s. 1
This division of the investigation will give shorter measurement

time, but different identification methods may give the model
quite different structures. If only a frequency diagram is de-
sired nothing is changed, but if you want a model of the system
for designing control laws it will be more difficult. For the
maximum likelihood estimate you will have one model for each
frequency band and it will be rather difficult to get a model
describing the total system. It may be solved by using different
control loops for each frequency domain especially when the time

constants of the system differ very much.

3 e
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5., RESULTS OF IDENTIFICATION BY THE MAXIMUM LIXELIHOOD METHOD

As mentioned in a previous section identification of two series
of data, ARGO and AR81, has been performed. ARE0 contains 1704
data points and is separated into three parts, A,B, and C. Series
ARB0 A contains the first 514 data, B the next 512 data and C

the rest, AR61 contains 1126 data. The sampling interval is 1

and 5 seconds respectively. Two input signals are available, in-
put 1, the ideal input, and input 2, the measured input. First

we give an example showing the results of identification of a cer-
tain input-output sequence for increasing order of the model. The
input- and output sequences have been shifted so that the model
we use (1) also includes a direct input-output connection. As an

examnple we choose series ARB0, input 1 (table 1),

n =1 2 3 H
al -0.345+0,010 | <1.078+0.036 | -2.06220.028 {-1.811+0.348
a2 0,200+£0.017 1,253+0.,042 0,.786+x0.720
a3 -0.188+0,015 0,030x£0.442
al\L -0.010+0.069
bl 165.4%£2.0 168.5+1.,6 168.4+£1.,5 166,5x1.8
b2 -131.0x5.3 -297.6x4.3 -248,4+59,8
b3 129.6%3.9 53.5+104.7
bu 28.9+45,8
cq 0.039+0.039 ] -0.92440,057 1 -2.009+0.050 {-1.758+0,3418
cz 0.267+x0,043 1.216+C,089 0.784+0.,69Y4
03 -0.196+0.045 | -0.,006+0.,417
c, -0,00420.075
A 20,01 17.27 16,23 16,14
Vv 102657 76508 67554 66797
Table 1 - Results from maximum likelihcod identification of

series AR60 A, input 1, for increasing order of the
medel. In the table the estimated values of the para-
meters are given together with the estimated standard
deviation of the parameters. Furthermore the estimated
value of A and the minimal loss function, V, for each

model are given., Tests indicate a third crder model.




1y

If we test the order with a statistical F-test, we get the

following test quantities (notation according to (7))

FZ,l = 57.8
F8,2 = 22.3
F4,3 = 2.4

From this we conclude that the system is of third order. Notice
that the large increase of uncertainty of the parameters, when
going from n = 3 to n = 4, also indicates that there are redun-

dant parameters in the fourth order model.

For +his example we also give the least squares estimates of

the coefficients for the third and fourth order model (table 2)

n =3 n =Yy n =3
a, | ~0.296 -0.218 -2.062
a, | -0.259 -0.233 1.253
a, 0.004 ~0.135 ~0.188 | ‘
a, 0.006
by 166.0 167.8 188,14
b, 5.6 15.8 ~287.6
b, 4y, 7 ~30.7 129.6
b, -27.8
v 81642 77903 67554
Tablé;? - Least squares estimates (series ARE0, input 1). The

estimated parameter values are given for n = 3 and
n = 4 together with the values of the loss function.

Tn the table the maximum likelihcod estimates for
n = 3 are given in the last column,

The least squares estimates seem to be very poor but on the other
hand a test of the reduction of the loss function shows that the
model should be of higher order. The reason why a high order mo-
del is needed to get a good least squares estimate, is that the
assumption of uncorrelated noise does not hold for this example.

A discussion of this matter can be found in {12},
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The F-test worked very well for this example and there is no
indication that the system should be of order less than three,.
But in other cases the T-test and the examination of the uncer-
tainty of the parameters do not give enough information of the
order of the system. Cther methods of testing the order have to

be considered,

For instance take another example, the identification of ARG1,

input 1. The F-test gives results which are shown in table 3.

N 2 3 y 5
1 1986 15056 1167 883
2 163 123 84
3 54 29
Iy I
Table 3 -~ Test quantities F for example ARG1, input 1. The

k,n
model of order k has been tested against the model of

crder n.

We can see that the system seems to be of at least 5:th order,
The uncertainty of the parameters does not indicate a lower or-
der system either, because they are of the same order for the
fourth and fifth order models. But examining the polynomials

A, B and C we find that for the fifth order mocdel these poly-

nomials have a factor in common (table 4).
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n A B C
2 0,157 0.953 -0.237
0.965 0.194
-0.0062 0.343 ~-0.372
3 0.578 0.897 0.364%0,358 1
0.761
0.05Y% 0.986 -0.255
4 0.961 0.681+0,226 1 0.u461
. 0.643
0.714+0,288 i 0.739
g.05¢0 0.98Y4 -0.293
5 0.9865 0.678+0,219 1 - 0.781
0.7098+0,286 i -1.002 0.538%0.087 1
-1,001 -1.00L
Table 4 -~ Roots of the polynomials A, B and C respectively

for the models of order 2, 3, 4 and 5 for the sequence

ARB1, iﬁput 1. The system seems to be of H:th order.

Further comments on the problem of testing the order can be

found in {8}.

In order to present the results of the identification in a clear
way and to get a basis for comparison with the results of the
spectral analysis, the phase and amplitude functions (Bode dia-
grams) for the reactivity to power transfer function are given

for the obtained models,

First we give the results obtained when identifying series ARG60 A,
input 2 (fig. 5). The obtained model is

1 2 1

- 0.1327%) y(t) = (0.76 ~ 1.37z27 % 4
1 ?

(1 - 2.02z — + 1.15z

+ a.elz“z) ult) + 6,55(1 - 1.59=z — + 0.70z ~ - 0.072‘3) e(t)

If we identify ARG0, input 2, that is a longer measurement with
the same conditions, we also find a third order model and the

phase curve for this is given in fig. 6. The difference between
the models for AR60 and AR60 A is small and this alsc holds for

the amplitude curves. The advantage of a longer series is that
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the uncertainty of the parameters will be smaller, but on the
other hand the series must not be so long that it is no longer

stationary. In this case the system seems to be stationary.

For the series AR6L, input 2, we give the phase and amplitude
curves for the fourth order model. (Fig. 7). Different tests of
the order show that the system probably is of fourth order. The

model has the following parameter values

(1 - oonuz"t 1 208272 - 0.6727° + 0.032“”) y(t) =
- 0,77 - 1.81z % + 1.u3z272 - 0.3927%) u(t) +
+ Lb,ou(1l - 1.652’1 + D.80z"2 -~ 0.022‘3 - U.U6z‘”) e(t)

To check if any important change will occur if we instead of the
real input signal, input 2, use the ideal input signal, input 1,
the series have been identified also for this input signal. The

phase curves for AR61, input 1 and 2, n = 4, are shown in fig. 8.

No significant difference can be seen.

Notice that the parameter values given above are from a model
relating output signal to input signal measured in digital units.
Tf we want this relation in physical units an amplitude factor
must be introduced. This has been done when transferring the re-
sults to the amplitude diagrams in order to achieve comparability
with the results presented in reference {1}. The results of the
identification for ARG6C A, input 2 and for AR61, input 2, are
also given in fig. %, in order to get a comparison with the re-

sults obtained by other identification methods.

The series have also been identified with a slightly different
model. The data have been shifted as before, but a. and C, have
been put equal zero to get the same order of the A, B and C-poly-
nomials (compare the models given above}. The differences between
the obtained models are rather small, see fig. 9 where an example

is given,
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Tn figure 10 the results of the maximum likelihood identifica-
tion of series AR60 A are shown for the first part of the series.

In this figure we show

1, input 2
2., output y(t)
3. the deterministic output yq(t) defined by

y (t) = —=—=~ u(t)
d A(z—l)

where B(z T)/A(z %) is the resulting third order model.

4, the error of the deterministic mocdel

ed(t) = y{t) - yd(t)

Notice the different scales.

The error of the deterministic model is rather small, This fact
indicates that the model is good. Large value occur only when
there are sudden jumps in the input signal. Both these values
of the input and output signals may depend on failures in the
recording unit, because they have no correspondence anywhere

else in the measurements.
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6., SPECTRAL ANALYSIS

An estimate of the transfer function, G(iw), for a system with
input u(t) and output y(t) may be obtained by spectral analysis
if appropriate assumptions hold for the input and for the dyna-
mical system, G(s). For infinite length of u(t) and y(t) we get

¢ (w) .
G(iw) = WY _ Y(iw) (9)

¢u(w) U{iw)

in the continuous case where

¢uy(m) = the Fourier transform of the crosscovariance func-
tion, ruy(T)

¢u(m) = the Fourier transform of the autocovariance function
Puu(T)

Y(iw) = the Fourier transform of vy(t)

U{iw) = the Fourier transform of u(t)

e.g.

Y(iw) = = y(t) e 19T g

The equalities (9) indicate that there are two different approaches
to the problem of estimating G(iw). The first method, the indi-
rect one, is to calculate the auto- and crosscovariances and then
to Fourier analyse them. The other method, the direct one, is to
Fourier analyse x(t) and y(t) directly and to relate corresponding
frequencies to each others. If u(t) and y(t) are defined zero out-
side the measure interval, (0,T), and if the covariances are com-
puted for lags from 0 to T, using the formula

1 T-1

r_ (1) = Soult) y(t+r) dt (10)
vy T-1 O

the two methods are equivalent. But if the covariances are com-
puted for a maximum lag that is shorter than T, e.g. about 10

per cent of the total time T, which is generally done, it is no
longer obvious that the methods give comparable results. The di-

rect approach seems to have received less attention, perhaps
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because it has been considered less efficient. However, there

ig now available a fast algorithm for machine calculation of
Fourier series, the Fast Fourier Transform (or the Cooley-

Tukey algorithm)., In {8} it is pointed out that crosscorelation
of input and output filters out extraneous noise to the same ex-
tent as direct Fourier analysis and no more, This is said under
the assumption that the input signal is a pseudorandem binary
sequence. Numerical examples are also given. Unfortunately the

maximum lag used is not published,

In general properties of transfer function estimates are diffi-
cult toc analyse but in certain special cases accuracy of the
estimate has been studied {9} {11}, As -far as known by the authon
no general study of this problem is availablie. On the other hand
the caleculation of ¢,(w) has been thoroughly investigated with
respect to accuracy etc., e.g. in Ref. {7} . The calculation of
¢uy(m) is treated in an analogous way. The estimate of G(iw)
should then be good, if good estimates of ¢u(m) and ¢uy are avai-

lable.

However, the described way of computing ¢u(w) from Puu(T) is ndt:f
very godd, bécause the estimates of the power density function
(the pefiodogramj are inefficient. The variability of these es-
timates does not decrease with increased record length. A way

out of this is some form of weighting of the estimates of the
power density function. One method is to perform this welighting
in the covariance function before the Fourier transformation

and different methods have been proposed,"hanning", "hamming" etc.
see Ref {3}. In the sampled case this weighting is easily applied
after the Tourier analysis. The power spectrum density function
will be smoothed by this procedure. Another method is to compute
the periocdogram directly by the Cooley-Tukey algorithm and then
smooth it by averaging over an appropriate frequency interval.

By this methed it is also possible to use a rectangular spectral
window, which is desirable for obtaining good estimates even if
there are peaks of reasonable magnitude. The method seems to be

preferable especially if covariance function are not required.




Other problems, that arise when trying to perform spectral ana-
lysis, are to determine appropriate values of the sampling in-
terval, At, the length of the measurements, N * At, and the maxi-
mum lag, m, used for the calculation of the cevariance functions.
These properties must be chosen so that we get no aliasing, re-
quired frequency resolution and required accuracy. The sampling
interval At must be chosen so that At < l/ZfC where f_ is the
cut-off frequency above which the power spectrum (almost) vanishes

As a rule of thumb m should be less than 10% of the sample size,
N, to avoid instabilities in the estimates of the covariance 7

function. The maximum lag m determines the frequency resolution
for the power spectrum density function in the frequency inter-

val (O,fc). The frequency resolution will be

Af:w_:.':._

mAt

Furthermore we have the uncertainty relation

72_ m
e ‘= o
N
where £ = normalized standard error for the spectral calculation,
2

oM
i

Var“fgu}/¢5.

Estimated value

h=a
1l

True value

=
9]

¢ can be reduced by increasing N or for given N by sacrificing

frequency resolution.

From knowledge of f_ one can choose m in order to receive a de-
sired frequency resolution Af., For small uncertainty in the esti-
mates of the power spectrum density function one sheuld choose

m << N. On the other hand high resolution will result if m is
large. Thus a compromise choice for m is necessary. Notice that
+he estimates of the power spectrum density function, that we
get, are in some sense an average over a certain frequency band
(of length 1/m+At or more). This means that the resolution must
be chosen so that the power spectrum density function not changes

very much in such an interval.

Notice that we in this section have assumed that u(t) and y{(t)

are apericdic functions. The knowledge that they are periodic

in a special case may be explored and may in such cases improve

the estimates.
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7. COMPARISON

After this discussion we will show some results obtained when
using spectral analysis on the series AR60 and AR61l. As mentiocned
before these series have been analyzed with a type of spectral
analysis {1}. Some of the results can be seen in figure 4. Notice

that these results have been cbtained by a method that uses the

fact that the input signal is periodic.

To obtain more insight in these problems the same data has been
processed once more with a standard program for spectral ana-
lysis, BMD0O2T, from BMD Biomedical Computer Programs, ed. W.J.
Divon, Health Sciences Computing Facility, UCLA. The program was
available at Uppsala Computing Centre. Unfortunately the program
has certain constraints, so that only 1000 data in each series
can be used. This fact must be remembered when comparing the re-
sults of series AR61, because only the first 1000 data of this

series have been used for the spectral analysis.

Roughly this program computes the auto- and crosscovariances and
then calculates the raw estimates of the power spectrum. These
estimates' are then smoothed by "hamming". In figures 5 and 7 the
results of the spectral analysis are shown. The maximum lag used
is 100 for both series. In figure 11 a comparison for different
maximum lag is . done. Less maximum lag will result in averaging
the power spectrum in some sense (see previous section). Notice
in figure 5 the dispersion of the points. The estimates for points

near each other may differ very much.

From the figures we can see ‘that the maximum likelihood estimate
and the results of spectral analysis may differ remarkably (e.g.
figure 5). To test why this happens both methods were applied to
2 simulated input-output sequences,The input was a sequence of
random numbers obtained from a subroutine, generating random
floating point numbers distributed according to normal distri-
bution with a mean of 0 and a variance of 1. The model used was

the following

1 1

£ 0.18927%) y(&) = (0.090z % - 0.1167 2) u(t) +

Ly 0.2127%) e(t)

(1L - 1.073 z~
+ A (1 - 0.4z
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Another sequence of random numbers was used as e(t). The lengths
of the series were 1000 points. A was chosen 0.03 and 0.2 res-
pectively. Notice that the noise-signal ratio is higher for this
example than for the models of the reactor process, which were
given in section 5. However, a change of i to a comparable level
only changes the results of the identification of the example

with A equals 0.03 very little,

The input-output sequences were identified and analyzed by the
BMD 02T-program. The models obtained from the identification by
the maximum likelihood method were

1 1

(1-1.076z —~ + 0.1u9z"2)y(t) = {0,091z ~ - 0.1162‘2)u(t) +

+ 0.03(1 - ﬂ.uzaz"l - 0.1572_2)e(t)
and
-1 -2 _ -1 -2
(1 - 1.11bz + 0.182z “)y(t) = (0.094z - 0.117z “)yul(t) +

1

+ 0.20(1 - 0.476z — + O.lHBZ—Z)e(t)

respectively.
The Bode diagrams are shown in figure 12.

From the results we can see the difficulties tc obtain a good
estimate of the transfer function from the spectral analysis.
If a parametric model is required it is difficult to find the
parameters of the model starting from the results of the spec-
tral analysis. Whatever method we use, we can see directly from
figure 12 that the model we get cannot be as good as the one

we get by the maximum likelihood identification. Notice that

this holds particularly when the noise level is high.

In this case we get an indication at the spectral analysis that
the estimates may be bad. According to ref. {5} reduced statis-
tical confidence must be placed on the results when the coherence

function, Yxiﬁm), defined by

2
|¢Xy(w)|

Yxi(w) - (11)

¢X(w) . ¢y(w)

becomes less than unity. For this example the coherence function
is 0.2-0.4 when A is 0.2, and 0.90-0.95 when X is 0.03. The value
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0of the coherence function at the analysis of the reactor measure-
ments was about 0.99. The coherence function is less than unity
for the example depending on the disturbances. To get better

estimates the sequence must be much longer.

A comparison between the two methods of identification shows that
the spectral analysis is faster than the maximum likelihood method
especially when the order of the system is unknown. On the com-
puter we use, a CD 3600, the computing time for spectral analysis
of a series of 500 data was about 30 seconds, but a simpler pro-
gram may reduce this time to about 20 seconds. The identifica-
tion of a third order model with the same amount of data with

the maximum likelihood method will take 25-50 seconds, depending
on the convergence rate. 'But on the other hand no information
about the system order is given when spectral analysis is used.
The choice between the methods must be based upon what is desired
of the results. If control laws have to be designed the maximum
likelihood method would be the best one, but if only a very ap-
proximate estimation of the properties of the system is desired,
spectral analysis would be preferable because it is faster. The
example above shows, however, that the error of this estimation
may be very large, compared with the results of the maximum like-
lihood method. The conclusion is that possibilities of error

sources at identification must always be thorcughly investigated.
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