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Abstract

The thesis treats model reduction for linear time-varying systems. Time-
varying models appear in many fields, including power systems, chemical
engineering, aeronautics, and computational science. They can also be
used for approximation of time-invariant nonlinear models. Model reduc-
tion is a topic that deals with simplification of complex models. This is
important since it facilitates analysis and synthesis of controllers.

The thesis consists of two parts. The first part provides an introduction
to the topics of time-varying systems and model reduction. Here, notation,
standard results, examples, and some results from the second part of the
thesis are presented.

The second part of the thesis consists of four papers. In the first paper,
we study the balanced truncation method for linear time-varying state-
space models. We derive error bounds for the simplified models. These
bounds are generalizations of well-known time-invariant results, derived
with other methods. In the second paper, we apply balanced truncation to
a high-order model of a diesel exhaust catalyst. Furthermore, we discuss
practical issues of balanced truncation and approximative discretization.
In the third paper, we look at frequency-domain analysis of linear time-
periodic impulse-response models. By decomposing the models into Taylor
and Fourier series, we can analyze convergence properties of different
truncated representations. In the fourth paper, we use the frequency-
domain representation developed in the third paper, the harmonic transfer
function, to generalize Bode’s sensitivity integral. This result quantifies
limitations for feedback control of linear time-periodic systems.
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Preface

The topic of linear time-varying systems is classical in the fields of en-
gineering and mathematics. Some of the pioneers are the 19th-century
scientists Floquet, Hill, and Mathieu. The motivation for their work often
came from real problems, such as studies of the orbit of the moon. Many
modern engineering applications also fit into this topic. Examples include
power systems, chemical engineering, aeronautics, and computational sci-
ence.

Model reduction is also a well-known topic, with close connections to
approximation theory and system identification. Model reduction deals
with reduction of model complexity. The practical relevance comes from
the fact that low-complexity models are easier to analyze and to design
controllers for.

In the thesis, we combine the two areas and obtain results for model
reduction of linear time-varying systems.

Organization of the Thesis

Chapter 1 contains an introduction to time-varying systems and some
examples. We review two model structures and define what we mean
by a time-varying system. Chapter 2 contains an introduction to model
reduction for time-varying systems. In particular, we define the purpose of
model reduction and review some of the methods that are commonly used.
Chapters 1 and 2 provide the context for the contributions, with pointers
to many of the results that are derived in Papers I–IV. Chapter 3 gives
some concluding remarks and suggestions for future work. Papers I–IV
contain the main contributions of the thesis.

How to read the thesis. The thesis can be read in (at least) two
different ways.
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Preface

If the reader is not familiar with the topics, it is suggested that he or
she starts with Chapters 1 and 2, in which notation, problem formulations,
and some standard results are presented. It is also attempted to show how
the contributions of the thesis fit into the “big picture”.

If the reader is familiar with the topics, it is suggested that he or
she reads Papers I–IV first. The papers are self-contained and include all
technical details. After this the reader may proceed with Chapters 1 and
2 to get the author’s personal view on the topic and how the results of the
papers are related.

Notice that the references in the introductory chapters often refer to
easily accessible proofs and results rather than papers where the results
were first given.

Contributions of the Thesis

Paper I

Sandberg, H. and A. Rantzer (2004): “Balanced truncation of linear time-
varying systems.” IEEE Transactions on Automatic Control, 49:2,
pp. 217–229.

In this paper, we study balanced truncation of linear time-varying systems
in discrete and continuous time. Based on relatively simple calculations
with time-varying Lyapunov equations/inequalities we are able to derive
both upper and lower error bounds for the truncated models. These results
generalize well-known time-invariant formulas derived with other meth-
ods. The case of time-varying state dimension is considered. Input-output
stability of all truncated balanced realizations is also proven. Finally, we
apply the method to a high-order model.

Related publications are

Sandberg, H. (2002): “Linear time-varying systems: Modeling and reduc-
tion.” Licentiate thesis ISRN LUTFD2/TFRT--3229--SE. Department
of Automatic Control, Lund Institute of Technology, Sweden.

Sandberg, H. and A. Rantzer (2002): “Balanced model reduction of
linear time-varying systems.” In Proceedings of the 15th IFAC World
Congress. Barcelona, Spain.

Sandberg, H. and A. Rantzer (2002): “Error bounds for balanced trun-
cation of linear time-varying systems.” In Proceedings of the 41st
IEEE Conference on Decision and Control, pp. 2892–2897. Las Vegas,
Nevada.
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Contributions of the Thesis

Paper II

Sandberg, H. (2004): “A case study in model reduction of linear time-
varying systems.” Submitted to Automatica.

In this paper, we apply the balanced truncation procedure for time-varying
linear systems, both in continuous and in discrete time. The methods
are applied to a linear approximation of a diesel exhaust catalyst model.
The reduced-order systems are obtained by using certain projections in-
stead of direct balancing. An approximative zero-order-hold discretization
of continuous-time systems is described, and a new a priori approximation
error bound for balanced truncation in the discrete-time case is obtained.
The case study shows that there are several advantages to work in dis-
crete time. It gives simpler implementation with fewer computations.

A related publication is

Sandberg, H. (2004): “A case study in model reduction of linear time-
varying systems.” In Proceedings of the 2nd IFAC Workshop on
Periodic Control Systems, pp. 249–254. Yokohama, Japan.

Paper III

Sandberg, H., E. Möllerstedt, and B. Bernhardsson (2004): “Frequency-
domain analysis of linear time-periodic systems.” Under review for
IEEE Transactions on Automatic Control.

In this paper, we study convergence of truncated representations of the
frequency-response operator of a linear time-periodic system. The fre-
quency-response operator is frequently called the harmonic transfer func-
tion. We introduce the concepts of input, output, and skew roll-off. These
concepts are related to decay rates of elements in the harmonic transfer
function. A system with high input and output roll-off may be well approx-
imated by a low-dimensional matrix function. A system with high skew
roll-off may be approximated by an operator with only few diagonals. Fur-
thermore, the roll-off rates are shown to be determined by certain prop-
erties of Taylor and Fourier expansions of the periodic systems. Finally,
we clarify the connections between the different methods for computing
the harmonic transfer function that are suggested in the literature.

A related publication is

Sandberg, H., E. Möllerstedt, and B. Bernhardsson (2004): “Frequency-
domain analysis of linear time-periodic systems.” In Proceedings of the
American Control Conference, pp. 3357–3362. Boston, Massachusetts.

Paper IV

Sandberg, H. and B. Bernhardsson (2004): “A Bode sensitivity integral
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Preface

for linear time-periodic systems.” Submitted to IEEE Transactions on
Automatic Control.

Bode’s sensitivity integral is a well-known formula that quantifies some
of the limitations in feedback control for linear time-invariant systems. In
this paper, we show that there is a similar formula for linear time-periodic
systems. The harmonic transfer function is used to prove the result. To
state the result we introduce the notion of roll-off 2, which means that
the first time-varying Markov parameter is equal to zero. Then it follows
that the harmonic transfer function is an analytic operator and a trace
class operator. This is needed to prove the result.

A related publication is

Sandberg, H. and B. Bernhardsson (2004): “A Bode sensitivity integral
for linear time-periodic systems.” In Proceedings of the 43rd IEEE
Conference on Decision and Control. Paradise Island, Bahamas.

Other Publications

The following publications are also cited in the introductory chapters.
They are not directly related to Papers I–IV, but treat linear time-varying
systems.

Iftime, O., R. Kaashoek, H. Sandberg, and A. Sasane (2004): “A Grassma-
nian approach to the Hankel norm approximation problem.” In Pro-

ceedings of the 16th International Symposium on Mathematical The-

ory of Networks and Systems. Leuven, Belgium.

Sandberg, H. (1999): “Nonlinear modeling of locomotive propulsion system
and control.” Master’s thesis ISRN LUTFD2/TFRT--5625--SE. Depart-
ment of Automatic Control, Lund Institute of Technology, Sweden.

Sandberg, H. and E. Möllerstedt (2000): “Harmonic modeling of the
motor side of an inverter locomotive.” In Proceedings of the 9th IEEE
Conference on Control Applications, pp. 918–923. Anchorage, Alaska.

Sandberg, H. and E. Möllerstedt (2001): “Periodic modelling of power
systems.” In Proceedings of the 1st IFAC Workshop on Periodic Control
Systems, pp. 91–96. Cernobbio-Como, Italy.
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1

Introduction to

Time-Varying Systems

In this chapter, we define what we mean by time-varying models, and
look at some of their basic features. The chapter is meant to provide a
presentation of the modeling framework of Papers I–IV without going into
too much technical detail, and to present some examples. References are
given to more complete presentations where so is suitable.

The chapter starts with a presentation of the two main model struc-
tures that we study in the thesis: state-space models and input-output
models. State-space models are mainly used in Papers I and II, and input-
output models are mainly used in Papers III and IV. At the end of the
chapter we discuss lifting, and there are some examples to illustrate the
models.

1.1 State-Space Models

A system G modeled by a state-space model is given as the differential
equation

ẋ(t) = f (x(t), u(t), t), x(t0) = x0,

y(t) = n(x(t), u(t), t), t ∈ [t0, t f ] ⊆ R,
(1.1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the input (or control signal),
and y(t) ∈ R

p is the output (or measurement signal) of the system. x0 is
the initial state of the system. State-space models are the topic of many
books. A standard reference is [Khalil, 2002].

By adding the assumption that f is locally Lipschitz continuous in the
state x, existence and uniqueness of solutions to (1.1) can be shown, see
[Khalil, 2002]. It will be assumed that there exist unique solutions to the
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Chapter 1. Introduction to Time-Varying Systems

state-space models that appear. We also use the following classification of
state-space models.

DEFINITION 1.1—CLASSIFICATION OF STATE-SPACE MODELS

A state-space model in continuous time is

(a) time invariant if f and n do not depend on t,

(b) time varying if it is not time invariant,

(c) time periodic if there exists a T > 0 such that

f (x, u, t) = f (x, u, t+ T),
n(x, u, t) = n(x, u, t+ T),

for all x, u, t.

State-space models for systems evolving in discrete time can be con-
structed in a similar way. Then we have

x(k+ 1) = f (x(k), u(k), k), x(k0) = x0,

y(k) = n(x(k), u(k), k), k ∈ [k0, kf ] ⊆ Z.
(1.2)

The classification of discrete-time models is analogous to the continuous-
time case.

From a strictly physical point of view, one would perhaps not expect
models of natural processes to be time varying, given that the laws of
physics do not change with time. However, from a local perspective, it
may very well happen that a model based on first principles becomes time
varying. A classical example is a model of a rocket that has decreasing
mass since it burns fuel, see [Rugh, 1996]. Also, many nonlinear time-
invariant models may be locally approximated by a time-varying model
of a simpler (linear) structure.

It should be clear that by making a linear time-varying coordinate
transformation, x = T(t)x̃, a time-invariant state-space model with state
x can be turned into a time-varying state-space model with state x̃. Con-
versely, by extending the state space we can also make a time-varying
model ẋ = f (x, t) time invariant:

[
ẋ

ẋt

]

=
[

f (x, xt)
1

]

=; ˙̃x = f̃ (x̃). (1.3)

Notice that if f has some desirable property, such as linearity in the
state, f̃ might lose this property. For this reason we will not use the state
extension (1.3) in the thesis.

16



1.1 State-Space Models

Hence, the classification of a model can be changed. However, the state
transformations we use in Papers I and II do typically not change the
classification. Lifting, which is discussed in Section 1.3, is another form
of transformation that is applied to the input and output.

Linear Approximations

In the following, we will mostly restrict ourselves to linear models. This
can be motivated by the fact that many nonlinear state-space models can
be approximated by linear models. The formulas for linearization of a
continuous-time state-space model are given next. The formulas in dis-
crete time are completely analogous. The linearization procedure is ap-
plied to a nonlinear model in Paper II.

The first step in the linearization is to find a nominal solution x0(t),
u0(t), y0(t) to (1.1). If the nominal solution is constant,

f (x0, u0, t) = 0,

for all t, the solution is called an equilibrium point. If the model is initial-
ized at an equilibrium point and no extra input is applied, then the state
will remain at x0.

Next, new variables that represent the deviations from the nominal
solution are introduced:

∆x(t) = x(t) − x0(t), ∆u(t) = u(t) − u0(t), ∆ y(t) = y(t) − y0(t).

If we assume that the mappings f and n are continuously differentiable,
then we may construct a linear system of differential equations,

∆ ẋ(t) = A(t)∆x(t) + B(t)∆u(t), ∆x(t0) = ∆x0,

∆ y(t) = C(t)∆x(t) + D(t)∆u(t), (1.4)

where

A(t) = V f

V x
(x0(t), u0(t), t), B(t) = V f

Vu
(x0(t), u0(t), t),

C(t) = Vn
V x
(x0(t), u0(t), t), D(t) = Vn

Vu
(x0(t), u0(t), t).

The linear system is described by the matrices A(t) ∈ R
n�n, B(t) ∈ R

n�m,
C(t) ∈ R

p�n, and D(t) ∈ R
p�m. The linear state-space model is time-

invariant if and only if all the matrices are constant.
A nonlinear time-invariant state-space model that is linearized around

an equilibrium point is described by the four constant matrices: A, B, C,

17



Chapter 1. Introduction to Time-Varying Systems

and D. In control-oriented literature it is often assumed that a model
is given in this form. Notice, however, that even if the nonlinear state-
space model is time invariant, the linear approximation is in general time
varying if the nominal solution is not constant. In Papers I and II it
is assumed that the models are given in this more general linear time-
varying form. Some examples of linear time-varying approximations are
given in Section 1.4.

If D(t) = 0, the solution of the system (1.4) can be written in the form

∆ y(t) = C(t)ΦA(t, t0)∆x0 +
∫ t

t0

C(t)ΦA(t,τ )B(τ )∆u(τ )dτ , t ∈ [t0, t f ],

(1.5)

where ΦA(t,τ ) is the transition matrix for ẋ = A(t)x:

V
V t

ΦA(t,τ ) = A(t)ΦA(t,τ ), ΦA(τ ,τ ) = I .

For time-invariant models we have ΦA(t,τ ) = eA(t−τ ). Corresponding for-
mulas hold in discrete time. These results are given in [Rugh, 1996].

There exist many results that guarantee that the trajectories of (1.4)
are close to the trajectories of (1.1) in a neighborhood of the nominal
solution. Results of a qualitative nature come from the Lyapunov stability
theory, see for instance [Khalil, 2002]. There are also quantitative bounds
on the error between the trajectories of the linear approximation and the
nonlinear system, see for instance [Desoer and Vidyasagar, 1975].

1.2 Input-Output Models

A different modeling framework is offered by input-output models. Tradi-
tionally, state-space models come from mechanics, and the input-output
models come from electrical engineering. Input-output models are treated
in-depth in, for example, the books [Desoer and Vidyasagar, 1975; Zadeh
and Desoer, 1979].

An input-output model of a system G is a mapping that to each input
u assigns an output y,

G : U → Y,

where
U ⊆ {u : u(⋅) : I → R

m},
Y ⊆ {y : y(⋅) : I → R

p},
and I = [t0, t f ] ⊆ R or I = [k0, kf ] ⊆ Z.
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1.2 Input-Output Models

State-space models (with inputs and outputs) with unique solutions
can be represented as input-output models. But there are examples of
input-output models that are not possible to represent as state-space mod-
els. For example, systems with time delays or partial differential equa-
tions do not fit into the state-space framework unless one uses theory for
infinite-dimensional systems, see [Curtain and Zwart, 1995].

Linear impulse-response models. A linear model G : U → Y fulfills
the relation

G(α ⋅ u1 + β ⋅ u2) = α ⋅ G(u1) + β ⋅ G(u2),

for all α , β ∈ R and u1, u2 ∈ U . In the following, parentheses are not
used for linear models, i.e., G(u) = Gu. Linear systems can often be
represented in integral or summation forms. We call these representations
impulse-response models. Impulse-response models in continuous time are
in the form

y = Gu : y(t) =
∫

I

n(t,τ )u(τ )dτ , t ∈ I, (1.6)

and we can formally compute the impulse response n of G as

n(t,τ ) = lim
σ→0

(Gwτ ,σ )(t), t,τ ∈ I, (1.7)

where wτ ,σ (t) converges to the shifted Dirac impulse function δ (t − τ )
in the sense of distributions as σ → 0. For the integral (1.6) to be well
defined for absolutely integrable inputs, the impulse response should be
essentially bounded. There are several technicalities involved here, see
[Sontag, 1990] for details. To justify the equality in (1.7), the order of
integration and other limits has to be interchanged. Details and further
assumptions on G that are needed are given in, for example, [Sandberg,
1988].

Notice that the linear state-space model (1.5) is an impulse-response
model if the system is initially at rest, and

n(t,τ ) =
{

C(t)ΦA(t,τ )B(τ ), t ≥ τ ,

0, t < τ .
(1.8)

An impulse-response model that can be written in state-space form is
said to have a realization. This is often convenient and will be further
discussed in Sections 1.4 and 2.4.

In discrete time, summation replaces integration

y = Gu : y(k) =
∑

i∈I

n(k, i)u(i), k ∈ I, (1.9)
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Chapter 1. Introduction to Time-Varying Systems

and the impulse response n of the linear system G is obtained as

n(k, i) = (Gδ i)(k), k, i ∈ I,

where δ i(k) = δ (k− i) is the shifted discrete impulse function. Also here
do technicalities arise when the set I is infinite, and we need to verify
that the sum converges, see [Sontag, 1990]. We often write the summation
(1.9) when I = [k0, kf ] as the matrix-vector multiplication

y[k0 ,kf ] = G[k0,kf ]u[k0 ,kf ], (1.10)

or written explicitly,





y(k0)
y(k0+1)

...

y(k f )





=





n(k0, k0) n(k0, k0+1) . . . n(k0, k f )
n(k0+1, k0) n(k0+1, k0+1)

...
. . .

...

n(k f , k0) . . . n(k f , k f )









u(k0)
u(k0+1)

...

u(k f )





.

We now give some basic definitions for impulse-response models.

DEFINITION 1.2—CLASSIFICATION OF IMPULSE-RESPONSE MODELS

Assume that G is a linear impulse-response model in continuous time.
Then G is

(a) causal if n(t,τ ) = 0, t < τ ,

(b) time invariant if n(t,τ ) = n(t− τ , 0) =: n(t− τ ),
(c) time varying if it is not time invariant,

(d) time periodic if n(t+ T ,τ + T) = n(t,τ ), for some T > 0,

for all t and τ in I.

An analogous classification is used in discrete time.
Causality means that future inputs do not influence outputs of the

past. A discrete-time causal system takes the form of a lower-triangular
matrix

G[0,∞] =





n(0, 0) 0

n(1, 0) n(1, 1)
n(2, 0) n(2, 1) n(2, 2)

...
. . .





. (1.11)

The state-space models with impulse response (1.8) are always causal.
Causality, as defined above, holds for most models of physical systems.

20



1.2 Input-Output Models

However, it is sometimes useful to consider non-causal systems, see for
example Paper III.

Time invariance means that a given input signal has the same effect
whenever it is applied, the output will only be a shifted version in time. In
discrete time, a time-invariant system takes the form of a Toeplitz matrix

G[0,∞] =





n(0) n(−1) n(−2) . . .

n(1) n(0) n(−1) . . .

n(2) n(1) n(0) . . .

...
. . .

. . .
. . .





. (1.12)

A linear time-invariant state-space model gives a time-invariant impulse-
response model (1.8).

Norms of Signals and Systems

We will work with sets U , Y that are normed linear spaces. In continuous
time I ⊆ R and the spaces used are typically Lp(I, Rm), where p ≥ 1.
The signal u belongs to Lp(I, Rm) if and only if the norm

iuip := iuiLp(I,Rm) =
(∫

I

hu(t)hpdt

)1/p

is finite, where h⋅h is the regular Euclidean norm on R
m: hu(t)h2 = uT (t)u(t).

Often we only write Lp when m and I are known, or not essential to the
discussion. Notice that p has previously also been used for the dimension
of the output. Traditionally, both are denoted by p and it should be clear
from the context what p means.

In discrete time we have I ⊆ Z. Here the spaces used are typically
Qp(I, Rm), where p ≥ 1. The signal u belongs to Qp(I, Rm) if and only if
the norm

iuip := iuiQp(I,Rm) =
(
∑

k∈I

hu(k)hp
)1/p

is finite. For simplicity we often write Qp instead of Qp(I, Rm).
It will be useful to measure the size of input-output models. This is

done by introducing norms not only on signals but also on systems.

Norms of linear systems. The induced norm of the input-output model
G : U → Y is defined as

iGiU→Y = sup
u∈U\{0}

iG(u)iY

iuiU

. (1.13)
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Chapter 1. Introduction to Time-Varying Systems

When the interval I has infinite horizon, and the norm (1.13) is finite,
then G is bounded-input-bounded-output (BIBO) stable.

Next, we give a collection of methods for estimating the system norms
on Lp and Qp,

iGip := iGiLp→Lp
, iGip := iGiQp→Qp

. (1.14)

This serves as a comparison with the methods that are used in the papers.
The first method applies to impulse-response models, and is based on
results found in [Desoer and Vidyasagar, 1975].

THEOREM 1.1—INDUCED Lp-NORM

Assume that G : Lp → Lp has an impulse-response representation (1.6).
If there are constants c1, c∞ such that

sup
t∈I

∫

I

hn(t,τ )hdτ = c∞ < ∞, sup
τ∈I

∫

I

hn(t,τ )hdt = c1 < ∞,

then
iGi∞ = c∞, iGi1 = c1, iGip ≤ c

1/p

1 c1/q
∞ , (1.15)

where p ∈ [1,∞] and 1/p+ 1/q = 1.

There is a completely analogous result in discrete time for the induced Qp-
norm iGip. We do not state it here. Both proofs are based on the Hölder’s
inequality, see for example [Desoer and Vidyasagar, 1975]. In the case of
multi-input-multi-output systems, hn(t,τ )h should be read as the induced
norm on R

m.
Discrete-time systems (1.9) may be written as matrix-vector multipli-

cation (1.10). If I is a finite set, then standard matrix norms can be used
to compute iGip in the cases p = (1, 2,∞). Notice that in the case p = 2,
the induced norm corresponds to a calculation of the largest singular value
of a matrix.

In Papers III and IV, there is a standing assumption that the impulse
responses are causal and have uniform exponential decay. That is, there
are positive constants K and κ such that

hn(t,τ )h ≤ K ⋅ e−κ (t−τ ), t ≥ τ . (1.16)

One reason for this assumption is that it then holds that iGip ≤ K/κ for
all p.

We will often work with the case p = 2, since L2 and Q2 are Hilbert
spaces. Theorem 1.1 only gives an upper bound on iGi2. If G is a compact
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1.2 Input-Output Models

operator on L2 or Q2, see for example [Young, 1988], then we can obtain
the norm as

iGi2 = λ
1/2
max(G∗G), (1.17)

where G∗ is the adjoint operator and λmax the largest eigenvalue. This
corresponds to the computation of the largest singular value of G. How-
ever, models with an infinite time horizon, I = (−∞,∞) or I = [0,∞), are
typically not compact.

In Paper III, we calculate an harmonic transfer function Ĝ( jω ) of
time-periodic systems G. Here ω is the angular frequency. The harmonic
transfer function allows us to compute the norm iGi2 in a fashion similar
to (1.17), even if G is defined on infinite time horizons. The harmonic
transfer function is further discussed in Section 1.3. Let C 2

e be the set
of twice differentiable and exponentially decaying impulse responses, see
Definition 1 in Paper III. Then the following theorem may be derived.

THEOREM 1.2—PAPER III
Assume that G : L2 → L2, I = (−∞,∞), is a time-periodic causal impulse-
response model (1.6) in C 2

e , with period T . Then we can define an infinite-
dimensional compact operator on Q2, Ĝ( jω ), such that

iGi2 = sup
ω∈I0

λ
1/2
max

(

Ĝ∗( jω )Ĝ( jω )
)

,

where I0 = (−π/T ,π/T ].

REMARK 1.1—TRANSFER FUNCTIONS FOR TIME-INVARIANT SYSTEMS

Compare the harmonic transfer function with the standard transfer func-
tion n̂( jω ) for time-invariant systems. That is, n̂( jω ) = F [n]( jω ), the
Fourier transform of the impulse response. Then,

iGi2 = sup
ω∈R

hn̂( jω )h,

see, for example, [Zhou and Doyle, 1998].

If the linear system has a state-space realization, then we can obtain es-
timates of iGi2 by means of a generalization of the famous bounded real

lemma, see, for example [Green and Limebeer, 1995]. With this procedure,
we can get an arbitrarily good estimate of the L2-induced norm by solv-
ing differential Riccati equations or inequalities, see [Tadmor, 1990]. The
following formulation is based on the results in [Lall, 1995].
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Chapter 1. Introduction to Time-Varying Systems

THEOREM 1.3—BOUNDED REAL LEMMA

Assume that G : L2 → L2 with I = [0,∞), and that G has a bounded
linear state-space realization (A(t), B(t), C(t), 0), with x(0) = 0. Assume
furthermore that ẋ = A(t)x is uniformly exponentially stable.

If there is a bounded (symmetric) solution P : [0,∞) → R
n�n to

Ṗ+ AT P+ PA+ γ −2PB BT P + CT C ≤ 0, (1.18)

then iGi2 ≤ γ .
Conversely, if iGi2 < γ , then there exists a bounded positive-semi-

definite solution P to (1.18).
Theorem 1.3 can be generalized to the case when D(t) �= 0, see [Lall,
1995]. Theorem 1.3 is an example of that there often are explicit schemes
that are relatively simple to implement numerically for systems expressed
in linear state-space form. We shall see more examples of this throughout
the thesis.

Even though Theorem 1.3 is simple in principle, one needs a bisection
algorithm to find a good bound γ . Because each iteration involves solving
a potentially large differential inequality (1.18), this might be hard to do
in practice. In Papers I and II, we instead search for other simple bounds
that come directly from the model reduction procedure that is studied.

1.3 Lifting

Lifting is a common operation on linear time-varying models. Essentially
the idea is to find isomorphic transformations on the input and output
spaces of the model, and thereby gain a model that in the new coordinates
has some desirable property, such as time invariance.

Consider, for example, the causal input-output model G : U → Y with
period 2,





y(1)
y(2)
y(3)
y(4)
y(5)

...





=





n1(0) 0

n1(1) n2(0)
n1(2) n2(1) n1(0)
n1(3) n2(2) n1(1) n2(0)
n1(4) n2(3) n1(2) n2(1) n1(0)

...
. . .









u(1)
u(2)
u(3)
u(4)
u(5)

...





.

Assume that the model is BIBO-stable and defined on scalar sequences:
U = Y = Q2(N , R) and ni(k) ∈ R. Let us define the isomorphic transfor-
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1.3 Lifting

mation T : Q2(N , R) → Q2(N , R2),




u(1)
u(2)
u(3)
u(4)

...





T−→





ũ(1)
ũ(2)

...





=








u(1)
u(2)








u(3)
u(4)





...





.

We have that G̃ = T GT −1 : Ũ → Ỹ with a matrix representation





ỹ(1)
ỹ(2)
ỹ(3)

...





=





ñ(0) 0

ñ(1) ñ(0)
ñ(2) ñ(1) ñ(0)

...
. . .









ũ(1)
ũ(2)
ũ(3)

...





,

where ñ(k) ∈ R
2�2. Since the matrix is on Toeplitz form, the model on

the lifted signal spaces has a time-invariant structure, see Definition 1.2.
Instead of a periodic single-input-single-output system, we have obtained
a time-invariant multi-input-multi-output system. Notice that ñ(0) needs
to be a lower triangular 2� 2 matrix for the system to be causal. Hence,
for lifted systems, there is a constraint on the direct term.

Lifting is a simple algebraic manipulation, yet powerful. Surveys of dif-
ferent forms of lifting methods are given in [Bittanti and Colaneri, 1999;
Bittanti and Colaneri, 2000]. Most controller synthesis and model reduc-
tion techniques are designed for time-invariant systems. Often these re-
sults can be applied to lifted periodic systems. See, for example, [Colaneri,
1991; Bamieh and Pearson, 1992; Voulgaris et al., 1994] where H2/H∞-
optimal controllers for periodic systems are developed using lifting tech-
niques. Lifting can also be used on periodic systems defined in continuous
time, and on systems in state-space form. A complication in continuous
time is that the elements in the lifted space become infinite dimensional.
In the appendix of Paper I, a lifted state-space model is used for sampling
of Lyapunov differential equations.

Lifting can also be performed in the frequency domain. In fact, this is
how the harmonic transfer function Ĝ( jω ) in Theorem 1.2 is obtained. The
harmonic transfer function is used extensively for T-periodic continuous-
time models in Papers III and IV. By using lifting in the frequency domain,
the interaction of frequencies in input and output can be easily analyzed,
and the theory of analytic functions can be used. For an example of this,
see the next section on sensitivity integrals.
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Chapter 1. Introduction to Time-Varying Systems

A method closely related to lifting is a block-diagonal operator refor-
mulation of linear time-varying systems, see [Dullerud and Lall, 1999].
This method also brings the time-varying system into a formally time-
invariant structure. In this operator-theoretic framework, controller syn-
thesis [Dullerud and Lall, 1999; Farhood and Dullerud, 2002] as well as
model reduction [Lall and Beck, 2003] can be done using semidefinite
programming.

Sensitivity integral. As an example on how lifting is used in the the-
sis, we have the following application.

The harmonic transfer function Ĝ( jω ) is under certain assumptions
an analytic operator-valued function, see Paper IV. This may be used to
generalize Bode’s sensitivity integral to periodic systems. Bode’s sensitiv-
ity integral for time-invariant systems can be found in, for example, [Zhou
and Doyle, 1998].

THEOREM 1.4—PAPER IV
Under the assumptions of Theorem 1.2, that (I + G)−1 is a bounded op-
erator on L2, and that n(t, t) = 0 for all t, we have

∫ π /T

0
loghdet(I + Ĝ( jω ))−1h dω = 0.

Theorem 1.4 states that the sensitivity function hdet(I + Ĝ( jω ))−1h can-
not be made arbitrarily small for all frequencies ω . If it is smaller than
1 for some frequencies, it must necessarily be larger than 1 for other fre-
quencies. This is called the waterbed effect. Theorem 1.4 is a fundamental
limitation for feedback control of periodic systems.

REMARK 1.2—ROLL-OFF 2
The condition n(t, t) = 0 for all t, in Theorem 1.4, is in Paper III defined
as a condition for input and output roll-off 2 of G. In Paper IV it is
simply called roll-off 2. Large parts of Paper III are devoted to studies
of different forms of roll-off for linear time-varying systems. Notice that
in the traditional time-invariant Bode sensitivity integral, there is also a
condition of roll-off 2 on the transfer function.

1.4 Examples

The contributions of the Papers I, III, and IV are mainly of a theoretical
nature. In this section, we give a list of more or less well-known exam-
ples of applications of time-varying modeling and control. In particular, it
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1.4 Examples

should be noticed that time-varying models come up in a wide variety of
situations.

The last example, the example on power systems, is treated in more
detail, since it is based on work co-written by the author.

Hill, Mathieu, and Floquet

Hill, Mathieu, and Floquet are the names of three scientists that are
intimately related to the theory of time-periodic systems. They were all
active in the 19th century.

The Hill equation is a linear differential equation

ÿ(t) + p(t)y(t) = 0,

p(t+ T) = p(t), (1.19)

with a periodic parameter p. The Mathieu equation is on the same form
with a sinusoidal parameter, often parameterized as

p(t) = r − 2qcosω 0t, ω 0 = 2π/T ,

where r and q are constants. Rewriting the equations after introducing
the state x = [y ẏ]T , we see that this indeed is a time-varying linear
state-space model if q �= 0




ẋ1

ẋ2



 =



0 1

−p(t) 0








x1

x2



; ẋ = A(t)x, (1.20)

without inputs and outputs.
The Hill equation was derived for modeling of the lunar perigee, i.e.,

the motion of the moon around the earth [Hill, 1886]. The Mathieu equa-
tion appears in several areas. For example, when the wave equation is
solved in elliptic regions [Mathieu, 1868], but also in the analysis of a
pendulum attached to an oscillating pivot point, see Figure 1.1. There are
several books dedicated to this type of equation and its practical applica-
tions. There are nice surveys in [Farkas, 1994; Wereley, 1991].

It is important to understand that allowing A to be time varying in
(1.20), may have dramatic consequences. Figure 1.2 shows that the be-
havior of the trajectories can be complex as compared to a time-invariant
system of equal order. If A is constant, the stability of the system is easily
determined by a computation of the eigenvalues. To check the stability of
the time-periodic version, we need more advanced tools, such as the Flo-

quet decomposition [Floquet, 1883]. The result by Floquet states that the
transition matrix of a linear time-periodic system may decomposed into

ΦA(t,τ ) = P(t)eQ(t−τ )P−1(τ ),
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A cosω 0t

m

y
l

n

Figure 1.1 An undamped pendulum of length l and mass m, connected to a pivot
point that is oscillating vertically, may be modeled by the Mathieu equation for
small angles y. The approximation sin y � y is used. The parameters in the Mathieu
equation are r = n/l and q = Aω 2

0/2l.
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Figure 1.2 Simulation of the Mathieu equation. The parameters are chosen as
ω 0 = 2, r = 2, and y(0) = 1. In the left plot q = 1.0, yielding a stable system. In
the right plot, q = 1.4 and the system is unstable. Both examples show that the
trajectories are much more complex than for a second-order linear time-invariant
system.

where P(t) is a bounded T-periodic matrix and Q is a constant matrix.
By a simple coordinate change, x̃ = P−1(t)x, (1.20) is transformed into

˙̃x = Qx̃.

This is a time-invariant problem, and the stability is determined by the
eigenvalues of Q. The problem with the Floquet decomposition is that it
is a relatively complicated matter to compute P(t) for general matrices
A(t). This requires the transition matrix ΦA, which in most cases cannot
be written on a closed form. Hence, to obtain Q and P, (1.20) generally
needs to be solved over a period using numerical ODE solvers. It should
be pointed out that for the Hill equation there are many analytical results
available. This is due to the simple structure and dimension of A(t), see
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uc

Ref. gen.

−1

u0

SystemFeedback
yy0

Σ Σ

Figure 1.3 A simplified servo control problem. A reference generator takes com-
mands uc and generates input and output references u0, y0 that the system ideally
should follow. When the real system deviates from the desired trajectory because of
external disturbances or model errors in the reference generator, a feedback com-
pensator generates corrections. If the feedback loop is stable, the output will remain
close to the output reference.

[Farkas, 1994].

The Servo Control Problem

A linear approximation of a nonlinear model is only valid in some neigh-
borhood of a nominal solution, as is discussed in Section 1.1. This might
seem to severely restrict the use of linear approximations. However, for
control purposes, linear models often provide a nice trade-off between
model simplicity and accuracy. The reasons for this are:

• A controlled system typically operates close to some pre-determined
trajectory.

• A well designed feedback controller makes the system robust to
model errors.

• For linear models there are good controller synthesis methods.

In Figure 1.3 a typical servo control problem is illustrated. The refer-
ence generator is an open-loop controller that is sensitive to errors in the
model. It may be designed by using the complete system model and opti-
mization tools, see for example [Bryson and Ho, 1975]. For each reference
uc, we should have a nominal reference trajectory u0 and y0.

The feedback controller should stabilize the system and make correc-
tions for external disturbances and model errors in the open-loop con-
troller. If the reference trajectory is time varying, the system can be ap-
proximated by a linear time-varying model, as discussed in Section 1.1.
The feedback controller for a linear time-varying model may be designed
by using, for example, LQG- or H∞-control techniques, see [Bryson and
Ho, 1975; Başar and Bernhard, 1991; Lall, 1995].
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Figure 1.4 If the quality-cost diagram for operation of a simple, non-dynamic,
process has the above convex appearance, then it may be favorable to use periodic
control. By switching periodically between the operating points A and B, we have
an average cost of C, and obtain an average increase in quality, as indicated in the
figure.

Periodic Control

In the preface of [Bittanti and Colaneri, 2001], the editors write:

“Over the last decades, periodic control ideas and techniques

have reached a notable degree of maturity. Many applications

have been developed in various fields, including aerospace and

power systems, robotics, telecommunication networking man-

agement, digital control devices, biological and biomedical sig-

nal and systems, earth signals and environmental data mod-

elling, physics, etc. . . . ’’

Often systems under control are operated close to some constant operating
point. However, there are several examples where there is a lot to gain by
forcing the system into a periodic orbit, even though the system dynamics
is time invariant. The survey [Bittanti and Colaneri, 1999] offers a nice
exposition of several such applications, and [Bittanti and Colaneri, 2001;
Katayama, 2004; Colaneri, 2004] contain several recent applications. The
diagram in Figure 1.4 illustrates how periodic control can be used for a
simple, non-dynamic, example.

More complex examples are airplanes that periodically change altitude
to decrease the overall fuel consumption, see [Speyer, 1996]. Also, periodic
operation has been observed to increase the performance of certain chem-
ical reactors, see [Bailey, 1973]. Another example is animal and human
locomotion: legs are operated in a periodic pattern to move effectively. A
biped robot is described in the paper [Chevallereau et al., 2003]. The rea-
son why periodic control schemes are not implemented more often seems
to be the increasing controller complexity: It is harder to track a periodic
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C(e−sT )

A(s)H(s)

Figure 1.5 A sampled-data system with a T-periodic sampler. The process with
transfer functions P(s) is controlled by the discrete-time controller C(e−sT ). A(s) is
an anti-aliasing filter and H(s) is a hold circuit.

trajectory than a steady-state operating point.
There are also some theoretically appealing properties of periodic con-

trol. Two examples are the output stabilization and the simultaneous sta-
bilization problem of time-invariant plants. These hard problems can be
solved if a periodic feedback gain is allowed. See the discussion and ref-
erences in [Bittanti and Colaneri, 1999]. Another example is in [Khar-
gonekar et al., 1985], where it is shown how the gain margin can be in-
creased with periodic control of time-invariant plants. However, a problem
is that a periodic controller introduces harmonics in the loop. It is shown in
[Zhang et al., 1997] that, in general, better or equal H2/H∞-performance
can be achieved with time-invariant control for time-invariant plants.

Sampled-data systems. Computer-controlled systems are common ex-
amples of periodically controlled systems. The periodicity comes from the
periodic sampling of measurement signals and the periodic update of the
actuation signal, see Figure 1.5. However, if we sample the system that
changes periodically only once per period, and we always do it at the same
relative instant in the period, then the system appears to be time invari-
ant. This is a common approach for sampled-data systems, and methods
such as the z-transform can be used, see [Åström and Wittenmark, 1997].
A problem with this method is that the signals in between the sampling
instants may behave badly, and we may encounter intersample ripple.

Problems with intersample ripple can be avoided if the system is
treated as a periodic system. A periodic model of a sampled-data system
has a special structure. In particular one can often obtain closed-form so-
lutions to controller synthesis problems. This is not the case for generic
periodic systems. Sampled-data systems is a large research area; some
references are [Bamieh and Pearson, 1992; Yamamoto and Khargonekar,
1996; Dullerud, 1996; Araki et al., 1996; Rosenwasser and Lampe, 2000;
Wittenmark et al., 2002].
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Computational Linear Algebra

Time-varying modeling may also be used to reduce floating-point opera-
tions. In [Dewilde and van der Veen, 1998] computational linear algebra
is treated. There a triangular matrix G[0,N] of the type (1.11) is not con-
sidered as a dynamical system, but as any triangular matrix that we want
to apply standard linear algebra operations on. For example, if we want
to compute the product of the triangular matrix G[0,N] and a vector u[0,N],

y[0,N] = G[0,N]u[0,N],

then the number of floating-point operations is O(N2) using direct calcu-
lations. The idea is to find a state-space realization of G[0,N]

x(k+ 1) = A(k)x(k) + B(k)u(k), x(0) = 0,

y(k) = C(k)x(k) + D(k)u(k), (1.21)

with the smallest state dimension x(k) ∈ R
n possible. This realization

problem has close connections to the model reduction problem in Sec-
tion 2.4 and Papers I and II. Using the realization (1.21) to compute y[0,N]
the number of floating-point operations is O(n2 N), which is a significant
reduction if n2 ≪ N. Furthermore, direct storage of G[0,N] requires O(N2)
words. To store the realization (1.21) we only need O(n2 N) words.

Another example is the computation of the inverse matrix G−1
[0,N], or

rather, to find the solution u[0,N] to y[0,N] = G[0,N]u[0,N] for a given y[0,N].
If G[0,N] is a sparse triangular matrix, then the inverse matrix G−1

[0,N] is in
general not sparse. That is, the inversion does not preserve the structure
of the matrix. On the other hand, if a realization of G[0,N] is available, the
solution u[0,N] can be computed recursively as

x(k+ 1) = [A(k) − B(k)D−1(k)C(k)]x(k) − B(k)D−1(k)y(k), x(0) = 0,

u(k) = D−1(k)C(k)x(k) + D−1(k)y(k).

Thus, the state-space realization of the inverse has the same state dimen-
sion as G[0,N]. If the elements of G[0,N] are scalars, D(k) are just scalars
and are simple to invert.

The realization (1.21) is a recursive implementation of G[0,N], where
the state x(k) carries information into the next step. For this to be pos-
sible, the matrix must be triangular (causal or anti-causal). For non-
triangular matrices the method can be applied if an initial decomposition
into triangular matrices is made. A limitation of the method is that n

should be small. This happens if certain generalized Hankel matrices
with elements from G[0,N] have low rank, see [Rugh, 1996; Dewilde and
van der Veen, 1998] and Section 2.4.
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Figure 1.6 Data from a simulation of a converter-controlled asynchronous engine
in an inverter locomotive, see [Sandberg, 1999]. The input is the set point (SP)
to the torque controller. The output is the normalized current flowing through the
engine. It is seen that the output contains multiples of the harmonic in the input.
The ripple in the current comes from the converter.

Periodic Modeling of Power Systems

This example is treated in more detail than the previous examples. The
reason for this is that the author has co-written some papers on the topic.
The following presentation is based on the work in [Möllerstedt, 2000;
Möllerstedt and Bernhardsson, 2000; Sandberg and Möllerstedt, 2001;
Sandberg and Möllerstedt, 2000]. There the harmonic transfer function is
also used.

The periodicity of currents and voltages makes AC power systems an
ideal application for linear time-periodic system theory. These systems
are driven by a voltage of well-defined frequency and amplitude. Since
only relatively small deviations from this nominal voltage are allowed,
the dynamics of these systems are well captured by models which are
linearized around the nominal operating trajectory. This leads to linear
time-periodic (LTP) models.

Actively controlled power electronic devices like power converters are
powerful actuators. Power flows can be changed in a fraction of a cycle.
Because of the switching dynamics, there is coupling between different
frequencies. Consequently, to fully utilize the possibilities brought by the
power electronics, and to avoid overly conservative solutions, harmonics
and frequency coupling should be considered. For reasons of simplicity
and tradition, however, linear time-invariant (LTI) models that only cap-
ture the dynamics of the fundamental frequency component are still often
used for the analysis. In Figure 1.6 and Figure 1.7, two examples from
[Sandberg and Möllerstedt, 2000; Sandberg, 1999] are shown where there
are clear coupling between frequencies in input and output. The plot in
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Figure 1.7 The frequency coupling between the voltage and the current flowing
into the converter-controlled engine of an inverter locomotive is visualized in the
plot. The figure can be interpreted as the magnitude of the harmonic transfer func-
tion that is used in Papers III and IV.

Figure 1.6 shows multiples of the frequency of the input signal in the
output signal. Such behavior can be captured by LTP models. The plot in
Figure 1.7 may be interpreted as the magnitude of the harmonic transfer
function that is derived in Paper III and used in the Theorems 1.2 and
1.4.

Next, we show how a simple LTP model of a converter-controlled sys-
tem can be derived.

Converters. A power converter is a nonlinear coupling device between
two electric systems. They are often built using GTO (Gate Turn Off)-
thyristors with switching frequency up to 500 Hz. IGBTs (Insulated Gate
Bipolar Transistors) can also be used with switching frequency up to
10 kHz. Most common is that the converter is used to connect an AC
system to a DC system. The AC side and DC side dynamics can generally
be captured with linear time-invariant models that are straightforward to
derive. The problem is to obtain a good description of the coupling between
the two sides, one that facilitates analysis and design of the complete sys-
tem.

Ideal converters. An ideal single phase converter is shown in Fig-
ure 1.8. The ideal converter has no losses and no energy storage. The
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Figure 1.8 An ideal converter. The switches are used to control the power flow
through the converter.

basic goal of the converter control is to shape the AC voltage so that
the desired power is fed through the converter. This is done by proper
switching. From Figure 1.8 it can be concluded that

vAC(t) = s(t)vDC(t), (1.22)

where the switch function s(t) can be assigned the values 1, −1, and
0, since ideal switching is assumed. The desired AC voltage is smooth
(sinusoidal), and must be approximated by using pulse width modulation,
for instance.

The switch function also gives a relation between AC current and DC
current

iDC(t) = s(t)iAC(t). (1.23)
Since an ideal converter has no losses and no energy storage, the instan-
taneous power on the DC side and the AC side must be equal, that is,

PDC(t) = vDC(t)iDC(t) = vAC(t)iAC(t) = PAC(t).

The current relation (1.23) can also be derived from this power balance.

Linearizing the converter. The local behavior of the converter in the
neighborhood of a nominal periodic solution {v0

DC(t), i0
AC(t), s0(t)} is well

described by a linear approximation of (1.22) and (1.23)




∆vAC(t)
∆iDC(t)



 =



0 s0(t) v0

DC(t)
s0(t) 0 i0

AC(t)









∆iAC(t)
∆vDC(t)

∆s(t)




.

Since the nominal solution, around which the system is linearized, is
periodic, the converter is represented by a periodic gain matrix. Ideally
v0

DC is constant and v0
AC sinusoidal of the fundamental frequency. From
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Figure 1.9 A feedback model of a power converter that connects an AC power
system to a DC power system. S(t) and F(t) are time-periodic gain matrices. G(p)
is a dynamical model of the AC and DC power systems.

(1.22) it is seen that s0(t) should also be sinusoidal. However, since s(t)
only takes discrete values (±1, 0), this is only an approximation.

Often the lines of the converter are connected to systems that are well
described by lumped linear time-invariant models (rational expressions
in the differentiation operator p), at least close to the nominal solution.
Hence, ∆iAC and ∆vDC are obtained as

∆iAC(t) = YAC(p)∆vAC(t),
∆vDC(t) = ZDC(p)∆iDC(t),

where YAC(p) is the admittance of the AC system and ZDC(p) is the
impedance of the DC system. The resulting closed-loop is shown in Fig-
ure 1.9 with

S(t) =



0 s0(t)

s0(t) 0



 , F(t) =



v0

DC(t)
i0

AC(t)



 , G(p) =



YAC(p) 0

0 ZDC(p)



 ,

where S(t) and F(t) are T-periodic. If the models of the AC/DC systems
are finite dimensional, a periodic state-space model of the system can be
obtained. However, there are common examples of infinite-dimensional
models, for example long transmission lines. Then an input-output model
of the system may be more convenient to use.

The modeling idea presented here has been used in several papers to
model and analyze inverter locomotives. See for example [Möllerstedt and
Bernhardsson, 2000; Sandberg and Möllerstedt, 2000]. A modern inverter
locomotive, see Figure 1.10, has two internal power converters connected
via a DC-link, a so called back-to-back configuration. There is one net
side converter that draws the desired amount of power from the grid
into the DC-link and thereby keeps the DC-link voltage constant. The
other converter is the motor side converter. It controls the torque of the
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Figure 1.10 A modern inverter locomotive. (By courtesy of Bombardier Trans-
portation.)

motor that drives the locomotive by drawing the right amount of power
from the DC-link. The back-to-back configuration is a common solution in
modern variable-speed drives and offers great flexibility. For example, it
can operate on power grids of different base frequencies and be used to
minimize the reactive power on the grid.

1.5 Summary

In this chapter, the two basic modeling frameworks used in the thesis,
state-space and impulse-response models, were reviewed. Along with in-
troduction of notation, we have also stated some theorems that are used
in the papers, or are derived there. Next, we summarize how the contri-
butions of Papers I–IV relate to this chapter.

In Paper I, the linear time-varying state-space models in Section 1.1
are used both in discrete and in continuous time. This paper treats model
reduction, and this is the topic of the next chapter.

In Paper II, we apply the methods of Paper I. In particular the results
are used on a nonlinear state-space model of a diesel exhaust catalyst. To
apply the methods we use the linearization procedure of Section 1.1. Since
we linearize the model around a time-varying trajectory, this results in a
time-varying model. The linear model is treated in continuous time and in
discrete time. We also develop an approximative discretization procedure
that can save computations.

In Paper III, the linear impulse-response models in Section 1.2 are
used. Paper III contains a detailed treatment on lifting of time-periodic
models in the frequency domain. This gives the harmonic transfer function
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that is used in Theorem 1.2.
In Paper IV, we apply the theory of Paper III. We prove that by using

the harmonic transfer function, we can generalize Bode’s classical sensi-
tivity integral, to obtain Theorem 1.4. The result is also applied to the
Mathieu equation that is discussed in Section 1.4.
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2

Introduction to Model

Reduction

An introduction to model reduction is given in this chapter. We discuss the
meaning of the term “a simple model” in the first section. In the follow-
ing sections, we look at common approaches to model reduction. Balanced
truncation, which is the topic of Papers I and II, is treated in more de-
tail than the other methods. In particular, an alternative presentation is
given. For frequency-domain analysis, two series expansions are devel-
oped in Papers III and IV. By truncating these series, an alternative form
of model reduction is obtained. This is discussed in the last section of the
chapter.

2.1 Reduction Criterion

The goal of model reduction is to derive a simple model from a complex
model, while the models remain close. To do this we need to mathemati-
cally define the meaning of the words “simple” and “close”.

When are two models close? Two models G and Ĝ are often consid-
ered close when some induced norm iG − Ĝi is small. It is also common
to introduce weights W1, W2, so that two models are considered close if
iW1(G − Ĝ)W2i is small, see [Zhou and Doyle, 1998]. This is the defini-
tion used in this thesis, and the norm is often the induced 2-norm. This
is because the norm i⋅i2 is good for robustness studies and often can be
bounded relatively easy, as we shall see.

If we use iG− Ĝi as measure, then closeness is an open-loop concept.
But two models can be quite different in the this sense, and still be-
have similarly when they are controlled by the same feedback controller.
Accordingly, another measure is how close models are from a feedback
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perspective. For this, the gap between the graphs of the input-output op-
erators may be used. Gap metrics for time-varying and periodic systems
are studied in, for example, [Ravi et al., 1992; Cantoni, 1998].

State-space models. For linear time-invariant state-space models with
minimal realizations

x(k+ 1) = Ax(k) + Bu(k), x(k) ∈ R
n,

y(k) = Cx(k) + Du(k), (2.1)

the standard reduction criterion is the state dimension n, called the Mc-
Millan degree of the model, or simply the order of the model. A reduced
model with degree n̂ < n is considered simpler than the original model.
One justification for this is that a simpler model, in this sense, consists
of fewer equations. Then the number of computations to obtain the tra-
jectories of the model will typically decrease. This is important for on-line
applications, such as controllers. A second justification is that the compu-
tational complexity of Riccati-equation-based controller-synthesis meth-
ods (H2/H∞, LQG) increases as O(n3). If we can reduce the number of
states to half, the number of floating-point operations reduces by a fac-
tor eight. Hence, a low-order model is important also for off-line controller
synthesis. Model reduction for time-invariant models (2.1) is a large topic.
See, for example, the book [Obinata and Anderson, 2001] and the survey
[Antoulas, 1999].

For linear time-varying state-space models

x(k+ 1) = A(k)x(k) + B(k)u(k), x(k) ∈ R
n(k),

y(k) = C(k)x(k) + D(k)u(k),
(2.2)

one can also define the complexity of the model as the (time-varying) state
dimension n(k). Indeed, the computational complexity decreases with the
state dimension. However, the complexity of the time variability of the
realization (A(k), B(k), C(k), D(k)) is then not taken into account. One
may argue that a time-varying model with n1 states, is more complex
than a time-invariant model with n2 > n1 states. For example, the space
to store the realization of a time-varying model increases with the time
horizon (if it is not periodic). For a time-invariant model the storage space
does not depend on the time horizon.

In Papers I and II, we associate complexity of the model with the
number of states. One simply has to check the time variability of the low-
order candidates that the balanced-truncation method generates. If the
time variability is considered too complex, one can try a higher order ap-
proximation. In Papers III and IV, we use Fourier expansion methods. The
complexity of the time variability can then be measured by the number
of Fourier coefficients needed.
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Ideal model reduction. A direct approach to the model reduction prob-
lem for a state-space model is to minimize the error iG − Ĝi2, subject to
an order constraint on the model Ĝ. However, to the best knowledge of the
author, this problem is a nonconvex optimization problem, which makes
it hard to solve in practice. It is, however, possible to give necessary and
sufficient conditions for the existence of an approximation of given order.
The following theorem is derived in [Lall and Beck, 2003].

THEOREM 2.1—[LALL AND BECK, 2003]
Assume that G is stable and has a realization (2.2), initially at rest.
Then there exists a reduced-order model Ĝ of G, with a realization of
order n̂(k) ≤ n(k) and iG − Ĝi2 ≤ γ , if and only if there exist bounded
positive-definite solutions P(k) and Q(k) to

A(k)P(k)AT (k) − P(k+ 1) + B(k)BT(k) < 0,

AT(k)Q(k+ 1)A(k) − Q(k) + CT(k)C(k) < 0,
(2.3)

such that, for all k

λmin(P(k)Q(k)) = γ 2, (2.4)
with multiplicity n(k) − n̂(k).
The conditions (2.3) are the reachability and observability Lyapunov in-
equalities, which appear frequently in Paper I. They form a convex con-
dition and can be solved by semidefinite programming. The problem is to
enforce the multiplicity condition (2.4), which is a nonconvex constraint.
The theorem shows that the eigenvalues of the product P(k)Q(k), the
Hankel singular values, are intimately connected to the approximation
problem.

Since it is hard to use Theorem 2.1 directly, various sub-optimal ap-
proaches can be taken. Some of them offer approximation guarantees,
such as balanced truncation and Hankel approximation, and others such
as principal orthogonal decomposition are more heuristic methods. We
discuss these methods in the following sections.

Input-output models. Input-output models can often be identified with
a possibly infinite matrix G[k0,kf ], as discussed in the previous chapter. One
way to measure the complexity of the model is to use the rank of this ma-
trix. This is not entirely suitable since when the models are defined on
infinite time horizons, the models are typically not compact operators on
some Hilbert space. Hence, the models cannot be arbitrarily well approx-
imated by finite-rank matrices. This is further discussed in Section 2.2.

A better idea than to reduce the rank of G[k0,kf ] is to find a low-order
realization of the input-output model, as discussed in Section 1.4. Hankel-
norm approximation or balanced truncation can be used to solve this, see
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Sections 2.4 and 2.5. Another idea is to rewrite the input-output model
as a sum of simpler models and then truncate small terms. This idea is
explored in Section 2.6.

Continuous time vs. discrete time. Most models of physical processes
are formulated in continuous time. For implementation on a computer a
discretization is required. One has to decide if the model reduction shall be
performed before or after the discretization. For the balanced truncation
procedure, it is argued in Paper II that it is better to first discretize the
time-varying model, and then reduce it. The main reason for this is that
continuous-time balanced truncation is computationally more expensive.

2.2 SVD and Causality Issues

Singular value decomposition (SVD) is a common method for approxima-
tion of matrices. The SVD is a standard tool in matrix analysis. See for
example [Golub and Van Loan, 1996] for details on its computation and
properties. Below we give some of the properties that are useful to us.

Given an m � n matrix A of rank q, there exist unitary matrices

U = [u1 . . . um ] ∈ R
m�m,

V = [ v1 . . . vn ] ∈ R
n�n,

such that

A = UΣV T , Σ =
[

Σ1 0

0 0

]

∈ R
m�n,

where

Σ1 = diag {σ 1,σ 2, . . . ,σ q},
σ 1 ≥ σ 2 ≥ ⋅ ⋅ ⋅ ≥ σ q > 0.

σ i is the ith singular value of A, and ui, vi are the corresponding singular
vectors. The SVD is often used together with the induced 2-norm and the
Frobenius norm

iAi2 = σ (A) = σ 1, iAiF =
√

trace (AT A) =

√
√
√
√

q
∑

i=1

σ 2
i .
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Low-rank approximations. A common problem in approximation the-
ory is to find a rank r < q approximation B of A. In the 2-norm we have
that

min
rank B≤r

iA− Bi2 = σ r+1, (2.5)

and a not necessarily unique minimizer is given by a truncated dyadic
expansion of A

B =
r∑

i=1

σ iuiv
T
i = UrΣr V T

r , (2.6)

Ur = [u1 . . . ur ] , Σr = diag {σ 1, . . . ,σ r}, Vr = [ v1 . . . vr ] .

The same problem in the Frobenius norm gives

min
rank B≤r

iA− BiF =

√
√
√
√

q
∑

i=r+1

σ 2
i , (2.7)

and the problem has a unique solution (if the singular values are distinct).
The solution is again given by (2.6).

Naive application of SVD to input-output models. For input-
output models, the complexity of the model may be measured by the rank
of the matrix G[0,N]. It is then natural to try to reduce the rank of this
matrix. The following example shows a problem with such an approach.

EXAMPLE 2.1—DIRECT SVD APPROACH
Assume that a causal discrete-time input-output model on I = [0, 4] is
given as

G[0,4] =





1 0 0 0 0

0.8 1 0 0 0

0.7 0.7 1 0 0

0.8 0.8 0.9 1 0

0.6 0.7 0.8 0.6 1





.

It has rank 5. Since this is an input-output model it is suitable to find
an approximation that is close in an induced-norm sense. We choose the
truncated dyadic expansion (2.6) since it is optimal in induced 2-norm.
The singular values are

2.8131, 1.1003, 0.7714, 0.6767, 0.6189.
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A rank 1 approximation with 2-norm error 1.1003 is

Ĝ[0,4] = σ 1u1vT
1 =





0.3196 0.3041 0.2832 0.1826 0.1071

0.5597 0.5325 0.4959 0.3198 0.1876

0.7197 0.6847 0.6377 0.4112 0.2413

0.9364 0.8909 0.8296 0.5350 0.3139

0.8478 0.8066 0.7512 0.4844 0.2842





.

This model is simpler in the sense that we only need to store one singular
number and the corresponding singular vectors. The problem with this
model is that it is not causal, since it is not lower triangular.

Causality is typically lost when SVD is used directly on input-output mod-
els. Another problem is that when the time horizon of the model is infinite,
then the input-output operator is generally not compact, and the singular
values of the operator do not tend to zero. Hence, the model cannot be
arbitrarily well approximated by finite-rank models.

In spite of these problems, SVD is a cornerstone in many model re-
duction techniques. We are going to briefly review some of them next.
The problems above are resolved by re-arrangement of the data and/or
by utilizing that there are several solutions to the minimization problem
(2.5).

2.3 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a method to reduce the order
of state-space models. It may be applied also to nonlinear models and
partial differential equations. POD is, for example, often used to reduce
the order of fluid dynamics models [Holmes et al., 1996]. POD is also called
Karhunen-Loéve expansion and principal component analysis (PCA).

POD typically does not offer guarantees that the reduced model is close
to the original model. The main idea is to use data from trajectories of
the model and to find a low-dimensional subspace that captures most of
the state dynamics. The data can be obtained from measurements or from
simulations.

Given a state-space model

ẋ(t) = f (x(t), u(t), t), x(t) ∈ R
n, (2.8)

one collects snapshots of the state over a time horizon [t0, tN ] when a
typical input signal is applied to the system. These are put in a matrix
X ,

X = [ x(t0) x(t1) . . . x(tN) ] .
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2.4 Balanced Truncation

The next step is to find a low-dimensional subspace in R
n where most

of the snapshots x(ti) lie. If the approximation error is to be minimized
in a least-squares sense, then the problem can be expressed using the
Frobenius norm as in (2.7). After inspection of the singular values of X ,
we can choose a suitable subspace dimension n̂. The approximation (2.6)
is then used

X = UΣV T � Un̂Σn̂V T
n̂ .

If the approximation is good, we have that x(ti) � Un̂ x̂(ti), for some vector
x̂(ti) ∈ R

n̂. By simple truncation of “small states”, so-called Galerkin
projection, one obtains a reduced-order candidate as

˙̂x = UT
n̂ f (Un̂ x̂(t), u(t), t), x̂(t) ∈ R

n̂. (2.9)

Notice that the solutions Un̂ x̂(t) of (2.9) are not guaranteed to be close to
the solutions x(t) of (2.8). In some cases one can prove that if the original
model is stable around an equilibrium, then the projected model is also
stable around the same equilibrium, see [Prajna, 2003].

2.4 Balanced Truncation

Balanced truncation is a popular method to reduce the order of linear
time-invariant systems. The idea was introduced in [Moore, 1981]. Time-
varying balanced truncation is the topic of Papers I and II. Balanced trun-
cation can be understood in many ways. One way is to consider subspaces
in the state space. This was the perspective taken in [Moore, 1981], and
has close connections to POD. Building on these ideas one can general-
ize balanced truncation to nonlinear systems, see [Lall et al., 2002; Hahn
et al., 2003].

In Paper I, balanced truncation is described as truncation of state-
space models where “small” states are removed. This is fine, since this
is how balanced truncation often is used in practice. This formulation
does not, however, capture the connection between balanced truncation
and other SVD methods. Next, we give an interpretation of time-varying
balanced truncation based on SVD and on data given as an input-output
model. This result is derived in [Shokoohi and Silverman, 1987].

Assume that the discrete-time input-output model G[0,N] is causal. We
can then construct the generalized Hankel matrix

H(k) =





n(k, k− 1) n(k, k− 2) . . . n(k, 0)
n(k+ 1, k− 1) n(k+ 1, k− 2) . . . n(k+ 1, 0)

...
...

. . .
...

n(N , k− 1) n(N , k− 2) . . . n(N , 0)





, (2.10)
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timetime

yu

00 k k NN

G

Figure 2.1 The generalized Hankel matrix H(k) maps inputs u(0), . . . , u(k−1) to
the outputs y(k), . . . , y(N) through the dynamics of the model G.

where 0 < k ≤ N. If the model is time invariant, H(k) will indeed be a
standard Hankel matrix.

It is well known, see [Shokoohi and Silverman, 1987; Dewilde and
van der Veen, 1998], that the rank of H(k),

n(k) = rank H(k), (2.11)

determines the number of states needed at time k for a minimal real-
ization of G[0,N]. Using that n(k, i) = C(k)ΦA(k, i + 1)B(i), where k > i,
we notice that the Hankel matrix can be factorized into two rank n(k)
matrices

H(k) = O(k)R(k) =









C(k)
C(k+ 1)ΦA(k+ 1, k)

...

C(N)ΦA(N , k)









� [ B(k− 1) ΦA(k, k− 1)B(k− 2) . . . ΦA(k, 1)B(0) ] . (2.12)

The first factor O(k) is called the observability matrix, and the second
factor R(k) the reachability matrix. The Hankel matrix has an interpre-
tation of a mapping of past inputs into future outputs, see Figure 2.1. We
have y[k,N] = H(k)ũ[0,k−1], using the notation in (1.10) and where ũ[0,k−1]
is a reversely ordered u[0,k−1]. We may write the mapping as

x(k) = R(k)ũ[0,k−1], y[k,N] = O(k)x(k),

where x(k) ∈ R
n(k) is the state of the system at time k. The state x(k)

is the least amount of information of the past that is needed to describe
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2.4 Balanced Truncation

future outputs. The coordinate system of the state space is determined by
the factorization of H(k). For a minimal realization it holds

A(k) ∈ R
n(k+1)�n(k), B(k) ∈ R

n(k+1)�m, C(k) ∈ R
p�n(k).

Notice that the state dimension may be time varying. To explicitly obtain
a realization, given an input-output model, we can proceed as follows.

Given a Hankel matrix, each factorization (2.12) gives rise to a real-
ization according to

A(k) = O†(k+ 1)O↑(k) = R←(k+ 1)R†(k),
B(k) = [first block-columns of R(k+ 1)],
C(k) = [first block-rows of O(k)],
D(k) = n(k, k),

(2.13)

where † is the pseudo-inverse, ↑ is an upward block-shift of the matrix
elements, and ← is a block-shift to the left of the matrix elements.

The factorization can be made by using QR- or SVD-factorizations of
H(k). If we use SVD, also called principal component identification, as
suggested in [Kung, 1978; Shokoohi and Silverman, 1987], then we obtain
a balanced realization if we put

H(k) = U(k)Σ(k)V T (k), O(k) = U(k)Σ1/2(k), R(k) = Σ1/2(k)V T (k).

The observability and reachability Gramians that are used in Papers I
and II are given by

Q(k) = OT (k)O(k) = Σ(k),
P(k) = R(k)RT (k) = Σ(k).

(2.14)

Hence, the realization is equally observable and reachable. This is the
reason for the term “a balanced realization”. Furthermore, the nonzero
elements of the diagonal Gramians Σ(k), {σ i(k)}n(k)

i=1 , are the Hankel sin-
gular values, which are identical to the singular values used in Papers I
and II.

The reduction step and error bounds. Instead of first obtaining a
realization as above, and then truncate it according to the methods in
Paper I and II, we can directly obtain a rank n̂ < n approximation of
H(k) by using a truncated SVD expansion (2.6)

Ĥ(k) = Un̂(k)Σn̂(k)V T
n̂ (k), On̂(k) = Un̂(k)Σ1/2

n̂ (k), Rn̂(k) = Σ
1/2
n̂ (k)V T

n̂ (k),
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where
iH(k) − On̂(k)Rn̂(k)i2 = σ n̂+1(k). (2.15)

A problem is that the low-rank factors On̂(k) and Rn̂(k) are not observ-
ability and reachability matrices, since there is generally not a matrix
Â(k) that simultaneously fulfills

On̂(k+ 1)Â(k) = O
↑
n̂(k), Â(k)Rn̂(k) = R←n̂ (k+ 1). (2.16)

However, if σ n̂+1(k) is small, then they are close to being observability
and reachability matrices. By finding a least-squares solution Â(k) to
(2.16), we obtain a reduced-order realization from the formulas (2.13),
with On̂ → O and Rn̂ → R. It is shown in [Shokoohi and Silverman,
1987] that this procedure yields a truncated balanced realization. Hence,
we can go directly from an input-output model G to a reduced model Ĝ

with realization (Â, B̂, Ĉ, D). The calculation of the SVD of the Hankel
matrices can be implemented in a more efficient recursive fashion, see
[Dewilde and van der Veen, 1998; Chahlaoui and Van Dooren, 2003].

Above we have approximated the Hankel matrix H(k) with Ĥ(k). It
may be surprising that it can be proven that the corresponding models G

and Ĝ, in general, also are close. That is, we can find functions C1 and C2

such that
C1(n̂) ≤ iG − Ĝi2 ≤ C2(n̂). (2.17)

These functions are useful when we select the approximation order n̂.
This is because it may be computationally expensive to compute iG− Ĝi2

for every possible choice of n̂. See the discussion after Theorem 1.3. The
next theorem summarizes the error bounds obtained in Papers I and II.
The max-min ratio S[0,N](σ ) is a product of the ratios of all local minima
and maxima of σ (k) over the interval [0, N]. See Definition 1 in Paper I.

THEOREM 2.2—PAPERS I AND II
Assume that G has a realization (2.2), initially at rest, on I = [0, N].
Then there is a lower error bound that limits what can be achieved with
an approximation Ĝ with n̂ states

C1(n̂) = max
k∈[1,N]

σ n̂+1(k),

where σ i(k) are the singular values of H(k) in (2.10).
If the balanced truncation procedure is used to construct Ĝ, then there

are two upper error bounds.
(i)

C2(n̂) = 2
n∑

i=n̂+1

S[0,N](σ i),
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2.4 Balanced Truncation

where S[0,N](σ i) is the max-min ratio of σ i(k) over [0, N];
(ii)

C2(n̂) = K ⋅ max
k∈[1,N]

σ n̂+1(k),

where K = C/(1− λ) > 1 and iΦA(k, i)i2 ≤ C ⋅ λ k−i, λ < 1, for an input-
normalized realization of G.

The lower bound and the upper bound (i) are generalizations of well-
known time-invariant results, see [Glover, 1984; Enns, 1984]. These are
derived in Paper I. The upper bound (ii) is derived in Paper II. The bound
(ii) is interesting since it is not a sum over all truncated singular values.
A problem with the bound is that K may be large.

The balanced truncation procedure also works for continuous-time
models, and details can be found in the Papers I and II.

REMARK 2.1—SUBOPTIMALITY OF BALANCED TRUNCATION

In the this description of balanced truncation, the Gramians P(k) and
Q(k) in (2.14) fulfill

A(k)P(k)AT (k) − P(k+ 1) + B(k)BT(k) = 0, P(0) = 0,

AT(k)Q(k+ 1)A(k) − Q(k) + CT(k)C(k) = 0, Q(N + 1) = 0.

In [Lall and Beck, 2003] and in Paper I, we only require that P(k) and
Q(k) fulfill linear matrix inequalities (LMIs) of the type (2.3). This adds
more degrees of freedom to the problem. The LMIs can be solved using
standard semidefinite programming.

It is pointed out in [Lall and Beck, 2003] that if there is an approx-
imation iG − Ĝi2 < γ , then there are Gramians that fulfill the condi-
tions (2.3)–(2.4) of Theorem 2.1. Using these Gramians (that are hard
to find in practice) in the balanced truncation procedure, yields a model
with iG − Ĝi2 ≤ 2γ . Hence, in theory, by using balanced truncation with
inequalities, we can always come a factor two away from an optimal ap-
proximation.

REMARK 2.2—BALANCED TRUNCATION FOR STATE-SPACE MODELS

In the above presentation, balanced truncation is based on SVD and the
initial model is an impulse-response model. It is more common in model
reduction that the initial model already is in state-space form. This is the
case treated in Papers I and II. In fact, it is then simpler to treat models
in continuous time, infinite time horizons, and stability issues. All of these
issues are treated in Paper I, and the error bound in Theorem 2.2 (i) is
proven using state-space techniques.
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To prove the bound (i), we need Lemmas 1–4 in Paper I. To prove the
lemmas, the following Schur lemma is useful. If A11 is nonsingular, then

[
A11 A12

A21 A22

]

=
[
I 0

A21 A−1
11 I

] [
A11 0

0 ∆

] [
I A−1

11 A12

0 I

]

,

where ∆ = A22 − A21 A−1
11 A12.

In Paper II, it is discussed how one may obtain the reduced-order
model in a numerically sound way. Projections ST

L (k) and SR(k) are used,
such that the reduced-order model Ĝ can be obtained as

Â(k) = ST
L (k+ 1)A(k)SR(k), B̂(k) = ST

L (k+ 1)B(k),
Ĉ(k) = C(k)SR(k).

(2.18)

2.5 Hankel-Norm Approximation

The balanced truncation method may seem rather heuristic since the ap-
proximation Ĥ(k) of H(k) in (2.15) is not of generalized Hankel structure.
It is possible to develop a theory where all the approximations really are
of generalized Hankel structure. We give a brief overview of this theory
next, but we leave most details out. The book [Dewilde and van der Veen,
1998] contains all the details. Much of the following hinges on generaliza-
tions of the classical AAK-lemma [Adamjan et al., 1971]. The AAK-lemma
was used to solve the Hankel-norm approximation problem in the time-
invariant case. See, for example, [Glover, 1984].

The Hankel norm of a system G is defined by

iGiH = max
k∈[1,N]

iH(k)i2,

where H(k) is the generalized Hankel matrix (2.10). We have iGiH ≤
iGi2 and iG + FiH = iGiH if F is strictly anti-causal (strictly upper
triangular). The main result we state in this section is derived in [Dewilde
and van der Veen, 1998].

THEOREM 2.3—[DEWILDE AND VAN DER VEEN, 1998]
Let G be a causal input-output model in discrete time, and assume that
none of its Hankel singular values σ i(k) are equal to γ . Then there exists
a causal model Ĝ with a realization of order n̂(k) = #{i : σ i(k) > γ }, and

iG − ĜiH ≤ γ . (2.19)
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2.5 Hankel-Norm Approximation

In [Dewilde and van der Veen, 1998], an algorithm is given for the compu-
tation of the realization of Ĝ. Furthermore, all the solutions are parame-
terized, and the case when the time horizon N is infinite is treated.

Notice that the bound (2.19) is in the Hankel norm and not in the
regular 2-norm that was used in Theorem 2.1 and (2.17). Hence, the ideal
model reduction problem stated in Section 2.1 has a simple solution if the
norm is changed. In a sense, the above method works similar to the SVD
method described in Example 2.1, with certain important differences. As
discussed in Section 2.2 the minimization problem (2.5) does in general
not have an unique solution. This is utilized in the Hankel method by
enforcing a condition that the causal part (the lower triangular part) of
the approximation should have a realization of certain order.

For a given γ > 0, the method obtains all, not necessarily causal,
approximations G̃ such that

iG − G̃i2 ≤ γ ,

where the causal part of G̃ has a realization of given order. This problem
has a solution if γ and the order constraints are chosen as in Theorem 2.3.
After a causal/anti-causal decomposition of G̃, G̃ = Ĝ + F, we obtain the
bound (2.19),

iG − ĜiH = iG − Ĝ − FiH ≤ iG − Ĝ − Fi2 ≤ γ .

Hence, just as in Example 2.1 we obtain a non-causal approximation in
the 2-norm. The difference is that the causal part of the approximation
always has a low-order realization.

Even if it is common that a good approximation in the Hankel norm
also is a good approximation in the induced 2-norm, it is desirable to
have bounds of the type (2.17). The reason is that the induced 2-norm
is more suitable for robustness studies of feedback systems. For optimal
time-invariant Hankel-norm approximation one can derive such a bound,

C2(n̂) =
n∑

i=n̂+1

σ i, (2.20)

see [Glover, 1984]. To the author’s best knowledge, a similar bound has
not been derived for time-varying Hankel-norm approximation. This is an
interesting problem for future research.
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Generalized Hankel-norm approximation. Hankel-norm approxi-
mation can also be performed for continuous-time models, see [Kaashoek
and Kos, 1994]. In fact, the Hankel-norm approximation problem can
be formulated and solved in quite abstract settings. In the paper [If-
time et al., 2004] (co-written by the author), a framework that applies
to both continuous-time and discrete-time models, as well as to infinite-
dimensional models, is developed. To apply the theory, the objects G that
shall be simplified must belong to a so-called C∗-algebra R with a norm
i⋅iR , see for example [Böttcher and Silbermann, 1990]. Furthermore, there
should be a suitable index function ν(⋅) : R → Z+. The index function is
a measure of complexity. The (sub-optimal) Hankel-norm approximation
problem can then be formulated as follows:

For a given γ > 0, find all G̃ ∈ R such that

iG − G̃iR < γ , and ν(G̃) = n̂.

Under extra technical assumptions, this problem is solved in [Iftime et al.,
2004]. In the case discussed in Theorem 2.3, we can take R as the set of
bounded (not necessarily causal) linear operators on Q2, and ν(G̃) as the
realization order of the causal part of G̃.

2.6 Truncated Fourier and Taylor Series

Next, two other types of model reduction are studied. These methods apply
to input-output models and are treated in detail in Paper III. The main
idea is to write the input-output model as a series

G = G1 + G2 + G3 + . . . ,

where the terms Gk are simple and tend to zero quickly in some sense.
We will investigate two such expansions, Taylor and Fourier expansions.

Taylor expansions. The first expansion is applied to causal impulse-
response models G in continuous time

y(t) =
∫ t

−∞
n(t,τ )u(τ )dτ . (2.21)

The smooth input belongs to the set of Schwartz functions S , which are
dense in Lp, for 1 ≤ p < ∞. We define the input Markov parameters ak(t),
and the output Markov parameters bk(t), where

ak(t) = (−1)k−1 V k−1n(t, s)
Vsk−1

∣
∣
∣
∣
s=t

, and bk(t) =
V k−1n(s, t)
Vsk−1

∣
∣
∣
∣
s=t

.
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Figure 2.2 The input and output Markov parameter expansions of a time-varying
system. The expansions are dual to each other, and each term is a modulated mul-
tiple integrator.

C
L
e is the set of L times differentiable and exponentially decaying impulse

responses, see Definition 1 in Paper III, and 1
p

is the integration operator.
Now, the following theorem may be derived.

THEOREM 2.4—PAPER III
Assume that the causal time-varying impulse response n(t,τ ) belongs to
the set C L

e . Then for every input u ∈ S , y(t) in (2.21) can be expressed in
either of the following two ways.
— Input Markov parameter expansion

y(t) = a1(t)
u(t)

p
+ a2(t)

u(t)
p2 + . . .+ aL(t)

u(t)
pL

+
(

GRi u

pL

)

(t),

where a1(t), . . . , aL(t) are the input Markov parameters, and GRi is a
bounded linear operator on L2.
— Output Markov parameter expansion

y(t) = 1
p

b1(t)u(t) +
1
p2 b2(t)u(t) + . . .+ 1

pL
bL(t)u(t) +

(
1
pL

GRou

)

(t),

where b1(t), . . . , bL(t) are the output Markov parameters, and GRo is a
bounded linear operator on L2.

The expansions can be visualized as in Figure 2.2. The terms in the ex-
pansions are simple, since they are modulated multiple integrators of the
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type

Gk = ak(t)
1
pk

, or Gk =
1
pk

bk(t),

for 1 ≤ k ≤ L. The expansions are dual to each other.
The reason for calling them Taylor expansions is that for time-invari-

ant systems, they both correspond to a Taylor expansion of the transfer
function G(s) around s = ∞. In the time-invariant case, ak(t) and bk(t)
are constant and equal to the standard Markov parameters of the system.

The expansions in Theorem 2.4 are suitable for studies of the high-
frequency behavior of the system. For time-varying systems it is well
known that there is coupling between frequencies in input and output,
see Section 1.4. We introduce an ideal high-pass filter QΩ , with frequency
characteristics

Q̂Ω( jω ) =
{

1, hω h > Ω,

0, hω h ≤ Ω.

We can now prove that there is a constant C1 for the input Markov pa-
rameter expansion, such that

i(G − G1 − G2 − . . .− GN)QΩi2 ≤
C1

ΩN+1 , N < L.

For the output Markov parameter expansion there is a constant C2, such
that

iQΩ(G − G1 − G2 − . . .− GN)i2 ≤
C2

ΩN+1 , N < L.

The output expansion is suitable if we want to study the high-fre-
quency content of the output for any input. The input expansion is suitable
if we want to study the response of the system to high-frequency inputs.
This may be seen as model reduction with the weight QΩ, see Section 2.1.

REMARK 2.3—INPUT ROLL-OFF AND OUTPUT ROLL-OFF

The Taylor expansions are used in Paper III to study the convergence
rate of truncated harmonic transfer functions Ĝ( jω ). It is shown that the
decay rates of elements in the harmonic transfer function in the up-down
and left-right directions are determined by how many of the input and
output Markov parameters that are zero. These decay rates are labeled
input and output roll-off.

Fourier expansions. The following expansions are applied to causal
impulse-response models (2.21), with the additional assumption that they
should be periodic, see Definition 1.2. Then there is a period T > 0, such
that

n(t,τ ) = n(t+ T ,τ + T),
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Figure 2.3 The Fourier expansions. The coefficients Gk and G̃k are time-invariant
impulse-response models.

for all t,τ .
The periodic systems that we consider belong to a Hilbert space H2,

with the scalar product

〈G, H〉H2 =
1
T

∫ T

τ=0

∫ ∞

r=0
n(r + τ ,τ )h(r + τ ,τ )drdτ

= 1
T

∫ T

t=0

∫ ∞

r=0
n(t, t− r)h(t, t− r)drdt.

H2 is combination of the Hilbert spaces L2[0, T ] and L2[0,∞). A periodic
system belongs to H2 if and only if the norm

iGi2
H2
= 1

T

∫ T

τ=0

∫ ∞

r=0
hn(r + τ ,τ )h2drdτ = 1

T

∫ T

t=0

∫ ∞

r=0
hn(t, t− r)h2drdt

is finite. The idea is now to apply generalized Fourier expansion on H2.
It is shown in Paper III that this leads to the following theorem.

THEOREM 2.5—PAPER III
Assume that G belongs to H2. Then the causal impulse response of G can
be expressed as

n(t,τ ) =
∞∑

k=−∞
ñk(t− τ )ejkω 0τ ,

n(t,τ ) =
∞∑

k=−∞
nk(t− τ )ejkω 0 t,

(2.22)
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with convergence in H2, and where ω 0 = 2π/T . The Fourier coefficients
are given by

ñk(r) =
1
T

∫ T

0
e− jkω 0τn(τ + r,τ )dτ , nk(r) =

1
T

∫ T

0
e− jkω 0 tn(t, t− r)dt,

where r ≥ 0.

Since the Fourier coefficients in (2.22) only depend on the difference t−τ ,
they can be interpreted as time-invariant impulse-responses of models G̃k

and Gk. Then G can be expressed as a sum, as suggested in Figure 2.3.
The Fourier expansions may be truncated,

G[N] =
∑

hkh≤N

ejkω 0tGk =
∑

hkh≤N

G̃kejkω 0τ .

It is discussed in Paper III how quickly the Fourier expansion converges
in the induced Lp-norm, for 1 ≤ p ≤ ∞. In particular, conditions are given
for when these expansions converge at a rate k,

iG − G[N]ip ≤ C ⋅ N−k,

for some constant C.

REMARK 2.4—THE HARMONIC TRANSFER FUNCTION

The Fourier expansions are used in Paper III to define the harmonic trans-
fer function Ĝ( jω ). After the Fourier expansions, frequency-domain anal-
ysis of a time-periodic system essentially reduces to frequency-domain
analysis of its time-invariant components.

2.7 Summary

In this chapter, we have formulated the model reduction problem. We have
also described several different methods to solve the problem. Next, we
summarize how the contributions of Papers I–IV relate to this chapter.

In Paper I, the balanced truncation method is treated. The main con-
tribution of this paper is the derivation of the lower bound and the first
upper bound in Theorem 2.2. This is done in a framework that works
in both continuous and in discrete time. These bounds are direct gen-
eralizations of standard time-invariant results. Furthermore, the case of
time-varying state-space dimension is treated, and it is shown that BIBO
stability is preserved under truncation.
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2.7 Summary

In Paper II, the methods in Paper I are applied to a linear 24th-
order state-space model. Using the projection technique mentioned in Re-
mark 2.2, it is shown that a first-order model is enough to approximate
the full model. The advantages and disadvantages with continuous-time
and discrete-time models are also discussed. An approximative discretiza-
tion procedure is introduced as a step in the model reduction. Finally, the
bound in Theorem 2.2 (ii) is proven. This bound is interesting since it
is of a different structure than the twice-the-sum-of-the-tail formula. A
problem with the bound is the constant K , which may be large and hard
to estimate.

In Paper III, the Taylor and Fourier expansions in Section 2.6 are
derived in detail. The convergence rates of the truncated series are in-
vestigated. For this, the concepts of input, output and skew roll-off are
introduced. Furthermore, relations between these concepts and the time-
varying Markov parameters are derived. These studies are valuable for
studies of truncated harmonic transfer functions.

Paper IV is not so much concerned with model reduction. See the
summary of Chapter 1. But Paper IV relies on the Taylor and Fourier
expansions developed in Paper III for the proof of the analyticity property
of the harmonic transfer function.
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3

Concluding Remarks

In the thesis, the model reduction problem for linear time-varying sys-
tems is addressed. It is argued that linear time-varying models are useful
in many areas of engineering. Some examples are presented in the intro-
duction. In the introduction, we also review state-space models, impulse-
response models, and common model reduction techniques. Furthermore,
some of the results in Papers I–IV are highlighted and compared to other
available results.

Results

The results in Papers I–IV can be summarized as follows:

• Error bounds for balanced truncation of linear time-varying systems
are derived. The results generalize well-known time-invariant re-
sults, derived with other methods. An upper error bound that is not
of the traditional “twice-the-sum-of-the-tail” type is also obtained.

• Practical issues for balanced truncation of linear time-varying sys-
tems are discussed. Approximative discretization and projections are
used.

• Taylor and Fourier expansions of linear time-varying impulse-re-
sponse models are derived.

• Convergence criteria for the harmonic transfer function of a linear
time-periodic system are derived. The concepts of input, output, and
skew roll-off are introduced.

• A Bode sensitivity integral for linear time-periodic systems is de-
rived by using the harmonic transfer function.

Suggestions for Future Work

Most of the results that have made balanced truncation a popular method
for time-invariant models, now have their counterparts in the time-vary-
ing setting. See, for example, [Shokoohi and Silverman, 1987; Lall and
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Beck, 2003] and Paper I. But still interesting problems remain. One prob-
lem is analysis of the tightness of available error bounds. Theorem 2.2 (ii)
indicates that there are error bounds that only depend on the maximum
truncated singular value. It is interesting to see if this bound can be im-
proved.

Another interesting problem is to study how the methods can be ap-
plied to high-order models. Balanced truncation is a method that is rel-
atively computationally expensive. When the model has thousands of
states, balanced truncation is often not possible to use. It is interesting
to investigate if the method can be modified to make it feasible in these
cases, and still guarantee that good approximations are obtained.

For the harmonic transfer function there are also several interesting
problems remaining. For example, is it possible generalize more time-
invariant transfer function relations?
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Paper I

Balanced Truncation of Linear

Time-Varying Systems

Henrik Sandberg and Anders Rantzer

Abstract

In this paper, balanced truncation of linear time-varying systems is
studied in discrete and continuous time. Based on relatively basic
calculations with time-varying Lyapunov equations/inequalities we
are able to derive both upper and lower error bounds for the truncated
models. These results generalize well-known time-invariant formulas.
The case of time-varying state dimension is considered. Input-output
stability of all truncated balanced realizations is also proven. The
method is finally successfully applied to a high-order model.
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Automatic Control, Vol. 49, No. 2, pp. 217–229, February 2004.

65



Paper I. Balanced Truncation of Linear Time-Varying Systems

1. Introduction

This paper treats model reduction of time-varying linear systems. Time-
varying linear systems are of interest not only for modeling of time-
varying physical processes, but also because of the fact that time-invariant

nonlinear systems can be well approximated by time-varying linear sys-
tems around nominal trajectories. Linear time-varying systems have at-
tained much attention lately, see for example the survey over periodic
systems in [Bittanti and Colaneri, 1999] and references therein.

1.1 Problem Statement

We will assume that a linear system G is given, either in continuous or
discrete time. The system should have a finite-dimensional realization
with n states. The objective is to find a system Ĝ with n̂ states that
approximates G well, where n̂ ideally should be much smaller than n.
One objective is to find simple candidates Ĝ for given G and n̂. Another
objective is to find simple functions C1(⋅) and C2(⋅), error bounds, such
that

C1(n̂) ≤ iG − Ĝi ≤ C2(n̂), (1)

as this simplifies the selection of Ĝ. The operator norm will be the induced
2-norm. Notice that we can always compute iG−Ĝi to any wanted degree
of accuracy once Ĝ is chosen. However, this is computationally expen-
sive and involves bisection algorithms and solving time-varying Riccati-
equations, see for instance [Tadmor, 1990], which is hardly something we
would like to do for each candidate Ĝ. So bounds of the type (1) are help-
ful. Moreover, we would like essential properties of the original system
G, such as stability, to be preserved for each candidate Ĝ.

1.2 Previous Work

To reduce the order of linear time-invariant systems, balanced trunca-
tion is often used. Balanced realizations were introduced in [Mullis and
Roberts, 1976], but were first used for the purpose of model reduction in
[Moore, 1981]. A sufficient condition for asymptotic stability of truncated
models was later given in [Pernebo and Silverman, 1982]. Since then an
error bound has been proven, [Enns, 1984; Glover, 1984], which gives
a simple bound on the worst case error between the original and trun-
cated model and justifies the approximation. The bound was first derived
for continuous-time systems, but it also holds for discrete-time systems as
proven in [Al-Saggaf and Franklin, 1987]. The bound is a sum of truncated
Hankel singular values and the result is now considered to be standard
and is included in most courses on robust control and identification.
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1. Introduction

Balanced realizations for time-varying linear systems have also re-
ceived attention, see for example [Shokoohi et al., 1983; Verriest and
Kailath, 1983], for some early references. For the related class of linear
parameter-varying (LPV) systems, balanced truncation has been stud-
ied in for example [Wood, 1996]. However, until recently no error bound
has been given for the time-variable case. To obtain bounds, methods for
uncertain systems could be utilized, see for example [Beck et al., 1996].
However, these bounds would be conservative as the known time-variance
is encapsulated in an uncertainty ball.

The first explicit error bound for balanced discrete time-varying mod-
els, to the authors’ best knowledge, was given in [Lall et al., 1998] and
later refined in [Lall and Beck, 2003]. There, an operator-theoretic frame-
work was used to give bounds similar to those that apply to time-invariant
models. For discrete time-periodic linear systems bounds have been proven
in [Longhi and Orlando, 1999; Varga, 2000]. There, a special form of lifting
isomorphism was used.

1.3 Contributions of This Paper

In this paper we will work directly with the time-varying observability and
reachability Lyapunov inequalities [linear matrix inequalities (LMIs)] in
both continuous and discrete time. It will be seen that it is natural to
allow the state-space dimension to vary in size over time. In fact, a time-
varying state dimension may be required for a minimal realization as is
shown and used in for example [Gohberg et al., 1992] and [Varga, 2000].
The approach will give fairly simple calculations and more general error
bounds (1) than in the previously mentioned references. In particular we
will allow for time-varying Gramians, which is not treated in [Lall et al.,
1998; Lall and Beck, 2003]. As special cases we will recover the known
bounds for both time-invariant and time-varying systems. Furthermore,
the method will give new results on input-output stability of the reduced
models.

The ability to vary the state-space dimension over time is not only
of interest for technical reasons. In for example stiff problems, such as
chemical reactions, it is frequent that in the initial phase, many complex
reactions take place and that the dynamics then slows down. It is then
reasonable to have a model with many states in the initial phase and then
switch to a low-order model after some time. The analysis presented will
help to decide when to switch the number of states and also how much
loss in accuracy a certain choice might give.

1.4 Organization

The organization of the paper is as follows. In Sections 2 and 3, notation
for discrete and continuous-time systems will be introduced, along with
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two lemmas on observability and reachability. The lemmas will form the
basis of the following analysis. In Section 4, we will define what a balanced
system is and how we, with the help of the lemmas, can attain simple
upper error bounds. In Section 5, input-output stability of all truncated
models is proved. In Section 6, a lower error bound for truncated models is
given. In Section 7, an example of how balanced model truncation works in
practice is given. In Appendix B it is shown how sampling of a continuous-
time system can be combined with model truncation.

2. Discrete-Time Systems

As some aspects of the calculations are simpler for discrete-time systems,
we will start at that end. It should, however, be pointed out that every-
thing presented here will later also be done for continuous-time systems.

2.1 Preliminaries and Notation

The linear systems G that we consider are assumed to have a finite-
dimensional state-space realization

G :

{

x(k+1) = A(k)x(k) + B(k)u(k) x(0) = 0

y(k) = C(k)x(k) + D(k)u(k) (2)

with m inputs and p outputs. It will be useful to utilize time-varying
state-space dimension as commented in the introduction. It is known that
minimal realizations of linear systems in general have this property; see
[Gohberg et al., 1992]. However, it will also be a useful technical tool for
reducing the order of systems where the state-space dimension originally
is constant over time. Let the state-space dimension at time k be n(k).
The signals and matrices then have the dimensions

A(k) ∈ R
n(k+1)�n(k) B(k) ∈ R

n(k+1)�m x(k) ∈ R
n(k)

C(k) ∈ R
p�n(k) D(k) ∈ R

p�m y(k) ∈ R
p

u(k) ∈ R
m.

We will assume that all the matrices are real, bounded, and defined for
k ∈ [0, T ]. Sometimes we will have T = +∞, and then the system is
assumed to be stable. Notice that as the model order may vary with k,
A(k) is not necessarily a square matrix but rather rectangular. We could
also let the number of inputs and outputs vary over time, but we avoid
this for the sake of notational simplicity.
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2. Discrete-Time Systems

The signals will belong to the Hilbert space Q2[0,T]. We will utilize the
weighted Euclidean norm as defined by

hx(k)h2P = xT (k)P(k)x(k)

with a positive-definite matrix P(k) ∈ R
n(k)�n(k), and also the weighted

Q2-norm

ixi2
P =

T∑

k=0

hx(k)h2P. (3)

Discrete-time signals x over a time interval [0,∞) belong to Qn2 [0,∞) iff the
norm (3) is finite for P(k) = I with T = +∞. If we want to emphasize that
the norm is taken over the interval [0, T ], we will write ixiP,[0,T], but the
interval will normally be clear from the context. Linear systems as defined
in (2) can be identified with a linear operator G : Qm2 [0, T ] → Qp

2[0, T ]. The
operator is bounded iff the induced norm

iGi = sup
iui≤1

iGui

is bounded. Often we will make an upper estimate of iGi by finding a
constant C(G) > 0 such that

iyi ≤ C(G) ⋅ iui

for all admissible u.
The system we would like to obtain, Ĝ, will be called a reduced-order

system. It will have the state-space dimension n̂(k) where n̂(k) ≤ n(k) for
all k. We will construct Ĝ from a truncation of the realization of G. The
following partitions will be used:

A(k) =
[

A11(k) A12(k)
A21(k) A22(k)

]

A11(k) ∈ R
n̂(k+1)�n̂(k)

B(k) =
[

B1(k)
B2(k)

]

B1(k) ∈ R
n̂(k+1)�m

C(k) = [ C1(k) C2(k) ] C1(k) ∈ R
p�n̂(k)

xT (k) = [ xT
1 (k) xT

2 (k) ] x1(k) ∈ R
n̂(k).

If the realization (2) is chosen such that the states x2(k) are “small” in
some sense, a reasonable reduced-order candidate is obtained by truncat-
ing the corresponding states

Ĝ :

{

x̂(k+1) = A11(k)x̂(k) + B1(k)u(k) x̂(0) = 0

ŷ(k) = C1(k)x̂(k) + D(k)u(k) x̂(k) ∈ R
n̂(k).

(4)
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The auxiliary signal

ẑ(k+1) = A21(k)x̂(k) + B2(k)u(k) (5)

will naturally show up later. It is not needed to evaluate the map Ĝ. ẑ(k)
has dimension R

n(k)−n̂(k) and is defined when truncation has occurred, i.e.,
n̂(k) < n(k). As ẑ is not necessarily defined for all k, it will be useful to
collect the time points where it does exist in a set T

T = {k : ẑ(k) exists}. (6)

Furthermore, let us define ẑ(0) = 0 if n̂(0) < n(0).
If the systems G and Ĝ are supposed to have a similar input-output

behavior when the above truncation scheme is used, it is important that
the coordinate system in the realization of G is well chosen. As we will
see, such coordinate systems exist in many cases. A change in coordinate
system, x(k) = T(k)x̃(k), for invertible T(k), will transform the realiza-
tion according to

{A(k), B(k), C(k), D(k)} T(k)−→ {Ã(k), B̃(k), C̃(k), D̃(k)}
= {T−1(k+1)A(k)T(k), T−1(k+1)B(k), C(k)T(k), D(k)}.

(7)

2.2 The Observability Lyapunov Inequality

Consider the Lyapunov observability inequality

AT(k)Q(k+1)A(k) + CT(k)C(k) ≤ Q(k), k ∈ [0, T ]. (8)

Q(k) is often called an observability Gramian. The positive-semidefinite
solutions Q(k), k = 0 . . . T+1, bound the amount of energy there will be in
the output for a given initial state x(0) of the system G with zero input

hx(T+1)h2Q + iyi2
[0,T] ≤ hx(0)h2Q .

The inequality can, however, also be used to calculate the Q2-norm of the
difference in the outputs from G and Ĝ when both systems are driven by
the same input signal. To see this, assume there is a positive-semidefinite
solution Q(k) to (8) with the block-diagonal structure

Q(k) =
[

Q1(k) 0

0 q(k) ⋅ In(k)−n̂(k)

]

∈ R
n(k)�n(k) (9)

for k = 0 . . . T +1 and q(k) scalar. Then rewrite (8) for each k in the
following way:

[
A(k)

I

]T [
Q(k+1) 0

0 −Q(k)

] [
A(k)

I

]

+ CT(k)C(k) ≤ 0. (10)
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2. Discrete-Time Systems

If we apply the same input signal u to (2) and (4) we obtain the trajecto-
ries x and x̂. Use the trajectories to calculate the difference

[
x1(k) − x̂(k)

x2(k)

]

∈ R
n(k).

Multiply (10) for each k from the right with the difference and from the
left with its transpose. We then obtain








x1(k+1) − x̂(k+1)
x2(k+1) − ẑ(k+1)

x1(k) − x̂(k)
x2(k)








T

[
Q(k+1) 0

0 −Q(k)

]

�








x1(k+1) − x̂(k+1)
x2(k+1) − ẑ(k+1)

x1(k) − x̂(k)
x2(k)







+ hy(k) − ŷ(k)h2 ≤ 0

which is the same as

∆

∣
∣
∣
∣

[
x1(k) − x̂(k)

x2(k)

]∣
∣
∣
∣

2

Q

− 2q(k+1)ẑT (k+1)x2(k+1)

+ hẑ(k+1)h2q + hy(k) − ŷ(k)h2 ≤ 0 (11)

using the structure (9) of Q(k). The forward difference operator ∆ is de-
fined as

∆r(k) = r(k+1) − r(k)
on a scalar sequence {r(k)}. Now we can state the following lemma:

LEMMA 1—OBSERVABILITY

If there is a solution Q(k) with the structure (9) to the Lyapunov inequal-
ity (8) on the interval [0, T+1], then the solutions of (2) and (4) satisfy
the following.
(i)

∣
∣
∣
∣

[
x1(T+1) − x̂(T+1)

x2(T+1)

]∣
∣
∣
∣

2

Q

+ iy− ŷi2
[0,T]

+
∑

k∈T

(
hẑ(k)h2q − 2q(k)ẑT (k)x2(k)

)
≤ 0 (12)

71



Paper I. Balanced Truncation of Linear Time-Varying Systems

where equality holds if (8) was solved with equality.
(ii) For every nonincreasing positive scalar sequence {a(k)}T

k=0 we
have

iy− ŷi2
a,[0,T] −

∑

k∈T
a(k−1)2q(k)ẑT (k)x2(k) ≤ 0. (13)

Proof. (i) Sum the inequalities (11) over the interval k = 0 . . . T and
notice the cancelling terms.
(ii) Multiply (11) with a(k) for each k, and sum over k = 0 . . . T .

For nonincreasing a(k) the partially cancelling terms become nonnegative
numbers. The sum over T is the only sign-indefinite term, which leads to
the inequality (13).

As seen if T = ∅ the difference in output is zero, as G = Ĝ. All terms
in (12) are necessarily nonnegative except the terms ẑT(k)x2(k). These
terms are the price we pay for truncating states. One might think that if
the numbers q(k) are small for k ∈ T , then iy− ŷi will be small. Indeed,
if the states x2(k) are unobservable there is a solution Q(k) such that
q(k) = 0 and iy− ŷi = 0. Thus a small q(k) could indicate that k should
be included in the set T and that the corresponding states x2(k) should
be truncated. However, we should remember that q(k) is only a weight. A
sufficient condition for a small iy− ŷi2 is that hx2(k)h2q is small for all k

in T . This can be seen by completing the squares in the sum (12). Then
we see that iy − ŷi2 is bounded by

∑

k∈T hx2(k)h2q. However, this is not
a bound of the type (1). To obtain such a bound we will make a dual
analysis, which is the topic of Section 2.3.

2.3 The Reachability Lyapunov Inequality

Here, it will be seen how far away the states in G and Ĝ can be forced with
the input signal u. The following inequality will be called the Lyapunov

reachability inequality

A(k)P(k)AT (k) + B(k)BT(k) ≤ P(k+1), k ∈ [0, T ]. (14)

P(k) is often called a reachability Gramian. Assume there is a positive-
definite block-diagonal solution to (14)

P(k) =
[

P1(k) 0

0 p(k) ⋅ In(k)−n̂(k)

]

∈ R
n(k)�n(k) (15)
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2. Discrete-Time Systems

with k = 0 . . . T+1 and p(k) scalar. Notice that (14) is equivalent to

[
A(k) B(k)

I 0

]T [ P−1(k+1) 0

0 −P−1(k)

]

�
[

A(k) B(k)
I 0

]

≤
[

0 0

0 I

]

. (16)

Now, assume we apply the same input signal u to G and Ĝ. We then
obtain the system trajectories x and x̂. Multiply (16) for each k with





x1(k) + x̂(k)
x2(k)
2u(k)



 ∈ R
n(k)+m

from the right and with its transpose from the left. This gives

∆

∣
∣
∣
∣

[
x1(k) + x̂(k)

x2(k)

]∣
∣
∣
∣

2

P−1

+ 2p−1(k+ 1)ẑT(k+ 1)x2(k+ 1)

+ hẑ(k+ 1)h2p−1 ≤ 4hu(k)h2 (17)

if the structure of P(k) is used. Now, the following lemma can be stated.

LEMMA 2—REACHABILITY

If there is a solution P(k) to the inequality (14) with the structure (15) on
the interval [0, T+1] then the solutions to (2) and (4) satisfy the following.
(i)

∣
∣
∣
∣

[
x1(T+1) + x̂(T+1)

x2(T+1)

]∣
∣
∣
∣

2

P−1

+
∑

k∈T

(

hẑ(k)h2p−1 + 2p−1(k)ẑT(k)x2(k)
)

≤ 4iui2
[0,T]. (18)

(ii) For every positive nonincreasing scalar sequence {b(k)}T
k=0

∑

k∈T
b(k−1)2p−1(k)ẑT (k)x2(k) ≤ 4iui2

b,[0,T]. (19)

Proof. As in Lemma 1. Use (17) instead of (11).
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The lemma gives boundaries on the reachable set in the state-space
for fixed amounts of input energy. Notice that when T = ∅ (18) reduces
to the well-known result

hx(T+1)h2P−1 ≤ iui2
[0,T] + hx(0)h2P−1

as x(k) = x̂(k) for all k. Also notice that the sum in (19) potentially can
cancel the sum in (13), namely if

a(k− 1)q(k) = b(k− 1)p−1(k) (20)

for all k ∈ T . We have obtained a bound on the terms ẑT(k)x2(k) and this
will be utilized Section 4.

As we will utilize the truncation recursively in the following it is con-
venient that the realization of Ĝ, {A11(k),B1(k),C1(k),D(k)}, fulfills the
Lyapunov inequalities (8) and (14), with Q1(k) and P1(k) respectively.
This can be seen from straightforward calculations.

3. Continuous-Time Systems

The previous ideas in discrete time goes through in continuous time with-
out much alternation. However, we have to be somewhat careful when the
number of states changes over time.

3.1 Preliminaries and Notation

The linear operator G will now operate on the Hilbert space L2[0, T ], that
is G : Lm

2 [0, T ] → L
p
2[0, T ]. A measurable signal x belongs to Ln

2 [0, T ] iff
the norm

ixi2
P =

∫ T

0
hx(t)h2P dt

is finite for P(t) = I. The norm iGi is the standard induced norm. We
assume there is a finite-dimensional realization of G

G :

{

ẋ(t) = A(t)x(t) + B(t)u(t) x(0) = 0

y(t) = C(t)x(t) + D(t)u(t). (21)

The matrices and signals have the same dimensions as in discrete time,
we will for now assume that the state dimension is n(t) = n and is con-
stant over time. We will assume that the matrices are continuous and
bounded over time in all their entries. With these conditions existence
and uniqueness of solutions to (21) is guaranteed, see for example [Rugh,
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1996]. When the infinite time-horizon case is studied the system is as-
sumed to be stable.

If we use the same matrix partitions as before we can define the n̂th-
order reduced-order system Ĝ

Ĝ :

{
˙̂x(t) = A11(t)x̂(t) + B1(t)u(t) x̂(0) = 0

ŷ(t) = C1(t)x̂(t) + D(t)u(t). (22)

The auxiliary error signal ẑ ∈ R
n−n̂ becomes

ẑ(t) = A21(t)x̂(t) + B2(t)u(t). (23)

As we assume constant state dimension for now, the set T is the interval
[0, T ].

Coordinate transformations x(t) = T(t)x̃(t) with a continuously differ-
entiable T(t), non-singular for all t, give

{A(t), B(t), C(t), D(t)} T(t)−→ {Ã(t), B̃(t), C̃(t), D̃(t)}
= {T−1(t)[A(t)T(t) − Ṫ(t)], T−1(t)B(t), C(t)T(t), D(t)}.

(24)

so that the input-output map is invariant.

3.2 The Observability Lyapunov Inequality

The observability Lyapunov inequality takes the form

Q(t)A(t) + AT(t)Q(t) + Q̇(t) + CT(t)C(t) ≤ 0 (25)

in continuous time. We can perform the same analysis as in Section 2.2
by noting that (25) can be written as

[
A(t)

I

]T [ 0 Q(t)
Q(t) Q̇(t)

] [
A(t)

I

]

+ CT(t)C(t) ≤ 0. (26)

As in Section 2.2 we get:

LEMMA 3—OBSERVABILITY

If there is a solution Q(t)with the structure (9) to the Lyapunov inequality
(25) on the interval [0, T ], then the solutions of (21) and (22) satisfy the
following.
(i)
∣
∣
∣
∣

[
x1(T) − x̂(T)

x2(T)

]∣
∣
∣
∣

2

Q

+ iy− ŷi2 −
∫ T

0
2q(t)ẑT(t)x2(t)dt ≤ 0 (27)
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where equality holds if (25) was solved with equality.
(ii) For every nonincreasing positive continuous scalar a(t) we have

iy− ŷi2
a −

∫ T

0
a(t)2q(t)ẑT (t)x2(t)dt ≤ 0. (28)

Proof. As Lemma 1 but use (26) instead of (10). Replace summation
with integration.

3.3 The Reachability Lyapunov Inequality

The reachability Lyaponov inequality takes the form

A(t)P(t) + P(t)AT(t) − Ṗ(t) + B(t)BT(t) ≤ 0 (29)

in continuous time. If there is a positive-definite solution P(t), (29) is
equivalent to

[
A(t) B(t)

I 0

]T [ 0 P−1(t)
P−1(t) d

dt
P−1(t)

] [
A(t) B(t)

I 0

]

≤
[

0 0

0 I

]

. (30)

The analog to Lemma 2 becomes the following.

LEMMA 4—REACHABILITY

If there is a solution P(t) to the inequality (29) with the structure (15) on
the interval [0, T ] then the solutions to (21) and (22) satisfy the following.
(i)

∣
∣
∣
∣

[
x1(T) + x̂(T)

x2(T)

]∣
∣
∣
∣

2

P−1

+
∫ T

0
2p−1(t)ẑT (t)x2(t)dt ≤ 4iui2. (31)

(ii) For every positive nonincreasing continuous scalar b(t)
∫ T

0
b(t)2p−1(t)ẑT (t)x2(t)dt ≤ 4iui2

b. (32)

Proof. As Lemma 2. Use (30) instead of (16). Replace summation with
integration.
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3.4 Continuous-Time Systems with Time-Varying State Dimension

It is possible to analyze systems where the state dimension varies over
time, i.e., n(t) takes integer values but changes with time. This will be
useful in Section 4 as we then do not need to distinguish between discrete-
and continuous-time systems.

Assume that G has n states and that Ĝ has n̂1 states until time t−,
and then switches to n̂2 states at t+, i.e., an instant switch. The question
is what to do with new states and also with the ones that disappear.
Furthermore, are Lemmas 3 and 4 still valid?

From t− to t+ the control signal u will not have time to influence the
states as the input energy becomes zero on this interval of zero measure.
The dynamics of the original system G becomes

x(t+) = AJ x(t−) AJ = In

i.e., nothing happens with the states. The truncated realizations AJ
11 ∈

R
n̂2�n̂1 become

AJ
11 =

[
In̂1

0

]

n̂2 > n̂1 or

AJ
11 = [ In̂1 0 ] n̂2 < n̂1.

(33)

So new states should just be initialized to zero. If there are continuous
solutions Q(t) and P(t) to the inequalities (25) and (29) we can readily
use them as solutions to the discrete-time Lyapunov equations for the
jump

(AJ)T Q(t+)AJ = Q(t−) and

AJ P(t−)(AJ)T = P(t+)
(34)

which are fulfilled with Q(t−) = Q(t+) = Q(t) and P(t−) = P(t+) = P(t).
For each jump, we therefore get the following addition to Lemma 3:

∣
∣
∣
∣

[
x1(t+) − x̂(t+)

x2(t+)

]∣
∣
∣
∣

2

Q

−
∣
∣
∣
∣

[
x1(t−) − x̂(t−)

x2(t−)

]∣
∣
∣
∣

2

Q

+ hẑ(t+)h2q − 2q(t+)ẑT (t+)x2(t+) = 0,

with x̂(t−) ∈ R
n̂1 and x̂(t+) ∈ R

n̂2 . The two first terms get canceled by
the boundary terms of the integrals from the constant state modes before
and after the switch in the lemma. So, the only real contribution is the
two last terms. For Lemma 4, the additions become

∣
∣
∣
∣

[
x1(t+) + x̂(t+)

x2(t+)

]∣
∣
∣
∣

2

P−1

−
∣
∣
∣
∣

[
x1(t−) + x̂(t−)

x2(t−)

]∣
∣
∣
∣

2

P−1

+ hẑ(t+)h2p−1 + 2p−1(t+)ẑT (t+)x2(t+) ≤ 0.
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Again the only real contribution is the two last terms. The remaining
sign-indefinite terms

q(t+)ẑT (t+)x2(t+) and p−1(t+)ẑT(t+)x2(t+)

can be canceled by proper choice of a(t) and b(t) as will be discussed in
the Section 4.

The conclusion is that if the jump transitions (33) are used there is
no real change to the results in Lemmas 3 and 4 and the set T can be
defined exactly as in the discrete-time case, (6), and we may replace the
integrals

∫ T

0 in Lemmas 3 and 4 by
∫

T
.

REMARK 1—DISCONTINUITIES IN ŷ

With the proposed scheme we see that when new states are added, i.e.,
n̂2 > n̂1, ŷ will be continuous at the switching instant as the new states
are initialized to zero. Moreover ẑ(t+) is zero. In the other case when
n̂2 < n̂1, ŷ can be discontinuous at the switching instant as states are
thrown away, and then hẑ(t+)h2 > 0.

REMARK 2—DISCONTINUOUS STATE TRANSFORMATIONS

The technique here can also be used when one, at some time instant,
would like to make an instantaneous state transformation, i.e., T(t) is
discontinuous. Then the jump transition matrix AJ becomes the solution
to

T(t+)AJ = T(t−),
and all the calculations in this section can be redone with this jump matrix
AJ . The corresponding Lyapunov equations to (34) become

(AJ)T Q̃+(t+)AJ = Q̃−(t−) and

AJ P̃−(t−)(AJ)T = P̃+(t+).

⋅̃ − and ⋅̃ + denote matrices given in the coordinate systems T(t−) and
T(t+), respectively. How the solutions P(t) and Q(t) are transformed is
discussed in Section 4, (37).

4. Balanced Realizations and Error Bounds

Sections 2 and 3 rely heavily on the ability to obtain block-diagonal solu-
tions to the inequalities (8), (14), (25), and (29), respectively. Often this
is possible to obtain. In particular, if there are any solutions P(⋅) > 0 and
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Q(⋅) > 0 for all time instants in some realization of G, then there exists a
balanced realization of G where the Lyapunov inequalities take the form

ÃT(k)Σ(k+1)Ã(k) − Σ(k) + C̃T(k)C̃(k) ≤ 0

Ã(k)Σ(k)ÃT (k) − Σ(k+1) + B̃(k)B̃T(k) ≤ 0
(35)

in discrete time, and in continuous time with some extra regularity con-
ditions

Σ(t)Ã(t) + ÃT(t)Σ(t) + Σ̇(t) + C̃T(t)C̃(t) ≤ 0

Ã(t)Σ(t) + Σ(t)ÃT(t) − Σ̇(t) + B̃(t)B̃T(t) ≤ 0.
(36)

with the diagonal solution (balanced Gramians)

Σ(⋅) = P̃(⋅) = Q̃(⋅) = diag{σ 1(⋅),σ 2(⋅), . . . ,σ n(⋅)} > 0.

A linear system G with a realization fulfilling (35) or (36) with a Gramian
Σ is called a balanced system. σ i will be denoted as the singular value
corresponding to the state xi in a particular balanced system. Notice that
it is always possible to permute the singular values in Σ. Normally one
chooses to put the elements in descending order so that

σ 1(⋅) ≥ σ 2(⋅) ≥ . . . ≥ σ n(⋅) > 0.

As the singular values change in size over time it may be that the ordering
must be changed at some time instants to maintain the aforementioned
order. This can be done with an instantaneous coordinate transformation
(permutation), see Remark 2 in Section 3.4. However, as we will see,
the ordering is not critical to our discussion. But in general it makes
good sense to put small singular values last in the Σ-matrix. By defining
a balanced realization with inequalities instead of equalities it becomes
non-unique, and the singular values are non-unique. This was introduced
in [Hinrichsen and Pritchard, 1990; Beck et al., 1996], and has several
appealing properties including the possibility of tighter error bounds and
that every truncated realization remains balanced.

If we have solutions Q(⋅) and P(⋅) in a given coordinate system we
can obtain the needed coordinate transformation T(⋅) to obtain a bal-
anced realization. This is the topic of many papers in discrete time; see,
for example, [Shokoohi and Silverman, 1987; Varga, 2000], and the refer-
ences therein. In continuous time, we need regularity conditions on the
realization to guarantee the existence of a well-behaved balancing trans-
formation. In [Verriest and Kailath, 1983], for instance, analyticity of the
realization is assumed. In [Shokoohi et al., 1983; Shokoohi et al., 1984],
uniform observability and controllability is assumed. How in practice to
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obtain T(t) in continuous time is not obvious, as we need T(t) and also
Ṫ(t) on an interval. Pointwise we can always obtain a T(⋅) as we will see.
An approximate approach to obtain T(t) over an interval is presented in
[Imae et al., 1992].

We will not go into much detail here, as this is done in the refer-
ences previously mentioned, let us just notice that under the coordinate
transformation (7) and (24) the solutions to the Lyapunov inequalities
transform as

Q̃(⋅) = TT (⋅)Q(⋅)T(⋅)
P̃(⋅) = T−1(⋅)P(⋅)T−T (⋅)

(37)

so that the eigenvalues of their product is invariant. Therefore we can
calculate the singular values for a realization with Gramians P and Q as

σ 2
i (⋅) = λ i(P(⋅)Q(⋅)) = λ i(P̃(⋅)Q̃(⋅))

at each time-instant and also obtain a balancing coordinate system T(⋅).
As a first step toward error-bounds for truncated balanced realizations

let us note that from Lemmas 1 and 2 and Lemmas 3 and 4 we get the
following bound:

PROPOSITION 1—CANCELLING CONDITION

If the nonincreasing weights a(⋅) and b(⋅) are chosen so that for all time-
instants k or t in T

a(k−1)q(k) = b(k−1)p−1(k) (Discrete time)
a(t)q(t) = b(t)p−1(t) (Continuous time)

(38)

then
iy− ŷia ≤ 2iuib. (39)

Proof. Add Lemma 1 (ii) with Lemma 2 (ii) and notice that the sign-
indefinite terms are canceled if a(k) and b(k) fulfill the previous condition.
Analogous in continuous time.

4.1 Monotonically Balanced Systems

We will proceed by formulating an error bound for truncated balanced
realizations which looks familiar to the well-known time-invariant result
in [Enns, 1984; Glover, 1984]. We will first look at balanced systems where
the singular values are monotonic in time, as this is the simplest nontime-
invariant case. It is useful to group equal singular values together as this
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makes the error bound sharper. If there are N(⋅) unique singular values
use the notation

Σ(⋅) = diag{σ 1(⋅)Is1 , . . . ,σ N(⋅)IsN
}

where s1(⋅)+ . . .+sN(⋅) = n(⋅). Now, the following result is easily obtained.

THEOREM 1—MONOTONICALLY BALANCED SYSTEMS

Suppose the system G has a balanced realization on the interval [0, T ]
with Σ(⋅) = diag{Σ1(⋅), Σ2(⋅)}

Σ1(⋅) = diag{σ 1(⋅)Is1 , . . . ,σ r(⋅)Isr
}

Σ2(⋅) = diag{σ r+1(⋅)Isr+1 , . . . ,σ N(⋅)IsN
}

where each singular value σ i(⋅), i = r + 1 . . . N is either nonincreasing
or nondecreasing over time.

The truncated (s1 + ⋅ ⋅ ⋅+ sr)-order system Ĝ is then balanced by Σ1(⋅)
and

iG − Ĝi ≤ 2
N∑

i=r+1

sup
t∈[0,T]

σ i(t). (40)

Proof. Start by removing the states with the singular value σ N , and
call this truncated system Ĝ1. Thus put p = q = σ N . By assumption
there are two possibilities: σ N is nonincreasing or nondecreasing. First,
consider the nonincreasing case. Then, choose b(t) = σ 2

N(t) and a(t) = 1
in Proposition 1 (T = [0, T ], use a(k− 1) and b(k− 1) in discrete time)
and notice that the cancelling condition is fulfilled. In the nondecreasing
case, choose a = σ−2

N and b = 1. It follows that

iy− ŷ1i ≤ 2iuiσ 2
N

, or

iy− ŷ1iσ−2
N
≤ 2iui

which leads to iG − Ĝ1i ≤ 2 supt σ N(t). Next notice that Ĝ1 is still bal-
anced with the rest of Σ, ΣN−1. We proceed iteratively and remove σ N−1

from Ĝ1, and repeat the scheme until the system Ĝ = ĜN−r is reached.
Finally use the triangular inequality:

iG − Ĝi = iG − Ĝ1 + Ĝ1 + . . . + ĜN−r−1 − Ĝi ≤ 2
N∑

i=r+1

sup
t∈[0,T]

σ i(t).
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REMARK 3—TIME-INVARIANT σ (⋅)
For time-invariant asymptotically stable systems we can find time-in-
variant solutions Σ(⋅) = Σ to (35) and (36), which become algebraic
Lyapunov inequalities. We then recover the well-known error bound for
time-invariant systems. Also for time-varying systems we may find time-
invariant solutions. If we look for solutions to the LMIs (35) and (36)
with the constraint Σ2(⋅) = Σ2 using standard semidefinite programming
techniques, we obtain the error bound first shown in [Lall et al., 1998; Lall
and Beck, 2003]. In [Lall and Beck, 2003] it was shown that there always
exists a solution Σ(⋅) = Σ to (35), so that the problem is always feasible.
However, if the time horizon [0, T ] of the problem is large, the LMIs are
of high dimension and become computationally expensive to solve.

4.2 Nonmonotonically Balanced Systems

For many systems we expect the balanced Gramians Σ(⋅) to be non-
monotonic in time. We might try to resolve this by changing the boundary
conditions to the Lyapunov equations until a monotonic solution is found,
and then use Theorem 1. Alternatively, we may search for time-invariant
solutions, as commented in Remark 3. In any case, we would still like to
have a bound for nonmonotonic solutions, and this will be derived in this
section. The following definition will be useful:

DEFINITION 1—THE MAX-MIN RATIO OF σ
Let the singular value σ (⋅) be defined on the interval T = [t0, t f ], and let
it have M local maximums for t > t0, located at t0 < tmax

1 < . . . < tmax
M ≤ t f .

Then there will be M local minimums so that

t0 ≤ tmin
1 < tmax

1 < . . . < tmin
M < tmax

M ≤ t f

where σ (tmin
i ) is the local minimum immediately before σ (tmax

i ) for i =
1 . . . M . The max-min ratio of σ is defined as

ST (σ ) = σ (t0)
M∏

i=1

σ (tmax
i )

σ (tmin
i ) , M > 0

ST (σ ) = σ (t0), M = 0.

Now, we can formulate a general error bound that applies both to mono-
tonically and nonmonotonically balanced systems.
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THEOREM 2—GENERAL ERROR BOUND

Let l(i) be any function that is defined for i = 1 . . . L and takes integer
values in the range 1 . . . n, where n is the number of states in G.

The error between the balanced system G and its truncated balanced
realization Ĝ, where the states xl(i) have been truncated on the time
intervals T i, i = 1 . . . L, is bounded by

iG − Ĝi ≤ 2
L∑

i=1

ST i
(σ l(i)) (41)

and Ĝ is balanced.
If the singular value for some other state xk, k �= l(i), coincides with

one in the sum (41), then xk can be truncated over the same interval
without inducing extra error.

Proof. Start to truncate all states with the singular value σ l(1) over T 1.
Permute the states so that we can use Proposition 1. Then p(⋅) = q(⋅) =
σ l(1)(⋅). We need to find nonincreasing a and b such that

a(⋅)σ 2
l(1)(⋅) = b(⋅).

If σ l(1) is initially nonincreasing put b(t) = σ 2
l(1)(t) and a(t) = 1 (use

b(k−1) and a(k−1) in discrete time). If σ l(1) reaches a local minimum at
tmin
1 < t f define b(t) = σ 2

l(1)(tmin
1 ) and a(t) = σ 2

l(1)(tmin
1 )/σ 2

l(1)(t) for t > tmin
1 .

A local maximum will be reached, either at the end of the interval or
before, so tmax

1 exists. We can continue to define a(t) and b(t) as before,
i.e., one is always constant and the other decreasing. When the whole
interval T 1 is covered we have from Proposition 1

a(t f )iy− ŷ1i2 = inf
t∈T 1

a(t)iy− ŷ1i2 ≤ 4 sup
t∈T 1

b(t)iui2 = 4b(t0)iui2

and, therefore

iG − Ĝ1i ≤ 2

√

b(t0)
a(t f )

= 2ST 1
(σ l(1)).

If σ l(1) is initially nondecreasing an analogous treatment is applicable.
Finally, we can continue recursively with i = 2 . . . L and use the trian-

gular inequality to obtain the final result, just as in Theorem 1.
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REMARK 4—LARGE MAX-MIN RATIOS

The max-min ratio may in some cases be an unnecessarily conservative
bound. This is the case when σ (tmax

i )/σ (tmin
i ) is a large number. Then

it is advisable to split the interval T into two intervals: T 1 = [t0, tmin
i ]

and T 2 = [tmin
i , t f ], and truncate the state in two steps. We can always

divide every time interval T into smaller ones so that the singular value
is monotonic in each subinterval, and remove them recursively.

EXAMPLE 1—THE MONOTONIC CASE

Theorem 1 follows from Theorem 2. Notice that for monotonic singular
values σ (⋅), ST (σ ) = sup

T
σ (⋅). So, we have

l(1) = r + 1 T 1 = [0, T ] ST 1
(σ r+1) = sup

t∈T 1

σ r+1(t)

...
...

...

l(L) = N T L = [0, T ] ST L
(σ N) = sup

t∈T L

σ N(t).

EXAMPLE 2—CONTINUOUS-TIME SYSTEM

Assume we have a third-order balanced continuous-time system G over
the time interval [0, 1]. The realization has the dimensions

A(t) ∈ R
3�3 B(t) ∈ R

3�1 C(t) ∈ R
1�3

and the balanced Gramian is Σ(t) = diag{σ 1(t),σ 2(t),σ 3(t)}, so that σ i is
the singular value of state xi. The singular values are plotted in Figure 1.
If we truncate the state x3 over [0, 1] we obtain the system Ĝ1. As σ 3 is
monotonic, we can use Theorem 1

iG − Ĝ1i ≤ 2 sup
t

σ 3(t) = 0.8.

Alternatively, we use Theorem 2 and get the same value

iG − Ĝ1i ≤ 2S[0,1](σ 3) = 2σ 3(0)
σ 3(1)
σ 3(0)

= 0.8.

If we then want to truncate x2 over [0, 1] from Ĝ1, to get Ĝ2, we have the
bound

iĜ1 − Ĝ2i ≤ 2S[0,1](σ 2) = 2σ 2(0)
σ 2(0.2)
σ 2(0)

= 0.7
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Figure 1. The singular values for Example 2. σ 2 and σ 3 are truncated in the
example.

as the only maximum is σ 2(0.2), and the minimum immediately before
is σ 2(0). Therefore, the error between the first-order system Ĝ2 and G is
bounded by

iG − Ĝ2i ≤ 0.8+ 0.7 = 1.5.

As noted in Remark 4 it is important how the intervals T i are chosen and
how much the singular values vary over that interval. It may very well
be that we need to let the state dimension vary in order for the error to
be smaller than some chosen threshold. Finally, notice that the max-min
ratio is just a bound resulting from a particular choice of a(⋅) and b(⋅).
There are other choices and bounds; see [Sandberg and Rantzer, 2002] for
an entirely different but more complex choice.

4.3 Periodic Systems

Periodic systems are very important special cases of time-varying sys-
tems. For instance, we obtain such a system when a nonlinear system is
linearized around a limit cycle. Periodic systems have realizations where

A(⋅) = A(⋅+ T) B(⋅) = B(⋅+ T)
C(⋅) = C(⋅+ T) D(⋅) = D(⋅+ T)

for some time-period T . These systems have received much attention in
the literature, see, for instance, [Bittanti and Colaneri, 1999; Möllerstedt,
2000], and the references therein. For stable balanced periodic systems
we can find periodic Gramians

Σ(⋅) = Σ(⋅+ T)
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which solve (35) and (36) with equality, see [Kano and Nishimura, 1996;
Varga, 2000]. These solutions are clearly not monotonic. A problem with
applying Theorem 2 directly to these solutions is that for each new period
included in T i, the bound grows. Still we would like to let t f →∞ for many
periodic systems. In [Lall et al., 1998; Longhi and Orlando, 1999; Varga,
2000] a bound for balanced discrete time-periodic systems is presented.
We can also derive this bound:

COROLLARY 1—BALANCED DISCRETE TIME-PERIODIC SYSTEMS

If the balanced system G has a Gramian Σ(k + T) = Σ(k) for all k and
some T , and Σ(k) is partitioned as in Theorem 1, then its truncation Ĝ

is balanced with Σ1(k) and

iG − Ĝi ≤ 2
T∑

k=1

N(k)
∑

i=r(k)+1

σ i(k) (42)

over the infinite horizon [0,∞).
Proof. Use Proposition 1. Remove first the states with the singular value
σ N(1). As the system is periodic we can simultaneously remove these
states at 1, 1+ T , 1+ 2T , . . .. So, T = {1, 1+ T , 1+ 2T , . . .}. The constant
values a(k) = 1 and b(k) = σ 2

N(1) for all k fulfill the cancelling condi-
tion. Continue then recursively over the whole period and use then the
triangular inequality.

This might seem to be a satisfactory error bound. However, if the pe-
riod is long (T large) this bound gets large very quickly if states are
removed over the whole period. In particular, if we sample a continuous-
time periodic system then the bound gets less useful the faster we have
sampled the system. In the limit case, when we use the result directly
on a continuous-time system, the bound is always infinity. More on sam-
pling is given in Appendix B. A better technique to obtain a bound in this
case may be to utilize the inequalities in (35) and (36) and to look for
time-invariant diagonal solutions Σ; see Remark 3.

5. Input-Output Stability of Truncated Systems

One of the advantages of the analysis so far is that it has not been neces-
sary to worry about stability. The only thing we need is a diagonal solution
Σ(⋅) over some interval [0, T ]. We could for instance reduce an unstable
plant over a finite interval and still get error bounds. Many balanced trun-
cation schemes in the literature require asymptotic stability of the plants.
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5. Input-Output Stability of Truncated Systems

Still, in order for our methodology to be good, a truncated realization of a
stable system G should also be stable in some sense. That this is indeed
the case will be shown here in the continuous-time case. The discrete-time
case is analogous. Assume from now on that there exist constants

0 < σ I ≤ Σ(t) ≤ σ I < ∞ (43)
for 0 ≤ t < ∞. From the reachability Lyapunov inequality, we have

xT (t)Σ−1(t)x(t) ≤ iui2
[0,t]

x̂T (t)Σ−1
1 (t)x̂(t) ≤ iui2

[0,t].
(44)

So for all u ∈ Lm
2 [0,∞) both x and x̂ will be bounded. Even if the states in

both G and Ĝ are bounded, it is not clear that if G is input-output stable
(finite L2-gain), that Ĝ will be input-output stable. But with the results
from Sections 2–4 we have the following theorem.

THEOREM 3—INPUT-OUTPUT STABILITY

If the balanced system G is input-output stable and there are constants σ
and σ satisfying (43), then all states x are bounded for all u in Lm

2 [0,∞),
and every truncated system Ĝ is also input-output stable and the states
x̂ are bounded.

Proof. See Appendix A.

This result might seem contradictory to the result in [Pernebo and
Silverman, 1982], which says that we get guaranteed asymptotic stability
on Ĝ if Σ1 and Σ2 have no entries in common. But in the theorem above
we concentrate on input-output stability. To see the effects consider, the
following example from [Zhou and Doyle, 1998].

EXAMPLE 3—[ZHOU AND DOYLE, 1998]
The continuous-time system with the transfer function

s2 − s+ 2
s2 + s+ 2

and realization

[

A B

C D

]

=






0 −
√

2 0√
2 −1

√
2

0
√

2 1






is balanced with Σ = I. The {σ 2}-truncated system
[

A11 B1

C1 D

]

=
[

0 0

0 1

]
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is clearly not asymptotically stable but the pole is neither observable nor
controllable, and the system is input-output stable and x̂1 will be bounded,
more precisely 0, for all u. Theorem 3 says that this will always happen
when truncating a balanced system. (Obviously, in this case, a better
approximation is just to keep D = 1, as we then get a zero-order model
and the same error bound.)
The result may seem unnecessary as we can truncate states that have
equal singular values without extra cost. But the result shows that we
do not need to worry about singular values that are equal for some time-
instants, we will not lose input-output stability. The example also shows
that a truncated system may have a non-minimal realization. The theo-
rem, however, guarantees it is well behaved.

6. Lower Bound on the Approximation Error

When doing optimal Hankel-norm approximation of time-invariant sys-
tems a lower bound on the Hankel-norm for approximations of different
system order (McMillan degree) is obtained, see [Glover, 1984; Green and
Limebeer, 1995]. As the Hankel-norm is always smaller than or equal to
the induced L2-norm we also get a bound on the best possible approxima-
tion in this norm. We will see that a similar analysis is possible for linear
time-varying systems. Let us consider finite-horizon linear systems G in
continuous time and the following Lyapunov equations:

AT(t)Q(t) + Q(t)A(t) − Q̇(t) + CT(t)C(t) = 0 (45)
A(t)P(t) + P(t)AT(t) + Ṗ(t) + B(t)BT(t) = 0 (46)

Q(t f ) = 0 P(t0) = 0 (47)
t ∈ (t0, t f ) : Q(t) > 0 P(t) > 0. (48)

Inequalities (48) mean that the realization of G is completely reachable
and observable. Notice that we here have dropped the Lyapunov inequal-
ities for equalities. This is not a severe restriction. In practice one often
solves the equalities as a first step anyhow, as it is less computationally
expensive than solving the strict inequalities with semidefinite program-
ming, and because it often gives good enough upper error bounds.

If we can balance the equations (45)–(48), the balanced Gramian will
have the interesting property Σ(t0) = Σ(t f ) = 0. Balanced finite-horizon
systems of this sort were throughly studied in [Verriest and Kailath, 1983].
Among other things it was shown that if {A(t), B(t), C(t)} are analytic
functions in t, then the coordinate transformation T(t) needed to obtain
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6. Lower Bound on the Approximation Error

a balanced realization {Ã(t), B̃(t), C̃(t)} exists, and is a Lyapunov trans-
formation in every compact subset of (t0, t f ). The entries of the balanced
realization will tend to infinity at the boundaries t0 and t f . For practical
computations it seems to be reasonable to embed the interval of interest,
[0, T ], in a sufficiently large interval [t0, t f ].

Let us look at the linear system G on the time interval [t0, t f ], and
divide the interval into two parts: [t0,τ ] and [τ , t f ]. If we have a solution
Q(t) to the observability Lyapunov equation (45) we can compute the
norm iyi[τ ,t f ] simply if u(t) = 0 for t > τ and x(τ ) is known. Then

xT (τ )Q(τ )x(τ ) =
∫ t f

τ

hy(t)h2dt = iyi2
[τ ,t f ].

Analogously we have results for the reachability equation (46) and from
linear optimal control theory. There is a minimum control signal u∗(t) (in
L2-sense) that takes the state from x(t0) = 0 to any x(τ ) that fulfills

xT (τ )P−1(τ )x(τ ) =
∫ τ

t0

hu∗(t)h2dt = iu∗i2
[t0,τ ]

see for example [Green and Limebeer, 1995]. Now, define the Hankel-norm
iGiH ,τ at time τ and calculate it as

iGi2
H ,τ = sup

u�=0

iyi2
[τ ,t f ]

iui2
[t0,τ ]

= sup
x(τ )

xT (τ )Q(τ )x(τ )
xT (τ )P−1(τ )x(τ ) = σ (P(τ )Q(τ ))

where u(t) = 0 for t > τ . As P(τ ) > 0 and Q(τ ) > 0 we can find a balancing
coordinate transformation at time τ from (37), so we have σ (P(τ )Q(τ )) =
σ (Σ2(τ )) = σ 2

1(τ ), because the Hankel-norm is invariant under coordinate
transformations. Also, notice that iGiH ,t0 = iGiH ,t f

= 0 and that

iGiH ,τ ≤ iGi = sup
u�=0

iyi[t0,t f ]
iui[t0,t f ]

(49)

for all τ in [t0, t f ]. Next, define the Hankel-operator of G at time τ , ΓG,τ ,
as the past to future restriction of G

ΓG,τ : Lm
2 [t0,τ ] G−→ L

p
2[τ , t f ].

We see that iΓG,τ i = iGiH ,τ . The operator ΓG,τ has finite rank, namely
n. We here only consider constant-state-dimensional systems as full-order
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systems G often come in this form. For each choice of τ there is a singular-
value decomposition (Schmidt decomposition; see [Young, 1988; Green and
Limebeer, 1995]) of ΓG,τ

ΓG,τ u =
n∑

i=1

σ i(τ )〈u, vi〉wi

where {vi}n
1 is a set of orthonormal functions in Lm

2 [t0,τ ] and {wi}n
1 is a

set of orthonormal functions in L
p
2[τ , t f ]. σ i(τ ) = λ

1/2
i (P(τ )Q(τ )) are the

singular values. 〈⋅, ⋅〉 is the standard scalar product on Lm
2 [t0,τ ]

〈u, v〉 =
∫ τ

t0

uT (s)v(s)ds.

We can now state the following theorem:

THEOREM 4—LOWER ERROR-BOUND

Suppose G is a linear system with a finite-horizon nth-order realization
with Gramians that fulfill (45)–(48). Let the singular values be ordered
so that σ 1(t) ≥ . . . ≥ σ n(t) > 0 for each t. Then for any linear system Ĝ

of order r < n it holds that

iG − ĜiH ,τ ≥ σ r+1(τ ) (50)

for all τ ∈ [t0, t f ]. Furthermore

iG − Ĝi ≥ max
t

σ r+1(t). (51)

Proof. The operator ΓĜ,τ has rank r. If we use the Schmidt vectors
vi from ΓG,τ as basis there exist numbers α i �= 0 such that the signal
v =

∑r+1
i=1 α ivi gives ΓĜ,τ v = 0. Now

i(ΓG,τ − ΓĜ,τ )vi2 = iΓG,τ vi2 =
∥
∥
∥
∥
∥

r+1∑

i=1

α iσ i(τ )wi

∥
∥
∥
∥
∥

2

=
r+1∑

i=1

α 2
i σ 2

i (τ ) ≥ σ 2
r+1(τ )

r+1∑

i=1

α 2
i = σ 2

r+1(τ )ivi2.

This gives (50), and (49), then gives (51).
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7. Example: Reduction of Diesel Exhaust Catalyst Model

If we make a one-step truncation (L = 1) of a finite-horizon balanced
system G and truncate the states with the singular value σ N(t), we get

max
t

σ N(t) ≤ iG − Ĝi ≤ C ⋅ max
t

σ N(t)

where C ≥ 2 depends upon the monotonicity conditions as discussed in
Theorem 2. Therefore we can often expect a very good approximation in
this type of one-step reductions. For multi-step reductions (L > 1), the
approximation may be much less close to an optimal approximation, just
as for standard balanced truncation for time-invariant systems. However,
notice that we have not proven that there exists an approximation that
really obtains the lower bound, so we do not know exactly how far away
the optimum is. In [Lall and Beck, 2003] a sufficient and necessary condi-
tion for the existence of a system Ĝ of order r for a given approximation
error γ is given. The condition is however nonconvex and hard to check.
The discussion here only justifies the balanced truncation procedure when
the lower and upper bounds are close to each other.

7. Example: Reduction of Diesel Exhaust Catalyst Model

Until now there has been no computations that show that the suggested
methods really give rise to good low-order approximations in practice. In
fact, there has been a fair amount of theoretical work done in the liter-
ature on time-varying balancing, but the authors have not found many
real examples. Here we will give a brief overview of the results for an
example, just to show that the computations are feasible.

We will look at a model taken from [Westerberg et al., 2003]. This
is a model of a diesel exhaust catalyst. In one end of the catalyst the
exhausts from the diesel engine comes in. The exhausts are blended with
some extra diesel fuel (HC). The amount of added diesel fuel is the control
input in this example. In the catalyst the exhausts and the diesel react
and at the other end the concentration of NOx will have decayed.

The given model consists of 28 nonlinear stiff differential equations
which describe concentrations and temperatures throughout the catalyst.
To get a single-input-single-output system we choose the added amount
of HC at the inlet as input, and the concentration of NO2 at the outlet
as output. If we are only interested in these aspects of the system, then
we can directly drop four of the states in the nonlinear model. To apply
the methods of this paper we need to linearize the system. In order to get
a time-varying system we linearize the system around a pulsating input
signal (three pulses) over a finite horizon, so that the system does not

91



Paper I. Balanced Truncation of Linear Time-Varying Systems
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Figure 2. The singular values for the linear time-varying system G, which approx-
imates the diesel exhaust catalyst over the time interval -10–450 s. One singular
value is dominating, which predicts that one state is needed to make the approxi-
mation.
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Figure 3. The step responses for the 24th-order linear time-varying system G and
its first-order approximation Ĝ.

reach steady-state. We then get a time-varying linear system G with 24
states around a nominal trajectory.

To find a balanced realization and the singular values we need to
solve two time-varying Lyapunov inequalities. As n = 24 this involves
rather heavy computations. We choose to first find solutions to the sys-
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8. Conclusion

tem (45)–(47), with t0 = −10 s and t f = 450 s. The singular values,
σ i(t) = λ

1/2
i (P(t)Q(t)), are plotted in Figure 2. The plot is in logarith-

mic scale and we notice that one singular value (σ 1(t)) is dominating.
The three pulses in the nominal solution can be seen as three drops in
the singular values. To reduce the computation time we have chosen the
ODE-solver tolerance (for ode15s in MATLAB) so that only the two largest
singular values have good accuracy. To find a balanced coordinate sys-
tem we use the relation (37) on a time grid {tk}. As the eigenvectors of
P(tk)Q(tk) typically give a badly conditioned coordinate transformation,
we have chosen to use the numerically sound Schur method developed
for time-invariant systems in [Safonov and Chiang, 1989] at each grid
point to obtain a well-behaved coordinate transformation T(tk). Linear
interpolation is used between the grid points.

We have shown in this paper that we can truncate states that have
a small singular value without inducing large errors. For a first-order
approximation (n̂ = 1) the upper error bound is essentially 2⋅S[−10,450](σ 2),
if we assume that the other much smaller singular values also really only
have four maximums. Now, as σ 2,max � 6 ⋅ 10−3 and σ 2,min � 1 ⋅ 10−3 we
get that S[−10,450](σ 2) � (6 ⋅ 10−3)4/(1 ⋅ 10−3)3 = 1296 ⋅ 10−3. This is an
overly conservative bound. Instead one should divide into time intervals
as suggested in Remark 4. So another, and better, bound is given by 2 ⋅
(S[−10,110]+ S[110,225]+ S[225,340]+ S[340,450]) � 2 ⋅ 4 ⋅σ 2,max = 48 ⋅ 10−3. As we
derived a lower bound in Section 6 we can say

6 ⋅ 10−3 ≤ iG − Ĝi ≤ 48 ⋅ 10−3, (52)

for the first-order approximation Ĝ. In Figure 3 we see a step response
test for G and Ĝ. The error in this particular case is 7.2 ⋅ 10−3, which
shows that a typical error is in the same order of magnitude as the worst-
case bounds in (52). Notice that the step responses here are very different
from what is obtained from time-invariant linear systems. If we instead
use a second-order approximation, n̂ = 2, there is no visible error in the
step response test.

We have succeeded in finding a low-order approximation for a nontriv-
ial high-order linear time-varying system. The drawback is that solving
for P(t) and Q(t) is computationally heavy, although it is feasible for n of
this order of magnitude.

8. Conclusion

In this paper, we have from basic analysis of the reachability and observ-
ability Lyapunov inequalities analyzed the effects of truncation of states
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for linear systems, in both continuous and discrete time. The analysis
also covers the case when the state dimension varies over time. This is
valuable as systems may need a different amount of states for different
time intervals to be well approximated.

In particular, we have studied balancing of time-varying systems. From
the solutions to the two Lyapunov inequalities, the Gramians, we obtain
a balanced coordinate system, often well suited for truncation, and sin-
gular values. The singular values give an upper bound on the L2-induced
error for truncated models. Furthermore, we obtain a lower error bound
also expressed in the singular values. Both bounds are generalizations of
well-known results for time-invariant systems.

Stability was not a main issue in the paper, as we can make approx-
imations over a finite time horizon. Nevertheless, we proved that if a
full-order system is input-output stable, then every truncated balanced
realization of it will also be input-output stable.

Finally, a brief example showed that the methods are possible to use
in practice. A 24th-order linear time-varying approximation of a diesel
exhaust catalyst was truncated to a first-order system with almost no
error.

Future work should include finding sharper error bounds. Especially
in the infinite time-horizon case with nonmonotonic singular values. Fur-
thermore, numerical issues should be considered. The method requires
knowledge of the Gramians of the system, which restricts the use of the
method. The Gramians may be too computationally expensive to obtain
for high-order systems.

Appendix A: Proof of Theorem 3

We will prove that input-output stability is maintained every time Propo-
sition 1 is used to truncate a system. Under the given assumptions there
are constants so that

0 < δ a ≤ a(t) ≤ ε a < ∞ 0 < δ P ≤ P(t) ≤ ε P < ∞
0 < δ b ≤ b(t) ≤ ε b < ∞ 0 < δ Q ≤ Q(t) ≤ ε Q < ∞

for all t. The calculations will be made in continuous time, but they are
very similar in discrete time. Upon adding Lemma 3 (ii) and Lemma 4 (ii)
we obtain

∣
∣
∣
∣

[
x1(T) + x̂(T)

x2(T)

]∣
∣
∣
∣

2

bP−1

+
∣
∣
∣
∣

[
x1(T) − x̂(T)

x2(T)

]∣
∣
∣
∣

2

aQ

+ iy − ŷi2
a ≤ 4iui2

b.
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Using the inequality ix + yi2
a ≥ 1

2ixi2
a − iyi2

a, we get

1
2
hx̂(T)h2aq+bp−1 +

1
2
i ŷi2

a ≤ 4iui2
b + iyi2

a

+ hx1(T)h2aQ1+bP−1
1
− hx2(T)h2aq+bp−1 .

If u ∈ L2[0,∞) and G is input-output stable we know that the terms iui2
b

and iyi2
a are bounded. Because of the relations (44) and 0 < aq+ bp−1 ≤

ε aε Q + ε bδ −1
P < ∞ for all t we see that the terms involving x̂(T), x1(T)

and x2(T) are bounded for all T . Therefore we conclude that ŷ ∈ L2[0,∞).

Appendix B: Sampled Lyapunov Equations

In this paper, we have treated systems in both discrete and continuous
time. Models from physics and engineering often come in the form of
differential equations. For control purposes, however, systems have to
at some point be transformed into discrete time if implementation on
computers is intended. We will see that this discretization can be done at
the same time as the model reduction is performed.

The first step towards discretization in time is to find a different sys-
tem representation. We will use so-called lifting, see for instance [Bamieh
and Pearson, 1992]. This transformation is an isomorphic isometry, i.e.,
the transformation preserves the system structure and norm. We will call
the discretization time points {t(k)}. The inputs and the outputs of the
lifted system belong to the signal spaces

ū(k) ∈ Lm
2 [t(k), t(k+1)] ȳ(k) ∈ L

p
2[t(k), t(k+1)].

The lifted n-state continuous-time system G is given by

x̄(k+ 1) = Ā(k)x̄(k) + B̄(k)ū(k)
ȳ(k) = C̄(k)x̄(k) + D̄(k)ū(k)

where

Ā(k) = Φ(t(k+1), t(k)) (53)

B̄(k)ū(k) =
∫ t(k+1)

t(k)
Φ(t(k+1), s)B(s)ū(k; s)ds (54)

C̄(k; t) = C(t)Φ(t, t(k)) (55)

D̄(k)ū(k)(t) =
∫ t

t(k)
C(t)Φ(t, s)B(s)ū(k; s)ds

+ D(t)ū(k; t),
(56)
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and Φ(t,τ ) is the fundamental solution of ẋ = A(t)x. The operators act on
the following spaces

Ā(k) : R
n → R

n

B̄(k) : Lm
2 [t(k), t(k+1)] → R

n

C̄(k) : R
n → L

p
2[t(k), t(k+1)]

D̄(k) : Lm
2 [t(k), t(k+1)] → L

p
2[t(k), t(k+1)].

We will need the adjoint operators. These act on the dual spaces. As all
involved spaces are Hilbert spaces we can represent all elements in the
dual space with elements in the primal space. The adjoints we need are
given by

Ā∗(k) = ΦT(t(k+1), t(k)) (57)
B̄∗(k; t) = BT(t)ΦT (t(k+1), t) (58)

C̄∗(k) ȳ(k) =
∫ t(k+1)

t(k)
ΦT(s, t(k))CT (s) ȳ(k; s)ds. (59)

We will now see that if we have solutions to the continuous-time Lyapunov
equations, Q(t) and P(t), we can use them at the sampling instants for the
lifted system. Consider the observability Lyapunov equation in continuous
time for t ∈ [t(k), t(k+ 1)]

Q(t)A(t) + AT(t)Q(t) + Q̇(t) + CT(t)C(t) = 0

and its solution

ΦT (t(k+ 1), t)Q(t(k+ 1))Φ(t(k+ 1), t)

+
∫ t(k+1)

t

ΦT(s, t)CT(s)C(s)Φ(s, t)ds = Q(t). (60)

Using the lifting operators putting t = t(k), the solution (60) can be writ-
ten as a discrete Lyapunov equation with the solution Q(t(k))

Ā∗(k)Q(t(k+1))Ā(k) + C̄∗(k)C̄(k) = Q(t(k)). (61)

We get analogous results for the reachability Lyapunov equation

A(t)P(t) + P(t)AT(t) − Ṗ(t) + B(t)BT(t) = 0
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with the solution

Φ(t, t(k))P(t(k))ΦT (t, t(k))

+
∫ t

t(k)
Φ(t, s)B(s)BT(s)Φ(t, s)ds = P(t) (62)

which with the lifting operators becomes

Ā(k)P(t(k))Ā∗(k) + B̄(k)B̄∗(k) = P(t(k+1)). (63)

So, we can first compute continuous-time solutions Q(t) and P(t), and
then choose suitable sampling instants {t(k)} and compute the pointwise
balancing transformation T(t(k)) to balance (61) and (63). Then we can
truncate the lifted system and obtain error bounds as we have done be-
fore with discrete Lyapunov equations. Finally, finite-dimensional bases
should be chosen to approximate the infinite-dimensional signal spaces.
For instance, zero-order hold could be used for the signals ū(k).

As an alternative, we could for instance first do zero-order hold sam-
pling of the continuous-time system G and then balance the resulting
discrete-time system. We would then not obtain the same approximation
as above and the error bound will be in induced Q2-sense, not in induced
L2-sense as in the lifting approach.
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Paper II

A Case Study in Model Reduction of

Linear Time-Varying Systems

Henrik Sandberg

Abstract

In this paper, we apply the balanced truncation procedure for time-
varying linear systems, both in continuous and in discrete time. The
methods are applied to a linear approximation of a diesel exhaust
catalyst model. The reduced-order systems are obtained by using cer-
tain projections instead of direct balancing. An approximative zero-
order-hold discretization of continuous-time systems is described, and
a new a priori approximation error bound for balanced truncation in
the discrete-time case is obtained. The case study shows that there
are several advantages to work in discrete time. It gives simpler im-
plementation with fewer computations.
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Sandberg, H. (2004): “A case study in model reduction of linear time-
varying systems.” In Proceedings of the 2nd IFAC Workshop on
Periodic Control Systems, pp. 249–254. Yokohama, Japan. c&2004
IFAC.
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1. Introduction

Balanced truncation is a method that is often used for order reduction of
linear time-invariant systems. The method was introduced for this pur-
pose in [Moore, 1981]. The simplicity of the method, the stability guar-
antees [Pernebo and Silverman, 1982], and the simple error bound on
truncated models [Glover, 1984; Enns, 1984], have contributed to make
the method popular.

Balanced truncation for time-varying linear systems have also ob-
tained attention, see for example [Shokoohi et al., 1983; Verriest and
Kailath, 1983] for some early references. Recently there has been
an increased interest in balanced truncation of time-varying systems.
In [Longhi and Orlando, 1999; Lall and Beck, 2003; Sandberg and
Rantzer, 2004] different error bounds were obtained, and in [Varga,
2000; Chahlaoui and Van Dooren, 2002] numerical issues were discussed.
Many of the nice properties of balanced truncation for time-invariant sys-
tems now have their counterparts in the time-varying setting. However,
there has not been many published tests of the method in the time-varying
case. In this paper an attempt to apply balanced truncation on a diesel ex-
haust catalyst model is discussed in some detail. The model is described
in [Westerberg et al., 2003]. The same model was also used for model
reduction in [Sandberg and Rantzer, 2004].

The contribution of this paper is mainly the comparison between bal-
anced truncation in discrete time and continuous time. Also coordinate
projections that simplify the model reduction are presented. These projec-
tions come from a generalization of the results in [Safonov and Chiang,
1989]. The projections have been used for time-varying discrete-time sys-
tems, see for example [Varga, 2000; Chahlaoui and Van Dooren, 2002], but
seems not to have been stated in continuous time before. Furthermore, a
simple a priori error bound on the approximation error of balanced trun-
cation is obtained. The error bound has an appealing structure and seems
to hold only in discrete time. It does not depend on the time-variability of
the singular values, which the bound in [Sandberg and Rantzer, 2004] in
general does.

In the following, hxh2P = xT Px for vectors x and positive-definite matri-
ces P, hAh = σ (A) on matrices A, and iui denotes the standard norm on
signals u in L2 or Q2. iGi denotes the induced L2- or Q2-norm of operators
G. Two operators (or systems) F and G are input-output equivalent if
iF − Gi � 0.
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2. Balanced Truncation in Continuous Time

It is assumed that the given linear time-varying system G has a finite-
dimensional realization (A, B, C, D). Hence, G can be represented as

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = 0,

y(t) = C(t)x(t) + D(t)u(t), t ∈ [0, T ], (1)

with states x(t) ∈ R
n, inputs u(t) ∈ R

m, and outputs y(t) ∈ R
p. Alterna-

tively the notation G := S (A, B, C, D) is used. The realization (A, B, C, D)
is assumed to be bounded and continuous. The resulting linear system de-
fines a bounded linear operator y = Gu on L2[0, T ]. The objective of the
model reduction is to find a system Ĝ with state dimension n̂ < n and a
small approximation error iG − Ĝi.

The first step towards Ĝ, using the balanced truncation method, is to
solve the observability and reachability differential Lyapunov equations

Q(t)A(t) + AT(t)Q(t) + Q̇(t) + CT(t)C(t) = 0,

A(t)P(t) + P(t)AT(t) − Ṗ(t) + B(t)BT(t) = 0,
(2)

with boundary conditions Q(T) = 0 and P(0) = 0. P(t) ∈ R
n�n and

Q(t) ∈ R
n�n are often called the reachability and observability Gramians,

respectively. From the Gramians numbers corresponding to the familiar
Hankel singular values that are used for time-invariant systems can be
defined as

σ 2
i (t) = λ i(P(t)Q(t)) ≥ 0, i = 1 . . . n, (3)

and they are ordered such that maxt σ 1(t) ≥ . . . ≥ maxt σ n(t) ≥ 0. The sin-
gular values are invariant under (Lyapunov) coordinate transformations,
and hence are the same for all realizations of G.

The next step is to find a balanced realization. A balanced realization
fulfills (2) with P(t) = Q(t) = Σ(t) = diag{σ 1(t), . . . ,σ n(t)}. Under certain
regularity conditions on the given realization (A, B, C, D), see [Shokoohi
et al., 1983; Verriest and Kailath, 1983], a time-varying coordinate trans-
formation x = TB(t)xB can be found, such that the transformed realization
(AB , BB , CB , D) is balanced. Then introduce the partitions

AB =
[

AB11 AB12

AB21 AB22

]

, BB =
[

BB1

BB2

]

,

CB = [CB1 CB2 ] .

A truncated balanced realization is denoted by ĜB and is given by

˙̂x(t) = AB11(t)x̂(t) + BB1(t)u(t), x̂(0) = 0,

ŷ(t) = CB1(t)x̂(t) + D(t)u(t), t ∈ [0, T ],
(4)
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with x̂(t) ∈ R
n̂. This realization keeps the most dominant states from an

input-output point-of-view, see [Shokoohi et al., 1983]. Although this ap-
proximation method is somewhat heuristic, there do exist approximation
error bounds expressed in the truncated σ i(t), see for example [Sandberg
and Rantzer, 2004].

The balancing coordinate transformation TB often has bad numerical
properties already in the time-invariant case. It was suggested in [Safonov
and Chiang, 1989] that one should use non-balancing projections instead.
The procedure presented there can be generalized to the time-varying
case. If one, based on the sizes of the singular values (3), chooses to keep
n̂ states, then two matrices

SL(t) ∈ R
n�n̂, SR(t) ∈ R

n�n̂, (5)

should be found, that for all t in [0, T ] fulfill

(i) ST
L (t)SR(t) = In̂,

(ii) the columns of SR(t) span the right eigenspace of P(t)Q(t) corre-
sponding to σ 1(t) . . .σ n̂(t),

(iii) the rows of ST
L (t) span the left eigenspace of P(t)Q(t) corresponding

to σ 1(t) . . .σ n̂(t).
Then the following proposition can be derived.

PROPOSITION 1—CONTINUOUS TIME

Assume that there exists a balanced approximation ĜB of G. Assume
also that there is a pair of projections, SL(t), SR(t), that are continuously
differentiable and fulfill (i)–(iii). Then the approximation Ĝ given by

Ĝ : = S (ST
L [ASR − ṠR], ST

L B, CSR, D) (6)

is input-output equivalent to ĜB .

By using the proposition one does not need to construct a balanced realiza-
tion of G. The projections SL and SR may be obtained on a time grid {tk}
from the Gramians P(tk) and Q(tk) using the Schur-projection method
developed for time-invariant systems in [Safonov and Chiang, 1989]. In
between the grid points, SL(t) and SR(t) may be smoothly interpolated.
One can allow for isolated jump discontinuities as will be discussed next.

2.1 Time-Varying State Dimension

It is possible to have a time-varying state dimension in the approximation
Ĝ. This may be of interest, for example, when a singular value is only
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Exhausts from engine Catalyst

input: injected diesel output: measured NO2

t

Figure 1. A schematic figure of the diesel exhaust catalyst. By injecting a small
amount of extra diesel into the exhausts before it enters the catalyst, the amount
of NOx can be decreased.

small on parts of the interval [0, T ]. If at time t < ti the system Ĝ should
have n̂1 states, and at time t > ti it should have n̂2 states, there is a jump
transition at the switching instant ti

R
n̂2 # x̂(ti+) = ST

L (ti+)SR(ti−)x̂(ti−), (7)

where x̂(ti−) ∈ R
n̂1 , SR(ti−) ∈ R

n�n̂1 , and ST
L (ti+) ∈ R

n̂2�n. Equation
(7) is also useful when the projections (5) have discontinuities at cer-
tain time instants ti. For discrete-time systems a change of state-space
dimension is implemented by non-quadratic transition matrices, see for
example [Varga, 2000] and Section 5. Equation (7) is the corresponding
non-quadratic jump transition matrix in continuous time.

3. Case Study: Continuous Time

Here a diesel exhaust catalyst model taken from [Westerberg et al., 2003]
is studied, see Figure 1. This example was also briefly studied in [Sand-
berg and Rantzer, 2004]. The input is the amount of injected diesel, and
the output is the amount of NO2 that is emitted into atmosphere. The
system is linearized around a pulsating trajectory (three pulses) over a
finite horizon of 460 seconds. This is a test cycle that is used to study the
emission of the engine under different working conditions.

To find the singular values (3) the two time-varying Lyapunov equa-
tions (2) need to be solved. Since n = 24 this involves rather heavy com-
putations. The three largest singular values are plotted in Figure 2. The
singular values σ 4–σ 24 are all smaller than 10−5. The ODE-solver toler-
ance has deliberately been turned down to save computation time. Since
n̂ will be chosen as n̂ = 1 or n̂ = 2 it is enough that the two largest
singular values are smooth. If the singular values that are kept are not
smooth, one cannot expect that the corresponding projections SL and SR

are smooth. The projections SL(t) and SR(t) are computed as described in
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Figure 2. The three largest singular values for the linear time-varying system G,
which approximates the diesel exhaust catalyst. (Reproduced with permission from
[Sandberg and Rantzer, 2004]. c&2004 IEEE )

Section 2. The time grid {tk}, is chosen to be an equidistant 801-point grid
on the interval [0, 400] and the Schur-method is used. The smoothness of
the interpolated projections SL(t) and SR(t) is then verified.

To assess the quality of the approximations, some simulations of the
models are made. In Figure 3 a step response test for G is shown, and
two approximations Ĝ1 and Ĝ1,2. Ĝ1 is a first-order approximation, and
Ĝ1,2 is a first-order approximation up to t = 225, then the state dimension
is increased to two, with a transition (7). One reason for increasing the
state dimension may be a desire for increased accuracy at the end of the
simulation. To switch at this time instant is suitable, since σ 2(t) starts to
increase then, as seen in Figure 2.

Already Ĝ1 must be considered to be a good approximation of G, even
though it has only one state. SL(t) and SR(t) show that the single state x̂

in Ĝ1 is a time-varying weighted average of the concentrations of NO in
four locations in the catalyst. A person with insight in the dynamics may
realize that these are the relevant states in G. However, the procedure
automatically yields a suitable linear combination of these states that can
be used as single state x̂.

The approximation error plot in Figure 3 shows that there are errors
of magnitude 2 ppm. The maximum error occurs when σ 2(t) is large. By
switching to a second-order model at t = 225 and to keep σ 2(t) over a max-
imum, as is done in Ĝ1,2, one can effectively push down the error. Notice
that there is a small transient in ŷ1,2 when the state dimension increases.
The error bounds derived in [Sandberg and Rantzer, 2004] guarantee that
this transient cannot be too large. After the transient has died out, the
second-order model performs much better.
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Figure 3. (Upper plot) The step responses for the 24th-order linear time-varying
system G and a first-order approximation Ĝ1. There is a step up at t = 50 and an
equal step down at t = 200. At t = 350 the input becomes zero. (Lower plot) The
absolute error between the approximations and the full-order model. At t = 225 the
state dimension is increased from one to two for Ĝ1,2.

There are a number of problems with the described method. For ex-
ample, it is computationally expensive to solve the Lyapunov differential
equations (2). In this case it takes hours to solve the equations on a Pen-
tium 4. It is also cumbersome to interpolate the projections smoothly. For
these reasons, the same example is tested in discrete time next.

4. Discretization and Error Bounds

Here it will be seen that it is often numerically more convenient to dis-
cretize the model (1) before the truncation is made. Apart from the practi-
cal issues, there are also stronger stability results for balanced truncation
in discrete time, see [Shokoohi and Silverman, 1987]. It will also be seen
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that a simple bound on iG− Ĝi can be derived. The bound does not seem
to have a counterpart in continuous time.

In this paper, an approximative zero-order-hold (ZOH) sampling of
(1) is made. The idea is to choose the sampling instants {tk} such that in
each interval [tk, tk+1], the realization does not vary a lot. The following
approximation is used:

A(k) := ΦAc(tk+1, tk) � exp(Ac(tk) ⋅ (tk+1 − tk)),

B(k) :=
∫ tk+1

tk

ΦAc(tk+1,τ ) ⋅ Bc(τ )dτ

�
∫ tk+1

tk

exp(Ac(tk) ⋅ (tk+1 − τ ))dτ ⋅ Bc(tk),

C(k) := Cc(tk), D(k) := Dc(tk),

where superscript c denotes the continuous-time realization and ΦAc is
the continuous-time transition matrix. If the realization is time invariant
over each sampling interval, the approximation is exact, see [Rugh, 1996].

Next, assume that Ac(t) is not time invariant but continuously time
varying. Use the decomposition Ac(t) = Ac(tk) + ∆Ac(t), where h∆Ac(t)h ≤
Mtk
(hk) for all t in the interval [tk, tk+1]. Here hk = tk+1 − tk and Mtk

is a
bound with the property Mtk

(hk) C 0 as hk → 0. Then it holds that

hA(k) − exp(Ac(tk) ⋅ hk)h = O(Mtk
(hk) ⋅ hk), hk → 0.

The convergence follows from a Peano-Baker series expansion of the tran-
sition matrix ΦAc . A similar result holds for B(k).

The approximation method above may be crude. For the method to
work well it is essential that the sampling instants are chosen properly
(sufficiently dense). However, the error from the approximative discretiza-
tion may be acceptable since more errors will in any case be introduced
during the balanced truncation. The idea of model reduction is to derive
a simple model with a small approximation error. But one should not for-
get that it should also be relatively simple to obtain the reduced model.
To compute the exact ZOH-sampled model is computationally expensive,
since ΦAc(t,τ ) is needed, and the extra accuracy gained by the exact for-
mulas may be lost when balanced truncation is applied afterwards.

In the following, any bounded time-varying realization (A, B, C, D) is
considered, not only the ones obtained from the approximate discretization
above. The discrete-time realization of G is given by

x(k+ 1) = A(k)x(k) + B(k)u(k), x(0) = 0,

y(k) = C(k)x(k) + D(k)u(k), k ∈ [0, T ], (8)
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4. Discretization and Error Bounds

and the corresponding Lyapunov equations are

AT(k)Q(k+ 1)A(k) + CT(k)C(k) = Q(k),
A(k)P(k)AT (k) + B(k)BT(k) = P(k+ 1),

(9)

with Q(T + 1) = 0 and P(0) = 0. According to [Shokoohi and Silverman,
1987], a balanced realization can be found in discrete time if the realiza-
tion is uniformly controllable and observable. Such a powerful existence
condition for a balanced realization does not exist in continuous time.

4.1 An Error Bound

A simple diagonal state rescaling of a balanced realization leads to an
input normalized realization GN with states xN and Gramians Q(k) =
Σ2(k) and P(k) = I, k ∈ [1, T ]. Let us call the truncated normalized
realization ĜN . ĜN is input-output equivalent to a truncated balanced
realization ĜB . Let us partition the state-space,

xT
N(k) = [ xT

N1(k) xT
N2(k) ] ,

and conformally Σ(k) = diag{Σ1(k), Σ2(k)} with

Σ1(k) = diag{σ 1(k), . . . ,σ n̂(k)},
Σ2(k) = diag{σ n̂+1(k), . . . ,σ n(k)},

and then truncate the states xN2(k) for k ∈ T ⊆ [1, T ]. The state of ĜN

is called x̂. According to Lemma 1 in [Sandberg and Rantzer, 2004], the
input-normalized realization fulfills

∣
∣
∣
∣

[
xN1(T + 1) − x̂(T + 1)

xN2(T + 1)

]∣
∣
∣
∣

2

Σ2

+ iy− ŷi2
[0,T] ≤

∑

k∈T
hxN2(k)h2Σ2

2
, (10)

after a completion of squares. Here y = GNu = Gu and ŷ = ĜNu =
ĜBu. Actually the first term on the left hand side is zero since Σ(T +
1) = 0. If the sum on the right hand side of (10) can be bounded with a
constant times iui, then one has an upper bound on iG − ĜBi. Under
the assumption that the singular values are ordered in decreasing order
for all k, the following upper estimate holds

∑

k∈T
hxN2(k)h2Σ2

2
≤
(

sup
k∈T

σ 2
n̂+1(k)

)

⋅ ixNi2
[0,T]. (11)
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The mapping from u to xN is given by

xN(k) =
k−1∑

i=0

ΦAN
(k, i+ 1)BN(i)u(i).

Let us assume that (8) is exponentially stable. Because balancing is a
topologically equivalent coordinate transformation, the input normalized
realization will be exponentially stable if and only if the original realiza-
tion is exponentially stable. Then there are constants CN > 0, 0 < λ N < 1,
such that hxN(k)h ≤ CN ⋅ λ k−i

N ⋅ hxN(i)h, for u = 0.
From the reachability Lyapunov equation it follows that in general

the state is bounded by hx(i)h2
P−1 ≤ iui2

[0,i−1] for all u. If an impulse input
u(k) = δ (k− i+1) and an input-normalized system is used this reduces to
hxN(i)h2 ≤ 1. From this initial position the state is bounded exponentially
and the states can be summed over the horizon

T∑

k=i

hxN(k)h ≤ CN ⋅

∞∑

k=i

λ k−i
N = CN

1− λ N

. (12)

This is a bound that holds for all i and as T →∞. It is also a bound on the
induced Q2-norm on the map u =→ xN , because the Q1-norm of a uniform
bound of an impulse response gives an upper bound on induced Q2-norm.
Together with (10) and (11), (12) gives us the bound (14) in Proposition 2.

A discrete-time counterpart of Proposition 1 can be stated. The nota-
tion (ST

L )+(k) = ST
L (k+ 1) is used.

PROPOSITION 2—DISCRETE-TIME

Assume that G has a uniformly controllable and observable realization,
and that there is a pair of projections SL(k) and SR(k) that fulfill (i)–(iii).
Then Ĝ given by

Ĝ := S
{
(ST

L )+ASR, (ST
L )+B, CSR, D

}
(13)

is input-output equivalent to ĜB .
Furthermore, when T = ∞ and G is exponentially stable, there is a

constant K = CN/(1− λ N), independent of n̂, such that

iG − ĜBi = iG − Ĝi ≤ K ⋅ sup
k∈T

σ n̂+1(k). (14)

The discrete-time projection (13) has been suggested before. See for ex-
ample [Varga, 2000; Chahlaoui and Van Dooren, 2002].
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5. Case Study: Discrete Time

There are two nice features with the bound (14): It is not a sum over
all truncated singular values as in the regular error bound for balanced
truncation, and it only contains the maximum truncated singular value.
Previous bounds for time-varying singular values include monotonicity
conditions, see [Lall and Beck, 2003; Sandberg and Rantzer, 2004]. Since
the bound only contains the first of the truncated singular value, the result
may be useful for the approximate balancing methods that use low-rank
approximations of the Gramians, see [Chahlaoui and Van Dooren, 2002].

The problem with the bound is that the constant K may be hard to
estimate. Furthermore, λ N may be close to one. This makes K large and
potentially the bound very conservative. The continuous-time counterpart
of (14) is not as nice, since the corresponding inequality (10) is different,
see [Sandberg and Rantzer, 2004].

REMARK 1
If the calculations leading up to (14) are repeated using a balanced and
not a normalized realization, then a bound

iG − Ĝi ≤ CB

1− λ B

√

sup
k

σ 1(k)
√

sup
k∈T

σ n̂+1(k)

is obtained, where CB and λ B depend on the balanced system matrix
AB(k). This bound may be smaller than (14), but has a more complex
structure. Which bound that is better to use in general should be further
studied.

5. Case Study: Discrete Time

The approximative discretization described in Section 4 is applied to the
continuous-time model in Section 3 using a uniform sampling period of
hk = 5 s. The discretized model is evaluated by performing the same step
responses as in Figure 3. The error between the continuous-time model
and the discretized model is seen in Figure 4. The discretization error is
of the same magnitude as the approximation error in continuous time.
If this is not considered to be acceptable, the sampling period should be
made shorter.

The singular values of the discretized model are qualitatively very
similar to the ones in Figure 2. It should be pointed out, however, that
they are not just a sampled version. Also, it takes only seconds to solve
the Lyapunov equations (9) with n = 24, whereas it takes hours to solve
(2) with reasonable accuracy.

111



Paper II. A Case Study in Model Reduction

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

Discretization error

C
on

c.
N

O
2
[p

pm
]

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

Approximation error

C
on

c.
N

O
2
[p

pm
]

t [s]

hy(tk) − ŷ1(tk)h
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Figure 4. (Upper plot) The discretization error is the absolute difference between
the step response in Figure 2 and the same step response with the discretized
model. (Lower plot) The approximation error between the discrete-time system and
its truncated balanced realizations. There are state-dimension switches at t = 140,
195, 265, 320. The total error between the reduced discrete-time model and the full
continuous-time model is obtained by adding the error plots at each instant.

It is simple to implement a state-dimension change in discrete time. At
each sample k, one chooses how many states that should be included in the
approximation. If a particular singular value is smaller than a previously
deleted one, one can truncate the corresponding state without increasing
the error bound (14). If the projections SL(k) and SR(k) fulfill (i)–(iii),
then the realization will automatically take care of the state-dimension
switches, since the state matrices ST

L (k+1)A(k)SR(k) will be non-square.
In Figure 4, the different truncated models are compared to the full

model. In the variable-order model a second state is added during the two
last maxima of σ 2(k). Just as in the continuous-time case it is noticed
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6. Conclusion

that a state-dimension switch gives a transient in the output signal. Also
it is seen that if one adds the discretization and the approximation error,
one gets about the same total error as the continuous-time approximation.
However, the discrete-time model is simpler to obtain.

The worst-case error bound in Remark 1 is smaller than (14) for this
model. But still it is a factor 100 greater than the observed approximation
error in the step response test in Figure 4. This shows that the error for
a particular input signal may be much smaller than the bounds.

6. Conclusion

The balanced truncation method has been applied on a time-varying lin-
ear model using a projection method. A continuous-time and a discrete-
time approach have been compared. Both approaches gave approximately
the same total approximation error, but the discrete-time calculations are
computationally cheaper and simpler. Also a new a priori error bound for
balanced truncation in discrete time was derived.
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Paper III

Frequency-Domain Analysis of

Linear Time-Periodic Systems

Henrik Sandberg, Erik Möllerstedt, and

Bo Bernhardsson

Abstract

In this paper, we study convergence of truncated representations of
the frequency-response operator of a linear time-periodic system. The
frequency-response operator is frequently called the harmonic trans-
fer function. We introduce the concepts of input, output, and skew
roll-off. These concepts are related to the decay rates of elements in
the harmonic transfer function. A system with high input and out-
put roll-off may be well approximated by a low-dimensional matrix
function. A system with high skew roll-off may be represented by an
operator with only few diagonals. Furthermore, the roll-off rates are
shown to be determined by certain properties of Taylor and Fourier
expansions of the periodic systems. Finally, we clarify the connections
between the different methods for computing the harmonic transfer
function that are suggested in the literature.

Under review for IEEE Transactions on Automatic Control, 2004.
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Notation. Signals defined in continuous time on an interval I belong to
the Lebesgue spaces Lr(I), where r ≥ 1, and the standard norms on these
spaces will be denoted by i⋅iLr(I). When the interval I is clear from the
context, it will be left out in the notation. We denote square-summable
sequences by Q2, and the norm by i⋅iQ2 . The set of L times continuously
differentiable real functions in some open set Ω is denoted by C L(Ω). p

denotes the differentiation operator, and 1/p integration. R denotes the
real axis, R+ the non-negative real axis, and Z the set of all integers. j

is the imaginary unit, and jR is the imaginary axis.

1. Introduction

In this paper, we study linear operators G defined on signals u in Lr,
where r ≥ 1,

y = Gu.

We restrict ourselves to the set of bounded operators G, i.e., operators
with finite induced norm

iGiLr→Lr
= sup
iuiLr≤1

iGuiLr
. (1)

We assume in the following that the given operator G is bounded and has
a time-domain representation with a causal impulse response

n(t,τ ) = 0, for all t < τ ,

and

y(t) =
∫ t

−∞
n(t,τ )u(τ ) dτ , (2)

where u(t) and y(t) belong to Lr(−∞,∞) = Lr(R). Conditions for rep-
resentability of an operator as an integral equation (2) are given in, for
instance, [Sandberg, 1988]. It is well known that systems with finite-
dimensional state-space realizations as well as infinite-dimensional mod-
els such as time-delay systems may be written on the form (2). We will
often make the assumption that the impulse response has uniform ex-

ponential decay. This means that there are positive constants κ1 and κ2

such that
hn(t,τ )h ≤ κ1 ⋅ e−κ2(t−τ ), for all t ≥ τ .

In particular this assumption implies boundedness of G, since iGiLr→Lr
≤

κ1/κ2, for all r ≥ 1.
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1. Introduction

If there is a real positive number T such that

n(t+ T ,τ + T) = n(t,τ ), for all t ≥ τ , (3)

then the operator (or the system it represents) is said to be periodic with
period T . The impulse response of a time-invariant system satisfies

n(t,τ ) = n(t− τ , 0), for all t ≥ τ .

A system with a finite-dimensional state-space realization can be writ-
ten as

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t). (4)

The impulse response of the system is given by

n(t,τ ) = C(t)ΦA(t,τ )B(τ ) + D(t)δ (t− τ ),

where ΦA(t,τ ) is the transition matrix for ẋ = A(t)x, see [Rugh, 1996].
If the system is periodic, then all the matrices in the realization (4) are
T-periodic.

In the following, u(t) and y(t) will be scalar signals. That is, we treat
single-input-single-output systems. However, this is just for notational
convenience. Everything can be done for multi-input-multi-output systems
with only minor modifications.

It is well known, see, for example, [Wereley, 1991; Zhou and Hagiwara,
2002a], that frequency-domain representations of periodic systems are
infinite-dimensional operators. The main goal of this paper is to study
the convergence properties of different truncations of this operator. In
particular, we obtain the relations between the frequency-domain operator
and Taylor and Fourier expansions of the impulse response. Furthermore,
we clarify the connections to state-space approaches, so-called harmonic
balance methods.

1.1 Previous Work

The study of periodic systems has a long history in applied mathemat-
ics and control. One reason for the interest in periodic systems is that
natural and man-made systems often have the periodicity property (3).
Some examples are oscillators used in communication systems, planets
and satellites in orbit, rotors of wind mills and helicopters, sampled-data
systems, and AC power systems. There is an excellent survey of periodic
systems and control in [Bittanti and Colaneri, 1999].

Frequency-domain analysis of linear time-periodic systems in contin-
uous time has been studied by several authors in the past. A classical
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reference is the work by Zadeh, see [Zadeh, 1950], where the steady-state
response of a time-varying system to harmonics is used to define a time-
varying transfer function, the parametric transfer function (PTF). The
PTF has been further developed and used in [Rosenwasser and Lampe,
2000; Lampe and Rosenwasser, 2003]. The PTF is a scalar function that
depends on two variables: time and frequency.

A second frequency-domain representation can be obtained by using
time-domain lifting on the time-periodic system, and then applying the z-
transform, see [Wereley, 1991; Colaneri, 2000]. Colaneri called this func-
tion the transfer function operator (TFO). This is an integral operator
with a kernel depending on time and frequency. An alternative deriva-
tion of the TFO comes from studies of the steady-state response of the
system to an exponentially modulated periodic (EMP) signal. The EMP
signals serve as good test functions, since EMP signals are mapped to
EMP signals by periodic systems.

A third approach was taken by Wereley and Hall in [Wereley and
Hall, 1990; Wereley, 1991]. They applied an harmonic balance method
to state-space systems with EMP inputs. That is, periodic matrices and
signals are expanded into Fourier series and harmonics are equated. This
method yields a transfer function that depends only on frequency. The
function was called the harmonic transfer function (HTF). The HTF is
an infinite-dimensional operator. The infinite dimensionality can be seen
as the price that is paid for the removal of the time dependence in the
transfer function. For example, it was shown in [Lampe and Rosenwasser,
2001] that a Fourier expansion of the PTF in the time direction yields the
elements of the HTF.

All of the above transfer functions can be used for studies of periodic
systems, for example, to compute norms. It is important to understand
that all of these transfer functions are equivalent. The PTF and the TFO
are time dependent. If this time dependence is expressed in an harmonic
basis of the type {ejk2π t/T}k∈Z , we essentially obtain the HTF. Relations
of this sort are treated in [Yamamoto and Araki, 1994; Yamamoto and
Khargonekar, 1996]. In this paper, we investigate what happens when
higher harmonics in this basis are truncated. An alternative approxima-
tion method is, for example, to use fast sampling in time. Such approx-
imations are discussed in [Yamamoto et al., 1997]. It should also men-
tioned be in this context that the frequency-domain operator of a discrete-
time periodic system becomes finite-dimensional, see [Goodwin and Feuer,
1992; Hwang, 1997].

The above listing of frequency-domain methods is not complete. There
are more representations, see, for example, [Ball et al., 1995; Cantoni,
1998].

In the area of sampled-data systems a lot of related work has been
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done. The PTF has been applied to sampled-data systems in [Rosenwasser
and Lampe, 2000]. A method similar to the TFO, that is, a lifting and
z-transform approach, has been used in, for example, [Bamieh and Pear-
son, 1992; Yamamoto and Khargonekar, 1996]. An approach similar to
the HTF has been used in [Araki et al., 1996; Dullerud, 1996]. A nice
property of sampled-data systems is that often closed-form solutions are
obtained. This is not the case for generic periodic systems. The literature
on sampled-data systems is vast and many more references can be found
in the above work.

We mainly work with the HTF in this paper. From the above discus-
sion, it follows that this is not a severe restriction. The HTF has suc-
cessfully been used by several authors for different applications in the
past. For example, for identification of helicopter dynamics, see [Hwang,
1997], for vibration damping in helicopters, see [Bittanti and Cuzzola,
2002], and for stability and robustness analysis in switched power sys-
tems, see [Möllerstedt and Bernhardsson, 2000a; Möllerstedt and Bern-
hardsson, 2000b]. A nice feature with the HTF is that we can directly ex-
tract Bode-type diagrams, from the diagonals of the HTF, that describe the
cross-coupling of frequencies. This can be used to detect resonances that
involve several frequencies, see [Möllerstedt and Bernhardsson, 2000b].

Another reason for studies of the HTF is that it has recently obtained
a lot of theoretical attention. Formally, we can work with the HTF just as
with a standard transfer function. Hence, formulas for H2/H∞-norms are
completely analogous to the time-invariant formulas, see [Wereley, 1991;
Zhou and Hagiwara, 2002a; Zhou and Hagiwara, 2002b]. But the HTF
is also useful for studies of attainable H2-performance, see [Zhang and
Zhang, 1997], generalization of the Nyquist criterion [Hall and Wereley,
1990], and for generalization of Bode’s sensitivity integral [Sandberg and
Bernhardsson, 2004b; Colaneri, 2004].

1.2 Computation of the HTF

Despite all of this work, there are still open issues about the HTF. In
particular, how the HTF should be computed. Three approaches have been
taken, to the authors’ knowledge.

In the first approach, see [Wereley, 1991; Zhou and Hagiwara, 2002a],
it is assumed that G has a state-space realization (4), and that a Floquet
transformation has been performed. Then the matrix A(t) is time invari-
ant, and explicit formulas for the elements in the HTF can be given as a
series of the Fourier coefficients of B(t), C(t), and D(t).

The second approach is also a state-space approach, see [Zhang and
Zhang, 1997]. The elements of the HTF are given implicitly via an inver-
sion of an unbounded quasi-Toeplitz operator, with the Fourier coefficients
{Ak}k∈Z of the state matrix A(t) on the diagonals. It has been claimed that
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this yields the HTF when the dimension of finite-dimensional truncations
of the operator grows towards infinity. However, to the best knowledge
of the authors of this paper, how and when this convergence works has
not been properly explained. This second approach is interesting since it
does not require a Floquet transformation on the state-space model, and
allows us to work directly with the Fourier coefficients of the state-space
realization. We call this method the truncated harmonic balance method.

A third approach was used in [Möllerstedt and Bernhardsson, 2000b].
This approach was based on an impulse-response model (2) of the periodic
system. In particular, it was shown how the elements of the HTF can be
computed via a Fourier expansion of the impulse response. This approach
is interesting since it only uses input-output data of the model. However,
the calculations in [Möllerstedt and Bernhardsson, 2000b] were formal
and many details and possibilities were not treated.

In this paper, we clarify the connections between the above approaches.
We show that we, at least in the limit, obtain the same operator no matter
what approach that is used. Hence, it is justified to use the term HTF in
all of the above cases.

Furthermore, in the above references, with the exception of the work in
[Araki et al., 1996; Zhou and Hagiwara, 2002b], the convergence of trun-
cated HTFs has not been a major issue. In this paper, on the other hand,
convergence issues are in focus, and we will improve the convergence rate
bounds. Convergence analysis is essential since all implementations use
some sort of truncation.

1.3 Organization and Contributions

In Section 2, we derive Taylor expansions of time-varying systems. The
expansions are around “infinite frequency”, and the coefficients become
time-varying Markov parameters. Two different expansions are studied.
We introduce the concepts of input and output roll-off of a time-varying
system, and state an equivalence between the Markov parameters and
the roll-off concepts. This is a generalization of standard results for time-
invariant systems.

In Section 3, we derive Fourier expansions of time-periodic systems.
The generalized Fourier coefficients become time-invariant systems. Sim-
ilar ideas were suggested in, for example, [Zadeh, 1950; Möllerstedt and
Bernhardsson, 2000b]. Here we identify a Hilbert space, H2, where the
Fourier series converge. Furthermore, we derive conditions under which
truncated Fourier series converge in induced Lr-norm, and introduce the
concept of skew roll-off.

In Section 4, we define the HTF based on the impulse response, as was
done in [Möllerstedt and Bernhardsson, 2000b]. Its definition is straight-
forward after a Fourier expansion. We show that if the periodic system
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has high input and output roll-off, then it can be well approximated by a
finite low-dimensional matrix function. If the system has high skew roll-
off, then it can be approximated by an operator with only few diagonals.

In Section 5, we develop error bounds for the closed-loop operator (I+
G)−1, when it is computed from truncated HTFs. We relate the error to
the roll-off concepts of G.

In Section 6, we show that the HTF defined in Section 4 is identical to
the HTF defined in [Wereley, 1991; Zhou and Hagiwara, 2002a]. We also
study the truncated harmonic balance method. It is seen that by a minor
modification of the method, we can show that it converges to the desired
operator. The convergence may, however, be quite slow.

An early version of this paper, that contains some of the results is
[Sandberg et al., 2004].

2. Taylor Expansions of Time-Varying Systems

We will obtain a frequency-domain description of G. Many times the in-
put signal u(t) and output signal y(t) in L2(R) are represented by their
Fourier transforms û( jω ) and ŷ( jω ), where ω is the angular frequency.
This presents no problems since L2(R) is isomorphic with L2( jR) under
the Fourier transform, see for example [Dym and McKean, 1972]. We use
the standard norms as follows:

iuiL2 = iu(⋅)iL2(R) =
(∫ ∞

−∞
hu(t)h2dt

)1/2
(5)

= iû(⋅)iL2( jR) =
1√
2π

(∫ ∞

−∞
hû( jω )h2dω

)1/2
, (6)

and the equality of (5) and (6) follows from Plancherel’s theorem.

2.1 Markov Parameters for Time-Varying Systems

As a first step in the analysis, we make an expansion of the convolution
integral (2) which resembles a Taylor expansion. This is motivated by the
Markov parameters for time-invariant systems. That is, a transfer func-
tion n̂( jω ) of a time-invariant system, where n(t) is the impulse response,
can under certain regularity conditions be Taylor expanded as

n̂( jω ) = n(0)
jω

+ n′(0)
( jω )2 +

n′′(0)
( jω )3 + . . . , as hω h → ∞. (7)

The Markov parameters are {n(0), n′(0), n′′(0), . . .} and they determine
the response to high-frequency signals. If the first Markov parameters
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are zero, then high-frequency signals are attenuated quickly. The Markov
parameters also play an essential role in the realization theory of linear
systems, see for example [Rugh, 1996].

To make a similar expansion of time-varying impulse responses, we
start by putting restrictions on the impulse response, in order for the
computations to be justified. The set of continuously differentiable and
exponentially bounded impulse responses will appear frequently through-
out this article.

DEFINITION 1—THE SET C L
e

A causal time-varying (not necessarily periodic) real impulse response
n(t,τ ) belongs to the set C L

e if

(E1) n(t,τ ) belongs to C L(Ω), where Ω = {(t,τ ) : t > τ};
(E2) all the partial derivatives of n(t,τ ) up to order L can be continuously

extended to the boundary t = τ ;

(E3) all the partial derivatives of n(t,τ ) up to order L has uniform expo-
nential decay for t ≥ τ .

EXAMPLE 1—STATE-SPACE MODELS

Assume that D(t) = 0 for the state-space model (4). Then we can check
that state-space models belong to C L

e if the model is exponentially stable,
B(⋅) and C(⋅) belong to C L(R), and A(⋅) belongs to C L−1(R). Furthermore,
all the matrices should be bounded over R.

It will be useful to consider signals in the space of Schwartz functions S ,

S = {u(t) : u(⋅) ∈ C ∞(R) and tα pβ u(t) is bounded for all α , β ≥ 0},

where p is the differentiation operator. The set S is dense in Lr(R), for
1 ≤ r < ∞, and the Fourier transform of an element in S is again in S ,
see [Hörmander, 1990].

To obtain expansions of the type (7) we proceed by using integration
by parts. Choose an input signal u ∈ S , and notice that a differentiation
of the product n(t,τ )

∫ τ
−∞ u(s)ds gives

V
Vτ

(

n(t,τ )
∫ τ

−∞
u(s)ds

)

= Vn
Vτ
(t,τ )

∫ τ

−∞
u(s)ds + n(t,τ )u(τ ). (8)

If we integrate this equality in the τ -direction over the interval (−∞, t]
we obtain y(t), having (2) in mind, as

y(t) =
∫ t

−∞
n(t,τ )u(τ )dτ = n(t, t)u(t)

p
−
∫ t

−∞

Vn
Vτ
(t,τ )u(τ )

p
dτ . (9)
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1/p is the integration operator: u(t)/p =
∫ t

−∞ u(s)ds. The above computa-
tions are allowed if n ∈ C 1

e .
One should notice that (9) is an expansion of the time-varying system

(2) into a sum of one time-varying direct term, n(t, t), and a new stable
time-varying system with Vn

Vτ (t,τ ) as impulse response. The new input is
the integrated former input: u/p. The procedure can be repeated both in
the τ - and in the t-direction. After the following definition we obtain the
general expansion formulas.

DEFINITION 2—INPUT AND OUTPUT MARKOV PARAMETERS

For a system with impulse response n(t,τ ) in C L
e , the input Markov pa-

rameters are defined as

{

n(t, t), −VnVτ
(t, t), V

2n
Vτ 2 (t, t), . . . , (−1)L−1 V L−1n

Vτ L−1 (t, t)
}

, (10)

and, the output Markov parameters are defined as

{

n(t, t), VnV t
(t, t), V

2n
V t2 (t, t), . . . ,

V L−1n
V tL−1 (t, t)

}

, (11)

for t ∈ R.

REMARK 1—INTERPRETATION OF DERIVATIVES

The derivatives in the output Markov parameters should be interpreted
as follows:

V kn
V tk

(t, t) = lim
ε→0+

( V k

Vsk
n(s, t)

∣
∣
∣
∣
s=t+ε

)

,

for k ∈ [0, L − 1]. The limits exist and are continuous in t by assumption
(E2). A similar definition holds for the input Markov parameters.

For time-varying systems in C L
e , the Markov parameters are bounded

continuously time-varying functions.

REMARK 2—MARKOV PARAMETERS FOR TIME-INVARIANT SYSTEMS

For time-invariant systems, with impulse response n(t,τ ) = n(t − τ , 0),
the input and output Markov parameters coincide with the traditional
Markov parameters, and are constant and equal.
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THEOREM 1—TAYLOR EXPANSIONS OF TIME-VARYING SYSTEMS

Assume that the causal time-varying impulse response n(t,τ ) belongs to
the set C L

e . Then for every input u ∈ S , the output y = Gu given by (2)
can be expressed in either of the following two ways.
— Input Markov parameter expansion

y(t) = a1(t)
u(t)

p
+ a2(t)

u(t)
p2 + . . .+ aL(t)

u(t)
pL

+ (−1)L

∫ t

−∞

V Ln
Vτ L

(t,τ )u(τ )
pL

dτ , (12)

where a1(t), . . . , aL(t) are the input Markov parameters (10).
— Output Markov parameter expansion

y(t) = 1
p

b1(t)u(t) +
1
p2 b2(t)u(t) + . . .+ 1

pL
bL(t)u(t)

+ 1
pL

∫ t

−∞

V Ln
V tL

(t,τ )u(τ )dτ , (13)

where b1(t), . . . , bL(t) are the output Markov parameters (11).
Proof. To prove (12) repeat the integration by parts procedure from
(8)–(9) on Vn

Vτ u/p2, which gives

∫ t

−∞

Vn
Vτ
(t,τ )u(τ )

p
dτ = Vn

Vτ
(t, t)u(t)

p2 −
∫ t

−∞

V2n
Vτ 2 (t,τ )

u(τ )
p2 dτ .

Substitute this into (9). This may be repeated on Vmn
Vτ m u/pm+1 for m =

2 . . . L − 1 and we obtain (12).
The first step in proving (13) is to differentiate (2),

y′(t) = n(t, t)u(t) +
∫ t

−∞

Vn
V t
(t,τ )u(τ )dτ ,

and then to integrate over (−∞, t] in the t-direction

y(t) = 1
p
n(t, t)u(t) + 1

p

∫ t

−∞

Vn
V t
(t,τ )u(τ )dτ . (14)

Repeat this procedure on the virtual output ym =
∫ Vmn
V tm udτ for m =

1 . . . L − 1 and substitute into (14). The above computations are allowed
under the given assumptions. Equation (13) may also be proven from (12)
by a duality argument, see Remark 3.
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REMARK 3—DUALITY OF INPUT AND OUTPUT MARKOV PARAMETERS

The adjoint G∗ of G : L2 → L2, where n(t,τ ) ∈ C L
e , is given by

z(τ ) =
∫ ∞

τ

n(t,τ )w(t)dt,

and one can make Taylor expansions of this relation as well

z(τ ) = n(τ ,τ )w(τ )
p∗

+ VnV t
(τ ,τ )w(τ )

(p∗)2 + . . . ,

z(τ ) = 1
p∗
n(τ ,τ )w(τ ) − 1

(p∗)2
Vn
Vτ
(τ ,τ )w(τ ) + . . . ,

where w(τ )/p∗ =
∫∞

τ w(s)ds. So with the interchange t 1 τ the input
Markov parameters of G are the output Markov parameters of G∗, and
vice versa.

REMARK 4—MIXED MARKOV PARAMETERS

It is possible to mix the input and output expansions so that Markov
parameters of the type

Vm+nn
Vτ mV tn

(t, t),

appear in the expansions. The input, output, and mixed Markov parame-
ters are all entries in the Hankel matrices used in the realization theory
of linear time-varying systems, see [Silverman, 1971; Rugh, 1996].

2.2 Input Roll-Off and Output Roll-Off

We will truncate the representations of signals and systems, and therefore
it is interesting to study how the systems treat high-frequency signals.
Equation (7) shows that there is a relation between the Markov parame-
ters and high-frequency behavior for time-invariant systems. This relation
will be further explored for time-varying systems.

A projection operator on L2 which we call PΩ is now defined. Its rep-
resentation in the frequency domain is given by

(̂PΩ y)( jω ) =
{

ŷ( jω ), hω h ≤ Ω,

0, hω h > Ω.

Notice that PΩ is not causal in the time domain, and iPΩiL2→L2 = 1. It
is also convenient to define QΩ = I − PΩ . For a truncated system to be a
good approximation, we need some sort of roll-off, corresponding to strict
properness for linear time-invariant systems, see [Zhou and Doyle, 1998].
For this we define a square truncation next. This term is motivated in
Section 4.1.
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DEFINITION 3—SQUARE TRUNCATION

PΩ1 GPΩ2 is called a square truncation of G.

We call a system strictly proper if the square truncated system converges
to G,

iG − PΩ1 GPΩ2iL2→L2 → 0 as Ω1, Ω2 →∞.

To give sufficient conditions for properness, we notice that we can make
the bound

iG − PΩ1 GPΩ2iL2→L2 ≤ i(I − PΩ1)GiL2→L2 + iG(I − PΩ2)iL2→L2 .

DEFINITION 4—INPUT AND OUTPUT ROLL-OFF

If for a bounded operator G there are positive constants C1 and k1 such
that

i(I − PΩ)GiL2→L2 ≤ C1 ⋅ Ω−k1 ,

then G is said to have output roll-off k1, and if there are positive constants
C2 and k2 such that

iG(I − PΩ)iL2→L2 ≤ C2 ⋅ Ω−k2 ,

then G is said to have input roll-off k2.

For systems with output roll-off k1 and input roll-off k2 we have strict
properness and the following rate of convergence for square truncated
operators PΩ1 GPΩ2 ,

iG − PΩ1 GPΩ2iL2→L2 ≤ C1 ⋅ Ω−k1
1 + C2 ⋅ Ω−k2

2 . (15)

Some simple properties for calculations with systems with input/output
roll-off are stated in the following proposition.

PROPOSITION 1—INPUT AND OUTPUT ROLL-OFF

The following rules apply to systems with roll-off.

(i) If H has output roll-off k1 and G is bounded, then HG has output
roll-off of k1. If G has input roll-off k2 and H is bounded, then HG

has input roll-off of k2.

(ii) If G has a time-invariant impulse response, that is n(t,τ ) = n(t−τ , 0)
for all t ≥ τ , then if G has output roll-off k1, it also has input-roll off
k1, and vice versa. Moreover hn̂( jω )h ≤ C ⋅ hω h−k where k = k1 = k2

and C = C1 = C2.
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(iii) If H is a time-invariant system with output roll-off k1 and G has
output roll-off k2, then HG has output roll-off k1 + k2. If H is a
time-invariant system with input roll-off k1 and G has input roll-off
k2, then GH has input roll-off k1 + k2.

Proof. Follows from Definition 4, the induced norm property

iGHiL2→L2 ≤ iGiL2→L2iHiL2→L2 ,

and QΩ H = QΩ HQΩ for time-invariant H.

Since Definition 4 may be hard to check for a given operator G, it sim-
plifies if we decompose the system into terms that are easier to analyze.
The Taylor expansions are such decompositions. This can be understood
by studying (7). If a transfer function n̂( jω ) has roll-off k, i.e., there are
constants such that hn̂( jω )h ≤ C ⋅ hω h−k, then the first k − 1 Markov pa-
rameters are zero. The corresponding result for time-varying systems is
stated next.

THEOREM 2—MARKOV PARAMETERS AND ROLL-OFF

Assume that n(t,τ ) belongs to C L
e and that L > max{k1, k2}. Then G has

exactly

(i) output roll-off k1, if and only if the (k1 − 1) first output Markov
parameters (11) are zero for all t;

(ii) input roll-off k2, if and only if the (k2 − 1) first input Markov pa-
rameters (10) are zero for all t.

Proof. We need a bound on iGQΩiL2→L2 expressed in Ω to prove (ii). By
definition we have

iGQΩiL2→L2 = sup
iuiL2

≤1

PΩ u=0

iGuiL2 . (16)

We start to prove the ’if’-part of (ii). The problem is approached by
making an input Markov parameter expansion of y = GuΩ , where uΩ ∈ S
and PΩuΩ = 0. Since S is dense in L2, supiuΩiL2≤1iGuΩiL2 is equal to
(16).

Using the input expansion in Theorem 1, and the assumption that the
first Markov parameters are zero, we have

y(t) = (−1)k2−1 V k2−1n
Vτ k2−1 (t, t)uΩ(t)

pk2
+ (−1)k2

∫ t

−∞

V k2n
Vτ k2

(t,τ )uΩ(τ )
pk2

dτ . (17)
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From (17) it follows that there is a constant C2 such that

iyiL2 ≤ C2

∥
∥
∥
∥

uΩ

pk2

∥
∥
∥
∥

L2

≤ C2
iuΩiL2

Ωk2
.

The input roll-off constant C2 is easily obtained since the impulse re-
sponse is in C L

e . Put K1 = supt

∣
∣
∣
V k2−1n
Vτ k2−1 (t, t)

∣
∣
∣, K2 = κ1/κ2 where h V k2n

Vτ k2
(t,τ )h ≤

κ1e−κ2(t−τ ), and C2 = K1 + K2. This finishes the ’if’-part of the proof.
The ’only if’-part of (ii) follows by applying a special input signal to

GQΩ with a limited width in both the time and the frequency domain.
This gives a lower bound on iGQΩiL2→L2 . We will for simplicity show the
result for k2 = 1. Similar calculations hold for k2 > 1. We sketch the proof
next.

Use a Gaussian wave package uk,Ω(t) (belongs to S ) of frequency Ω as
input signal,

uk,Ω(t) =
1√
2πσ

ejΩt e−(t−mk)2/2σ 2
k ,

ûk,Ω( jω ) = e−(ω−Ω)2σ 2
k/2− jmk(ω−Ω).

and fix sequences of mk and σ k (the location and width of the package in
time) such that

∫ ∞

−∞
hn(t, t)uk,Ω(t)h2dt → sup

t
hn(t, t)h2

∫ ∞

−∞
huk,Ω(t)h2dt, k→∞. (18)

Next we use that uk,Ω has its energy concentrated around the frequency
Ω. For fixed k, we have that

∥
∥
∥
∥

uk,Ω

pl

∥
∥
∥
∥

L2

→ iuk,ΩiL2

Ωl
, Ω →∞. (19)

A second-order Taylor expansion of G exists by the assumption L > k2,

y(t) = n(t, t)uk,Ω(t)
p

︸ ︷︷ ︸

y1(t)

+ VnVτ
(t, t)uk,Ω(t)

p2 +
∫ t

−∞

V2n
Vτ 2 (t,τ )

uk,Ω(τ )
p2 dτ

︸ ︷︷ ︸

y2(t)

.

From the proof of the ’if’-part, it is seen that iy− y1iL2 ≤ C/Ω2 for some
positive constant C. From (18) and (19) there is an arbitrarily small ε k

such that

iyiL2 =
supt hn(t, t)h + ε k

Ω
iuk,ΩiL2 + O(Ω−2), Ω →∞. (20)
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Table 1. The first input and output Markov parameters of a time-varying system
on state-space form (4).

# Input Markov parameter Output Markov parameter

0. D(t) D(t)
1. C(t)B(t) C(t)B(t)
2. C(t)[A(t)B(t) − B ′(t)] [C′(t) + C(t)A(t)]B(t)
3. C(t)[B ′′(t) − 2A(t)B ′(t) [C′′(t) + 2C′(t)A(t)

−A′(t)B(t) + A2(t)B(t)] +C(t)A′(t) + C(t)A2(t)]B(t)

Furthermore, if we fix an a > 1, we have that

GQΩuk,aΩ → Guk,aΩ , Ω →∞.

This together with (20) gives a lower bound on iGQΩiL2→L2 which decays
as supthn(t, t)h/aΩ. The ’only if’-part of case (ii) follows.

To prove case (i) of the theorem a similar chain of arguments can be
used.

EXAMPLE 2—NON-INTEGER-VALUED ROLL-OFF

Under the assumptions of Theorem 2, input and output roll-off always
become integer values. This is not necessary for all types of periodic sys-
tems. Consider, for example, sampled-data systems. From the analysis in
[Araki et al., 1996], it follows that the sampled-data systems considered
there have at least input and output roll-off 1/2. In fact, we conjecture
that a sampled-data system G2SG1, where S is a periodic sampler and
G1, G2 are linear time-invariant filters, has exactly input roll-off (k1−1/2)
and output roll-off (k2−1/2) where k1 is the roll-off of G1 and k2 the roll-
off of G2. This is in agreement with [Araki et al., 1996], since roll-off 1 is
assumed for the filters there.

EXAMPLE 3—FINITE-DIMENSIONAL STATE-SPACE MODELS

Let us assume that the system has a state-space realization (4) and
that the impulse response belongs to C L

e , see Example 1. According to
Theorem 2 the roll-off of the state-space system can be determined by
checking which of the Markov parameters that are zero. The first few
Markov parameters of (4) are given in Table 1. In particular they co-
incide with the normal Markov parameters for time-invariant systems:
D, CB, CAB, CA2 B, . . .
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Notice that the Markov parameter conditions for output roll-off k1 cor-
respond to the conditions for relative degree k1 of a periodic system, de-
fined in [De Nicolao et al., 1998]. Also notice that the kth Makov parame-
ters may be written as C[(L∗

A)k−1 B] and [Lk−1
A C]B, where L∗

A B = AB−B ′

and LAC = CA+ C′, using notation from [De Nicolao et al., 1998].

3. Fourier Expansions of Time-Periodic Systems

Until now we have not used the periodicity condition

n(t,τ ) = n(t+ T ,τ + T).

The periodicity condition can be used for Fourier expansions. The possi-
bility of Fourier expansions of periodic systems was discussed already in
[Zadeh, 1950]. Here, we will formulate the problem in a Hilbert space and
discuss the convergence issues.

For this analysis we define the space H2 for periodic systems

H2 = {G : iGiH2 < ∞ , n(t,τ ) is T-periodic and causal}

where

iGi2
H2
= 1

T

∫ T

τ=0

∫ ∞

r=0
hn(τ + r,τ )h2drdτ = 1

T

∫ T

t=0

∫ ∞

r=0
hn(t, t− r)h2drdt.

The above equality follows from the periodicity condition (3). The H2-
norm is also used in, for example, [Zhang and Zhang, 1997; Colaneri,
2000; Zhou and Hagiwara, 2002a]. H2 is a Hilbert space with the scalar
product

〈G, H〉H2 =
1
T

∫ T

τ=0

∫ ∞

r=0
n(τ + r,τ )h(τ + r,τ )drdτ

= 1
T

∫ T

t=0

∫ ∞

r=0
n(t, t− r)h(t, t− r)drdt.

(21)

H2 is composed of the well-known separable Hilbert spaces L2[0, T ] and
L2[0,∞). Orthonormal basis functions in H2 are, for example, Ẽk,n or Ek,n

with impulse responses

ẽk,n(t,τ ) = ejkω 0τ e−(t−τ )/2 Ln(t− τ ) or ek,n(t,τ ) = ejkω 0 te−(t−τ )/2 Ln(t− τ ),

where Ln(⋅) are Laguerre polynomials and ω 0 = 2π/T . Which basis to
choose depends on if the first or second form of the scalar product (21) is
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used. By standard results from functional analysis and on Hilbert spaces,
see, for example [Kreyszig, 1978], all system in H2 can be represented by
a generalized Fourier series

G =
∞∑

k=−∞

∞∑

n=0

〈Ẽk,n, G〉H2 Ẽk,n =
∞∑

k=−∞

∞∑

n=0

〈Ek,n, G〉H2 Ek,n, (22)

where the series converge in H2-norm.
Instead of using the expansion (22), it will be more useful for us to only

use the expansion in the k-direction. This is expressed in the following
theorem.

THEOREM 3—FOURIER EXPANSION OF PERIODIC IMPULSE RESPONSES IN H2

Assume that G belongs to H2. The impulse response of G can then be
expressed as

n(t,τ ) =
∞∑

k=−∞
ñk(t− τ )ejkω 0τ , (23)

n(t,τ ) =
∞∑

k=−∞
nk(t− τ )ejkω 0 t, (24)

with convergence in H2 and where ω 0 = 2π/T . The Fourier coefficients
are given by

ñk(r) =
1
T

∫ T

0
e− jkω 0τn(τ + r,τ )dτ , (25)

nk(r) =
1
T

∫ T

0
e− jkω 0 tn(t, t− r)dt, (26)

where r ≥ 0.

Proof. We show (23) and (25). A similar calculation gives (24) and (26).
The sum in the n-direction in (22) can be written explicitly as, using that
r = t− τ ,

1
T

∫ T

η=0
e− jkω0η

{ ∞∑

n=0

(∫ ∞

ζ=0
e−ζ /2 Ln(ζ )n(η + ζ ,η)dζ

)

e−r/2 Ln(r)
}

dη ejkω0τ . (27)

The factor in brackets {} is a Fourier expansion of n(⋅ + η,η). Since G

belongs to H2, n(⋅ + η,η) ∈ L2[0,∞) for almost all η. Hence, the series
converges in L2-sense to n(η + r,η) for almost all η. The result follows
since (27) has the structure of the terms in (23).

Some immediate properties of the Fourier coefficients in (23)–(24) are
stated in the following corollary.
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COROLLARY 1—PROPERTIES OF FOURIER COEFFICIENTS

Assume that G and H belong to H2. Then it holds that

(i) the Fourier coefficients ñk and nk satisfy ñk(r) = ejkω 0rnk(r), r ≥ 0;

(ii) if n(t,τ ) is real, then n−k(r) = nk(r) for all k, r ≥ 0;

(iii) the Fourier coefficients ñk(⋅) and nk(⋅) belong to L2[0,∞) for all k;

(iv) the scalar product (21) can be expressed as

〈G, H〉H2 =
∞∑

k=−∞
〈ñk, h̃k〉L2 =

∞∑

k=−∞
〈nk, hk〉L2 .

By Corollary 1 it follows that there is no major difference between the
expansions (23) and (24). They are essentially the same. In the following
sections we will mostly work with the expansions in nk. This choice is
arbitrary.

It is also useful to introduce an orthogonal projection P[N] : H2 → H2,

G[N] = P[N]G : n[N](t,τ ) =
N∑

k=−N

ñk(t− τ )ejkω 0τ =
N∑

k=−N

nk(t− τ )ejkω 0t.

(28)
We make the following definition.

DEFINITION 5—SKEW TRUNCATION

G[N], given by (28), is called an Nth-order skew truncation of G

The reason for the term “skew truncation” will be more clear once we have
constructed the harmonic transfer function, see Section 4.1. In particular
it will be seen that this corresponds to the skew truncations in [Zhou and
Hagiwara, 2002b]. A simple application of Corollary 1 (iv) gives that the
skew truncations converge in H2,

iG − G[N]iH2 → 0, as N →∞.

REMARK 5—OPTIMAL APPROXIMATIONS IN H2

By Corollary 1 (iv), systems that do not contain the same Fourier coeffi-
cients are orthogonal in H2, and

G[N] ⊥ (G − G[N]).

Hence, by standard results from approximation in Hilbert spaces, G[N] are
optimal approximations. In particular, G[0] is the optimal approximation
of a time-invariant structure in H2.
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Similar results on optimal approximations in H2 follow by the analysis
of achievable H2 performance of periodic control systems in [Zhang and
Zhang, 1997].
Next, we will study some input-output properties of the skew truncations.

3.1 Input-Output Properties

The interpretation of the convergence in the above Fourier expansions is
that for impulse inputs, the outputs converge in “mean energy sense”. This
is a quite weak form of convergence. By strengthening the assumptions
on n(t,τ ), we can show stronger forms of convergence, in induced-norm
sense. This is the topic of the rest of this section.

The input-output map of yN = G[N]u is given by

yN(t) =
N∑

k=−N

∫ t

−∞
ñk(t− τ )ejkω 0τ u(τ )dτ

=
N∑

k=−N

∫ t

−∞
nk(t− τ )ejkω 0 tu(τ )dτ ,

(29)

where we have interchanged the order of integration and summation. The
output yN(t) is given by a parallel connection of input or output modulated
time-invariant systems.

We associate with the kth Fourier coefficients of G, causal and time-
invariant system G̃k and Gk

G̃k : ñk(t,τ ) = ñk(t− τ ), t ≥ τ ,

Gk : nk(t,τ ) = nk(t− τ ), t ≥ τ .

Hence, we can represent G[N] by the formal Fourier series

G[N] =
N∑

k=−N

G̃kejkω 0τ =
N∑

k=−N

ejkω 0 tGk, (30)

where the Fourier coefficients are time-invariant systems. We will show
that these series converge in induced norms.

Let us again use the class of continuously differentiable and exponen-
tially bounded impulse responses, C L

e , defined in Section 2.

LEMMA 1—BOUNDED FOURIER COEFFICIENTS

Assume that a periodic system G has an impulse response n(t,τ ) that
belongs to C L

e . Then,
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(i) G belongs to H2;

(ii) there are positive constants α and C such that the Fourier coeffi-
cients are bounded by

hñk(r)h = hnk(r)h ≤
C ⋅ e−α r

hkω 0hL
, hkh > 0, r ≥ 0.

Proof. (i) We shall prove that G belongs to H2. Since G belongs to at
least C 0

e , by (E3) we have hn(t,τ )h ≤ κ1e−κ2(t−τ ). Hence, we can bound the
H2-norm

iGi2
H2
≤ 1

T

∫ T

τ=0

∫ ∞

r=0
κ 2

1 e−2κ2rdrdτ = κ 2
1

2κ2
.

(ii) By assumption (E1) we have that

n(⋅+ r, ⋅) ∈ C L(R), for all r ≥ 0.

Make a Fourier expansion in the τ -direction of dL

dτ L n(τ + r,τ ), and notice
that

( jkω 0)Lñk(r) =
1
T

∫ T

τ=0

[
dL

dτ L
n(τ + r,τ )

]

e− jkω 0τ dτ .

Hence, we have the bound

hkω 0hLhñk(r)h ≤ max
τ

∣
∣
∣
∣

dL

dτ L
n(τ + r,τ )

∣
∣
∣
∣
≤ C ⋅ e−α r , (31)

for some positive constants C and α . Such constants exist by assumption
(E3). The result follows.

REMARK 6—THE CONSTANTS C AND α IN LEMMA 1
By the proof of Lemma 1, it follows that C and α should fulfill (31). For
time-invariant systems we have n(τ+r,τ ) = n(r, 0). Hence, all derivatives
are zero in the τ -direction and we can choose C = 0. This should be no
surprise since n0(r) and ñ0(r) are the only non-zero Fourier coefficients
for time-invariant systems.

Using Lemma 1 we can show that following theorem.
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THEOREM 4—CONVERGENCE OF SKEW TRUNCATIONS IN INDUCED L∞-NORM

Assume that a periodic system G has an impulse response n(t,τ ) that
belongs to C L

e , where L > 1. Then for all inputs u(⋅) ∈ L∞(R), yN(t) in
(29) converges, uniformly in t, to y(t) in (2), as N →∞.

Furthermore, the rate of convergence of the Fourier series in (30) is
at least (L − 1),

iG − G[N]iL∞→L∞ ≤ K ⋅ N−(L−1), N > 0,

for some positive constant K .

Proof. Using Lemma 1 we have that

hy(t) − yN(t)h ≤ 2

∣
∣
∣
∣
∣

∫ t

−∞

∞∑

k=N+1

nk(t− τ )ejkω 0 tu(τ )dτ

∣
∣
∣
∣
∣

≤ 2
∫ t

−∞

∞∑

k=N+1

C ⋅ e−α (t−τ )

(kω 0)L
hu(τ )hdτ

≤ 2
Cγ

αω L
0 N L−1

iu(⋅)iL∞(R), (32)

where γ is a constant such that

∞∑

k=N+1

1
kL
≤ γ

N L−1 , L > 1. (33)

Since (32) is independent of t and tends to zero as N → ∞, the conver-
gence is uniform. Furthermore, we can choose K = 2Cγ /αω L

0 .

We can apply Theorem 4 to input signals that are harmonics and
thereby see the connection between the above Fourier expansions and
the classical analysis by Zadeh.

EXAMPLE 4—HARMONIC RESPONSE AND THE PTF
The response of a periodic system to an harmonic u(t) = ejω t is now easy
to obtain. Under the assumptions of Theorem 4 and by the definition of
the Fourier transform we obtain

y(t) = Gejω t =
∞∑

k=−∞

∫ t

−∞
nk(t− τ )ejkω 0 tejωτ dτ

=
( ∞∑

k=−∞
n̂k( jω )ejkω 0 t

)

ejω t, (34)
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where n̂k is the Fourier transform of nk. Since nk(⋅) ∈ L1[0,∞)∩ L2[0,∞),
we have that n̂k(⋅) is uniformly continuous and belongs to L2( jR), see
[Dym and McKean, 1972]. Equation (34) shows that the response includes
a countable number of frequencies [. . . ,ω −ω 0, ω , ω +ω 0, . . .], separated
by multiples of ω 0.

The parametric transfer function (PTF) Ĝ( jω , t) that is used in [Zadeh,
1950; Lampe and Rosenwasser, 2003] may be defined as the steady-state
response of the periodic system G to an harmonic,

Ĝ( jω , t) := Gejω t

ejω t
.

By the analysis above we realize that

Ĝ( jω , t) =
∞∑

k=−∞
n̂k( jω )ejkω 0 t.

The PTF can also be compute directly from the impulse response n(t,τ ),
see [Zadeh, 1950; Lampe and Rosenwasser, 2003].

The HTF that we define in Section 4, is also a frequency-domain rep-
resentation of G. The difference is that the PTF is scalar but depends
on time and frequency, whereas the HTF only depends on frequency. The
price is that the HTF becomes infinite dimensional. The relation between
the PTF and the HTF has also been discussed in [Lampe and Rosenwasser,
2001].

3.2 Skew Roll-Off and Convergence in Induced Lr-norm

In Section 2 we studied the convergence of square truncated systems in
induced L2-norm. Since we will work in the frequency domain in Section 4,
where L2 is important, we also study convergence of skew truncations in
induced L2-norm here.

In analogy with input roll-off and output roll-off we define skew roll-off.

DEFINITION 6—SKEW ROLL-OFF

If there are positive constants C and k such that

iG − G[N]iL2→L2 ≤ C ⋅ N−k, N > 0,

then G has skew roll-off k.

REMARK 7—SKEW ROLL-OFF OF TIME-INVARIANT SYSTEMS

For a time-invariant system G, it holds that Gk = 0 for all k �= 0 and
G = G0. Hence, a time-invariant system has infinite skew roll-off.

The following sufficient condition helps to determine skew roll-off.
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4. The Harmonic Transfer Function

THEOREM 5—CONVERGENCE OF SKEW TRUNCATIONS IN INDUCED Lr-NORM

Assume that the impulse response of a periodic system G belongs to C L
e ,

and L > 1. Then, there is a positive constant K such that for 1 ≤ r < ∞,

iG − G[N]iLr→Lr
≤ K ⋅ N−(L−1), N > 0,

and G has at least skew roll-off L − 1.

Proof. If the domain of G is the Schwartz functions S , we can by Theo-
rem 4 interchange the order of integration and summation and represent
G by the Fourier series

G =
∞∑

k=−∞
ejkω 0tGk,

where Gk are time-invariant systems. Furthermore, we have the bound

iGkiLr→Lr
≤ ink(⋅)iL1(R+) ≤

C

α hkω 0hL
,

by Lemma 1. Now, since S is dense in Lr, 1 ≤ r < ∞, we can conclude
that

iG − G[N]iLr→Lr
≤ 2

∞∑

k=N+1

iGkiLr→Lr
≤ 2

Cγ

αω L
0 N L−1

, (35)

where γ is a given by (33).

4. The Harmonic Transfer Function

By including a sufficient amount of frequencies in the Fourier expansion
of G, we can come arbitrarily close to G itself, as discussed in the previous
section. Since we have decomposed the periodic system into time-invariant
terms, the frequency-domain analysis is now straightforward.

Assume in the following that the assumptions of Theorem 5 hold. No-
tice that yN(t) from (29) may be written as

yN(t) =
N∑

k=−N

nk(t)ejkω 0 t
∗ u(t)ejkω 0 t (36)

where ∗ is the standard convolution product. Now pick an input u in L2.
We can apply the Fourier transform on both sides of (36), and get

ŷN( jω ) =
N∑

k=−N

n̂k( jω − jkω 0)û( jω − jkω 0). (37)
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All the Fourier transforms are well defined, since by the assumptions
nk(⋅) ∈ L1[0,∞)∩ L2[0,∞) and u(⋅) ∈ L2(R). By Theorem 5, yN converges
to y in L2. Furthermore, L2(R) and L2( jR) are isomorphic under the
Fourier transform. Hence, for all inputs u ∈ L2, ŷN( jω ) converges to
ŷ( jω ) in L2( jR) as N → ∞. Therefore we can put N = ∞ in (37) if we
mean convergence in L2-sense, and not point-wise convergence.

Next we rewrite the summation (37) by using a form of lifting on
L2( jR). In [Araki et al., 1996] this lifting was called the Sample-Data
Fourier transform (SD-transform). The SD-transform is an isometric iso-
morphism between L2( jR) and a Hilbert space we denote by LZ

2 ( j I0). It
maps the Fourier transform into an infinite-dimensional column-vector-
valued function. The SD-transform of û( jω ) is denoted by Û( jω ) and is
defined as

Û( jω ) = [ . . . û( jω + jω 0) û( jω ) û( jω − jω 0) . . . ]T .

Since the vector contains repeated versions of û( jω ), it is enough to define
Û( jω ) for ω ∈ I0 = (−ω 0/2,ω 0/2] to be able to take the inverse SD-
transform. We define the norm in LZ

2 ( j I0) as

iÛ(⋅)iLZ
2 ( j I0) =

1√
2π

(∫

I0

iÛ( jω )i2
Q2 dω

)1/2

= 1√
2π

(
∫

I0

∞∑

k=−∞
hû( jω + jkω 0)h2dω

)1/2

.

For signals u ∈ L2, there are now three representations: u(t), û( jω ), and
Û( jω ), and the following extended Plancherel’s theorem holds,

iuiL2 = iu(⋅)iL2(R) = iû(⋅)iL2( jR) = iÛ(⋅)iLZ
2 ( j I0). (38)

If u has finite L2-norm, then Û( jω ) is in Q2 (its elements are square
summable) for almost all ω ∈ I0, that is iÛ( jω )iQ2 < ∞ a.e.

If we write (37) when N = ∞ in matrix-vector form














...

ŷ( jω + jω 0)
ŷ( jω )

ŷ( jω − jω 0)
...














=


















. . .
. . .

. . .

. . . n̂0( jω + jω 0) n̂1( jω ) n̂2( jω − jω 0)

. . . n̂−1( jω + jω 0) n̂0( jω ) n̂1( jω − jω 0)
. . .

n̂−2( jω + jω 0) n̂−1( jω ) n̂0( jω − jω 0)
. . .

. . .
. . .

. . .































...

û( jω + jω 0)
û( jω )

û( jω − jω 0)
...














138



4. The Harmonic Transfer Function

it can be written in a compact form using the SD-transform

Ŷ( jω ) = Ĝ( jω )Û( jω ), ω ∈ I0 = (−ω 0/2,ω 0/2]. (39)

We call Ĝ( jω ) the harmonic transfer function (HTF) of G. This was the
term used by Wereley in [Wereley, 1991]. A similar object was called the
FR operator in [Araki et al., 1996] in the case of sampled-data systems.
The difference between these efforts is the way the elements of Ĝ( jω )
are computed. In the sampled-data case explicit formulas are given in
[Araki et al., 1996]. In the time-periodic state-space case formulas are
given in [Wereley, 1991; Zhou and Hagiwara, 2002a], and in the impulse
response case formulas are given here and in [Möllerstedt and Bernhards-
son, 2000b]. The relation between the impulse-response and state-space
approaches is further discussed in Section 6.

It was assumed in the above discussion that the impulse response
belongs to C L

e . This was done to motivate the construction of the HTF
from an input-output view. However, the HTF Ĝ( jω ) is a meaningful
construction as soon as its elements, the Fourier transforms of the Fourier
coefficients of G, are well defined. This is the case when G is in H2.

The following proposition may be derived by using techniques similar
to those in [Wereley, 1991; Araki et al., 1996; Zhou and Hagiwara, 2002a].

PROPOSITION 2—NORM FORMULAS

Assume that the periodic system G belongs to H2. Then the HTF Ĝ( jω ),
defined as in (39), is a Hilbert-Schmidt operator for almost all ω , and

iGi2
H2
= 1

2π

∫

I0

trace [Ĝ∗( jω )Ĝ( jω )]dω . (40)

If, furthermore, the impulse response n(t,τ ) belongs to CL
e and L > 1,

then Ĝ( jω ) is a bounded operator on Q2 for all ω , and

iGiL2→L2 = sup
ω∈I0

iĜ( jω )iQ2→Q2 . (41)

REMARK 8—HILBERT-SCHMIDT OPERATORS

The HTF evaluated at the frequency ω , Ĝ( jω ), is a Hilbert-Schmidt op-
erator if

trace [Ĝ∗( jω )Ĝ( jω )] < ∞.

In particular, the Hilbert-Schmidt operators are compact operators, see,
for example, [Böttcher and Silbermann, 1990].
Hence, just as for the standard transfer function, the induced L2-norm of
the system is given by the supremum of the transfer function.
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4.1 Square and Skew Truncations Revisited

By looking at the structure of the HTFs of square and skew truncated
systems we make important connections to the work in [Zhou and Hagi-
wara, 2002b]. The reasons for the terms “square” and “skew” will also be
obvious.

To compute the induced L2-norm (1) of a system G with input and
output roll-off, the following observation, which follows directly from (15),
is useful

0 ≤ iGiL2→L2 − iPΩ1 GPΩ2iL2→L2 ≤ C1 ⋅ Ω−k1
1 + C2 ⋅ Ω−k2

2 . (42)

Proposition 2 gives us a way to compute the induced L2-norm, given a HTF
Ĝ( jω ). It is not essential that Ĝ( jω ) corresponds to a causal operator for
(41) to hold, it is true for every frequency domain relation (39). Hence we
can apply it to the approximation PΩ1 GPΩ2 . The HTF of PΩ1 GPΩ2 becomes
a finite-dimensional matrix.

PROPOSITION 3—SQUARE TRUNCATED HTFS

Assume that G has an HTF Ĝ( jω ). If we choose Ω1 = (N1 + 1/2)ω 0 and
Ω2 = (N2+1/2)ω 0 the HTF of PΩ1 GPΩ2 is given by the (2N1+1)�(2N2+
1)-matrix

Ĝ(N1,N2)( jω ) =













n̂N1−N2( jω + j N2ω 0) . . . n̂N1+N2( jω − j N2ω 0)
...

...

n̂−N2( jω + j N2ω 0) . . . n̂N2( jω − j N2ω 0)
...

...

n̂−N1−N2( jω + j N2ω 0) . . . n̂−N1+N2( jω − j N2ω 0)













,

and

P̂Ω1( jω )Ĝ( jω )P̂Ω2( jω ) =





0 0 0

0 Ĝ(N1,N2)( jω ) 0

0 0 0



 .

The truncated HTF converges to Ĝ( jω ) in the induced L2-norm according
to (15) and (41).

Hence we can represent a linear periodic system in C L
e arbitrarily well

with finite-dimensional matrices and compute its norm as

iPΩ1 GPΩ2iL2→L2 = max
ω∈I0

σ
(

Ĝ(N1,N2)( jω )
)

. (43)
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By griding the frequency interval I0 and by computing the maximum
singular value we get an estimate of iGiL2→L2 , and the rate of convergence
depends upon the roll-off of G according to (42).

If the system has a high output roll-off, then Ĝ( jω ) decays quickly in
the up-down direction, and if it has high input roll-off it decays quickly
in the left-right direction. In Theorem 2 we have given the necessary
and sufficient conditions for the decay rates: the more input and output
Markov parameters that are zero, the quicker does the HTF decay.

To use the square truncation (43) to estimate the norm of a periodic
system has been suggested by many authors. In [Araki et al., 1996] it is
shown that the square truncation converges at least at a rate K ⋅ N−1/2,
for (2N+1)�(2N+1) truncations and some constant K . In [Araki et al.,
1996] sampled-data systems are studied, but similar techniques are used
in [Zhou and Hagiwara, 2002a; Zhou and Hagiwara, 2002b]. As seen above
in (42), the bound on convergence rate may be improved by checking the
Markov parameters. In [Zhou and Hagiwara, 2002b] a bisection algorithm
and a Hamiltonian matrix is used for the computation of (43).

Let us now look at the skew truncated HTFs.

PROPOSITION 4—SKEW TRUNCATED HTFS

The HTF of the skew truncation G[N], Ĝ[N]( jω ), consists of the 2N + 1
main diagonals of Ĝ( jω ).
Hence, as N increases, more diagonals are added to the skew truncated
HTF. Furthermore, we now know that each diagonal represents a Fourier
coefficient of G. From the Theorems 4 and 5 we know how quickly this
HTF converges in induced norms. That is, we can quantify how much
accuracy there is, at least, to gain by including an extra diagonal in the
HTF. From Lemma 1 it is seen that the smoother the impulse response
n(τ + r,τ ) is in τ , for each fixed r, the quicker does the norm bound for
each added diagonal decay.

Skew truncations are used to compute the H2-norm of periodic systems
in [Zhou and Hagiwara, 2002b]. However, it is not the HTF of G[N] that
is used there. Instead the state-space matrices B(t) and C(t) are skew
truncated. That means that the H2-norm is computed for the system Ḡ[N],
with impulse response

n̄[N](t,τ ) = C[N](t)eQ(t−τ )B[N](τ ),

B[N](t) =
N∑

k=−N

Bkejkω 0 t, C[N](t) =
N∑

k=−N

Ckejkω 0 t,

where Q is the (Floquet-transformed) state matrix A(t), see the discussion
in Section 1.2. The HTF of Ḡ[N] has 4N + 1 diagonals, but notice that in
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general
Ḡ[N] �= G[2N].

Hence, Ḡ[N] are in general not H2-optimal approximations of G, see Re-
mark 5.

There are some other simple relations between input, output, and skew
roll-off that are now easy to obtain. The following corollary states two
results.

COROLLARY 2—RELATIONS BETWEEN DIFFERENT ROLL-OFF CONCEPTS

Assume that G has output roll-off k1 and input roll-off k2. Then

(i) the transfer functions n̂k( jω ), have at least roll-off max{k1, k2} for
all k (in the classical sense);

(ii) G has at least skew roll-off min{k1, k2} − 1.

Proof. (i). Follows by a contradiction proof. Assume that there exists a
k so that nk( jω ) has roll-off smaller than L = max{k1, k2}. Then by using
the definition of input/output roll-off and the induced L2-norm formula
in Proposition 2 we can derive a contradiction.
(ii). Study the HTF of G − PΩ GPΩ with Ω = (N + 1/2)ω 0. Then use

the norm formula in Proposition 2, and we see from the convergence of
square-truncated HTFs that

iG2N+1iL2→L2 = sup
ω
hn̂2N+1( jω )h ≤ C1 ⋅ Ω−k1 + C2 ⋅ Ω−k2 .

Hence, there is a constant K such that iGkiL2→L2 ≤ K ⋅ hkh−min{k1 ,k2}. After
using the triangular inequality as in (35) the result follows.

Notice that the roll-off estimates given in Corollary 2 may be very con-
servative. Consider, for example, time-invariant systems with input and
output roll-off k. Corollary 2 (ii) then says that the skew roll-off is at least
k− 1, when it in fact is infinite. In general Lemma 1 and Theorem 5 are
better to use, but Corollary 2 shows that there are connections between
the different roll-off concepts.

5. Closed-Loop Systems and Inverses

In this section, we study closed-loop systems with time-periodic G, see
Figure 1. The closed-loop operator is (I+G)−1. For the closed-loop system
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G
+

u

y

−1

Figure 1. A closed-loop system. The relation between input and output is y =
(I + G)−1u.

to be stable in the normal sense, we need to show that i(I + G)−1iL2→L2

is bounded and that (I + G)−1 is causal.
To approximate G we have used the square truncation PΩ1 GPΩ2 and

the skew truncation G[N]. We now investigate the properties of (I +
PΩ1 GPΩ2)−1 and (I + G[N])−1.

We should first remember that even if G is causal, the approximation
PΩ1 GPΩ2 is non-causal, even if it gets “less non-causal” as it converges
to G. For this reason it is difficult to prove causality of (I + G)−1 by
studying (I + PΩ1 GPΩ2)−1. However, to compute i(I + G)−1iL2→L2 , we
have the following result:

THEOREM 6—APPROXIMATION OF (I + G)−1 USING PΩ1 GPΩ2

Assume that (I+G)−1 and (I+PΩ1 GPΩ2)−1 are bounded operators on L2,
and that G has output roll-off k1 and input roll-off k2. Then the relative
L2-induced norm error is bounded

i(I + G)−1 − (I + PΩ1 GPΩ2)−1iL2→L2

i(I + G)−1iL2→L2

≤ i(I+PΩ1 GPΩ2)−1iL2→L2(C1Ω
−k1
1 +C2Ω

−k2
2 ).

Proof. First we make an orthogonal decomposition of the Hilbert space
L2, so that L2 = PΩ L2⊕QΩ L2. In this basis G takes the operator-matrix
form

G =
[

G11 G12

G21 G22

]

,

where G11 : PΩ2 L2 → PΩ1 L2, G12 : QΩ2 L2 → PΩ1 L2, G21 : PΩ2 L2 →
QΩ1 L2, and G22 : QΩ2 L2 → QΩ1 L2. Next we notice that

i(I + G)−1 − (I + PΩ1 GPΩ2)−1iL2→L2 ≤ i(I + G)−1iL2→L2

� iI − (I + G)(I + PΩ1 GPΩ2)−1iL2→L2 ,
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and that second factor on the right hand side in matrix form becomes

I −
[

I + G11 G12

G21 I + G22

] [ (I + G11)−1 0

0 I

]

= −
[

0 G12

G21 G22

] [ (I + G11)−1 0

0 I

]

.

The norm of the first factor is bounded by C1Ω−k1
1 +C2Ω−k2

2 , and the second
factor is bounded by i(I + PΩ1 GPΩ2)−1iL2→L2 , and the result follows.

The approximation G[N] is a finite sum of modulated time-invariant
causal systems, and hence G[N] is a causal approximation of G. If we de-
compose G as G = G[N]+∆, we may study the causality and boundedness
of (I + G)−1 with the help of the small-gain theorem. First notice that

(I + G)−1 = (I + G[N] + ∆)−1 = (I + (I + G[N])−1∆)−1(I + G[N])−1. (44)

Now if N is large enough and (I + G[N])−1 is stable, we have

i(I + G[N])−1∆iLr→Lr
< 1, 1 ≤ r ≤ ∞, (45)

and we can make the following Neumann series expansion with absolute
convergence in induced Lr-norm

(I + (I + G[N])−1∆)−1 =
∞∑

k=0

(I + G[N])−k(−∆)k. (46)

Notice that under the assumption (45), and that (I + G[N])−1 is causal,
(46) is a causal operator. This follows since the terms in the series are
causal and tend geometrically to zero. Bounds on i∆iLr→Lr

are given in
Theorems 4 and 5.

If the approximation error ∆ is small, and if (I+G[N])−1 is stable, then
stability of (I + G)−1 follows. We formalize this in the following theorem.

THEOREM 7—APPROXIMATION OF (I + G)−1 USING G[N]
Assume that (I + G[N])−1 is a bounded and causal operator on Lr, where
1 ≤ r ≤ ∞, and that

κ = i(I + G[N])−1iLr→Lr
i∆iLr→Lr

< 1,

where ∆ = G − G[N]. Then

(I + G)−1 =
( ∞∑

k=0

(I + G[N])−k(−∆)k
)

(I + G[N])−1 (47)
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is a bounded and causal operator on Lr. Furthermore, the error is bounded

i(I + G[N])−1 − (I + G)−1iLr→Lr

i(I + G[N])−1iLr→Lr

≤ κ

1− κ
. (48)

Proof. (47) follows from (44) and (46). (48) follows from a simple bound
on the geometric series.

Theorems 6 and 7 show that conclusions about the closed-loop system
can be made from studies of the truncated representations of G. Theo-
rem 6 may be used to estimate the induced L2-norm of the closed-loop
system. If the square truncated HTFs are used, the necessary computa-
tion becomes

i(I + PΩ1 GPΩ2)−1iL2→L2 = 1/min
ω∈I0

σ
(

(I + Ĝ(N1,N2)( jω ))
)

.

To use Theorem 7, one needs (I+G[N])−1, which may be difficult to obtain,
even though G[N] has a simple structure.

6. Application to State-Space Models

Now we return to the state-space systems described in (4), and show how
the results in the previous sections may be applied.

6.1 Floquet-Transformed State-Space Models

Assume that a Floquet transformation, see, for example [Rugh, 1996],
has been performed on the state-space realization (4) of G, and that the
Fourier series

B(t) =
∞∑

l=−∞
Bl e

jlω 0t, C(t) =
∞∑

k=−∞
Ckejkω 0t,

are absolutely convergent. The state matrix is constant, A(t) = Q. Then
the Fourier series of the impulse response n(t, t− r) is given by

n(t, t− r) = C(t)eQr B(t− r) =
∞∑

k=−∞

( ∞∑

l=−∞
Ck−l e

Qr Bl e
− jlω 0r

)

ejkω 0t,
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after interchange of summation order. Hence, the Fourier coefficients of
G, see Section 3, are given by

nk(r) =
∞∑

l=−∞
Ck−l e

Qr Bl e
− jlω 0r.

Using the definition (39) of Ĝ( jω ), we see that Ĝ( jω ) is identical to
the HTF defined in [Wereley, 1991; Zhou and Hagiwara, 2002a]. By the
analysis of square and skew truncations of the HTF in this paper, we now
also better know its convergence properties.

6.2 Convergence of the Truncated Harmonic Balance Method

As discussed in Section 1.2, it is of interest to compute the HTF of a
state-space model without first applying the Floquet transform. Truncated
harmonic balance was suggested as a method for this in, for example,
[Zhang and Zhang, 1997]. However, to the authors’ knowledge, no analysis
of how and when this method converges has been presented. We will do an
attempt to analyze the method here. To guarantee convergence we must
change the method slightly.

Define the multiplication operator A as follows:

y = Ax : y(t) = A(t)x(t),

and B and C similarly. The input-output relation of the state-space model
(4) is then given by

y = Gu = C(pI − A)−1 Bu = C

(

I − 1
p+ ε

(A+ ε )
)−1 1

p+ ε
Bu, (49)

for all ε > 0, where p is the differentiation operator. The reason for intro-
ducing ε is to make all operators bounded. Equation (49) is decomposed
of three simple operators

(C ,A ,B ) =
(

C,
1

p+ ε
(A+ ε ), 1

p+ ε
B

)

. (50)

The operators A and B have impulse responses of the type

nA (t,τ ) = e−ε (t−τ )(A(τ ) + ε ),
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and the HTF ˆA ( jω ) becomes














. . . 0
1

ε+ j(ω+ω0)
1

ε+ jω

1
ε+ j(ω−ω0)

0
. . .





























. . .
. . .

. . .
. . .

. . . A0 + ε A1 A2

. . . A−1 A0 + ε A1
. . .

A−2 A−1 A0 + ε
. . .

. . .
. . .

. . .
. . .
















.

where the second factor is a Toeplitz operator and {Ak}k∈Z are the Fourier
coefficients of A(t). It is now straightforward to check the input and output
Markov parameters. The first Markov parameters of A and B are A(t)+ε
and B(t), and hence, both A and B have input and output roll-off 1, by
Theorem 2. If both A(⋅) and B(⋅) belong to C L(R), then A and B have
skew roll-off L − 1, by Theorem 5.

Let us focus on the square truncations, since these are suggested in
[Zhang and Zhang, 1997]. Under the assumptions of Theorem 6 and (15),
and that the operators are bounded for all Ω, we have bounds

i(I − A )−1 − (I − PΩA PΩ)−1iL2→L2 ≤ KA (N) = O(N−1),
iB − PΩB PΩiL2→L2 ≤ KB (N) = O(N−1),

as N →∞, and Ω = (N + 1/2)ω 0.
To approximate C , we use skew truncations C [N], since C is a multi-

plication operator and has no input and output roll-off. If C(⋅) is periodic
and in C L(R), we have that an Nth-order skew truncation converges as

iC − C [N]iL2→L2 ≤ K ⋅ N−(L−1) = KC (N),

for some constant K . The HTF of C [N] is a Toeplitz operator with the
Fourier coefficients C−N . . . CN on the diagonals.

Hence, by square truncations of each of the operators in (50), we can
approximate PΩ GPΩ with

P̂Ω GPΩ := PΩC [N](I − PΩA PΩ)−1[PΩB PΩ]

and

iPΩ GPΩ − P̂Ω GPΩiL2→L2

≤ c1 KA (N) + c2 KB (N) + c3 KC (N) = O(N−1), (51)
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as N → ∞, for some constants c1, c2, c3. In (51) it is assumed that all
involved operators have bounded norm as N → ∞. Notice that (51) is a
worst-case bound. If the system is time invariant, all the operators are
diagonal and P̂Ω GPΩ = PΩ GPΩ .

If we approximate G, then we obtain

iG− P̂Ω GPΩiL2→L2 ≤ C1 ⋅Ω−k1+C2 ⋅Ω−k2+c1 KA (N)+c2 KB (N)+c3 KC (N).

The first part of the error bound depends on the input and output roll-off
of G, which are determined by the Markov parameters in Table 1. The
second part depends on the operators A ,B , and C , as discussed above.

To summarize, by pulling out p+ ε we have been able to show conver-
gence of the truncated harmonic balance method suggested in [Zhang and
Zhang, 1997]. We have also seen that the worst-case convergence rate is
slow, only O(N−1) for matrix dimensions (2N+1)�(2N+1). The advan-
tage with the method is that we only work with the Fourier coefficients of
the realization and simple linear algebra. No knowledge of the transition
matrix ΦA(t,τ ) is needed.

If the transition matrix is known, we can compute the elements in
PΩ GPΩ exactly by our results in Section 4. Then the convergence of square
truncations may be much faster, and depends only on the input and output
roll-off.

Since the convergence rate of the square-truncation method may be
slow, it is an interesting problem for future research to study how the
method may be improved. We can redo the above computations using skew
truncations. Then, however, the matrices will not be of finite dimension.

7. Conclusion

We have studied linear time-periodic systems from a frequency-domain
point of view in this paper. We started to study Taylor expansions of
time-varying systems and defined input and output Markov parameters.
We also introduced the concepts of input and output roll-off. These roll-off
rates are determined by the Markov parameters. Next we studied Fourier
expansions of periodic systems in H2. We also gave sufficient conditions
for convergence rates of truncated Fourier expansions in induced Lr-norm,
and introduced the concept of skew roll-off.

After the Fourier expansion, it was straightforward to define the fre-
quency-response operator that is called the HTF. The roll-off concepts were
shown to determine the decay rates of elements in different directions of
the HTF, and we were able to strengthen available convergence bounds.
After studies of the closed-loop system, we applied the results to systems
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given on state-space form. This allowed us to give conditions under which
the truncated harmonic balance method converges. This method is inter-
esting since only the Fourier coefficients of the realization are needed.
However, the convergence rate can be quite slow.

This paper has provided a systematic convergence analysis of the HTF.
This is important since in all applications listed in Section 1.1, some sort
of truncation is used. We have analyzed the most common approaches of
truncation here. However, it is still unclear how the HTF is best truncated.
Furthermore, the truncated harmonic balance method is an interesting
topic for future research. The reason for this is that it does not require
knowledge of the transition matrix for A(t). Most other methods that
apply to periodic systems require such knowledge.
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Paper IV

A Bode Sensitivity Integral for

Linear Time-Periodic Systems

Henrik Sandberg and Bo Bernhardsson

Abstract

Bode’s sensitivity integral is a well-known formula that quantifies
some of the limitations in feedback control for linear time-invariant
systems. In this paper, we show that there is a similar formula for
linear time-periodic systems. The harmonic transfer function is used
to prove the result. To state the result we introduce the notion of
roll-off 2, which means that the first time-varying Markov parameter
is equal to zero. Then it follows that the harmonic transfer function
is an analytic operator and a trace class operator. This is needed to
prove the result.
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Sandberg, H. and B. Bernhardsson (2004): “A Bode sensitivity integral for
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G

−1

u

y
+

Figure 1. The sensitivity operator S is defined as y = Su = (I + G)−1u.

1. Introduction

In recent years there has been an increased interest for the fundamental
limitations in feedback control. One reason for this is that in many control
design tools these limitations are not clearly visible, and an inexperienced
designer can easily specify performance criteria that are not possible to
attain. The articles [Stein, 2003] and [Åström, 2000] contain examples
of this. There are many of these limitations in control. The connection
between amplitude and phase of transfer functions and Bode’s sensitivity
integral formula are two examples. The limitations come from the fact
that the transfer functions are analytic functions, and this has strong
implications.

In this paper we focus on Bode’s sensitivity integral. This is a standard
result in control, see for example [Glad and Ljung, 2000]. The sensitivity
function S = (I + G)−1 is defined as in Figure 1. The result says that
the sensitivity function cannot be small for all frequencies. If the transfer
function Ĝ(s) of the open-loop system G has roll-off 2 and is stable, then
we have in the multi-input-multi-output (MIMO) case that

∫ ∞

0
log hdet(I + Ĝ( jω ))−1h dω = 0. (1)

This is also called the waterbed effect. In particular, the modulus of the
sensitivity, hdet Ŝ( jω )h, cannot be less than 1 for all frequencies ω .

This trade-off holds for time-invariant linear systems. It is known that
there are limitations also for linear time-varying and nonlinear systems,
see for example [Zang, 2004]. However, frequency-domain methods are
then often not applicable. In the paper [Iglesias, 2002], an analogue to (1)
is developed for continuous-time time-varying linear systems. The sensi-
tivity integral is interpreted as an entropy integral in the time domain,
i.e., no frequency-domain representation is used. For discrete-time time-
varying systems similar time-domain results are given in [Iglesias, 2001].

For time-periodic linear systems there do exist frequency-domain rep-
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resentations. Sampled-data systems are a special type of time-periodic
systems. Fundamental limitations for sampled-data systems are studied
in [Freudenberg et al., 1995; Ortiz et al., 2000] using transfer function
techniques. We study general time-periodic systems in this paper and we
use the harmonic transfer function (HTF), see [Wereley, 1991; Möllerst-
edt and Bernhardsson, 2000; Zhou and Hagiwara, 2002], which formally
is a MIMO transfer function Ĝ(s) with an infinite amount of inputs and
outputs. Using the convergence and existence results for the harmonic
transfer function that are developed in [Sandberg et al., 2004] we will be
able to write (1) with Ĝ( jω ) being the HTF. To do this we need to answer
the following questions:

1. What does roll-off 2 mean for a time-periodic system?

2. In what sense is the HTF Ĝ(s) analytic?

3. What does the determinant mean for the HTF?

We do not consider open-loop unstable systems in this paper. This
case is considered in [Iglesias, 2002] using exponential dichotomies. In
the time-invariant case when the open-loop system is unstable, the right
hand side of (1) is equal to π

∑

i Re pi, where pi are the unstable open-loop
poles, see [Freudenberg and Looze, 1985]. The authors do believe that it
will be possible to generalize the method of this paper to cover also the
unstable case.

During the completion of this article, the authors became aware of
the independent work in [Colaneri, 2004]. The sensitivity integral derived
there is similar to the one in this paper, but it applies to open-loop unstable
periodic systems. However, the result is derived using other techniques,
from [Iglesias, 2002], and is restricted to state-space models.

The paper is organized as follows: In Section 2, we give some of the
basic results for the harmonic transfer function. The section ends with
Proposition 1 which tells what roll-off 2 means. In Section 3, we review
what an analytic operator is. In Proposition 2, we show that with roll-
off 2 the HTF is in fact an analytic operator. In Section 4, we review
the definition of the trace class operators and the operator determinant.
In Proposition 3, we see that the HTF indeed is a trace class operator
and that the determinant is well defined. By using the propositions of
the previous sections, we can in Section 5 state the main result, which
is a direct analogue of (1) for periodic systems. In Section 6, we give an
example of the result.

This article is based on the conference papers [Sandberg and Bern-
hardsson, 2004a; Sandberg and Bernhardsson, 2004b].
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2. The Harmonic Transfer Function and Roll-Off

It is shown in [Sandberg et al., 2004] how the harmonic transfer function
of a time-periodic system G given on impulse-response form

y(t) =
∫ t

−∞
n(t,τ )u(τ )dτ (2)

can be computed. We repeat some results briefly here. For a periodic

system there is a period T �= 0 such that

n(t,τ ) = n(t+ T ,τ + T). (3)

We assume that n(t,τ ) is real and has uniform exponential decay

hn(t,τ )h ≤ K ⋅ e−α (t−τ ), t ≥ τ ,

for some positive constants K and α . The operator G is then bounded on
L2.

To define the HTF of a linear periodic system G we need the following
steps: First we expand the periodic impulse response (3) in a Fourier
series

n(t,τ ) =
∞∑

l=−∞
nl(t− τ )ejlω 0t, ω 0 =

2π

T
,

nl(t− τ ) = 1
T

∫ T

0
n(r, r − t+ τ )e− jlω 0rdr,

(4)

with convergence in L2, see [Sandberg et al., 2004]. Hence, we expand
the periodic system into a sum of modulated time-invariant impulse re-
sponses nl(t). For exponentially stable systems we can apply the Laplace
transform on each time-invariant impulse response nl(t),

n̂l(s) =
∫ ∞

0
nl(t)e−stdt, Re s > −α . (5)

Furthermore, we have that n̂l(s) is analytic in Re s > −α and n̂l ∈ H2 ∩
H∞. Now the HTF Ĝ(s) is defined as the infinite-dimensional matrix















. . .
. . .

. . .
. . . n̂0(s+ jω 0) n̂1(s) n̂2(s− jω 0)
. . . n̂−1(s+ jω 0) n̂0(s) n̂1(s− jω 0)

. . .

n̂−2(s+ jω 0) n̂−1(s) n̂0(s− jω 0)
. . .

. . .
. . .

. . .















(6)
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for complex numbers s in a region J0,

J0 = {s : Re s ≥ 0, Im s ∈ I0}
I0 = (−ω 0/2,ω 0/2], ω 0 = 2π/T .

Notice that we only need to define the HTF for frequencies ω ∈ I0. The
HTF Ĝ(s) is a linear infinite-dimensional operator, which is a bounded
operator on the space of square-summable sequences Q2 (at least for almost
all s ∈ J0).

In [Wereley, 1991; Zhou and Hagiwara, 2002; Sandberg et al., 2004] it
is shown that for stable systems G we can compute the induced L2-norm
as

iGiL2→L2 = sup
iuiL2≤1

iGuiL2 = ess sup
ω∈I0

iĜ( jω )i∞, (7)

where i⋅i∞ is the induced Q2-norm.

2.1 Roll-Off of Periodic Systems

For all numbers q we can rewrite (2) as

y(t)e−qt =
∫ t

−∞
[n(t,τ )e−q(t−τ )]u(τ )e−qτ dτ . (8)

We use the notation

yq = Gquq,

where the operator Gq has impulse response n(t,τ )e−q(t−τ ) and maps in-
put signals of the type uq(t) = u(t)e−qt into signals yq(t) = y(t)e−qt. For
every fixed q ≥ 0 we may apply the theory developed in [Sandberg et al.,
2004]. In particular we may apply the time-varying Markov parameter
expansions.

In the following proposition we use the notation n(a)x = Van/V xa, and p

is the differential operator pu(t) = du(t)/dt. Furthermore, the set S is the
set of Schwartz functions, i.e., the set of infinitely differentiable functions
u(t) with tapbu(t) bounded for t ∈ R and all non-negative a and b. The
set S is dense in L2.

PROPOSITION 1
Assume that n(t, t) = 0 for all t, that n(t,τ ) is twice continuously differ-
entiable in the region t ≥ τ , and that all the derivatives have uniform
exponential decay. Then G is said to have roll-off 2, and for all q ≥ 0 we
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may expand (8) in either of the following ways,

yq(t) = −n′τ (t, t) 1
(p+ q)2 uq(t) +

∫ t

−∞
[n′′τ (t,τ )e−q(t−τ )] 1

(p+ q)2 uq(τ )dτ , (9)

yq(t) =
1

(p+ q)2n
′
t(t, t)uq(t) +

1
(p+ q)2

∫ t

−∞
[n′′t (t,τ )e−q(t−τ )]uq(τ )dτ , (10)

when uq ∈ S .

Proof. We prove (10). (9)may be proven similarly. By the assumptions on
n(t,τ ) and since uq ∈ S , yq is absolutely (and hence uniformly) continuous
and belongs to L1. By Barbalat’s lemma we conclude that yq(t) → 0 as
hth → ∞. If we differentiate (8) with respect to t we obtain

d

dt
yq(t) = n(t, t)uq(t) − qyq(t) +

∫ t

−∞
[n′t(t,τ )e−q(t−τ )]uq(τ )dτ . (11)

If we integrate (11) over (−∞, t] and solve for yq(t) we obtain

yq(t) =
1

p+ q
n(t, t)uq(t) +

1
p+ q

∫ t

−∞
[n′t(t,τ )e−q(t−τ )]uq(τ )dτ .

By assumption, n(t, t) = 0 and the first term disappears. If we repeat the
above procedure on the second term we obtain (10).

We say that the systems in Proposition 1 have roll-off 2, see also [Sand-
berg et al., 2004]. This can be motivated as follows. We introduce PΩ as
an ideal (non-causal) low-pass filter with the frequency characteristic

P̂Ω( jω ) =
{

1, hω h ≤ Ω

0, hω h > Ω
.

Proposition 1 together with the facts that S is dense in L2 and that the
Fourier transform of a function in S is again in S , implies that if we filter
the input or the output of systems Gq there are positive constants C1, C2,δ
such that

iGq(I − PΩ)iL2→L2 ≤
C1

hδ + q+ jΩh2 , (12)

i(I − PΩ)GqiL2→L2 ≤
C2

hδ + q+ jΩh2 . (13)

To show (12) one uses (9), and to show (13) one uses (10), see [Sandberg
et al., 2004]. In particular, we have that iGqiL2→L2 = O(q−2) as q → ∞
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and iGq(I − PΩ)iL2→L2 = O(Ω−2) and i(I − PΩ)GqiL2→L2 = O(Ω−2) for
each fixed q as Ω →∞.

The relation between the HTF of G and Gq is simple,

Ĝ(q+ jω ) = Ĝq( jω ), q+ jω ∈ J0,

so it is enough to speak of Ĝ(s). The high-pass filtering of Gq with (I−PΩ)
means that rows or columns are truncated (replaced by zeros) in Ĝ(s).
If we choose Ω = (N + 1/2)ω 0 for some non-negative integer N, then
Gq(I − PΩ) has an HTF where the 2N + 1 middle columns of Ĝ(s) are
replaced by zeros. (I − PΩ)Gq has an HTF where the 2N + 1 middle rows
of Ĝ(s) are replaced by zeros, see [Sandberg et al., 2004] for details. This
has consequences for the roll-off of the individual transfer functions n̂l(s)
as is shown in the next section.

REMARK 1
For a stable time-invariant system with smooth impulse response n(t,τ ) =
n(t−τ ), t ≥ τ , the Markov parameters are equal to {n(0), n′(0), n′′(0), . . .}.
If n(t, t) = n(0) = 0 then we have that

hn̂(s)h = O(hsh−2),

as hsh → ∞ and Re s ≥ 0. This is called roll-off 2 for a time-invariant
system.

3. Analytic Operators

To prove Bode’s integral theorem for time-invariant systems, one uses
that the transfer function is analytic and Cauchy’s integral theorem. We
will do something similar. The HTF is an infinite-dimensional operator
and therefore we will need some of the theory for analytic operators.

There are several equivalent definitions of an analytic operator, see
for example [Kato, 1976]. We say that a bounded linear operator Ĝ(s) is
analytic in an open set Ω ⊆ C if it can be expanded in a power series
around each s0 ∈ Ω,

Ĝ(s) =
∞∑

k=0

(s− s0)kĜk, s ∈ Ω(s0) ⊆ Ω,

with uniform convergence in the open disc Ω(s0) in the induced Q2-norm,
i⋅i∞. The constant operators Ĝk are linear bounded operators on Q2. To
prove that the HTF Ĝ(s) is an analytic operator we can check the following
sufficient conditions [Kato, 1976]:
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K1 All the elements of Ĝ(s) are analytic functions in Ω.

K2 There is a positive constant K such that iĜ(s)i∞ ≤ K for all s ∈ Ω.

The property K1 follows by (5) and (6). The property K2 needs some
extra attention. We will use the Hilbert-Schmidt norm to prove it. It is
well known that the Hilbert-Schmidt norm i⋅i2 gives an upper bound to
the induced Q2-norm, i.e., iĜ(s)i∞ ≤ iĜ(s)i2. Now, by definition

iĜ(s)i2
2 =

∞∑

k,l=−∞
hn̂l(s+ jkω 0)h2. (14)

We will show that we can bound the sum (14) for all s ∈ J0.
By using the roll-off formulas and the discussion about the truncation

of rows and columns in Section 2.1, we can conclude that for all non-
negative integers N, and Re s ≥ 0,

hn̂l(s)h ≤
C1 + C2

N2ω 2
0 + δ 2

, l ∈ Z, hlh ≥ 2N + 1, (15)

hn̂l(s)h ≤
C1

hδ + sh2 , l ∈ Z, (16)

The first bound follows since iGq−PΩ GqPΩiL2→L2 ≤ i(I−PΩ)Gq)iL2→L2+
iGq(I − PΩ)iL2→L2 ≤ (C1 + C2)/(N2ω 2

0 + δ 2) when Ω = (N + 1/2)ω 0. The
modulus of the analytic elements of the HTF of Gq − PΩ GqPΩ must be
less or equal to the L2-induced norm according to (7). As the transfer
functions n̂l(s), hlh ≥ 2N + 1, are not truncated with this choice of Ω,
(15) follows. The second bound follows since the modulus of the analytic
functions n̂l(s) must be less than the L2-induced norm bound in (12), and
then we can choose s = q+ jΩ.

Hence, roll-off 2 for a time-periodic system as defined in Proposition 1
implies that the transfer functions n̂l(s) on the diagonals of Ĝ(s) have
roll-off 2 in the classical sense (Remark 1). Now we can prove that Ĝ(s)
is analytic.

PROPOSITION 2
If the periodic system G fulfills the assumptions of Proposition 1, then its
harmonic transfer function Ĝ(s) is an analytic operator for s ∈ J0.

Proof. If we use the bounds (15)–(16) for s = jω in (14) we show, see
below, that the sum converges uniformly and there is a constant K such
that

iĜ( jω )i∞ ≤ iĜ( jω )i2 ≤ K , ω ∈ I0. (17)
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By the maximum modulus theorem hn̂l(q+ jω )h ≤ hn̂l( jω )h, q > 0. We then
also show that iĜ(s)i2 ≤ K , s ∈ J0.

We now prove (17). To compute the Hilbert-Schmidt norm we shall
sum over the indices k and l. By using (16) the sum in the k-direction
converges for each l,

S(l) =
∞∑

k=−∞
hn̂l( jω + jkω 0)h2 < ∞.

We need to show that
∑∞

l=−∞ S(l) ≤ K 2. From (15)–(16) we have

hn̂±(2N+1)( jω )h ≤ (C1 + C2)min
{

1
N2ω 2

0
,

1
hω h2

}

.

For ω ∈ I0 and a fixed N > 0 we have

S(±(2N + 1)) ≤ (C1 + C2)2
(

2N − 1
N4ω 4

0
+ 2

∞∑

k=N

1
hω + kω 0h4

)

≤ C

N3

where C is a constant independent of ω . We can derive a similar bound
for S(±2(N + 1)). Hence, we have that S(l) = O(hlh−3) as hlh → ∞, and
the sum

∑

l S(l) converges and there exists a constant K as in (17).
Since Ĝ(s) fulfills the conditions K1 and K2, it is analytic and the

proposition follows.

4. Trace Class Operators and Determinants

In the linear time-invariant MIMO Bode integral (1) the determinant of
the transfer function matrix is used. We need to define a determinant for
infinite-dimensional operators also. This can be done for so-called trace
class operators, see [Gohberg and Krein, 1969; Böttcher and Silbermann,
1990]. For a trace class operator Ĝ the determinant is defined as

det(I + Ĝ) =
∏

k

(

1+ λ k(Ĝ)
)

, (18)

where λ k(Ĝ) are the eigenvalues of Ĝ. Trace class operators are compact
operators and have a countable number of eigenvalues. The possibly infi-
nite product (18) converges for trace class operators, see (21). Note that
for finite matrices, (18) coincides with the regular determinant.
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For the definition of a trace class operator we need the s-numbers (or
singular numbers) of an operator Ĝ,

sk(Ĝ) = inf{iĜ − Ĝki∞ : rank Ĝk ≤ k}.

The numbers sk tell how well Ĝ may be approximated by a finite-rank
operator. If Ĝ is compact we have that sk → 0 as k→∞ and s0 = iĜi∞.
The trace class operators are those operators for which

iĜi1 =
∞∑

k=0

sk < ∞. (19)

With the norm i⋅i1 the trace class operators form a complete normed
space, see [Gohberg and Krein, 1969]. We have that

trace Ĝ =
∑

k

λ k(Ĝ) ≤ iĜi1, (20)

hdet(I + Ĝ)h ≤ exp(iĜi1). (21)

Next we will see that under the assumptions of Proposition 1, the HTF
Ĝ(s) is in fact a trace class operator for all s ∈ J0.

The HTF of GqPΩ , with Ω = (N + 1/2)ω 0, has elements equal to zero
everywhere except for its 2N + 1 middle columns which are identical to
the 2N + 1 middle columns of Ĝ(s) defined by (6). Hence, the truncated
HTF has at most rank 2N + 1. We know that GqPΩ converges to Gq

as O(Ω−2) = O(N−2) from (12). Using the norm formula (7) and the
continuity of Ĝq( jω ) (Ĝ(s) is analytic), we conclude that for each q+ jω ∈
J0 we have that

s2N+1(Ĝq( jω )) ≤ iĜq( jω )(I − P̂Ω( jω ))i∞

≤ iGq(I − PΩ)iL2→L2 ≤
C1

hδ + q+ jΩh2

≤ C1

(δ + q)2 + N2ω 2
0

.

(22)

For each fixed s the singular numbers sk(Ĝ(s)) decay as O(k−2) for sys-
tems with roll-off 2. We are now ready to state the proposition of this
section.

PROPOSITION 3
If the periodic system G fulfills the assumptions of Proposition 1, then its
harmonic transfer function Ĝ(s) is a bounded trace class operator in J0,

iĜ(q+ jω )i1 ≤
K1

K2 + q
, q+ jω ∈ J0,
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for some positive constants K1, K2.

Proof. We have that

s0(Ĝ(q+ jω )) = iĜ(q+ jω )i∞ ≤ iGqiL2→L2 ≤
C1

(δ + q)2 ,

and for N = 0, 1, 2, . . . we have that s2N+1(Ĝ(q+ jω )) is bounded as in
(22). The singular numbers form a decreasing sequence and hence we can
make the upper estimate

s2N+2(Ĝ(q+ jω )) ≤ s2N+1(Ĝ(q+ jω )).

Now we can use these estimates to bound the trace norm (19),

iĜ(q+ jω )i1 ≤
∞∑

k=0

2C1

(δ + q)2 +ω 2
0k2

≤ K1

K2 + q
,

for some constants K1, K2.

Before stating the main result, we need the following lemma.

LEMMA 1—[GOHBERG AND KREIN, 1969]
If Ω is an open set in C and if Ĝ(s) is an analytic trace-class-operator-
valued function for s ∈ Ω, then det(I + Ĝ(⋅)) : Ω → C is an analytic
function.

5. Main Result

Using Propositions 1–3 and Lemma 1 we are finally ready to state the
analogue of Bode’s sensitivity integral, applicable to time-periodic sys-
tems.

THEOREM 1—SENSITIVITY INTEGRAL

Assume that a stable linear time-periodic system G has roll-off 2 in the
sense of Proposition 1. Assume furthermore that the sensitivity operator
S = (I + G)−1 is stable, i.e., there is an ε such that

hdet (I + Ĝ(s))h ≥ ε > 0, s ∈ J0. (23)

Then
∫ ω 0/2

0
log hdet(I + Ĝ( jω ))−1h dω = 0. (24)
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Im s

Re s
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γ 2

γ 3

γ 4

jω 0/2

− jω 0/2
R

Figure 2. The integration path ΓR.

Proof. We have that det(I+Ĝ(s))−1 = 1/ det(I+Ĝ(s)), see [Böttcher and
Silbermann, 1990]. From Proposition 3 we know that iĜ(s)i1 ≤ K1/K2.
Using (21) and (23) we then have that

1
exp(K1/K2)

≤ hdet(I + Ĝ(s))−1h ≤ 1
ε

and hence det(I + Ĝ(s))−1 is a bounded function which does not become
zero for s ∈ J0.

Since det(I + Ĝ(s))−1 is nonzero in J0, we can define a complex loga-
rithm there. Now,

log det(I + Ĝ(s))−1 = − log det(I + Ĝ(s)).

From Propositions 1–3 and Lemma 1 we know that det(I + Ĝ(s)) is an
analytic function in J0. Then for any simply closed curve Γ ⊂ J0,

∫

Γ

log det(I + Ĝ(s))−1ds = 0, (25)

by Cauchy’s integral formula. To prove the theorem we choose the curve
ΓR shown in Figure 2 and let R →∞.

First we evaluate the integral (25) along γ 2 and γ 4. Notice that

∫ R

0
log det(I + Ĝ(q+ jω 0/2))−1dq

+
∫ 0

R

log det(I + Ĝ(q− jω 0/2))−1dq = 0
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for all R. The cancellation is because

det(I + Ĝ(q− jω 0/2)) = det(I + Ĝ(q+ jω 0/2))

for all q. This follows by the structure (6) of the HTF and the definition
of the determinant.

Next we evaluate the integral along γ 3. The complex logarithm is de-
fined as

log det(I + Ĝ(s)) = loghdet(I + Ĝ(s))h + j arg det(I + Ĝ(s)).

When the impulse response n(t,τ ) is real we have that n̂l(s) = n̂−l(s̄) and
by the structure (6) and the definition of the determinant that

arg det(I + Ĝ(s)) = − arg det(I + Ĝ(s̄))
hdet(I + Ĝ(s))h = hdet(I + Ĝ(s̄))h.

(26)

The argument is an anti-symmetric function, so when we integrate over
the symmetric interval γ 3 it disappears,

∣
∣
∣
∣
∣

∫ −ω 0/2

ω 0/2
log det(I + Ĝ(R + jω ))d( jω )

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫ −ω 0/2

ω 0/2
loghdet(I + Ĝ(R + jω ))hd( jω )

∣
∣
∣
∣
∣

≤
∫ −ω 0/2

ω 0/2
iĜ(R + jω )i1 dω ,

for each fixed R. The last bound follows by (21). Now iĜ(R + jω )i1 con-
verges uniformly to zero as R → ∞ according to Proposition 3. The inte-
gral along γ 3 then goes to zero as R → ∞. The only term remaining of
(25) is the integral along γ 1,

∫ ω 0/2

−ω 0/2
log det(I + Ĝ( jω ))−1d( jω ) = 0.

Using (26) on the interval [−ω 0/2,ω 0/2] we obtain

∫ ω 0/2

0
log hdet(I + Ĝ( jω ))−1h dω = 0,

and the result is shown.
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Figure 3. The values of the integral (24) for different values of q in the Mathieu
equation (27). By Theorem 1, the integral must equal zero for stable closed-loop
systems. It can be verified by, for instance, Floquet analysis that the system indeed
is stable for q ∈ [0, 2.6] ∪ [9.4, 10.4].

REMARK 2—TIME-INVARIANT SYSTEMS

The integral in (1) is over the interval [0,∞) whereas the integral in (24)
is over [0,ω 0/2]. This might seem strange, but notice that for a time-
invariant system with transfer function n̂(s), the HTF is given by

Ĝ(s) = diag {. . . , n̂(s+ jω 0), n̂(s), n̂(s− jω 0), . . .},

for any ω 0 > 0, and we see that (1) and (24) are identical if we use that
n̂(s̄) = n̂(s).

6. Example: The Mathieu Equation

Now, we verify the main result on an example. We choose an open-loop
system G with dynamics given by

ÿ(t) + 0.4 ẏ(t) + 2y(t) = qcos(2t)w(t), (27)

where q is a parameter and w(t) the input. The impulse response is given
by

n(t,τ ) = q

1.4
e−0.2(t−τ ) sin(1.4(t− τ )) cos(2τ ).

Clearly the system has roll-off 2 in the sense of Proposition 1, and it is
exponentially stable. To obtain the closed-loop system in Figure 1, the
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Figure 4. The logarithm of the sensitivity function for the Mathieu equation (27)
is plotted for q = 1.0, 2.0, 3.0, and 3.5. For the bold curves (the stable systems) the
conservation law in Theorem 1 applies. When q increases the sensitivity decreases
for low frequencies. The sensitivity must then increase for high frequencies to keep
the areas below and above the zero level equal. This is the waterbed effect.

feedback w(t) = −(y(t) + u(t)) is applied. Notice that when u(t) = 0
the dynamics of the closed-loop system is given by a damped Mathieu
equation, see, for example [Wereley, 1991].

Next we compute the HTF of G using (4)–(6). Here ω 0 = 2. After
this we may compute the integral (24) for different values of q. For q ∈
[0, 2.6] ∪ [9.4, 10.4], the closed loop is stable. This can be shown by, for
instance, Floquet analysis. According to Theorem 1 the integral should
then equal zero. In Figure 3 this is verified. It is also seen that when the
closed loop is unstable, the integral is strictly less than zero.

Furthermore, we can visualize the waterbed effect for periodic sys-
tems. This is done in Figure 4. When the sensitivity decreases for some
frequencies, it must increase for other frequencies.

7. Conclusion

We have seen that there are fundamental limitations for feedback con-
trol of linear time-periodic systems. The modulus of the determinant of
the harmonic transfer function Ŝ( jω ) = (I + Ĝ( jω ))−1 cannot be made
small for all frequencies ω . The result is a direct generalization of Bode’s
sensitivity integral. To prove the result we have defined roll-off 2 for a
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time-periodic system, and used some of the theory for analytic operators
and trace class operators.
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