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QUOTATIONS
From pp. 92-93 of Six Lectures on Modern Natural Philosophy: VI. Method and
Taste in Natural Philosophy. Berlin: Springer-Verlag, 1966.

The hard facts of classical mechanics taught to undergraduates to-
day are, in their present forms, creations of James and John Bernoulli,
Euler, Lagrange, and Cauchy, men who never touched a piece of appa-
ratus; their only researches that have been discarded and forgotten are
those where they tried to fit theory to experimental data. They did
not disregard experiment; the parts of their work that are immortal lie
in domains where experience, experimental or more common, was at
hand, already partly understood through various special theories, and
they abstracted and organized it and them. To warn scientists today
not to disregard experiment is like preaching against atheism in church
or communism among congressmen. It is cheap rabble-rousing. The
danger is all the other way. Such a mass of experimental data on every-
thing pours out of organized research that the young theorist needs
some insulation against its disrupting, disorganizing effect. Poincaré
said, “The science must order; science is made out of facts as a house
is made out of stones, but an accumulation of facts is no more science
than a heap of stones, a house.”

Clifford Truesdell

From p. 35 of Six Lectures on Modern Natural Philosophy: II1. Thermodynamics
of visco-elasticity. Berlin: Springer-Verlag, 1966.

There is nothing that can be said by mathematical symbols and
relations which cannot also be said by words. The converse, however,
is false. Much that can be and is said by words cannot successfully be
put into equations, because it is nonsense.

Clifford Truesdell
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Notations

Notations and symbols are explained in the text where they first appear; a list of
main notations is given below.

General notations

a Arbitrary constituent (subscript)

dv Element of volume

ds Outward-drawn normal

div Divergence operator

grad  Gradient operator

tr Trace operator

r, Arbitrary property of the ath constituent

r Mass-weighted sum of the ath constituents

r Derivative of I" following the motion of the mixture
I Material derivative following the ath constituent
r Material (second) derivative following the ath constituent

I Inner part of I’
rr Transpose
OI'/Ot Time derivative
Gradient operator in Cartesian coordinates
V. Divergence operator in Cartesian coordinates
Scalar product
& Dyad product
X Cross product
R Number of constituents (or their corresponding element volume)
OR Boundary area
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Notations used in the mixture theory
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Stretching tensor (1/s)
Lagrangian strain tensor (-)
Deformation gradient (-)
Displacement gradient (-)
Identity matrix

Chemical potential (J/kg)
Velocity gradient (1/s)
Skew-sym. stress (N/m?)
Stress tensor (N/m?)
Inner stress tensor (N/m?)
Material coordinates (m)
Body force (kgm?/s)
Linear strain tensor (-)
Entropy flux (J/m?/s/K)
Momentum supply (N/m?)
Heat flux (J/m?/s)

Inner heat flux (J/m?/s)
Diffusion velocity (m/s)
Displacement (m)

Place (m)

Velocity (m/s)
Acceleration (m/s?)

Notations

Velocity of the mixt. (m/s)
Acceler. of the mixture (m/s?)
Mass concentration (-)

Chem. reaction rate (kg/m?®/s)
Ext. heat supply (J/kg/s)
Time (s)

Spatial time derivative (1/s)
Local energy supply (J/kg/s)
Internal energy (J/kg)

Inner internal energy (J/kg)
Local energy supply (J/kg/s)
Gibbs free energy (J/kg)
Entropy (J/kg/K)
Temperature (K)

Chemical potential (J/kg)
Partial hydr. pressure (N/m?)
Density of the mixt. (kg/m?)
Mass density (kg/m?)
Helmholz free energy (J/kg)
Free energy of the mixt. (J/kg)
Motion (-)

Positive-valued function (K)



Notations used in the finite element approach
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Derivative of shape func.
Damping matrix
Constitutive matrix
Constitutive matrix
Stiffness matrix
Convection matrix
Shape function

Nodal parameter

Rate of change of param.

Arbitrary matrix

Load and bound. vector
Outward-drawn normal
‘Flow’ vector

Flux

Shape func. in time
Peclet number

Element Peclet number
Boundary surface
Element volume
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Weight func. in time dom.

Element length (1D)

Charact. element length (3D)

Time level

Weight func. in spatial dom.

Opt. Petrov-Galerkin
Time integration param.
Time integration param.
Dirac function
Hydrostatic pressure
Normalized time
Deviatoric stress
Arbitrary potential
Nodal param.

Gradient operator
Divergence operator
Time step

Time integration param.
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Notations introduced in Sections 6 and 8
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Tkm
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Tot. compl. (m?/N)
Elast. compl. (m?/N)
Rate of change (m?/N/s)
Fr. compl. (m?/N)
Local fr. compl. (m?*/N)
‘Ice’ compl. (m?/N)
Compliance (m?/N)
Equivalent length (m)
‘Slope’ (N/m?)

Reaction quotient (-)
Reaction quotient at an. (-)

Reaction quotient at cat. (-)

Tot. stress (N/m?)

Tot. stress rate (N/m?/s)
Loc. norm. stress (N/m?)
Loc. stress rate (N/m?/s)
Local tot. sh. stress (N/m?)
Loc. stress rate (N/m?/s)
Cell potential (V)

Stand. electr. potential (V)
Electromotive force (V)
Anode potential (V)
Cathode potential (V)
Transformation tensor (-)
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Notations

Tot. strain (-)

Global strain rate (1/s)
‘Moisture’ strain (-)
‘Thermal’ strain (-)

‘Ice’ strain (-)

Local tot. strain (-)

Local fr. strain (-)

Loc. strain rate (1/s)
Global fr. strain rate (1/s)
Corrosion rate (kg/m?/s)
Crack opening (m)

Shear disp. in crack (m)
Prev. max. crack def. (m)
Crack No. 1, loc. direction
Crack No. 2, loc. direction
Kronecker delta (-)

React. energy (J/mol/K)
Ref. energy (J/mol/K)
Loc. coordinate syst.
Deviation from ref.
Electric intensity (V/m)
Current density (amp/m?)



Material parameters

C
D
D.
DY)
DY
Dgzq)
Dion
DionE

Heat capacity (J/kg/K)
Diff. coeff. in bulk (m?/s)
Diffusion param., C1~ (kg/s/m)

Diffusion param., COs (kg/s/m)
Diffusion param.,. CO; (kg/s/m)
Diffusion param., CO; (kg/s/m)

Diffusion (general) (kg/s/m)
Tonic mobility (kg/s/m/V)

Diffusion param., Oxy. (kg/s/m)
Diffusion param., OH™ (kg/s/m)

Diffusion param., vap. (kg/s/m)

Diffusion param., vap. (kg/s/m/K)

Elastic moduli (N/m?)
Faraday’s const. (C/mol)
Fracture energy (Nm/m?)
Slip modulus (N/m?)

Rate constant (kg?/J/m?/s)
Thermal property (J/m*/K)
Latent heat (J/kg)

Gas constant (J/mol/K)
Equilibrium constant (-)
Rate constant (kg/m?/K)

kcaco
kdist‘
kFe

ohl

o

koh2

(67

ﬁbulk

,}/Cice

Cice

VII

Mole weight relation (-)
Distribution func. (-)
Rate constant (kg/m?3/s/K)

Mole weight relation (-)

Mole weight relation (-)
Electrical conduct. (ohm/m)
Weighting param. (-)
Valence number (-)

Unaxial tens. strength (N/m?)
‘Ice’ exp. (-)

‘Moisture’ exp. (-)

‘Thermal’ exp. (1/K)
Damping (kg/m?/s)
Damping (kg/m?/s)

Lame moduli (m?*/N)
Unloading parameter (-)
Heat conductivity (J/K/s/m)
Characteristic length (m)
Viscosity (kg/s/m)

Poisson’s ratio (-)

Lame moduli (m?/N)



VIII

Subscripts for the constituents

a Arbitrary constituent
bulk  ‘Bulk’ water
c ‘Free’ dissoved chloride ions
caco  Solid calcium carbonate
cahos Solid calcium hydroxide
co Carbon dioxide
cs ‘Bound’ chloride ions
[ Liquid water
0 Oxygen
oh ‘Free’ dissolved hydroxide ions
s Solid matrix (concrete)
v Water-vapor
vic. ‘Vicinal” water

Abbreviations
BET  Brunauer, Emmett and Teller theory
C-S-H Calcium Silicate Hydrate ‘gel’
FEM  Finite Element Method
FDM  Finite Difference Method
OPC  Ordinary Portland Cement
REV  Representative Element Volume
SEM  Scanning Electrode Microscope
SHE  Standard Hygrogen Electrode

Notations
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1. Introduction

Degradation processes such as frost attack and steel corrosion in cement-based
porous materials cause the society considerably costs yearly. Therefore it is of
interest to find a methodology to predict the performance of a structure in ad-
vance. Such a methodology is supposed to be used in order to avoid expensive
repairing and also as a guideline when choosing materials and when designing
constructions.

Today, constructions are indeed designed with powerful computer tools where
deformations and stresses may be calculated with acceptable accuracy for both
static loads and more complex dynamic load cases. A wide range of experimen-
tally verified complex constitutive behaviors in terms of stresses and strains for
different materials are implemented in such computer programs. These programs
are used to design structures by civil engineers every day. It is the author’s opin-
ion that the reason such material models are gaining great popularity is due to
the use of a stringent theory in which the material assumptions have a clear and
physical meaning. The usefulness of such material models in designing structures
is obvious. In fact, modern models dealing with, for example, material and geo-
metrical non-linearities, elasticity and plasticity are based on over a hundred years
of research.

The service life of a structure is, however, not determined solely by its re-
sistance to maximum possible static and dynamic load cases in its initial virgin
state. Instead, degradation of the bulk material and the material surfaces caused
by environmentally induced effects such as reinforcement corrosion, deicing salt
scaling, chemical attack, etc., determine the service life. This means that the



change of the material properties with time must be searched for in order to
evaluate the expected deterioration and service life of a structure. By studying
the mechanism of, for example, reinforcement corrosion and freezing and thawing
of porous materials, one might eventually find physically relevant material para-
meters describing the degradation phenomenon of interest. If these mechanisms
could be understood and hence modeled, the change of the mechanical proper-
ties with time may be predicted. Besides, in order to make this prediction, the
external environmental properties and their variations must be known.

Processes such as carbonization, chloride penetration causing reinforcement
corrosion, development of cracks due to freezing and thawing of pore water, leach-
ing of hydroxide ions, vapor and capillary suction flows, and development of global
crack patterns due to mechanical loadings and creep are all phenomena of great
interest in the field of durability of cementitious materials. In fact, many of the
separate deterioration processes will accelerate or slow down each other when they
act on a structure simultaneously. It is to the coupling between different deterio-
ration processes that this licentiate thesis is addressed. By ‘durability’ is mainly
meant service life with regard to such properties as determine the structural stabil-
ity, i.e. strength, reinforcement corrosion, stiffness, etc. Hence, aesthetic damage,
wear etc. are not considered.

Since the topic is naturally very complex, the work is focused on a discussion
(in terms of equations) of the main degradation processes and their couplings.
This discussion is supposed to improve the possibilities to search for physically
adequate material constants and parameters to be used in a model dealing with
durability predictions of porous materials.

As the problem of estimating the durability of structures is complex, a physi-
cally stringent model describing degradation phenomena is necessarily extensive.
Hence, the governing equation system reflecting such behaviors ought to be com-
plex too, even if the problem is simplified.

Since important properties such as bearing capacity and maximum allowable
deflections may be introduced as threshold values indicating the condition of a
considered structure, it seems natural to use the concept of stress and deforma-
tion for estimating the service life of inorganic material structures with regard
to structural stability. However, the determination of the stress and deformation
state is very much a question of the presence and variation of the environmental
conditions in terms of, for example, temperature, moisture, carbon dioxide and
deleterious substances such as chloride ions, because these factors determine the
‘inner climate’ in the structure and thus the degradation rate and extent.
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The main focus in this licentiate thesis is a description of the environmen-
tally introduced action of diffusing and chemically reactive (e.g. carbonation
and chemical-physical adsorption-desorption) matter in the pore solution and in
the air-filled space in the pore system of the material. The governing equations
describing the variation of concentrations of different substances and tempera-
ture within the material will then be used in a coupled description of the stress-
deformation state using the so-called smeared crack approach.

The proposed material model, describing deterioration of cement-based mate-
rials, will without doubt be revised in the future. The use of physically stringent
assumptions to describe degradation phenomena of mechanical properties is, how-
ever, believed to be a fruitful way of developing significant experimental setups;
hence realistic simulations in the field of durability may be performed. The present
work is a step in this direction.

The mixture theory, defined in the field of continuum mechanics, is an ax-
iomatic structured theory which accounts for actions among multiple phase sys-
tems in terms of balance laws. A simple interpretation of this theory will be used
as an important base when it comes to establishing the governing equations for
the constituents, and for local interactions, and for the mixture as whole. As the
suggested equation system for the diffusing-chemical reacting matter presented in
this work is compiled on the basis of the mixture theory, it will be outlined in
Section 2. The stress-strain description of the solid will, however, be treated with
a somewhat more classical fracture mechanic theory.

The main important findings about the physical behavior in terms of chemi-
cal reaction, adsorption-desorption and motion of vapor and liquid water in the
pore system of a porous material are discussed in Section 4. Other constituents
introduced are chlorides, carbon dioxide, oxygen, hydroxide ions and calcium hy-
droxide. In this Section, equations describing the motion of these constituents
and their interactions with each other and with the pore wall will be presented.
These equations were obtained by using constitutive relations together with the
balance laws proposed within the mixture theory.

In order to compare the pros and cons of different kinds of constitutive relations
used in the framework of mixture theory, three types of models are outlined in
general terms in Section 3. This is done to show that there are numerous ways of
describing the problem that are physically correct and possible.

In Section 6 the initiation and propagation stage of corrosion of reinforcement
bars embedded in cement based materials is dealt with. In this context, the
constituents introduced in Section 4 will be analyzed further. It will be shown that



ions present in the pore solution will respond in a different way than considering
pure diffusion only.

Damage induced by freezing and thawing is one of the most important causes
of degradation of brittle inorganic materials in constructions in cold climates.
Therefore, some important mechanisms describing the formation of ice crystals
in the pore system are discussed in Section 7. A brief discussion of the type of
constitutive relations which may be used to describe the ice growth in the pore
system is performed.

A few remarks on how to introduce environmentally induced strains into a
mechanical model are provided in Section 8. The environmentally imposed con-
ditions of the material are given by the equations presented in Sections 4 to 7.
These conditions are used to constitute the stresses in the solid material. The
important softening behavior, valid for brittle materials, is involved in the pre-
sented model. The problem of changing the mechanical material properties in the
so-called softening zones is recognized and discussed.

It certainly is of interest to solve the equations of the type presented, and
compare them with the measured global response of a real structure or exposed
specimen. For that purpose some of the basic methods of solving transient prob-
lems within the framework of finite elements will be outlined in Section 9.

It is concluded that a physically stringent model dealing with service life pre-
dictions becomes very complex. A large number of constituents that participate
in the degradation mechanism must be described. However, when searching for
a stringent physical model the important detailed individual processes must be
analyzed systematically. Such an approach is believed to increase the possibil-
ity to perform the experiments needed for an application and verification of the
model. The meanings of all the material constants and parameters introduced are
carefully defined by the constitutive relations and the governing equation systems
to be presented. Therefore, this licentiate thesis may serve as a springboard when
it comes to improving the knowledge of degradation mechanisms in cement-based
porous materials. It must be noted that this thesis mainly considers the material
itself, including cast in reinforcement. It does not explicitly consider the structural
stability of the entire structure. Such considerations may, however, be addressed
using the smeared crack model outlined in Section 8.
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2. Basic concepts of the theory of mixtures

To be able to describe the complicated process of how different constituents are
transported in a porous medium such as concrete, one must make sure that all the
introduced physical quantities satisfy the balance laws. The starting point will
therefore be a description of a mixture theory, based on the methods and principles
of modern continuum mechanics, which include postulates for the balance of mass,
balance of momentum, balance of energy (first axiom of thermodynamics) and the
entropy inequality (second axiom of thermodynamics).

Mixture theories include the statement of balance of the physical quantities
for both the individual constituents and the mixture as a whole. In terms of
modelling a physical behavior, the balance laws have no meaning unless they
are supplemented with a set of constitutive relations, which of course must be
confirmed by experimental evidence.

The mixture theory to be presented follows the concept described by Bowen,
compare [1]. Other similar approaches may be studied in for example [2], [3], [4]
and [5]. It should be observed, however, that no general agreement exists on how
to formulate these theories. It is worth mentioning that the classical diffusion
theories and porous media transport theories can be obtained as approximations
of the general mixture theories.

A large number of mixture theories are strongly influenced by the so-called
metaphysical principles as defined by Truesdell, compare [2]:

1. All properties of the mixture must be mathematical consequences of proper-
ties of the constituent.

2. So as to describe the motion of a constituent, we may in imagination isolate
it from the rest of the mizture, provided we allow properly for actions of the
other constituents upon it.

3. The motion of the mixture is governed by the same equations as is a single
body.

The first metaphysical principle roughly asserts that the whole is no more than
the sum of its parts. The second principle states that one may add terms account-
ing for interactions among the constituents when postulating balance equations
for a single constituent in a mixture, provided that the other constituents present
are allowed to be affected by this interaction. The third principle declares that
a summation of the postulated balance equations for the individual constituents
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should be equal to the balance equations for a single body, i.e. the balance equa-
tions for the mixture as a whole.

2.1. Kinematics and definitions

The spatial position, or the place x, of a particle labeled X, is given by a function
X, called the deformation function or the motion. The motion is defined as

x = X, (X, 1) (2.1)

where X, is the material coordinates of the particle X, of the ath body or con-
stituent in its fixed reference configuration. At time ¢ the spatial position x will
be occupied by the particle X, labeled with is corresponding material coordinates
X4 Assuming that an inverse to the deformation functions, i.e. X;:llr__m, ex-
ists for all continuous bodies 1, ..., the motion of the ath constituent could be
described as

X, =X (x,1) (2.2)

The velocity and acceleration of the particle X, at time ¢ are defined by
X, = 0X, (Xq,t) /Ot (2.3)
X! = 0°X, (X,,t) /Ot (2.4)

respectively. That is, the velocity and the acceleration are regarded as functions
of the particle X, having the material coordinates X, and the time ¢. This is
the so-called material description. Hence the prime affixed to a symbol with a
subscript a will denote the material derivative following the motion of the ath
constituent.
Given (2.2), the velocity and acceleration of X, can be regarded as given by
functions of (x,t), i.e.
x, =%, (x,1) (2.5)

Xq = Xq (X, 1)
The velocity gradient for the ath constituent at (x,t) is defined by

0y,
L, = grad x,, (x,t);  Lay; = (2.7)
ij

The velocity gradient can be decomposed as

L, =D, + W, (2.8)
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where D, is the symmetric part of L, defined by

D, = % (Lo +L7) (2.9)

and W, the skew-symmetric defined by

1
W =5 (La - Lf) (2.10)
Here D, is called the rate of strain tensor or stretching tensor and W, is called
the spin tensor.

For a mixture, the i bodies1, ..., are allowed to occupy common portions
of physical space. Then each spatial position x in the mixture is occupied by
particles, one from each constituent. Each constituent is assigned a density. The
mass density for the ath constituent is denoted p,. The density is a function of
(x,t), i.e.

Pa = Pa (X, 1) (2.11)
The density of the mixture at x and time ¢ is defined by
R
p=pxt) =) p.(x,1) (2.12)
a=1

The mass concentration of the ath constituent at (x,t) is
Ca = Ca <X7t) = pa/p (213)
Following (2.12) and (2.13), the mass concentrations are related by

Yoca=1 (2.14)

The mean velocity, or simply the wvelocity of the mixture, at (x,t) is the mass-
weighted average of the constituent velocities defined by

1 R
X=X (X7t) = ; § :an; (X, t) (215)
a=1

The diffusion velocity for the ath constituent at (x,t) is defined by

u, = u, (x,t) =%, (x,t) — x(x,1) (2.16)
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The diffusion velocity u, is the velocity for the ath constituent related to the
mixture. It follows from (2.15), (2.16), and (2.12) that

R
S pau, =0 (2.17)
a=1

The velocity gradient for the mixture at (x,t) is

ot;

L =grad x(x,t); L; = o, (2.18)
The relation between L and L, is obtained by considering the identity
grad (p,u,) = u, ® grad p, + p, gradu, (2.19)
where ® denotes the dyad product. From (2.17), it follows that
R
grad Y p,u, =0 (2.20)
a=1
which together with (2.19) give the relation
» »
> u,® gradp, = > p,gradu, (2.21)
a=1 a=1
In addition, the expression
R R R
pL=> " p,L=> p,gradx =>p,grad (x, — u,) (2.22)

a=1 a=1 a=1

must be considered, in which (2.12) and (2.16) are used. The definition (2.7)
together with the expressions (2.21) and (2.22) give the relation between L and

L, as
R

pL =" (p,La +u, ® gradp,) (2.23)

a=1
Any time-dependent vector fields, and in fact any time-dependent scalar, vec-
tor, or tensor field I', associated with the ath constituent, can be regarded either
as a function T, (X, t) of the particle X, (having the fixed material coordinates
X,) and the time t, or as a function I', (x,t) of the place x and the time t, pro-
vided that a definite motion x = X, (X,,t) is given. Again, the prime affixed
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to a symbol with a subscript a will denote the material derivative following the
motion of the ath constituent. The material time derivative of I', is defined by
, or
I, = 5 [Xs (Xa, ), t]; X4 = const. (2.24)
If the inverse to the deformation function X, exists, the arbitrary function I', can
be expressed by functions of (x,t). The definition (2.24) and the chain rule for
partial differentiation together produce

or

I = 5 (x,t) + [grad T (x, )] x}, (x,1) (2.25)

which is the relation between the material derivative [/, and the spatial derivative
or'/ot.

The derivative of I' following the motion defined by the mixture, that is %, is
denoted by I and is defined, in the same manner, by

or

I = s (x,t) + [grad T" (x,t)] X (x,t) (2.26)

For example, the material time derivative of the mass density p/, can be related
to the spatial time derivative dp,/0t by identifying I as p, to yield

= Ip,
“ ot
It follows directly from (2.16), (2.25), and (2.26) that

+ grad (p,) - X, (2.27)

I —T' = (grad I u, (2.28)
The deformation gradients for the ath constituent is defined by
al'i

where GRAD denote the gradient with respect to the material coordinates X,.
Note that F! only exists if det F, # 0, which is the case because of the assumed
invertibility of &X,. The linear transformation inverse to F, is

F, = GRAD X, (X,,t);  Flay = (2.29)

_ 8X(a)k

2.
5 (2.30)

Fl=grad X' (x,t);  F,
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In accordance with (2.29) and (2.30) it is concluded that

83:18X(a)k .

F,F. ! =F'F, =1, =
@ ' 8X(a)ka$j

a

8i; (2.31)

Using the chain rule together with the definition of the velocity gradient as

_ 0%y _ 9%y 0X(ak

Liayii = 2.32
W9 ;T 0X e O (2:32)
and noting that X, is independent of the time ¢, it follows that
Orwi \ Xk _ i
L(a)ij = <8X(a)k> 8£lfj = F(a)ikF(a)kj (233)
ie.
L, =F,F! (2.34)

which is the relation between the velocity gradient and the deformation gradient
for the ath constituent.

For certain problems it is convenient to introduce the vector w, denoting the
displacement of particle X, of the ath body from its place X, in the reference
configuration to its place x = &, (X,) in its deformed state:

w, (X,) = A, (Xe) =X, (2.35)
ie.
w, (X,) =x(X,) —X, (2.36)
Differentiation yields
8xi Gw(a)i
dz; (X)) = dX (o, = | 0ij + =—— | dX () 2.37
7 (X)) DXy < J+8X(a)j> (@) (2.37)
that is 9 9
L W(a)i
— =0;; + (2.38)
0X@; 7 00Xy
The displacement gradient H, is also introduced as
oW (ayi
Ha = GRAD Wg, H(a)ij = (239)

0X ()
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This definition together with (2.38) and (2.29) give the relation between the de-
formation gradient F, and the displacement gradient H, as

F,=1+H, (2.40)

One of the strain measures is the Lagrangian strain defined as

E, = % (FiF, — 1) (2.41)

which may be expressed in terms of the displacement gradient H, as

L
B, = 3 (FiF, 1)
= (@ H) A H) 1) (242)
1
2

(H, +H} ) + %HGTHG

where (2.40) was used. The Lagrangian strain measure has the benefit of giving
zero contribution of strains during rigid body rotation. However, the linear strain
measure

e, = % (H. + H) (2.43)

is often adopted.

2.2. Balance of mass

The balance of mass for a mixture consists of two parts: The first is the balance
of mass for each constituent, and the second the balance of mass for the mixture
as a whole.

Associated with each constituent is a quantity called its mass supply, denoted
¢q. The fact that mass can be exchanged among the constituents, for example
due to chemical reactions must be considered to guarantee mass balance for the
individual constituents.

If R is a fixed spatial volume and OR is the boundary area of the volume R,
the axiom of balance for the ath constituent is

0
9,4 :—7( ' d /Aad 9.44
at/%pa v ) PaXy dst | Cady (2.44)
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where dv is the element of volume and ds the outward-drawn normal vector ele-
ment of area. The rate of change of the mass density in a fixed volume must be
balanced by the mass density flow through the boundary of the considered volume
plus the production of mass due to supply from the other constituents present in
the volume R.

The axiom of balance of mass for the mixture is

0 .
E/ﬁpdv:—?{%{p){-ds (2.45)

It follows from (2.12), (2.15), (2.44), and (2.45) that

R
S / &y dv =0 (2.46)
a=1 R

Thus, balance of mass for the mixture is equal to the requirement that there be
no net production of mass in R.
If the divergence theorem, that is

7{ PuX, - ds :/ div(p,x) dv (2.47)
oR R

is used to convert the surface integral in (2.44) to a volume integral, the alternative
form of (2.44) becomes

a | . N _
/éR l o + div(p,x,,) ca] dv =10 (2.48)

Assuming that (2.48) is valid for all parts of the volume R, the local form of
balance of mass for the ath constituent is

Opa
ot

+ div(p,x;)

Ca (2.49)

When the same argument is applied to (2.45) and (2.46), it is necessary that the
following relations, in the local form, hold for the mixture

p C ey
e + div(px) =0 (2.50)

i
> 6, =0 (2.51)
a=1
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In the following it will be explained how the mass balance equations can be
rewritten in terms of mass concentrations ¢, instead of mass density p,. By using
(2.16), the mass balance for the ath constituent (2.49) can be rewritten as

Py
ot
In accordance with (2.13), the first term on the left-hand side of (2.52) is

dp,  0(cap) . Op | Oca
o0 ot ot ot
where the rule of differentiating a product is used. The second term on the left-
hand side of (2.52) is rewritten by use of (2.13) as

+ div(p,%x) = —=div(p,u,) + ¢, (2.52)

(2.53)

div(p,x) = div(c,px) = ¢, div(px) + pX-grad c, (2.54)
If (2.53) and (2.54) are inserted into (2.52),

op .. .
Ca la + div (px)] +p

Oca

g + px-grad ¢, = —div (p,u,) + ¢4 (2.55)

is yielded. The terms in brackets in (2.55) cancels due to the axiom of mass
balance for the mixture (2.50). This means that (2.55) can be written as

péa = —div(p,u,) + ¢, (2.56)

where ¢, is the mass concentration following the motion defined by x, i.e.

Oc,
ot

The equation (2.56) holds for all constituents.
By using the identity

Co = + X-grad ¢, (2.57)

div(p,x)) = p,divx, + x/ -grad p, (2.58)

together with the definition (2.25), with [, = p/, an alternative version of (2.49)
is obtained as
oh+ p,divxl, = ¢, (2.59)

In the same manner,
p+pdivk =0 (2.60)

is obtained, which is an alternative version of (2.50).
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2.3. Balance of momentum

The axiom of balance of momentum involves statements about the linear and
angular momentum of the constituents, as well as of the mixture. In this pre-
sentation, however, the linear momentum for the individual constituents and the
mixture will be discussed, since the angular momentum only will be used to show
that the stress tensor and the inner part of the stress tensor for the mixture are
symmetric.

If R is a fixed spatial volume and OR is the boundary area of the volume R,
the linear momentum for the ath constituent is given as

0 / - / /
pr /%paxa dv = — 7({9% PaX, (X5, - ds) + b T,.ds (2.61)
+ /ER (Paba + Pu + ax,) dv

where T, is the partial stress tensor for the ath constituent, p, the momentum
supply, and b, the external body force density.

The relation (2.61) generalizes Euler’s first law, which states that the total force
acting on a body R is equal to the rate of change of the body’s linear momentum.

However, if a mixture is considered the constituents will interact and produce
local forces (making a contribution to the total force of the ath constituent), that
is the term [ (Do + ¢uX),) dv, representing a locally produced force on the ath
constituent resulting from the presence of other constituents in .

The first term on the right-hand side of (2.61) represents the loss of momentum
through the boundary area of R, and the second term on the right-hand side
represents the contact force on the ath constituent of R, resulting from the contact
with all of the constituents outside R.

If the properties on the boundary surface O are converted to volume integrals
with the help of the divergence theorem as

(X, +ds) = [ div(p,x, © %, 2.62
§pux, (o, ds) = [ div(p,x, ©x,) (2.62)

T,ds = / divT, dv (2.63)
oR N

the balance of linear momentum for the ath constituent could also be written as

!/
/ge 8(/)8(;:(@) do — /m [—div(p, X, ® X,)+divT, + p,ba + Pa + Cax.] dv  (2.64)
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Assuming that (2.64) holds for all parts of the volume R, the local form of balance
of linear momentum for the ath constituent is

/
0 (/g;xa) = —div (p,x, ® X,)+div Tq + p,be + Pa + ¢aX,, (2.65)

If the rule of differentiating a product and (2.25) are used, the term on the left-
hand side of (2.65) can be rewritten as

d(px,) ,0p, , Ox, _,0p,
ot o tPa ot ey

+ pa a ™~ Pa [grad X:z] Xiz (266)
The term div (p,x], ® x/,) in (2.65) can be rewritten as
div (paxg ® X,) = X, div (pX,) + pa [grad x;] X, (2.67)

If (2.66) and (2.67) are used, the local version of the linear momentum for the ath
constituent, i.e. equation (2.65) becomes

Opa
ot

PuXo + X, +div (p,x},) — éo| = divT, + p,ba + Pa (2.68)

where the terms in brackets cancels due to (2.49), i.e. the linear momentum for
the ath constituent in local form can be written as

poXe =divT, + p,bs + Pa (2.69)

The arguments applied to the ath constituent in receiving the local balance
of momentum (2. 69) are also applicable to the whole mixture, now ignoring the
term [i (Do + CaX),) dv, since it describes the interaction among the constituents.

The local form of balance of linear momentum for the mixture is the postulate

px =divT + pb (2.70)

and the balance of angular momentum for the mixture is the postulate

px xx=div (x xT)+px xb (2.71)
One important consequence of (2.70) and (2.71) is

T=T" (2.72)
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Just as (2.46) is a consequence of the fact that constituents require balance of
mass to be compatible with the mass balance of the mixture, a similar condition
must be imposed for the momentum balance equation. The following discussion
focuses on deriving this consequence for the balance of momentum.

The external body force density for the whole mixture is defined by

1 R
b= " puba (2.73)
a=1

which is an average value of the individual constituent’s mass density. The inner
part of the stress tensor for the mixture is defined by

R
Ti=) T, (2.74)
a=1
while the stress tensor for the mixture is defined by
R
T=Ti— ) pu.®u, (2.75)
a=1

Due to the symmetry of T and "% | p,u, ® u,, the important consequence Ty =
T, is observed. In general, however, T, is not symmetric. Hence, one may
introduce the property M, as

M, =T, — T} (2.76)

where 1\7Ia is a skew-symmetric linear transformation. Since Ty = TY, it follows
that

§R ~
> M,=0 (2.77)
a=1
The summation of the momentum equation (2.69) may now be expressed as
® R
> pxi=divTi+pb+ > P, (2.78)
a=1 a=1

where the definitions (2.73), (2.74), and (2.75) are used.
A property T', (x,t), a = 1, ..., is considered for the ath constituent as well
as the fact that I" (x,t) is a mass-weighted sum defined by

1R ®
['(x,t) = p Z:l pula (x,1) = Z:l Cal'a (X, 1) (2.79)



18 Chapter 2. Basic concepts of the theory of mixtures

where (2.13) is used. Differentiation of the property I" as

R

= 2_31 =Y (cal'a + éal) (2.80)

a=1

and, furthermore, if the expression (2.80) is multiplied by p and (2.28), (2.56),
and (2.13) are used,

M=

pf‘ (x,t) = p (cafa +éaFa) = (2.81)

s}
—

(paF’ — pa (grad T'o) uy — Tadiv (pua) + ¢ala)

M=

a

are yielded. Since the following identity holds
div (p,laus) = p, (grad T'y) u, + Tediv (p,ug) (2.82)

the equation for pI' (x,t) becomes

R
pL =" (puly = div (p,Latty) + &La) (2.83)

a=1
By identifying the properties I' = %, I', = x/, and I, = x/ the equation (2.83)
can be rewritten as

e
pX Z (pa a le (paxa ® uﬂ) + Cﬂ ) (284)

a=1

Following (2.16), the equation (2.84) can be written as

i Rz i
PR = 3 (pax) —div 3o (pata @ ua) —div 3 o(pua) 9% (285)
a= a=1 a=1
R R
Z Cally) Z(éa)x
a=1 a=1

Due to (2.17) and (2.51), the expression (2.84) becomes

R
Z puXe — div (p,u, ® u,) + é,u,) (2.86)

a=1
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The term Y% | (p,x") is solved in (2.86), and the result is inserted into (2.78),
this yields

R R
i = div ((TI -y pau s u)) fpbt > (G +p)  (28)
a=1 a=1

If the definition of the inner part of the stress tensor is used, (2.87) becomes

R
px =divT + pb + > (¢qu, + Pa) (2.88)
a=1
Due to the balance of momentum of the mixture (2.70) and to (2.88), the following

relation must hold ”

3 (Gatta + Po) = 0 (2.89)

a=1

2.4. Balance of energy

The balance of energy, or the first axiom of thermodynamics, involves two state-
ments (like the balance of mass and momentum); one for the mixture and one
for the constituents. According to Truesdell and Toupin, the axiom of balance of
energy for the ath constituent in a fixed volume R is

1 /2 _ 1,2\ o .
(’%/pa £a+2xa dv = 7({9 Pa <€a+2xa)x ds (2.90)
+ ¢ (Tix, - a)-ds
+ [ loara+ pux, ~ba+x;~faa+éa] dv
+/ca aa—l—;xf dv

where 2/ = x! -x!. The internal energy density for the ath constituent is denoted
€4 Qg 18 the heat flux vector for the ath constituent, r, the external heat supply to
the ath constituent, and &, the local interaction for energy to the ath constituent
called the energy supply The term pal "2 is the kinetic energy density.

If the divergence theorem on the ﬁrst and second term on the left-hand side
of (2.90) is used as

7{ pa< +1x’2 x dS_/le Pa aa—i—lx’Q) a] dv (2.91)
R
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j{ (Tgx; - qa) - ds :/ div {TaTxﬁl — qa} dv (2.92)
oR R
the local form of (2.90) becomes

%pa (aa + %xf) + div [pa (aa + %xf) x;] = div [TGT ' — qa] (2.93)

+para + an; ’ ba+éa
+x. Py + Ca (ea + %mf)
The following identities for the terms on the left-hand side of (2.93) establish
that 9 5 5
1.2\ 1.2\ 9Pa g 1,12
5 (aa + §$a) = (esa + Qxa) T + Pary (5,1 + Qxa) (2.94)
div [pa (Ea + %xf) x;} = (Ea + %xf) div [p,x}] 4 grad (6a + %xf) pXs (2.95)
The equation (2.25) should also be considered with I', = <€a + %xf), ie.

b
(esa + %x{f) =5 (aa + %xf) + grad <€a + %xf) - x!, (2.96)
If one multiplies (2.96) with p, and combines it with (2.95), the result is
div [pa (aa + %xf) x;} = (aa + %xf) div [p,x.] (2.97)

00 (20 + %xf), - Pa% (ca + 322)

Furthermore, by writing the mass balance (2.49) as

(sa + %xf) 8(,;;“ + (ea + %xf) div (p,x,) — (Ea + %xf) Ca =0 (2.98)

and combining it with (2.97),
0 = (e 302) 224 5, 2 (e + 3at2) + div [, (ca + 202) x)] (299)
2%a at aat 2%a a 24a a
—_—\/
— Py (esa + %xf) — (aa - %xf) Ca
is achieved. If one uses (2.94) to rewrite (2.99) as

%pa (ca+32) = —div [p, (ca + 322) %, (2.100)

+p, (ea + %xf)/ + (sa + %xf) o
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it becomes possible to write (2.93) as
P (Bat 522) = div (TIX, — ) +para + puXl - butea 3P, (2101)
Since the following identities holds,
(322) =%, - (2.102)

div (TEXL) =x/ -divT, + T} - gradx, = x/, - divT, + tr T, L, (2.103)

where L, is the velocity gradient defined by (2.7) and tr the trace operation, the
equation (2.101) can be written in yet another form:

pace = trTaL, — divdatp,ra+Ea (2.104)
—x - (pxt — divT, — p,ba — Pa)
Following (2.69), equation (2.104) can be written as
pocy = 1Ty Ly — divda + p,ratéa (2.105)

It should be noted that information about the mass balance as well as the mo-
mentum balance for the constituents is used in order to reach (2.105).
The local energy equation for the mixture can be written in the form

- N
p (5 33%)= div (T — @) + pr+ Y (p,x, - by) (2.106)
a=1

Except for the last term, the equation (2.106) is identical to the usual energy
equation for single materials. When there is no diffusion, i.e. u, is zero for all
constituents, the last term in (2.106) becomes x % | p b, = px - b, where (2.73)
is used. This is the usual form of the rate of work of the external body force
density.

The external heat supply density for the mixture is defined by

| R
r= p > PaTa (2.107)
a=1

The inner part of the internal energy density for the mixture is defined by

1 i
er = P > Pata (2.108)
a=1
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and the internal energy density for the mixture is defined by

e=¢er+ _p Zpa uZ (2.109)
a=1

The inner part of the heat flux vector for the mixture is defined by

ar =Y (au — Tiu, + p,cata) (2.110)

and the heat flux vector for the mixture is defined by

q=da;+3 Zpau u, (2.111)
a=1
Another quantity k, which is related to the heat flux, will also be introduced:

R R
k = Z (qa + pagaua) =qr + Z TaTua (2112)
a=1

a=1
=AY (“Tp, + be2T)
a=1

where the definitions (2.110) and (2.111) is used.
The following identities are valid for the terms in (2.106):

r r i i
Z (paxiz Z pa X+ ua : ba) = Z (paba) X+ Z Pala b, (2114)

a=1 a=1 a=1 a=1

where equation (2.16) is used. Following (2.73), the expression (2.114) can be
written as

R
Z puX. - bg) = pb - x+Zpaua-ba (2.115)

a=1

and the term div(Tx) in (2.106) can be identified as

div (Tx) = x-div T+tr TL (2.116)
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where L is the velocity gradient for the mixture defined in (2.18). If the identities
(2.113), (2.115), and (2.116) are used, the equation (2.106) can be written as

R
pé = tr'TL — divg + pr+ ) _ (p,ua - ba) — X- (pX—div T—pb) (2.117)

a=1

Because of (2.70) the equation (2.117) is reduced to

R
pé = tr'TL — divg + pr+ > _ (paua - ba) (2.118)
a=1
Next, the equation (2.117) will be written in terms of the inner part of the
internal energy density. Consider the equation (2.109), written as

R .
pé=pirt+pd 3 <cau3> (2.119)
a=1
where (2.13) is used.
By identifying I'; = 12 and hence observing that I' = % | ca2 2 it becomes
possible to use the equatlon (2.83) to write the second term on the right-hand
side of (2.119) as

R . R
D% <Cu3> = <Pa% (w2) - div (p,duu,) + éa§u§> (2.120)

a=1 a=1
Note that .,
(u?’) = (W~ ua)’ =2u, - u, (2.121)
i.e.
R . R
P23 ( 3) = Z (patta - 1, — div (p,3udua) + Eadu?) (2.122)

1
The term Y% | p,u, - U, can further be written as
R R N
Z pau(l ' uiz = Zpaua ’ (XZ - (5() > (2123)
a=1 a=1

where (2.16) is used. Following (2.28) with I', = (E) , (2.123) can also be written
as

R R
> P, = pu,- (X, —% — Lu,) (2.124)
= =
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where L = gradx. The term % p,u, - (Lu,) in (2.124) can be identified as

R
Z P, - (Lu,) = Z Pla)Wa)j LjkWak = tr Z p.L (1, ® u,) (2.125)

a=1

We can also conclude from (2.125), (2.124), and (2.122) that

R

R . R
P Z % <Tut21> = Z Pala XZ - Z (paua) - X (2126)
a=1 a=1

a=1
R R
—tr Z p,L(u, ®u,) — div Z pa2uaua Z éa%ug
_ a=1

It should be noted that the term "% | (p,u,) - % cancels due to (2.17). If (2.118)
is written as

R . i
ng Z% < Call, 62l> = ftr <TI_ Z Pgla & ua) L (2127)

a=1

—div (‘h +3 Z pauaua> + pr+ Z Palla - ba)

a=1
where (2.119), (2.75), and (2.111) are used, and (2.126) and (2.127) are combined,
R R
pér = trTiL—divar + pr — > u, - (p,Xo0—paba) — > Cadu, (2.128)
a=1 a=1

is produced. The quantity tr3  T'L, should be considered next. By using
(2.16), (2.18), and (2.74), it follows that

® R ®
trY T,L, = try Tigradx, =trY T,grad (u,+ %) (2.129)

a=1

R R
= tr Z T!gradu, + tr Z T!L

a=1 a=1

R
= tr Z TaTgrad u, + tr'TiL
In addition, the term tr>"* | TTgrad u, can be written with the identity

R R R
try Tigradu, =div Y Tou, — > u,-divT, (2.130)

a=1 a=1



2.4. Balance of energy 25

i.e. (2.129) can be written

R R R
trY T,L,=divY Tiu,— > u,-divT, + trTiL (2.131)

a=1 a=1 a=1

The equation (2.128) and (2.131) combined yield

R R R
pir = try TiL,—divgr —div Y Tou, +pr— Y éugus  (2.132)

a=1 a=1 a=1
R
- Z U, - (paxg_paba — div Ta)
a=1

Following (2.69), i.e. the momentum balance equation for the ath constituent,
and the definition of k, i.e. (2.112), (2.132) can be expressed as

R R R
pér = tr Z TELa—divk + pr — Z éa% 3 - Z U * Pa (2.133)
a=1 a=1 a=1
As was discussed in association with the other field equations, it must be
ensured that the balance of energy for the constituents is consistent with the
balance of energy for the mixture. In order to examine this consistency, the sum
of the R equations of (2.105) must be considered, i.e.

i i i i
> pach =D T L, — Y divag, + pr+ Y &, (2.134)
a=1 a=1 a=1 a=1

where (2.107) is used. By using (2.108) together with (2.79) and (2.83) with
[y = &4, the term % | p ¢/, can be written

R R R
> pach =per+ Y div(peatta) — Y Caka (2.135)
a=1

a=1 a=1

The equation (2.134) and (2.135) combined with the definition (2.112) produce

R R R R
per =Y 1T, L, — Y divk+ pr+ Y .+ Y tata (2.136)
a=1 a=1 a=1 a=1
A comparison of (2.136) and (2.133) immediately validates the relation
R
> (éa (%ui + aa) +u, - P. + éa) =0 (2.137)
a=1

The equation (2.137) can be compared with the requirements on the mass balance
(2.51) and the momentum balance (2.89) for the mixture.
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2.5. Second axiom of thermodynamics

In this section a discussion of different forms of the entropy inequality will be out-
lined. Various forms of the second axiom of thermodynamics have been proposed,
in which each constituent is assigned a temperature 6,. These theories will be
considered here, but only with the purpose of reaching the approximative entropy
inequality used for mixtures with a single temperature 6.

Each constituent is assigned an entropy density n,. The entropy density for
the mixture at (x,t) is defined by

1

R
n= Z Palla (X, 1) (2.138)
a=1

b

Each constituent is also assigned a temperature 6,. These temperatures are as-
sumed to be given by a positive-valued function ©, such that

0, = O, (x,1) (2.139)

The second axiom of thermodynamics for the part of the mixture that occupies a
fixed region R at time ¢ is postulated to be

o . R R
a/%pndv > —jé%pnx-ds—jg%;(ha/ﬁa)-ds—I—/%aZ_:l(para/Qa) dv (2.140)

where h, is an influr vector for the ath constituent not yet related to the heat
flux vector q,. The local form of the entropy inequality (2.140) can be obtained
by considering the terms

?{ pnx - ds :/ div (pnx) dv (2.141)
oR N

and N .
fgm; (ha/6a) - ds = /ﬁdl"; (ha/0,) dv (2.142)

which allows (2.140) to be written in the local form

9 (pn) S
5 > —div (pnx) — div Z (ha/0.) + > para/ba (2.143)
a=1
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If the identity
div (pnx) = ndiv (px) + px-grad (n) (2.144)
and also 5 (om) 5 5
pn) . op  oOn
o ot o
are used, the local form (2.143) can further be expressed as

(2.145)

0 | . n : & i
M\ 3¢ +div (px) | + Par > —px-grad (n) —div > (ha/0,) + > para/ba (2.146)
a=1 a=1

Note that the first term on the left-hand side cancels due to (2.50) and that
0
i = 8—;7 + x-grad (1) (2.147)
where (2.26) is used. With (2.146), (2.50), and (2.147),

R R
pn > —div Z (h,/6,) + Z Pula/b0a (2.148)
a=1

a=1

is obtained. Another postulate for the second axiom of thermodynamics is the
inequality

o R ) R
a/%pndv > —é%(;panaxa~ds—7g%;(qa/9a)-ds (2.149)

R
3 (purafba) do
R a=1
Note that
R R
j{ > (a0/0a) - ds = / div ) (qa/ba) dv (2.150)
oR a—1 R =
and that

R R R
7{ > PallaX,, - ds :/ div ) (paneX) dv +/ div ) (panqua) dv (2.151)
oR a=1 R a=1 R a=1

where (2.16) is used. Furthermore, the first term on the right-hand side of (2.151)
can be written as

/%div (pnx) dv = /%ndiv (px) dv+/§Rp}'c~grad (n) dv (2.152)
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where Y% | p.n. = pn, i.e. (2.138) is used. If (2.147) is multiplied by p and this
expression is combined with (2.145),

9 (pn)
ot

is yielded. The inequality (2.149) can now be expressed in the local form by
considering (2.150), (2.151), (2.152), and (2.153) in order to obtain

. . 0
= pi) — pk-grad (n) +na—f (2.153)

: 0 . & ik
o> = (G i (0R)) = v Y @+ ) + 3 () (2150
a=1 a=1
If (2.50) is used, (2.154) can be reduced to
R R
/)77 2 —le Z (q(l/ea + panaua) + Z (para/ea) (2155)
a=1 a=1

If the local statement of the entropy inequalities (2.148) and (2.155) are compared
it can be concluded that the influx vector h, takes the form

h, = q, + p,0.1,u. (2.156)

if (2.148) and (2.155) are to be compatible.
If the equation (2.83) is used with I', = 7,, the inequality (2.155) takes the
form

Z Pally + div (da/0a) — para/ba + Can,) >0 (2.157)

If (2.157) is written as

R
1
Z % (Oapatly + 0adiv (Qa/0a) — pora + aany) > 0 (2.158)

and it is taken into consideration that
divq, = div (qu0,/0.) = 0,div (q./0.) + grad (0,) - 9a /04 (2.159)

the following inequality is obtained:

"

> 5 (Oapaly + divaa — grad (6a) - da/0a = para + Oalarts) = 0 (2.160)
a=1"0a
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If the energy equation (2.105), i.e
PaTa = Pocn — tTTI Ly + divg, — &4 (2.161)

is substituted by (2.160) through the elimination of p,r, the result is

R R
1 1
ZH_ Om, — <) > Zg ( trT L, + grad (0,) - qu/0. ) (2.162)
a=1"0a a=1 "0
=1 1,2
+; 9_a (ua “Pa+ Ca (5a —0.n, + 5%) — ea>
where
€a =20+ Ug Pu+ G (20 + 3u2) (2.163)
It is often convenient to eliminate the internal energies ,, 1, ... , R, in favor
of the Helmholtz free energy densities ¢, defined by
Vo =E€a = Noba (2.164)
If the definition (2.164) is used and
Yo = €4 = Mabla — Nat, (2.165)

is considered, (2.162) can be replaced by

Y

a=1

1

R
5 (—pa Wy +ma0,) > >

(~trTy Lo + grad (6,) - qu/6.)  (2.166)
+§:9 (Wa - Pa+ G0 (o + Ju7) — é4)
< 0,

The inequality (2.166) will now be used to obtain an expression, in which it
will be assumed that the mixture is exposed to the following constraints:

0 =0 (x,1t) (2.167)

and
O, =05 =..=0x (2.168)

where O is a positive-valued function. In other words, a single temperature 6 is
used for all constituents.



30 Chapter 2. Basic concepts of the theory of mixtures

The expression (2.28) should be considered together with I' = 6, i.e.
0! =6+ grad (9) - u, (2.169)
If (2.169) is used the term Y% | p.n,0, in (2.166) can be written as

R R
> Pttty = P10+ pan, grad (0) - u, (2.170)
a=1

a=1

where pn = Y p.n.. The equation (2.156) with the constraints in (2.168)
becomes

R R
Y da=h—-> pbn,u, (2.171)
a=1 a=1
where h =% h,. If (2.171) is rewritten as
R R
> q.-grad(f) /0 =h-grad(9) /0 — > p,n.erad () - u, (2.172)
a=1 a=1

the inequality (2.166) can with the help of (2.170) and (2.172) be expressed as

R R
0 < =S pbl—pnd+> trTIL, — h-grad (0) /0 (2.173)
a=1 a=1
R R o
_azzzlua Pa —azzzlca (@Da + §ua)

where it should be noted that F ; é, = 0 due to (2.137) and the constraints in
(2.168).

If (2.107) is used, the special case of (2.155) corresponding to (2.148) with the
constraints in (2.168) is

pn + div (h/0) — pr/0 > 0 (2.174)

where h =% h,.
It is possible to express inequality (2.173) in several equivalent forms. One of
them is

0 < —p (@ZJI + né)) +trT'L, — Z%j (ua Pa + éa%qu) (2.175)

a=1

R
—h - grad (0) /0 — div (Z pa@ZJaua)
a=1
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where (2.83) is used to write
R ) R
> (pat + Eath,) = piby + div <Z ﬂa¢aua> (2.176)
a=1 a=1
and where 1); is defined as
1R
- Z pa¢a =€&1 — 779 (2177)

Yet another form of (2.173) is

R R
0 < Z (patha) — pnf —tr>" pKoLo —h-grad (6) /6 (2.178)

a=1
- Z (ua pa +éa2 a)

where K, is the chemical potential for general mixtures defined as

K., =v,1-T}/p, (2.179)

and where "
> pKao=pp I — Ty (2.180)

a=1

which is a generalization of the classical formula in thermochemistry often written
as Y | cup, = ¢, where ( is the Gibbs free energy density for the mixture and
i, the chemical potential. Note the difference between K, which is the chemical
potential for general mixtures, and p,, which is the chemical potential used in
classical thermochemistry. If K, = u,I the stress tensor is given by T, = —m,1,
where 7, is the partial hydrostatical pressure for the ath constituent. During this
condition the chemical potential defined in general mixture theories is reduced to
the chemical potential used in classical thermochemistry.
It can be noted that the energy equation for the mixture (2.133), with the single
temperature constraint imposed, can be formulated in terms of the introduced
thermodynamic potentials 7, 1, and K, as

R R
p0h+divh+2ua-f)a+26a% 2 por

a=1 a=1
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- ) R
(Pata) — pnf —tr ) p,KaLq (2.181)

=1 a=1

R
(paz/}iz + éaz/}a) - Pne +tr Z TaTLa

=1 a=1

Il
M=

]

Il
M=

S

Compare [1] for a complete derivation of this form of the energy equation.

2.6. Summary of the general balance equations of a mixture

The balance equations for a mixture rest on the postulate that the local balance
of mass, linear and angular momentum, and the energy of the constituents is
given by similar relations to those for a single body continuum, but in this case
representing the actions from the other constituents by supply terms. This is the
second metaphysical principle given by Truesdell. As discussed in the previous
sections, the postulated local equations for the constituents takes the form:

Opa

5 = div(pax,) + (2.182)
pox, = divT,+ p,ba+ Pa (2.183)
M, = T,—T'! (2.184)
oty = T, L, — divda + paratéa (2.185)

Following the third metaphysical principle, it is required that a summation
of the balance equations for the constituents should result in the balance equa-
tion for a single body continuum. The conclusion from such summations of the
constituents is

i
0 = Y ¢ (2.186)
a=1
R
0 = > (u,+Pa) (2.187)
a=1
§R ~
0 = > M, (2.188)
a=1
i
0 = > (Ca(3ud+ea) +ua Patéa) (2.189)



2.6. Summary of the general balance equations of a mixture 33

In addition, the following identifications for the mixture quantities b, T, €, q and
r must be done:

1 i

b = =3 p.b. (2.190)
pa:l
R

T = ) (Ta—patla®uy,) (2.191)
a=1
1 i

e = =y (pa€a + %paqu) (2.192)

a=1

R

a = > (qa — Tou, + peally + %pauiua) (2.193)
a=1
1

ro= - faTa (2.194)
pa:l

The restrictions (2.186)-(2.189) and the definitions (2.190)-(2.194) are direct
consequences of the assumed principles. Compare previous Sections. Therefore
the imposed restrictions and relations must be accepted and fulfilled in the mixture
theory.

An obvious and direct way to postulate a local form of the second law of
thermodynamics for the constituents is not available. One of the discussed entropy
inequalities was, however, the restricted single temperature inequality for the

mixture
R

i
pit > —div Y (4a/0+ panatta) + Y (para/0) (2.195)

a=1 a=1
where the entropy density for the constituents, i.e. 7,, is related to the entropy
density for the mixture as a whole 1 by the definition

1 R
n= ; Z Palla (Xv t) (2196)
a=1

and where the entropy flux h is the term

R
h = (qa/0 + panaua) (2197)

a=1

One of the reasons that entropy inequalities should not be postulated for the
constituents is that the inequality mainly plays the rule of imposing restrictions on
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Table 2.1: Introduced physical properties for a mixture as a whole.

Property Property name  Number of Note

unknowns
p Mass density 1 Const. indep.
X Velocity of mix. 3 Const. indep.
T Stress tensor 9 (9) Const. dep.
b Body force 3 -
€ Internal energy 1 (1) Const. dep.
q Heat fluzx 3 (3) Const. dep.
r Ext. heat supply 1 -
n Entropy 1 (1) Const. dep.
0 Temperature 1 Const. indep.
3323 314

the thermodynamical process studied and does not function as a direct governing
equation. Furthermore, it seems difficult to use the third metaphysical principle
due to the fact that the second law of thermodynamics is an inequality.

2.7. A few remarks on constitutive theory

In previous Sections the basic balance principles within the mixture theory were
discussed. These equations are, however, not enough to yield a complete deter-
mination of, for example, the stress and motion. It is also necessary to define the
mechanical behavior of the material in question by means of a relation between the
stress and the motion. Such a relation is called a constitutive relation. A constitu-
tive relation should be confirmed by experimental evidence. The relations can be
established by a number of methods leading to the specification of dependent and
independent physical quantities. In this Section the constitutive dependent and
independent variables will be specified. Furthermore, a brief discussion of how
these different variables can be combined and still satisfy the so-called invariant
principle will be presented.

Powerful theorems based on the representation theory, which determines the
most general relations between dependent and independent physical quantities,
may be used to facilitate the process of measuring relevant material constants
and parameters. That is, the choice of constitutive relations is not arbitrary,
since they must satisfy the objectivity principle (frame invariance principle) and
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requirements on material symmetry.

The introduced physical quantities for the mixture are listed in Table 2.1.
The properties p, X, and 6 are chosen to be the constitutive independent vari-
ables. Hence, the fourteen introduced constitutive dependent variables can only
be functions of p, %X, and € and their corresponding gradients and time deriv-
atives. However, the motion x is not a reference frame independent property
and can therefore not be included to describe a material function f relating, for
example, the stress and motion.

It should be observed that the physical quantities ¢» (Helmholtz free energy
density) and K (the chemical potential) do not arise among the unknown proper-
ties listed in Table 2.1, since these quantities are given explicitly from the definition
(2.164) and the linear transformation (2.179).

A constitutive function describing the physical (constitutive dependent) prop-
erties T, ¢, q and 7 is chosen as

(T,e,q,n) = f (p,gradp, D, 6, gradd, Hy,) (2.198)

where D is the symmetrical part of the velocity gradient. The scalar quantity
Hy, in (2.198) represents a so-called internal variable (or hidden variable). This
quantity may be used to justify the choice of constitutive relations. In fact, the
introduction of internal variables is one of the corner stones in the theory of
plasticity.

The constitutive function described in (2.198) is a so-called constitutive func-
tion of (i) a differential type. It should be observed, however, that such functions
alternatively can be chosen to be of (ii) rate type or of (iii) integral type.

The equations describing the balance principles for the mixture are nine in
all. Compare Table 2.2, where one of them is an inequality. The number of
unknowns is therefore 23 —9 = 14, which is the sum of the constitutive dependent
properties. That is, fourteen equations in the format illustrated in (2.198) must
be introduced for the mixture when all of the properties T, ¢, q, and 7 are of
interest. All introduced assumptions must satisfy the principle of material frame
indifference and the second axiom of thermodynamics. This makes the number of
relevant assumptions somewhat restricted.

When a number of constituents are introduced with different physical prop-
erties in the model, special terms must also be introduced in order to describe
the interacting thermodynamic forces among the different constituents. In that a
summation of the postulated balance principles for the individual constituent is
made, the classical balance equations for the mixture should be retained. Com-
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Table 2.2: Introduced balance equations for the mixture as a whole.

Balance equations for the mixture  Nr. of equations Equation

Mass balance 1 (2.50)

Momentum balance 3 (2.70)

Symmetry of stress tensor; T =T" 3 (2.72)

Energy balance 1 (2.106)

Second axiom of therm. dyn. 1 (2.173) (Inequality)
29

Table 2.3: Introduced physical properties accounting for local interaction.

Property Property name Number of Note Comp.
unknowns Eq.

Ca Local int., mass supply 1R Const. dep. (2.51)

Pa Local int., momentum supply 3R Const. dep. (2.89)

I Local int., energy supply 1R Const. dep. (2.137)
Y5R

pare previous Sections. The introduced local interactions in the mixture theory
are all constitutive dependent properties, compare Table 2.3. This means that the
function f which relates the constitutive dependent and independent properties
for a constituent, denoted a, will be more complex than for the same relation for
the mixture. The constitutive function for a constituent in a mixture must be of
the following general format:

(Tav €asYas TNa» éav pa? éa) = f (pm gradpav Da7 0a7 grad0a7 Ug, Hak) (2199)

It can be shown that the diffusion velocity u,, i.e. the velocity related to the
velocity of the mixture, is unaffected by the choice of coordinate system and can
therefore be used to describe the constitutive behavior of the quantities on the
left-hand side of (2.199).

Indeed, it is important to be aware of the structure that the constitutive equa-
tions must take on to satisfy the postulated axiom, i.e. the format illustrated in
(2.198) and (2.199). The representation theory, however, makes it possible to go
one step further, i.e. a format where a determined number of scalar functions o;
(material functions) are defined, which are functions of the invariants in the prob-
lem. This means that the complete structure of how dependent and independent
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variables are connected through the material functions «; is known beforehand.
Unfortunately, these general concepts become very complex, especially when in-
teracting constituents are considered. However, intuitively proposed constitutive
relations can be rejected if they do not fit into the structure given from the rep-
resentation theory. Moreover, it is possible to use a systematic process when
identifying significant material functions in experiments. It should also be noted
that many of the generated material functions a; can be assumed to be zero,
simply by considering the nature of the physical process of interest.

For example, the stress tensor can be assumed to be given by an isotropic
function f of the symmetric part of the velocity gradient only, i.e. T =f (D). In
this special case, it follows from the representation theory that the constitutive
relation for the stress tensor must take the following general form:

T =a;I+a;D+a3D? (2.200)

where the material parameters aq, oy, and as can be functions of the invariant
measures, that is, trD, trD? and trD3. The linear viscous fluid assumption is
obtained by setting a; = —7 + AtrD, oy = 2, and a3 = 0, where A and p are
material constants and where 7 is the hydrostatic pressure. The following relation
for the stress tensor is obtained:

T = —7I+\ (trD) I4+2uD (2.201)

When coupled equations with different constituents are considered, the com-
plexity of the problem grows dramatically, since the material functions «; are
dependent not only on separate physical invariants but on combinations of differ-
ent invariants.

In the following, examples of models, based on simple interpretations of the
mixture and constitutive theories, will be outlined. In Section 4, a more detailed
model dealing with mass and heat transfer in porous materials will be presented.
These problems are believed to be a key issue when studying deterioration phe-
nomena of cement-based materials. The description of the stresses in the material
caused by the environment will not, however, follow the general concept of the
mixture theory but rather be described with a classical fracture-mechanical for-
mulation.
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3. Constitutive models: Three different approaches

In this section, basic structures of different models describing the same physical
problem will be outlined. More detailed constitutive behavior will be discussed in
Section 4.

The first approach concerns an example of a constitutive model, where the
mass balance equations for the constituents and the energy equation will be used
together with constitutive relations. The second example is an approach, which
starts from the equation describing the balance of linear momentum, in which the
stress tensors and the momentum supplies for the constituents are constituted.
The mass balance equations are then used to calculate the concentration fields
without introducing any extra constitutive relations. The third example concerns
a mixture of constituting either the stress tensors or the mass diffusion velocities
for different constituents.

The energy balance equation is treated in the same way in the three different
approaches.

The problem at hand is the coupled transport of water, vapor and dissolved
chloride ions in concrete. The effect of mechanical load is not considered in the
following three examples. The constituents of interest are the solid concrete phase
denoted s, the liquid phase [, the vapor phase v, and the chloride ion phase c.

3.1. Example - A quasi-static approach

This first approach will be referred to as the quasi-static approach, as it represents
a transient process where the diffusion velocities for the constituents are described
with constitutive relations. The primary unknowns are the mass densities, the
velocities and internal mass supplies for constituents and temperature, internal
energy, as well as the heat flux for the whole mixture. The unknown quantities
are

Ps ((X, t)) X, ((X, t)) =0 Cs ((x, t))

p(x,t) x(x,t a(x,t) _ .

o (1) % (x,1) G (k) 0(x,t);e(x,t); q(x,t) (3.1)
pc (X, t) X/c (X, t) éc <X7 t)

where the subscript s, [, v, and ¢ represent the solid (concrete), liquid, vapor, and
chloride ion phases respectively. The solid is assumed to be non-deformable, i.e.
x! (x,t) = 0.
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The following quantities

Cs ((x, t)) u, ((x, t))

c(x,t) w(x,t) . .

6 (), (xp) | XD P (3.2)
ce (x,1)  ue(x,t)

can be calculated directly from the quantities listed in (3.1). The mass density
for the mixture is given by (2.12) as

P (X, t) = Ps + P + Py + Pe (33)

The mean velocity or the velocity of the mixture is, following (2.15) given by
.. L., / /
X =%(x,1) = p (px1 + puXy + peX,) (3.4)

The concentrations for the individual constituents, as defined in (2.13), are

and the diffusion velocities (2.16) are

u, — —X
;.
o 3 (3.6)
u, =X, — X
u =x, —X

The system contains fourteen primary unknown quantities, i.e. the quantities
listed in (3.1), but there are five balance laws only, which means that nine con-
stitutive relations must be formulated using this approach. The mass balance
expressed in terms of mass concentration for the solid phase s is given by (2.56)
and (3.6) as

ot
The mass balance for the liquid phase [ is given by (2.56) as

p <% + x-grad Cs> = div (cspX) + 5 (3.7)

0
p <8_il + X%-grad cl> = —div (¢pu;) + ¢ (3.8)
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The mass balance for the vapor phase v is by the same argument given as

dc, | : .
P <8—Ct + x-grad cv> = —div (¢,puy) + &, (3.9)
The mass balance for the chloride ion phase c is
dc. . . .
P N + %-gradc. | = —div (c.pu.) + é. (3.10)

The internal mass supply ¢, for the constituents are constitutive dependent prop-
erties, which will be described as functions of physical quantities defined in the
model together with two constants describing the porosity n (m*/m?) and the spe-
cific surface area a (m*/kg) of the solid material s in question. The assumption
that mass exchange will only take place between the vapor phase and the liquid
phase, and between the solid phase and the chloride ion phase will be introduced.
Then, the equation (2.51) can be formulated as

s+ =0 (3.11)

and
Coy+¢6 =0 (3.12)

The mass exchange rate between the chloride ion phase and the solid phase is now
introduced in a general fashion as a function f, i.e.

¢. = flee, cs, 1,0, m, a) (3.13)

where it should be noted that c., c,, ¢; and 6 are quantities given by the model
and that the porosity n and the specific surface area a are constants. A more
detailed description and explanation of the choice of the function f in (3.13) will
be performed in Section 4.6. The mass exchange rate between the vapor phase and
the liquid phase is assumed to be described with the following general function:

¢ = f(eo,a,0,n, a) (3.14)

The diffusion velocities for the constituents must be described with constitutive
relations using the proposed strategy in this section. The following relation is
assumed to hold for the constituents. The (mass) diffusion velocity for the liquid
phase is described in general terms as

pu, = f (grad ¢, grad 0, v, ¢, n, a) (3.15)
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The (mass) diffusion velocity for the vapor phase is assumed to be expressed by
p,u, = f(grade,, gradf, ¢, 6, n, a) (3.16)
and the (mass) diffusion velocity for the vapor phase by
p.u. = f(grade, gradf, ¢, 0, n, a) (3.17)

Three properties still have to be determined: the temperature 6, the internal
energy density €, and the heat flux vector q for the mixture as a whole. At first,
it will be assumed that the system is free from external heat supply, i.e. that

r=0 (3.18)
and that the term TL is a small quantity, i.e. that
TL =0 (3.19)

where T is the stress tensor and L is the velocity gradient of the mixture. From
a physics perspective, the assumption (3.19) means that the stress does not affect
the rate of change of the internal energy. With the assumptions (3.18) and (3.19),
the energy balance equation (2.118) becomes

p(% + X-grade) = divq (3.20)

where X is, again, the mean velocity of the mixture. The constitutive relation for
the internal energy density is expressed by a function of temperature only, namely
as

e=f(6) (3.21)

During operations that include phase change problems, the function (3.21) will
be a discontinuous function. The heat flux vector q is constituted with a function
of the gradient of the temperature, i.e.

q=f(gradf) (3.22)

The equation system is now closed, the fourteen quantities listed in (3.1) are
supplemented with five balance equations, one for the balance of energy for the
whole mixture (3.20) and four mass balance equations for the individual con-
stituents (3.7-3.10). The remaining necessary nine equations are the constitutive
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relations (3.11-3.14), (3.15-3.17), and (3.21-3.22). It should also be noted that the
constitutive relations are given by functions of variables defined in the model.

The diffusion velocities are constituted in the model described in this section.
There is thus no point in introducing constitutive relations for the stress tensors
for the individual constituents in order to compute the velocities, as it is assumed
that it is possible to describe these properties explicitly by constitutive relations.
One may, however, use an equation of state, for example the assumption of an
ideal and perfect fluid, i.e. m, = Rp,0/M,, where R is the universal gas constant,
and M, the mole weight, to compute the partial pressures 7,. This will, of course,
still not give any extra information, which can be used to constitute the diffusion
velocities or the internal energy, since the partial pressures are given by functions
of already introduced properties, in this example p, and ,. This calls for a more
physical and realistic model which accounts for and satisfies all three balance laws,
i.e. the balances of momentum, mass and energy. This approach will be outlined
in the next Section.

To be able to solve the equation system, boundary conditions and initial con-
ditions must be imposed. In the quasi-static approach discussed in this Section,
either the natural boundary condition, that is the description of the mass-flow at
a boundary surface, e.g. pu;, p,u, and p u., or an essential boundary, that is the
description of the variable itself, e.g. ¢, ¢,, and ¢, can be given. For the simple
version of the energy equation adopted here, the natural boundary condition is
the heat flux vector q and the essential boundary condition is the temperature 6.

With types of problems associated with mass transport in porous materials,
it is perhaps most realistic to impose essential boundary conditions, since they
can be measured directly. When the capillary suction phenomena are studied,
it may, however, be some advantages to use the natural boundary condition to
evaluate measurements. Nonetheless, in order to capture realistic conditions at
the boundary surface, it is sometimes necessary to have information both about
the essential and natural boundary conditions, e.g. when considering convection
phenomena at the boundary surface. This type of boundary conditions are called
mixzed boundary conditions. As the description and treatment of the boundary
conditions play a very important part in the global solution behavior of the prob-
lem considered, a more detailed discussion on the subject will be presented in
Section 4.

When it comes to solving the governing equation system, it should be observed
that some numerical difficulties arise from the fact that convective terms are
present, e.g. x-grad ¢;, in (3.8). Different numerical solution strategies to overcome
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the difficulties will be treated in Section 9.4.

Indeed, it is possible to compute for the mass concentration fields without
constitute the mass diffusion velocities. This method will be discussed in the next
Section.

3.2. Example - A dynamic approach

The second approach differs from the first one on one important point: Here the
diffusion velocities are computed instead of constituted by making constitutive
assumptions for the stress tensors T, and momentum supplies P, for the individual
constituents.

The main reason why this method is included as a possible solution to the
problem is to show that there are various ways to describe the phenomenon of mass
transfer which satisfies the balance principles and from this standpoint get a wider
perspective of the problem. Already at this point, it is important, to remember
that the discussed approach will not be used to its full extent. It is assumed,
however, that many interesting points can be drawn from an investigation where
all balance laws are considered, as this represents a more stringent theory than
the quasi-static one. It is also believed that an investigation of this approach can
be used to improve the assumptions in the simple method presented in Section
3.1. Some examples will be discussed in the following sections.

The approach treated in this section will require more constitutive relations
than the quasi-static approach discussed in Section 3.1, but not necessarily more
material constants or parameters. This is not surprising, since the proposed dy-
namic approach is a more detailed and stringent physical method as it is based
on all three balance equations for the individual constituents. This is not a claim,
however, that this approach in is all parts superior to the quasi-static approach.

The following primary unknown physical properties are to be solved for

T,(x,1)  Ds(x,t)  p(x1)  x01)=0  &(x1)

Tl <X7 t) . pl <X7 t) . P (X7 t) . X; <X7 t) . él (X7 t)
T, (x,8) Po(ot)  p (0 8) ¢ X (x8) 0 é (%) (3.23)
T, (X t) pc (X7 t) Pe (X7 t) X,c (Xv t) Ce (X7 t)

and also for the quantities needed to predict the temperature field and heat flux
for the whole mixture, that is 6 (x,t), € (x,t), and q (x, t), which are all unknowns
and must therefore be added to the list (3.23).

The total primary unknown quantities is therefore twenty-two. This is a large
number of unknowns which, indeed, needs twenty-two equations to make the
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equation system closed. Surprisingly enough, methods of solving the mass con-
centration fields of the liquid, vapor, chloride (and other quantities) in a mizture
and in temperature fields are often claimed to be described with a slight modifi-
cation of material constants. For example, this is true of the diffusion constant in
the Fick’s second law for each constituent in the mixture considered. When this
slight modification is performed, however, it is important to consider the fact that
there is no stringent theory or physical background in making these assumptions
for a mixture. Theoretically, therefore, no physically correct conclusions can be
drawn, neither from any experiments nor computer simulations.

The dynamic approach, which will be discussed in this Section, makes use of
nine balance equations: one for the energy of the whole mixture, four balance
equations for the mass, and four balance equations for the momentum of the indi-
vidual constituents. Furthermore, three relations are introduced for the mixture
concerning the mass supplies and the momentum supplies. These reduce the num-
ber of required constitutive relations to ten. This means that a minimum of ten
material constants is required.

Without making any deviation from the generality of the mixture theory, it
can nevertheless be concluded that several of the remaining material constants
are not important (which should be confirmed by experiments), and that an ac-
ceptable number of unknown material constants can be dealt with. The physical
theory would still be stringent and the constitutive relations can be used to eval-
uate the measurements. However, experiments performed in the area of interest
indicate that the problem is complex and needs powerful physical hypotheses and
experiments.

The quantities in (3.24) are given from the relations (3.3-3.6)

Cs EX7 t)) U ((X, t))

¢ (x,t w (x,t )

e (%,1)  u,(x,1) X(x,t) p(x,t) (3.24)
Ce (X, t) U, (X, t)

This means that these quantities are available, since they are given directly as
functions of the primary unknowns listed in (3.23).

The body forces in the momentum balance equation (2.69) for the constituents
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are assumed to have negligible influence, i.e.

psbsz 0
/’}EI;% (3.25)
pch: 0

From (2.89) it is concluded that the following relation must be valid for the mix-
ture in consideration:

év (u'u - ul) + éc (uc - us) + 155 + f)l + f)’u + ISC =0 (326)

If p; is solved in (3.26) and the result inserted into the balance of momentum in
(2.69) for the solid constituent,

0=divTs— ¢, (u, —w) — ¢ (u. —uy) — Pr — P — Pe (3.27)

is obtained, where the approximation for the body force is used. It is also assumed
that the solid constituent is non-deformable, i.e. x| (x,t) = 0. Based on the
material derivative for x} (x,t), i.e. x] (x,t) = 0x}/0t+x]-grad x;, the momentum
balance for the liquid phase produces the following relation:

8 !/
P < 8)? +x) - grade) =divT, + p; (3.28)

With the same arguments, the momentum balance for the vapor phase produces

ox!, , , i .
o\ 5 +x - gradx) | =divT, + P, (3.29)

Finally, for the chloride ion phase, the following expression for the momentum
balance is obtained:

ox. , . .
Pe\ 2 +x. - gradx, | = divT. + P (3.30)

The solid is, in this example, for simplicity, assumed to be non-deformable.
Thus an simple ideal fluid assumption for the stress tensor is adopted, i.e.

(T8>ij = —msbi (3.31)



46 Chapter 3. Constitutive models: Three diffrent approaches

where the Kronecker delta 6;; is equal to the unit matriz I, i.e. 9;; is equal to 1
if © = j and to 0 if j # 7. The hydrostatic pressure is denoted 7.

The other constituents are assumed to obey the laws of a linear newtonian
fluid.

(Tl)z] = f(Dy, 0, p,) (3.32)

Stoke’s relation is A + 2/3p > 0, which allows for the possibility that volumetric
viscosity exists. In this formula, ;4 and A are Lamé’s moduli. In this work, however,
it is assumed that the volumetric viscosity is small compared to the other material
constants and the Stoke’s relation reduces to A+ 2/3u = 0. In turn, it is possible
to write the linearized constitutive relation for the stress tensor for the liquid
phase (assuming a linear newtonian fluid) as a function of the symmetric part of
the velocity gradient L;, i.e. D;, and the temperature 6 for the whole mixture as

2
Tl = 2#1 (9) Dl — g,u, (9) tr Dl - I7Tl(9, pl) (333)

or written with indicial notation as

o ox :
Ory | Oty _ 5, 20%ul 5 20 p) (3.34)

<Tl>zy = I (9) 8l'j ox; 273 ox;

where 1, is a material constant for the liquid phase called wiscosity, which is
assumed to be a function of temperature, i.e. y; (6).

It is reasonable to assume that the temperature gradient induces stresses which
can be incorporated into the assumption (3.34). However, according to (3.34),
such a constitutive relation must be of tensor format. One way of involving the
temperature, considering isotropic functions only, is therefore to add a function of
the type gradd®gradf = 520/ (Ox;0z;) to the constitutive relation for the stresses.
This approach is very complex, since derivatives of the third order will appear
when the constitutive relation inserted into the momentum balance equation is
considered.

The same problem will be faced at an attempt to incorporate stresses in the
solid matrix caused by mass concentration gradients of ¢;. For example, a function
of the type 8%¢;/ (0z;0x;) can be used as an additional term. Instead of using the
approach discussed above, it is proposed that the temperature induced stresses can
be dealt with together with the constitutive relations for the momentum supplies
pPo. Furthermore, so-called internal variables may be used to describe the stresses
induced by the environment.
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The type of constitutive relations that exist for the liquid are also assumed to
hold for the stress tensors for the vapor phase as well as the chloride ion phase.
Hence, the stress tensor for the vapor is constituted as

T, =f(D,,0,m,) (3.35)
and the stress tensor for the chloride ion phase as
T.=f(D,¥0,7.) (3.36)

where it should be noted that in all equations above, the hydrostatic pressures 7,
are defined as positive when compressive.

Furthermore, the hydrostatic pressures must be incorporated into the physical
model and computed for. In many applications, it is assumed that a relation be-
tween the density p, and the pressure 7, exists, e.g. dp, /0t = 1/c*dm,/Ot, where
c is the acoustic wave velocity. This makes it possible to solve the pressures and
velocities with the balance of mass and momentum together with the constitutive
relations. This exemplified relation has no physical significance in the problem
dealt with here. Another relation must be found. It is clear, however, that the
individual fluid constituents are under stress even if the fluid in question is at rest.
For instance, the hydrostatic pressure for the vapor can be calculated using the
perfect gas law, which relates the pressure 7, to the mass density of the vapor p,
and the temperature #. The pressures should not, however, be confused with the
momentum supply among the constituents which, simply speaking, accounts for
the exchange of forces and energies between the phases.

At this point, the reason why liquid starts to propagate through a porous
medium stands clear. It is not difficult to imagine that the liquid phase flow
will assert a great deal of resistance throughout the pore system (In the case of
capillary suction of liquid into a porous medium without any external pressure
gradients, this example may not be fully adequate). In terms of the mixture
theory, this means that the momentum supplies p, among the constituents play
an important part, that is, there exists a certain loss (or supply) of momentum
from one constituent to another.

The momentum supply for the solid ps will not be constituted, since it is
eliminated between (3.26) and (3.27). When it comes to the momentum supplies,
the other constituents must, however, be supplemented by constitutive relations.

The momentum supply for the liquid phase is assumed to be constituted by
the following function:

p = f (grad ¢, grad 6, w;, ¢, n, a) (3.37)
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where n and a, again, are the porosity and specific surface area of the solid. The
following constitutive relation for the vapor phase is assumed:

p, = f (grad ¢, grad 6, u,, ¢, ¢, n, a) (3.38)

The momentum supply for the chloride ion phase is assumed to be described by
a function of the following properties:

p. =f(gradc, u,, ¢, n, a) (3.39)

The momentum supplies are, essentially, assumed to be given by functions of
the diffusion velocity of the liquid phase, and by the mass concentrations of the
individual constituents.

The mass balance equations for the considered constituents are given by the
equations (3.7-3.10). The mass conservation of the solid constituent gives

p <% + x-grad cs> = div (espX) + ¢ (3.40)
The liquid phase must fulfill the following mass balance equation:
8cl . . ~
P\ o + X-grad ¢ | = —div (gpw;) + ¢ (3.41)
The mass conservation for the vapor is
dc, . . .
P e + x-grad ¢, | = —div (¢,pu,) + ¢, (3.42)
and for the chloride ions, the mass balance is given by
dc. . . .
P N + %-gradc. | = —div (c.pu.) + é. (3.43)

The same constitutive relations used in the quasi-static approach, are again adopted
for the mass supply terms. That is, for the chloride ion phase, the following rela-
tion is assumed:

¢ = f(Cey Csy €1y 0) (3.44)

For the vapor phase, the assumption is

¢ = flew,a, ) (3.45)



3.2. Example - A dynamic approach 49

Mass exchange is assumed to be restricted by the following two relations:
Cs+¢. =0 (3.46)

and
Cy+6=0 (3.47)

which means that mass is exchanged only between the chloride ion phase and the
solid phase one the one hand, and between the vapor phase and the liquid phase
on the other.

The energy equation for the mixture as a whole is proposed to be given by the
already presented three equations, namely (3.20-3.22).

The equation system is now closed. The twenty-two unknown properties can
be calculated using the nine balance laws (3.28-3.30), (3.40-3.43), and (3.20),
together with the remaining thirteen constitutive relations (3.31-3.36), (3.37-3.39),
and (3.44-3.47).

The main purpose of the method presented in this section is indeed to illustrate
that there exists alternative formulations to the more classical approach presented
in Section 3.1 and, furthermore, the ambition to show that knowledge of the
method may be used to improve the assumptions in the quasi-static approach.

When it comes to making the choice of which way to go, it is, however, pri-
marily a question of which method that makes it possible to perform adequate
measurements in order to determine the introduced material constants or mater-
ial parameters. A minor problem in this context is the solution strategies, since
powerful numerical methods exist that makes it possible to solve the equation
system discussed above with satisfying accuracy. If, for example, the constitutive
relations behind the simple quasi-static approach are chosen as a basis for an eval-
uation of the measurements, it should, however, be clear that the mass density
flows p,u, must be constituted in a way that takes the effect of forces interacting
among the constituents into account, although there does not exist any deeper
underlying physical theory that suggests such a consideration.

As this work, in extension, is aimed at finding relations, and hence models,
describing deteriorating mechanisms in concrete and other porous materials due
to interactions between external applied loads and stresses induced by the envi-
ronment, the dynamic approach seems to be a more realistic platform to work
from, even considering the possibilities of measuring the material constants intro-
duced. The dynamic approach may for example, be a very useful approach when
freeze-thaw damage, due to ice formation in the pore system is studied, as it in
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all essential parts is a question of momentum supply (or loss) between the solid
and the ice causing the damages. This phenomenon can hardly be investigated
without introducing the balance of momentum equations for the constituents.
That is, the concept of stress and strain rates must be considered. Unfortunately,
there is no stringent argument to incorporate these concepts into the quasi-static
approach which does not include the momentum equations for the constituents.

A strategy which involves to solving the dynamic equation system above, with
a numerical method, will be outlined in Section 9. The main idea is to solve the
velocities for the individual constituents with the momentum balance equations,
together with the suggested constitutive relations. The boundary conditions in
these equations will be the partial pressures (hydrostatic pressures) for the con-
stituents. These pressures will, simply speaking, induce the constituent to move
in the pore system. When the velocities are computed, these known quantities are
used as input to the mass balance equations and their corresponding constitutive
equations. The mass concentration fields can then be calculated by introducing
boundary conditions for the mass concentrations and indeed without specifying
any diffusion constants for the constituents, since the velocity of the different con-
stituents are calculated by the momentum balance equations together with the
constitutive relations for the stress tensor and the momentum supplies.

3.3. Example - A mixed approach

As discussed above, it seems reasonable to treat the liquid water phase as a
newtonian liquid with a complementary force accounting for the liquid-solid in-
teraction. This makes it possible to compute the diffusion velocity for the liquid
water, rather than to constitute this property. However, as the vapor molecules
and the chloride ions are in general in a weak concentration in the considered
applications, it might be sufficient to constitute the mass diffusion velocities p,u,
directly, and therefore not include the balance of momentum equation for these
two constituents. As this method makes use of the momentum and the mass bal-
ance equation for the liquid phase, and only the mass balance equations for the
vapor and the chlorides, it will be referred to as the mixed approach.

This method will be outlined in the same general manner as the two other
approaches, i.e. the quasi-static and the dynamic approaches.
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The primarily unknown properties in the mixed approach are assumed to be

Lt Bio) e ded et
s (x,t pPs (x,1 p(x,t)  x(x,t ¢ (x,t
Ti(x.t) ' Bt pxt) ® (0 é(xd) (3.48)
pe(X,t) X, (x,t) Ce (%)
and
0(x,t); e(x,t); q(x,1); (3.49)

which makes the number of unknown quantities eighteen.
Again, the following properties are given from (3.3-3.6), which are functions
of the unknowns in (3.48).

cs (x,t)  ug(x,t)
2} (():(” ?) 11111[, ((); ?) x(x,t); p(x,t). (3.50)
c. (x,t)  u.(x,t)

The body forces for the solid and the liquid are assumed to have negligible influ-
ence on the considered system, i.e.

psbS: 0
pbi=10

(3.51)
According to (2.89) and (3.48), the following relation must hold for the mixture:

év (uv - ul) + éc (uc - 113> + ps + f)l =0 (352)
If P is solved in (3.52), the result is inserted into the balance of momentum (2.69)
for the solid constituent, and, finally, it is noted that the velocity of the solid phase
is assumed to be negligibly small, i.e. x} (x,¢) = 0, one obtains

0=divT; — ¢, (u, —w) — é (u. —ug) — Py (3.53)

The momentum balance for the liquid phase is: (compare (3.28))

!/
P <8(,;;l + x; - grad xE) =divT, + P (3.54)
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The stress tensor for the liquid phase is constituted in the same way as in the
dynamic approach, compare Section 3.2. Therefore

Oy n Oxy 2 Oy

(ﬂ)m = (9) axj ox; - ”58_;1;2

— m(0, p)bs; (3.55)

The momentum supply for the liquid phase is assumed to be constituted by
the following function:

p, = f (grad ¢, grad 0, u;, ¢, n, a) (3.56)
The simple constitutive relation for the solid is again adopted, i.e.
(Ts)z’j = _Wséij (357)

The mass balance equations for the considered constituents are given by the
equations (3.7-3.10). The conservation of mass of the solid, liquid, and vapor as
well as the chloride ions’ constituents is

p <% + x-grad Cs> = div (cspX) + 5 (3.58)
8cl . . ~

P 5 + x-grad¢; | = —div (¢pu;) + & (3.59)
dc, . ) .

p <§ + %-grad cv> = —div (c,puy) + ¢, (3.60)
dc. . . R

p <E + X%-grad cc> = —div (e.pu.) + ¢, (3.61)

The mass supply terms for the chloride ion phase and the vapor phase are, again,
constituted as
éC = f (CC7 Cs, Ci,y 97 n, CL) (362)

¢ = f(eo,a,0,n, a) (3.63)

and the following restrictions are assumed to hold:
Cs+ ¢ =0 (3.64)

G+ 6 =0 (3.65)
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where (2.51) is used.
The mass diffusion flows p,u, and p.u. are constituted by the following general
functions:
p,u, = f(grade,, gradf, ¢, 0, n, a) (3.66)

p.u. = f(gradc., gradd, ¢, 6, n, a) (3.67)

Three properties remain to be constituted, namely the temperature 6, the internal
energy density € and the heat flux vector q for the mixture as a whole. The
three relations leading to the standard heat conduction (with an additional term
accounting for internal forced convection) are the balance of energy (3.20) and
the two constitutive relations (3.21) and (3.22).

The introduced number of unknown quantities in this example, as listed in
(3.48) and (3.49), are now supplemented with an equal number of balance equa-
tions and constitutive relations. The introduced momentum balance equations
are (3.53) and (3.54). The mass balance equations for the constituents are (3.58),
(3.59), (3.60), and (3.61). The energy balance is given by (3.20). The constitutive
relations for the stress tensors are (3.55) and (3.57), and the momentum supply
for the liquid water is the relation (3.56). The remaining relations are the four
constitutive assumptions for the local interactions in terms of mass exchanges
among the constituents, i.e. (3.62), (3.63), (3.64), and (3.65), the relations for the
mass diffusion flows (3.66) and (3.67), and finally the relations for the thermal
properties (3.21) and (3.22).
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4. Mass transport phenomena in porous media

Usually, only global response at macro-scale is detected in experiments. Having
this in mind, it may be advantageous to use a more detailed physical stringent
theory and detailed constitutive description as a working hypothesis. The actual
global response measured at the macro-scale is a consequence of different con-
stituents interacting at the micro-scale, which could not be ignored. If a physical
stringent description is searched for, such considerations can not be overlooked.
One may claim that a very simple engineering approach is sufficient to solve
flow problems in the field of building materials. It should be noted, however,
that classical models using types of equations based on Fick’s second law must
be supplemented with material parameters, such as the diffusion parameter D,
which inevitably becomes extremely non-linear in order to capture the measured
response in the laboratory. Some of these introduced non-linearities even seem
unrealistic from a physical viewpoint. For example, the diffusion parameter for
vapor must increase as the liquid water content increases in the pore system. This
occurs at attempts to fit measured data using one state variable only and thus
describing the action of vapor and liquid water as one single constituent.

Furthermore, it may be reasonable to use more detailed physical models as the
classical non-linear models require computer analyses. They can not be solved in
a simple manner. Therefore the alternative of building a more stringent physical
model would provide a competitive candidate, since powerful computer algorithms
are required in both cases.

The stringency of the assumptions behind the classical Fick’s second law in the
field of moisture mechanics in building materials, which treats vapor and liquid
water as one constituent, fails if a dissolved agent such as chloride ions is added
to the system. This is due to the fact that liquid water flow makes the motion
description of the considered dissolved matter somewhat more complex.

In this work, it is proposed to be an advantage to use separate descriptions
and hence different equations for the different constituents considered, i.e. vapor,
liquid water and dissolved agents such as chloride ions. These equations will be
supplemented with proper terms accounting for interactions between the different
constituents in terms of chemical reactions (or physical bindings) and momentum
supply. A similar approach has been proposed in, for example [6], where steel
corrosion in concrete structures is dealt with, and in [7], where the durability of
cement-based materials used for the construction of radioactive waste containment
barriers is studied.
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4.1. Adsorption and capillary condensation at isothermal and steady
state conditions

The fixation of water onto the pore walls is presumably caused by a phenomenon
called adsorption. Adsorption is the fixation of vapor ‘molecules’, present in the
pore space, onto a completely dry pore wall or to water molecules already adsorbed
on the wall. One of the first to study adsorption of molecules on solid surfaces was
Langmuir in 1918, who suggested that the surface consists of a certain number of
sites, some of which are occupied by adsorbed vapor and some of which are free.
The rate of evaporation is taken to be proportional to the amount of occupied
sites and the rate of condensation proportional to the ‘bare’ surface and to the
gas pressure of the vapor in the pore space. In other words, the description of
the problem is obtained by considering the collision frequency together with a
probability of adsorption and condensation.

By setting the condensation and evaporation rates to be equal, the so-called
Langmuir equilibrium adsorption isotherm is obtained [8]. The Langmuir type
of equilibrium isotherm is roughly characterized by a monotonic approach to a
limiting adsorption, which should theoretically correspond to a complete mono-
layer. It does not, however, reflect the measured equilibrium isotherm for the
most common building materials such as concrete.

It is generally believed that a multilayer formation of adsorbate is formed
in certain materials such as cement-based materials. One model based on this
assumption is the BET equilibrium isotherm. The basic assumption behind this
method is that the Langmuir equation applies to each layer formed, with the added
postulate that for the first layer, the energy of adsorption may have some special
value, whereas for all succeeding layers, the energy of adsorption is equal to the
energy of condensation of the liquid adsorbate. Furthermore, it is assumed that
evaporation and condensation only can occur from or to the exposed surfaces
[8]. The shape of the normal BET equilibrium isotherm somewhat reflects the
behavior of the physical adsorption of vapor in porous materials. According to
the BET theory, the adsorbed layer should be infinite when the surrounding vapor
pressure is saturated. In reality, however, it reaches a certain limit corresponding
to the limiting number of adsorbed layers. Normally, the BET equation is valid
up to about 30% or 40% relative humidity.

When a number of adsorbed layers are formed at the pore surfaces, so that
a liquid meniscus can be formed, another mechanism is also active, which makes
the amount of adsorbed liquid grow under the condition that the relative vapor
pressure in the pore space is high enough. This phenomenon is called capillary
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condensation. The capillary condensation becomes significant when the relation
between the vapor pressure 7, and the saturation pressure 7,5 at a given temper-
ature exceeds a certain level, usually between 25% and 45%, dependent on the
type of adsorbate, [9], [10]. For water, it is about 45%.

The capillary condensation phenomenon is a consequence of liquid water present
in the pores forming curved surfaces [11]. That is, if the adsorption of molecules
forms layers at the surfaces due to a certain relative vapor pressure in the pores, a
diffuse point will be reached, where the adsorbate starts to behave more or less like
a ‘normal’ liquid (roughly, when a few molecule layers have been formed). This
creates a curved boundary surface neighboring the vapor phase. This curvature is
maintained by the balance between the surface tension (surface energy) and the
hydrostatic pressure difference over the same surface. This pressure difference is
often referred to as the capillary pressure Tqp.

One may claim that the only phenomenon of interest is the capillary conden-
sation, since the outer climate of interest in the present type of application is
almost always above 40% relative humidity. At that level, capillary condensation
is usually more important than adsorption. It must be remembered, however, that
moisture movement, and perhaps even the movement of dissolved ions, also takes
place in the adsorbed layers. The thickness of this layer is, however, normally less
then 15A, a small value compared with the pore size, where a capillary condensa-
tion takes place at higher relative humidities. The main advantage of the theories
behind the equilibrium sorption isotherms is, perhaps, that they make possible
estimations of the pore distribution and porosity. In this sense, the description
of the properties and behavior of the molecule layers is important, since these
implicitly are a measure of the microstructure for example in terms of the pore
distribution and the specific surface area. Moreover, the physical properties of the
molecule layers near the solid surfaces may affect the overall behavior of the solid
matrix, especially in terms of cement-based materials, which strive to incorporate
liquid water into the chemically composed hydration products even a long time af-
ter they have been manufactured. Besides, the adsorbed water interacts with the
very high value of the specific surface of the cement paste, and highly influences
its mechanical properties such as strength and creep. The capillary condensed
water also determines such properties as shrinkage and freezable water.

In order to show the kind of approximations that are incorporated in an es-
timate of the important material properties, namely pore distribution and pore
sizes, a discussion of the underlying theory that leads to the so-called Kelvin equa-
tion will be performed. It is also believed, that this derivation may increase the
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understanding of moisture mechanics in porous materials, at least at an initial
stage, even if somewhat crude approximations are introduced.

A steady state and isothermal condition is the basic restriction imposed to de-
rive the Kelvin equation. The following assumptions concerning the stress tensors
for the liquid and vapor phases are introduced:

Tl = —7TlI (41)

T, = —,I (4.2)

The capillary pressure is defined to be the difference of these pressures, e.g. com-
pare [12].
Teapl = m1 — 1 (4.3)

The existence of the capillary pressure 7, is believed to be a consequence of a
discontinuity in pressure across the interface separating two pure immiscible fluids,
in this case vapor and liquid water. The magnitude of the pressure difference
depends on the interfacial curvature, which in turn depends on the saturation.

The defined properties in Section 2.5 will now be used in order to establish
simple expressions for the chemical potentials of the vapor and liquid, both in a
state of rest, i.e. only the equilibrium conditions are considered. With the help
of the chemical potentials, the capillary pressure 7., can then be estimated.

The definition of the chemical potential for a single pure constituent such as
vapor is the same as the chemical potential for a mixture. If the stress tensor is
approximated according to (4.1), the expression for the chemical potential K = uI
is given by the following expression:

p=1v+m(1/p) (4.4)

Compare the definition (2.180). Helmholz free energy v of a pure constituent is
defined as: (compare equation (2.164)).

Y =ec—nb (4.5)

The expressions for the chemical potential and the free energy are differentiated
as

p=0+7%(1/p)+7(1/p) (4.6)

v=¢—nh—nb (4.7)
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Furthermore, the following Gibbs relation (de Groot and Mazur) for the mixture
is assumed:

) ®
0 =é1+m(1/p) - Z foCa (4.8)

Under the very special condition Zle 1aCa = 0, i.e., the Gibbs relation for a pure
constituent with no change in mass concentration, is simplified as

0 =¢+m(1/p) (4.9)

By combining (4.6), (4.7), and (4.9) the rate of change of the chemical potential
for a pure constituent can be written as

ju = On —7(1/p) (4.10)

As the Kelvin equation claims to be valid during isothermal conditions only, i.e.
0 = 0, expression (4.10) is reduced to

i1, = —7(1/p,) (4.11)

for the vapor phase, and
= —mi(1/p) (4.12)

for the liquid phase.

Equation (4.12) is rewritten as

m
P = o + i Vidm (4.13)

where i, is the reference value of the chemical potential, taken at the point
where the vapor pressure of the surrounding medium is saturated. This measure
is denoted ,s at a certain constant temperature 6. V in equation (4.13) is the
specific volume of the liquid water phase, i.e. V; = 1/p,, where p; is the mass
density concentration of liquid water. p, = 1000 (kg/m?), which should not be
confused with the mass density p,. Compare (2.11), (2.12), and (2.13). The
difference between p, and p; actually reveals that the equations to be derived only
hold at micro-scale, that is, in a representative volume (REV), where the property
p, can be defined.

By introducing the idealized assumption that the rate of change of the chemical
potential for the liquid phase is linear with respect to a change of the hydrostatic
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pressure 7, and assuming further that the liquid water phase is incompressible in
the range of pressures considered, i.e. p; = const., (4.13) can be written as

p = o + Vi (1 = os) = pug + Vi (m = m0) + Vi (w0 — 7o) (4.14)

If the perfect gas law, for the vapor phase is adopted, that is

R

Ty
where R is the universal gas constant, R = 8.314 (J/mol/K), and M, is the mol
mass, M, = 0.018 (kg/mol), expression (4.11) is simplified to the following ex-
pression:

R T ] R v
My = Mo + 0 —dr = 2 + Meln < u > (416)

M'u Tos Ty Tys
where p,, is the reference value of the chemical potential for the vapor at the
saturation pressure 7, at the considered constant temperature 6.

The Young-Laplace relation suggests that it is possible to constitute the cap-
illary pressure with help from the surface tension (or surface energy) 7, (N/m)
of liquid water, if it is assumed that the liquid water boundary has an axial sym-
metric shape. The Young-Laplace relation is

1 1
7Tcap T Ty 7[ (7:[1 + f12> (417)
where 7;; and 7;5 are the curvature radii of the liquid boundary, facing the vapor
phase in the two axial symmetric planes. The assumption (4.17) can be verified
simply by considering the equilibrium of forces on an infinitesimal element of a
curved liquid water-vapor interface and assuming that the surface tension 7, is
constant over the same element, compare [12]. Some values of the surface tension
v, at different temperatures are shown in Table 4.1.

In [13] it is shown by experiments that the Young-Laplace relation holds for
water down to a radius of 2nm for a circular cylindrical pore. However, the
momentum supply on the liquid water-solid interface is assumed to have negligible
influence on the capillary pressure .,,, when the Young-Laplace relation is used.
Therefore, the Kelvin equation (4.20) will suffer from the same drawback.

The equation (4.14) can be written as

1 1
= o + Vi <~_ + ~_> +V <7Tv - st) (4-18)

11 T2
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Table 4.1: Surface tension of liquid water, [24].

Temp. (°C) Surface tension, 7, (N/m) Density of bulk water p, (kg/m?*)

0 0.0756 999.8395
5 0.0749 999.9638
10 0.0742 999.6996
15 0.0735 999.0996
20 0.0728 998.2041
25 0.0720 997.0449
30 0.0712 995.6473
50 0.0679 988.0363
70 0.0644 977.7696

where (4.17) is used
By a local equilibrium between the vapor and the liquid water interface, the

chemical potentials fulfill the relation p;, = pu,. If this relation is used together
with (4.16) and (4.18)

]\i 0 1n < T > = VE’}/Z <~i + .,i) + ‘/2 (7T'U - 7Tvs) (419)

v Tys 11 T2

is obtained. At normal pressures and temperatures, the term V; (7, — 7,,) is small
compared to the others, e.g. compare [14]. Hence (4.19) can be written

Ty _Mv‘/l7[ i 1
ln< >_ o < v ) (4.20)

Tys 11 T2

known as the Kelvin equation.
By using the Young-Laplace relation the capillary pressure, i.e. the pressure
difference over the liquid-vapor interface, can be expressed as

L < T ) (4.21)

Teap =
M,V; Tus

which suggests that at an equilibrium, for example imposed by letting a porous
material sample be conditioned by a certain relative vapor pressure at a suffi-
ciently long time, all menisci in the material will have the same principal radii
of curvature 7; and the same capillary pressure m.q, independently of the actual
mass concentration of liquid water in a representative material volume. In other
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Figure 4.1: Curvature radius of water at equilibrium with different relative pres-
sures, equation (4.23).

words, the capillary pressure 7., at a certain temperature is solely determined
by the outer relative pressure 7, /m,s, once an equilibrium has been established.

By making additional approximations to the Kelvin equation, it is possible to
get an idea of which pores will be drained at a certain externally applied capillary
pressure T.q,. That is, what pore shapes that can maintain the curvatures 7; and
7o of the liquid interface given by the Kelvin equation (4.20).

The most elementary assumption is that the pore system only consists of
interconnected cylinders with circular cross-sections of different radii 7,. The
considered cylindrical pores must, furthermore, have a sufficiently large radii to
ensure that the water in the pores behaves as a liquid, i.e. they must be able to
produce a surface tension 7y,. Moreover, a relation between the interface curvature
and the pore radii of the cylindrical needles must be found. This last relation can
be found by making an assumption of the contact angle ¢,, between the liquid
water (present in the cylindrical needles) and the inner envelope surface of the
considered pore. By a truly geometrical consideration, the relation

Tjn = Tjg = —T COS (qblp) (4.22)

is found, where the minus sign in (4.22) is incorporated to distinguish a convex
curvature from a concave one.
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The next classical assumption is the assertion that the liquid water present
in the pore system is wetting the pore walls. The terms wetting and nonwetting
tend to be defined in terms of desired effect. Usually, however, wetting means
that the contact angle ¢,, between a liquid and a solid is zero or so close to zero
that the liquid spreads over the solid easily. Nonwetting means that the angle ¢,
is greater than 90°, and the liquid hence tends to ball up and run off the surface
casily [8].

If a wetting liquid like water is assumed in concrete, i.e. ¢, = 0, the Kelvin
equation (4.20) and the relation (4.22) give

Tw 2M,Viy,
1 = - 4.23
" <7T’US> R@Tp ( )

Expression (4.23) will be referred to as the modified Kelvin equation based on the
many questionable assumptions discussed in this Section. Despite these assump-
tions this is one of the fundamental relations in surface chemistry, e.g. compare
8].

The different equilibrium conditions between the relative pressure 7, /7, and
the curvature radius 7, are shown in Figure 4.1, where equation (4.23) is used.

Measurements performed in [15] show that the Kelvin equation predicts the
same values of equilibrium on sandstones, in terms of externally applied pressures
(obtained by using a pressure plate extractor) and liquid water contents, as the
method of conditioning samples in different relative pressures (relative humidi-
ties). The method of applying an external pressure to a sample, compare [15]
for details, is advantageous when studying high water contents corresponding to
high relative vapor pressures, i.e. relative pressures near unity, as these conditions
are impossible to obtain in a climate chamber at atmospheric pressure, compare
Figure 4.2.

Equation (4.23) suggests that equally sized pores will be drained at different
constant temperatures # when the relative pressure is constant. Thus, the equi-
librium isotherm, i.e. the relation between relative pressures and the liquid water
content in a porous sample, corresponds to lower liquid water contents (at an
equilibrium) in the whole range of relative pressures if the temperature increases.

It is very important to note that no information about the flow properties for
vapor or liquid water could be estimated with the Kelvin equation, since only
the equilibrium conditions are considered. Furthermore, it is possible to measure
the equilibrium isotherms for porous materials directly without introducing any
assumptions. Compare the principal shape of an equilibrium isotherm in Figure
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Figure 4.2: Capillary pressure as a function of curvature radius of water present
in a pore system, equation (4.21).

4.4. Still, the Kelvin equation is very important when it comes to predicting the
pore distribution, which indirectly is a measure of the flow properties for vapor
and liquid water in the pore system.

4.2. Diffusion and fixation of vapor in porous media

In the field of moisture mechanics in building materials, the approach of splitting
the moisture flow into a vapor flow and liquid flow together with a description of
the mass exchange between these phases has, surprisingly, gained little interest.
This is due to the fact that it is believed to be a to complicated process to
measured and described with constitutive equations. Instead, methods, where
the total flow of vapor and liquid is treated as one constituent are frequently
proposed, e.g. compare [16].

One main drawback of such an assumption is the fact that the physical be-
havior of vapor and liquid are very different, especially when considering non-
isothermal flow conditions. Even under isothermal conditions, extremely strong
non-linearities will appear in Fick’s second law, especially when trying to incorpo-
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rate the capillary suction phenomena into the models also. The capillary suction
phenomena is discussed in Section 4.3. The state variable used in these traditional
models can be the relative pressure or the mass concentration of liquid. The mass
flows are constituted by functions of these corresponding gradients.

The one-phase flow models are furthermore constrained by a given relation
between the relative humidity (in the pore system) and the mass concentration
of liquid at the same material point, since only one equation is used to describe
the action of the system. In order to tackle this problem the equilibrium isotherm
curves for the material in question are used. These show a measured relation
between the outer relative humidity (in the surroundings) and the mass concen-
tration of water within the porous material at equilibrium — see Section 4.1.

Another drawback is the fact that the mass concentration of liquid water due
to hysteresis in the equilibrium isotherm can not be interpreted as a state vari-
able having a given relation with the relative vapor pressure. Hence, when using
the traditional approaches, the mass concentration of liquid water is not only a
function of the relative pressure, but also of the manner in which equilibrium has
been reached. For concrete, this hysteresis is considerable at relative humidities
above 50% — compare Figure 4.4. Problems related to this kind of hysteresis
are often treated by introducing so-called scanning curves. The scanning curves
describe the relation between the liquid water concentration and the relative va-
por pressure at points located in the gap between the absorption and desorption
isotherms. Later, a method will be proposed, at which the transient process to
reach equilibrium is studied. Such an approach makes it possible to treat the
hysteresis phenomenon in a more explicit manner. Furthermore, the effect of
temperatures changing the equilibrium conditions can be considered in the same
explicit manner.

For example, an initially dry thin plate of concrete will gain about 35-65
(kg/m?) liquid water when stored at room temperature and at 75% relative pres-
sure during a sufficiently long time, i.e. until equilibrium is reached. Having
in mind that all this water, which approximately corresponds to 15-25% of the
total available pore space, has been supplied through the boundaries of the thin
specimen as vapor, it is not surprising that measurements performed by means
of gammametry [17] roughly indicate that the time to reach equilibrium between
the outer relative humidity and the saturation degree just beneath the boundary
surface of a cement mortar sample takes about 300-500 hours or more.

If the equilibrium between the vapor and the mass concentration in any ma-
terial point is not established instantaneously, considerable errors will be induced
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when the equilibrium isotherm is used as a state function in the constitutive
model. In fact, not even the mass balance equations will be satisfied.

When more constituents e.g. chloride ions, hydroxide ions, and carbon dioxide,
are added as is the subject of this work, the significance of a stringent model based
on physics becomes even more important than dealing with vapor and liquid
phases only. A simple example will serve as a justification of the above.

By considering, again, a concrete sample gaining liquid water in its pores from
vapor supplied through the boundary surfaces only, the question arises whether
or not the liquid water phase present in the pore system, which at least initially
has been built up by vapor from the surroundings, is at rest or if it is subject to
motion induced by some physical driving force. Suppose, for example, that the
liquid phase is always at rest, i.e. it has no motion in relation to the solid ma-
trix. Suppose, too, that the vapor ‘molecules’ slowly spread throughout the pore
system (or get stucked at the pore walls) in order to level out a non-equilibrium
condition imposed by a change of relative pressure in the surroundings. Under
such conditions, the mass transport of chloride ions will presumably be limited to
‘diffusion’ in the capillary condensated and adsorbed water only.

On the other hand, if the liquid water phase built up can have a motion
relatively the solid matrix induced by some potential, e.g. a mass concentration
gradient (not yet considering the capillary suction induced by applying liquid
water at the boundary surface), it is very likely that the dissolved chlorides will
be forced to follow the motion imposed by the liquid water phase.

In order to find a realistic model based on physics for mass transfer and fix-
ation of vapor, which makes it possible to incorporate mass transfer and fixation
of chloride ions and other constituents present in the liquid water phase in a rea-
sonable way it will be assumed that a non-equilibrium situation between vapor
and the neighboring liquid-gas interface exists. This implies an exchange of mass
between the two phases whenever a transient process is considered. This approach
has been suggested by [17] for transient wetting of mortar by vapor.

Consequently, the microscopic thermodynamic state on the local vapor-liquid
interfaces may differ more or less from the properties in bulk. This results in
a microscopic vapor diffusion. It is assumed that such phenomena may occur
during transient condensation in media such as mortar and concrete containing
pore size magnitude orders. It has been pointed out, however, that the vapor-
liquid equilibrium on the interface separating the two phases should be reached
instantaneously [18], leaving the possibility that a significant portion of the equi-
libration time in a porous medium is caused by microscopic vapor diffusion into
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small pores. Measurements performed in [17] clearly show that non-equilibrium
situations exist, and it is concluded that this phenomenon is due to microscopic
diffusion and evaporation in porous media with various orders of magnitudes of
pore sizes such as mortar and concrete. Figure 4.3 shows how the distribution
of liquid water in a sample of initially dry mortar changes with time as moist
air (relative humidity 90%) flows across one exposed face. These results led to
speculations that the vapor and liquid phases of water in the small pores of the
mortar had yet not reached a state of local equilibrium [17].
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Figure 4.3: Initially dry mortar specimens exposed to moist air (relative humidity
90% at two different temperatures). Experimemental profiles: circle 20 hours of
exposure, triangles 100 hours and squares 300 hours [17].

Figure 4.3 shows that the test performed at 55°C give significantly higher
water contents at the different times 20 hours, 100 hours and 300 hours, when
the mortar is exposed to a constant outer relative humidity of 90%, compared to
the test at 30 °C. The modified Kelvin equation (4.23) suggests, however, that an
equilibrium at high temperatures should contain less water than an equilibrium at
a lower temperature at the same relative pressure. The most interesting conclusion
that can be drawn from the results presented in Figure 4.3 is, perhaps, the fact that
the water content steadily increases near the boundary surface. This clearly shows
that the time allowed for a substance to reach equilibrium is significant. Therefore,
the transient process occurring before the equilibrium is reached between the
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relative pressure and the water content within the material must be dealt with.
This phenomenon will be treated by considering the transient exchange of mass
between the vapor phase and the liquid phase in every material point. This is
carried out by introducing a constitutive relation in an explicit manner. It is
important to note that the traditional methods of solving the mass concentration
fields at different times, using a non-linear Fick’s second law, can not capture the
behavior shown in Figure 4.3. This is due to the assumed equilibrium relation
between the relative pressure and the water content.

The Kelvin equation does not include any assumptions about the thermody-
namic state of vapor and vicinal liquid water when they are fixated in small pores
due to a transient micro diffusion. This indicates that the study of curved liquid
surfaces with a certain surface energy, which assures that the bulk liquid and the
vapor have the same chemical potential at equilibrium, is not sufficient to explain
the equilibration of a sample exposed to vapor inhibition.

The equilibrium adsorption-desorption isotherms for concrete w/c = 0.48 is
shown in Figure 4.4. The lower curve are the equilibrium conditions obtained by
wetting an initially dry specimen and the upper curve are the measured equilib-
rium conditions obtained by drying an initially saturated specimen of the same
type.

The mass transfer without local equilibrium suggests that combinations of
the vapor content and liquid content at a certain material point may deviate
from the equilibrium curves of the type shown in Figure 4.4 whenever a non-
equilibrium situation is considered. It seems reasonable to assume that the rate
of phase change, presumably caused by microscopic vapor diffusion towards small
pores during isothermal conditions, is dependent on the extent, to which the real
water content deviates from the equilibrium water content given from the proper
sorption isotherm.

In order to illustrate a model of diffusion and fixation of vapor in porous
media, which captures the most important phenomena, a short presentation of
the governing balance equations and the constitutive relations, in one dimension
only, will be discussed.

The mass balance equation for the vapor phase can, according to (2.56) and
(2.57) be written, in one dimension as

dcy,  O(pyuay)

. Oc, .
T el (S (4.24)

where the velocity of the mixture in the z-direction &, (m/s) is given by (2.15).
The exchange of mass of vapor molecules, i.e. the mass supply term is denoted

p
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Figure 4.4: Eqilibrium isotherm at room temperature, concrete w/c = 0.48 [14].
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¢, (kg/s/m*). The density for the vapor is denoted p, (kg/m?), u,, (m/s) is the
diffusion velocity in the x-direction, p (kg/m) is the density of the mixture, and
¢y (-) is the mass concentration of vapor. Compare the definitions in section 2.

In addition, it will be assumed that the exchange of mass occurs between the
vapor phase and the liquid water phase only, that is

éy = —Cy (4.25)

where (2.51) is used. Consequently, no chemical reactions between the solid and
the water in the pores will be considered, i.e. chemical hydration reactions will
not be included.

The mass balance for the liquid water phase is according to (2.56) and (2.57)
given as

801 . 8(/)1%1) aCl N

where (4.25) is used.

The following constitutive relation is assumed as a working hypothesis for the
mass diffusion flow of vapor p,uz,

Pplzy = —Dy(cr, 0, n)% — Dvg(cl,n)% (4.27)
where ¢;, 6, and n are the mass concentration of liquid water, temperature and
porosity respectively, and where D, and D,y are material parameters. The same
type of constitutive relation for the mass diffusion flow p,u,, has been proposed
in for example [19]. It should be noted that it is possible to use alternative
methods where the diffusion velocity u,, and the mass density p, for an arbitrary
constituent denoted a may be computed for separately. Compare the discussion
in section 3.2.

It is possible that also the pore size distribution will affect the mass diffusion
flow. It can therefore be included as a property describing the diffusion parameter
D, in equation (4.27).

Already at this point it is worth mentioning that the mass diffusion flow con-
stituted in (4.27) and (4.28) is the combined effect of two separate independent
physical properties, i.e. the diffusion velocity u, and the mass concentration den-
sity p,-

The diffusion parameter D, in (4.27) is assumed to be a function of the mass
concentration density of the liquid water ¢;, the temperature 6, and the porosity
of the material. Table 4.2 shows that the dependency on temperature for the
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Table 4.2: Diffusion constants for vapor in air, [24].

Temperature (°C) Diffusion coefficient, D (m?*/s)

0 222.10°°
5 22.9.10°6
10 23.6-10°°
15 24.3-107°
20 25.0 - 107°

mass gradient diffusion of vapor in bulk air is weak. The temperature is, however,
assumed to affect the equilibrium condition between vapor and fixated liquid
water, i.e. the sorption isotherms. Furthermore, the temperature will affect the
adsorption and desorption speeds to reach these different equilibrium isotherms.
Therefore, the temperature plays a very important role when it comes to the
global response.

The second term in (4.27) represents the so-called Soret effect, which suggests
that there exists a significant driving force inducing a mass density flow of vapor
from high to low temperature regions.

The mass diffusion flow for the liquid water p,u,; is the assumption

Pz = —D;(cl,n)% (428)
where ¢; is the mass concentration of liquid water and n denotes the porosity.
The diffusion parameter for the liquid water is denoted D; to distinguish it from
a more general case, where also the capillary suction is considered.

The relation (4.28) suggests that a motion of the liquid water in the porous
material may occur during vapor uptake or drying. This phenomenon may be of
importance if the diffusing vapor contributes to building up liquid water islands,
which may eventually become connected creating a slow flow of liquid water.

Even if the numerical values of the diffusion velocities u,; are small compared
to the values of u,,, still very dramatic changes of the mass concentrations may
be induced since the mass density p, is, typically, of the size 10~*—10"5p,. Due to
this fact, it may be advantageous not to separate the vapor and liquid water flow
but rather treat them like one single flow potential as is done in most applications
in the field, e.g. compare [20]. However, when constituents such as chloride ions,
hydroxide ions, and carbon dioxide are considered, which appear dissolved in the
liquid water in the pores of the materials, a separate description — correct from a
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physical viewpoint — of the mass diffusion velocity of the liquid water is crucial.
This is due to the fact that the motion of the liquid water will effect the behavior
of the dissolved matter in the pore solution.

The rate of exchange between the two phases is described in general terms
with a state function as

év = fvl(cva C, 97 n, CL) (429)

where a denotes the specific surface area. Figure 4.5 shows a principal hypothetical
shape of the function (4.29) under isothermal non-equilibrium and equilibrium
conditions, where the principal findings in [17] are utilized. When the function ¢,
gives the value zero, the sorption isotherm is recovered for the actual temperature
considered. Other combinations of ¢, and ¢;, which values give ¢, # 0, represent
a transient process. When non-isothermal conditions are considered, the function
Cy, illustrated in Figure 4.5, will exhibit different shapes for different temperatures,
i.e. the rate of exchange for mass as well as the equilibrium conditions will be
different at different temperatures.
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Figure 4.5: Schematic illustration of the assumed mass exchange rate between
vapor and liquid water.

The values of the function ¢, in the gap between the absorption and desorption
isotherms (in the ¢,-¢; plane); — compare Figure 4.5 — must be specified. By
introducing realistic assumptions for the mass exchange rate in the gap between
the absorption and desorption isotherms, the hysteresis phenomenon, as discussed
earlier, might be taken into account in the model.
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From (4.24) and the assumptions (4.27) and (4.29), the governing equation for
the vapor phase becomes

oc,
P ot

d%c, %0 _Ocy

0x? + " 92 T ox

= Dv(Cl, 9, TL)

+ fvl(CmChQ?n? CL), mV (430)
with the boundary conditions
¢, (0,t) = h,(0,t); on OV (4.31)

or P, Uy (0,t) = gup(0,1); on OV (4.32)

where h, or/and g,, are known values at the boundary OV at the time level ¢.
Note that the temperature field and the mass concentration field of liquid water
must be known from other equations, since the equation (4.30) can not be solved
without this information.

From from the mass balance equation (4.26), the condition (4.25), and the
assumption (4.28), the governing equation for the liquid water phase becomes

Bilerm) 2% — 2,20 focrvenbmaymV (439
- = CyN)—=— — PTa—7z— — JuilCv, C,0,N,aQ); 111 :
Por = ZH WM gg2 — Platgy — Juicn @

As it is assumed that liquid water can not enter or leave a body when only diffusion
and fixation of vapor are considered, the boundary conditions for the liquid water

phase must be represented by the formula
puz(0,8) = 0; on OV (4.34)

In discussions about capillary suction or external water pressure, the boundary
condition (4.34) has no relevance.

The combined action of diffusion, fixation of vapor and capillary suction to-
gether with the boundary conditions are treated in Section 4.4.

It should be observed that the equations for liquid (4.33) and vapor (4.30)
are coupled. This is due to the material parameter D,’s dependence on the mass
concentration of liquid water and also due to the present source/sink term f,;,
which is dependent on both the mass concentration of liquid water and the mass
concentration of vapor. Furthermore, the velocity of the mixture &, and the
temperature  may be interpreted as coupling terms.

The diffusion parameter D, arises from the fact that initially discontinuous
liquid water islands at any material point may turn into a continuous system of
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liquid as the vapor condensation keeps building up the amount of liquid in the pore
system. Based on the evaluation of the experiments performed in [17], it can be
suggested that the mass diffusion flow induced by a concentration gradient of the
liquid water phase is very small compared to the flow of vapor in a porous body
with various pore magnitudes existing together. In other words, for materials such
as concrete and mortar, D; is very small compared to other terms in the equation
system, when capillary suction induced by presence of liquid water at a boundary
surface is not considered.

In Section 4.3, an alternative way to that in equation (4.33) of dealing with
the motion of the liquid water phase will be discussed. This method suggests that
a dynamic viscous description is a more stringent assumption seen from a physical
viewpoint than the mass diffusion flow description dependent on the concentration
gradient used above, since the capillary suction phenomenon is supposed to be a
completely different phenomenon, contributing to the motion of the liquid water
phase, than liquid motion occurring while the porous material is exposed to vapor
(or to drying caused by evaporation).

One important point in this context is that when the material constants and
parameters D,, Dy, f, and D, are searched for in order to arrange and evaluate
measurements, this hypothesis should be used as a foundation. However, these
constants and parameters are, of course, not ‘true’ physical quantities, but rather
a consequence of the choice of constitutive relations used as the hypothetical base
for evaluating and arranging measurements. If the other type of hypothesis (to
be discussed in the next Section) is used as a foundation instead, one should
search for the viscosity and interaction forces among the constituents in order to
be able to describe the motion of capillary sucked water. Hence, one will end up
with other types of equations describing the same phenomenon, but with com-
pletely different material parameters and experiments to confirm the constitutive
relations introduced.

Having this in mind, it is obvious that it is advantageous to choose consti-
tutive relations which offer the possibility to experimentally confirm (or reject)
the hypothesis. However, as the mass transport phenomena at the micro-scale
reflect important actions, such as physical and chemical bindings, the situation is
more complex. Indeed, the constitutive relations presented in this Section must
be considered as valid on the micro-scale only. They could hardly be confirmed
or rejected by measurements at the micro-scale because such measurements is
very difficult to perform. Therefore the only possibility is to ‘fit’ the material
parameters that are required to the global response measured in the laboratory.
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The proposed way to treat the transient wetting or drying of porous mate-
rials by vapor, discussed in this Section, has many advantages compared to the
classical single-phase, non-linear Fick’s second law combined with an additional
state function between the vapor content and the liquid water content. First of
all, the physical interpretation is clear, since no flow potential accounting for the
combined effect of vapor and liquid water on the flow is used. A very strong
intuitively based argument is that the vapor mass diffusion flow should decrease
when the liquid content increases as the cross section of vapor diffusion decreases.
Using one single flow potential, the effect is reverse, i.e. the diffusion parameter
D must increase when the liquid water increases in order to capture the measured
response.

The two-phase model suggests that the vapor diffusion parameter is not nec-
essarily given by a function of the vapor content itself as assumed in most of the
classical theories in the area. The apparent increase of the mass diffusion flow
P, Uzy May instead be a consequence of the transient incorporation of vapor mole-
cules into the confined pores in the material, and also due to significant motion
of the liquid water within the pore system.

The use of a, in a physical sense, meaningful description of the boundary
conditions becomes very important as all mass transfer problems treated here
are boundary value problems. No problems in interpreting the significance of the
boundary conditions using the proposed approach will, however, occur since liquid
water at the surface of the body may only be built up by vapor condensation or
decreased by evaporation. The only situation which will contribute to a mass
flow of liquid water into the body through the boundary is capillary suction. This
occurs when liquid water (at normal pressure or at a pressure above that of the
atmosphere) is applied to the boundary surface. This situation will be discussed
and incorporated in the proposed model in Sections 4.3 and 4.4.

Some numerical difficulties occur when it comes to solving the suggested equa-
tion system, i.e. the equations (4.30) and (4.33), not present in the classical models
since very small time steps must be used in order to follow the solution path. This
is not due to the dependency of the diffusion parameters on the liquid content,
or to any critical time steps introduced, but to the fact that the evaporation -
condensation process takes place on a completely different time scale than the dif-
fusion process does. The numerical treatment of this problem is discussed further
in Section 9.

The problem of describing the vapor fixation and diffusion becomes complex
when concretes or mortars are considered at early age, since the chemical reaction
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rate of the hydration then becomes important. This complication will, however,
not be discussed in this work.

4.3. Transient capillary suction flow

Capillary suction phenomena are a consequence of liquid water in the pore space
having a lower free energy (or chemical potential) than the outer liquid water in
its normal reference state. A flow of liquid water will therefore level out the free
energy difference. The lower free energy of liquid pore-water compared to the
outer liquid is a consequence of the curved liquid-vapor interface between liquid
and vapor, and also due to the free energy conditions of completely dry solid
surfaces.

Measurements on mass concentration distribution of liquid water, at different
times from an initial exposure to external water show that a more or less distinct
front is formed, which proceeds through the porous material, e.g. compare [21] and
[15]. This phenomenon is experimentally verified for thin pieces of material such
as aerated concrete and sandstone [21]. For more dense materials such as cement
mortars, it is difficult to use the most widespread methods of non-destructive
moisture measurements. Therefore, a simple gravimetric method is often adopted,
which, of course, contains no information of the water distribution profiles at
different times from exposure.

Traditional models to evaluate measurements of transient capillary suction
flow often include a modification of Fick’s second law as a working hypothesis. In
this the diffusion parameter (or transport coefficient) becomes strongly dependent
on the driving potential used. The gradient-dependent mass diffusion flow, i.e.
the constitutive relation for p;u;, becomes strongly non-linear for all potentials,
compare [22]. The potential in such models is for example the capillary suction
pressure T.q,, determined by equation (4.21), together with the assumption of a
known state relation between the vapor pressure 7, and the mass concentration
of liquid water p; in every material point. This relation is the so-called sorption
isotherm or moisture equilibrium curve discussed in previous Sections.

Other potentials frequently used are the relative vapor pressure 7, /7, or the
mass concentration p;, compare [22].

Some proposed models are believed to describe the combined action of liquid
water motion, capillary suction, vapor fixation and diffusion of vapor by using
only one differential equation, in which the unknown variable must be able to
characterize the essential boundary conditions in terms of concentrations of lig-
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uid water and vapor when using simple equations of the type Fick’s second law.
An additional problem related to the boundary conditions is the fact that some
materials, such as aerated concrete and some sandstones, show an increase of the
mass concentration close to the boundary when exposed to liquid water. Compare
the measurements performed by [21]. This phenomenon may be a consequence
of liquid water flow into more or less confined pores, making the capillary active
porosity gradually increase with time [23].

However, the capillary suction phenomenon is hardly a problem which is in
accordance with the basic assumptions behind Fick’s second law, i.e. gradient
dependent mass concentration flows (with negligible inertia). The very strong non-
linearities of the transport coefficient, which must be introduced when trying to
make curve fittings with the help of the Fick’s second law type equation to consider
also capillary suction, explicitly give an indication that the basic assumptions
behind this approach can be improved.

Mass transfer of many different types of molecules or ions at low concentra-
tion without chemical reactions or temperature gradients most likely follows the
overall behavior predicted by Fick’s second law without introducing any extreme
non-linearities in the constitutive relation for the mass diffusion flows. A liquid in
motion, such as capillary-sucked water in a porous material, has very few physical
property similarities with diffusing molecules and ions (independently of linear
or non-linear gradient flow behavior). For this reason, two additional classical
assumptions concerning liquids in motion seem attractive, namely that the as-
sumption of a linear newtonian fluid can be used and the assumption that an
interaction between the fluid medium and the solid can take place.

Simply speaking, a linear newtonian fluid will assert a deviatoric stress at
a certain material point, which is proportional to the velocity gradient at the
same point (and in the same direction). The material constant linking the linear
relation between the deviatoric stress components and the velocity gradients is
the viscosity p. This assumption can be used to describe the velocity of the liquid
water constituent in the porous material with the help of the momentum balance
equation, e.g. compare (2.69). However, the motion of the liquid water will
presumably be highly affected by the physical properties of the porous medium
expressed, for example in terms of porosity and specific surface area. In the
theory of mixtures, such an interacting ‘force’” among the constituents appears in
the momentum balance equation as the momentum sink/source term p,, which
is a constitutive dependent property.

By following classical assumptions of the interacting force between a moving
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Table 4.3: Viscosity of water, [24].
Temp. (°C) Viscosity, g, (kg/s/m)

0 0.0756
5 0.0749
10 0.0742
15 0.0735
20 0.0728
25 0.0720
30 0.0712
50 0.0679
70 0.0644

fluid and a neighboring solid phase at rest, the momentum supply might, typically,
be a function of the velocity of the fluid relative to the solid. This assumption in-
troduces yet another material constant describing the exchange rate of momentum
between the liquid and the solid.

By introducing the assumptions of a newtonian fluid and a momentum inter-
action p,; proportional to the diffusion velocity u,;, the equation describing the
motion of the liquid water phase can be written using the momentum balance
equation (2.69) in a one-dimensional case as

Oy, _ 0 (4 0z, B
Plot ~ o <3“l o 7”) Brstizr; MV (4.35)
—71(0,8) + 7,(0,¢) = g4(0,%); on OV (4.36)
or x,zl<07 t) = h’q:l(o; t), on OV (437)

where y; (kg/s/m) is the viscosity of pure liquid water and 3,, (kg/s/m?) is the
constant describing the interaction between the liquid water and the solid pore
walls. Values of the viscosity coefficients of pure liquid water at different temper-
atures are given in Table 4.3, from [24].

A more detailed description of the assumptions of a newtonian fluid is per-
formed in Section 3.2. Note, however, the difference between the definitions of
the velocity of the liquid water z/, and the diffusion velocity of liquid water wu,;,
compare (2.15) and (2.16).

The natural boundary condition (4.36) is a description of the deviatoric stress
plus the hydrostatic pressure in the liquid, i.e. a prescribed value of the term
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(=7 + Tw), which is equal to a known value denoted g,;. This stress is directed
normal to the boundary surface, and the essential boundary condition (4.37) is
the description of a known value for the velocity of the liquid water constituent
x!,;, denoted hy.

Equation (4.35) contains three unknown physical quantities: the mass density
., the velocity of the liquid water 2/, and the hydrostatic pressure 7; (for a mo-
ment the difference between the velocities z/, and u,; is ignored, compare Section
3.2 for details). Obviously, three equations are required to solve these quantities.
Assuming, however, that the hydrostatic pressure gradients within the considered
body in this test example are small, only one supplementary equation is needed.
By using the mass balance equation with no mass supply, the sought equation
is found without introducing any extra constitutive relations, hence without in-
troducing any material constants. The mass balance (2.49) in a one-dimensional
case without mass exchange between constituents becomes

apl _ ax/ml / 8pl. :
o = Py Teg, inV (4.38)
0,(0,t) = hy(0,t); on OV (4.39)

where h; is a known value of the mass concentration just beneath the surface of
the porous material, at a time when the body is exposed to liquid water, i.e. to
a capillary suction situation (or hydrostatic pressure situation).

In (4.38), only the essential boundary condition (4.39) must be prescribed, i.e.
the value of p, at the boundary surface.

The two sets of equations, (4.35) and (4.38) close the equation system, since
the velocity and the mass density are the only properties searched for in this
example. It should be noted that the assumptions of a newtonian fluid and the
momentum supply are introduced primarily in order to compute the velocities
and not to compute the stress in the fluid considered. It should also be observed
that the diffusion velocities and mass densities must be calculated for by solving
(4.35) and (4.38) simultaneously.

The transient capillary suction problem can now be solved in a way that is
alternative to the strongly non-linear Fick’s second law by introducing proper
physical boundary conditions.

Indeed, an equation for the liquid water phase has already been introduced in
association with vapor fixation (equation (4.33)). In the next Section, a discussion
is presented about how this equation can co-exist in the general case where also
capillary suction occurs when liquid water is present at the boundary.
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4.4. Simultaneous action of capillary suction and vapor diffusion

In this Section, the possibility of using one governing equation describing diffu-
sion, adsorption and desorption of vapor will be discussed, and of using another
equation simultaneously describe the capillary suction. These equations must de-
scribe the response under conditions, at which different parts of the boundary are
exposed to vapor and liquid water in different locations and at the same time.

At the end of the Section, the advantages and disadvantages of such an ap-
proach will be analyzed.

Since capillary suction and absorption of liquid water due to vapor diffusion
are two different physical phenomena, it seems reasonable to have two different,
coupled equations describing such problems. It will be shown, however, that
these two different equations can not be used simultaneously without introducing
certain additional approximations.

In Section 4.2, two governing equations were discussed, one for the liquid water
and another for describing the action of the vapor valid for the case where capillary
suction is excluded. In Section 4.3, the action of the liquid water was discussed in
situations of capillary suction only. This means that two independent equations
are used to describe the liquid water constituent. When cases are considered,
where a certain domain is subjected to both capillary suction and vapor at different
locations of the boundary, it is obvious that the capillary suction can not be
treated in a separate equation without assigning special properties to the capillary-
sucked liquid water. Otherwise, one equation too many is introduced.

The capillary action is almost always incorporated in one single equation ac-
counting both for vapor diffusion and capillary suction. This means that extremely
non-linear diffusion parameters must be introduced in order to match Fick’s sec-
ond law to measured concentration profiles. These extreme non-linearities might
be a consequence of using a model based on constitutive relations, which do not re-
flect the actual physical behavior during capillary suction, but are rather adjusted
to fit measured data.

Indeed, the complexity of the model will increase when capillary action and
vapor diffusion are separated and treated as different phenomena, using different
equations for the two types of flow. It is, however, realized that a stringent
description of the liquid water’s action in porous materials is important, since
nearly every deterioration process depends on the concentration and flow of liquid
water. The most important issue is to obtain a realistic description of the entire
mixture’s velocity. In such a description, the capillary suction is a chief factor,
since matter (i.e. chloride ions, hydroxide ions, etc.) dissolved into the liquid



80 Chapter 4. Mass transport phenomena in porous media

water are also subjected to convection determined by the mean velocity. If a
realistic value of the velocity of the mixture can be predicted, it will be possible
to significantly improve the description of dissolved matter in the pore system.

In order to obtain an estimate of the mixture’s velocity, causing convection,
assumptions on the mobility of adsorbed and capillary condensed water, subjected
to capillary suction, must be considered. It is supposed that capillary sucked water
could hardly force already adsorbed and capillary-condensed water to obtain a
significant motion in the direction of the flow of capillary-sucked water.

When Fick’s second law is used to describe both capillary action and the effect
of vapor diffusion in a single equation, the mass diffusion flow, i.e. pu(x,t), is
forced to be the total flow of all liquid water present in each material point, since
no special properties of adsorbed and capillary condensed water are introduced.
This type of description supposedly gives erroneous predictions of the velocity of
the mixture, and hence erroneous descriptions of the diffusing matter in the pore
solution.

The difference in properties between adsorbed and capillary-condensed water
and capillary water is quite obvious. One important issue is that capillary-sucked
liquid water can easily occupy space which is not available for capillary-condensed
water and vice versa.

Water supplied by capillary suction will be treated as a separate constituent
and this liquid water will be referred to as bulk water although it is not completely
‘free’. Adsorbed and capillary-condensed water will be referred to as vicinal water.
The third constituent considered is the vapor phase. By making the distinction
between bulk and vicinal water, it is possible to use a separate equation to model
capillary suction. The consequences of such an approach will be discussed in the
following paragraphs.

Using this approach, the following primary unknown physical properties are
to be solved:

pxt) XD bk
A 5 Poulk (Xv t) 3 X?mlk (X7 t) ; Coulk (X7 t) (440)
o007 B 1) ) K (x8) e ()

The temperature field must also be analyzed, and the following unknown physical
properties must be found:

0(x,t); e(x,t); q(x,1); (4.41)
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In total, fourteen primary unknowns are introduced into the problem of non-
isothermal combined vapor diffusion (including fixation-evaporation) and capillary
suction. Hence, fourteen equations must be introduced. Five balance equations
can be used, i.e. three mass balance equations, the momentum balance of the bulk
water, and the energy balance of the whole mixture. That is, nine constitutive
relations describing the physical behavior of the constituents must be introduced
to make the equation system closed.
The mass exchange among the three constituents must fulfill (2.51), i.e.

ébulkz + évic_ + év = O (4.42)
The mass exchange rate of the total liquid water is ¢, = Cpuix + Cuic., hence
a+¢ =0 (4.43)

It will further be assumed that bulk and vicinal water exchange mass with
the vapor phase only. The total consumption or production rate of vapor is
constituted with the following general relation:

¢ = f(cv,a,0,m,a) (4.44)

where ¢; = cpur + Cuic-

That is, the exchange between vapor and liquid is assumed to be a function
of the mass concentration of vapor c,, the total liquid water mass concentration
¢;, the temperature 6, the porosity n, and the specific surface area a.

In order to somewhat capture the evaporation and condensation phenomenon
between curved surfaces of bulk and vicinal water, a distribution function kg, is
introduced as

Coutk = —Kaist.Co (4.45)

and
ém’c. = - (1 - kdist) év (446)

where 0 < kgt < 1.
It is then obvious that (4.43) is fulfilled, since

kdist‘f(cv; Cr, 97 n, CL) + (1 — kdist) f<c117 Cr, 97 n, CL) = _é’v (447)
If the distribution function k4. is chosen as

Chulk Chulk
kaist = “ = (4.48)
Cvic. T Coulk @]
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the function k4 is zero when the mass concentration of bulk water ¢y, is zero.
Hence the equation (4.29), which describes the rate of mass exchange between
vicinal water and vapor is retained. At a certain material point when c,;. is
very small compared to cpur, kaist. tends towards 1, that is, the exchange of mass
between vapor and bulk water is dominant.

During drying processes after a period of capillary suction, the equations
(4.44), (4.45), (4.46), and (4.48) predict that a major part of the bulk water must
be evaporated before the mass concentration of vicinal water at the same point
can decrease. The equations represent the effect of vicinal water being locked due
to the presence of bulk water.

No exchange of mass between bulk and vicinal water is considered. This means
that water supplied through capillary suction (i.e. bulk water) maintains its spe-
cial properties independently of the current mass concentration of vicinal water.
This is, of course, a rough approximation. Using different equations for capillary
suction and diffusion (including adsorption-desorption processes) of vapor, which
seems correct from a physical viewpoint, calls for separate properties of liquid
water, i.e. bulk and vicinal water, however.

Using the constitutive relation, which describes vapor fixation (sink) and evap-
oration (source) for the vapor constituent, i.e. equation (4.44), mass balance
(2.56), and the constitutive relation for the mass diffusion flow (4.27) gives the
governing equation for the vapor as

oc,
P o1

= Dy(a,0,n)V?ec, — pk - Vo + Dyg V20 (4.49)
+f(cv,c1,0,n,a); inV

where V? is the Laplace operator, i.e.

2 2 2
v25<d +d +d> (4.50)

dz?  dr3  dxd

and
V=& & & (4.51)

is the gradient operator.
If a situation is considered, where no liquid water is present in a certain part of
the boundary surface, denoted dV,,, the boundary conditions for the vapor phase

are
Cy(Xp, t) = hy(Xp, t); on 0V, (4.52)
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or PyUy(Xp,t) - 1 = Gy (Xp, t); on AV, (4.53)

where h, in (4.52) and/or g, in (4.53) are known quantities of the concentration
and the mass diffusion velocity respectively, at the part of the boundary exposed
to vapor JV,.

It is assumed that the vapor phase can not escape from the parts of the body
exposed to liquid water, written in terms of the boundary condition for the vapor
phase as

PoWy(Xp, t) - 1 =0; on OV (4.54)

where 0V] denotes a boundary part exposed to liquid water.
And the equation which describes the action of the vicinal water phase can be
written as

- Em-c_(cl,n)VQCm_ — px - Veyie. — (1 = kgist) f(co,c,0,n,a); in V' (4.55)

where the mass balance equation (2.56), the constitutive relation for the mass
diffusion flow of the format (4.28), and the relation for the mass exchange (4.46)
are used.

The corresponding boundary condition to solve for the mass concentration of
the vicinal water phase in (4.55) is the assumption

Puic. Wyic -1 = 0; on OV (4.56)

This is the assumption that the vicinal water can not escape from the domain as
liquid, under any circumstances. The mass concentration of vicinal water in the
pore structure near the boundary surface can only be decreased once it has been
converted into vapor (according to (4.44)), and has after that been evaporated
(as vapor) through the boundary surface (this may not happen during exposure
to liquid at the surface, compare equation (4.54)).

In a situation, in which the essential boundary condition is liquid water, i.e.
when capillary suction take place, the proposed equation for the vapor phase is
(4.49). The motion of the bulk water, however, which can be supplied by capillary
action only, is supposed to be described as a viscous problem, i.e. equation (4.61).

The adopted constitutive relation for the stress tensor of the bulk water is

Toute = Lyt (Do VX — Tourl (4.57)

which is the assumption describing a linear newtonian fluid in a Cartesian coor-
dinate system. The viscosity of the bulk water is denoted fi,;-
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The divergence operator V is written down in (9.25). Compare Section 9.2,
where 7p,;% is the hydrostatic pressure of the bulk water. The so-called constitutive
matrix for p,,,. Do becomes

i -2 20900
301 3 400
3 3 3
_£ _2 2 000
[t (0) Do = 1y (0) 8 8 (3) 10 0 (4.58)
0 0 0 01 O0
. 0 0 0 001

Compare (9.27) in Section 9.2.
The momentum supply vector for the bulk water is constituted as a linear
function of the diffusion velocity up,; as

DPouik = —ﬁbulk(cmc)ubulkz (4-59)

where (3, i1s a material parameter, which is assumed to depend on the mass
concentration of vicinal water c,e.
The balance of momentum for the bulk liquid water is, according to (2.69),

Xk - .
Poutk™ 54— = div T, + Doutk (4.60)

where the term x; ,,-gradx; . is assumed to be small compared to the others and
where also the body force p,,,;;brur 1S assumed to have negligible influence.

The equations (4.57), (4.59), and (4.60) produce

~ T ~ .
pbulkT =V MbulkDvagulk — VThutk — B (Cvic) Wpuir; inV (4.61)

The boundary conditions to be described are

—Wbuzk(Xb; t) = gbulk(xb; t); on 0V; (4-62)

or
Xyt (Xpy 1) - 1 = Rpugi(Xs,1); on AV (4.63)

where gpur and/or hy,, are known quantities at the boundary 0V of the stress
component and the velocity respectively at the time t.

The velocity field of the bulk water, computed from (4.61), is used to compute
the mass density distribution with the mass balance equation (2.49) by rewriting
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the term div(p,x/,) as div(p,x,) = p,divx/, + x/ -gradp,. The following equation
is obtained by introducing the constitutive relation for ¢y, i.e. equation (4.45).

9Ppu
5tlk = —Poutk (V" Xputr) = Xputre * V Pyt (4.64)

- (1 - kdist) f(cm Cl7e7n7a'); HlV

where (V) is the divergence operator in a Cartesian coordinate system.

The essential boundary condition to be used in (4.61) is a description of the
mass density pp..x, Which occupies the actual active porosity at the near surface
0V}, that is

Poutk (X, 1) = Joute(Xp, t); on OV, (4.65)

where jpux is a known value of p,,;. occupying the accessible porosity at the time
level t¢.

The nine constitutive equations sought are given by (4.44), (4.45), and (4.46)
which describe the mass exchange among the constituents. The mass diffusion
flows for vapor and vicinal water are the assumptions (4.27) and (4.28). The
velocity field of the bulk water is given from the constitutive relations (4.57) and
(4.59). The two missing relations are the assumptions leading to the standard
heat conduction equation, that is (3.21) and (3.22).

It is concluded that a more detailed study can be performed by assigning dif-
ferent properties to the liquid water, hence using a separate equation for the cap-
illary action. The non-isothermal case can also be studied, since the vapor phase
is highly effected. In other words, the equilibrium condition between vicinal water
and vapor changes when the temperature is changed, and the temperature can be
included in the description of the mass diffusion flow of vapor. Compare the as-
sumption (4.27). The temperature effect on the capillary suction can, for example,
be introduced by making the viscosity of water dependent on temperature.

It is also concluded that the drawback of using a separate equation describing
capillary suction is that the liquid water must be separated into two different
constituents with different properties. This may not be physically adequate for
materials such as concrete.

4.5. General aspects of concrete deterioration caused by diffusion of
ions and gases

Concrete deteriorates due to many different mechanisms. One the most important
reinforcement corrosion induced by deleterious substances reaching the embedded
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reinforcement bars. The external sources of deleterious materials can be, for
example, chlorides from deicing salts, or sea water and carbon dioxide.

Though research attempts have been made to determine the threshold values.
This was done in order to find out at which concentration of chlorides in concrete
the reinforcement corrosion is induced, that is, at which point the passive condi-
tion close to the reinforcement turns into an active state [25], [26]. In order to
predict when this threshold value is reached, the flow properties of the aggressive
substances in the concrete, mainly chloride and CO, must be known.

Some of the most important phenomena governing the motion of dissolved
matter in concrete are: (¢) diffusion of the ions in the pore water (diffusion is
the name given to a motion of molecules or ions in a weak concentration imposed
by a concentration gradient), (i7) adsorption and desorption of matter onto the
pore walls, and (i7i) convection of the dissolved matter due to the motion of the
mixture itself. The main part of the mixture is liquid water.

There are two main conditions to be considered:

1. The initiation phase; during which CO, and chloride penetrate the cover.
The duration of this phase depends on the rate of penetration. For gases,
the penetration rate is lower the higher the water content. This depends
on the fact that gas transport in water is many magnitudes lower than gas
transport in air. For chloride, the penetration rate increases with increased
water content. Chloride can not move in air and it is doubtful whether it
can move in adsorbed water.

2. The corrosion phase; during which the steel is dissolved. The corrosion rate
depend on two factors: (i) the availability of oxygen, and (i7) the electrical
resistance of the pure solution surrounding the bar. The availability of
oxygen is reduced with increased water content. The electrical conduction
is increased with increased water and chloride contents. Hence, there is a
sort of ‘optimum’ water content where the corrosion rate is at a maximum.

A more detailed discussion of the corrosion phenomena in association with
chloride penetration into concrete will be presented in Section 6.

The physical and chemical bindings of chlorides are important when consider-
ing the global action of chloride penetration into cement based materials. How-
ever, the binding capacity and the binding rate have been shown to be highly
affected by the mass concentration of hydroxide ions in the pore solution and also
by the chemical character of the binder. That is, in order to make a description
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which is physically stringent, of the behavior of chlorides penetrating concrete, the
behavior of the variation of hydroxide ion concentration in the domain of interest
must be known.

The hydroxide ions, which appear naturally in the pore solution in cement-
based materials have a neutralizing effect on reinforcement corrosion. These ions
will, however, be subjected to a motion within the liquid water in the pore system.
Measurements on the composition of the pore solution of concrete show, clearly,
that hydroxide ions will be washed out to some extent when the concrete is stored
in pure water. For example, an initial concentration of hydroxide ions of 0.5
(mol/1) near the surface of a sample may easily be decreased to a value 0.1,
as a consequence of ions moving out towards the surrounding pure water, e.g.
compare [27]. Such a behavior will surely affect the binding capacity of chlorides
in concrete.

Interaction between diffusing hydroxide ions moving outwards and chloride
ions moving inwards has also been reported, compare [28].

The transport of carbon dioxide CO is somewhat different from the trans-
port of other material in the pore system, since it significantly changes the pore
structure. Hence, the conditions controlling the diffusion and binding of chlorides
will be changed too. Carbon dioxide reacts chemically with the calcium hydrox-
ide Ca(OH), or other hydration products in the cement, and hence change the
structure of the solid. This presumably changes the mobility of other substances
such as chloride and hydroxide ions. The phenomenon referred to as carbonation
is discussed in more detail in Section 4.7.

The motion of carbon dioxide is dominant within the air-filled space in the
pore system. This is the reason why corrosion is found to be greater in average
liquid water contents.

An approximate value about 0.6 of the ratio [C17]/[OH"] to trigger corrosion
of reinforcement bars in aqueous solutions has been reported, compare [25]. When
the reinforcement bars are embedded in a cement-based material it is, however,
not only the ratio [C17]/[OH™] in the pore solution which will determine the risk
of corrosion. Also the character of the cementitious material in contact with the
steel and the liquid water content near the steel is crucial for assessment of a
passive condition.

Research has been devoted to developing dense concretes by using mineral
additives such as silica fume and fly ash with low cement-to-binder ratios in or-
der to minimize the penetration of COs and chloride. Concretes containing such
additives are more difficult to cast, which might cause defects in the concrete



88 Chapter 4. Mass transport phenomena in porous media

cover. Besides, they will have less protecting hydroxide ions in the pore solution
due to reactions between the additives and the portland cement in the concrete.
Therefore, the chloride-induced corrosion can be induced at a lower chloride con-
centration at the reinforcement bar than in ordinary concrete.

A realistic description of liquid water flow and vapor diffusion, fixation and
desorption is important, since these phenomena affect the overall behavior of
chloride and hydroxide ions, carbon dioxide and oxygen. Hence, the transport of
gases and ions is intimately coupled with the transport and fixation of water in
the pore system. The transport of ‘aggressive agents’ and of water must therefore
be studied together.

It is also important to note that measurements performed on chloride ingress
found in concrete exposed at field stations differ significantly from measurements
performed under more controlled conditions in laboratory tests. The main dif-
ference is that a slower ingress of chloride is almost always observed in the field
measurements [26]. This may be due to many different things, such as tempera-
ture effects and clogging of the pore system caused by chemical reactions between
different components in the seawater and concrete not considered in controlled
laboratory tests during comparable chloride exposure in terms of concentration.

4.6. Chloride penetration and binding

Below, a simplified picture of the constitutive relations involved in chloride pen-
etration into cement-based materials is presented. In fact, the proposed way of
modelling the problem only claims to be valid during ideal conditions, despite
the fact that numerous factors are introduced which supposed affect the action of
chlorides.

The mass diffusion velocity, represented as a one-dimensional case, is consti-
tuted with a concentration gradient assumption as

plze = —D.(c1, 0, n)% (4.66)

where the diffusion parameter D, is assumed to be a function of the mass con-
centration of liquid water ¢; in the porous material, the temperature 6 and the
porosity n. Indeed, the possibility to include also a dependency of the pore size
distribution on D, appears attractive. This phenomenon is, however, not included
in the assumption (4.66).

Typical values of diffusion constants for ions in bulk water at 25 °C are D! =
2.03 - 107% (m?/s) for C1=, D!, = 5.30 - 10~ (m?/s) for OH™, and D!, = 1.33 -



4.6. Chloride penetration and binding 89

107" (m?/s) for Na*, e.g. compare [29]. These values are supposed to be heavily
reduced for diffusion in porous materials due to the tortuosity effect caused by
the pore system.

The mass diffusion velocity p,u,. constituted in (4.66) may also be a function of
an electrical field induced by the corrosion process, since the considered diffusing
material is electrically charged. This effect is very important when the action
of different ions in the pore solution during corrosion in its propagation stage is
studied.

The binding rate, ¢., of the free chloride ions in the pore solution is assumed
to be given by a function of the concentration of the free chloride ions c., the
amount of physically bound chloride mass density p., (denoted p,,, since the bound
chlorides are assumed to get stuck on the solid pore walls and contribute to a small
weight change of the mass density of the solid phase), the mass concentration of
hydroxide ions ¢, the temperature 6, the porosity n and the specific surface area
a, i.e.

Ce = fe(Cer Prss Cony 0,10, ) (4.67)

The binding of chlorides onto the pore walls and the release of bound chlo-
rides are assumed to be a consequence of two different phenomena: an adsorp-
tion/desorption and a micro-diffusion into and out of gel pores. The chlorides may
also react chemically with the cement hydration products and form for example
Friedel’s salt. The numerical value of the reaction rate ¢, might be both positive
and negative.

It is assumed that the mass exchange of chlorides only occurs between free
chlorides in the pore solution and chlorides bound physically or chemically at the
solid surfaces. The equation (2.51) gives

Ce = —Ces (4.68)
where ¢, is the reaction rate for the immobilized chloride ions.

It may be tempting to a priori assume that the equilibrium between the
free mass concentration of chlorides and the mass concentration of adsorbed
(bound) chlorides is established instantaneously, i.e. that a local equilibrium is
immediately established according to the non-linear equilibrium sorption isotherm
c. = kcl,, where k and n are constants. Indeed, simple analytical solutions based
on Fick’s second law exist to this problem under the condition that the boundary
concentration in terms of prescribed free mass concentration is constant, compare
for example [30]. The assumption of instantaneous binding used in Fick’s second
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law will lead to the conclusion that the ‘true’ diffusion parameter D., compare
(4.66), will be very much reduced compared to the so-called effective diffusion
parameter D.g. This decreased value is often also referred to as the apparent dif-
fusion parameter. Under the condition that n = 1, the equation to be solved is of
standard format, that is, dc./0t = D./(k + 1)0%c./0z?, where D../(k + 1) = De.
Naturally, the overall penetration depth of chloride will be diminished due to
binding.

When situations are studied, where the boundary conditions in terms of free
mass concentration of chlorides change with time, as in the important problem of
chloride ingress in constructions exposed to deicing salts or in the splash zone of
a bridge column, the use of the above-mentioned instantaneous equilibrium with
the chloride-sorption isotherm gives erroneous results. This is mainly due to the
assumptions about a perfect instantaneous equilibrium with reversible conditions.
Field measurements on deicing salt exposed to concrete specimens [31] clearly
indicate that binding of chlorides in concrete is not a perfectly reversible process,
as the instantaneous equilibrium binding isotherm suggests. Due to this fact, the
description (4.67) is suggested, which in essence describes a so-called second-order
reversible system, e.g. compare [30].

Experiments performed in [32] also show the importance of dealing with the
binding and the boundary conditions in a stringent way. Table 4.4 shows mass
concentration profiles in OPC paste, with w/c = 0.5 exposed to a 5 wt% sodium
chloride concentration. The Table4.4 shows the concentration of total chloride,
free chloride in pore solution, and of hydroxide ion concentration in pore solution
at three different exposure times [32].

Extrapolation of the free chloride concentration to the depth equal to zero
corresponds fairly well to the storage concentration (855 mmol/l). However, the
extrapolation of the total chloride concentration (i.e. bound plus free chloride)
to the depth equal to zero shows a significant increase in time. After six months,
the approximate extrapolated value of total chloride at the surface is 16 mg per g
cement and at twelve and twenty-two months, the approximate concentrations at
the surface become 18 and 25 mg per g cement respectively. This indicates that
the binding of chloride is a transient process, which does not reach equilibrium
instantaneously. The same conclusion can be drawn from Figure 4.6.

The same type of transient binding is observed during moisture uptake, at
which a significant time of equilibration is supposed to be caused by microscopic
vapor diffusion towards gel pores, compare [17] and Figure 4.3. A phenomenon of
this type might also be the cause of the transient type of binding of chloride ions.
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Table 4.4: Data for specimens of OPC paste, w/c = 0.5, stored in NaCl solution
of 855 mol/l, [32].

Time Depth Total chloride Free chloride pH

(months) (mm) (mg per g cement) (mmol/l)

6 10 11.3 225 13.35
20 7.1 o1 13.51
30 5.3 33 13.54
40 3.7 14 13.58

12 10 13.0 230 13.24
20 11.9 125 13.37
30 9.0 35 13.53
40 8.3 30 13.56

24 10 21.0 623 13.04
20 16.7 484 13.24
30 13.9 323 13.40
40 12.1 235 13.47

Table 4.4 also shows the effect of hydroxide ions being leached out into the
surrounding storage solution. The somewhat low outflow of hydroxide is due to
the fact that a storage solution with a volume of only 1 | was used. This solution
rapidly reached the pH value 12.5 and was therefore replaced weekly.

A second set of OPC paste specimens was exposed to a weekly wet/dry cycle,
in which a 100ml salt solution was applied to the surface and allowed to dry for
three or four days by evaporation to the air, compare [32]. Directly after this,
100ml of pure liquid water was applied to the surface and left to evaporate. The
result in terms of total and free chloride concentration profiles and hydroxide ion
profiles for three different times are shown in Table 4.5 [32]. It is clear that the free
chloride concentration profiles become significantly higher than in the experiment
with constant exposure shown in Table 4.4. This is probably due to the higher
boundary concentration of chloride caused by the evaporation of water from the
storage solution. Table 4.5 also shows that the outflow of chloride during the
exposure of pure water affects the global ingress of chloride to a very little extent.
Furthermore, it is noted that the total chloride concentration profiles are only
slightly higher after six and twelve months’ exposure compared to the profiles
presented in Table 4.4 for the same times.

The third method of exposure, used in [32], consisted of drying the samples for
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Table 4.5: Data for specimens of OPC paste, w/c = 0.5 exposed to weekly chloride
solution - pure water cycles [32].

Time Depth Total chloride Free chloride pH

(months) (mm) (mg per g cement) (mmol/l)

6 10 12.6 650 13.46
20 7.9 145 13.58
30 5.6 85 13.61
40 4.8 48 13.61

12 10 16.6 900 13.45
20 16.0 280 13.51
30 10.4 280 13.59
40 8.7 140 13.61

24 10 32.6 2196 13.28
20 24.7 1478 13.51
30 21.3 1368 13.58
40 19.8 1094 13.58

one week at 35°C, after which 11 of 5 wt% sodium chloride solution was applied
and then exposed and maintained for three weeks. The remaining solution was
then siphoned off and the cycle repeated. The results from this experiment are
shown in Table 4.6. The overall chloride ingress is seen to be higher in this
experiment compared to the results presented in Table 4.5. One reason for this
is presumably the capillary suction of saline water after the drying periods. The
drying may also affect the concentration of free chloride in the pore solution, which
in turn may accelerate both the chloride diffusion and the chloride binding.

It is observed that the concentrations of free chloride at the surface, shown
in Table 4.6, widely exceed the concentration of the outer storage solution, i.e.
855 mmol/l. This can be a consequence of the drying process contributing to a
gradual increase in the free chloride concentration. However, it is pointed out in
[32] that the pore liquid expression device used to separate the pore solution from
the sample with a pressure as high as 350 MPa may cause loosely bound chlorides
to be released, which in turn may result in an overestimation of the level of free
chloride [33]. An alternative method is to leach the chloride.

From the general behavior shown in Tables 4.4, 4.5, and 4.6, it is concluded
that a powerful model accounting for the diffusion of chlorides in pore solution,
non-equilibrium binding (transient binding due to micro-diffusion into gel pores),
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Table 4.6: Data for specimens of OPC paste w/c = 0.5 exposed to monthy cyclic
exposure to NaCl-solution and drying [32].

Time Depth Total chloride Free chloride pH

(months) (mm) (mg per g cement) (mmol/l)

6 10 17.9 750 13.32
20 11.5 430 13.56
30 9.2 310 13.61
40 7.0 280 13.58

12 10 21.9 1080 13.22
20 18.4 840 13.39
30 15.4 635 13.48
40 12.8 530 13.57

24 10 35.9 2306 12.81
20 35.1 2267 13.03
30 324 2261 13.23
40 30.3 2215 13.34

and the convection of chlorides due to capillary suction must be considered in
order to capture the most important processes involved in chloride penetration
into porous materials with a wide range of pore sizes.

Figure 4.6 from [34] shows, among other things, that the constant bound-
ary conditions do not influence the penetration profiles in the way described by
Fick’s second law — with an incorporation of linear or non-linear equilibrium
binding isotherms. In fact, the global response of the chloride ingress for various
water-to-cement ratios (w/c) is very insensitive to the boundary concentrations,
presumably due to the dominating physical action of the chloride binding.

According to Figure 4.6, it seems that the boundary concentration of total
chloride at the surface of the samples is not constant with time. This is most
dominant for concrete with w/c = 0.47 and w/c = 0.73 stored in 150 g/1 NaCl
solution. The same conclusion is drawn in [35].

The observation that the concentration of total chloride at the specimen sur-
face increases with time (when exposed to a constant outer chloride concentration,
Table 4.4, Figure 4.6) means that the use of a linear or non-linear equilibrium
binding isotherm will give erroneous predictions of the evolution in time of the
mass concentration in the domain. Again, the use of the proposed second-order
reversible system to describe the action of chloride binding seems attractive.



94 Chapter 4. Mass transport phenomena in porous media

19 WIC 0T

6 months

Wt % chloride

7 0 3B 9 6

0- 47 023

S5s
1509/
NaCl

\

X

\
N
N

~
7 21 35 9 63

S
30g /1
Na(t

— = depth of penetrationmm

Figure 4.6: Quantity of total chloride found in hardened cement pastes at various
water-to-cement ratios and at various depths after exposure during siz and twelve
months to chloride solutions of 150 g/l and 30 g/1, [34].
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Figure 4.7: Total chloride ion profile (left) and free chloride concentration in the
pore solution (right) [28].

It should be observed, however, that leaching of hydroxide ions from the pore
solution to the storage solution changes the condition of the chloride binding.
This makes it difficult to describe the cause of chloride binding, since different
physical phenomena interact even under somewhat ideal conditions in laboratory
measurements. Some aspects of the action of hydroxide and its effects on chloride
binding will be discussed in Section 4.8.

Indeed, the shape of the total chloride concentration profile obtained after a
certain time of exposure, seems to follow the solution behavior of Fick’s second
law including an equilibrium chloride binding isotherm, see Figure 4.7. Therefore,
it may be tempting to use a curve to fit the result to Fick’s second law to evaluate
the diffusion constant, or the effective diffusion constant, and then extrapolate
the result to obtain a prediction of the evolution of the total chloride profile in
time. But as the binding seems to be a truly transient process, e.g. compare
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Figure 4.6 and Table 4.4, such an extrapolation will give unacceptable, erroneous
predictions.
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Figure 4.8: Relation between free and bound chloride (left) at a certain time of
exposure. Hydroxide ion concentration profile in pore solution (right) [28].

Figure 4.7 and 4.8 show results in terms of the profile of total and free chlo-
ride concentrations and hydroxide concentration for an OPC paste specimen with
w/c = 0.5 and exposed to 5 liters of 1 (mol/l) sodium-chloride solution saturated
with calcium hydroxide [28]. The hydroxide ion concentration in this mixture was
estimated to be 0.09 (mol/1) [28]. The profiles were measured after a period of
100 days. The relation between the bound and the free chloride after 100 days is
shown in Figure 4.8 (left). This relation can be used as an adsorption isotherm
(non-linear binding equilibrium isotherm). That is, when the reaction rate is de-
scribed the binding equilibrium isotherm should be obtained as a special case,
i.e. the net mass exchange between free and bound chloride is zero in this special
situation. This means that the measurements presented in Figure 4.8 (left) must
be verified to be a real equilibrium condition. Indeed, this might not be the case,
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i.e. the measurement presented in Figure 4.8 (left) might give different results at
different exposure times.

By using the two constitutive relations (4.66) and (4.67) together with the
mass balance equation (2.56), i.e.

oc,
P ot

the following equation describing the reversible binding and diffusion of the
chloride ions will be obtained:

= —div (p uze) — pEy-gradc. + ¢, (4.69)

dce Pc. . Oc. .
P act = Dc(ch 97 n)a_l'CQ - pxa/‘a—i‘ - fC(Ccu Pess Coh 97 n, a)7 nV (470)
The essential boundary condition at the boundary surface 0V is given at any time
t as

c.(0,t) = h(0,t); on OV (if ¢,(0,¢t) = 0; on IV) (4.71)

where h. represents a known value of the outer boundary condition in terms
of mass concentration of dissolved chloride at different times ¢. Note that this
boundary condition is only used when the same boundary surface is exposed to
liquid water (containing dissolved chlorides). This condition is denoted ¢,(0,t) =
0;on OV.

The natural boundary, i.e. a description of the mass diffusion flow through
the boundary is, under the same conditions, described as

Pzc(0,1) = g2c(0,t); on OV (if ¢,(0,¢) = 0; on OV) (4.72)

where g,. is a known value of the mass flow through the boundary at the time
t. This type of boundary condition is, however, seldom used to solve chloride
penetration problems.

When the boundary is exposed to water vapor only, the natural boundary
condition for the chloride ions is assumed to obey the following relation:

puze(0,t) = 0; on OV (if ¢;(0,¢t) = 0; on V) (4.73)

which means that no chloride ions can pass through the boundary during the
exposure to vapor.

The field equation for the mass density distribution of bound chlorides in the
domain V' is simply given by the mass balance equation (2.49). It is assumed that
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/

! s 1s zero, and the relation (4.68) is used.

the velocity of the bound chloride x
This gives
Ipes

ot

It should be noted that no boundary conditions are used in the equation to de-
scribe the mass concentration of bound chlorides.

The equations (4.70) and (4.74) are together with the proper boundary con-
ditions supposed to capture the main physical phenomenon observed in the mea-
surements presented in Tables 4.4, 4.5, and 4.6. The important convection of
chlorides due to the velocity of the mixture &, is also discussed in [36].

= fe(Ce, Pess Cony B, m,a); inV/ (4.74)

4.7. Carbonation and carbon dioxide flow

Carbonation of cement-based materials, i.e. the chemical reaction of calcium
hydroxide and calcium silicate hydrate with carbon dioxide, which results in the
formation of calcium carbonate and water, is one of the processes, which take
place in the concrete pores and may limit the service life of reinforced concrete
structures. There are two main important consequences of carbonation: (z) the
drop of pH, i.e. the drop in hydroxide concentration in the pore solution, which
destroys the passive condition of the reinforcement bars, and (ii) the change of
the effective permeability due to volume changes and micro-cracking caused by
the chemical reactions. The permeability change can be an increase, for instance
in concrete which contains blast furnace slag or fly ash, or a decrease as in OPC
concrete [37]. Measurements on carbonation of different kinds of concretes can,
for example, be found in [38].

The final result of the several steps, through which the calcium carbonate is
formed, can simply be described by the following reaction, which is assumed to
be irreversible:

COy(aq) + Ca*"(aq) + 20H (aq) — CaCOs(s) + H,O (4.75)

The dissolution of carbon dioxide in its gaseous phase is simply described as

CO4(g) = COy(aq) (4.76)

and the dissolution of calcium hydroxide, as

Ca(OH),(s)* — Ca**(aq) + 20H (aq) (4.77)
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where the symbol (s)* is introduced to stress that the Ca(OH), is arranged in a
crystalline structure. This structure is assumed to be intimately intergrown with
the C-S-H, the more or less amorphous calcium silicate hydrate formed during hy-
dration of C3S and C,S. The formed C-S-H also has a variable stoichiometry, which
makes the kinetics of the dissolution reaction (4.77) difficult to constitute, since
the process most likely becomes diffusion-controlled at the microscopic level. The
amount Ca(OH)z(s)* is about 30 weight-% of the fully hydrated OPC. In blended
cements like fly ash cement or slag cement, the amount of Ca(OH), is consid-
erably lower. It should be observed that also C-S-H itself becomes carbonated.
It is assumed that this reaction takes place in a similar way as the carbonation
of Ca(OH),. That is, C-S-H can be described as C-S-H = 3Ca0-SiO,-3H,0 =
3Ca(OH)s + SiO,. The carbonation of C-S-H probably occurs at a somewhat
slower rate than the carbonation of ‘pure’ Ca(OH),. The solubility properties of
the C-S-H can be studied in for example [39].

Actually, the dissolved CO, will form carbonic acid HoCOj3(aq) together with
water. HyCOs will further be dissolved into 2H™ and CO%’ ions. Hence, the
reaction (4.75) can also be expressed as

Ca’"(aq) + CO; (aq) — CaCOs(s) (4.78)

The calcium carbonate formed has a very low solubility and will therefore con-
tribute to a clogging of the pore system. However, the volume expansion involved
in the reaction (4.75) and (4.78) will cause micro cracks. Due to carbonation it
is thus difficult to predict the change of transport properties for gases such as
COs(g) and Os(g). The compressive and tensile strength of OPC is markedly
increased due to carbonation [37]. This effect does not, however, give any explicit
information about the changes of the transport properties.

The formation of calcium carbonate requires a diffusion of carbon dioxide from
the atmosphere into the pores of the concrete, and an addition of liquid water to
the calcium dioxide to form carbonic acid HyCOs(aq), equation (4.75) and (4.78),
the carbonation will be largely ruled out if the pore system is filled with water,
since that will hinders the diffusion of carbon dioxide in its gaseous phase, or if
the pore system is completely dry. It is, however, quite normal that the pores in
a concrete surface are only partly filled with water, thus making both diffusion of
carbon dioxide in its gaseous phase and formation of carbonic acid possible.

The decrease of pH due to carbonization in the pore solution depends on
the relation between the dissolution rate of the solid calcium hydroxide in (4.77)
and the consumption rate of OH™ in the carbonization process (4.75). However,
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when the solid calcium hydroxide at and near the pore walls is consumed, the
dissolution process becomes more and more ‘diffusion-controlled’. As a result, the
dissolution rate of calcium hydroxide gradually becomes slower. Therefore, a high
concentration of hydroxide ions in the pore solution can not be maintained when
carbonation takes place.

The depth of carbonation is often measured with a phenolphthalein indicator,
measuring the depth to the color change. Such tests only reveal the level, where
the pH value falls below nine. Pore expression measurements in terms of hydrox-
ide ion concentration in the pore solution is a better method, since it makes it
possible to measure the total pH profile, compare Figure 4.8. The decrease of
hydroxide ion content is an indirect method to measure carbonation. SEM by
backscatter electron imaging, however, enables the study of the formed CaCOs.
Such measurements show that a dense rim, consisting largely of CaCOj is formed
at the surface. Within this zone, CH is largely absent and C-S-H, including that
formed in situ from the alite or belite, is in varying degrees decalcified. The
carbonated surface layers are about 50-100 pm thick, [37].

In order to capture the most important basic factors governing the carbonation
of cement-based materials, the mass diffusion flow behavior of the gas carbon
dioxide, and the reaction rate forming calcium carbonate in the liquid water of
the pore system must be described.

The mass diffusion flow of the gaseous carbon dioxide in the air-filled space of
the pore system is assumed to be described as

ocly) 00
pPul) = —D(cy, n)ﬁ — Dggg% (4.79)

where the diffusion parameter DY is strongly dependent on the liquid water
concentration ¢; and the porosity n, and where c\9) denotes the mass concentration
of carbon dioxide in its gaseous phase. The second term represents the so-called
Soret effect caused by temperature gradients. It should be observed that the
porosity n may be significantly changed during the carbonation. Furthermore, it
is possible that also the pore size distribution will affect the mass diffusion flow.
It can therefore be included as a property describing the diffusion parameter D9
in equation (4.79).

The assumed constitutive behavior of the mass diffusion flow of dissolved car-
bon dioxide in the liquid phase in the pore system is

Oclad)

pla ) = — D (er.m) = (480
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where ¢(2?) denotes the mass concentration of dissolved carbon dioxide.

The reaction (4.76) will, most likely, reach equilibrium instantaneously at a
thin layer between the gaseous and the liquid phase, that is, a given relation of the
mass concentration of gaseous and dissolved carbon dioxide could be assumed —
%) = R.,c9). However, the reason for introducing the concentration c{2% is to
be able to descrlbe the kinetics of the carbonization reaction (4.75). This reaction
is assumed to be diffusion-controlled, since the dissolved carbon dioxide must find
its way through the pore system (in micro-scale) and form CaCOs(s) at a location,
where the reaction is favorable, presumably at surfaces, where calcium hydroxide
and calcium silicate hydrate are located. In order to capture the important time
scale for this diffusion-controlled reaction, it will be assumed that the constitutive
relation for the process of forming reactive, dissolved carbon dioxide must be
introduced.

According to the reactions (4.76) and (4.75), and to the conservation of mass
during the reaction, i.e. (2.51), it is clear that the net change of the carbon dioxide
is zero. This is written as

(9) + C(GQ) +¢ (s) kmco =0 (481)

caco

where the constant k..., simply relates the mole weights of CO, and CaCOs3 during
the reaction (4.75).
The kinetics of the reaction (4.75) will be constituted in a general function as

Agwo =f ( Ceo vcoh? pcacov c, 0 a) (4'82)

where c,;, is the mass concentration of hydroxide ions in the pore solution, ¢; is
the mass concentration of liquid water, p*) is the mass density concentration
of formed CaCOs(s), 0 denotes the temperature and a is the specific surface
area of the solid matrix. When the simple equation (4.75) is used to describe
the formation of CaCQs, it is natural to assume that the reaction rate forming
CaCOj3 depends on the mass concentration of dissolved hydroxide ions, CO,, and
also on the amount of CaCOs3 already formed. It is noted, however, that the
specific surface area a may change significantly during carbonation.

The change of mass due to the dissolution of gaseous carbon dioxide is de-
scribed as

e = f( (9) (aq) cl,G,a) (4.83)

CO7 CO ?

Hence, the expression for ¢ is given from (4.81), (4.82), and (4.83).
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The mass balance equation (2.56) in a one-dimension case for the gaseous
carbon dioxide becomes
ocl9) A(pDul9)) ocl9)
co _ co “Yzco . co ~(9) 4.84
p 8t 83: pxm ax +CCD ( )
The constitutive relation (4.79) together with (4.84) yields

9%cl9) .09 ) 06
Ox2 — PTy ox + DcoOa 2

—“ — DY (¢, n) + &9 inV (4.85)
The boundary conditions used in (4.85) depend on the outer climate. If the outer
condition is a vapor phase, written as ¢(0,t) = 0; on OV, the outer concentra-
tion of carbon dioxide ¢\ or the mass diffusion flow pcg)u;%)o of Carbon dioxide

through the boundary is described with the known values A9 or ¢{9) at the time
t respectively, that is

c9(0,t) = h{9(0,t); on OV (if ¢(0,) = 0; on V) (4.86)

or

pDul9) (0,t) = ¢l (0,t); on OV (if ¢;(0,t) = 0; on IV) (4.87)

If the boundary consists of liquid water, denoted by ¢,(0,¢) = 0; on OV, the
mass diffusion flow of the gaseous phase carbon dioxide through the boundary is
assumed to be negligibly small, i.e.

@49 (0,t) = 0; on OV (if ¢,(0,¢) = 0; on OV) (4.88)

pCO Tco

The governing equation in a one-dimensional case for the dissolved carbon dioxide
@) is given by the mass balance equation (2.56), i.e.

Oclad) O(plenyea)) Oclad)
Yo _ _I\Peo Uaeo) _ Dy
Ox

ot o
and the assumptions (4.80) and (4.81) by

+¢la9: in v (4.89)

Hclad) 52 clad) Hclad)
=0 = DD (¢, n) =2 — piy—2 — &) — ¢08) kogeo; inV 4.90
at co ( 15 ) 81'2 P ax Ceo Ceaco ( )
where the term: —¢9) — ¢() k..., denotes the net rate of consumption or produc-

tion of dissolved carbon dioxide.
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The boundary conditions in (4.85) are described by the known values A% and

gé‘zg) at the time t respectively, during situations when liquid water is exposed at

the surface. Hence

cD(0,t) = hl"9(0,t); on OV (if ¢,(0,¢) = 0; on OV) (4.91)
or
plePuled) (0,1) = gled (0,t); on OV (if ¢,(0,¢) = 0; on V) (4.92)

In situations with water vapor at the boundary, denoted by ¢(0,t) = 0; on 9V,
the mass diffusion flow through the boundary of dissolved carbon dioxide present
in the pore solution is assumed to be negligibly small, i.e.

P9y (0,¢) = 0; on OV (if ¢(0,¢) = 0; on V) (4.93)

The overall penetration of carbon dioxide is slowed down due to the tortuos-
ity of the pore system. Furthermore, the water content affects the penetration.
These two phenomena are modelled by making the diffusion parameters DY) and
D) dependent on the mass concentration of liquid water ¢; and the porosity n,
compare the equations (4.79) and (4.80).

The initial mass concentration of solid calcium hydroxide Ca(OH)z(s) in the
concrete, which is assumed to be the only solid material participating in the car-
bonization process is, of course, different for various kinds of binders and concrete
mixtures.

In [40] and [41], similar assumptions are introduced for the mass supply term
Ceco- They describe, however, the rate of calcium carbonate formed by the relation
of concentrations of carbon dioxide and calcium hydroxide, and by a function
dependent on the relative humidity and the temperature in the material.

To make things easy it will further be assumed that calcium ions, hydroxide
ions, and dissolved carbon dioxide form calcium carbonate without significantly
affecting the liquid water concentration c¢; and the concentration of vapor c,.
That is, the equation for determining ¢; ((4.55) and (4.61), (4.64)) and c, (4.49)
is assumed not to be significantly affected by the production of liquid water due
to the carbonation, compare (4.75).

The solid CaCOs(s) formed in the carbonation process is assumed to have
zero velocity, 1.€: poueolhace = 0. The mass balance equation (2.49), and the
constitutive relation (4.82), which describe the production of CaCOs(s), therefore
give o

% =é®) inV (4.94)
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The mass density of calcium hydroxide, which belongs to the solid matrix, i.e.
Ca(OH)s(s), is decreased at the same rate as carbon dioxide is consumed, com-
pare the reaction (4.75). The overall changes in the mass concentration of solid
calcium hydroxide is not, however, determined solely by the carbonization. It is
assumed that a irreversible dissolute reaction exists between the solid calcium hy-
droxide and the hydroxide ions in the pore solution. This reaction strives to reach
equilibrium whenever the concentrations of Ca(OH)z(s) and/or the concentration
of OH™ in the pore solution are changed, independently of the concentration of
CO4(aq) in the pore system.

The reaction kinetics and the equilibrium condition for the dissolute reaction
(4.77) will be discussed together with the behavior of the hydroxide ions in the
pore solution; see Section 4.8.

4.8. Hydroxide mobility and changes in the mass concentration of solid
calcium hydroxide

It is a well-known fact that hydroxide ions, which appear naturally in a pore
solution (at an initial concentration of approximately 0.4 (mol OH™)/1) in cement-
based materials, will be leached out to some extent if a sample is stored in pure
water. This phenomenon is presumably caused by dissolution and global diffusion
in the pore system of the cement based material.

It is reasonable to assume that the initial equilibrium condition between solid
calcium hydroxide and dissolved hydroxide ions in the pore solution will be dis-
turbed when a leach of hydroxide ions into a surrounding storage solution occurs.
However, the buffer concentration of solid calcium hydroxide is in general high for
most cement-based materials. Besides, also C-S-H can be decomposed and thus
add to the buffering capacity. The dissolution process will, however, probably
be diffusion-controlled once the solid calcium hydroxide located close to the pore
walls has been consumed. Measurements performed show that the production rate
of hydroxide ions due to dissolution can not compensate for the loss of the same
ions due to ‘global’ diffusion. This means that the global response is a decrease
of hydroxide ions in the pore solution.

When the same leaching process is considered in the presence of chloride ions it
becomes clear that the equilibrium condition between solid calcium hydroxide and
dissolved hydroxide ions may be affected, since the hydroxide ions and chloride
ions probably compete for free adsorption sites on the pore walls. Experiments
show that a low concentration of hydroxide ions, i.e. a low pH, increases the
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capability of chloride binding [42].

Experiments performed in [28] show that the concentration of hydroxide ions
in the pore solution decreases when a sample is stored in a NaCl solution satu-
rated with Ca(OH),, in which the hydroxide ion concentration is estimated to be
0.09 (mole OH™/1). This is believed to be a consequence of two different phe-
nomena: () when chloride ions penetrate the pore system, the initial equilibrium
condition of the pore solution and the pore walls may change. This contributes to
a momentary increase of dissolved hydroxide ions and, (i7) a diffusion of dissolved
hydroxide ions towards the outer storage solution. Diffusion of hydroxide ions
towards the outer storage solution takes place due to the fact that the concentra-
tion of hydroxide ions in the outer solution is (approximately 0.09 (mole OH™ /1))
considerably lower than the concentration in the pore solution (approximately
0.4 (mole OH~/1)). In fact, it is difficult to distinguish the diffusion process, i.e.
the leach, from the effect of changes in the equilibrium condition between solid
calcium hydroxide and hydroxide ions in the pore solution with or without the
presence of chloride ions.

However, the mass flow and the equilibrium conditions for the dissolved hy-
droxide ions with respect to other constituents is crucial when durability problems
of cement based materials are considered. The hydroxide ions are involved in the
corrosion process, the carbonation process and in the chloride penetration process.
In the last process, hydroxides affect the binding capacity of chloride.

As for all other considered ions moving in the liquid pore water, a gradient-
dependent mass flow will be assumed as

8Coh
ox

where the diffusion parameter D, strongly depends on the liquid water mass
concentration ¢; and the porosity n.

The constituents of interest, which participate in the reactions (see (4.75) and
(4.77)) contribute to a change in the mass concentration of dissolved hydroxide
Con, are carbon dioxide and the solid calcium hydroxide. The mass conservation
of the chemical reactions in terms of dissolved hydroxide must fulfill (2.51), that
is

Ponlzoh = —Don(cr,m) (4.95)

écacokoh,l + écaoh,skoh,Q + éoh, =0 (496)

where kon1 and kone are constants relating the mole weights of CaCOjs(s) and
OH™(aq) in the reaction (4.75), and the mole weights of Ca(OH),(s) and OH™ (aq)
in (4.77).
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The rate of reaction (4.77) and its equilibrium condition is expressed as a
function of the relation between the available mass concentrations of hydroxide
ions in the pore solution ¢, and the solid calcium hydroxide p,,.,s, and between
the liquid water mass concentration ¢;, the mass density concentration of bound
chlorides p,, the temperature 8, and the specific surface area a, i.e.

écaohs = f(coha Pecaohss Cis Pess 07 CL) (497)

By using the mass balance equation (2.56) in a one-dimensional case, i.e.

Ocon _ Oponlison) . Ocon |
P ot - ox PLy ox + Con (498)

together with the constitutive relations (4.95), (4.97), and (4.82),

8coh

P51

d?c, .Oc, ) A X .
8x2h - pT axh - Ccacokohl - Ccaohskoh,Q — Myh; nVv (499)

= Doh(chn)

is obtained, where the term m,;, has been included to represent an external source
or sink. The source is due to the production of OH™ at the cathode areas during
corrosion and, the sink is due to the consumption of OH™ at anode areas. Compare
the corrosion reactions (6.2) and (6.3) below. Before the corrosion process is
initiated, the term m,,;, is zero both at the anode and cathode.

The boundary conditions used in (4.99) depend on the outer conditions, i.e.
the boundary conditions, in terms of liquid water and vapor. If the outer condition
is a liquid water phase, written as ¢,(0,t) = 0; on 9V, the outer concentration
of carbon dioxide ¢, or the mass diffusion flow p,_,u., through the boundary is
described by the known values h., or g.., at the time ¢, respectively. That is

Con(0,t) = hon(0,t); on OV (if ¢,(0,¢) = 0; on OV) (4.100)

or
Pontzon(0,1) = Gzon(0,1); on OV (if ¢,(0,¢) = 0; on OV) (4.101)

When the boundary consists of vapor, denoted by ¢;(0,¢) = 0; on 9V, the
mass diffusion flow of the hydroxide ions through the boundary is assumed to be
negligible small, i.e.

PonUzon(0,1) = 0; on OV (if ¢(0,¢) = 0; on OV) (4.102)
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/ —

If the velocity of the solid calcium hydroxide is assumed to be zero, i.e. x/, ., =

0, the mass balance equation (2.49) and (4.97) give

)
% = Ceons; NV (4.103)

Another approach for modelling the leaching of calcium hydroxide from cement
pastes can be studied in for example [43].

4.9. Oxygen mobility

The mobility of oxygen in porous materials is, of course, of great interest when
dealing with corrosion of embedded reinforcement bars in concrete. The water
content is, again, an important factor, since it reduces the motion of oxygen in its
gaseous phase within the air-filled space in the pore system.

Oxygen permeability has been reported in terms of diffusion coefficients based
on Fick’s law for concretes with different water to cement ratios and at different
degrees of saturation [44], [25].

In [25], it was found that the ‘effective’ diffusion coefficient for Slite Portland
cement concrete, w/c = 0.42, at the temperature 20 (°C) (specimen age 6-12
months) was Deg ~ 8 - 1078 (m?/s), Deg ~ 1.7-107® (m?/s) and Dg ~ 0.3 -107®
(m?/s) for specimens equilibrated at 0, 50 and 80% relative humidity respectively.
For completely saturated samples, the value obtained was Deg /= 0.03-10~8 (m?/s).
The fact that the diffusion coefficient for oxygen is decreased at increased liquid
water content may be a consequence of water clogging the pores. Oxygen has a low
solubility in water and its mobility is limited by the comparatively high density
of the water. The conditions in air are different. The concentration can be high
and the diffusion coefficient can be 10* — 105 times greater than in liquid water
[25]. The diffusion coefficient for oxygen in air at normal atmospheric pressure
and at the temperature 0 (°C) is 1780 - 10~ (m?/s), see Table 5.8.

The ‘effective’ diffusion coefficients based on Fick’s law in [25] were also found
to depend on the water-to-cement ratio of the concrete mix, and on the composi-
tion of the binder.

As for the other gaseous constituents discussed, i.e. carbon dioxide and water-
vapor, the labyrinth effect (caused by the pore system and the presence of liquid
water in the pore system) for the diffusion becomes very important also. Hence,
the description of the action of the liquid water phase has a major part in the
mass transfer problem treated in connection with durability considerations.
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The mass density flow of oxygen in its gaseous phase in the air-filled space of
the pore system is constituted as

(9)
S — D, (1. ) ag; (4.104)

where the diffusion parameter D, is assumed to be strongly dependent on the
liquid water mass concentration ¢; and the porosity n.

It is assumed that oxygen does not participate in any chemical reaction but
the simple dissolution reaction

O1(g) = Oz(aq) (4.105)

According to (2.51), the mass conservation during the chemical dissolution
reaction (4.105) must fulfil
¢ 4 ¢la — (4.106)

The assumption of instantaneously reached equilibrium is introduced for the
reaction (4.105). Therefore, the mass concentration of oxygen c\9) in its gaseous
and in its dissolute state c\@ can be related to each other explicitly as

) = R, (4.107)

where R, is a constant describing the relation between the mass concentration of
dissolved oxygen and oxygen in its gaseous phase.
According to (2.56), the mass balance for oxygen is
dcly) O(pWul9) . 0c9
= s

(%)

= o P2 + ¢l9) (4.108)

By combining the constitutive relation (4.104) and the mass balance (4.108)

ocl9) o 9w
5 :Do(cl,n)w ~ Plo—p + &9 inV (4.109)

is obtained. If the somewhat crude assumption is introduced, that the velocity in
relation to the velocity of the mixture is zero, i.e. u(? = 0, the corresponding
mass balance equation for the dissolved oxygen is

Hclad) dcla)
p f% — Zx + D) glaa) (4.110)




4.8. Oxygen mobility 109

where the equation (2.56) for the one-dimensional case is used. It should be noted
that the transport of dissolved oxygen only is due to convection, which is described
by the first term on the right-hand side of (4.110). The term 7% represents an
external point sink due to the consumption of oxygen at the cathode, compare
equation (6.2), and at the anode, compare equation (6.5). The term m(%? is valid
only in the propagation stage of corrosion. Otherwise, the sink term Mm% is equal
to zero. The consumption rate of oxygen is assumed to be directly linked to the
production of Fe**. This production is constituted in (6.27).

If the four equations (4.106), (4.107), (4.109), and (4.110) are combined, the
equation describing the behavior of the oxygen in its gaseous phase in the air-filled
pore space can be written as

oc9)  D,(e;,n) %W ocly) 1 ae)

_ — i, e S inV 4111
P ot U+ R) 022 " or QxR (4.111)

where is should be noted that the diffusion parameter for oxygen in its gaseous
phase, D,(c;,n), is scaled with the factor 1/ (1+ R,) due to the dissolution of
oxygen. By solving the mass concentration field ¢\ (z,t) with (4.111), together
with the proper boundary conditions, the mass concentration field c¢(®(z,t) can
be calculated simply by using equation (4.107). This is due to the assumption
of an instantaneously reached equilibrium for the reaction (4.105), leading to the
relation (4.107). Furthermore, the proposed equations describing the transport of
oxygen in concrete assume that dissolved oxygen is convected with the velocity
of the mixture z,. This velocity is mainly determined from the equation that
describes the capillary suction of liquid water.

As for the other constituents considered, the boundary conditions to be used in
(4.111) is dependent on outer conditions in terms of liquid water and water-vapor.

If the outer condition is a water-vapor phase written as ¢;(0,t) = 0; on 9V,
the outer concentration of the gas oxygen c\9 or the mass diffusion flow p(@u9)
through the boundary can be described by the known values h9) and g{9) respec-
tively, i.e.

c9(0,t) = h9(0,t); on OV (if ¢;(0,¢) = 0; on 9V) (4.112)
or
PDul9(0,t) = ¢'9(0,t); on OV (if ¢(0,¢) = 0; on V) (4.113)

In other words, h{9 describes the known mass concentration of oxygen in the
surrounding (air) environment at different times ¢, and ¢'9) describes a known

Tro
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mass concentration flow through the boundary (This condition is, however, seldom
used in the type of problem considered).

When the boundary consists of liquid water, denoted by ¢,(0,t) = 0; on 9V,
the mass diffusion flow of the gaseous oxygen through the boundary is assumed
to be negligibly small, i.e.

pDu9(0,t) = 0; on OV (if ¢,(0,t) = 0; on V) (4.114)

In fact, problems related to the boundary conditions for the mass concentration
of dissolved oxygen are observed when the simplified equation (4.107) is used.
That is, no explicit information can be introduced for the boundary condition
in terms of a known value of an outer mass concentration of dissolved oxygen
(in situations when liquid water containing dissolved oxygen is present at the
boundary). Instead, the relation (4.107) has to be used in order to convert the
known value of the mass concentration of dissolved oxygen at the boundary to a
mass concentration in terms of gaseous oxygen. This value should be used to solve
equation (4.111). To avoid this drawback two separate but coupled differential
equations must be introduced, one for the gaseous phase and another for the
dissolved phase. This method was used when the behavior of carbon dioxide was
described.

The diffusion of oxygen is supposed to be of importance only when reinforce-
ment, corrosion in its propagation stage is considered. This will be discussed in
Section 6. It should be observed, however, that rust may be produced at the steel
bar surfaces in concrete without any presence of oxygen.
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5. Summary of the equation system for the diffusing matter
in the pore system

Here a summary is made of the proposed equations to describe the mass exchange
among the constituent, i.e. the reaction kinetics, and the mass transport of differ-
ent constituents in porous cement-based materials. The constituents considered
are all of interest when studying deterioration phenomena such as chloride-induced
corrosion, carbonation, and also temperature- and moisture-induced strains. In
fact, the model discussed in Sections 4.2 to 4.9 includes a total of thirty-seven un-
known quantities. The following thirty-two unknown mass density fields, velocity
fields and mass supply terms are considered:

pc ($7t) x,zc ($7t) éC (I’, t)
pcs (‘,I:7 t) ‘,I‘chs (‘T? t) = O 603 (‘,1:7 t)
py (7,1) Ty (2,1) ¢y (2, 1)
Puic. (l‘, t) x,mm'c. (l', t) évic. (I’, t)
Poulk (I’, t) x,zbulk: (I’, t) ébulk (l‘, t)
@ (z,1) w8 (1) &9 (w,1)
(aq) ) 1(aq) NCT)) (5.1)
COq (x7 t) l‘.’L‘COq (':E7 t) CCDq (':E7 t)
pcaco (l', t) x,zcaco (l', t) = O éCﬂCD (il?, t)
Pon (‘,1:7 t) ‘,I:;:oh, ((L’, t) éoh (‘T? t)
Pcaohs (‘T? t) ‘,I:,q:caoh,s (‘T? t) =0 écaohs (‘,1:7 t)
Py (x,t) i) (x,t) &) (x,t)

P (@)l @) =0 ) (1)

o

In addition the two unknown quantities
Topuir (7,8) 5 Pabuk (7, 1) (5.2)
and the three thermal properties
0(z,t); e(xt); ¢(z1) (5.3)

are considered. Obviously, thirty-seven equations are needed to make the
system closed. In essence twelve mass balance equations, one momentum balance
equation, and one energy balance equation are introduced. The remaining twenty-
three equations are constitutive relations.

From the mixture theory, the following physical quantities

Ca (1) Ua (2,8); @0 (z,1); p(2,t) (5.4)
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may be considered as functions of the unknown properties in (5.1), (5.2), and
(5.3).
The mass density for the mixture is given by (2.12) as

M=

p:p(l',t) = Pa (T, 1) (5.5)

a=1
The mean velocity or the velocity of the mixture in a one-dimensional case is,
according to (2.15), given by

1 R
Ty = &y (T,t) = = Z PaTa (5.6)
P a=1
The concentrations for the individual constituents, as defined in (2.13), are

Ca = Ca(z,t) = po/p

and the diffusion velocities for the individual constituents, as defined in (2.16),
are
Ugq = Ugq (T,1) = 2, (2,1) — Ty (2, 1) (5.7)

Hence, the constitutive relations can be introduced using both the quantities in
(5.1), (5.2), and (5.3), and the quantities in (5.4), since they are direct functions
of each other.

The eleven introduced assumptions for the mass diffusion flows are listed in
Table 5.1. Three of the introduced constituents are restricted to having zero
velocities. The diffusion velocity for the dissolved oxygen, i.e. the velocity in
relation to the velocity of the mixture, is assumed to be zero.

The introduced relations dealing with mass exchanges (or chemical reactions)
among the constituents are summarized in Table 5.2. It should be noted that the
reaction kinetics involved in the problem must be described as functions of for
example the mass concentration of the individual constituents and the tempera-
ture. These relations are not explicitly given. Of course, material constants and
parameters will be introduced when the rate of the reactions is constituted.

The equations involved to reach the one-dimensional standard transient heat
conduction equation are shown in Table 5.3. In Section 7, a more detailed study
of the energy equation is presented. This description is used to model latent heat
effects involved in phase change problems, e.g. in the transformation of water to
ice or vice versa.



Table 5.1: Seven constitutive equations for mass diffusion flows.
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Mass flow Equation Remarks
Pclze (466)
PesUcs - Velocity assumed to be zero, i.e. xl,.. =0
Py (4.27)
Puic. Yzvic. comp. (428)
G uls, (4.79)
plafuled)  (4.80)
PeacoWzcaco - Velocity assumed to be zero, i.e. xl,.,., =0
PonUzoh (4.95)
PeaohsUzcaohs - Velocity assumed to be zero, i.e. T ,ops =0
(9q(9) (4.104)
plad)ylaq) - Diffusion velocity assumed: u(®) = 0

Table 5.2: Twelve constitutive equations for chemical reactions.

Chem. Equation Remarks

react.

Ce (4.67) Adsorption-desorption
Cos (4.68) i.e., Ces = —Cp Adsorption-desorption
Cy (4.29) Adsorption-desorption
Coic (4.46) i.e., Cpic. = — (1 — kaist) Co Gy distributed by kgis
Coulk (4.45) i.e., Coure = —KaistCo ¢, distributed by kgie
elg) (4.83) Diff. contr. chem. react.
¢laa) (4.81) d.e., 69D = —9) — ¢ 0keo Diff. contr. chem. react.
els) (4.82) Diff. contr. chem. react.
Coh (4.96) i.e., Coh = —Ceaohskoh2 — Ceacokon Diff. contr. chem. react.
Ceaohs  (4.97) Diff. contr. chem. react.
éla) Not explicitly described due to Eq. (4.107) Inst. reached equilibrium
¢laa) (4.106) i.e., a0 = —¢l9) Inst. reached equilibrium

Table 5.3: Three equations used to compute for the temperature.

Quan. Equation Remarks

€ (3.20) Energy balance; p% = %‘? — Ty - %
7 comp. (3.21) Const. rel.; 0 = C’(cl,n a)e

Qa comp. (3.22) Const. rel.; g, = =N, n,a)22
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Table 5.4: Three equations involved in the capillary suction equation.

Quan. Equation Remarks
Topare  (4.57) Const. relation; Typur = ubulk(ﬁ)éam;b“lk — Tpur (6, ;)

3 Oz
DPobute (4.59) Const. relation; Pepuik = YpuikUzbulk
oz’ oT. ~
!/ . —
e (4.60) Balance of momentum; py,;,,—2us = S2bulk + p oy,

Table 5.5: Twelve mass balance equations.

Quan. Equation Remarks

Ce (4.69) Free chlorides in pore water

Pes (4.74) Described with the mass density, bound chlorides
Cy (4.24) Mass concentration of vapor

Cuic. comp. (4.26) Adsorbed and capillary-condensed water

Poulke (4.64) Described with the mass density, capillary water
clg) (4.84) Carbone dioxide, gaseous phase

clad) (4.89) Carbone dioxide, aqueous phase

Poaco (4.94) Solid, CaCQOgs(s), described with the mass density
Coh, (4.98) Dissolved hydroxide ions

Peaohs  (4.103) Described with the mass density, solid calcium hyd.
cl9) (4.108) Instantaneously reached equilibrium, gaseous oxygen
claq) (4.110) Elim. of ¢\ due to the assump. (") = R,cl9)

The equations, which give the one-dimensional velocity field of ‘bulk’ water
supplied by capillary action are listed in Table 5.4. Constitutive relations are
introduced both for the stress tensor T,4.,x and the momentum supply p.puik-

In Table 5.5, the equations related to mass balance for the constituents are
listed. It should be observed that an instantaneous reaction isotherm is involved in
the description of the mass exchange between the dissolved and the gaseous phase
of oxygen. This results in the elimination of one mass balance equation, compare
Section 4.9. The mass diffusion flow of both the dissolved and the gaseous carbon
dioxides is, however, described, with constitutive relations.

The governing equations for the twelve introduced constituents are shown in
Table 5.6. By solving these coupled equations, the mean velocity of the mixture
can be estimated through the computing of the individual mass diffusion veloc-
ities. That is, a so-called staggered solution procedure can be adopted in order
to compute the coupling in terms of the mean velocity of the mixture and the
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Table 5.6: Twelve governed equations for the constituents.

Quantity Equation

Ce (@.70)
Pes (4.74)
Cy (4.49)
Coic. (4.55)
Puik (4.64) and (4.61)
clo) (4.85)
cloa) (4.90)
Peaco (4.94)
Coh (499)
Pcaohs (4.103)
cl9) (4.111)
clad) (4.107)

dependencies of material parameters on introduced properties such as the water
mass concentration and temperature.

To solve the equations listed in Table 5.6, the boundary conditions for the
individual constituents must be introduced. These boundary conditions are as-
sumed to depend on the moisture state at the boundary surfaces. Compare the
discussion in Sections 4.2 to 4.9.

The introduced material parameters are shown in Table 5.9. It is supposed that
the constants describing the reaction kinetics are the most difficult parameters to
identify among all the material parameters introduced.

The various diffusion parameters D introduced are assumed to be given from
the corresponding diffusion constants in pure water (or in air for the gases) at a
given temperature. Six diffusion parameters of this kind are introduced into the
model. The values of the diffusion constants (in a pure medium, i.e. liquid water
or air) can then be scaled by a tortuosity factor determined by the porosity, the
specific surface area, and the concentration of liquid water in order to estimate
the effective mass flow behavior in the material of interest. The different diffusion
constants determined from experiments in for example pure water do not deviate
very much from each other. The tortuosity factor for different ions diffusing in
a pore system with liquid water present can also be scaled with the same fac-
tors, since all dissolved diffusing constituents are exposed to the same geometrical
labyrinth effects. The same approach can be used for the diffusion of gases in



116 Chapter 5. Summary of the equation system for the diffusing matter ...

Table 5.7: Diffusion coefficients in water at 298 K, [29].

Ion  Diffusion coefficient, D (m?/s)
Cl- 203-107°
OH- 5.30-107°
Nat 1.33-107°
K* 1.96-107°

Table 5.8: Diffusion of gases in air at normal atmospheric pressure [24].

Gas or vapor Temp. (°C) Diffusion coefficient, D (m?/s) Observer

CO, 0.0 13.9-10°° Mean of various
0, 0.0 17.8-10°6 Obermayer
Water, vapor 8.0 23.9-107° Guglielmo

air-filled spaces in the pore system. It should be observed that this approach is
only significant when describing the reaction kinetics with separate constitutive
relations, since the diffusing matter considered is not inert with respect to the
pore walls.

Some values of diffusion coefficients for matter dissolved in water are given in
Table 5.7, e.g. compare [29]. Values for diffusion coefficients of gases in air of
normal pressure are given in Table 5.8, e.g. compare [24].

Indeed, global response determined by experiments on real porous materials
shows that the action of different diffusing constituents is very different. This
may, however, be a consequence of attraction or repulsion effects between the dry
or wet solid pore walls and the diffusing substance. This means that the problem
is not solely a diffusion problem but rather a problem involving chemical effects
and surface effects.

The attraction and repulsion forces between different diffusing components
and the inner surfaces of a porous cement-based material are supposed to be very
different in nature for different diffusing components. Therefore, the constitutive
relations for the mass exchanges of the format illustrated in Table 5.2 describe
the main underlying physical reason for the different global responses for different
diffusing constituents.

The reaction kinetics between solid surfaces and diffusing matter may, however,
not be constituted with standard arguments. The reactions on a micro-scale
(i.e. a adsorption-desorption phenomenon or purely chemical reactions) become
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Table 5.9: Material parameters used in the twelve governed equations. Note that
no explicit description has been intoduced for the reaction kinetics.

Param. Used in Note

equation
D.(c;,0,n) (4.70) Diff. param.
Ce = fe(Cey Prss Cony 0,1, @) (4.70), (4.74) Reac. kinetics
D,(c;,0,n) (4.49) Diff. param.
DY (4.49) Soret eff.
Dyic.(c1,n) (4.55) (Diff. param.)
Kaist. (4.55), (4.64) (Reac. kinetics)
¢y = flew,a,0,m,a) (4.49), (4.55), (4.64) Reac. kinetics
Bouir (Cvic) (4.61) Damping
)] (4.61) Viscosity
DY (¢;,n) (4.85) Diff. param.
DY) (4.85) Soret eff.
DD (¢;,m) (4.90) Diff. param.
Ceaohs = J(Cohy Peaonss Cis Cesy, 0y @) (4.99), (4.103) Reac. kinetics
Don(c1,m) (4.99) Diff. param.
el = f (CEZQ),CD;L,C;,Q, a) (4.90), (4.94), (4.99) Reac. kinetics
o) = f (cg‘j,),c((;“’),c;,@, a) (4.85), (4.90) Reac. kinetics
D,(c1,n) (4.111) Diff. param.
R, (4.111) (Reac. kinetics)
C(c,n,a) (3.21) Heat cap.
A, n,a) (3.22) Conductivity
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diffusion-controlled due to consumption (or production) of accessible components
located near the reactants in the pore solution. The background for introducing
reaction kinetics to the water-vapor phase is the micro-diffusion into smaller pores,
which are not easily penetrated by the vapor. This phenomenon may be the
explanation to the measured response for moisture uptake, e.g. compare Figure
4.3.

By using the proposed strategy of separating the constitutive relations for the
mass exchange effect (reaction kinetics) between diffusing matter and the solid,
and the constitutive relations for the mass diffusion velocities (which are based on
a scaling of the diffusion constants for a component moving in a pure medium),
the problem more or less becomes a question of finding proper expressions to
describe the reaction kinetics (or surface attraction or repulsion kinetics).

In order to show how the different introduced constituents and their governing
equations can be used as a base for the analysis of the reinforcement corrosion
problem, a separate discussion is presented in Section 6.

In Section 7, the problem of introducing yet another constituent is discussed.
The constituent of interest is the ice formed in the pore system at low temper-
atures. It will be shown that the complexity of the system considered increases
dramatically when one tries to introduce stringent physically based assumptions
for the formation and melting of ice within the porous material. Nevertheless,
damage caused by the freezing and thawing of concrete is of great interest when
considering the durability of concrete structures in cold climate.

It is realized that a model for physical degradation like carbonation, reinforce-
ment corrosion, and frost damage based on threshold values in terms of the mass
concentration (at a certain location) of, for example, chloride ions is not sufficient.
It will be claimed that the governing equations in Table 5.6 must be introduced
into a description of a stress-strain relation of the solid. Compare the discussion in
Section 8. Not until a realistic description of the environmentally induced stresses
and strains in the considered structure is added to the strains induced by the
normal load on the structure is obtained, a threshold value in terms of bearing
capacity or maximum allowable deflections of the given structure may serve as a
limit of service life.

Finally, it should be observed that the outer climate variations, i.e. the bound-
ary conditions, must be known in order to solve the proposed equation system for
the diffusing and chemically reacting constituents. The boundary conditions (and
their variations) to be described are: (i) the mass concentration of vapor, (i7) the
mass concentration of the gaseous carbon dioxide, (#i¢) the mass concentration of
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oxygen in the air, (iv) a situation with liquid water on the outer surface, with the
water concentration corresponding to saturation in the porous material, (v) the
mass concentration of dissolved chloride, (vi) a concentration of dissolved hydrox-
ide ions (zero at normal conditions), (vii) the dissolved carbon dioxide, and (viii)
the temperature. In cases where capillary suction is considered, i.e. when liquid
water is present at the boundary, a hydrostatic pressure must also be included as a
boundary condition. Furthermore, the initial conditions within the material must
be specified. The initial conditions should be given for all properties discussed
above but also for (i) the mass concentration of bound chlorides (initially zero),
(1) the concentration of solid calcium carbonate (initially zero), (7iz) the solid
calcium hydroxide concentration, and (iv) the concentration of vicinal water.
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6. The initiation and propagation stage of corrosion

In order to estimate under which conditions the corrosion of embedded reinforce-
ment will be triggered, the action of the corrosion cell in its propagation stage is of
interest. The equations describing the action of the constituents in the corrosion
initiation problem, i.e. chloride ions, hydroxide ions, carbon dioxide and oxygen,
have been dealt with in previous Sections. Here, a brief discussion on the mech-
anism of steel corrosion is presented. Factors that may control an initiation of
such a process will are also discussed. Furthermore, conditions which may control
the propagation stage of corrosion are touched upon, since it is believed that an
initiated corrosion process may cease if the conditions required to maintain the
corrosion are not fulfilled. For example, the availability of oxygen consumed in the
corrosion is related to the amount of oxygen supplied by diffusion and convection
from external sources, i.e. from the outer surface, and is thus of great importance.
The conditions might be such that they are ideal for the initiation of corrosion,
while the conditions to maintain a propagation are not. This is only one reason
why the problem of estimating the damage caused by corrosion, and so establish
physically stringent durability models of reinforced concrete structures, is very
grave.

A key issue is in fact the initiation of corrosion in areas with imperfections such
as cracks in the protecting surrounding concrete. In this report only homogeneous
uncracked concrete will be discussed, for simplicity reasons.

The oxidation reaction in the corrosion process involves the dissolution of iron
in the pore water near the steel, written as

Fe(s) — Fe?"(aq) + 2e~ (at the anode) (6.1)

where e~ denotes an electron. This reaction may only occur if the depassivation
of the steel has been induced by for example the presence of chloride ions in the
pore solution at a sufficiently high concentration (presumably caused by breaking
the oxide film on the steel surface) or/and a decrease in the basicity. By this
is meant a situation when a threshold value for initiation of corrosion is reached
(not considering imperfections such as cracks). The reaction (6.1) makes the steel
negatively charged.

The electron liberated in the anodic area moves through the steel towards a
neighboring cathodic area and creates an electric current flowing from the anode
to the cathode area. Incoming electrons from the steel bar at the cathodic area
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form hydroxide ions in the presence of water. The oxygen reduction reaction is
Os(aq) + 2H,0 + 4e~ — 40H™ (aq) (at the cathode) (6.2)

Apparently, the rate of the induced reaction (6.2) is very much determined by
the concentration of the hydroxide ions in the pore solution near the steel. A
relatively high concentration of hydroxide ions near the steel decreases the reaction
rate significantly compared to a case where the hydroxide ion concentration is low.
Furthermore, the amount of dissolved oxygen is important at attempts to estimate
the reaction rate in (6.2). Thus it must be estimated as closely as possible. On
the other hand, it is very likely that the electrons find their way to a cathodic
area, where the conditions are favorable for a formation of hydroxide ions, i.e. an
area with sufficient amounts of oxygen and water. As discussed before, the main
reasons for a decreased value of the hydroxide ion concentration are supposed to
be carbonization and the leaching of hydroxide ions from the pore solution to the
surrounding pure water.

The location of the developed anodic and cathodic areas is much a question of
imperfections at the steel surface and in the concrete near the steel bar. In cases
with well embedded bars and no cracks or other defects in the cover, it is believed
that tiny narrow pits are formed at the steel surface. These soon become uniformly
distributed, forming a large anodic area with neighboring cathodic regions.

The hydroxide ions that are liberated in the cathode area are balanced by a
reaction in the anodic region, to form ferrous hydroxide, i.e.

Fe**(aq) + 20H™ (aq) — 2Fe(OH),(s) (anode) (6.3)

Since the hydroxide ions liberated at the cathode can be transferred through the
electrolyte, in this case the pore solution, the flow properties of the hydroxide
ions in the pore solution near or at interface between the concrete and the steel
are of importance. However, since high concentrations of hydroxide ions initially
appear naturally in the pore solution of cement-based materials, the supply of
these ions may not necessarily be transferred from cathodic to anodic regions. In
fact, all ions present in the pore solution are involved in assuring that the process
is electrically balanced. During situations with significantly high concentrations
of chloride ions near the anodic and cathodic areas, the reaction (6.1) may be
accelerated due to the flow of negatively charged ions towards the anode.

The total cell reaction, i.e. the result of the reactions (6.1), (6.2), and (6.3), is

2Fe + 2H,0 + Oy — 4Fe(OH), (cell) (6.4)
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The ferrous hydroxide will, furthermore, react with available dissolved oxygen or
oxygen in its gaseous phase to form hydrated red rust Fe(OH);:

4Fe(OH)5(s) + Oq(aq or g) + 2H,0O — 4Fe(OH)3(s) (anode) (6.5)

where, again, the availability of oxygen and liquid water are important for the
reaction rate.

Of course, the presented reactions give a simplified picture of the essential
electro-chemical reaction. For example, other compounds may form, such as
FeSO, and black rust FesOy4; 3Fe+80H™ —Fe30448e~+4H,0, which may be
corrosion products if the availability of oxygen is restricted. Black rust, i.e. a
thickening of the oxide film, is not as liable to cause the cracking of concrete,
since the volume of black rust is twice as large as that of steel, compared to red
rust which is four times as large [6]. The damages caused by the formation of
rust in embedded steel bars in situations when the availability of oxygen is re-
stricted are, however, far from negligible. Actually, the embedded steel bars might
be completely dissolved under such conditions, especially when chloride ions are
present from external sources.

Oxygen is consumed both in the cathodic and the anodic areas, compare (6.2)
and (6.5). This makes the availability of oxygen one of the important factors in
the control of the corrosion process (when the production of, for example, black
rust is not considered). The supply of water is not, however, believed to control
the process directly. The mass concentration of liquid water will, however, surely
affect the mobility of oxygen and chloride ions from the external outer surface.
Furthermore, the degree of water saturation will radically affect the electrical
resistivity of the concrete [6].

In physical chemistry, the reaction molar Gibbs energy A, is often assumed to

be related to the composition of the reaction mixture, in this case for the reactions
(6.1) and (6.2) as

AC = Aol + ROINQ (6.6)

where A,( is the standard (reference) reaction molar Gibbs energy of a certain
reaction, and () is the reaction quotient in terms of activities, for the individual
constituents which in general depend on the composition. The absolute temper-
ature is denoted 6 and the gas constant R (given as 8.314 (J/mol/K)).

The cell potentials Uy, denoting the standard electrode potential, and U (in
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volts) can be written in terms of the reaction molar Gibbs energies as
_ A

ATOC_
o and U = F (6.7)

Uy =

where v is the valence number for the substance that passes into the solution,

also equal to the number of electrons involved in the reaction studied, and F is

Faraday’s constant, 96485 (C/mol), a measure of the charge per mole of electrons.
Following (6.6) and (6.7), the Nernst equation is obtained as

RO
U—U0+UF1nQ (6.8)
That is, the corrosion cell potential related to a standard potential Uy is the Gibbs
energy of the reaction expressed as a potential in volts.

By making the rough approximation that the reaction quotient () may be
determined solely in terms of molar concentrations for the constituents reacting
in the cathode and anode areas, i.e. considering the activity of the constituents
to be equal to their molar concentrations, the term ) can be expressed for the
anode reaction (6.1) as

Q""" (Xanode,t) = [Fe*] / [Fe]  (at the anode) (69)

where [Fe?"| is the molarity, i.e. the concentration of Fe?* in moles per liter
of electrolyte (pore water) at the spatial position Xg,.qe and at the time ¢. This
definition of concentration is different from the concentration denoted c, discussed
in previous sections. They are easily related to each other through the use of the
mass concentration of the solvent, i.e. the concentration of liquid water ¢; in the
pores of the porous medium.

The activity of a pure solid or liquid is by definition equal to 1, that is [Fe] =
1. This represents the activity of a Fe molecule in the steel bar.

The reaction quotient @ for the cathode reaction (6.2) is determined by the
same approximations, that is

Qcathode (Xcathodev t) = [02] [HQO]Q/ [OH7]4 (at the Ca‘thOde) (610)

where the activity for the pure liquid water is defined as [H,O] = 1.
The standard hydrogen electrode (SHE) is used as the defined zero potential U,
i.e. the reaction 2H"+2e~= H,. The measured standard potential for the anode
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Table 6.1: Standard electrode potentials at 298 K, [29].

Reduction half-reaction U (V)
Fe** + 2¢~ — Fe —0.44
Fe3t + 3¢~ — Fe —0.04
Fe?t + e~ — Fe?t +0.77
2H' + 2¢- — H, +0, by definition

Oy +2H,0 + 4~ —40H~ +0.40

reaction (6.1) is U™ = —0.44 (V), e.g. compare [29]. The valence number is

v®ode — 9 Then the anodic potential becomes (in volts)

U (Xanoder ) = —0.44 + 4.3 - 1070 In ([Fe?*]) (6.11)

It should be noted that a molar concentration of [Fe*] = 1 (mole per liter of
pore water) corresponds to the measured standard potential, i.e. U = [gnede
for this special case.

The measured standard potential for the cathode reaction (6.2) is Ug*hede =
+0.40 (V), e.g. compare [29] and Table 6.1. The valence number is v®hode = 4,
Then, the cathodic potential can be written as

U™ (Xonthode, t) = 0.40 + 4.3 - 1020 In ([Oo] / [OH ') (6.12)

The electromotive force UToree = [Jeathode _ [janode jg simply the difference between
the two potentials in (6.11) and (6.12).

It should be observed that the estimation of U4 and U°% using the
equations discussed, are only significant under extreme, ideal conditions. In fact,
these potentials will be very much reduced by polarization phenomena. This is
discussed at the end of this section.

In order to predict how the ions in the pores of the porous medium are af-
fected by a current induced by the corrosion cell, the field equation describing a
conductive media is of interest. The subject will be outlined briefly as follows.

Due to the fact that the anode and cathode areas can be developed at locations
along a steel bar in concrete, a one-dimensional representation of the problem is
not sufficient. Therefore, a more general, three-dimensional presentation will be
adopted.

The continuity equation for the current density j (amp/m?) without any global
current source can be written as

divj = 0 (6.13)
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where j is a vector quantity.
The electric field intensity vector e (V/m) is assumed to be related to the
current density vector j as

j :ks(ch Ce, Coh)e (614)

where ks (ohm/m) is the electrical conductivity of the solid matrix (e.g. concrete).
This is assumed to be a function of the mass concentration of liquid water ¢; in the
pores of the solid and of the dissolved chloride ion concentration c. and hydroxide
concentration c¢,;, in the pore solution. This quantity is for concrete w/c ~ 0.5
not ‘infected’ by chloride measured to be, ks = 40 (ohm/m) at 100% saturation,
ks = 90 (ohm/m) at 80% saturation, ks = 400 (ohm/m) at 60% saturation and
ks = 90000 (ohm/m) at 40% saturation by water [45]. The values depend very
much on the type of binder, however.
In electric conduction field problems the electric field intensity is defined as

e = —gradU (6.15)

By combining (6.13), (6.14) and (6.15) the governing equation for the electrical
potential field U(x) becomes

—div(ks(cr, ey con) gradU) = 0;  inV (6.16)

This equation needs boundary conditions in terms of prescribed potentials and /or
prescribed current densities along boundary surfaces. In fact, the anodic and
cathodic areas will be interpreted as boundary conditions expressed by the values
of the potentials at the anode and cathode calculated by equations (6.11) and
(6.12), in which also the effect of the polarization will be incorporated. It should
be noted that the potential field calculated by (6.16) is zero within the whole
domain of interest before the corrosion is initiated.

The prescribed boundary values to be used in equation (6.16) in terms of the
potentials at the anode and cathode located at the spatial position X,,.q. and
Xeathode T€SPectively are written

U(Xanodes t) = U%(Xanode, 1); (when corrosion is initiated) (6.17)
and

U(Xeathodes ) = U™ (X pathode, 1); (when corrosion is initiated)  (6.18)
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One difficulty consists in predicting at what locations the anodic and cathodic
are formed when corrosion is initiated. It is, in fact, extremely important to
predict the spatial positions of the anodic and cathodic areas correctly, since the
gradient of the potential is assumed to cause a significant motion of ions in the
pore solution. Motion of chloride ions in concrete due to an electrical field has
been studied in [46]. In a situation where the anodic and cathodic areas are
located far from each other, a smaller electric field intensity, relatively speaking,
will develop than if the distance is short.

The electric boundary condition normal to the outer surface can be expressed

as
jx,t)n=0; ondV (if ¢(z,t) =0; on 9V) (6.19)

under the condition that the surface of the porous medium is exposed to air
(written as ¢;(z,t) = 0; on V). The vector n denotes the outward unit normal
to the boundary surface V. The condition

U(x,t) =0; ondV (if ¢,(z,t) =0; on 9V) (6.20)

can be used if the outer surface is submerged in liquid water [6] (written as
alz,t) = 0; on V).

In order to derive an equation valid for ions exposed to an electric field and
concentration gradients the mass density flow can in somewhat general terms be
constituted as

PionWion = f(grad cion, grad U, cion) (6.21)

Using the somewhat crude approximation that the mass density flow consists of
one part described by a concentration gradient, and another described by a linear
combination of the concentration c¢;,, and the gradient of the potential U, the
following relation is obtained:

PionWion = —Dion(c1,0, n, a) grad Cion + CionDionr (0, n, a) grad U (6.22)

where the mass concentration ¢, in the second term can be interpreted as a quan-
tity representing activity. The constitutive assumption (6.22) will, however, be
of the standard diffusion-convection format, when inserted into the mass balance
equation.

For positively charged ions, the coefficient D;,,,r is defined as a negative quan-
tity, and for negatively charged ions, D;,,r is positive. Some measured ionic
mobility values for ions dissolved in bulk liquid water are listed in Table 6.2.
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Table 6.2: Ionic mobilities in water at 298 K, [29].

Ion  Tonic mobility (m?/s/V)
K* 7.62-1078

Ca*t? 6.17-10°8

Na® 5.19-10°8

Cl-t  791-1078

COz? 7.46-1078

OH- 20.64-10°%

Corresponding measured diffusion constants in bulk liquid water for the some
ions are D! = 2.03 - 107% (m?/s), D!, = 5.30 - 10° (m?/s), and D!, = 1.33 -
1072 (m?/s), e.g. compare [29] and see Table 5.7.

By comparing the magnitude of the electromotive force with the concentration
gradient force for a situation, where the cathodic and anodic areas are not located
too far from each other, it is found that the motion induced by the corrosion cell
in terms of the electromotive force acting on the ions in the electrolyte becomes
dominant when the corrosion process is in its propagation stage.

The divergence operating on the second term in (6.22) gives

DionE diV(Cione) :DionE Cion le (e) + DionE e'grad Cion (623)
where e =grad U. Making the assumption that the term
Diongs Cion div (€) = 0 (6.24)

is small compared to the others, the constitutive relation (6.22) and the approxi-
mation (6.24) inserted into the mass balance equation (2.56) becomes

aCion

P51

—div (Dion(ch 97 n, CL) grad Cion) - (625)
(pX + Dion:(0, n, a) grad U) - grad Cion — Cion — Mion; inV

where the dependencies upon the mass concentration of liquid water ¢;, temper-
ature 6, porosity n, and specific surface area a have been included as material
parameters in the diffusion and ion mobility parameters.

The term omitted, i.e. D;onrCion div(e) can, of course, be added to the equation
(6.25). This term will be given as —¢;on Dionr(ci, 8, n, a) div(grad U), which in all
essential parts means that the Laplace on the electrical potential field U(x) is
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introduced as a source/sink term in (6.25), with a material parameter identified
as k = CionDionr:(c1, 0, n, a).

Equation (6.25) represents a situation with molecule diffusion and forced con-
vection due to the mean velocity of the mixture x and the driving force imposed
by the electric field intensity e (i.e. gradU). Furthermore, the mass supply term
Cion 18 included, which describes the reversible binding of ions to the solid pore
wall in the whole domain V. Constitutive relations for these quantities have
been suggested in previous sections. The property m;,, denotes the source/sink
term due only to the reactions at the anode and cathode. Therefore, it is also a
constitutive-dependent property. This will be discussed at the end of this Section.

The constitutive relation for the quantity ¢;,, is more difficult to describe
than the, somewhat, ideal case where there is only molecule diffusion and binding
without any external applied electric field e. This is due to ions getting stuck in
cavities on the pore walls, located in the direction of the applied electrical field.
Hence, the conditions that determine the removal rate of free diffusing molecules
towards the solid pore walls, where they might get stuck, will be very different
when motion induced by an external electromotive force is considered, acting in
the whole domain of interest. This should be compared to the case where only
molecule diffusion takes place.

Such complex phenomena must be considered when trying to estimate the
diffusion parameter D;,, with the so-called Finstein relation. This relates the ion
mobility D,z to the pure diffusion parameter D,,,, in cases where an electric
field with the intensity e is applied to bulk liquid containing dissolved ions of low
concentration. The Einstein relation can be written: D;ypp = D;onvF/(R6).

One crucial point when it comes to estimating the corrosion rate is the effect
of electrode polarization. The values of electrode potentials are known to be
significantly lowered when the electric current density j increases. Usually, the
drop in the electromotive force U/"“* due to polarization is denoted . The actual
electromotive force is then written as Ugoofce = Ufor® — p. The physical source
of polarization is believed to be of two kinds: Activation polarization 7, and
concentration polarization 1, i.e. 1="1n, +1,.

The concentration polarization is caused by a decrease of ion concentration
near the electrode surface due to corrosion. As the ions are consumed by the
corrosion process, the voltage is reduced and the current eventually becomes in-
hibited. In the field of electrochemistry, the approximation of the concentration
profile near the electrode is often assumed to be linear across the so-called Nernst
diffusion layer, which is typically 0.1 mm. However, as field equations in the
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format shown in (6.25) can be used to describe the ion behavior within the whole
domain of interest, no additional approximations for the region near the electrode
are needed to describe the concentration field at different time levels. Neverthe-
less, some kind of special assumption as to the boundary conditions, in terms of
the potential U at the electrodes, must be incorporated in order to capture the
concentration polarization phenomenon.

Another problem related to concentration polarization is that Fe?" dissolved
into the pore liquid near the steel at a developed anode may form complexes with
dissolved chloride ions present. Such complex formations of negative and positive
ions of interest in the corrosion process complicates the picture when it comes
to defining the concentrations of, for example, OH~,Fe?** and Cl~. These are
important variables when predicting the anode and cathode potentials with the
equations (6.11) and (6.12). Yet another question which has to be answered is if
chlorides in complexes with Fe?* may contribute to a further acceleration of the
corrosion process.

Activation polarization is a drop in the electrode potential due to changes
of the current magnitude in the mechanism of ion transfer through the interface
between the electrode itself and the surrounding bulk material, in this case the
steel-concrete interface. The most primitive model of this interface is an electrical
double layer. It consists of a thin sheet with positive charge towards the electrode
surface and a sheet with negative charge towards the solution (or vice versa).
By corrosion of reinforcement bars in concrete, it is assumed, however, that the
concentration polarization prevails since the activation polarization has its source
in a very thin surface layer, which builds up rapidly compared to the concentration
polarization [6)].

In order to close the equation system, constitutive relations must be introduced
for the source/sink terms m,, to describe the reaction rate of the ions, which
participate at the cathode and anode areas. A condition for initiation of corrosion
must also be specified.

Due to the low solubility of Fe(OH), and Fe(OH)s, which are formed at the
anode (during situations when oxygen is available), one may suspect that the
concentration of Fe?t near the steel is kept at a rather low, constant level when
the corrosion process is in its propagation phase. In turn, such an approximation
means that the potential U™ (X4,04¢,t) determined by equation (6.11) is also
kept constant on condition that the temperature 6 is also constant. Therefore,
the reaction rate of Fe*™ at the cathode can be constituted as shown in equation
(6.1), as a function of concentrations in the pore solution near the cathode area
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of chloride ions, hydroxide ions and oxygen, and as a function of the amount of
rust produced and the temperature. This can be described in general term as

Me(Xanode, ) = f ([OH7], [C17], [Oo], [Fe(OH)3] ,60) (at active corr.)  (6.26)

where the equation describing the action of the hydroxide ions, the chloride ions
and the oxygen should be used to calculate the corresponding concentrations at
the location where the anodic area has been developed, i.e. equations of the
kind illustrated in (6.25). The concentration of Fe(OH); at the same spatial
location is simply supposed to be calculated by the stoichiometric relations (6.1),
(6.2), (6.3), and (6.4). Since no equation to describe the diffusion behavior of
Fe(OH)3 has been introduced, it is suggested that the red rust that is formed in
the anode area (and which stays there) contributes to a diffusion barrier for other
substances. The reaction rate (6.26) is simply interpreted as a decrease of the
reaction rate as the concentration of red rust at the cathode increases, while all
other concentrations remain constant. In fact, such a behavior is similar to the
polarization phenomenon. It should be observed that the concentrations in (6.26)
are affected by a change in liquid water concentration ¢;, since they are defined
as mol per litre solute.

A possible linear combination of the quantities in (6.26) is the constitutive
relation

[C17] [02] 6
OH-] [Fe(OH),]

Mpe(Xanode, t) = /{:Fe[ (at active corrosion) (6.27)
where kp. is the rate constant for the reaction (6.1).

By using the stoichiometric relations (6.1), (6.2), (6.3), and (6.4), the source/sink
terms in the anode and cathode areas 1, (Xanode, t) (rate of consumption of oxy-
gen), Mon (Xanode, t) (rate of consumption of hydroxide ions), and M edrust (Xanodes t)
(rate of production of Fe(OH)3) can be calculated directly without any extra con-
stitutive relations apart from (6.27). It should be noted, however, that the cath-
ode potential U C‘“h"de(xmthode, t) is changed significantly due to the consumption
of oxygen and hydroxide ions when the diffusion-convection process does not serve
the cathode with negatively charged ions at the same rate as the consumption of
these. This changes the movement of negatively charged ions towards the cathode
caused by the electric field.

The conditions for onset of steel corrosion in bulk water solutions are often
expressed by the concentration ratio [C17] /[OH™]. Experiments confirm that
the approximative value of 0.6 is required to initiate corrosion in aquatic water
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solutions, e.g. compare [25]. Here, it is suggested that the initiation criterion
can be extended to include the availability of oxygen. Besides, the temperature
is supposed to have an effect on the initiation. The new criteria would then be

lf kanode [Cl_] 9 anode [Cl_] [02]

< TOH]293 "  28-10 > 1 (initiation at anode) (6.28)

where the solubility of oxygen in water at room temperature and at normal pres-
sure is 2.8 - 107 (mol/1). This should be compared to the amount of oxygen in
air, which is in the magnitude of 8.8 - 10=* (mol/1).

By setting the constants to k%% = 1.67 and k?"*% = 0, and the temperature
to # = 293K, the classical initiation criterion [Cl7] /[OH™] > 0.6, relevant for
aqueous solutions only, is obtained.

Note that (6.28) is supposed to determine when and in which spatial position
corrosion will be initiated. The constants k., and k, will, presumably, depend on
the porosity n, the specific area a, and the binder type of the concrete in question.

The location of the cathodic area in relation to the anode in the same cell is of
interest when the magnitude of the electric field intensity e in the porous medium
is considered. This in turn is important for the determination of the mass transfer
of ions at the propagation stage. That is, an additional criterion must be specified
for the location of the cathodic spatial position once the anode reaction has been
initiated, e.g. when (6.27) is fulfilled. Such a criterion might typically be

kcathode [02] [HQO] 9

[OH-]293 ~ (6.29)

where kc@hode ig o material constant. Note that the assumed cathode reaction is

(6.2). The criterion (6.29) only determines the spatial position along the steel
bar where the cathodic reaction occurs once the relation (6.28) has been fulfilled.
At this specific location, the source terms at the cathode, which describe the
production of hydroxide ions, denoted Mon (X cathode, t), can be calculated with the
stoichiometric relations (6.1), (6.2), (6.3), and (6.4).

Another question to be addressed in this context is whether the anodic cor-
rosion reaction resulting in the production of rust can proceed if the criteria for
a cathodic reaction are not fulfilled within the domain of interest. In that hypo-
thetical, case both (6.28) and (6.29) should be used simultaneously to determine
the condition of triggered corrosion, since both the anodic and cathodic reactions
must be active when also a closed electric circuit in the corrosion cell exists.
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7. A few remarks on heat transfer and phase change prob-
lems

In this section, the classical heat conduction equation for a single temperature
0 of the mixture will be derived using a simplified version of the energy balance
equation (2.118) together with required constitutive relations. A more detailed
description of the problem, involving the concepts of the free energy density v,
and the entropy 7, for the constituents in a mixture, will also given to show the
difficulties involved in improving the assumptions.

In the so-called Stefan’s problem, a modified version of the linear classical heat
conduction equation is used to track the propagation of a freezing or melting front
of a pure material undergoing a phase change. Essentially, six material parameters
are used in this approach. However, the formation of ice in a porous material with
a wide range of pore sizes filled, or partly filled, with a pore solution and containing
different chemical components does not satisfy the basic assumptions introduced
for solving the Stefan’s problem. The important difference between the Stefan’s
problem and the freezing of liquid water in a porous medium will be discussed.

The most important phase change problem in the area of durability of porous
building materials is probably the formation of ice in the pore system. Ice may
cause damage such as internal micro-cracks and scaling of material surfaces. A
problem of special interest, in this context, is the formation of ice in combination
with deicing salts. This damage differs from the one which arises when a pore
solution freezes without the presence of external salts.

To obtain the standard heat conduction equation, the internal energy £ must
be constituted with the material constant C' and the temperature 6, as

e=C0 (7.1)

where C' represents the specific heat capacity of the material considered.
The heat flux ¢, in a one-dimensional case is constituted by a temperature
gradient assumption and the material constant A called the conductivity as

00
= —A— 7.2
q o (7.2)
The body force of all constituents b,, the influence of the term including the
stress tensor and the velocity gradient for the mixture trT'L, and the external

heat supply for the mixture r are all assumed to be negligibly small quantities



133

compared to the others in the energy balance equation (2.118). The simplified
energy balance equation in one dimension becomes

de _ 0qq . Oe

P5 = " or Mo (7.3)

where p is the mass density of the mixture defined in (2.12) and %, is the mean
velocity of the mixture defined in (2.15).

If the constitutive relations (7.1) and (7.2) are introduced into the simplified
energy balance equation (7.3),

00 0?0 . 00
is obtained. If the mean velocity &, vanish, the equation (7.4) represents the
standard heat conduction problem, which must be supplemented with boundary
conditions in terms of temperature and/or a heat flux. Furthermore, the initial
conditions must be specified.

In the Stefan’s problem, the mean velocity of the mixture &, vanish, and the
material parameters C' and A\ are assumed to be functions of the temperature
itself. Thus, the temperature field in a domain where a phase change occurs can
be solved, and assure energy balance, with a non-linear version of (7.4). The
governing equation in the Stefan’s problem can be obtained by introducing the
constitutive relation of a rate type for the internal energy as

e=C(9)0 (7.5)
The heat flux is constituted as
00
0= =705 (7.6)

Furthermore, the divergence of the heat flux can be expressed by

dq, O 09 AN 0%
- p0%) -0 (%) o5 (7.7

It is assumed that
% 2 <1 (7.8)
ox '
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Table 7.1: Material constants for water and ice used in the Stefan’s problem.

Constant Value Remarks

Ci 1.762 - 103 (J/kg/K) Specific heat capacity, liquid water
Cice 4.226 - 10° (J/kg/K) Specific heat capacity, ice

Al 2.220 (J/s/m/K) Conductivity of liquid

Nice 0.556 (J/s/m/K)) Conductivity of ice

L 333.6 - 10° (J/kg) Latent heat of fusion

0 273.15 (K) Transition temperature

Al ~ 0.01 —0.0001 (K) Used to compute C; from L

With (7.5), (7.6), (7.8), and (7.3), the non-linear version of the standard heat
equation becomes )
00 00
ot A(e)axQ
if the velocity of the mixture & vanish.

Whenever the phase change temperature 6 is reached, the material parameter
C(0) will exhibit a discontinuous jump. This is due to the latent heat effect L
(J/kg), since the latent heat L is adsorbed or emitted during the phase change.

Integrating around the phase change temperature 0, gives

pC(0) (7.9)

+
0

L= ["c®)d (7.10)

O

which is a material constant for pure materials undergoing a certain phase change.
It is important that certain material parameters are known when the Stefan’s
problem is applied to liquid water and ice. These are the specific heat capacities
of liquid water C} and ice Cj.., and the ‘specific’ heat capacity during the phase
change C},. The C}, value represents the latent heat effect calculated from the
material constant L together with an assumption of a small temperature interval,
during which the phase change is supposed to occur. Furthermore, two different
constant values of the conductivity \ are adopted, that is, the conductivity of
liquid water \; and ice \;... Compare the data for water and ice in Table 7.1.

Within the assumed phase change temperature interval, the conductivity A
is often assumed to be linear between the values A\; and A,... The change of
the mass density of the mixture p is, however, normally incorporated into the C'
values. Besides, the pressure effects upon the formation of ice are ignored in the
Stefan’s problem.
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By solving the non-linear equation (7.9) with the above-mentioned material
parameters, a discontinuous freezing or melting front can be followed for all kinds
of variation of the boundary conditions, simply by checking at which locations
in the domain the temperature is below the specified temperature 6;. Numerical
methods solving the equation (7.9) have been proposed, e.g. compare [47].

However, an inherent problem when studying porous materials with a wide
range of pore sizes is that not all of the liquid water present in the pore sys-
tem is transformed from water to ice when a certain freezing temperature 6 is
reached, as assumed in the Stefan’s problem. In order to use the energy balance
concept to calculate the mass density of ice p,..(X,t) formed in a porous material,
modifications to the classical Stefan’s problem must be introduced.

It is believed that liquid water present in different pore sizes in a saturated
porous material will exhibit different freezing temperatures 0, i.e. a scatter of
different latent heat effects at different temperatures must be overcome. The ini-
tial mass concentration of liquid water ¢;, however, give no information as to how
this liquid water is distributed among the different pore sizes in a representative
material volume (REV). That is, some kind of geometrical consideration in ad-
dition to the porosity n and the specific surface area a must be introduced, and
some relation must give the distribution of liquid water in this geometry.

By using for example the modified Kelvin equation (4.23) together with quan-
titative measurements or microscope studies the pore distribution curves can be
evaluated. The pore distribution curves indicate of which pore size radii r, the
total porosity consists. The most simple distribution function of liquid water for
such a geometry is the assumption that a given mass concentration of liquid water
¢; occupies the smallest pores completely. In other words, if half of the porosity
in a porous medium consists of pores smaller than a given value 7,5 and the
degree of saturation is 50%, all these pores are assumed to be completely filled
with liquid and all the remaining pores, larger or equal to rp5 will be assumed
to be completely dry. A simple way to improve this assumption is by distin-
guishing between adsorbed water molecules and liquid water stuck to the pore
walls due to capillary condensation. That is, the adsorbed water can be assumed
to be distributed among the different pore sizes in relation to its corresponding
envelope-specific surface areas.

Furthermore, a function relating the freeze temperature 6 to the different pore
size radii r, must be introduced in order to evaluate the function C(0) for a specific
material with a known pore size distribution. The latent heat L is, however, not
a constant even when the fusion of ice in a normal condition is considered. Thus,
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Figure 7.1: Effect of holding temperature constant after freezing starts in a rela-
tively dense paste, [50].

supercooled or undercooled water will exhibit different latent heat L at different
temperatures. At 273.15 (K), 263.15 (K), and 253.15 (K), the latent heat of fusion
of ice is 333.6 (kJ/kg), 284.8 (kJ/kg), and 241.4 (kJ/kg) respectively [48].

There are many other important effects which must not be overlooked. One of
them is that the liquid water (on a microscopic scale) present in the largest pores
(having a certain known 6 ;) will form ice when the ice formation is nucleated. This
first ice formed is, however, believed to attract water from neighboring pores with
smaller radii than that contained in the ice in its vapor and liquid phases. This
phenomenon may significantly change the assumed distribution function of liquid
water during the freezing process. The equation (7.9) together with assumptions
of pore size distributions can not be used alone to calculate the mass density of ice
Pice(X,1). The effects of water from neighboring pores or from the surroundings
being drawn towards ice islands created in the pore system is often referred to
as cryogenic suction or cryosuction, e.g. compare [49]. Cryosuction is explained
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by the difference in the free energy of ice at a certain temperature and unfrozen
water at the same temperature.

Furthermore, if the attraction of water-vapor towards the ice islands in the
pore system is significant, the amount of vapor to be converted to ice, i.e. the
sublimation, might be of importance. The latent heat of fusion is approximately
12% of the latent heat of sublimation at 273.15 (K) and at atmospheric pressure.

It is noted that calorimeter measurements can not reveal the amount of ice
formed in the pore system directly without making assumptions of the involved
latent heat of fusion and sublimation at different temperatures and at different
mass concentrations of water in the pore system. One problem to be considered
is for example that the latent heat of fusion of capillary water is different from
the latent heat of fusion of adsorbed and capillary-condensed water at a certain
temperature. Furthermore, the latent heat of sublimation and the fusion can not
be distinguished, since the calorimeter measures the total response in terms of
heat output or heat input.

Since the ice grown from the vapor phase is very different in structure than
ice grown from bulk water, the sublimation phenomenon may have important
consequences in terms of micro-cracking of the solid material. Besides, as the
growth of ice becomes diffusion-controlled, the time scale of vapor flow towards ice
islands and the degree of external cooling rate become important. If, for example,
the external cooling rate is fairly rapid, the diffusion-controlled sublimation is
supposed to be small, and if the external cooling rate is slow, the ice growth
due to sublimation (or, rather, damages caused by sublimation) might prevail,
compare Figure 7.1.

In a situation, where the diffusion-controlled ice growth, i.e. the sublimation,
is active, different ice crystals will be formed depending on the degree of super-
cooling. The various ice crystals growing at different temperatures in a diffusion
cloud chamber are: (i) hexagonal plates from 273.15 to 270 K, (4i) needles from
270 to 268 (K), (¢i¢) prismatic columns from 268 to 265 K, (iv) hexagonal plates
from 265 to 261 (K), (v) dendrites from 261 to 257 (K), (vi) hexagonal plates
from 257 to 248 (K) [48]. The saturation pressure of the vapor involved in the
sublimation has been shown not to affect the overall formation pattern of these
different crystals. Temperature, it seems, is the main factor. Due to the different
geometrical shape of these crystals, they might cause different kinds of damage
to the solid. Dendrites and needles might be the most damaging products formed
due to the needle-like shape of these crystals.

The thermomechanical problem of ice growth in concrete is often studied by
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Figure 7.2: Effect of entrained air and the spacing factor, [50].

measuring the length changes due to a temperature depression and due to ice
growth in the pore system, see Figures 7.1 and 7.2, [50]. In order to evaluate such
measurements, the concept of stress and strain must be introduced. This subject
is discussed in Section 8.

By combining the first and second axiom of thermodynamics, the thermome-
chanical coupling can be studied. Here, the free specific energy potential ¢, and
the entropy 7, are used as constitutive dependent properties. Indeed the thermo-
dynamic properties 1, and 7, can be quite generally constituted, and therefore a
more general energy equation than (7.4) can be obtained. This general equation
is believed to be more adequate when phase change problems are studied, where
factors other than temperature itself will affect the thermodynamic state variables
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g, or 1, and 7,. Similar approaches have been proposed, e.g. compare [51], [52],
and [53]. The Helmholz energy ¢ and the entropy 7 are often introduced as well
when studying thermomechanical coupling, e.g. compare [54].

For example, the mass concentration of dissolved chloride ions and pore water
present in different pore sizes will be factors affecting the freezing temperature.
Hence, the thermodynamic state variables ¢,, ¥, and 1, will also be affected. The
derivation of a more general equation than (7.9) is not straightforward, since such
formulations often include so-called internal variables. Furthermore, problems
associated with the fulfillment of the second axiom of thermodynamics must also
be dealt with. However, it will be shown that it is possible to study freeze-
thaw problems in porous materials using the concept of mixture theory. Here,
two different strategies to obtain an equation dealing with heat conductivity and
chemically reacting constituents will be presented. It will be shown that different
thermodynamic laws can be defined due to the second axiom of thermodynamics.
The definitions of the thermodynamic laws do not follow directly from the second
axiom of thermodynamics, but rather from the combination of this axiom and the
choice of constitutive relations.

Consider the second axiom of thermodynamics (2.173), as expressed in terms
of the Helmholtz free energy v, and the entropy 7, i.e.

Z Pty — Z Palad + Z T, Lo (7.11)
a=1 a=1

R

Z qa + paenauﬂ) gra‘d (0) /9

a=1

R R

Z — > (Vo + 3u2)

a=1

where the definitions (2.138) and (2.171) have been used.
Two examples will be studied, both based on the assumption that the Helmholz
free energy depends only on the temperature and the mass density, that is

Vo =1, (0, pa) (7.12)

At first, the partial hydrostatic pressures m, will be defined with the help of the
Helmholz free energy 1, described through (7.12). In order to define the pressure,
consider the derivative of (7.12), i.e

8wa

/ 81/}11 /
pad}a - a 89

9p. "

0 + p,

(7.13)
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It should further be noted that div x/, = tr (grad x/,) = tr L,, which allows the mass
balance (2.59) to be written

ph = —p, tr L,+¢, (7.14)
If (7.13) and (7.14) are combined

Pl = pa%y — pig—if:tr La+pa%éa (7.15)
is yielded.
Only the terms in the second axiom of thermodynamics containing the term
L, will be considered at this stage. It is concluded that the first term and the
third term in (7.11) together with (7.15) result in a validation of the following
restriction:

& 2 O T

dotr{po=—I+T, | L, >0 (7.16)
a=1 8p(l

Since L, is arbitrary, it follows that the parenthesis in equation (7.16) must be

equal to zero in order to satisfy the part of the inequality containing the velocity

gradient term. This makes it possible to define the thermodynamic law for the

stress tensor as

T, = —p? (7.17)

The stress tensor is described with the hydrostatic pressure only, i.e.
T, =—m,1 (7.18)

Following the thermodynamic law (7.17) as well as (7.18), the expression for the
hydrostatic pressure can be written as

2 8wa
“Op,

Ta=p (7.19)
This means for example that the choice ¥, (6, p,) = RO 1n p, gives the expression
m. = ROp, which is the ideal gas law.

The following discussion will concern two constituents denoted 1 and 2. For
simplicity, the following restrictions will be assumed:

X
X

:; g 2 8 ; (7.20)
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This means that also the velocity of the mixture x and the diffusion velocities u,
are restricted to be zero. That is, a problem with heat conduction and chemical
reactions will be studied, in which the constituents have zero velocities and where
the hydrostatic pressures for the constituents are defined by 7, = p?9t,/9p, and
g = p301,/Dps, 1.e. by the equation (7.19).

The fifteen unknown properties in both the test problems for the heat con-
ducting and reacting constituents 1 and 2 are:

P1 (X7 t) . 9( t) . 1 (Xv t) . (Xv t) . ¢1 (Xv t) B 1] (Xv t) . (7 21)
P2 <X7 t) 7 TG (X7 t) ’ Up’ (X7 t) 7 % (Xu t) T (X7 t) 7 .
where the independent variables are the mass densities p; and p, and the temper-
ature #. The rest of the properties listed in (7.21) are the constitutive variables. It
should be noted that the heat fluxes q; and q involves three unknown properties
each.
Due to the assumptions in (7.20), the inequality (7.11) is simplified to

2 2 2
= patba —pn0 — > aa-grad (0) /0 — > éap, >0 (7.22)
a=1 a=1 a=1
where gD; = gba and h = q; + q2 due to the restriction of zero velocities for the
two considered constituents.
It is further assumed that the Helmholz free energy for the constituents 1 and
2 are given as functions of the temperature and the mass densities p; and p,, i.e.

Y1 =, (0,0)
Yy = 1y (0, po) (7.23)

The entropies for the constituents 1 and 2 are assumed to depend on the same
quantities, i.e.
m =m(0,p1)
7.24
Ny =15 (0, p2) ( )

The chemical reaction rate ¢; is constituted as a function of the temperature 6
and the mass density of the constituents.

¢ = fl (97 P15 p2)

. 7.25

C2:f2 (97p17p2) ( )
At last, the heat fluxes is constituted as

q: = f; (grad 0)

7.26
q2 = £, (grad 0) ( )
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The differentiation of ¢, and v, given from (7.23), yields

)= Mg O
Y, = 50 0+ 90, (7.27)
W Oy, Oy
hy, = 899+82p (7.28)
Equation (2.138) is
R
PN=D" Palla (7.29)

a=1
If (7.27), (7.28), and (7.29) are introduced into the simplified inequality (7.22),
the result is

8¢ 2 i 2 2
-3, (G2t G0 = X = Y - (6) /8- Yy, = 0 (7.30)
a=1 a=1 a=1

The mass balance for constituents 1 and 2, compare (2.49), is broken down to

pl = 61 (7.31)
by = & (7.32)

since dp, /0t = p, when x/, and X is equal to zero, e.g. compare (2.49), (2.25),
and (2.26). The constraint on the mass balance equation (see (2.51)) is

2
S =0 (7.33)
a=1

If the mass balance equations (7.31), (7.32), and the constraint (7.33) are intro-
duced into (7.30),

¢ ; 2 < 8¢a
9_
m) > (5

2
I,
_az_:lpa<80

0 0= S 6)/62 0 (134

is yielded. Since 6 is an arbitrary quantity, it seems natural to define the thermo-
dynamic laws

Oy
0
W — (7.36)

00
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which assure that the first terms in (7.34) fulfill the reduced inequality.

A so-called dissipation inequality is introduced for the second term in (7.33)
by replacing p, with ¢ and also p, with ¢. In other words, the equations (7.31)
and (7.32) are inserted into the second term in (7.34). This yields the dissipation
inequality

2 a . X
Pehem. — — Z <Pa (r;ﬁ + ¢a> Cq 2 0 (737)

a=1 a

This inequality is valid only when the velocity of both constituents is zero, i.e.
when the relation p, = ¢, holds for the constituents 1 and 2. The property ¢ ;...
will be referred to as the chemical dissipation.

It can be established that the dissipation inequality (7.37) is positive by making
a proper constitutive assumption for the rate of the chemical reaction, ¢,, involving
rather than introducing thermodynamic definitions or laws.

To obtain a constitutive relation, which describes the reaction kinetics, (7.33)
must be considered, which yields

¢ = —Co (7.38)
The chemical dissipation ¢, for the constituents 1 and 2 then becomes

& 0, R oy Oy R
Pchem. = — Z (pa ap + ¢a> Co = — <p18_p1 + ¢1 - p2a_p2 - ¢2> G (739)

a=1 a

This makes the constitutive relation describing the chemical reaction rate ¢, re-
stricted. The following natural choice appears attractive:

b = iy = —Gn (pgi o~ gt %) (7.40)
P1 P2

where (GG15 is a positive scalar quantity denoting a material property, which de-
scribes the reaction kinetics. From (7.40) and (7.37) it is concluded that the
chemical dissipation is always positive in this case, since ., 1S a quadratic
assumption. It is noted that the chemical reaction rate ¢; is a function of the
mass densities p; and p, and the temperature 6, compare (7.25). This is due to
the fact that 1, and 1, depend on the same quantities, compare (7.23).

The so-called thermal dissipation is the last term in the reduced inequality
(7.34), i.e.

ZZ=1 da

Ptherm. = _Tgrade 2 0 (741)
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If an isotropic heat flux is assumed, the thermal dissipation can be assured to be
a non-negative quantity by introducing the constitutive relations

a = —\gradd (7.42)
Q@ = —Xgradf (7.43)

which means that the dissipation is quadratic in grad . Both material constants
A1 and Ay are restricted to be positive scalars. When studying anisotropic heat
flux problems, i.e. using an assumption of the type q, = —C(y,gradf, the
thermal dissipation inequality, i.e. ¢, > 0, imposes the restriction that the
conductivity tensor C,), must be positive definite.

From the introduced thermodynamic laws (7.35) and (7.36), the expression for
the rate of change of the entropies 7, for the constituents 1 and 2 takes the form

Oy O

. D%ty ; P,
p— _— _— _4
7]2 892 9 898p2p2 (7 5)

where it is assumed that 1, and 7, depend on the same quantities as 1, and 1,
do, compare (7.24).
In addition, the energy balance equation written in the form (2.181), i.e.

R R
pin +divh+ > u, - Po+ Y Cagul — pr (7.46)
a=1 a=1

R R
= = (Pt + Cathy) — pnf +try T, L,

a=1 a=1

should be considered. With the constraints in (7.20), the simplified version of the
energy equation (7.46) is

2 2 2
PO+ div Y o+ Y pby + Y Eathy + o1 =0 (7.47)
a=1 a=1 a=1
It follows from (7.29) that
1 R
N==> Pulla (7.48)

p a=1
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By the differentiation of the quantity n as

2
Z pana + pana (749)
a=1
where it should be observed that p = const. due to the simplified mass balance
equations (7.31) and (7.32) and due to (7.33), i.e
2
Sba=ppti=p=0 (7.50)
a=1

where also the mass balance for the mixture (2.60) and the assumption x = 0 are
used.

If the assumed expressions are introduced for 7, and f[ba, the energy equation
(7.46) can be written as

> (o, ., O,
92(”“( ) el 8929‘89%”“)) (21
2
+d1qua+Z < ¢ )
Aa a a |l a 0

where (7.49), (7.44), and (7.45) together with the thermodynamic laws (7.35) and
(7.36) are used. If this expression is rearranged and ¢; and ¢é are replaced by p,
and p,, through the use of the mass balance equations, i.e. (7.31) and (7.32), the

result is
(. o, 9%, PP,
b=y <”“ (‘ 00)”“( o Q‘aeapa”“» (7:52)

2 2 8w
+div Z qe + Z paa_apa + Z [)al/Ja
a=1 a=1 pa a=1

This expression can be referred to as a generalization of the standard heat con-
duction equation, e.g. compare (7.9).

If the Helmholz free energies 1); and v, are specified in more detail by intro-
ducing constitutive relations containing the material constants C, Cy, K, K,
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L and L, as

@ZJl (9, pl) = 010 (1 —1In 9) + K10/p1 + L1 (753)
Uy (0,py) = C20(1—1nb)+ K30/p, + Lo (7.54)

where C can be referred to as the heat capacity for the constituent denoted
1, K, represents a factor describing the dependency of the free energy on the
composition of the mixture, i.e. the relation between the mass densities p; and p,
during the chemical reaction or, equally, during the phase change. The material
constant Lo = L — Lo represents the latent heat effect of the reaction studied.

The needed derivatives in the energy equation (7.52) can now be written down
explicitly as

oY,

% = —01 1DQ+K1/p1 (755)

which is the expression for the entropy with an opposite sign of the constituent
denoted 1. The second derivative of the Helmholz free energy with respect to the
temperature is

2
aa;z;l =—C1/6 (7.56)
Furthermore 5
8—‘}2 — K0/0} (7.57)
is obtained, and finally
O _ —Ky/p? (7.58)
900p, 1P '

This term can be referred to as the thermochemical coupling. That is, the con-
stitutive relations (7.53) and (7.54) explicitly result in a predicted coupling term,
which will affect the temperature distribution in the mixture.

Insertion of these assumptions into the expression (7.52) yields

2 K 2 .
0 = Y pa <Caln9— —“) 0+ (puCa) @
a=1

a=1 a
2
+2

a=1

K 2
<p—a/')a> 0+div> qe (7.59)
a a=1

2 K, . 2. K,
—I—Z:l —p—pa 9+Z:1pa Ci(1—Inb)+—0+1L,

Pa
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Following (7.42) and (7.43), the total heat flux q becomes

2
a=>do=— (M +X) gradf (7.60)
a=1
If (7.60) is inserted into (7.59) and it is noted that some of the terms are canceled
out, the result is

2 2
> paCal = div (M + ) grad 0+ 3 p, (Cu + Ly) =0 (7.61)
a=1 a=1

Furthermore, the total heat flux is assumed to be weighted with the mass densities
p; and p, and with a material constant m as

~ ~ 1/m
Mot = M+ hg = <%/\T + %x;) (7.62)

where —1 <m < 1.
It should be noted again that p, = p— p;, p = const., and that p, = —p,. The
heat equation (7.61) can then be written as

(pCQ + P1 (01 — Cg)) 9 — div ()\tot) grad0 + (01 - CQ) ;019 + L12/b1 =0 (763)

where L1y, = Ly — Ly, and where it should be observed that p; must be given from
a constitutive relation of the type suggested in (7.40). This restriction is imposed
on the constitutive behavior due to the second axiom of thermodynamics. If the
given relations for the Helmholz free energy for the constituents are inserted into
(7.40), the result is the expression for the assumed reaction kinetics.

The fifteen unknown properties in (7.21) can now be solved by using (7.40) and
(7.63). That is, the temperature field 6 (x, t) and the two mass concentration fields
p1 (x,t) and p, (x,t) can be calculated. Note that the used equations are the two
mass balance equations (7.31) and (7.32), the energy balance equation (7.31), the
two thermodynamic laws for the constituents relating the Helmholz free energy
to its corresponding entropies (7.35) and (7.36), the constitutive relation for the
reaction kinetics (7.40) together with the restriction (7.33), the two constitutive
relations for the heat flux vectors (7.42) and (7.43) (in all six equations are thus
involved to describe the heat fluxes for the two constituents), and finally the two
constitutive relations for the Helmholz free energy (7.53) and (7.54). That is, the
number of unknown properties equals the number of equations introduced.
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In order to illustrate that alternative constitutive equations yield different
thermodynamic definitions and hence governing equations, yet another method
will be examined. The same restrictions and unknown properties will be studied
as in the previous example, i.e.

Py (x,1) G (xt) o m(xt) Y (xt) di(x,t)
) P LG k) gk @ty (0

Y

There is one main difference compared to the first example, namely the constitu-
tive relation for the reaction kinetics. The following rate type of assumption will

be introduced: '

A )

a=nif (7.65)
Cy = f 2 (0

which can be compared with the constitutive relations used in the first example,
see (7.21). The Helmholz free energy, the entropy and the heat flux are assumed
to be dependent on the same quantities as in the first example, i.e. compare
(7.23), (7.24) and (7.26).

The equations for ¢; and ¢, will be constituted as

and

¢y = Ry (7.67)

where R, and R, are the rate constants for the chemical reaction. From (7.33) it
follows that these constants must be related as

Ri+Ry=0 (7.68)

where (7.33) is used. Consider, furthermore, the reduced second axiom of ther-
modynamics (7.34) together with the equations (7.66) and (7.67), i.e.

2
S ey ) - au amd (@) /620 (109

a a

2
9P
— =+, + Ry
;pa < 50
where the relation p, = ¢, is used.
The thermal dissipation ¢, , compare (7.41), is proven to be a positive

quantity due to the relations (7.42) and (7.43).
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In this example, the assumed reaction kinetics, i.e. (7.66) and (7.67), makes it
possible to introduce the following thermodynamic definitions relating the Helmholtz
free energy and the entropy for the constituents since 6 is arbitrary:

oYy 0,
—g gt oo T ¢1 (7.70)
and o b, R
2 2 1
_80 Rl _apQ _2 ¢2 (7.71)

where equation (7.68) is used. The equations (7.70) and (7.71) are sufficient to
ascertain that (7.69) is true. It should be noted, however, that a more general
condition can be obtained if the thermodynamic definitions for the entropies for
the two constituents are not separated.

A differentiation of (7.70) yields

. Py, 0Py oy
no= 5 gaap, g, a0° (772)
82¢1 . Rl Rl 81/}1 Rl 8w1
—R— + s _ -T2
1o o %¢1 py 00 p1 Op,

and a differentiation of (7.71) yields

. o 82¢2 / 82¢2 81/12 [
= T T B0y ! pat Ry 500 (7.73)
32% R0y, | ROy,
R = gt IR Lo

Slightly different assumptions are introduced for ¢, (6, p,) and ¥, (6, p,) com-
pared to the previous example, using

¢1 (0, pl) = 019 (1 —1In 0) + K1p1 + L12 (774)

where C7, Cs, K, Ky, and L5 are material constants. The derivatives of interest
in the reduced energy equation (7.52) are

o,

5 = Cilné (7.76)
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and

0?1
5 921 =—C./0 (7.77)
and finally
Iy
9o K (7.78)

The thermochemical coupling 8?1,/ (9600p,) is ignored in this example, due to
the structure of the constitutive relations for 1, (6, p,) and 1, (6, p,). The same
type of derivatives are obtained for the constituent denoted 2. The rest of the
derivatives for the constituents are equal to zero following the assumptions (7.74)
and (7.75). Hence, the explicit expressions for 7, become

Ci. R
771 = 719+p—21<019<1 —1119) +K1p1 +L12) (779)
1
_’_Rl_c’l Infd — &Kl
P1 P1
FOI“ 7727
Cy. R
fly = 729 - p—; (Cof (1 — Inb) + Kyp,) (7.80)
2
iy g B,
P2 P2
is obtained. The rate of change of the Helmholz free energy is
¥, = —0C, Inb + K p, (7.81)
and . .
¢2 - _002 1119 + KQPQ (7.82)

where (7.27), (7.76), and (7.78) is used.

To show that the problem is complex even though the constitutive assumptions
are quite simple in structure, the terms needed in the energy equation will be
written down. The reduced energy equation (7.47) together with (7.49) may be
written as

N N N
0 = 0> pullat0Y (paila) +div ) ds (7.83)

a=1 a=1 a=1

R R SR
+ Z paqvba + Z éClqvba + 0 Z pana
a=1 a=1 a=1
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The first term in (7.83) is the expression

2 8¢1 aqvbl Rl
oo, = Op L1 gL M 84
egpana gpl < 89 Rl 8/)1 pl ¢1> (7 8 )
(O O R
+0p2 < 80 + Rl ap2 + p2 ¢2

ie.
2
0> palla = 0p1 (CiInd — R KH)
a=1

R
+9p1 <_p_1 (Clg (1 — lne) + K1P1 -+ L12)>
1

+9p2 (Cg In 6 + RlKQ) (785)

R
2

The second term is

2 C,. R
0> (paila) = 0p; <719 +—
a=1 pl

+6p, <R101 Inf — &m) (7.86)
P1 P1

(C10 (1 —1nb) + Kip, + L12)>

Cy: R
+0p, <729 - p—; (Co0 (1 —Inb) + K2p2)>
2

R1 CQ R1 >

Inéd + _KQ

P2 P2

+0p, <_

The third term is given by the constitutive assumptions (7.42) and (7.43). The
fourth term in (7.83) is

2
> patha = p1 (—0C1 00 + Kipy) + py (—0C2 6 + Koy ) (7.87)
a=1
The fifth term is

2 i
dYlatba = Y patha =Py (C10(1—1n0) + Kip; + Liz) (7.88)
a=1 a=1

+p2 (C2f (1 —In0) + Kyp,)
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and the last term is

) - Oy o, Ry
9;%% = Op; <_W - R18—p1 - E%) (7-89)
o (D O R
+0p2 < 89 + Rl 8p2 + p2 ¢2

i.e.

2
0> palla = Opy (Cilnd — RiK:)
a=1

- R
+0p, <—p—1 (C10 (1 —In0) + Kyp, + L12)> (7.90)

1

+0py (CoInf + R K>)

+0p, <& (C20 (1 —1nb) + K2p2)>
2

Some of the terms in (7.85)-(7.90) are canceled out, but the matter is still
complicated. Indeed, the equation system closed, since the eleven unknown prop-
erties are given by the following introduced equations: (7.31) and (7.32) (mass
balance), (7.31) (energy balance), (7.70) and (7.71) (thermodynamic laws), (7.66)
(constitutive relation for the reaction kinetics) together with (7.33) (restriction),
(7.42) and (7.43) (constitutive relations for the heat flux), and (7.74) and (7.75)
(constitutive relations for the Helmholz free energy).

The two discussed models include the following material constants: C7, Cj,
K, Ky, L2, and Ry (or Gi3). This can be compared to the number of material
constants introduced in the Stefan’s problem which does not include any constants
related to the reaction kinetics.

The strategy discussed in this Section as a possible way to obtain equations
describing the temperature field and the mass concentration field for the con-
stituents at different times, can be extended, and cases where more than two
constituents are considered can be studied. One example is the case of freezing
pore water containing chlorides. In order to obtain equations for the temperature
field and the mass concentration field of ice, liquid water and chlorides, a more
detailed study of the reaction kinetics and the description of the Helmholz free
energy for the individual constituents, must be done. Another important ther-
modynamic problem to be solved is cases, where phase changes occur and where
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the constituents are also allowed to have a motion, i.e. when x/, (x,¢) # 0. In the
presentation given in this Section, the motion was assumed to be restricted (i.e.
x! (x,t) = 0). The (global) motion of liquid water during the freezing of pore
water may, however, play an important rule when, for example, the damages of
concrete at low temperatures are studied.
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8. A few remarks on environmentally induced strains for
brittle materials

In this Section, a stress-strain relation for the solid skeleton will be discussed. The
properties dealt with in previous Sections will be introduced into the description of
the stresses, e.g. liquid water concentration and temperature. The method used to
calculate stresses and strains is the so-called smeared crack approach [55] which is
a generalization of the fictitious crack model (FCM) [56]. Similar approaches can
be studied in [57], [58] and [59]. The general concept of the mixture theory will not
be used, since the system will be treated as one single constituent only. However,
the possibilities of improving the description by introducing special properties of
the individual constituents is recognized and will be discussed briefly.

The main approximation of the coupling between stress-strains and environ-
mental effects such as temperature and moisture is that the mass and heat trans-
fer equations can be used without considering the stresses and strains in the solid
skeleton. That is, no coupling is introduced from the stress-strain calculations to
the mass and heat transfer equations. Crack patterns caused by environmental
and mechanical loads can, however, be predicted by the smeared crack approach.
Therefore, an indirect coupling can be introduced by considering anisotropic flow
properties caused by cracks for the liquid water and the dissolved matter present
in the pore system.

It is noted that threshold values in terms of deformations, crack patterns and
bearing capacity are important factors when trying to estimate the service life of
concrete structures. This makes the description of the environmentally induced
strains and stresses an important subject in durability considerations.

The smeared crack approach is believed to be a proper model when studying
durability of brittle materials, since the important effect of softening is intro-
duced. Furthermore, crack patterns and paths can be followed during loading
and unloading directly, without introducing any assumption of the crack paths
in advance. Stability and collapse situations of the global structure can also be
studied with this approach.

It was seen from Figure 7.1 that ice growth in a pore system can be estimated
by measuring deformations of a specimen. Stringent evaluations of such exper-
iments can not, however, be performed without having a realistic description of
deformations. This can be obtained by introducing the concept of stresses and
strains. This Section focuses on the constitutive relation between the stress and
strains for brittle materials.
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In fact, the deformations induced by ice growth are also consequences of
changes in temperature and liquid water concentration. These changes occur si-
multaneously. The material parameters such as the elastic moduli will surely also
be effected in these situations. Here, such phenomena will be analyzed and it will
be shown that they lead to an equation which is anisotropic and inhomogeneous
in time.

A constitutive relation linking the small strain tensor ey, compare the defin-
ition (2.43), and the stress tensor T will be introduced. In general terms, the
strains can be considered as a function of the stresses T, the temperature and
the liquid water concentration, etc., i.e.

e, = €, (T37 Arefe, A,.efcl, Arefcice) (81)

where A, 0, A,.rc;, and A, fcic. are scalars representing the temperature dif-
ference, the difference of mass concentration of liquid water and the difference
of mass concentration of ice from a reference state where no thermal or swelling
expansion exists. It should be noted that the strain tensor can not be a function
of the gradients of 6, ¢;, and ¢;e.. Indeed, the momentum supply term p, can be
constituted with gradients of 0, ¢;, and ¢;.., when the description of stresses for
the individual constituents is considered.

The correctness of introducing the terms A,cr8, Acrc, and A,ercice can be
studied by considering an isotropic tensor function f of a second order in a general
case such as

M: f(N,Hl,HQ,H3> (82)

where M and N are of a second order, and where H;, Hy, and H3 are scalars
(so-called hidden or internal variables). The following must hold for the quantity
M:

M =1+ asN + a3 N? (8.3)

where the scalars ay, ay, and «y are material parameters, e.g. compare [60].
IEM=e;, N=T,, H = A0, Hy = Arerc; and Hy = A,cfCice, are set the
equation (8.3) gives
e; = OélI + OéQTS + OégT? (84)
where a1, as, and a3 may depend on the stress invariants tr'T,, trT?, and tr'T?

8
as well as on A0, A,crc, and AyerCice.
By putting
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o = —%trTs + agAre O + Ao reil + Qice AvefCicel (8.5)
and -
Vs
Qg — Es 3 Q3 — 0 (86)
the following classic format of a stress-strain relation is obtained :
1+ v, Vs
e, = 7 T, — o (trTs) I+ pAref 01 + 1A verall + e AvegCicel (8.7)

That is, by insertion of (8.5) and (8.6) into (8.4). If the terms ;AT and ;e AciceI
are ignored the equation (8.7) represents the classical thermoelasticity problem,
e.g. compare [60], [55].

The primary unknown quantities in this problem are the stress tensor T and
the displacements w,. Hence, the equation (8.7) must be supplemented with a
second equation, which is the balance of linear momentum (2.69) for the solid
matrix s, i.e.

0 = divT, + pb, + b, (8.8)

"
S

where it is assumed that the term p.x7 is small compared to the others, i.e.
p.X7= 0. Furthermore, the momentum supply p, will be set to zero, since the
coupling is treated with the internal variables.

It should particularly be observed that the material constants a; and ;e
denote the expansion of the solid as a consequence of a deviation from the reference
state of mass concentrations of liquid water and ice.

In fact, using the equations (8.7) and (8.8) to calculate the stresses and strains
due to mechanical and environmental loads is a method, which suffers from se-
rious drawbacks when the formation of ice in the pore system is included. One
important phenomenon is that the separate phases, i.e. the solid, liquid water and
ice, exhibit different thermal contractions, which can not be explicitly modeled
with the equation (8.7), since no special properties of the individual constituent
are considered explicitly in the model.

To be able to somewhat capture this type of phenomena, and their effects on
stresses and strains, the thermal expansion coefficient gy can be averaged by the
mass concentration of the individual constituents. Likewise, the elasticity moduli
Es in (8.7) must be considered to be effected mainly by the mass concentration of
ice. The equation (8.7) does, however, capture the behavior when a decrease in
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temperature and liquid water concentration (from the reference state) contracts
the material. This contraction can at the same time be canceled out due to the
formation of ice. Moreover, the linear elastic description in (8.7) is not repre-
sentative for brittle porous materials such as cement-based materials due to the
localization of fracture. The effect of softening in fracture zones will be incorpo-
rated into the description later by introducing the concept of fracture energy G
and slip modulus G.

Since the properties A0, Ayercy, and Ayercice can be interpreted as the rate
of change of 0, ¢;, and c¢;, i.e. 90/0t, Oc;/0t, and Oc;ee/Ot, from an initial stress
free state, equation (8.7) could be written as

ot 2B, Ot E,

g I+oap—I+oa—1+ ajee——1 (8.9)

8es 1 + Vg 8T3 Vs t (9Ts 89 8Cl aCice
g ot Bt Bt

where v,, Fy, ap, oy, and «;. are material constants. Under these conditions,
the equation becomes homogeneous in time. However, in order to model the
important effects of changes in material parameters due to formation of ice, an
inhomogeneous equation in time must be used. In other words, the elastic strains
will be determined as a function of both the rate of change of stresses and the
total stress state.

By identifying the first two terms on the right-hand side of (8.9) as the elastic
strain components and the rest of the terms as the corresponding environmentally
induced strains, can equation (8.9) simply be interpreted as the sum of strain rates,
ie.

é, = & &l 4 &9 4 gl (8.10)
The tensor notation and the flexibility matrix function Cf;,,, are used to link the
stress and the elastic strain as
e5; = CoigmTim (8.11)
According to equation (8.7), the flexibility tensor function Cf;;,,, can be expressed
in the compact fashion
iejkm = Y.0iiO0km + Ke (5ik5jm + 5im6jk) (8.12)
where "
Vs Vs
fye = —— /Qe g (8.13)

Ey’ 2F
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Allowing for the material parameters 7, and k. to be changed due to ice formation
in the pore system, the rate of change of the strain tensor can, according to (8.11),
be obtained by differentiation as

&5 = CiomTiom + Cipom Tiom (8.14)

The differentiation of v, yields

1 . Vg

i, = _Evs + E_S?ES (8.15)
and the differentiation of .
: I . (14w,
Ko = 2ESUS - 2E? E, (8.16)

where F, and v, are assumed to be functions of the mass concentration of ice in
the pore system, i.e. Es = Fs(Cice(X,1)) and vy = v4(ciee(X,t)), where v, is the
Poisson’s ratio.

If (8.12), (8.15), and (8.16) are used, the rate of change of the flexibility tensor
function Cf;,,, can be written as

2 o = Ye0ii0km + Fie (858 jm + Simbi1) (8.17)

In the same manner, the rate of change of the thermal strain contribution in (8.10)
can be written as .
éfj = apl;; + ptd;; (8.18)

where the thermal expansion coefficient ay for the solid as a whole is assumed
to be a function of the mass concentration of ice in the pore system, i.e. ay =
ay(Cice(X,1)).

The expansion coefficient a,, due to changes in mass concentration of liquid
water is assumed to be constant. Therefore, the rate of change of the strain tensor
eg5, simply becomes

-Cy

= Qg c'léij (819)

It is assumed that the strain rates induced by a variation of the mass concentration
of ice from the reference stress-free state can be written as

€51 = QegeoCice (617 + Cliion Thom ) (8.20)
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This is the format to constitute a stress-dependent environmentally induced strain
proposed by e.g. [55] and [61]. The assumption (8.20) suggests that the strains due
to deviation from the stress-free state in terms of mass concentration of ice are also
dependent on the total stress state Ty,,. If only the effects on the strains of purely
mechanical loads and changes of mass concentration of ice are considered, the
constitutive relation (8.20) states that the sum of the simultaneously developed
strains is not the same as the two separate strain contributions. In [55], an
equation of the format (8.20) is used to simulate the well-known Pickett effect,
i.e. the fact that the strains due to combined outer mechanical and moisture
changes are bigger than the sum of the strains when these phenomena occur
separately. In [61], an equation of the same format, i.e. (8.20), is used to model
the stress-strain behavior of concrete at high temperatures.

The two material constants in the flexibility tensor Cj%, which describe the
stress dependency of ice-induced strains are given by the isotropic linear elastic
format as

e = Veso0iiOkm + Ky (0360 jm + OimOji) (8.21)

As discussed in Section 7, the expansion of the solid skeleton due to transfor-
mation of water (or vapor) to ice can not totally be interpreted as the volume
expansion during such transformations, since the water/ice transformation may
occur in partly empty pore spaces. Furthermore, due to moisture transport dur-
ing freeze/thaw, the effect of the spacing factor between the larger pores must be
considered. Compare the discussion in Section 7.

The important effect of localization of fracture will be introduced in the stress-
strain relation by an additional term describing the strain rate in the fracture
zones, denoted &/. Hence, the total strain rate is written as

&, =&° + & + &0 + élic &/ (8.22)

In order to evaluate & in both loading and unloading situations, the so-called
smeared crack approach suggested in [55] is used. This model is, however, ex-
tended to account for the material parameters describing the fracture zone de-
pendent on the mass concentration of ice in the pore system.

In essence, the smeared crack approach in [55] suggests that a crack will be
initiated if the tensile strength f; in the principal direction of the stress is reached.
The crack is assumed to be located normal to the principal direction of the stresses
in a representative volume (REV).
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Softening or loading and unloading is assumed to occur in this crack depending
on the loading, i.e. the deformation in the crack is assumed to be partly recov-
erable. If the stress in the principal direction normal to the first developed crack
in REV reaches the tensile strength f;, a second crack will be assumed to develop
perpendicular to the first created crack within the same domain. Furthermore, a
third crack may develop in the same manner and perpendicular to the other two
cracks.

To describe the method, a local coordinate system x* is introduced, where
xj-axis is the direction normal to the first developed crack. If a second crack is
initiated, the x3-axis will be normal to that crack plane. That is, the coordinate

system x* will be orthogonal due to the assumptions of crack patterns within
REV.

The smeared crack approach suggested in [55] is a generalization of the ficti-
tious crack model according to [56] and [62]. This latter model is based on the
fact that when a specimen is loaded in tension, fracture is localized in a thin
zone only. The deformation caused by the fracture in this zone is modelled by a
fictitious crack, the width w}, of which represents the total fracture deformation
in the zone. The material outside the fracture zone is assumed to be unaffected
by cracking, but in a global sense, the domain outside the fracture zone will be
unloaded due to the consumption of strain energy in the crack.

If a global domain is considered it is possible to follow the development of
a crack pattern in time using the smeared crack approach. This makes the
method useful when considering environmentally induced loads, since they gener-
ally change with time.

The energy G necessary to create one unit area of an open traction-free crack
is defined by the integral

G = / T dw’ (8.23)
0

where 777, is the stress component normal to the crack plane, and w}, is the total
deformation in the cracked zone normal to the crack plane. The notations « and
0 are used for the crack numbers 1 and 2 in REV, and are also used for directions
perpendicular to the cracks. In fact, o and  will be used as tensor indici, but the
summation convention is not applied for repeated index. The value w, represents
the deformation in the crack zone when the normal stress has dropped to zero.
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For simplicity, a linear function between 77, and w}, is assumed as
T, = fi + Nw, (8.24)

where f; is the uniaxial tensile strength and N is the (negative) slope of the
function 77 (w}). The function (8.24) describes the stress-deformation relation
during softening in the developed fracture zone. The tensile strength can be

interpreted as a local failure criterion.

w “:r.r

Figure 8.1: Relation between the stress and crack width normal to the crack plane.

In order to somewhat capture the effect of ice formation in the pore system on
the stiffness in the developed crack, it is assumed that the initiation of fracture,
i.e. when 77 = f;, is dependent on the concentration of ice in the material.

The initiation criterion T, = fi(cice) is adopted. The fracture energy Gp,
is assumed to be constant and hence independent of the concentration of ice.
These assumptions mean that the softening behavior becomes somewhat more
brittle. Therefore, the fracture zone will sustain a lower maximum strain if the
initiation of a crack occurs at a high tensile stress compared to an initiation at a
low tensile stress. It must be noted, however, that the total dissipated energy to
create a traction-free fully opened crack is the same independently of the initiation
criterion. Furthermore, it is assumed that the ‘stiffness’ defined by the negative
slope of the softening stress-strain curve in the fracture zone N, is a constant
determined solely by G and the initiation criterion f;(c;..), see Figure 8.1. Hence,
N is assumed to be constant independently of changes of the concentration of
ice after the crack has been initiated. The properties Es; = FEy(cice(X,t)) and
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vs = Vs(Cice(X, 1)), describing the material outside the fracture zone also contribute
to a change in the global response as the ice concentration is changed.
According to (8.24), the value w, can be expressed as

h
N

If this relation is used together with (8.23) and (8.24), the slope N can be
expressed as

W, =

(8.25)

g (8.26)
2Gr

which shows that the slope N in the fracture zone is high if the initiation of the
crack occurs at a high tensile stress f;, since the fracture energy G is assumed to
be constant. Furthermore, the deformation w,, which corresponds to a traction-
free crack, will be affected in a similar way, compare (8.24).

In order to add the elastic and fracture deformations, it is convenient to in-
troduce the concept of strains. A fracture (small) strain tensor e’ is introduced,
which represents the mean strain in a region that includes a discrete crack. In the
introduced local coordinate system, the fracture strain e/ , i.e. the strain normal
to the crack plane, is defined as

d=1 (8.27)
where L, is the equivalent length associated with the direction of the crack and
the shape of the local domain (e.g. a local finite element), where the crack is
formed.

The length L, can, however, not be chosen arbitrarily. By considering the case
of maximum elastic energy stored in a linear elastic material in a one-dimensional

case given as

Y
“ 2Kk
where FE is the elastic modulus, and where the maximum tensile stress is denoted
f+, and the total dissipation energy is

Wi =G (8.29)

€

(8.28)

The ratio between the maximum elastic energy and the total dissipation energy

is introduced as

- Wil 2GrE
Waa 1t

M (8.30)
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From (8.26) and (8.30), it follows that

E
N = 7 (8.31)
where A/ (m) is referred to as the characteristic length, which is a measure of the
brittleness of the material.
By using (8.24) and (8.27), the stress-strain relation in the softening zone can
be expressed as
Tr, = fi+ NLoel, (8.32)

If it is assumed for the moment that the parameters f;, N and L, are constant
properties, the rate of change of stresses normal to the crack plane can be written
as

Tr, = NLoét,
If lateral deformations in the crack are ignored, the sum of the rate of change of
the fracture and elastic strains becomes

1 1\ -
o =ihr it = (5 T =) T2, (8.33)
If (8.33) is written as
. E E
Too = mTF foa = — 37 aa (8.34)
1+ Nio - =

where (8.31) is used, it becomes clear that the restriction
Lo < M (8.35)

must hold, since the slope of the stress-strain curve must be negative in the soft-
ening zone. In other words, an elongation in the softening zone must correspond
to a decrease of the tensile stress normal to the crack plane. Furthermore, it is
shown in [63] that a general three-dimensional case must fulfill the following safe

restrictions:
! A Y
Ly < —; Ly < ——; Ly < —; .
s v’ 2 T 0 STy (8:36)
The characteristic length A’ is measured to be A/ = 10-30 (mm) for cement
paste, 200-400 (mm) for cement mortar, and 400-800 (mm) for normal concrete

[64]. That is, the element sizes (or the size of REV) L, can be chosen with
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considerable freedom. It should be noted, however, that A/ is given by (8.31),

hence the safe restriction must be checked for all possible initiations in terms of

Tr, = fi(Cice), since this criterion together with a constant G determines the N-

value. Furthermore, the elastic modulus £ in the undamaged neighboring zones is

assumed to be a function of the concentration of ice, i.e. E(cic), during fracturing

also. The restriction (8.35) will therefore be changed into the more severe criterion
;o B /

AN = N Lo < Ao (8.37)
where E,.;, is the lowest possible elastic modulus (i.e. when the ice concentration
is zero) and NV, is the highest possible negative slope in the softening zone (i.e.
the initiation of fracture occurs when the concentration of ice in the pore system
is at maximum). It should be noted that this is a local restriction. The global
response might be subjected to so-called snap-back phenomena without violating
the local safety restriction Lo, < AL, .

If (8.27) and (8.24) are combined, and also differentiated with respect to time,
the rate of change of the strain €}/, is given as

el = JoI7%, (8.38)
where the compliance .J, becomes

1

e = NI

(when: w} > 0 and w} = W} max) (8.39)

and where w} .« is the previously obtained maximum crack opening length. This
is simply an indicator controlling whether the total stress-strain point is on the
loading surface described by the material function T}, = T (w?) or not. The
rate of change of the deformation in the crack plane is denoted w?,.

Since the unloading in fracture zones is of importance due to outer climatic
load variations, some realistic assumptions on the behavior of crack closing must
be introduced. The following linear assumption is made for the relation between

the tensile stress and the crack width normal to the crack plane, [55]:

wp, = lvf +(1-7) %1 Wi (8.40)

The parameter f,,, is according to (8.24) and Figure 8.2, written as

fa = ft + Nwz(max (841)
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Figure 8.2: Different assumed unloading paths, [55].

7 = 0 represents a total recovery of the fracture when the stress normal to the
crack plane reaches zero. 7, = 1 represents the situation, when the fracture is
totally irrecoverable, compare Figure 8.2. In [55], the value v, = 0.2 is suggested,
since this value fairly well captures the effect of partially recoverable fractures
found experimentally in [65].

Substitution of equation (8.27) into (8.40) gives

*

Caity = lvf + (1) %1 % (8.42)

and differentiation gives

ol = (1— Wamax o 8.43
S ( ’Yf) La (ft—i_Nw;ma.x) fe%eY ( )

where also (8.40) is used. When the actual crack deformation is smaller than
W max, and when the stress normal to the crack is positive the compliance .J, can,
according to (8.43), be identified as

w*
Jo = (1- a2 hen: w' < w’ naxand T, > 0 8.44
( ’Yf) La (ft + Nw;max) (W CIL: W, W, an ao ) ( )
When 7, is constant, the compliance J,, during elastic unloading and loading in
the softening zone is different, depending on at which value of the tensile strength
fi(Cice) the crack is initiated.
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During situations with compressive loading in a previously developed fracture
zone, the deformation is assumed to be given by the isotropic linear elasticity
relation (8.14). Thus the fracture strain rate in compression is assumed to be
Zero.

Jo =0 (compression; i.e. Ty, <0) (8.45)

The shear displacement in the crack plane (in the direction of the [ axis),
denoted wyj, is an important property when the stress-strain relations for gen-
eral geometries and loadings are studied. In [66], it is proposed that the shear
displacement can be approximated by

*

wly = Ty (@#0) (8.46)
where, again, w} is the crack width directed normal to the crack plane. The
material parameter G can be referred to as the slip modulus in the fracture zone.
The stress component 775 denotes the shear stress in the crack plane.

It should be observed that the stress normal to the crack plane also affects
the shear displacement w}j, and that the fracture process zone is path-dependent
when both normal and shear displacements in the fracture process zone are con-
sidered [67]. This effect will, however, not be included in the model.

By defining the shear strains in the same manner as in conventional kinematic
and elastic theories and by, again, introducing the equivalent lengths L, and Ly,

[55],

L. ' Ly
is obtained. The relations (8.27) and (8.46) give

Cals = % (ﬂ + wi) D (a#0) (8.47)

xS Laej;{x * xS Lﬁe*f *
Wap = G, and  wg, = GfﬁTﬂaé (a7 B) (8.48)

If the symmetry of stresses in the crack plane, written as T,;; = T}, is considered,
equations (8.47) and (8.48) give

* 1 * * Ta*
exh =5 (el tesh) 55 (@#p) (8.49)

where it should be noted that equivalent lengths L, and Lg cancels.
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Table 8.1: Introduced material constants and parameters.

Mat. param. Remarks

Vs (Cice) Poisson’s ratio

Es(Cice) Elastic moduli

Gr Fracture energy, assumed constant

fi(Cice) Init. crit. for fracture, also determines the stiffn. in softening
T Unloading and reloading in the softening zone

G Slip modulus in the fractured plane

a9 (Cice) Thermal expansion parameter

o, Moisture expansion parameter

Q.. Ice expansion parameter

Ve, AN K,  Stress dependent strains due to ice formation

The rate of shear strain in the crack plane is obtained by differentiating (8.49).
The material parameter G, is considered to be constant. Then equation (8.49)
becomes

ot (ot oo\ Las (e ey Lo
ea'g = (ea’; + eﬁ'g) 2_Gi + (ea’; + eﬁ'g) Q_Gi; (a # B) (8.50)

The properties ¢/ and é;,'g are replaced with the relation (8.38), thus the equation
(8.50) can be written as

ey = BugTi + Boo T + AugTlss (a0 #B) (8.51)
where ,
€t + €55
Aa,@ - 2G, ) (Oé # ﬁ) (852)
and
; ofﬁ Jﬂ* ;‘ﬁ
Bag = i Bga=—="1 (a#P) (8.53)

2G, 7T 2G,
where the symmetry condition 7,5 = T}, was used.

The general linear relation between the rate of change of the stress tensor 77,
and the rate of change of the fracture strain tensor é;g in the local Cartesian
coordinate system (which orientation in relation to the global coordinate system

depends on the orientation of the induced fracture) can be written in tensor format
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as (e.g. compare [60]) .
et =cil T (8.54)

pgrs—rs

where the fracture flexibility tensor Cyi/ . is assumed to be constant with respect
to loading within the time increment considered. Moreover, in the general case,
the symmetry of 77", and e;;{; gives the following relation:

il =Cibe Gl =il (855)
The symmetry property given by the restriction for hyper-elastic materials (e.g.
compare [60]) gives

cH . =c (8.56)

pgrs rspq

where it should be noted that a somewhat inconsistent assumption is introduced,
since hyper-elasticity requires that an additional condition is imposed on the ma-
terial functions i, as, and ag, compare (8.4). This restriction stems from the
second axiom of thermodynamics, compare [60] for details. Here, it will be as-
sumed, however, that it is sufficient to use the symmetry condition (8.38) both
for loading and unloading in the softening zone. The complications involved in
satisfying the dissipation conditions (i.e. the second axiom of thermodynamics)
are the reason why no consideration is taken to changes of properties in the soft-
ening zone due to for example ice formation, once the crack propagation has been
initiated.

By considering (8.38) and (8.50) together with the symmetry properties of the
flexibility tensors (8.55) and (8.56), the following components can be identified

[55]:
Ciln=Ji; Ciloy=Jo; Ciggy=Js (8.57)
* * * * A
C'1512 = C'1521 = C'2{12 = 02{21 = % (8-58)
* * * * A
023{23 = 023{32 = C'3523 = 03532 = % (8-59)
*f *f *f *f A31
C'1212 = C'1221 = C'2112 = 02121 = T 8-60)

szfn = 05{11 = B2
*f  _ xf

C'1222 = C'2122 = By

C;:{m = ngm = Bo3
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C;z{?,?, = C§g33 = Bsy (8-64)
C§{33 = Cf?{a?, = Bz (8-65)
Cg{n = Cf?{n = B3 (8-66)

All other components are zero. It should be noted that Az, Aoz, and As; are
divided by the factor two to compensate for the fact that the rate of change of
T appears as 1%, and 77, and for the fact that 7%, = T%. due to symmetry.
The stress and fracture strain rate tensors expressed in the local coordinate
system (given by the directions of the crack planes) can be transformed to a global

coordinate system by the standard transformation rules

T;; = a'TkasmTkm (867)
and
el = ayiagent (8.68)

The tensor property a, represents the cosyp,; values, where ¢, is the angle be-
tween the local z}-axis and the global zj-axis.

The relation between the fracture strain rate and stress rate in the global
system can be formed by combining (8.54) and (8.68) as

¢l = apagCol T3, (8.69)
Then, by introducing (8.67) into (8.69),
6{; = apiG’QjC;grsa’TkaSmTkm (870)

is obtained. That is, the fracture behavior can be considered in the local orthogo-
nal coordinate system x (determined by the direction of the first and the second
induced crack in the same REV) and then be transformed to the global system
by the transformation apiaqjC;gmarkasm.

Since the elastic part of the strains is isotropic, i.e. independent of any trans-
formation of coordinates, the homogeneous part of the elastic flexibility tensor can
be written as Cp, .. = Cpe .. Then, it follows that the elastic flexibility tensor and
the fracture flexibility tensor in the local coordinate system relating the global
strain rate and stress rate are additative. In principle, one can illustrate this by
the relation

cilte—ce 40

pgrs pgrs pgrs

(8.71)
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The sum of the fracture and elastic strain rates can therefore be written as a
function of the stress rates Tkm and the total stress state T}, as

ce+f *f+e r e

€ii " = Apig;Coa ark s Tiem + Cipp Thom (8.72)
where it should be noted that the constitutive relation for the elastic strain, i.e.
(8.14), makes the equation inhomogeneous in time due to the modelling of the rate
of change of F; and vy caused by ice formation in the pore system. Furthermore,
the description of the material in the global coordinate system will be anisotropic
due to cracking.

The total contribution of strains, including environmental effects, is

s *f+e r Ye -0 -Cy e
ez'j - apia'qjcpqrs aTkasmTkm + kamTkm + eij + eij + eijl'ce

where the constitutive relations for éf;, é%, and éfi* are given by (8.18), (8.19),
and (8.20) respectively. These relations include the changes of 0, ¢;, and ¢;.. from
a defined reference state. It is supposed that these quantities can be calculated
using the equations discussed in previous Sections, i.e. without considering any
coupling of stress and strains in the heat and mass transfer equations.

However, since crack patterns caused by environmental and mechanical loads
can be predicted by the smeared crack approach, anisotropic flow properties can
be introduced for the water, vapor, and dissolved matter in the pore solution, e.g.
compare [68] and [69]. This means that an indirect coupling of deformations can
be introduced into the mass transfer equations. This is realized to be an important
effect, which can easily be introduced into the mass transport equations discussed
in the previous Sections.

A numerical solution within the finite element concept has been established
by the originators to the presented smeared crack approach and will therefore not
be discussed, compare [55].
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9. Numerical methods in transient problems

In this Section, a presentation of the weak forms of the mass balance and lin-
ear momentum equations in Cartesian coordinates will be discussed. The general
frame-independent description will now be dropped in favor of a matrix presen-
tation in Cartesian coordinates.

Indeed, the weak form of a differential equation does not arise from any ap-
proximations introduced and therefore it may be surprising that it is discussed in
association with numerical methods. However, the finite element method (FEM)
is based on this formulation.

The finite element method can be studied in, for example, [70], [71], [72], and
[73].

9.1. Weak formulation of the mass balance equations

The mass balance equation appears, typically, in the following form, e.g. compare
with (2.56) and (2.57):

dc,

n

which can be referred to as a strong formulation. This equation will now be

reformulated using a Cartesian coordinate system. At the end of this section, the
weak form of (9.1) will be reached.

When an uncoupled equation with only one unknown parameter is considered,
e.g. a temperature or a mass concentration, there are no additional assumptions
introduced when reaching the weak formulation. It should be clear, however, that
the field equations to be discussed will be somewhat limited as they only hold in
the Cartesian coordinate system.

Here, a set of coupled equations are to be solved. For the sake of simplicity,
it is assumed that it is possible to find a suitable method to solve the individual
equations separately by a staggered solution procedure. This means that it is
assumed that a correct solution path can be followed by solving one equation
for one parameter by having the other coupling terms, determined from other
equations, constant during a short time-step. If equation (9.1) is used as an
example, this means that the mass concentration ¢, is solved, assumed that the
properties p, x, and ¢, can be considered constant during a short time-step. The
justness of such an assumption could, simply speaking, be checked by gradually
reducing the length of the time-step until the solution converges. This subject

+ px-grad ¢, = —div (p,u,) + ¢, (9.1)
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will be discussed in more detail in association with stability and convergence
requirements.

To distinguish the general operators div and grad, which hold in any frame,
from the operators in the Cartesian frame, the following notation will be made:

V. =div; V =grad (9.2)

For simplicity reasons, the following change of property denomination will
be introduced: j, = p,u,. Furthermore, ¢, will be replaced by a potential ¢,,
which can be interpreted as the mass concentration c,, or the temperature 6. The
potential ¢, is introduced due to the fact that, in a numerical sense, there is no
distinction between the two balance equations as they appear in this work, e.g.
compare (3.8) and (3.20).

The first step towards the weak formulation is to introduce an arbitrary func-
tion v(x), which is a scalar function of spatial position only. There is no as-
sumption involved in multiplying expression (9.1) with v and integrating over a
representative volume V' as

/UV-jadV+/ vp
1% 1%

where the column vector properties are defined

Ou g7 + / vV, dV — / v, dV =0 (9.3)
dt 14 1%

jla T
ja = jga ] ).( = .’tg (94)
j3a :tB

and the gradient operator on ¢, and the divergence operator on j,, are defined

do,
e . djie  djoq | dj3g
{%L Vi, = iJ1 +32 +J3
[%J dri  dxy  dxs

dxs

(9.5)

The Green-Gauss theorem applied to the first term on the left-hand side of (9.3)
gives

/ 0V - judV = f vinds — / (Vo) jadV (9.6)
14 S 14

where n is the unit vector, normal to the boundary S, and directed out of the
region V and Vu is the gradient operating on the arbitrary scalar function v. The



9.1. Weak formulation of the mass balance equations 173

properties are defined by the following column vectors:

dv.

dfl m

ddTvQ ;n=|ny |;[n=1 (9.7)
das n3

Vv =

If (9.6) is inserted into (9.3)

dg
T « _ T a
/V(Vv) jadV = %qu]andS—l—/vvp = dv (9.8)

+ / vpX"V o, dV — / v, dV
1% 1%

is yielded. To solve the differential equation (9.8), boundary conditions are re-
quired. These boundary conditions may, typically, be of the form

Jan =jin=h, onS, (9.9)

Gy =0a  ON S, (9.10)

where h, and g, are known quantities. Sy, is that part of the boundary S, on which
the flow, or flux j,n,, is known (natural boundary condition), whereas Sy, is the
part of the boundary S on which the properties ¢, are known (essential boundary
condition). The sum of the boundaries S;, and S, constitute the entire boundary
S. It should be noted, however, that it is possible to describe the known properties
h, and g, in the same position. The boundary conditions (9.9) and (9.10) can
also be described in terms of combinations of j,, and ¢,, which are often adopted
when convection occurs along the boundary.
Insertion of the natural boundary condition (9.9) into (9.8) yields

/(Vv)TjadV — 7( vhads+7f vjand5+/vpd¢a v (9.11)
1% Sy S, v o dt

+ / vV dV — / vé, dV
1% 1%

Gy =0s ONS, (9.12)

where h, is a known quantity along S),, whereas the flux j,, is unknown along the
boundary S,.

The two equations (9.11) and (9.12) are called the weak form, in which the
constitutive relation for j, has not yet been introduced.
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The equation considered is not only a function of spatial coordinates x, but
also a function of time ¢, i.e. ¢,(x,t). It should be noted that the introduced
arbitrary scalar v is a function of x only. Therefore, an additional arbitrary scalar
W (t) must be introduced into (9.11) as

t2 12}
/ W / (Vo) judVdt = / W d wh, dSdt
t1 1% t

1 S]l
to
[w j{ Viun dSdt
t1 Sg-
to d
+[w / op 2 gy ar (9.13)
t v dt
to
+ / W / vk G, AV dt
t1 1%

to
_["w / vé, dVdt
t1 1%

where the whole expression is integrated over a period of time At = ty — ;.
In doing this, it is possible to obtain numerical solutions to transient differential
equations of type (9.1) by making suitable choices for the functions v(x) and W ()
in (9.13). However, in the general case, the constitutive relation for j, must be
specified before solving the equation.

The robustness and accuracy of different choices of v(x) and W (t) will be
discussed later.

The essential boundary condition can now be expressed as a function of time
by

¢, =9ga onS, atthetimelevel, t (9.14)

Furthermore, the potential ¢, in V' at time ¢ = 0 can be expressed as
$o = Gta=o 0V at(x,0) (9.15)

which is called an initial condition.

9.2. Weak formulation of the linear momentum equations

In this Section, the weak form of the linear momentum equation will be derived.
Contrary to the derivation of the weak form of the mass balance equation, the
constitutive relation in question will be inserted before the weak form has been
reached. This means that the generality will be lost, but on the other hand it will
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be clear what kind of boundary conditions will be of interest in the problem dealt
with.
The momentum balance equation used is: (compare (3.28))

ox’

P 8ta =divT, + Pa (9.16)

where it is assumed that the term x/-gradx/ is small compared to the others.
The assumption of a linear newtonian fluid without any volumetric viscosity, e.g.
(3.34), gives

ox! oz’ 20z,

Ta = Ug, 872;'1+ asz — Uga—xz —(5ij7ra (917)
where the hydrostatic pressures 7, have simply been separated from the deviatoric
stresses caused by the motion of the fluid. Compare the discussion in Section 3.2.

As in the previous Section, the Cartesian coordinate system will be used, and
the general frame-independent description will be exchanged since only matrixes
will be defined, which hold in the Cartesian system. First, the stress tensor T,
will be formulated as

ox}, 0, 202,
fhq —bij3

] = 11, Do VX, (9.18)

where the terms on the right-hand side of the identity sign are not yet defined.
By using the summation convention for the properties in (9.17), the following
components of the deviatoric part of the stress tensor T, are obtained:

i = 5o (G 4 S 619
ma:%ia %’2: (9.20)
Oy, | Oz, (9.23)

T23a =
83:3 8(172
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(9.24)

T33a =

40zy, 2 (0xy, n ors,
81'2 81’3

g 81'3 3
where the symmetry for T, can be used to identify the remaining terms. The
. ~ T
matrix operator V' and the vector x| are defined as

o 0

0 0 8 /
T ox1 g 0 852 oxs g Tia
_ 0 0 0 . I /
v - 0 Oxo 0 ox1 O oxs ? Xa - an (9'25)
0 0o 2 o 2L 2 !
Ox3 Ox1  Oxo 3a

A column vector is used to represent all components in the deviatoric part of the
stress tensor 7, and the momentum supply term p, as

T1la
T22a A
T Pi1a
— 33a . ~ A
Ta = ; Pa = DP2a (926)
T12a N
P3a
T21a
L T32a |

It is now clear that the constitutive matrix must take on the following form in
order to represent the general notation (9.18) in the Cartesian coordinate system:

O O O wlhwbowo

I
Il
o O oOwishomla

O O O wlhnwlbhwi

(9.27)

OO = O OO
o= OO oo
_ 0 O O OO

Furthermore, the divergence operating on the stress tensor T, must be ex-
pressed in terms of the Cartesian coordinate system. Again, if the defined matrix
operator V is used the relation

V-Ty =V 70—V, (9.28)
is found, where the identity divr, = V7, is used. V7, is defined

Vr, = { dng/dxy dm,/dzy dm,/dzs }T (9.29)
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If (9.17) and (9.28) are used it becomes clear that the following identity holds:
V-T, = @TMGDO@XQ — VT (9.30)

Equation (9.16) can now be represented in the Cartesian system by the following
expression:

dx! ~ ~
P CZ“ = VT;LGD()VXZL — V7, + Da (9.31)

In order to reach the weak formulation of (9.16) or (9.31), the expression is
multiplied by a vector weight function v (x) and integrated over a representative
volume V. In contrast to the problem in Section 9.1, which contains the primary
unknown scalar property ¢,(x,t), this problem is of a vector type due to the
unknown velocity field x/,(x,t). Hence, the weight function to be used must be a
vector function. The weight function in the problem considered is defined

(%1
V= v (9.32)

U3

If (9.31) is multiplied by the weight function v, and integrated over the represen-
tative volume V' gives

dx! : 3
/ o gy — / (Vv)' 1DoVx,dv (9.33)
1% dt 1%

—/ VTVWadV+/ VTf)adV
1% 1%

It should be noted, again that divw, = V7r,. The Green-Gauss theorem can then
be used to separate the hydrostatic pressures at the boundary surface from the
internal hydrostatic pressures within the body V:

/ vIVr,dV = f{ vig,ndS —/ (VTV) T, dV (9.34)
v S v

where
V' = [ dfdz, dfdz, d/d, | (9.35)

In order to reduce the number of symbols and facilitate the numerical computa-
tion, the last term on the left-hand side of (9.34) is rewritten as

/V (V'V) medV = /V (Vv)' memdv (9.36)
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where
m'=[111000]

and where the operator V is given by (9.25).
Now, the weak formulation of (9.31) can be written

deiz = T = _/
/ pvT gy — / (Vv)' 1 DoVx,dv (9.37)
v dt v
- \T
—7{ vig.n dS—l—/ (Vv) Wade—ir/ vip.dV
S, v v
and
To = Ga on S, (9.38)

where g, is a known value of the hydrostatic pressure at the part S, of the bound-
ary.

Based on the same arguments used in association with the weak formulation
of the quasi-static problem, a scalar weight function W can be introduced, which
is a function of time ¢ only, i.e. W(t).

If the whole expression (9.37) is multiplied by W and integrated over the time
domain At = ty — tq,

to dx’ to - -
/ W / ot Zeqyar / W / (Vv)" u,DoVx,dVt
t1 \4 dt t1 \4
to
- / W ffg vT gon dSdt (9.39)
t1 o
17 = T
+ [ w / (Vv)' memadv
t1 \4

to
+[w / VI podVdt
t1 14

Ta=gs onS, atthetimelevel,t (9.40)

Ta = a0 10V at(x,0) (9.41)

is obtained, where g, is the known hydrostatic pressure at the boundary S, at the
time level ¢, and g;,—¢ is the initial hydrostatic pressure field in the domain V" at
the initial time ¢ = 0.
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9.3. Finite element formulation with the Galerkin method of the steady-
state version of the quasi-static problem

In order to reach the finite element formulation, the weak formulation of the bal-
ance equation (9.11) will be supplemented with approximations for the arbitrary
scalar function v(x) and for the unknown property ¢,. The standard Galerkin
type of weighting will be used. In Section 9.4, the accuracy of this approximation
will be discussed, and it will be shown that the Galerkin method, applied to the
weight function v, yields unsatisfactory results for equations containing significant
first order derivatives. Therefore, another method is suggested. The discussion in
Sections 9.4 and 9.5 will indirectly motivate the choice of approximations for v(x)
and ¢, respectively, and will therefore not be treated in this Section. It should
be noted, however, that the approximations for the variation of ¢, in the time
domain are not treated until Section 9.5 below.

The equation to be supplemented by approximations for v is, e.g. equation
(9.11).

/ (Vo))" §,dV = j{ vhe dS + j{ Vjun dS + / oo qv (9.42)
1% S S, v o dt

+ / wpkTV o, dV — / véy dV
1% 1%

It should also be noted that the essential boundary condition to this problem is
by =ga 0N S, (9.43)

The constitutive relations for the term j, = p,u, in the quasi-static approach are
typically of a gradient type of the unknown property ¢, with additional gradient
dependencies of properties calculated with other equations than those discussed
here. This general way of constituting j, is illustrated as

jo=-—DyVé, — (DVI +...) (9.44)

where ¢, is the property to be solved and ¢ is another property, the gradient of
which also affects the mass flow of the ath constituent.

For example, ¢, may be the mass concentration of the ath constituent, and
¥ may be the temperature for the whole mixture: Compare for example, the
constitutive relation (3.15). It should be noticed that the term DV in the
general description of the constitutive relation (9.44) will appear as a source/sink
term in the weak form of the balance equation (9.42), partly since the parameter
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solved is ¢, and partly due to the fact that 9 is assumed to be known from other
equations than (9.42).

The description of how the additional term DV is added to the equation will
not be taken any further, since it is trivial when treating the equation system in
the proposed staggered way.

The property D, is introduced as an orthotropic constitutive matrix as

kiy 0 0
Dy=| 0 ky 0 (9.45)
0 0 ks

where Dy may be a function of the unknown property ¢, making the equation in
question non-linear.

The concentration field of the unknown property ¢, is approximated by the
element nodal values a& and by the shape function N (x) as

¢, = Na® (9.46)

Simply speaking, the approximation suggests that the nodal values can be inter-
polated to obtain values within the elements. The most elementary choice is to
interpolate linearly between the nodal points, that is, the components in N are
bilinear functions of the position x.

In the general three-dimensional case considered here, the components of an
element containing eight nodal points may be arranged as

N=[N N, Ny Ny N5 Ng Ny N (9.47)
According to the Galerkin method the weight function is
v = Nc (9.48)

where c is an arbitrary matrix. This approximation will somewhat be explained
in Section 9.4 through the use of an indirect method.
Since v = v, the equation (9.48) can also be rewritten as

v=c N’ (9.49)

It is apparent from the weak form (9.42) that the gradients of the function v
and ¢, are necessary. Therefore, the gradient operating on the shape function N



9.3. Finite element formulation with the Galerkin method of ...

181
is introduced as VN (x) = B (x) where B is defined as
ON; 9Ny 9Ny ONg ONs ONg ONz ONg
81‘1 8E1 81‘1 81‘1 le le 81}1 le
B—| 9 ONo 9Na 0Ny 9Ns ONg ON; ON (9.50)
oxo Oxo 0xo oxo Oxo Oxo oxo Oxo .
ONq ONo ON3 ON4 ONs ONg ON7 ONg
o3 O3 Ox3 o3 O3 O3 o3 O3
The gradient of ¢, can now be expressed as
_ e
V¢, = Ba; (9.51)
The gradient of the weight function v is

If the approximations for v and ¢, and their corresponding gradients, i.e. (9.46),

(9.49), (9.51), and (9.52), are inserted into the weak form (9.42), and it is noted
that the matrix ¢’ cancels,

/BTD¢BdVaZ+/ NT pxBdVa: = — ¢ NTh,dS
1% Vv o~ ~ Sh
_ j{g N"jn dS (9.53)
! dag
— | N'pN—2dV
/v P
+ [ N'e,av
v
is obtained, with the essential boundary condition
Gy =ga  ON S, (9.54)
N and X are introduced as
N z; 0 0
N=|N|; x=]0 4 0 (9.55)
- N 0 0 x3

The individual terms in (9.53) are often expressed in the compact assembled
form

Ca+(K+K)a+f=0 (9.56)
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where
C= / NN dV (9.57)
1%

This is called the consistent damping matriz. An alternative way of writing the
damping term C is to use a ‘lumped’ matrix, which is almost always applied
when the finite difference method is used. The pros and cons of the two different
damping terms are discussed in [71].

The time derivative is
. da

7

where it should be noted that no approximation for the time derivative is intro-
duced. This is dealt with below in Section 9.5.

The matrix

(9.58)

K — / B'D,BdV (9.59)
1%

represents the stiffness matriz. In this case, a more illustrative name would be

the conductivity matriz. The term K will be referred to as the convection matriz,
defined as

K=/ N'pxBdV (9.60)
v~ ~
The last definition is the load vector

- NThadSJr?( NTj,mdS—/ N'é, dV (9.61)
S, v

Sh

which carries information about both the natural boundary conditions and the
source/sink terms of the problem.

The finite element formulation (9.53-9.54) must be supplemented with approx-
imations for ¢, in the time domain. This will be discussed in Section 9.5.

9.4. Accuracy of different weight functions in problems with significant
first order derivatives

It is possible to argue for certain choices of the weight function v (x) by considering
a simple test problem consisting of a one-dimensional steady-state version of an
equation of the type (9.1) without any natural boundary conditions or source/sink
terms. Thus, the differential equation in the problem considered is

d¢

do,  dd,, db,
“ (k1o ) (9.62)

dzy - dx

P
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where a constitutive relation of gradient type is used, compare (9.44). According
to (9.53), the discretisized local finite element formulation of (9.62) is given as

h h
/ BB dral + / N pi B dza = 0 (9.63)
0 0

where the domain of the problem is 0 < z; < L. The following elementary
linear shape function N (z1) = [1 — z1/L /L] is used. The derivative of N (z1)
becomes dN (z;) /dz; = B (z1) = [-1/L 1/L], and the nodal parameter is a%' =
{ by by } The two terms in (9.63) are given explicitly as

h k 1 -1
T _ Me¢
and .
T . _p$1 -1 1
/0 N pinBda; = 2 l L ] (9.65)

If the standard procedure for assembling a local element for a typical internal
node ¢ is used as well as equal elements with size h, the following matrix relation

. 1 -1 077 iy 1 1 0] ¢4
%{1 21”5';31. —1 01”5@.]0 (9.66)
0 =1 1] éipa 0 =1 1 ][ ¢

is obtained. The assembled equation for node 7 is obtained by considering the
middle row in (9.66) as

P
+ 2

Py

% (—&52'—1 +2¢,; — &i+1) =5 (—&52'_1 + &Si—&-l) =0 (9.67)

which is a typical way of writing equations with the finite difference method
(FDM).
Out of convenience only, the parameter Pe® is introduced as

pl‘lh
21y

This is known as the element Peclet number. If the definition of the element
Peclet number is used, the equation (9.67) can be written as

Pe® =

(9.68)

(—Pe® — 1) ;1 + 2¢; + (Pe* = 1) ¢, = 0 (9.69)
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An alternative way to reach (9.67) or alternatively (9.69) is to make a Taylor
expansion around the middle point node 4, as is done in finite difference methods.
Thus, the direct approximations for the derivatives of the unknown parameter ¢

are . .
do | Giy1— Qi
o =g (9.70)
and ) _ _ _
d=¢ Giy1 — 20, + ¢, 4
0 = L 220 (0.7)

where the lowest possible linear expansion is used. By inserting these approxi-
mations directly into the governing differential equation (9.62) a nodal equation
identical to that obtained by simple linear shape functions using the Galerkin
type of weighting is obtained.

The standard Galerkin weighting (9.48), or the finite difference approxima-
tions (9.70) and (9.71) are, however, unfavorable approximations when dealing
with equations containing first order derivatives. This can easily be shown by con-
sidering a steady-state, one-dimensional test example, e.g. the assembled nodal
equation (9.69). If, for example, ¢, ; = 0 and ¢, ; = 100, the nodal equation
(9.69) gives ¢, = 50(1 — Pe®), which yields a negative value if Pe® > 1 for any con-
sidered values of (}52;1 and (}l 41, e.g. compare [72]. This is, of course, a physically
unrealistic result which may, however, be overcome.

One way to remove the drawback of negative values is to use the so-called full
upwinding approach, that is to use the following assumptions for the first order

derivatives: ~ _
dp ¢ —din ..
o 1= - if £ >0 (9.72)
dp =& ...
| = f )
T ; if ;1 <0 (9.73)

A direct insertion of the approximations (9.72) and (9.71) into the governing
differential equation gives the nodal equation for positive values of the mean
velocity 2, as 3 . .

(—2Pe® —1) ¢,y + (2Pe* +2) ¢, — ¢; ;1 =0 (9.74)

This upwinding scheme only gives accurate results if the element Peclet number
is very high, compare Figures 9.2-9.4. The problem of inaccurate negative values
is, however, removed.

In order to justify the choice of another weight function v than the one used
in the standard Galerkin method (or any other method than the standard finite
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difference approximation and the full upwinding approach), the exact solution to
the test problem (9.62) is considered. The test problem is

dp _ dg . do

dl‘l dl‘l 1¢d—l’1

with the essential boundary conditions

) =0 (9.75)

¢p=¢, atz; =0 (9.76)

¢p=¢p at z1 =1L (9.77)

in the considered domain 0 < z < L. The analytical solution to this problem is
(e.g. compare [74]):

(Pex/L) __ 1 (¢ _ ¢
G e(Pe))_ - 2Ny (9.78)

where the Peclet number Pe is defined

i) L
pe="2 (9.79)
kg

Note that the Peclet number Pe is defined slightly different than the element
Peclet number Pe°.

The analytical solution to equation (9.75), i.e., equation (9.78), is illustrated in
Figure 9.1 for different Peclet numbers, only positive values of &, are considered.
The essential boundary conditions ¢, = 0 and ¢, = 1 are used in the domain
0 <z < L. It is observed that high Peclet numbers result in a so-called boundary
layer near the right-hand side boundary.

In order to motivate a numerical method which yields satisfactory results for
equations containing significant first-order derivatives, the test problem (9.75) will
be considered further.

In a numerical approach, one can express the equation (9.75) as

8.J
= =0 (9.80)

where

. 0
J = IL’lgb - kld}&% (981)
1
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1t k- Pe=0
— 4 Pe =2
08f —e— Pe=10

—%— Pe = 50

0.6
$-¢,
¢R_¢L
0.4 S
-'X..
0.2} x e
o e
. 'x ~t+ -
AT
o= & & a
_0'2 i 1 1 1 1 1 1 1 1

x/L

Figure 9.1: Analytical solutions to the problem given by equation (9.74-9.76) for
different Peclet numbers.
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T T T T T T T T T
1 Exact
— —x—- Galerkin method
0.8 L
—-+ - Full upwinding
06k —-0— Petrov-Galerkin
¢$-9,
¢R_ ¢L o4l
0.2
=== Fm o=t
-0.2+
_0.4 1 1 1 i 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

Figure 9.2: The test problem defined by equation (9.74-9.76). Different solutions
based on the case with five elements.
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In this context, one may interpret J as a flux passing through a stationary unit
area. As a result of this, the following balance criteria must be fulfilled:

T lesrje = licajp=0 (9.82)

where the points i +1/2 and ¢ 4 1/2 are located in the center of the two elements
considered.

If the value of ¢ and the gradient of ¢ at the center of the right-hand element
with the origin of x located at the middle node ¢ is considered, the analytical
expression to the problem gives the following two relations:

(e(Pe/Q) - 1) (¢r — ¢1)

¢ |:L‘:h/2: e(Pe) _ 1 + ¢L (983)
d¢ el"e/?) pe (Pr — ¢1)
I [—y h(e®o) — 1) (9.84)
By inserting these relations directly into (9.81), in order to get an expression for
J |i+1/27
N
J |i+1/2: T1¢; + x1w (9.85)

is obtained. If the same procedure is performed for the left-hand element, in order
to get an expression for J |;_1 /s,

(5.~

(e(Pe) _ 1)
is yielded. Now, the balance criteria (9.82) together with (9.85) and (9.86) give
the nodal equation for the internal node 7 as

Jlic1jp= 161 + 1 (9.86)

(_1 - C) QNSi—l + (2 + C) &52 - &52'+1 =0 (9-87)
where
c=elP) 1 (9.88)

in which the identity Pe = 2Pe® is used. This scheme gives exact values of ¢ at
the nodes, since it is based on the analytical solution to the differential equation
in question. The presented method is called the exponential method, and was
first used by practitioners of finite volume techniques, e.g. compare [71] and
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T T T T T ¥ T T T
iF Exact
* Galerkin method
08 +  Full upwinding
o Petrov-Galerkin
6-¢ O8F
L
¢R_ ¢L
0.41
0.2+
Ot % = —® % —
-0.2+ T
_0'4 1 1 1 | i L 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

Figure 9.3: The test problem defined by equation (9.74-9.76). Different solutions
based on the case with ten elements.

[72]. Note that for Pe® = 0, the scheme (9.87) is identical with the Galerkin
method corresponding to the diffusive term only; i.e. when no convective terms
are present.

One important thing about equations containing significant first derivatives,
such as equation (9.75), is that oscillatory solutions may occur also to steady-state
problems. The exponential method discussed above has the benefit of always giv-
ing oscillation-free solutions to steady-state problems. The Galerkin method, or
the finite difference method, will, however, give an oscillatory result if the element
Peclet number Pe® exceeds unity [75]. This drawback can be overcome by using
small elements, but such a procedure is in most applications very uneconomical.

Figures 9.2-9.4 show the performance of the different schemes presented. The
full upwinding approach overestimates the values near the boundary layer. For
element Peclet numbers greater than unity, the Galerkin method or the finite
difference method gives oscillatory results even in the steady-state problem con-
sidered here. Exact values are obtained through the exponential method or the
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T T T T T T T T T

1+ Exact ]
* Galerkin method
08r +  Full upwinding

o Petrov-Galerkin

$-9,

¢R_ ¢L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

Figure 9.4: The test problem defined by equation (9.74-9.76). Different solutions
based on the case with fifteen elements.

optimal Petrov-Galerkin method, which will be discussed below. Both methods
are based on the analytical solution to the test problem considered.

In the context of finite elements, the exponential method in one-dimension
corresponds to the following choice of the weight function:

h x
=c" [ NT4ay——-B" :
v=c < +a " o] (9.89)
where
Qopt = coth Pe® — (9.90)

Pec
The proof of the optimality of this type of weight function, called the Petrov-
Galerkin method or optimal upwinding method, is given in [75]. The optimality
can, alternatively, be confirmed by making an assembly for an internal node ¢
using the weight function (9.89) and noting that

coth Pe® — (ePee + e(fPee)) / (ePee . 6(,pee)>
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E.g. compare (9.66) and (9.67). It should be observed, however, that the unknown
parameter ¢ is approximated in the standard manner — compare (9.46). The
result obtained is identical to the nodal equation (9.87), thus the Petrov-Galerkin
method yields exact values at the nodes when equations of the type (9.75) are
considered. This means that the exponential method and the optimal Petrov-
Galerkin method are identical.

The Petrov-Galerkin method is reduced to the standard Galerkin method (or
the standard finite difference method) if the parameter o,y is set to zero. Fur-
thermore, if the parameter o, is set to unity, the full upwinding approximation is
obtained. Compare the equations (9.87) and (9.74). The exponential method, or
equally the Petrov-Galerkin method, will, however, be used due to its generality
and its small computational expense compared to other methods, and also due to
the fact that it is based on the analytical solution. Hence, it gives exact values at
the nodes.

In [75] it is shown that if

1
Pee

la| > e =1 (9.91)
oscillatory solutions will never arise (considering steady-state situations only).

The results presented in Figures 9.2-9.4 show indeed that with o = 0, i.e. the
Galerkin procedure, oscillations will occur when Pe® > 1. Figure 9.5 shows the
variation of ayp, and a..;; with the element Peclet number Pe®.

It is very important to note that all terms in a differential equation to be
reformulated to the weak form should be multiplied by the actual weight function
used, e.g. compare equation (9.42). Otherwise, the motivation of including an
arbitrary function, which operates on the whole equation, fails. When the Petrov-
Galerkin method is used, this means that the time derivatives and the source/sink
terms must be affected by the choice of spatial weighting of the unknown parame-
ter. In fact, it has been shown that incorrect solutions are obtained if the proper
Petrov-Galerkin weighting on all terms present in the considered equation is not
included, compare [71]. This important fact is indeed not obvious when a sim-
ple direct finite difference approximation applied to equations is used, containing
significant first order spatial derivatives.

The matrixes which appear in the one-dimensional version of equation (9.56)
are given explicitly below as

C = /h N4, TR N day — (9.92)
b Pl )P T '
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0.9 T T T T T T T T

0.7} B
06
A Q= coth Pee- 1/Pe® (optimal)
0.5 : A
0.4f : .

0.3} ! E

02k ; Q. = I - 1/Pe(critical) .

Pef

Figure 9.5: Critical (stable) and optimal values of « as a function of the element
Peclet number Pe, [71].
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ph[2 1], ph[-1 —1]
6 |1 2| % 1 1 |]q

where C is the local consistent damping matrix.
The local conductivity matrix K appears in its normal form as

h k 1 —1
_ T _ R
K_/O B' ki B oy = l L ] (9.93)
The local convection matrix K becomes
- h h iy
& = [ (Nl P ) B - o
0 < +apt2|j71| > I (99 )

B[-1 1], o 1 1)@
2| -1 1| Y —1 1| ay
The boundary vector is

h

BT] (9.95)

0

h
f, = | NT fag oL
b [ +a pt2|(t1|

and the load vector carrying information about source/sink terms becomes

£ — —/h N0, 2L BT ¢, day = (9.96)

[ — 0 opt 9 |1:1| a 1 — .
Cah | 1 Cah | =1 | o1

Sihee e

It can be seen that all terms except the local conductivity matrix K are affected

by the optimal Petrov-Galerkin weighting.

The exponential schemes or the Petrov-Galerkin schemes have been applied
with great success to general one-dimensional problems including convective terms.
These approaches therefore appear attractive to the development of general two-
and three-dimensional flow conditions. However, effective and accurate schemes
for two- and three-dimensional problems have been difficult to reach. One method
which will be discussed here is the streamline optimal Petrov-Galerkin method,
which in essence works with the one-dimensional schemes along the streamlines

within each element. The crux is that a characteristic element length in the di-
rection of the velocity resultant along the streamlines must be introduced. This
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means that the optimality of o has to be sought in a rather arbitrary manner.
However, by using rectangular bilinear elements, the characteristic element length
along the streamlines can be reasonably defined and accurate results obtained,
compare Figures 9.7 - 9.10.

It can be observed that the element Peclet number now must be a ‘vector’
quantity, for example

h o
Pef = %5{, X = .’:EQ (997)
x3

Hence, the upwinding approach needs to be ‘directional’. In order to obtain an
element Peclet number that is directional, the following assumption has been
proposed:

b
Pe® = |X|2—kh (9.98)

where )
x| = (47 + 43 +3)” (9.99)

and hgy, is some characteristic element length along the streamlines, i.e. along the
direction of x within the element: E.g. compare different definitions for A, given
in [71]. It is observed that additional methods must be found in situations when
the conductivity is not isotropic.

Now, the optimality of «, in a certain element can again be expressed as

Qopt = coth Pe’ — (9.100)

Pec
If the element Peclet number is defined as a scalar property as is done in (9.98)
when dealing with two- and three-dimensional problems, it is possible to obtain
the following weight function [76]:

. T . T . T
v — CT <NT—|—Oéopt hch <$18N /81’1 + l‘gaN /81‘2 + x38N /81‘3)) (9101)

2 ||

This is based on the fact that convection is only active in the direction of the
resultant mean velocity x. The weight function (9.101) is of course reduced to
the one-dimensional case when the velocity components 25 and 23 are set to zero.
Compare with (9.89). As of yet, there is no formal evidence which confirms the op-
timality of the streamline Petrov-Galerkin method in two- and three-dimensions.
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Test examples performed indicate, however, that the method gives accurate solu-
tions even for high element Peclet number flows.

It is interesting to observe that a characteristic element length is used also in
other two- and three-dimensional applications than the one studied here, such as
the smeared crack approach used within fracture mechanics.

9.5. Discrete approximation in time

The finite element method provides a useful generalization unifying many exist-
ing algorithms for solving transient problems. Some of the most famous will be
described in the following Section. A discretization process applicable directly to
the time domain will be discussed.

A finite time increment At will be considered, which is related to the time ¢,
and t,1 as t,.1 = t, + At, in order to obtain so-called recurrence relations. The
main steps taken to obtain quite general recurrence relations are the introduction
of approximations for the variation of a(t) and a(¢) in the time domain and also
the selection of a significant weight function W (¢) in the time domain. In doing
so, within the area of finite element method, a wide family of frequently used
algorithms or schemes are provided.

The starting point will be the following equation, discretizated in the spatial
domain only, e.g. compare (9.56)

Ca(7) + K +K|a(r) +£(r) =0 (9.102)

where 7 is a normalized time which is set to zero at time ¢ = ¢,,, and which gives

the value At at the time level ¢ = ¢,,,1. The normalized time can therefore be
defined as

T=1t—1t, (9.103)

The linear approximation for a(7) in the finite time domain ¢,, to ¢, is given
by

a(t) ~ a(7) = Noa, + Nyan (9.104)

where the time domain shape functions Nn and NHH are given by

Nppp = — (9.105)



196 Chapter 9. Numerical methods in transient problems

By using the already defined linear shape functions N, and le, it is possible to
express the approximation for the time derivatives a(7) as

. da(r)  dN, dN,,
a(T) ~ ( ) — a, + dt—&-lan+1

1
dt dt (9.106)

where the time derivatives of the shape functions are given directly from (9.105)
as

dN,, 1 dN,.1 1
=——; —_— = — 9.107
dt At’ dt At ( )
The spatial- and time-domain discretizated problem can now be expressed
da(r) —1 . .
C——=+ K +K|a(r)+(r) =0 (9.108)

where the transient load vector f is approximated in the same manner as a(7),
ie.,

£(r) ~ £(7) = Nuf + Nogafoir (9.109)

If the approximations (9.104), (9.106), and (9.109) are inserted into (9.108), and
the whole expression (9.108) is multiplied with the weight function W and inte-
grated over the time domain At = t,,,1 — t,, e.g. compare with (9.13),

At 1 1 d
0 = /0 %4 <C <—Ktan + Ktan+1>> T
At ~ T T
+/0 w <(K +K) <<1 - E) a, + Kta"“» dr  (9.110)

At T T
(1K) ot mgen) o

is obtained. By dividing the whole expression with fOAt Wdr, the following ex-
pression is obtained:

0 = W +[K+ K] [a, + O (a1 — a,)] (9.111)

+f, + O (Fuy — £,)

where
1 fOAt Wrdr

= — 9.112
At fOAt Wdr ( )



9.5. Discrete approximation in time 197

Table 9.1: Some single time-step algorithms, [71].

Scheme Weight function W () ) Stability condition
truly explicit O(t—71i); 7:=0 0 conditional
Crank-Nicolson 1 0.5 unconditional
Galerkin type 2 7/At 0.666 wunconditional
Liniger 6(r—1;); 7. =0878At 0.878 wunconditional
truly implicit O(T—m1i); 7= At 1 unconditional

The parameter © is a number between 0 and 1. Different choices of W yields
different values of ©. Some examples are given in Table 9.1. Equation (9.111)
can now be solved with properly introduced natural and/or essential boundary
conditions.

The unknown vector values a, 1, given the value of the vector a,, may for
example be solved with the standard Gauss elimination techniques.

Some different schemes are summarized in Table 9.1, where ¢ represents a
dirac function at the position 7; in the normalized time domain 0 < 7 < At.

A truly ezplicit (or Euler) scheme is obtained if the parameter © is set to zero.
Such an approximation only yields a conditional stability condition, which means
that a time step smaller than a critical time step At..; must be searched for to
avoid small initial errors increasing without limit. Different criteria for critical
time-step values can be found in, e.g. [71] and [72]. A short discussion on this
subject will be presented in the following paragraphs.

Values of © greater than or equal to 0.5 are shown to be unconditionally stable
for equation systems, which are symmetric and positive definite. This can be
shown by considering an eigenvalue problem of the actual equation [71].

The value ©® = 0.5 corresponds to the well-known Crank-Nicholson scheme,
and the value © = 1 is a backward difference scheme. The value © = 0.878
is known as the Liniger algorithm, in which © is chosen to minimize the whole
domain error.

Figure 9.6 illustrates a comparison of the exact solution to a one degree of free-
dom problem of the equation (9.111) without any convective terms or source/sink
terms present, i.e. K = 0 and f = 0. This makes the equation homogeneous and
symmetric, with various choices of the parameter ©. In this case, the amplifica-
tion A is identical to the eigenvalue p of the problem. The amplification in this
example can be interpreted as the amplification of the nodal value at time n to
the time n + 1.
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Figure 9.6: Performance of different © algorithms.

In Figure 9.6, w represents the ratio of the damping and stiffness terms, which
in a standard heat equation correspond to the conductivity and the capacitance
respectively. If the amplification u, or equally A, is such that || > 1, all initial
small errors will increase without limit. This means that if the parameter wAt
exceeds 2, the solution of an explicit scheme, ©® = 0, will be unstable and all
initial values will grow without limit. Furthermore, oscillations will occur if the
amplitude A becomes negative.

Apparently, the famous Crank-Nicholson scheme, © = 0.5, will give oscillatory
results if the parameter wAt exceeds 2. In this sense, the more implicit schemes
are preferable, since they always give unconditional stable schemes without any
oscillations which may pollute the solution.

However, when dealing with equations of the type (9.111), more elaborate pro-
cedures for assessment of stability and performance are needed, since the problem
is not symmetric (due to the present of the term K) One way is to determine
the so-called amplitude and relative celerity ratios, e.g. [71].

In general, realistic critical time-steps can not be reached within the family
of explicit schemes due to the fact that element Peclet numbers approach infinity
when high convective flows are considered, i.e. when the mean velocity z; is large
compared with the material constant k;,. Compare the definition of the element
Peclet number, equation (9.79). If a time-step smaller than the critical can be
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found using an explicit scheme, one advantage is obtained however: The equation
system can be scaled row by row and the computational expense can become
smaller.

It has been shown by amplitude and by the relative celerity ratios techniques
that the Petrov-Galerkin weighting in spatial coordinates together with time do-
main weighting with © > 0.5, yields unconditionally stable algorithms [71], i.e.
no critical time steps have to be considered. The superior characteristics of the
Petrov-Galerkin weighting together with unconditional stable choices of time in-
tegration compared to the other methods presented here, will be utilized in order
to receive reliable solutions to the equations to be solved. It should be clear,
however, that many different methods, with excellent performance, have been
developed during the past few years, for instance the mesh updating and inter-
polation method, i.e. characteristic-based methods, and the least square methods,
compare [72] and [71].

For example, the performance of a single time-step scheme, together with an
optimal Petrov-Galerkin weighting in the spatial domain in two different problems
where only convection is considered, are discussed. Only the convection is studied,
since this phenomenon represents the main problem associated with numerical
solutions.

The unconditional stable single time-step scheme used is a Liniger algorithm,
i.e. © = 0.878, since Pe® tends to infinity in the test problems presented. Explicit
schemes become very uneconomical, since extremely small elements have to be
used to avoid unstable and oscillatory results.

Two test examples are treated by the calculation method described. The
first test example, Figures 9.7 and 9.8, illustrate pure convection, i.e. there is no
mass diffusion. Numerical integration and equally sized bilinear elements with
3x3 integration points are used to solve the diffusion-convection equation (9.111).
The maximum value of the initial concentration field, Figure 9.7, is decreased by
approximately 2% when 120 time-steps are used to calculate the new ‘convected’
concentration field, compare Figure 9.8. This is a measure of the calculation error
since the shape of the initial concentration field should be the same throughout the
process when no diffusion is active. The mean velocity field x(x,t) is assumed to
be constant in direction and magnitude throughout the whole space-time domain
considered. The characteristic length in the direction of the mean velocity is
assumed to be h., = v/2h, where h is the length of the sides of the, equally sized,
bilinear elements.

The second test example, Figures 9.7, 9.9, and 9.10, illustrate pure convection
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Figure 9.7: Initial concentration field of C.
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Figure 9.8: Concentration field C after 120 computation steps. The initial con-

centration field in Figure 9.7 is convected throughout the domain. No diffusion
takes place.
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concentration C

Figure 9.9: The initial concentration field shown in Figure 9.7 is convected
throughout the domain, simultaneosly mass is adsorbed onto the solid parts of
the porous medium with a rate proportional to the concentration.

with adsorption of mass onto the pore walls. The same magnitude and direction of
the mean velocity %X(x,t) as in the previous example are used. The adsorption rate
is assumed to be a linear function of the concentration C. The initial concentration
field, Figure 9.7, is convected throughout the domain. Simultaneously, mass is
adsorbed onto the pore walls. Compare Figure 9.9, where the free concentration
field after 120 time-steps is illustrated, and Figure 9.10, where the motionless
adsorbed mass after 120 time-steps is shown.

The transient sink term f, i.e. the term describing the adsorption, is integrated
into the time domain using the value ©® = 0.878. Furthermore, the considered sink
term f must be weighted with the same weight function v as is used for the other
terms in the equation. In this case, the weight function v is thus given from the
optimal streamline Petrov-Galerkin method, e.g. compare (9.96). If this is not
done correctly, considerable errors will be introduced.

No oscillations are observed in the two test examples. Therefore the Liniger one
time-step scheme and the optimal streamline Petrov-Galerkin method used in the
examples represent the expected behavior fairly well, even in the two-dimensional
case considered here.

A short discussion of the so-called Newmark algorithm will be performed in
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concentration F

Figure 9.10: Concentration field of motionless adsorbed mass after 120 computa-
tion steps.

the following paragraphs. The Newmark scheme is a two time-step algorithm.
It therefore makes equations, including second-order time derivatives, possible
to solve, since a polynomial of second order is introduced to approximate the
variations of a(7).

However, the primary purpose is not to present a solution strategy to problems
like the full ‘quasi’-harmonic equation, which includes second order time deriva-
tives, but to find a better approximation to the first order time derivatives by the
use of quadratic approximations in the time domain.

In highly non-linear problems, such as phase change problems, in which both
matrices C and K are generally functions of the unknown parameter a itself,
the Newmark family of schemes is quite popular. One of them is the Lees two
time-step algorithm, which make it possible to evaluate all non-linear parameters
at the current time level, and thus make equilibrium iterations unnecessary. In
some problem of mass transport in porous materials considered, the phase change
problem is important. A typical example is damages cased by ice formation of
pore water in the material. This fact, among others, motivates the use of a more
powerful scheme than the single time-step algorithms.

No special attention will be paid to the derivation of the Newmark algorithm
since this follows the same methodology as was used to motivate the single time-
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Table 9.2: Some Newmark algorithms, [71].

Scheme ~v Value [ Value Stability condition
Central difference 0.5 0 conditional

Lees algorithm 0.5 1/3 unconditional
Zlamal 5/6 1 unconditional

step algorithm. The approximation for the unknown parameter a(7) is performed
using shape functions in the time domain as

a(t) ~ a(t) = N, 12, 1+ Noa, + Nojia,o (9.113)

where a,, is the current known quantity at the normalized time level 7 = 0, a,,_;
is the previously known quantity, and a,,,; is the unknown quantity searched for.
It should be observed that the normalized time has its origin at time-level n and
that 7 = t/At, which means that 7 = —1 at time level n — 1 and 7 = 1 at time
level n + 1.
The quadratic type of approximation is expressed using the time domain shape
functions as
- T - - T

Nn_1:—§<1—7'); Nn:<1—7')<1+7'), Nn+1:2

By following the methodology of the derivation of the single time-step algorithm,
the following Newmark scheme

0 = [yAtC+8(A1)° (K+K)|an +
[(1-27) AtC+ (3 - 28 +7) (A1)° (K+K)]a, +  (9.115)
[(—1+9) AtC+ (3 +8—7) (A1)° (K +K)| a,1 +
Btuii+ (3 —28+7) £+ <%+ﬁ—7> £,
is obtained, where the parameters
1 S W (T4 ) rdr
TEAT TWar

(1+7)  (9.114)

(9.116)

and
iffll W (r (T4 1)) rdr

=~ [ wdr

(9.117)
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are obtained by dividing the whole weak formulation with ffll Wdr in the same
manner as is done to identify the parameter ©.

Some famous Newmark schemes are shown in Table 9.2. The derivation of
stability criteria for the Newmark family of schemes becomes more complicated
than for the one time-step schemes and will not be discussed further. The subject
can, however, be studied in [71] and [73].
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10. A brief discussion of numerical methods and coupled
systems

In this Section, the basic way of treating coupled equations numerically will be
briefly discussed. It will be noticed that more approximations than those intro-
duced in previous Sections must be considered in order to take the coupling terms
into account.

10.1. General remarks

The equations for the constituents in Section 4 are coupled both at the governing
differential equation level and at the boundaries. The coupling is mainly caused
by the dependency of the mass concentration of liquid water on the diffusion
parameters for the different constituents, and is also an effect of the reaction
kinetics. Introduced assumptions concerning the reaction kinetics and the mass
diffusion flows can also give rise to non-linear coupled equations.

At the boundary surfaces, the prescription of the mass concentration of vapor
or liquid water is assumed to affect the flow behavior of all considered constituents
through the same boundary surfaces. Hence, the coupling in terms of description
of boundary conditions becomes important.

The mass diffusion flow behavior of the gaseous phases water-vapor, oxygen,
and carbon dioxide is assumed to be coupled with the temperature field (i.e. a
temperature gradient induced flow). Therefore, information from the equation
describing the temperature gradients is necessary in order to create the equations
describing the action of water-vapor, oxygen and carbon dioxide. Furthermore,
the heat transfer equation and all equations describing diffusing matter will be
affected by the mean velocity of the mixture. This convective flow contribution
can not be solved numerically without treating the problem as a coupled equation
system.

A truly coupled numerical discretization of the equations discussed in Section
4 becomes very complex. Therefore, the simplest possible way of solving the equa-
tion system will be discussed. This solution procedure is the so-called staggered
solution process.

10.2. Some simple solution strategies for coupled equations

The staggered solution process is a method, by which each governing equation is
solved separately. At every time step, however, information needed for the cou-
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pling terms is taken from the other solved equations. Since the separate equations
are not calculated simultaneously with a truly coupled equation-system, errors will
be introduced. These errors may, however, be small when small time-steps are
used.

Indeed the problem of describing the action of the diffusing matter in pore
solution or in air-filled space requires a knowledge of mass concentration of liquid
water and of the velocity field of liquid water in the pores. The mass concentration
of liquid can, however, in general be determined by a solution independent of con-
centration fields of dissolved ions. Thus, the problem decouples in one direction.
The same strategy can be used in the stress analysis discussed in Section 8. That
is, the problem only couples, for example, in the temperature-stress direction, and
thus, the temperature field can be calculated as a decoupled problem.

This simplified method of solving a coupled problem could, however, be some-
what improved for the case, where the mass diffusion flow of a constituent is
described not only by its own gradient but also, for example, by the temperature
gradient. In this very special case, it is possible to solve the mass concentration
field of the constituent simultaneously with the temperature field. One advantage
of this approach is that the same mesh and interpolation functions in the spatial
and time domain for the two unknown quantities can be used.

The approach can be illustrated by considering a reduced version of equation
(4.30) as

oc, d%c, %0
_p, 2% p,2°
arn oz T P

where the mass diffusion flow for the quantity c, is constituted as functions of
both the gradients of ¢, and 6. The temperature 6 is calculated using the standard
transient heat conduction equation, i.e.

in V (10.1)

00 %0 .
pC’a = )\@; inV (10.2)

The discretization of equation (10.1) takes the following form:
C,a, + K,a,+K pap+f, =0 (10.3)
Equation (10.2) is of a standard format, that is

Coay + Kpap+fy =0 (104)
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By forming block matrixes of the damping and stiffness matrixes as

lc(z) geHZZ}+lI§ IEUQQHZZ}+{E}:0 (10.5)

it becomes clear that the two coupled equations (10.1) and (10.2) can be solved
simultaneously in one step only, for each and every increment.
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11. Discussion

11.1. Concluding remarks

A durability model based on continuum mechanics and a profound understanding
of the destruction processes going on provides an idealized description of degrada-
tion phenomena in brittle porous materials. All material parameters introduced
have a clear, stringent, physical meaning, and the proposed model may therefore
be used to identify the relevance of the same parameters by experiments.

The course taken to obtain the governing equations for the diffusion of matter
in the pore system was to assume that the diffusion constants for ions in water
or gases in air could be scaled with a labyrinth factor which is a function of the
porosity and the mass concentration of water in the pore system.

The exchange of mass among the constituents due to adsorption-desorption
and chemical reactions was dealt with by constituting the reaction kinetics as mod-
ified second order reactions. The reason not to assume instantaneous reactions
is that experiments indicate that the considered mass exchange processes taking
place are diffusion controlled, on the micro-scopic level. The specific surface area,
the temperature and the mass concentration of liquid water were assumed to be
important properties affecting the reaction kinetics.

It was concluded that the description of the liquid water behavior in terms of
mass concentration and velocity fields is very important as this affects nearly all
degradation processes involved in inorganic porous materials. In order to obtain
a realistic prediction of the behavior of liquid water in the pore system, a viscous
newtonian fluid assumption was introduced. A thermodynamic force accounting
for the interaction between the capillary sucked water and the pore walls was also
included in this description.

It was argued that the water vapor and liquid water present in the pore sys-
tem should be treated as two separate constituents. The main benefits of this ap-
proach are that temperature effects on the mass diffusion flow and the adsorption-
desorption behavior of vapor may be introduced in a stringently explicit manner.
Furthermore, it was shown that the velocity field of the liquid water plays an
important role when it comes to describing the behavior of the dissolved ions in
the pore solution. Reasonable predictions of the velocity field of liquid water can
not be found when treating the vapor and liquid constituents by one governing
differential equation only, since the diffusion and fixation of vapor are responsible
for the distribution of liquid water within the pore system in a wide range of outer
relative humidities. The main reason for development of significant velocity fields
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of liquid water is, however, capillary suction. Under certain conditions, outer
water pressure could also cause considerable convective velocity fields.

All constituents introduced in Section 4 are of interest in the reinforcement
corrosion problem. The equation system describing such a multi-component dif-
fusion must, however, be supplemented by more assumptions, taking into account
the effect of corrosion currents which follows when the corrosion process has been
initiated. This very important phenomenon will complicate the picture concerning
the movement of the ions in the pore solution as they will be attracted or repelled
from different corrosion zones by the electrical field. A brief discussion of how
the diffusion velocities could be constituted when present in an electrical field was
presented in Section 6. It was also noted that the constitutive behavior describing
the binding of ions, e.g. the reaction kinetics describing adsorption-desorption of
chloride ions, must be assigned with special assumptions when a significant elec-
trical force drags ions in the streamline direction of the electric field. That is, ions
will get stucked in cavities (in the pore system) which direction coincides with the
electrical stream line direction. This phenomenon is not active when considering
diffusion and binding of ions without the presence of electrical fields.

The formation of ice crystals in the pore system involves several complex phys-
ical mechanisms. The most obvious phenomenon to account for is the latent heat
effect involved in the transformation of liquid water to ice and vice versa. In
Stefan’s problem, a material changes phase at a distinct temperature followed
by adsorption or emission of the latent heat at a front propagating through the
material. Some remarks on how to generalize Stefan’s problem were discussed in
Section 7. Such a generalization must account for propagation of ice through a
material with a wide range of pore sizes. Serious problems must be overcome,
such as the problem of describing the cryo-suction phenomenon where ice affects
water from sources containing unfrozen water, such as water in very narrow pores.
Furthermore, it seems reasonable to introduce a distribution function accounting
for the degree of saturation of different pore sizes when the mass concentration in
a representative volume, in which all pore sizes are represented, is known. When
ice starts to form in the pore system such a distribution function will, however,
be significantly changed during the freezing process. This fact indicates that the
problem should be described at a lower level where the geometry of the pores is
considered in an explicit manner. Assumptions introduced at a microscopic level
are however, difficult to confirm by experiments. Another problem associated
with ice growth in the pore system of porous materials is that ice may be formed
by both fusion and sublimation. The shape of the formed crystals is very much
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a question of the temperature at which the vapor is sublimated. The differently
formed ice crystals will therefore affect the solid skeleton differently. It is noted
also that calorimeter measurements can not reveal the amount of ice formed in the
pore system directly without making assumptions of the latent heat of fusion and
sublimation involved at different temperatures and at different mass concentra-
tions of water in the pore system. One problem to be considered is, for example,
that the latent heat of fusion of capillary water is different from the latent heat
of fusion of adsorbed and capillary condensed water at a certain temperature.

Damage of solid porous materials due to freezing and thawing of pore water,
changes of temperature or changes of moisture condition involves several complex
physical phenomena. A brief discussion of how to constitute the stresses in the
solid is presented in Section 8. Using the smeared crack approach model, outlined
in Section 8, deformations and cracks in the solid may be predicted by intro-
ducing coupling terms and using information from the equations for the different
constituents presented in Sections 4 to 7. When studying the mechanical behavior
due to freezing and thawing of pore water, special considerations must be dealt
with as the assumed material parameters describing the elastic-fracturing mate-
rial of interest will be significantly changed under such conditions. The loading
and unloading paths in the softening zone are discussed in detail. In service life
predictions such cyclic environmentally induced loads are of major importance.
Problems of involving changes of material properties in the softening zones, were,
however, realized. These problems stem from the fact that the second axiom of
thermodynamics must always be fulfilled. A simple way of introducing the effect
on the material properties in the softening zone of the presence of ice in the pore
system is proposed.

A rigid method of solving diffusion-convection problems numerically is outlined
in Section 9. Several examples showed that the Petrov-Galerkin scheme, together
with an unconditional time step method, yields good accuracy. This type of
method could be used to solve the governing equations presented in Sections 4 to
7 for the diffusing and chemically reacting constituents. It is suspected, however,
that the present internal transient source terms modelling the mass exchange
among the constituents will present some difficulties. That is, the time scale for
these reactions may be in conflict with the time scale for the diffusion process.
This may introduce extremely expensive computations as very small time steps
must be used in order to follow the correct solution path.

A staggered solution process is suggested for the coupled equations in Sections
4 to 7. This will demand the use of a powerful computer as information of the
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current state of the different constituents must be stored in every time step. In-
deed small time steps must also be used to capture the response due to a given
environmental variation in terms of, for example, temperature, mass concentra-
tion of vapor, exposure to liquid water and chloride ions. A typical case to be
modelled is the response due to cyclic deicing salt and rain water exposure for
treating the reinforcement corrosion problem. Here consideration must be taken
to (i) ingress of chlorides, (i7) moisture conditions and liquid water flow in the
pore system, (iii) carbonation and leaching of hydroxides within the material,
(iv) temperature effects.

11.2. Possible future developments

A natural extension of the presented work is to arrange specially designed experi-
mental setups. Such experiments should be performed under controlled conditions
which make possible the identification of the introduced material constants and
parameters. In fact, the proposed constitutive relations give the necessary infor-
mation of how these experiments may be performed in a systematic manner.

There is, however, much that can be done to improve the hypothesis on which
the experimental work should be based. It is realized that the complex mecha-
nisms underlying the constitutive behavior of diffusing matter in the pore system
are a consequence of the complicated microstructure of the porous material. Due
to the extremely high specific surface area of the cement paste, and the charged
character of the solid matrix, matter that diffuses in air filled space or matter
dissolved in the pore water will be highly affected. Indeed, the mechanisms on
the micro-scale were modelled by introducing labyrinth factors for the diffusion
parameters and by considering the mass diffusion controlled exchange of mass
among the constituents with source/sink terms. Without any further attention
these equations were assumed to be valid also at the macroscopic level (i.e. in
terms of millimeters).

However, it seems more realistic to introduce the constitutive equations at
the microscopic level as all mechanisms involved in the diffusion-chemical reac-
tion process stem from thermodynamic forces at the same level. The geometry of
different porous materials is unfortunately not very well documented on the mi-
croscale. Some indications of specific surface area and pore size distribution can,
however, be obtained by sorption tests. Micro-scopic geometries may theoretically
be used explicitly in models dealing with mass and heat transfer, in which the
constitutive relations are introduced on the same scale. Homogenization theories
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for upscaling of information between different scales exist. In these methods infor-
mation is propagated to the macroscale by, for example, averaging the microscale
balance laws. Such an averaging procedure may be performed by running different
finite element simulations with a given geometry on the microscale level.

It should be noted, however, that the important capillary suction phenomenon
is extremely difficult to model with constitutive relations on the microscale level
with a given geometry. This is due to liquid water forming discontinuous curved
surfaces caused by the hydrophilic character of the solid matrix. The surface
energy of such a curved liquid water surface may contribute to a creeping flow of
liquid islands or larger continuous liquid domains within the pore structure. The
description of the behavior or the boundary surfaces between liquid water and
the solid is realized to be complex. Furthermore, the mass concentration of liquid
water at the microlevel is either one or zero, i.e. a serious discontinuity must be
dealt with.

Several improvements in the description of the reinforcement corrosion phe-
nomenon may be considered. The most important subject is perhaps to find the
correct chemical stoichiometric relation involved in the corrosion process. The
idealized proposed reactions presented in Section 6 might be much too simplified
to capture the significant action involved in the production of rust. One possibility
is to account for all complex reactions involved in such chemical reactions taking
place in the pore solution. Furthermore, the polarization phenomena, occurring
at the anode and cathode surfaces, are factors that need to be examined further.
Some problems of specifying the boundary conditions in the equation describing
the electrical potential field are realized. Further studies concerning this matter
are needed. Two very important mechanisms were discussed at the end of Section
6. That is, (i) the initiation criteria and the identification of the location of the
anode and cathode surfaces and (i7) the constitutive relation for the reaction rate
of the production of rust when corrosion has been initiated. It should be noted,
however, that such an initiation criterion is not supposed to be used as a threshold
for the service life of a structure as it is suspected that the initiation occurs at an
early stage. The production rate of rust might be slowed down after it has been
initiated if the mechanisms involved are not favorable. That is, a threshold value
in terms of, for example, the amount of rust (formed at a certain location) might
be searched for.

The problems experienced when trying to establish a model for ice growth are,
again, believed to be a consequence of not having significant available information
of the mechanisms occurring at the microlevel. In order to obtain a macroscopic
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continuum, describing ice growth in a pore system, a distributing function was
introduced. The distribution function is supposed to give the saturation degree of
different pore sizes at a given known mass concentration of liquid water, defined on
a macrolevel. The cryo-suction mechanism will, however, change the distributing
function during the freezing process. This calls for a more detailed study of the
transient redistribution process of liquid water among the different pore sizes due
to ice formation. Such considerations can not be successfully studied without
considering the actual pore geometry on the microlevel. The introduction of
constitutive relations on the microscopic level followed with a homogenization
seems to be a fruitful way of improving the model outlined in Section 7.

A more detailed study of the consequences of introducing constitutive relations
for the Helmholz free energy and the entropy for the individual constituents can be
performed. By successfully constituting these properties the effect of, for example,
dissolved ions (in the pore solution) on the ice growth can be modelled by using
only one single energy equation for the mixture together with constitutive relations
for the reaction kinetics.

Another interesting approach to be analyzed in this context is assigning each
individual constituent a temperature. That is, each constituent participating in
the freezing and thawing of pore water, e.g. liquid bulk water, vicinal water, va-
por, ice, dissolved chloride ions and the solid matrix, is allowed to have different
temperatures at the same spatial position. In such a consideration an energy bal-
ance equation for each constituent must be introduced. The approach is, however,
realized to be very complex as not only the Helmholz free energies, the stress ten-
sors and the entropies for all constituents must be properly constituted, but also
the rate and extent of local interaction of energy among the constituents.

The description of the stresses, and hence the deformations, induced by exter-
nal and environmentally induced strains was obtained using coupling terms when
constituting the stress tensor for the solid matrix. The so-called smeared crack
approach was used to obtain this description. Indeed, the important softening
behavior, valid for brittle materials, may be modeled with this approach. It is
realized, however, that some of the material parameters introduced for modeling
the induced stresses caused by ice formation are somewhat weak. An improve-
ment may, in fact, be obtained by considering the solid matrix and the ice in the
pore system as a composite material. Advanced theories do exist in this area,
based on approximations to the general mixture theories. It is believed that in-
teresting conclusions concerning the mechanical behavior may be drawn from a
model where the solid matrix and the ice are treated as a composite material.
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Some basic methods for solving diffusion-convection problems involving chem-
ical reactions, and modified newtonian fluid problems, were outlined in Section
9. These methods may be used to implement a computer program solving cou-
pled equations dealing with diffusion-convection problems with several interacting
constituents. Test simulations using different values of the introduced material
parameters, using such a general program, are assumed to be a powerful tool
when comparing global responses from measurements with different constitutive
assumptions.
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