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1. Introduction

Fast motion along a geometric path is a central problem in high per-
formance robotics. Typical applications are gluing, arc welding of small
pieces, and laser or high pressure water cutting. A glue string, for exam-
ple, has to be applied very precisely to obtain the desired adhesion effect
but also to prevent the creation of corrosion pockets. Further, overflow
should be prevented when pressing the glued pieces together. In these
applications the robot performance is limiting the production speed, and
thus it is of general interest to be able to perform a path as fast as
possible. The path is of course given from the application and a first
step is to obtain robot trajectories. The trajectories are precalculated
by interactive programming, teach-in, minimum-time or other types of
optimization. The so obtained trajectories are typically, at least for one
Joint, at the torque limit. Therefore, there is no control authority left
for these joints to take care of disturbances or modeling discrepancies.
The objective of this thesis is to execute such fast trajectories, along a
given path, by taking errors into account in a feedback scheme for on-line
trajectory modification.

A secondary feedback loop is used for modification of a nominal
trajectory, and the new idea is to have a feedback scheme that modifies
only the time scaling of the nominal trajectory, resulting in a trajectory
still moving on the given path, but perhaps at a slower speed than the
nominal. The scheme leaves the original robot and primary controller
unchanged, only the reference trajectory is modified. This means that
the basic dynamic properties, e.g. tobustness, is preserved. The time
scaling is done by modification of a scalar quantity. This simplifies the
design of the secondary controller, and results in coordinated adjustment
of the individual joint motions.

The thesis is organized as follows. Trajectory planning and execution
are treated in Chapter 2. A short review of minimum time trajectory
planning is given, and the problem of executing fast trajectories, when
the motion is limited by torque constraints, is discussed. References
to related work are also given. The main results are given in Chapter
3 and Chapter 4. Chapter 3 describes the main ideas in our concept
for trajectory time scaling. The primary controller is written in a form




well suited for devising the secondary loop, and algorithms for feedback
trajectory scaling to obtain path following, are designed and analyzed.
The proposed algorithms are verified by simulations and experiments.
Chapter 4 contains further analysis and discussion, and the conclusions
are given in Chapter 5.

Chapters 1-3 are based on a paper at the 1989 IEEE Conference on
Robotics and Automation (Dahl and Nielsen, 1989). The experiments
presented in Chapter 3 were performed using an extended version of a
compiler, described in (Dahl, 1989), to simplify the real time implemen-
tation of the algorithms.




2. Trajectory Planning and
Execution

Our scheme for trajectory modification uses a nominal trajectory as in-
put. This chapter describes model based trajectory planning as a method
for obtaining the nominal trajectory. Trajectory planning is here meant
as a calculation of a trajectory from a given path. Model based trajec-
tory planning is often based on optimization, for example minimum time
or other criteria (Bobrow, Dubowsky, and Gibson, 1983, 1985; Shin and
McKay, 1985; Pfeiffer and Johanni, 1986). The algorithms use a dynamic
model of the robot together with a description of the path and the input
constraints. In the case of minimum time optimization, the so obtained
nominal trajectories are of a bang-bang character, meaning here that
at every time instant, at least one of the joint torques are at the limit.
Minimum time optimization can thus be seen as a “worst-case” test for
execution of fast trajectories along a geometric path, when the motion is
limited by torque constraints, and a dynamic model is used for the tra-
jectory planning. We have therefore restricted the presentation in this
chapter to minimum time even though our work on trajectory execution
is not limited to that case.

Section 2.1 describes the robot dynamics along a given path. The
torque constraints are converted to constraints on speed and acceleration,
and a geometric interpretation of the constraints is given. A short review
of minimum time trajectory planning (Bobrow, Dubowsky, and Gibson,
1983, 1985; Shin and McKay, 1985; Pfeiffer and Johanni, 1986) is given in
Section 2.2. The problem of executing fast trajectories, when the motion
is limited by torque constraints is discussed in Section 2.3.

2.1 Robot Dynamics and Torque Constraints

The rigid body dynamics of a robot can be written as

H(q)d+v(q,9) +d(q)g + g(q) = 7 (2.1)




where ¢ € R™ is the vector of joint variables, 7 € R™ is the vector of
input torques, H(q) is the inertia matrix, v(q,q) is the vector of coriolis
and centrifugal forces, d(q) is the viscous friction matrix, and g(q) is
the vector of gravitational forces, all with obvious dimensions (Asada
and Slotine, 1986). Assume that the path is given in parametrized form
as a vector function f(s) € R™ of the scalar path parameter s € R,
so < s < 81, where f(so) is the starting point and f(s;) is the end point
of the path. Moving the robot along the path gives

q=f(s), 4=1f'(s)5, d=7"(s)8+f'(s)3
where 1 = a‘%, and it is assumed that the appropriate derivatives exist.
Using the fact that the elements of the coriolis and centrifugal vector
v(g,q) are of the form v; = }°., v;;1(q)d;gx, the dynamic equation (2.1)
can now be written as

a1(8)§ + az(s)$® + az(s)é +ay(s) =7 (2.2)

(2.3)

The torque constraints are in general given by a region E(q,q) in the
input space where the admissible torques satisfy 7 € E, but typically each
component of the torque vector is upper and lower limited by constants
leading to a hyper rectangle as torque constraint region E. The torque
constraints can be converted to constraints on the path speed §, and
on the path acceleration &, by the following reasoning. Given s, §, and
bounds on 7, the admissible values of § are obtained from (2.2). Now
given only s and bounds on 7, the admissible values of § are those where
there exist at least one admissible § from equation (2.2). The resulting
constraints on § and 5 can be illustrated by plotting the boundary cases
for § admissible as a function of s. This gives a region in the s-s-space
containing the admissible values of §, from now on referred to as the
admissible region. It is a necessary condition on a feasible trajectory
that the §(s)-curve is inside the admissible region.
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Figure 2.1 A geometric interpretation of the constraints on § and 3. The
region E, where 7 is admissible, is illustrated by a rectangle. The continua-
tion of the vector a; intersects the region E, which shows that the path speed
5 is admissible. The bounds for § admissible are given by the intersection
points.

A Geometric Interpretation of the Constraints

The constraints on § and § can also be given a geometric interpretation.
The torque vector 7, given by equation (2.2), is written as

T = a1(s)5 + a12(s, §)

The admissible torques are satisfying 7 € E. Given s and $, consider the
line with a direction given by a;(s), and passing through the end point
of the vector aj2(s,$). The boundary cases for the admissible values of
§ are then found as the intersections between the line and the region F.
If there is no intersection, there are no values of § resulting in admissible
torques, i.e. the path speed $§ is outside the admissible region. Figure
2.1 illustrates the constraints on $ and 5 for the two-joint case.




2.2 Minimum Time Trajectory Planning

As shown in the previous section, the torque constraints can be converted
to constraints on the path speed $, and the path acceleration §. The
trajectory planning problem can then be formulated as an optimal control
problem with input constraints and state constraints. The controlled
system is a double integrator with input §, and the states are s and §,
which is more tractable than the original 2n-states (g,4). The states
s and § are constrained by the admissible region, and the input § is
constrained by eq. (2.2). In the case of minimum time, the objective
function is the traversal time

tf_./dt /—ds—/ Lds

Algorithms for minimum time trajectory planning are found in (Bobrow,
Dubowsky, and Gibson, 1983, 1985; Shin and McKay, 1985; Pfeiffer and
Johanni, 1986), where the minimum time optimization is solved by con-
structing a number of curves inside the admissible region. Each curve is
the result of integrating either § = §,,44(s,$) or § = 8min(s, §) backward
or forward, i.e. with decreasing or increasing s, where §,,,4, and Smin are
computed from the constraints on §. The initial points for the integration
are the starting point (so,30), the stopping point (s, $;), and points at
the boundaries of the admissible region. The result of the optimization
is a graph $(s) consisting of segments with either maximum or minimum
acceleration. One example of the optimization can be seen in Figure 3.3.

Nominal Minimum Time Trajectory

The minimum time trajectory computed by the trajectory planning algo-
rithm can, as any other trajectory, be represented either as a trajectory
or as torques 7(¢), see equation (2.1). The trajectory is described in path
coordinates by s(¢), 5(¢), and s( ), or described in joint space by ¢(t),
4(t), and §(¢). The nominal minimum time trajectory has at every point
either maximum or minimum path acceleration §, which means that at
least one joint at the time is at the torque limit. Furthermore, the trajec-
tory may touch the boundary of the admissible region. For example, if
the trajectory approaches a boundary point with maximum deceleration
(Figure 3.3, s = 7/2), the speed at the starting point of the decelera-
tion is the highest possible speed that results in a trajectory inside the
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admissible region. Since the optimality of the trajectory is based on the
assumption of a perfect dynamic model of the robot, this may not be the
case when the trajectory is executed. If, during execution, a situation
where the path speed is too high occurs, the rest of the motion cannot
be continued without moving away from the path. This indicates that
problems may arise during the execution of the nominal minimum time
trajectory.

2.3 Trajectory Execution

Trajectory planning is an off-line procedure resulting in a nominal tra-
jectory to be used as a reference trajectory for the robot’s control sys-
tem. High performance trajectories are typically at the torque limit, and
more specifically if it is a minimum time trajectory then one or more
joint torques is always at the limit. It is therefore custom to be con-
servative on the requirements and reduce the assumed torque bounds to
leave room for closed-loop control action (Asada and Slotine, 1986, Sec-
tion 6.6). Another method in the same spirit is described in (Shin and
McKay, 1987), where bounds on parametric model errors are used for
off-line modification of the trajectories. In (Slotine and Spong, 1985), an
on-line adjustment scheme is proposed based on pointwise optimal con-
trol, where the trajectory is modified on-line by changing the reference
trajectory. The modified trajectory is executed in the same time as the
nominal trajectory. The path traced by the modified reference trajectory
is however different from the nominal path, and path tracking is violated.
The idea is thus to do the best possible in nominal time.

Path Tracking by Trajectory Scaling

It is obvious from the optimization problem but also from physical rea-
sons that if the robot is behind the nominal trajectory then it is im-
possible to catch up if the controller already is at the torque limit. A
constructive way to avoid the problem is to slow down the reference tra-
jectory, at least in the applications mentioned in Chapter 1 where path
tracking is at priority. Further, it is untractable to be conservative al-
ready in the trajectory planning stage because of productivity reasons.
We will in the rest of this thesis propose a scheme for on-line modification
of the time scaling of the reference trajectory, where the goal is to keep
following the path at the expense of an increase in the path traversal
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time. Ideally, the traversal time should only increase if needed and then
as little as possible. The proposed scheme leaves the primary controller
unchanged, only the reference trajectory is changed. This keeps the dy-
namic properties of the closed loop system, e.g. robustness is preserved.
A secondary control loop is used for modification of only a scalar variable,
which simplifies the design and analysis of the secondary controller.

12




3. Path Following by
Trajectory
Time Scaling

The proposed scheme for feedback trajectory scaling is described in this
chapter. In Section 3.1, the primary controller is parametrized in the
scalar path coordinate s. Two algorithms for trajectory scaling are de-
signed and analyzed in Section 3.2. The first algorithm uses on-line
bounds on the path acceleration § together with feedback from the nom-
inal path velocity. The second algorithm is an extension of the first
algorithm, designed to handle nominal minimum time trajectories. A
method for obtaining the nominal trajectory from a differential equation
is proposed, and used as the basis for the design of the secondary con-
troller. The analysis presented is based on the interpretation of the path
parameter s as a transformed time scale. Simulations and experimental
results are presented in Section 3.3 and Section 3.4, and a summary of
the results is given in Section 3.5.

3.1 Path Parametrization of the Controller

The primary controller, designed for good performance, disturbance re-
jection etc., is kept unchanged in our scheme for trajectory scaling. The
primary controller is however parametrized in the path parameter s, a
parametrization of the same type as the parametrization of the robot
model used in trajectory planning, equation (2.2). Such a parametriza-
tion of the controller seems not to have been reported before, and it
is used in our concept for trajectory scaling as the basis for connecting
measurements to the path parameter s. We will here use the controller
parametrization

T=bl(saéyqaq')g_'—b:?(s)é?q)q.) (3'1)

Note that b; and b, depend on measured quantities. Compare with
equation (2.2), that is used to compute off-line bounds on 5. We will use

13




eq. (3.1) to compute on-line bounds on the path acceleration §, which in
turn will be used for trajectory scaling.

To exemplify the controller parametrization, two common controll-
ers, feedforward and computed torque (Asada and Slotine, 1986), are
written in the form (3.1). A feedforward controller with position and
velocity feedback is given by

7= H(g:)dr + 9(ar, ) + d(@r)dr + 3(gr) + Kpe + Kyé (3.2)

where K, and K, are feedback matrices. The reference trajectory is
denoted g¢,, and the the tracking error e is defined as e = ¢, — q. The
variables H , U, cf, and g represent an available model of the robot. Ex-
ecuting the trajectory along the path f(s) means that g.(t) = f(s(t)).
Taking derivatives and inserting into equation (3.2) gives

bi(s) =H(f(s))f'(s)

ba(s,5,9,9) =(H(£(5))f"(s) + 9(F(s), f'(5)))$>
+d(£(5))F/(5)8 + 3(F(s)) + Kpe + Kyé

A computed torque controller is given by

T = H(q)(d, + Kpe + Ku&) + 9(q,9) + d(g)d + 4(q)

resulting in

On-line Constraints

We can compute on-line constraints on § and §, in analogy with the
off-line constraints in Chapter 2. The on-line admissible values of § are
the values that result in admissible 7, i.e. 7 € E, the set of admissi-
ble torques, when 7 is now computed from equation (3.1). The on-line
admissible values of § are then given as the values of § that results in
on-line admissible §. The on-line maximum and minimum values of § are
computed by the same computational procedure as in the case of off-line

14




trajectory planning, but now by using equation (3.1) where b; and b,
depend on measured quantities. Constant bounds on the input torques
are written as

TS m=bud by <, 1<i<n (3.3)

2 2

Each joint ¢ now gives upper and lower bounds on 5, computed by

(Tim'.w — bai) /b1, b1; >0
c; = (7™ — bg;) /b1i, b1; <0 (3.4)
oo, bli =0

and

(77" — by;) /brs, by >0
di = ¢ (7% — by;) /b1, b1; <0 (3.5)
— 00, bli =0

The bounds on § are obtained by maximizing and minimizing over the
links 2

$maz =Mminc;, Sm,in = maxd; (3.6)
% 2

Observe that these bounds depend on the measured quantities q and gq.
Note also the notation used, where the quantities §,,;, and Smasz T€Present
the result of the computation (3.3)-(3.6), i.e. it is not guaranteed that

Smin _<_ Smawx-

3.2 On-line Trajectory Scaling

Algorithms for time scaling of a nominal reference trajectory will now
be derived. The nominal trajectory is specified in advance, e.g. precal-
culated by model based trajectory planning as described in Chapter 2,
or specified by a robot operator/programmer. Let the nominal trajec-
tory be given by the nominal path parameter sn(t) so that the nominal
reference trajectory is g.(t) = f(sn(t)). The scaling is done by on-line
modification of the scalar function s,(t) to a new function s(¢). The
modified reference trajectory g,(t) = f(s(t)) is then used as input to
the primary controller. The first algorithm for trajectory time scaling

15




uses bounds on the path acceleration §(¢) together with feedback from
the nominal path speed, and the second algorithm is a modified version
where the s-i-chart of the nominal trajectory is utilized. The primary
controller is parametrized in the path parameter s as in the previous
section, 7 = b8 + by. In order to avoid computing derivatives of mea-
sured quantities, the modification of s(t) is actually done by modifying
the path acceleration §(t). The scaling algorithm is a secondary control
loop outside the ordinary controller, where the output of the secondary
controller is the scaled trajectory, represented by s(t), 5(t), and (t).

Nominal Trajectory Execution

The nominal path parameter is given by

sa(t),  $n(t), a(t)

$n(0) = snq, “"n(o) = $ngs Sn(o) = 8n,

If $,(t) > 0 for all ¢, the nominal path velocity 4,(t) can be regarded as
a function of s,(t). The nominal trajectory can then be represented as
a velocity profile

$n(t) = vn(50 (1) (37)
The nominal path acceleration §,(t) is then given by

5n(t) = Zyoa(an(0) = 22y = Sl ()

Introduce the function a, by

an(8n) = i%—)—vn(sn) = 3%: %vn(sn)z) (3.9)

The functions v,, and a,, are computed from the nominal trajectory s, (t),
$n(t), and &, (t), by equations (3.7) and (3.9). They can thus be precom-
puted and stored in advance. Further, they are not explicit functions of
time, and therefore suitable for use in trajectory time scaling. A function
of the nominal trajectory that is an explicit function of time would lead
to difficulties, since a time scaling of the nominal trajectory may result
in a path traversal time that is larger than the nominal traversal time,
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and the nominal trajectory is typically defined only for times ¢ smaller
than the nominal traversal time.

Using equations (3.8) and (3.9), we see that the nominal trajectory
is now obtained from the differential equation

5(0) = 4n, (3.10)

We have introduced the nominal velocity profile v, and the nominal
acceleration profile a,,. These are given functions, computed from the
nominal trajectory s,(t). We introduce in the same way for the actual
trajectory s(t), the actual velocity and acceleration profiles, v and a, as

5(t) = v(s(t), (1) = a(s(t))

Time Scale Transformation

The interpretation of the variable s as a transformed time variable will
be used to give insight and ideas for devising a secondary control loop
for on-line trajectory time scaling. A differential equation for s is derived
and used in the next subsection as the basis for introducing measured
quantities to form a secondary feedback loop.

Using (3.8) with s, replaced by s, we get

5() = 330 = Zo(s0) = Do) = Loy

Introduce y and y, by

¥(s) = 505 e(s) = oale)? (3.12)
From (3.9), we get

n(s) = (Lo (a2) = B0 (3.13)
and from (3.11)

. dy(s)

§ = o (3.14)
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Equation (3.10) can now be written as a linear differential equation

dy(s)  dy.(s)

y(s0) = '2'3'3“,

where sg = s,,,. The equation (3.15) can be combined with feedback from
the nominal and actual path velocities, for example to handle numerical
errors in the integration or, as is shown in the first simulation example
in Section 3.3, to cover the case where the nominal path acceleration is
not specified. A linear feedback in the transformed time scale gives

dy(s) _ dyr(s)

o=~ talu(s) -us) =

(o +)(un(s) - (s)) = 0 (3.16)

and we see that y(s) — y,(s), i.e. v(s)? — v,(s)? with a time constant
i— in the transformed time scale. When the nominal path acceleration

a, is not specified, we get

dy(s)

2 = aly(s) —y(s) =
(- + a)y(s) = agn(s) (3.17)

which gives y(s) as a low-pass filtered version of y,(s). The time con-

stant of the filter, again in the transformed time scale is -i— The two

alternatives, (3.16) and (3.17), are summarized in

dy(s)= dy-(s) alu(s) — uls
e =G o) =30 -
y(SO)Z‘z'S'io

where 8 =1 or B = 0. The equation (3.18) can be translated back to the
untransformed time scale as

3() = Ban(s(0)) + galva(s(0)? - (1))
50) = 4 (3.19)
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Note that equation (3.19) is a state equation to generate either the nom-
inal trajectory (8 = 1) or a low-pass filtered version of the nominal
trajectory (8 = 0). This equation will now be extended to a secondary
feedback controller by including bounds on the path acceleration §, where
the bounds depend on measured quantities.

Path tracking with bounded path acceleration: Algorithm 1

The torque limits will now be accounted for. A first algorithm is eas-
ily obtained by extending the method for nominal trajectory execution,
equation (3.19), with on-line bounds on §

ar = Ban(s) + —;—a(vfb(s) — §%)

§ = Sat(ar, gmin, §maaz)

(3.20)

where the saturation function sat is defined as the limitation of § by
the on-line bounds §,,;, and §,,4, given by (3.6). Note that the bounds
depend on s, §, and the measured quantities g and ¢§. If the bounds are in
conflict, i.e. if the computational procedure used to compute the bounds,
equations (3.3)-(3.6), gives the result 5,,ip > 51mas, then § = a, is used.
The feedback signal v2(s) — 52 is here used to achieve the nominal path
speed v,(s). As long as the §-limits are not active, the gain « has the
same interpretation as in the case of nominal trajectory execution.

This algorithm works well as long as § is on-line admissible, i.e. as
long as the on-line bounds on § are computable. The effect is that the
saturation function limits the slope of the velocity profile vn(s). The slope
may be too large due to several reasons. A robot programmer may have
specified a too demanding velocity profile, or, if a dynamic model is used
for the trajectory planning, modeling errors may result in unrealizable
path accelerations, e.g. the inertia may be underestimated in some robot
configuration. Further analysis of Algorithm 1 is given in Section 4.1,
and in Appendix B, where a modified version of the algorithm is shown
stable, meaning here that if the nominal path velocity §, is bounded,
the actual path velocity § is also bounded. Algorithm 1 is illustrated
in Figure 3.1, where a block diagram of the system with the secondary
control loop is shown. A simulation example using Algorithm 1 is given
in Section 3.3 and shown in Figure 3.2.
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s-bounds ?
R e
q 4 Controller T Robot |dq

1 1 =b1§+b2

Figure 3.1 A block diagram of the robot with primary and secondary
control loop. The primary controller is parametrized in s. Observe that by
and b, depend on measured quantities.

Including velocity profile constraints: Algorithm 2

It is not sufficient to consider only the path acceleration constraints when
executing minimum time trajectories. Also the constraints on the velocity
profile has to be taken into account. Already the nominal path velocity
may, at some points along the path, be at the boundary of the nominal
admissible region, see Figure 3.3. Model uncertainties may then result in
$ not being on-line admissible during the complete motion. This means
that at some point along the path, there exists no § leading to admissible
torques, and the motion cannot be continued without moving away from
the path.

Algorithm 1 is therefore extended with a modification of the nominal
velocity profile in order to handle this problem. The nominal path speed
may be too large, e.g. due to modeling errors, and the idea of the velocity
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profile modification is to have a reduction of the path speed, resulting
in a modified velocity profile, lower than the nominal. We choose to
implement the modification as a scaling of the nominal velocity profile,
i.e. to use yv,(s) instead of v,(s) as the nominal path velocity, where v is
a scaling factor. The scaling factor v is then updated as the robot moves.
A scaling of the nominal velocity profile also influences the nominal path
acceleration a,(s). The relation between the nominal path acceleration
and the velocity profile is given by (3.9). Assuming small modifications
of v, so that 7 can be regarded as constant, the path acceleration a,,(s)
is replaced by y?a,(s). This results in the algorithm

ar = Bylan(s) + %0‘(72”721,(3) — §%)

§ = Sat(ar, "S:m’ina gma,:r,)

(3.21)

where the saturation function, the parameters oo and 8 have the same
meaning as in Algorithm 1, equation (3.20).

The design of an update law for the modification of v in (3.21) is
here based on the assumption that the nominal trajectory is a minimum
time trajectory. Recall that a minimum time velocity profile consists of
intervals with nominally either maximum or minimum path acceleration,
where an acceleration interval is always followed by a deceleration inter-
val. The nominal acceleration may be too high during an acceleration
interval, e.g. due to modeling errors. If we regard this as an indication
that the nominal path velocity may be too high further along the path,
a reduction of the scaling factor during acceleration is a way to ensure
that the path speed will be admissible also during the rest of the motion.

Algorithm 2 is now obtained by combining (3.21) with an update
law for v. The update law for v proposed here uses the quotient between
the nominal velocity profile v,(s) and the actual path speed s as input.
Suppose that the nominal acceleration is too high during an acceleration
interval, and that this results in torques at the limit during the accelera-
tion. The on-line bounds on path acceleration, (3.21), are then activated,
resulting in path following with limited torques during the acceleration.
Since the limited torques are a result of a too high nominal acceleration,
the actual velocity profile will be below the nominal velocity profile. The
quotient between the nominal velocity profile v,(s), and the actual path
velocity $, is then used to adjust the scaling factor 4. In the simulations
and experiments, in Sections 3.3 and 3.4, this is done by the following
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update law

Y = 1 -+ k:cf
iy = {s‘(—awf +1 = ya(5)/4), yon(s)/5>1 (3.22)
g $(—azy), yun(s)/é§ < 1

where zf is a scalar filter variable, and k is a scalar constant. Other
update laws could be considered, and one alternative is given in Section
4.2, equation (4.14).

Tuning rules for the parameters k and a can be derived from the
following approximate analysis, where the differential equation (3.22) for
Ty is interpreted as a filter in the transformed time scale s. The equation
for 5 is written in the transformed time scale as

d —(a+ kv, (s)/8)zs+1 —v,(s)/3, ~v,(s)/s>1
E;wf={_gwf, ()/) b ()/ zvnES§§§<1 (323)

Assuming an actual path velocity § approximately equal to the nominal
velocity profile v,(s), i.e. §/v,(s) ® 4 =~ 1, and choosing the parameters
k and a such that k > a, we see that the upper equation in (3.23)
represents a time constant of 1/k in the transformed time scale. In
the case of a too high nominal path acceleration during an acceleration
interval, the upper alternative in (3.23) is selected, and the parameter k
can be used to determine the time constant for the update of 4 during the
acceleration. If the nominal trajectory does not result in the activation
of the s-bounds, we get 5§ = yv,(s), resulting in z; — 0, i.e. ¥ — 1, with
the time constant 1/a. Note that the transformed time scale is useful
for tuning of the parameters k and a, and that the s-§ diagram for the
nominal trajectory can be used to determine suitable parameter values.

3.3 Simulations

The proposed methods have been simulated for different robots, but
the presentation will here be restricted to a decoupled two-link robot.
The model used is describing the robot used in the experiments, pre-
sented in Section 3.4. The simulations have been performed using Sim-
non (Elmqvist, Astrém , and Schénthal, 1986). The robot model has
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been determined by physical modeling and experiments. The dynamic
equations are

m;t; +d;z; =15, 1=1,2 (324)

Assuming z; and 7; are measured in Volts, the parameters of the model
are m; = my = 0.050, d;y = dy = 0.0048. The torques are constrained
by constant bounds | 7, |[< 0.2, | 7» |< 0.2, and the path is fi(s) =
0.4(1 — cos(s)), f2(s) = 0.8sin(s), 0 < s < 27.

First, a simple trajectory is executed by Algorithm 1. The nomi-
nal trajectory used is an example of an unfollowable reference trajectory,
e.g. the robot operator/programmer may have specified a too demand-
ing velocity profile. It is from an application point of view important
that a control scheme is robust to such nominally unfollowable reference
trajectories.

The nominal trajectory is represented as a velocity profile

Uny 50 <8< 81
Vn(s) = { Uny, 51 X85 <X 82

‘Unz

Un, — 55-(5 —82), §2 <8< s3

where vy, = 2.1, v,, = 0.7, 51 = 3, s = 5, and s3 = 27. The velocity
profile is piecewise constant between so and s, i.e. the path acceleration
is nominally infinite at the transition points, sy and s;.

The controller is a computed torque controller

T = (&, + ko é; + kp,e;) + did;, i=1,2

where z,; denotes the reference trajectory, and e; = z,, — z; is the
tracking error. The use of a secondary controller for trajectory time
scaling should not influence the tuning of the primary controller. Here,
the feedback gains were chosen to give poles with critical damping, and
a natural frequency of 9rad/s, i.e. k,, = ky, = 81, k,, = k,, = 18.

The result of using Algorithm 1, equation (3.20), with 8 = 0 and
a = 30, is shown in Figure 3.2. The time constant 1/« in the transformed
time scale is here 1/30, and should be compared with the length of the
path. The upper left plot shows the path tracking, which is excellent.
The mid left plot shows the nominal and the actual velocity profiles. The
slope of the velocity profile has been limited, resulting in a followable
reference trajectory. The difference in nominal and actual path traversal
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Figure 3.2 The result of using Algorithm 1 on a nominally unfollowable
reference trajectory. The path acceleration is limited by the algorithm, re-
sulting in path following with limited torques.

times is small, as can be seen in the lower right plot where s and s,, are
shown. The end point of the path, here denoted 8,45 is also shown in
the lower right plot. Note that one of the torques, shown in the lower
left plot, is at the limit during the velocity transitions.

Algorithm 2 will now be used to handle a minimum time trajectory.
The trajectory planning is based on a robot model with parametric errors.
The nominal trajectory leads to large path deviations, and it will be
shown how path following can be obtained by a small modification of the
nominal trajectory.

The nominal trajectory was chosen as a minimum time trajectory
for the nominal model, equation (3.24). The minimum time trajectory
planning is based on (Shin and McKay, 1985) and implemented in MAT-
LAB (Moler, Little, and Bangert, 1987). The implementation is further
described in Appendix A. The nominal trajectory and the corresponding
torques, computed from equation (3.24), are shown in Figure 3.3. The
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Figure 3.3 An s-$-diagram is shown in the left plot. The nominal mini-
mum time trajectory (dashed) is represented as a velocity profile 5(s). The
solid curve is the boundary of the admissible region. The right plot shows
the nominal minimum time torques as functions of the path parameter.

nominal trajectory was executed by (3.19) with 8 = 1 and o = 20, us-
ing a robot model with the parameters m; and msy 5 % larger than the
nominal values. The primary controller was the same as in the previous
example. The result is shown in Figure 3.4. The nominal trajectory
leads to large path deviations, as can be seen in the upper left plot.
Since the actual robot model is heavier than the robot model used in the
trajectory planning, this is expected. The mid left plot shows that the
actual velocity profile is the same as the nominal velocity profile. The
nominal velocity profile is also found in the left plot in Figure 3.3. The
lower left plot shows that one of the torques is at the limits during the
complete motion. The tracking performance can be seen in the upper
right and the mid right plots. The reference trajectory of joint 2 cannot
be followed, a result of the limited torque 2.

Using Algorithm 2 with 8 =1, a = 20, k = 4, and a = 0.05 results
in accurate path following. The parameters were chosen as follows. The
nominal path acceleration is used in the trajectory execution, which gives
B = 1. The parameter o determines the time constant for $* = v(s)?
when the bounds on § are not active. The time constant is here 1/a =
0.05. The parameter k gives the time constant for the modification of v,
and is here chosen as k = 4, which gives a time constant of 1/k = 0.25,
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Figure 3.4 An example where nominal trajectory execution is unsuccessful
due to an erroneous model. The actual parameters my and mqy are 5 % larger
than the nominal parameters.

which is approximately equal to half the first acceleration interval, see
Figure 3.3. The purpose is to make the current nominal velocity profile
Yun(s) converge to the actual velocity profile § = v(s) during the first
acceleration interval. The parameter a is here chosen as a = 0.05, which
gives the time constant for resetting v to 1, 1/a = 20.

The result of using Algorithm 2 on the nominal minimum time tra-
jectory is shown in Figure 3.5. The evaluation of the result is based on
path following and torque utilization. The path following is good, as can
be seen in the upper left plot. The torques are also close to their limits,
see the lower left plot. The nominal and the modified velocity profile are
shown in the mid left plot, and the tracking errors are shown in the mid
right plot. Note the sensitivity of the path following, upper left plot in
Figure 3.4 and 3.5, with respect to the traversal time. Large path fol-
lowing errors have been eliminated by a small increase in traversal time.
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Figure 3.5 Using Algorithm 2 on the nominal minimum time trajectory,
shown in Figure 3.3, leads to tracking. The increase in path traversal time
is shown in the lower right diagram.

3.4 Experiments

The experiments were performed using a laboratory system controlled by
an IBM-AT computer. The robot consists of two decoupled DC servos
and is described by the model (3.24). The DC servos are further described
in e.g. (Jonsson, 1988). The software used in the experiments is written
in Modula-2, using library modules from Logitech (Logitech, 1987), and
from the Department of Automatic Control.

Implementation Environment

A compiler for translation of Simnon systems into Modula-2 code was
used to simplify the implementation. The compiler is an extended ver-
sion of the compiler described in (Dahl, 1989). A discrete time Simnon
system is translated into a Modula-2 module, and procedures for access-
ing parameters and other variables are generated. The primary controller
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and the scaling algorithm was implemented in one IBM-AT computer,
using a foreground/background scheduler (Andersson, 1989). Plotting
facilities and data logging was implemented in a second computer, us-
ing a real time kernel. The data transfer between the computers was
done using the AD/DA converters. The Simnon/Modula-2 compiler also
allows a mixture of Simnon code and Modula-2 code as input. A first
implementation of the algorithm was done in Simnon, and the function-
ality was verified by simulation. The nominal trajectory was chosen as a
simple velocity profile. Modula-2 code was then added to cover the min-
imum time case, where the nominal trajectory, computed in MATLARB,
was stored in a file.

Experimental Results

Experimental results obtained by using Algorithm 2 on the same mini-
mum time trajectory as in the previous section will be presented. The
path and the primary controller were the same as in the simulation, and
the sampling time was 0.017 seconds. The feedback gains in the primary
controller were empirically chosen as k,, = 225, k,, = 100, k,, = 21,
k,, = 14. The nominal trajectory is shown in Figure 3.3. Algorithm 2
was used, however discretized by a forward Euler approximation. Simu-
lations of the discrete algorithm led to the parameter choice o = 5 and
B = 1. The experimental results on the real system are shown in
Figures 3.6-3.9. The x-axis is scaled in seconds. The sampling time for
the data logging was 0.07 seconds.

Figure 3.6 shows an artificial experiment where the torque bounds
have been removed. The purpose is to show that the primary controller
is properly tuned, i.e. the motion along the path is not constrained
by the performance of the primary controller. We see in the upper left
plot that this is the case. The path following is good, and the tracking
errors are small, see the lower left plot. The torques required to track
the reference trajectory are, due to imperfect modeling, larger than the
nominal, compare the limiting joint 2 in Figure 3.3 and in Figure 3.6,
the lower right side plot.

In Figure 3.7, the torques are constrained by the bounds used in the
trajectory planning, | 71 |< 0.2, | 72 |[< 0.2. The modeling errors lead to
very poor tracking, caused by the limited torques. Figure 3.8 shows the
result of using Algorithm 2 with k£ = 1.5, and a = 0.1. The evaluation of
the result is based on path following and torque utilization. The nominal
trajectory is slowed down, and the modified trajectory can be followed,
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Figure 3.6 An artificial experiment where the torque limits have been
removed. The purpose is to show that the primary controller is properly
tuned.

resulting in good path following, see the upper left plot. The capability
of the robot is utilized as can be seen from the torques of joint 2 which
are close to the bound 0.2. Note that in the simulation in Section 3.3,
the model used in the trajectory planning was deliberately modified by
5 % in order to demonstrate the properties of the algorithm. This is
not the case here. The model used is derived from physical modeling
and identification experiments. The model accuracy is good enough for
controller design, see Figure 3.6, but not for minimum time trajectory
planning, see Figure 3.7. A crude measure of the model uncertainty
could be the increase in traversal time, see Figure 3.9, where the nominal
velocity s, and the actual velocity § are shown as functions of time.
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Figure 3.7 Execution of the nominal trajectory when the torques are
bounded leads to large path deviations.

3.5 Summary

A {feedback scheme for trajectory time scaling has been proposed. A
secondary controller is used for the modification of a nominal trajectory
during motion. The primary controller is parametrized in the path coor-
dinate s, but otherwise not changed. A scalar quantity, the path acceler-
ation § is modified, resulting in coordinated adjustment of the individual
joint motions. T'wo algorithms have been designed, and verified by simu-
lations and experiments. One algorithm is based on bounds on the path
acceleration, together with feedback from the nominal path velocity. The
algorithm limits the slope of the velocity profile, and can be used for sim-
plification of trajectory programming, in the sense that a too demanding
velocity profile, for example specified by an operator/ programmer, is ad-
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Figure 3.8 The result of using a secondary feedback loop, based on Algo-
rithm 2, on the nominal minimum time trajectory. The modified tra jectory
leads to path following with limited torques.

justed to meet the requirements given by the torque constraints. The
second algorithm is an extension of the first algorithm, and designed to
handle nominal minimum time trajectories. A scaling of the nominal
velocity profile is introduced, and the scaling factor is modified on-line.
The nominal minimum time trajectory is typically too fast, and the idea
is to have a reduction of the path speed during acceleration, resulting
in admissible torques also during the following deceleration. The speed
reduction should only occur if needed, and then be as small as possible.
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4. Further Analysis

This chapter presents, together with Appendix B, further analysis of
the proposed algorithms for trajectory time scaling. The design of the
secondary controller is further motivated by a stability analysis for a
restricted case of Algorithm 1, where the on-line bounds on path accel-
eration are assumed to have different signs, i.e. the lower bound is never
positive, and the upper bound is always nonnegative. The condition that
the bounds have different signs is also interpreted as a restriction on the
path speed s. The purpose of the stability analysis is to justify the de-
sign of the secondary loop, and not to give detailed information about
e.g. tuning of parameters. The main ideas in the analysis are given in
Section 4.1, and detailed calculations are given in Appendix B.

Analysis relevant for Algorithm 2 is given in Section 4.2. It is shown
how a constant scaling of the velocity profile influences the torques, and
requirements on a scaling factor resulting in admissible torques are de-
rived. A discussion of limitations and modifications of Algorithm 2 is
also given.

4.1 Restricted Stability Analysis

The design of the secondary loop is illustrated by Figure 3.1, where Algo-
rithm 1 is shown. Algorithm 2 is obtained by including a scaling factor
such that v,(s) is replaced by yv,(s), and a,(s) is replaced by Y2 an(s).
If the on-line modification of y is small, so that v can be regarded as
constant, the block diagram is also relevant for Algorithm 2. Figure 3.1
shows that the closed loop system is nonlinear. The robot dynamics are
nonlinear, and the output of the primary controller is limited. The sec-
ondary loop is also a nonlinear system, with internal feedback from the
squared path velocity §2, and limitations on §, where the bounds depend
on the robot position and speed, g and .

The restriction in the stability analysis is a modification of Algorithm
1. The modification is described in this section, and a stability result for
the modified algorithm is given in Appendix B. The result is a bounded-
input bounded-output type result, and shows that if the nominal velocity
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profile v,(s) is bounded, the actual velocity profile v(s) is also bounded,
and the bounds are independent of the tracking errors.

The stability of the closed loop system, i.e. the system given by
the robot, the primary controller, and the secondary controller, is also
discussed in this section. The discussion is formalized in Appendix B,
where it is shown how a stable closed loop system can be obtained by
using the modified Algorithm 1, in connection with a primary controller
with guaranteed tracking performance. The possibility of achieving a

controller with this property is discussed in Appendix B, using a result
from (Craig, 1988).

Algorithm 1

Algorithm 1 is obtained from the method for nominal trajectory execu-
tion, equations (3.18) and (3.19), by including on-line bounds on the path
acceleration §. The bounds, denoted §,,;, and §,,4,, are computed from
the torque constraints and the controller parametrization, see equations
(3.3)-(3.6). Note that the bounds exist only if there are numbers, §min
and 8mqz, such that 7 = b, 54 by is inside the torque limits for all §, sat-
isfying $min < 5§ < 8mas. If the bounds do not exist, the computational
procedure used, equations (3.3)-(3.6), gives the result &5, > $mas. The
controller is parametrized as 7 = b;§ + by, where b; and b, are allowed
to be functions of s, §, g, and ¢. Since e = g, — g, we can equivalently
regard b; and by as functions of s, §, e, and é. This means that the
on-line bounds on § are also functions of the same quantities. Algorithm
1 is now written as

ar = Ban(s) + %oz(vn(s)2 — §%)

sat(ar, s, 5,€,¢€) (4.1)

Il

p
S(O) ‘éno
$(0) = $n,
where the dependence on the tracking errors is explicitly shown by the
function sat(a,,s, $,e,é), defined as the limitation of a, by the on-line
bounds §min(s,$,e,€) and §m44(s,$,€,8) if $1min < $maw, and a, other-
wise.
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Modification of Algorithm 1

A modified version of Algorithm 1 will be shown stable, meaning here
that a bounded nominal velocity profile will result in a bounded actual
velocity profile, where the bounds are independent of the tracking errors
e and é. The modification of the algorithm is a modification of the
saturation function sat, that limits the path acceleration § by the on-line
bounds §,,in, and §p,qs. In Algorithm 1, the path acceleration is limited
as long as the bounds satisfy $,,4z > $min. LThe modified version limits
the path acceleration only if the bounds §,,;, and §,,,, have different
signs, i.e. Syqz > 0 and §,,;, < 0. The condition that the bounds have
different signs can be interpreted as a restriction on the magnitude of the
path speed $, see Lemma 4.1 and the following discussion. We therefore
define § admissible as follows.

DEFINITION 4.1

Given b; and by in the controller parametrization 7 = b;§ + by, the
path speed § is admissible if the $-dependent §-bounds &,in(s, 3, e, é€)
and $,q4(5, §,€,€) exist, are finite, and satisfy 4z > 5min, Smas > 0,
and $,:n < 0.

Remark 1. The condition that the §-bounds exist can also be formulated
as there exist numbers, §,,;, and §,,4z, such that 7 = b, 5 + b, is inside
the torque limits if § satisfies §,5n < § < §mga.

Remark 2. This definition of § admissible is only used in this section,
and in Appendix B. In the off-line trajectory planning, described in Chap-
ter 2, $ admissible has another meaning. O

The following Lemma is given to demonstrate that the fact that § is
admissible can be interpreted as a restriction on | $ |.

LEMMA 4.1

Suppose that the torque constraints can be expressed as | 7 |< Tinqa,
where | 7 | denotes the vector norm of 7. A mnecessary and sufficient
condition for § admissible is then given by | by |# 0, and | b3 |< Thas.

Proof: Suppose that $ is admissible. We then have bounds on § such
that 7 is admissible for all §, satisfying §min < § < §mas, Where §min < 0,
and §mas > 0. This means that 7 is admissible if § = 0, i.e. | b0+ by |<
Tmaz, Which implies | by |< Ty4e. Furthermore, the bounds on § are
finite, which implies | b; |# 0, since if | b; |= 0, then b; = 0, which
results in | 7 |=| by |< Tynae for all §, which contradicts the fact that the
bounds on § are finite.
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Suppose now that | by |< 7yn4s, and | by | 0. We then have
| 018 +b2 <[ by || 5]+ | b2 |
which gives bounds on § as

. T, —|b . T —|b
Fmin = malmbl |! . =5= marbl |l . - Smas

and we see that the bounds exist, are finite, and satisfy §,,45 > Smin,
Smaz = 0, and 8,5, <0, 1.e. § is admissible. |

The interpretation of § admissible as a restriction on | § | is motivated
as follows. Suppose that the controller is a computed torque controller.
The controller parametrization then gives

by = H(q)f'(s)
by = H(q)(f"(5)$> + Kué + Kpe) + 8(q,4) + d(q)d + §(q)

Suppose further the tracking errors are small, so that ¢ = ¢, and § ~ g,..

Since g» = f(s), the vector ¥ can then be approximated as #(q,q) ~
9(qr,gr) = v(f, f')5?, see equations (2.2) and (2.3). This gives

by ~ H(g.)f"(s)8% + 9(f, f')5* + d(q) £'(s) + 4(q)
= by15° + by + bosg

(4.2)

and we see that the equivalent formulation of § admissible as given by
Lemma 4.1, | b3 |< Timaz, Now gives restrictions on the magnitude of the
path speed, | § |.

Algorithm 1 is now modified by replacing the saturation function sat,
equation (4.1), by the function sat;, with the same arguments, and de-
fined as the limitation of & by §in(s, 5,€,€) and §,,44(s, §, €, é) if s is ad-
missible and 0 otherwise. This means, for example, that sat; (z,s,$,e,é)
is finite and that | sati(z,s, $,e,é) |<| z | for all , s, $, e, and é. Note
that § being admissible means that the resulting 7, 7 = b1 § + by, will
also be admissible, i.e. inside the torque limits. The modified algorithm
is then given by

ar = Ban(s) + —;-a(vn(s)z — §%)

§ = sat1(an, s, $,e,¢€) (4.3)
5(0) = én,
5(0) = sp,
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Figure 4.1 A situation that is handled by Algorithm 1, but not by the
modified Algorithm 1. The path speed § is not admissible, as can be seen
from the bounds on §, which have the same sign.

The modified Algorithm 1 can only handle path speeds § that are ad-
missible. If the torque constraints can be expressed as | 7 |< Tmaz, this
means path speeds § such that | b [< Tings. The unmodified algorithm
can handle the case | by |> Timqq, which typically would mean higher path
speeds. The difference is illustrated for the 2-joint case in Figures 4.1
and 4.2.

Stability of the Modified Algorithm 1

The interpretation of s as a transformed time variable will now be used
to rewrite the modified algorithm. We will use the same notation as in
Section 3.2. The nominal and the actual velocity profiles are v,(s) and
v(s), where v(s) is the function obtained when the path speed $ is viewed
as a function of s, i.e. $(¢) = v(s(t)). The variables y, and y are given
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Figure 4.2 A situation where the path speed § is admissible, i.e. also the
modified Algorithm 1 would lead to a limitation of &, resulting in admissible
torques.

1

¥(s) = 50060, als) = un(s)’

The path acceleration § is then given by § = ‘;—g, see equation (3.14),

and the nominal path acceleration is given by the nominal acceleration
profile a,(s) = df;, see equation (3.13).
The modified Algorithm 1, equation (4.3), can now be written in the

transformed time scale as

dyn
anp —",B ds +a(yr_'y)
d .
% = saty(a,, s,v,e,é) (4.4)
L,
y(s0) = 551210
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where so = sp,, and v(s(t)) = 5(¢). A stability result for the modified
Algorithm 1 is given in Theorem B.1 in Appendix B. The result is based
on the observation that the modified algorithm can be interpreted as a
first order system with input y, and output y, and where the derivative
of the output, j—g, is limited. The limitation is done by function satq,
and occurs only if the bounds used in the limitation have different signs,
i.e. if § is admissible, see Definition 4.1. If this is not the case, the value
of sat; is 0, resulting in Z—g = 0.

Theorem B.1 shows that if the gain « is chosen sufficiently large,
and y.(s) and ,B%’l are bounded, then y(s) and % are also bounded,
and the bounds are independent of the tracking errors e and é.

The Closed Loop System

The closed loop system includes the robot with torque limitations, the
primary controller and the scaling algorithm, in this case the modified
Algorithm 1. A stability result for the closed loop system is given in The-
orem B.2 in Appendix B. The following reasoning is given to demonstrate
the main ideas in the stability analysis of the closed loop system.

The stability result for the modified Algorithm 1, Theorem B.1,
gives bounds on the actual velocity profile that are functions only of the
nominal velocity profile. This means that bounds on the actual velocity
profile can be computed independently of the tracking errors e and é.
This can be used to obtain a stable closed loop system by the following
procedure.

1. Given a nominal velocity profile, bounds on the actual velocity pro-
file are given by Theorem B.1. Furthermore, the nominal trajectory
should have the property that § is admissible when § is below the
bound given by Theorem B.1, and the tracking errors are smaller
than a given tolerance, e.g. given as | e(t) |< e, and | é(t) |< émas
for all £. This means that the resulting torques will also be admissible
as long as the tracking errors are smaller than the given tolerance.

2. The primary controller should give tracking errors below the speci-
fied tolerance, when the reference trajectory is satisfying the bounds
computed by Theorem B.1.

3. Since the bounds computed in 1, gives tracking errors below the
tolerances, § will be admissible during the complete motion, and
therefore the torques will also be admissible.

Note that in 2, the torque limits do not have to be taken into account.
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The primary controller gives bounds on the tracking errors, given the
bounds on the reference trajectory. The bounds on the reference tra-
jectory are independent of the tracking errors, and given by Theorem
B.1. This means that the tracking error bounds will be satisfied dur-
ing the motion. Since the path speed § is admissible for all tracking
errors below the tracking error bounds, the resulting torques will also be
admissible. The possibility of achieving a primary controller with guar-
anteed tracking performance, given bounds on the reference trajectory,
is demonstrated in Appendix B, for a computed torque controller with
model uncertainties.

4.2 Velocity Profile Scaling

An approximate analysis of Algorithm 2 will be presented. It is shown
how a constant scaling of the velocity profile influences the torques, and
requirements on a scaling factor that results in admissible torques, when
the trajectory is a minimum time trajectory, are given. Limitations and
modifications of Algorithm 2 are also discussed.

Scaling of the Velocity Profile

The rigid body dynamics when the robot is moving along the path are
written as

a1(5)5 + az(s)8” + a3(s)é + as(s) =7 (4.5)

Assume the path velocity § can be expressed as a velocity profile 5(t) =
v(s(t)). The path acceleration § is then represented by the acceleration
profile a(s) as

5() = T-a(0) = o (s(6)s(1) = o' (s(6))o(5(0)) = a(s(®)

A constant scaling of the velocity profile v(s) is now introduced by re-

placing § = v(s) with yv(s), and replacing § = a(s) with v2a(s), where
7 is the scaling factor. Equation (4.5) then becomes

a1(s)7%a(s) + a2(5)7°0(5)” + as(s)yv(s) + as(s) = 7(s)  (4.6)

which shows how the scaling factor influences the torques. If there is no
viscous friction the term a3(s)yv(s) is zero. Introducing 7' = 7 — a4(s),
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we see that ¥° can then be viewed as a scaling of 7’. Constant time
scaling of a trajectory is also treated in (Hollerbach, 1984).

Scaling of a Minimum Time Trajectory

Requirements on a scaling factor that results in admissible torques when
the trajectory is minimum time will be derived. We will assume decou-
pled linear dynamics, in the form

m,(m):cz -+ dz(:c) =T; (47)

where 1 < i < n, the number of joints. The parameters m; typically
represents the mass of the robot. The parameter d; could represent
gravity if the linear model is a simplification of the nonlinear model, but
could also represent certain types of friction. If the friction is of the form
dosign(z;), and the robot is moving on the path f(s), then &; = f'(s)s.
If § is positive during the motion, sign(;) = sign(f'(s)s) = sign(f'(s)),
a function only of the position of the robot, represented by the path
parameter s, which motivates that the term d;(z), a function only of the
position , could represent friction. The torque constraints are given by

min . maz
T; <7 LT

Moving the robot along the path gives
mi(s)(fi(s)a(s) + £i'(5)v(s)?) + di(s) = 7(s)

I the trajectory is a scaling of the nominal velocity profile, i.e. v(s) =
Tvn(8), and a(s) = v2a,(s), we get

mi(s)(fi(s)7*an(s) + £i' ()7 (5)?) + di(s) = 7i(s)
The scaling factor v should then be chosen so that

M < mi(s) < e
for all s and 4, 1 < ¢ < n. Since the trajectory is minimum time, one
or more joints are always at the limit. Suppose that, for a given s, joint
J is the limiting joint, i.e. joint j is one of the joints having torques at
the limit, and that the limitation is max, i.e. the nominal velocity profile
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vn(8) results in 7;(s) = 7/**®. Furthermore, suppose that if v is chosen

so that the limiting joint is inside the torque limits, all other joints will
also be inside the torque limits. The scaling factor v should then satisfy

m;(s)7*(£;(s)an(s) + £7 (s)vn(8)®) + dj(s) < o (4.8)
We will also assume that the limiting joint during motion is the same as

the limiting joint in the trajectory planning. The trajectory planning is
based on a model with parameter errors, given by

ﬁzz(:c)a:z + CL(:U) =T; (49)
The torque limits are assumed to be known. Using the fact that the

nominal trajectory is a minimum time trajectory for the available model
(4.9), we get

i(s)(£1()an(s) + £ (8)vn(s)?) + dj(s) = 7o
Inserting this into (4.8) gives

2 o T4(s) I — di(s)

= mj(s) T® — d;(s)

v

where we have assumed 7]"*® — d;(s) > 0, and 7]*® — d;(s) > 0. If the
limitation is min, the inequality

m;(s)7"(£i(s)an(s) + £; (s)vn(s)?) + dj(s) > 7" (4.10)

is used instead of (4.8). The trajectory planning gives
() (f3(s)an(s) + £7(8)vn(s)?) + dj(s) = 75"

Inserting this into (4.10), under the assumption that T}nin —d;(s) <0,

. ~
min

and 7" — d;(s) < 0, gives

V2 < m;(s) Tymin - ‘fj(s)
= mi(6) 7 4y (5)
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The requirements on <y that result in admissible torques for a given s,
can now be summarized as
2 mi(s) T — dj(s)

— mi(s) 1 — dj(s)

Y

where 7" = T or T = TJmm

A minimum time trajectory has the property that the nominal path
acceleration a,(s) is at every point s along the path either maximum or
minimum, leading to one or more torques at the limit. The trajectory
can thus be divided into s-intervals with maximum acceleration or max-
imum deceleration, where an acceleration interval is always followed by
a deceleration interval. Let s; < s < so be an acceleration interval, and
83 < s < 53 be the following deceleration interval. Suppose for simplicity
that only one joint is limiting during each interval, i.e. joint j is limit-
ing during acceleration, and joint k is limiting during deceleration. The
quantity g,, defined by

_ . 1 (s) T — dj(s)
g, = min 5
a1<s<sa M(8) 777 — d;(s)

(4.11)

is then the maximum constant scaling that gives admissible torques dur-
ing the acceleration. The corresponding quantity for the deceleration is
g, given by

~ m __ d
gz? = min mk(s‘) Tk Ak(S)
s2<s<ss My (8) 717 — dy (s)

(4.12)

When more than one joint is limiting during each interval, the above rea-
soning has to be modified. The limiting joints during the acceleration are
J1yJ25+++Ja, and the corresponding subintervals along the path are de-
noted Ji, Ja,...J,. The limiting joints during the following deceleration
are ki,kq,...kq, and the subintervals are K,,K;,...K . This gives

N (s) T —d; (s
g2 = min (min ™, (8) T Aﬂ( ))
1<i<a sed; mj (s) T — dj, (s)

, . T (8) Ty — dia(3)
min (min 5
1<I<d s€ K, mkl(S) T,?? — dk,(s)

)

S
I

If v is chosen as v = min(g,, gs), the torques will be admissible during
both intervals. If g, could be estimated and g, < 9b, we could use vy = g,.
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Estimation of g,

The update law for 4 in Algorithm 2, given by

vy=1+ kwf
e = { ‘é(_a’mf +1- 7vn(s)/é)a '7'”71(5)/'é >1 (4'13)
T7 1 8(—azy), vun(s)/6 < 1

is interpreted as an estimation of g, by the following reasoning. Suppose
that the actual velocity profile § = v(s) is below the current velocity
profile yv,(s), and the reason for this is limited path acceleration, caused
by the torque limitations. If 1 — yv,(s)/$ < axy, see equation (4.13),
then v will be reduced. When the on-line bounds on § are not active, we
get yun(s)/é = 1, resulting in v approaching 1 with the time constant
1/a in the transformed time scale. If 1/a is large compared to the length
of the path, v can be regarded as constant when the bounds on 5 are not
active, hence v is only adjusted as long as the path acceleration is limited,
a result of the torque limitations, which motivates the interpretation of
the y-adjustment as an estimation of g,, the maximum constant scaling
that gives admissible torques during the acceleration.

Algorithm 2 : Limitations and Modifications

We can now state some conditions for Algorithm 2 to give admissible
torques during the complete motion.

*  If the adjustment of vy during an acceleration interval results in
Y < Ya, the maximum constant scaling that gives admissible torques
during the acceleration interval, then the torques will be admissible
during the acceleration.

*

If go < gv, and v < gp during the following deceleration, the torques
will be admissible also during the deceleration part. The condition
7 < gv during the deceleration can be achieved by choosing a =
0 in (4.13). If the apriori model knowledge is such that for each
acceleration/deceleration part of the trajectory, g, < g, and vy < g,,
then the torques will be admissible during the complete motion.
Note that the condition g, < gj can in certain cases be guaranteed
by the available model knowledge. Suppose that the parameters of
the models, (4.7) and (4.9), are constant, and that only one joint
is limiting during each acceleration/deceleration interval. If there
are errors only in the mass parameters m;, equations (4.11) and

44




(4.12) give g4 < g if the relative error in the limiting joint during
acceleration is smaller or equal to the relative error in the limiting
joint during deceleration. If the model knowledge is such that there
are errors in the mass parameters, but the relation between the mass
parameters is known, for instance the relation between the sizes of
the individual links are known but not their exact masses, we would
get go = gs.
Algorithm 2 is a method for execution of fast trajectories, where it is not
sufficient to modify only the slope of the velocity profile as in Algorithm 1.
The path velocity has to be modified, and in Algorithm 2, this in done by
a scaling of the nominal velocity profile. This is a simple modification,
where the influence on the torques can be investigated, (4.6). Other
methods of velocity profile modification could be considered. Another
limitation is in the analysis, where the primary controller is not taken
into account, i.e. it is assumed that the robot is on the path, equation
(4.5). It is also assumed that the dynamics are linear and decoupled,
equation (4.7).

The inequality g, < g» can be used to investigate the influence of
model errors on the performance during motion. The estimated model
quantities, 7; and d;, could also be modified during trajectory planning
in order to guarantee g, < gs.

The update law for 7, equation (4.13), can be modified. The ap-
proximate analysis in Section 3.2 assumed a constant quotient §/v,(s),
k > a, and small modifications of the velocity profile, i.e. §/v,(s) ~ 1.
The following update law could also be used.

. Jé(—ary 4+ E(5/va(s) — 7)),
T { $(—az(y — 1)), (4.14)

Different conditions for choosing alternative in (4.14) can be used. The
conditions in (4.13), decreases y only when the current nominal velocity
profile yv,(s) is above the actual velocity profile § = v(s). Furthermore,
if the time constant in the transformed time scale, 1/a, is large compared
to the length of the path, the increase of v will be small, see equation
(4.13), the lower alternative. This means that a decrease of v during
an acceleration interval may lead to a trajectory that is too conservative
further along the path. Another method could be to reset y to 1 at the
start of each acceleration interval, and modify v only during acceleration,
for example by using a; = ay = 0 in (4.14), and switching alternative
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in (4.14) at the switching points between acceleration and deceleration.
The upper equation in (4.14) can be rewritten as

dy §
—_— —(al + k)")/ + kvn(s)

ds
and we see that if we use the transformed time scale s, v is a low-pass
filtered version of §/v,(s), with a time constant given by 1/(a; + k).
Suppose that during an acceleration interval, the on-line bounds on path
acceleration are activated, and that this results in § = Jv,(s). If a; = 0,

equation (4.15) implies that v approaches # with a time constant given
by 1/k.

(4.15)

4.3 Summary

The properties of the proposed algorithms for trajectory time scaling
have been further investigated. A short summary of the results is given
in this section.

Algorithm 1

Algorithm 1 is a method for torque limited path following, where the
slope of the velocity profile is modified to meet the requirements given
by the torque constraints. A modified version of the algorithm has been
shown stable. The modification is interpreted as a restriction on the
path speed §, i.e. the unmodified algorithm can handle higher path
speeds. The stability result for the modified Algorithm 1 shows that
if the nominal velocity profile is bounded, the actual velocity profile is
also bounded, and the bounds are independent of the tracking errors.
A stable closed loop system is then obtained by requiring stability of
the controlled robot, i.e. the actual reference trajectory should result
in tracking errors below a given tolerance, and by having a path speed
that results in admissible torques for all tracking errors below the given
tolerance.
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Algorithm 2

Algorithm 2 is designed to handle nominal minimum time trajectories,
where it is not sufficient to only modify the slope of the velocity pro-
file. A scaling of the nominal velocity profile is used for the velocity
modification, and the scaling factor is updated on-line. The analysis
shows how a constant scaling influences the torques, and requirements
on a scaling factor that results in admissible torques, are derived. These
requirements include real and estimated robot parameters, and can be
used to investigate how model errors influence the performance of the
algorithm. Limitations and possible modifications of the algorithm are
also discussed.
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5. Conclusions

Fast motion along a geometric path is an important problem in robotics.
A major problem is that minimum time trajectories or other high speed
trajectories lead to torques that are at the limits, hence leaving no control
authority to cope with uncertainties. It is reasonable to modify the speed
of the reference trajectory if problems occur, and we propose here to use
a secondary controller for on-line time scaling of a nominal reference
trajectory. The primary controller is parametrized in the scalar path
coordinate, but otherwise unchanged, i.e. a well tuned control behavior
is kept. The secondary controller modifies a scalar quantity, the path
acceleration. This simplifies the design of the secondary controller, and
results in coordinated adjustment of the individual joint motions. The
nominal trajectory is represented as a function of the path parameter
s by the nominal acceleration and velocity profiles. This representation
is used as the basis for the design of algorithms for on-line trajectory
time scaling, where the path parameter s is generated from a dynamical
system, and it is also used to simplify the tuning of the the secondary
loop by inspection of the s-s-diagram for the nominal trajectory.

T'wo algorithms for trajectory time scaling are designed. The first
algorithm uses bounds on the path acceleration, computed from mea-
surements and the torque constraints, together with feedback from the
nominal path velocity. The algorithm limits the slope of the velocity
profile. The result is that the path acceleration is limited to meet the
requirements given by the torque constraints. The second algorithm is
an extension of the first algorithm, and is designed to handle nominal
minimum time trajectories. A scaling of the nominal velocity profile is
introduced, and the scaling factor is modified on-line. The interpretation
of the path coordinate as a transformed time scale is used in the analysis
of both algorithms, and for tuning of parameters.

The proposed algorithms are verified by analysis, simulations, and
experiments. The analysis of the first algorithm includes a stability result
for a modified version of the algorithm, where the modification is inter-
preted as a restriction on the path speed. The analysis of the second
algorithm gives relations between the scaling factor required for admis-
sible torques, and model errors. The simulations and the experiments
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demonstrate how the algorithms can be used to obtain torque limited
path following. The parameters were successfully tuned using the trans-
formed time scale and the s-s-diagrams. The simulations also include a
case showing how the trajectory programming can be simplified by allow-
ing a nominally unfollowable trajectory to be specified. The experimental
results show an example of how minimum time trajectory planning can
be used in a nonideal situation, where model errors and disturbances are
present. A nominally too fast trajectory is modified on-line, and the re-
sulting trajectory gives path following with good torque utilization. The
software development for the experiments was simplified by using a com-
piler generating Modula-2 code from a Simnon system. Different versions
of the algorithms could therefore first be tested in simulation, and then
efficiently implemented in the real time system used for the experiments.
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A. Program Descriptions

The software used in the simulations and experiments, presented in Chap-
ter 3, is described. Selected pieces of code are listed, and comments are
given.

A.1

Minimum Time Trajectory Planning

An algorithm for minimum time trajectory planning as described in (Shin
and McKay, 1985) was implemented in MATLAB (Moler, Little, and
Bangert, 1987). The algorithm consists of the steps:

1.

92

Compute the boundaries of the region where § is admissible. This
is done by using the expressions for the bounds on §. Given s, the
boundary case for § admissible is given by §,:.(s,5) = Smaz(s, §).

Compute critical points at the boundary of the admissible region. A
critical point is defined as a point where a trajectory can touch the
admissible region. The criterion for determining if a given boundary
point is a critical point is based on a comparison between the bounds
on §, and the slope of the boundary curve. The critical points are
here found by searching the boundary curves. In (Slotine and Yang,
1989), it is described how the critical points can be obtained without
computing the boundary curves.

Construct a number of curves inside the admissible region. Each
curve is the result of integrating one of the equations

§= Smaa(s:9) (A1)

§ = Smin(sa S)
forward or backward, i.e. with increasing or decreasing s. Two of the
curves are given by integrating forward with maximum acceleration
from the starting point of the path, and integrating backward with
maximum deceleration from the end point of the path. The rest
of the curves are constructed by integration backward and forward,
with maximum and minimum acceleration, from the critical points.




4. The curves are now viewed as a directed graph, and the minimum
time trajectory is found by searching the graph for the highest curve
between the starting point, and the end point.

The integration of (A.1) is implemented as a zero order hold sampling
of a double integrator, and the bounds §m,:.(s,s5) and $max(8,8), are
computed from equation (2.2). The minimum time trajectory used in the
simulations and in the experiments was computed with a discretization
of 200 points in s, and the sampling interval A = 0.003s was used in the
integration.

A.2 Simulations

The simulations were performed using Simnon (Elmgqvist, Astrém , and
Schonthal, 1986). The scaling algorithm was implemented as a Pascal
system. The important declarations in the Pascal system are listed below.

Module Two_Dim_C(input,output,simnon_data_file);

const
maxindex = 10; {e.g...}
max_n_sn = 500; (* length of nominal trajectory vector *)

dsmin = le-3;
infinity = 1E9;
zero = 1E-5;

hinclude ’use:[ola.poly.simnon]simdefs’

var

(* state *) snom, dsmom : real; (* nominal position and *)
(* velocity along the path *)

(* der *) dersnom, derdsnom : real;
(* state *) s, ds : real; (* position and velocity along *)
(* the path *)

(* der *) ders, derds : real;

(* input *) x1_in, x1d_in, x2_in, x2d_in : real;
(* robot position and velocity *)

(* output *) ul, u2 : real; (* control signals *)
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(* output *) riout, r2out : real; (* reference values *)
(* parameters *)

mi, 11, lci, d1, m2, 12, 1lc2, d2,

uminl, umin2, umaxi, umax2, (* robot parameters *)

wi, w2, z1, z2 : real; (* regulator poles %*)

rnum : real; (* trajectory planning strategy *)

regnum : real; (* type of controller *)

ulimon, ddslimon : real; (* saturation switches %)

smax : real; (* end of path *)

sstart : real; (* beta is 1 between sO and sstart *)

compute_unom : real; (* switch for computation of *)
(* nominal torques *)

alfanom : real;

radl, rad2 : real;

betal : real;

xfsat : real;

beps : real;

alfa : real;

(* parameter *) k, a : real; (* filter parameters *)
(* state *) xf : real; (* filter state *)

(* der *) derxf : real;

(* parameter *) dseps : real;

(* auxvars *)

dds : real; (* current acceleration *)

ull, ul2, u2i, u22 : real; (* coefficients in *)

(* control signal *)
(* ul = ulixdds + ul2 *)

The nominal trajectory is stored in a file, and read into a vector when
the system is initialized. A parameter is used to select between different
algorithms for trajectory scaling. Each algorithm is coded as a separate
procedure. At each time step in the integration, one of the procedures
is called. The following procedure is used for execution of the nominal
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trajectory.

procedure new_states_7;
var beta : real;
begin
update_spos;
compute_nominal (dsn,ddsn);
if s < sstart then
beta := betal
else
beta := 0;
dds := beta*ddsn + alfa/2*(dsn*dsn - ds*ds);
derds := dds;
ders := ds;
end;

The procedures update_spos and compute_nominal are common for all
scaling algorithms. The current s-position in the nominal trajectory
vector is updated by update_spos. The procedure compute nominal is
then called to get the nominal trajectory, represented by the nominal
acceleration and velocity profiles. Algorithm 2 is implemented in the
following procedure.

procedure new_states_8;
var ddsmaxl, ddsmax2,
ddsminl, ddsmin2, beta, vr_over_ds : real;
begin
update_spos;
compute_nominal(dsn,ddsn);
gamma := 1 + k*xf;
Vr := gamma*dsn;
if ds > dseps then
vr_over_ds := vr/ds
else
vr_over_ds := 1;
if xfsat > 0.5 then
if vr_over_ds < 1 then
derxf := ds*(-a*xf)

else
derxf := ds*(-a*xf + 1 - vr_over_ds)
else
derxf := ds*(-a*xf + 1 - vr_over_ds);

if s < sstart then
beta := betal
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else

beta := 0;
ar := beta*gammak*gamma*ddsn + alfa/2*(vr*vr - ds*ds);
ddsbounds(ull,ul2,umaxl,uminl,ddsmaxl,ddsmini);
ddsbounds(u21,u22,umax2,umin2,ddsmax2,ddsmin2);

ddsmax := min(ddsmaxl,ddsmax2);
ddsmin := max(ddsminl,ddsmin2);
if ddsmax < ddsmin + beps then
dds := ar
else
dds := sat(ar,ddsmin,ddsmax);
dexds := dds;
ders := ds;
end;

The procedure ddsbounds is implemented as follows.

procedure ddsbounds(ul, u2, umax, umin : real;
var maxdds, mindds : real);

const bounds_eps = 1le-3;

var templ, temp2 : real;

begin
if abs(ul) < bounds_eps then
begin
maxdds := infinity;
mindds := -infinity;
end
else
begin
templ := (umax - u2)/ui;
temp2 := (umin - u2)/ui;

maxdds := max(templ,temp2);
mindds := min(templ,temp2);
end;
end;

A.3 Experiments

The experimental environment is described in Section 3.4. This section
contains Simnon and Modula-2 listings, including the primary and the
secondary controller. The Simnon part of the combined Simnon/Modula-
2 code used in the first implementation of the secondary controller, is
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listed below.

Discrete system mtlime
"File mtlime.t

state s ds xf xfi1 xf2
new news newds newxf newxfl newxf2

state ttime count oldm
new newttime newcount mnewoldm

input x11 x12 x21 x22 stop
output dsout sout rl r2 ul u2

time t
tsamp ts

ts =t + h
h : 0.03

"The modula code is stored in a special file
% modula-file mtlimemod.t

"time handling

newttime = if oldm and not moving then count*h else ttime
newcount = if moving and not oldm then 1 else count + 1
newoldm = moving

"Output scaling

dsout = if moving then ds/dsscale else 0
sout = if moving then s/sscale else 0

dsscale : 10
sscale : 10

"Process parameters

ml : 0.0404
m2 : 0.0404
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di : 0.0048
d2 : 0.0048

"Control signal limits
ul : 0.2

"Closed loop specifications

wl : 8

w2 : 8

z1l : 0.7

z2 : 0.7
"Switches
uon : O
ddslimon : O
efbon : O

"Trajectory execution parameters

vs @ 1 "Scaling of mnominal velocity profile
alfa : 10

"The nominal trajectory is here set to zero. The correct
"values are computed in the Modula-2 code.

ddsn = 0
dsn = 0

"Trajectory update

moving = s < 6.28 - seps and ds > dseps

dseps : -0.0025

seps : 0.01

"The assignment of the path acceleration includes error
"feedback, implemented in efbterm. This can be

"used as an altermative to the upper on-line bound on dds.

"s is reset to zero when the robot is not moving.




dds = if moving then g*g*ddsntalfa*(g*g*dsnxdsn-ds*ds)+
efbterm else -4%ds-4x*s

efbterm = if efbon then -ke*(en + tde*den) else 0

ke : 7

tde : 2

en = sqrt((ri-x11)*(ri-x11) + (r2-x21)*(r2-x21))

den = if en > 1e-5 then denl/en else 0

denl = (ri-x11)*(rid*ds - 10.10%x12) +
(r2-x21)*(xr2d*ds - 10.10%x22)

"Velocity profile modification

a : 0.056

g = 1 + k*xf
div = if ds > 0.01 then g*dsn/ds else 1

I

dxf if moving then dxfl else -8%xf
dxfl = if div > 1 then ds*(-a*xf + 1 - div) else ds*(-axxf)

"Reference trajectory

sins = sin(s)
cos(s)

Q
O
0
n

Il

rl = if moving then radi*(1 - coss) else 0
if moving then rad2*sins else 0

H
N
il

rld = if moving then radi*sins else O
rldd = if moving then radi*coss else 0

r2d = if moving then rad2*coss else 0
r2dd = if moving then -r2 else 0

"Acceleration limitation
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width : 0.1

ddslim = if ddsmax > ddsmin + width and ddslimon then ddslimi
else dds

ddsliml = if dds<ddsmin then ddsmin else if dds<ddsmax then
dds else ddsmax

ddsmin = if zerol and zero2 then -1eb else if mini>min?2 then
minl else min2

ddsmax = if zerol and zero2 then 1eb else if maxi<max?2 then
maxil else max2

zerol = b1l > -1e-b and b1l < le-5
zero2 = b21 > ~1e-5 and b21 < 1e-5

maxl = if zerol then 1eb else if tmax1i>tminill then tmaxii
else tminii

tmaxll = if zerol then 1eb5 else (ul - b12)/bii
tminll = if zerol then -1e5 else (-ul - b12)/biil

minl = if zerol then -1e5 else if tmax1i<tminil then tmaxii
else tminii

max2 = if zero2 then leb else if tmax21i>tmin2i then tmax21
else tmin21

tmax21 = if zero2 then 1e5 else (ul - b22)/b21
tmin21 = if zero2 then -1e5 else (-ul - b22)/b21

min2 = if zero2 then -1le5 else if tmax21<tmin21 then tmax21i
else tmin21

"Controller
bil = mi*rid
bl2 = if filton then ffitemp + xfl else ffitemp + fbi
b21 = m2%*r2d
b22 = if filton then ff2temp + xf2 else ff2temp + £b2

newxfl = xf1 + h/tf*(-xf1 + £b1)




newxf2 = xf2 + h/tf*(-xf2 + £b2)

tf : 0.2
filton : O

ffitemp = mi*ridd*ds*ds + d1#10.10%x12

vl = bli*ddslim + ffitemp + fbi
bl = mik(wikwi*(rl - x11) + 2%zilswix(rid*ds - 10.10%x12))

ff2temp = m2%r2dd*ds*ds + d2%10.10%x22

v2 = b21*ddslim + ff2temp + fb2
b2 = m2* (w2 w2*(r2 - x21) + 2%z2%w2*(r2d*ds - 10.10%x22))

ul = if not uon then vl else if vi<-ul then -ul else if vi<ul
then vl else ul
u2 = if not uon then v2 else if v2<-ul then -ul else if v2<ul

then v2 else ul
"State update
ddsl = if moving and ds > limds then ddslim else dds
limds : O
news = if stop > -0.05 then s else s + h*ds
newds = if stop > -0.05 then ds else ds + h*dds1

newxf = if stop > -0.05 then xf else xf + h*dxf

end

The following listing shows the complete algorithm, including the pri-
mary controller. Most of the code is generated automatically. The mod-
ifications done are mainly for efficiency, e.g. eliminating variables and
assignments.

IMPLEMENTATION MODULE mtlime;
TYPE

StateType = RECORD
s, ds, xf, xf1l, xf2, ttime, count, oldm : REAL;
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END;

InputType = RECORD
x11, x12, x21, x22, stop : REAL;
END;

OutputType = RECORD
dsout, sout, rl, r2, ul, u2 : REAL;
END;

ParType = RECORD
h, dsscale, sscale, mi, m2, d1, d2, wl, wi, w2, zl, z2, uon,
ddslimon, efbon, vs, alfa, dseps, seps, ke, tde, k, a, radi,
rad2, width, tf, filton, limds : REAL;

END;

SystemRecordRef = POINTER TO RECORD
State : StateType;
New : NewType;
Input : InputType;
Output : OutputType;
Par : ParType;
AuxVar : AuxVarType;
TimeVar : TimeVarType;
END;

VAR

snvector : ARRAY [1..maxnsn] OF
RECORD
sn, dsn, ddsn : REAL;
END;

datafile : File;
snpos : CARDINAL;

PROCEDURE InitPars(

S : SystemRecordRef);
VAR System : SystemRecordRef;
BEGIN

System := S;

WITH System™.Par DO




limds := 0.0;
0.0;

filton :=

tf := 0.2;
width := 0.1;
rad2 := 0.8;
radl := 0.4;
a := 0.056;

k := 0.0;

tde := 2.0;
ke := 7.0;
seps := 0.01;
dseps := - 0.0025;
alfa := 10.0;
vs := 1.0;
efbon := 0.0;
ddslimon := 0.0;
uon := 0.0;
z2 := 0.7;

zl := 0.7;

w2 := 8.0;

wl := 8.0;

ul := 0.2;

d2 := 0.0048;
di 0.0048;
m2 := 0.0404;
mil := 0.0404;

sscale := 10.0;
dsscale := 10.0;
h := 0.03;
END;
END InitPars;

PROCEDURE UpDate1l(
S : SystemRecordRef);
VAR System : SystemRecordRef;

VAR continue : BOOLEAN;
snposl, snpos2 : CARDINAL;
snl, sn2, dsnil, dsn2, ddsnil, ddsn2,
slopedsn, slopeddsn : REAL;

BEGIN
System := §;
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WITH System”.State DO WITH System™.New DO
WITH System”.Input DO WITH System”.Output DO
WITH System™.Par DO WITH System”.AuxVar DO
WITH System™.TimeVar DO

x11 := ADIn(0);
x12 := ADIn(1);
x21 := ADIn(2);
x22 := ADIn(3);

movingb := (s < 6.28 - seps) AND (ds > dseps);

IF movingb THEN
IF NOT (stop > - 0.05) THEN
IF snpos < maxnsn THEN

continue := s > snvector[snpos+1].sn;
ELSE
continue := FALSE;
END;
WHILE continue DO
snpos := snpos + 1;
IF snpos < maxnsn THEN
continue := s > snvector[snpos+1].sn;
ELSE
continue := FALSE;
END;
END;
snposl := snpos;
snpos2 := snpos + 1;
snl := snvector[snposi].sn;
sn2 := snvector[snpos2].sn;
dsni := snvector[snposi].dsn;
dsn2 := snvector[snpos2].dsn;
ddsnl := snvector[snposi].ddsn;
ddsn2 := snvector[snpos2].ddsn;

slopedsn := (dsn2 - dsni)/(sn2 - snil);
slopeddsn := (ddsn2 - ddsnl)/(sn2 - snl);

dsn := vs*(dsnl + slopedsn*(s - snil));
ddsn := vs*vs*(ddsnl + slopeddsn*(s - snl));
END;
ELSE

snpos := 1;
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tminil := ( - ul - b12)/bil;
END;
IF zerolb THEN

maxl := 1.0eb;
ELSIF tmaxli > tminii THEN

maxl := tmaxli;
ELSE

maxl := tminii;
END;

ff2temp := m2*r2dd*ds*ds + d2%10.10%x22;

fb2 := m2*(w2*w2*(r2 - x21) +
2.0%z2%w2%(r2d*ds - 10.10%x22));
IF filton > 0.5 THEN
b22 := ff2temp + xf2;
ELSE
b22 := f£f2temp + £b2;
END;
IF zero2b THEN
tmax21 := 1.0eb;
ELSE
tmax21 := (ul - b22)/b21;
END;
IF zero2b THEN
tmin2l := - 1.0e5;
ELSE
tmin21 := ( - ul - b22)/b21;
END;
JF zero2b THEN
max2 := 1.0eb;
ELSIF tmax21 > tmin21 THEN

max2 := tmax21;
ELSE

max2 := tmin2i;
END;

IF (zerolb) AND (zero2b) THEN
ddsmax := 1.0e5;
ELSIF maxl < max2 THEN

ddsmax := maxi;
ELSE

ddsmax := max2;
END;
IF zerolb THEN

minl := - 1.0eb;




ELSIF tmaxil < tminii THEN

minl := tmaxii;
ELSE

mini := tminli;
END;
IF zero2b THEN

min2 := - 1.0eb;
ELSIF tmax21 < tmin21 THEN

min2 := tmax21;
ELSE

min2 := tmin21;
END;

END; END; END; END; END; END; END;
END UpDatel;

PROCEDURE UpDate(
S : SystemRecordRef);
VAR System : SystemRecordRef;

VAR continue : BOOLEAN;
snposl, snpos2 : CARDINAL;
snl, sn2, dsni, dsn2, ddsni, ddsn2,
slopedsn, slopeddsn : REAL;

CONST MaxTime = 1.0E10;

BEGIN
UpDatel(S);
System := S;
WITH System”.State DO WITH System™.New DO
WITH System”.Input DO WITH System”.Output DO
WITH System”™.Par DO WITH System”.AuxVar DO
WITH System”.TimeVar DO

IF (zerolb) AND (zero2b) THEN

ddsmin := - 1.0e5;
ELSIF mini > min2 THEN
ddsmin := mini;
ELSE
ddsmin := min2;
END;

g := 1.0 + kxxf;
en := sqrt((r1 - x11)*(xrl - x11) + (2 - x21)*(x2 - x21));
denl := (r1 - x11)*(rid*ds - 10.10%*x12) +

(r2 - x21)*(r2d*ds - 10.10%x22);
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IF en > 1.0e~-5 THEN
den := denl/en;
ELSE
den := 0.0;
END;
IF efbon > 0.5 THEN
efbterm : - ke*(en + tdexden);
ELSE
efbterm :
END;
IF movingb THEN
dds := g¥gkddsn + alfa*(g*gkdsnkdsn - ds*ds) + efbterm;
ELSE
dds := - 4.0%ds - 4.0%s;
END;
IF dds < ddsmin THEN
ddsliml := ddsmin;
ELSIF dds < ddsmax THEN
ddsliml := dds;
ELSE
ddsliml := ddsmax;
END;
IF (ddsmax > ddsmin + width) AND (ddslimon > 0.5) THEN
ddslim := ddslimil;
ELSE
ddslim := dds;
END;
vl := blixddslim + ffitemp + fbi;
IF NOT (uon > 0.5) THEN

0.0;

ul := vi;
ELSIF v1 < - ul THEN
ul := - ul;
ELSIF v1 < ul THEN
ul := vi;
ELSE
ul := ul;
END;

v2 := b21*ddslim + ff2temp + £b2;
IF NOT (uwon > 0.5) THEN

u2 := v2;
ELSIF v2 < - ul THEN
u2 := - ul;

ELSIF v2 < ul THEN




u2 := v2;

ELSE
u2 := ul;

END;
DAOut(0,dsout);
DAOut(1,sout);

DAOut(2,r1);
DAOut(3,r2);
DAOut(4,ul);
DAOut(5,u2);

IF ds > 0.01 THEN

div := gxdsn/ds;
ELSE

div := 1.0;
END;

IF div > 1.0 THEN
dxf1l := ds*( - a*xf + 1.0 - div);

ELSE

dxfi := ds*( - a*xf);
END;
IF movingb THEN

dxf := dxf1;
ELSE

dxf := - 8.0%xf;
END;

IF (movingb) AND (ds > limds) THEN
ddsi := ddslim;

ELSE
ddsl := dds;
END;
IF stop > - 0.05 THEN
news := s;
newds := ds;
newxf := xf;
ELSE
news := s + hx*ds;
newds := ds + h*ddsi;
newxf := xf + h*dxf;
END;
newxfl := xf1 + h/tf*( - xf1 + fb1l);
newxf2 := xf2 + h/tf*( - xf2 + £b2);
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IF (oldm > 0.5) AND NOT (movingb) THEN

newttime := count#*h;
ELSE
newttime := ttime;
END;
IF (movingb) AND NOT (oldm > 0.5) THEN
newcount := 1.0;
ELSE
newcount := count + 1.0;
END;

IF movingb THEN
newoldm := 1.0;

ELSE

newoldm := 0.0;
END;
S := news;
ds := newds;
xf := newxf;
xf1 := newxfil;
xf2 := newxf2;
ttime := newttime;
count := newcount;
oldm := newoldm;

IF t > MaxTime THEN
= 0.

t 0;
ELSE

t := t + h;
END;

END; END; END; END; END; END; END;
END UpDate;

END mtlime.




B. Miscellaneous
Calculations

B.1 Symmetric Torque Limits

In Lemma 4.1, it is assumed that the torque constraints can be written
as | 7 |< Tmaq- This is for instance the case if | z |, where z is a vector,
means max; | z; | where x; are the elements of the vector, and if the
torque limits are symmetric and equal. If the torque constraints are of
the form

T L gy < ppmes (B.1)
this can be achieved by a linear transformation of the torques. Introduce
the n-vector 7, where n is the number of joint variables, by 7 = A7 + b
where A is an n by n, diagonal matrix with diagonal elements

_A L 2Tma,:n
T :
Tim,a.:n — T;:m.zn

and b is an n-vector with elements

mam + sz'z,n

S 7
? max min < Maz

The model

H(q)§ +v(g,9) + d)g + 9(q) = 7

with the torque constraints (B.1), is then transformed to

H(q)§ +v(q,q) + d(a)d + 5(g) = 7
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with the symmetric and equal torque constraints
~Tmaz S Ti S Tmaz

and

H(q) = AH(q), %(q,q) = Av(g,q),
d(q) = Ad(q), g(q) = Ag(q)+b

B.2 Stability of the Modified Algorithm 1

The following result shows stability of the modified Algorithm 1, in the
sense that a bounded nominal velocity profile v,(s) results in a bounded
actual velocity profile § = v(s), where the bounds are independent of the
tracking errors.

THEOREM B.1—Stability of the Modified Algorithm 1

If the modified Algorithm 1, equation (4.4), is used for trajectory execu-

tion, and

1. ye(s)= %vn( )? satisfies A + € < ¥r(8) < Ymaz — A, A,e > 0 for all
s > 59, and | L= | is bounded for all s > s.

2. The feedback gain « satisfies a >| &£ =3 dy”( ) | for all s > s,.

y(s) = Zuv(s)? satisfies the initial conditions € < Y(s0) < Ymas,
v(so) > 0.

then

* e<y()<ymamfora]ls>so,andv()>0fora113>so The
resulting path acceleration § = Z—s is bounded by | L <] ,de" | +
I AYYmae l

Proof: The upper bound y(s) < Ymae is first shown. Suppose that for
some s, § = S5 > 50, Y(52) > Ymas. Then, since y(s0) < Ymaz, there
are one or more values of 5,50 < s < sz where y(5) = Ymaz. Let s;
be the largest of these values. This gives y(s1) = Ymaz, ¥(8) > Ymaz
for 5; < s < s3. Then, by the Mean Value Theorem, there is a point
01,81 < 01 < 83, such that

W (5 = y(s2) — y(51)

>0
ds §9 — 81
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Using equation (4.4), this implies

dy

P ——(01) = saty(ar(01),01,v(01),e(01),€é(01)) > 0 (B.2)

Since the lower bound in the limitation by sat; is never positive, (B.2)
implies a.(o1) > 0. This gives

ap(01) = ,B-dd%(m) + a(yr(01) —y(o1)) > 0

But 'y(G'l) > Ymaz and yr(al) < Ymaz — A 1mp11es yr(o'l) - y(O'l) <
—A < 0. This results in an(01) < 0ifa >| £ dys’( 1) | which gives a
contradiction. Hence, y(s) < ymae for all s > sq.

The lower bound y(s) > € is now shown by same method. Suppose
that for some s, s = 54 > 50, y(s4) < e. Then, since y(sy) > ¢, there
are one or more values of 5,50 < s < s4 where y(s) = €. Let s3 be the
largest of these values. This gives y(s3) = €, y(s) < € for s5 < s < 5.
Then there is a point 03, 83 < 03 < s4, such that

<0
ds 84 — 83

dy(a'z) — y(s4) _ y(33)

Using equation (4.4), this implies

3—'7:(02) = sati(ar(02),02,v(02), e(02),é(02)) < 0 (B.3)

Since the upper bound in the limitation by sat; is always nonnegative,
(B.3) implies a,(03) < 0. This gives

an(02) = B2 (03) + alyn(02) ~ () < 0

But y(az) < € and y,(02) > €+ A implies y,(03) — y( 2) > A > 0. This
results in a,(02) > 0if o >| & L3 dy’ = (09) | which gives a contradiction.
Hence, y(s) > € for all s > sq.

We have shown € < y(s) < Ymas for all s > so. Since v(so) > 0, and
y(s) = 2v(s)? > 0forall s > s¢, § = v(s) will continue to be positive, i.e.
v(s) > 0 for all s > sq. Furthermore, the function sat; has the property
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| sati(z, s,v,e,é) |<| z | for all z, s, v, e, and ¢, which gives the bound

on § = as
dy dy'p . dyT‘
- = T — < — <
| ds I l Satl(/@ ds +a(yr y)asa'v’e7e) I_I /8 ds +a(yr y) I_
dyr dyr

B.3 Stability of the Controlled Robot

A result showing stability and bounds on the tracking error for a com-
puted torque controller without torque limits, will be derived. The result
is found in (Craig, 1988) and the derivation here is similar. We will use
the following notations. The vector norm of a vector, y(¢), is denoted
| y(?) |, and defined as max; | y; |, where y; are the elements of the vector
y. The corresponding induced matrix norm of a matrix, A(¢), is denoted
|A(¢)||. The notation ||A||; means supy<,<, ||A(z)| if 4 is a matrix and
SUPg<a<y | A(z) | if A is a vector or a scalar. The robot dynamics are
written as

H(q)§+v(q,9) +d(q)d+g(qg) =7
The computed torque controller is given by
7= H(q)(gr + Kué + Kpe) + 9(q,4) + d(a)d + (q)

We will assume boundedness of the real and estimated quantities in the
dynamic equations, i.e. we assume that || H(q)|co, ||[H(a)|loo> |[d(@)|lso,

1d(@)[loo, [|9(2)]|o0s and ||§(q)||eo are finite. The elements of the vector of
coriolis and centrifugal forces, v(q, ¢), can be written

vi(g,4) = Y hiji(a)dide
ik

and we assume ||h;j1(q)||oo finite for all ¢, §, and k, such that 1 < 7, j,k <
n, where n is the number of joint variables. We also assume that H~!(q)
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and H~!(q) exists and that 1H=*(g)|lco and ||H"(q)||co are finite. Fi-
nally, the reference trajectory is assumed to be bounded, i.e. there are
numbers ¢*** and §*® such that

ldrlloo < 4%, |ldrlloo < G (B.4)

The equations for the controlled robot can be written as

€+Ku€+er=u

w=(I—-H'H)(§ + Kyé+ Kpe) + H (v — 5 + (d—d)j+g—3)

where the arguments ¢ and ¢ have been left out. Suppose that K, and
K, are diagonal, and that k,, = k,5%/4. If the motion starts with zero
tracking error, e(0) = é(0) = 0, the tracking errors are bounded by

lefle < Bullulles  llélle < Bzllulle

where
1
o
4
B2 = max

i ky;exp(l)

We can bound ||ul|; as

lelle <IT = H=H oo (lldelloo + 1K ulloo lélls + 1K plloollell)+
= oo (1131l + Ndlloo (lldnlloo + [[€]]2) + [13]o0)

~

where v =v —9,d =d — ci, and g = g — §. The elements of the vector ¥
can be written as

= thgk QJQk hz]k(Q)QJQk
. . .T .
= Gy Vi1Gr + dy vigé + T v;5¢
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Each element of ¥ is bounded by

1Bille < Nlvidlloolldnlloe + llvizlloolldrlloollélle + lluislloolléll?
The norm of ¥ is then bounded by

19]le < valldrlice + valldrlloolléll + vsllel?
where

vj = max [[vijlle, 1<5<3

This results in bounds on ||ul|; given by

lelle < o1 + asllel]s + as|lé]]s + aallé]|
where «;,1 < ¢ < 4 are constants, given by

on =||I — H™ Hl|oo|| G+l oo+
1™ oo (w1113 + Nldlloolldr oo + 113l oo)
oy =[I = H™ H | oo || Kpll oo
ag =|1T = H™ Hl|oo|| Kulloo + | H ™ |oo (v2/|drll oo + [|d]|o)

ay =||H Y| oovs

The norms of the tracking errors now satisfy the inequalities

Proa .o Prag . Bray
elle < Jle)2 + 22 el +
felle <225 + 0 ey 4 (L2 o
lelle > = 222 + = 2228 g, - 2 |
&5 Bz 85)
where we have assumed 1 — B1a5 > 0. If
Baaz + Bran < 1 (B.6)
and
Paaz + Prag + 20a/aray < 1 (B.7)
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then the two quadratic functions of ||é||+, equation (B.5), intersect and the
tracking errors |le||; and ||é[|; are bounded by a closed region in the ||é||;-
|e|l:-plane. A bound on ||é||; is, for example, given by the intersection
point where

1
g - L - (B8
lelle = 5222 (83)

1 —Braz —frag  [1(1—-fhas — Bian)® oy
4 [ Qg

and the corresponding bound on ||e||; is given by replacing inequality by

equality in one of the equations (B.5). We can now state the following

result.

LEMMA B.1—Stability of the Controlled Robot

If the motion starts with zero tracking error, e(0) = ¢(0) = 0, and the
reference trajectory is bounded by (B.4), and the model uncertainty is
such that (B.6) and (B.7) are satisfied, then the tracking errors ||e|;
and [|é]|; are bounded by a region in the ||é||;-||e||;-plane given by the
inequalities (B.5). Explicit bounds on |le||; and ||é||; can be computed
by (B.8) and by (B.5) with inequality replaced by equality in one of the
equations (B.5). O

B.4 Stability of the Closed Loop System

Motivated by the stability result for the controlled robot, Lemma B.1,
the procedure for obtaining a stable closed loop system is now formal-
ized. Assume that the modified Algorithm 1, equation (4.4), is used for
trajectory execution. We can then state the following result.

THEOREM B.2—Stability of the Closed Loop System

If

1. The nominal velocity profile v,(s) satisfies A+¢ < 1v2(s) < Ymaz —
A, A,e > 0, for all s > 50, and | ﬁ%f | is bounded for all s > s,
and the feedback gain o satisfies a >| g%(s) | for all s > sq.

2. The actual velocity profile § = v(s) satisfies the initial conditions
€< %v(so)z < Ymaz, v(s0) > 0.

3. The motion starts at s = s with zero tracking error, i.e. s(0) = s,

e(0) = é(0) = 0.
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4. The primary controller has the property that | e |< enqs and | é |<
émaz for all 5 > 50, if | § |<| BLE | + | AYmaz | and | § |< v2¥mas
for all s > so, and e(0) = é(0) = 0.

5. The nominal trajectory is such that $ is admissible if § < \/2¥Umaz,
l € IS €maz, and I € lS €maz-

then

*  The closed loop system is stable in the sense that | e |< emae and

| € |< émaz for all s > sg, and 7 is admissible for all s > s,.

Proof: Assumptions 1 and 2, together with Theorem B.1, give 0 < § <
V2Ymaz for all s > sp, and [ § <] ,de" | + | aYmaz | for all s > sq.
Assumptions 3 and 4 then give | e |< epmqee and | é |< éas for all s > so.
Assumption 5 together with the bound on | § | then implies that § will
be admissible during the motion, i.e. for s > sg, which in turn implies
that 7 will be admissible for all s > s;.

Remark. Note that the result holds for any primary controller, satisfy-
ing Assumption 4. Assuming the path functions f(s), f’(s), and f"(s)
are bounded, ¢, and §, will then also be bounded if § and § are bounded.
We can then use Lemma B.1, to construct a primary computed torque
controller that satisfies Assumption 4, provided the model uncertainty is
small enough, i.e. equations (B.6) and (B.7) must be satisfied. O

Motivation of Assumption 5

Assumption 5 will now be motivated by an analysis of the controller
parametrization 7 = b;5 4 by for a computed torque controller, where b,
and by are given by (4.2). We will assume that the torque constraints
can be written as | 7 |< Tynqs, and that the path parametrization has the
property f'(s) # 0 for all s. Since the inertia matrix H(q) is invertible,
this implies b; # 0 for all s and g. From Lemma 4.1, we then get $
admissible if and only if | by |< Tinaz- The elements of the vector ¥ can
be written as

= th;,k q) 45k
= Z hijr(q Qqurk - ‘jrjék — Gry€; + €jéx)
= f Lo 1187 + T 0ies + ¢T05e
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Each element of ¥ is then bounded by

| 83 |< Fialloo [l £ o0 8” + llFiall oo | F'll oo lléll oo s + llFis]l oo €12,
Then there are numbers ¥y, D5, and 23, such that

| 9 1< 21017115657 + D2l £ [l oo lléll o8 + D5j€]12,
We can now bound | by | as | by |< bay + bay where

ba1 = H oo (| Ksllolélloo + | K pll oo lelloo) + D l€][ %+
ldllcollélloo + 1131l
baz =(I1H oo | /" oo + 21115"12)8> + (@211 lloo oo + |l ool lloo) 3

and we see that if b51%® < Tmawe, Where bJ1%® is defined as by; with llelloo

and ||é||eo replaced by €maz and €mqq, then there exists Smaz, €.8. given
by

Tmaz =031°" + (| H ool oo + D11 7'[12) 200+
(P2l ' lloobmaz + lldlloo [l [l co) $mas

such that | by |< Tynag, i.e. § is admissible, when § < 44, llelloo < emaz,
and ||é]|eo < émaz-
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