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Abstract

ThermodJmamics and stuff. (mainly taken from; Introduction to
the Mechanics of a Continuous Medium, LAWRENCE E. MALVERN,
Printice-hall 1969.)

1 Comparison between classical therrnodynam-
ics and continuum mechanics

The first law of thermodynamics can be regarded as an expression of the
interconvertibility of heat and work, maintaining an energ.y balance; as such
it places no restriction on the direction of the process.

In Classical mechanics of particles and rigid bodies, kinetic energ-y and po.
tential energ"y may be fully transformed from one to the other in the absence
of friction or other dissipative mechanisms. F\rrthermore such processes ca,n
equally well proceed in either direction.'When thermal phenomena are involved the situation is quite different.
For example, a friction brake on a wheel having a certain kinetic energy (due
to its rotating motion) can all be converted into internal energ"y, if the whole
system is insulated, the internal energ-y remains in the system causing its
temperature to rise. As far as the first law of thermodynamics is concerned,
the process could equally be reversed; the wheel could be set into motion by
converting internal energy into kinetic energ'y, while the temperature of the
system is decreased. Such a reversal never occurs; the frictional dissipation
is an 'irceuers'ible process. The second law of thermodynamics puts limits on
the direction of such processes.



Another example of the preferred direction is in the flux of heat between
two system at different temperatures; the heat never flows spontantaniously
from the colder system to the warmer. This is essentially the statement of
the second law of thermodynamics given by Clausius in 1850. The gist of the
second law of thermodynamics was, however, given by Carnot (1824), but
the precise statement is due to Clausius.

This does not mean that heat cail. never be transferred from a cold system
to a hot one; every mechanical refrigerator accomplishes this, but work must
be input to do it, and the transfer does not occur spontaneously.

The friction-brake example does not prove that heat can never be con-
verted to into work. Considering, for example, two heat reservoirs at different
temperatures. Heat is extracted from the hot reservoir and partly converted
into work by the heat engine, but never entirely so, since considerably portion
of the energ-y must always be rejected in the form of heat transfer to the cold
reservoir' Loosely speaking, the heat engine cannot function if there is no
difference in the temperature between the two reservoirs since no heat flow
entering the engine in this case. If this were not the case the cold reservoir
would not be needed.

The above examples have been included only to give some feeling for the
historical importance of the second law as a law of nature permitting energ.y
transfer to occur spontantaniosly only in certain preferred directions. Here,
we are, however, interested in the general mathernatical statement of the
second law of thermodynamics. To somewhat understand this mathematical
statement one must accept that yet another thermal property, namely the
entropy, is to be introduced. The entropy is such that it is always nonnegative
and is positive for an irreversible process. This inequality, known as the
clasius-Duhem inequality, will be discussed in more detail later.

Unfortunately the concept of entropy is not so readily accessible to intu-
itions accustomed to mechanical concepts. To get an feeling for its physical
significance one may think of matter as molecules The entropy can be

L.1 The reversible process of an ideal gas
The entropy 4 first appeared in thermodynamics as a state function related to
the heat transfer. In classical thermodynamics it is assumed that the specific
entropy (or entropy per unit mass) exists, such that in every reuersibleprocess



dn: (1)

is a perfect difierential. However, in general the heat input áq is not a perfect
differential 

. The heat input ág is in continuum mechanics the expression;
dq : r-div(q,) lp.

To illustrate that the reversible process (1) is a perfect difierential a¡r
example will be considered. Assume that the thermoàynamic properties p,
u and d is related as

(2)

that is, by the perfect gas law. The specific vorurne is u : rf p, and, R is
the gas constant, p is the thermodynamic pressure and d is the iemperature.
According to the assumption (2) the fluid cannot sustain any shear stresses
i.e.

T: -pI

ROp--
a

(3)

F\rrther it with assumed that the internal energ'y is a function of the temper-
ature only, i.e.

e:e(O) (4)

as suggested by experiments of Joule in 1g43. Any process in such an ideal
gas is reversible because whenever the independent variables, say specific
volume'¿r and temperature g, return to its initial values, so do the dependent
variables, e and the pressure p.

The energy balance is pe :trTrl,-div (q)+p, (as expressed in continuum
mechanics) ;_. It turns out that when having an ìdeal-fluid, i.e. T : -pr,
!.!e lrmtrTrl could be simplified by consideiing instead the volume change
V ' To illustrate this consider a 'small' rectangular element with the sides

laving the length d,r1, d,r2 and, d,rs. Hence the volume is given by v :
drldr2drs and the volume change can then be expressed as ü : d,i:d,nzd,rs*
drldù2d4 * drfir2dù3. The ratio V /V becomes

(5)



That is V f V :trl, : divi. Consider the mass balance as written within the
continuum concept i.e. þ -r pdiv* :0. Here the material time derivative of
the mass density, i.e. þ wilt be identified as the differential dp used in classical
thermodynamics to yield the mass barance raw d,pf pdiv*:0. Noting also
that a replacement of the material time derivative v with the 

"o.r"rporrdirrgnotation dV one obtain

from the mass balance d,p * pdivx :0, where dVlV:div*.
The mass density p and the specific volume u can be expressed with the

volume V and with the mass rn, as

dVdp_:
p

rnV
P: u-; þ:-vrn

(6)

(7)

(8)

(10)

Mass cannot be 'destroyed' leading to the conclusion that m : const. i.e.rn:0. That is, the expression (6) and (Z) combines to yield

dV
V

dp

p
mdu du: --: __
N'LU A

Now the energ-y balance, pè :trTTL-div (q) f pr will be rewritten by re-
placing the material time derivative e by ihe differential d,e, i.e. ã, :
trTrLlp-div(q) lp + r. Recalr, arso that the energy input âq i" defined
T dq:_r-div(q) /p. That is the energ-y balance or ãqually the first law of
thermodynamics can be written as d,e :trTrL/p + A;. when only consid-
ering fluids having the stress tensor given by T : -pr, the first iaw then
becomes

a, : -t'@,L) *¿n (9)p

But from (5) it was concluded that dvlv:trl-, and from (B) one obtained
that' dvlv : du/u. The firsr law (9) (vatid for perfecr fluidsiíly) then takes
the form

d,u

de: -pL-fdqp

Noting from (7) that the term up cancels, one obtain

¿6: -pd,u*â,q

4

(11)



which is the form often presented of the first law of thermodynamics. Not
that this form is only valid for perfect fluids.

For a constant-uolume process the internal energy 6 can be related to the
temperature d with the specific heat at constant volume co, ffi

de : â,q: Crd,g

where the general assumption (a) and the first raw (11) was used. since the
assumption of e only involves a dependence of the temperature, i.e. assump
tion (4), the specific heat can only be a function of temperature, i.e.

(r2)

(13)

(14)

(15)

(16)

(17)

(18)

d,e : Co (0) de

Returning to the second law (4) which together with the assumption (2), i.e.p: R0/u gives

d,r: -Ud,+âq

f9.." urr{ process (volume not constant) for an ideal gas. The use of (13) and
(14) yields an expression for the heat input âq, *

âq:Cu(qde+U¿u
u

â
dq : a-. (e\Y + Rþ0 -"o\")jrt a

îra;0

l+: j",@#. j^*
9orao 0o 'u6

Division by d gives

which shows t'hat dql7 is a perfect differential, in this case, since (16) can be
integrated from a reference state described by 0o and uo, i.e.

Having the specific heat constant c, constant, expression (12) reduces to

,'i "+: 
cutn(å) . "^(i)



Not that the assumption of irreversibility of the system i.e. the assump-
tion (1), makes it possible to express the 'change' of entropy a? with án
exact function, i.e.

ùt:Lq:\-To
0,a 0,ú

I i: I
9oJto 9oruo

: c,rn(å) . "r (;)
where (18) was used. This gives the change in entropy for any process (neces-
sarily reversible) in a ideal gas. It should be observed that only two material
constants C, and .R is used.

For this case the entropy is evidently a state function, returning to its
initial value whenever the temperature returns to its initial value, as it does
according to the expression (2), whenever p and o return to its initial values.

In statistical physics the Boltzmann,s principle postulate that entropy of a
state is proportional to the logarithm of its probability.. Elementary statistic
mechanics based on considering a gas as a collection of rigid molecules leads
to an expression of the following form for the total entropy ,S of a sample of
gas containing l/ molecules

,S:fr.¡/ftnv+]nel+c

(1e)

(20)

where v is the volume, á the absolute temperature, ,k is Boltzmann,s con-
stant, and C is a constant for which a definite value is obtained only by
means of quantum theory, And the total entropy ,S is related to the specific
entropy q by s : Iv prdv. It is seen that the expression for the entropy
in (19) and (20) has the same form. The identity in the forms of (19) and
(20) suggests that entropy in statistical physics and thermodynamic entropy
are really the same thing. The statistical physics interpretation in terms of
probability and tendency toward disordered macrostates furnishes a physical
significance for the otherwise rather abstract thermodynamical concept. Of
course, the identity of the two forms has been displayed here only for a very
special case, the ideal gas, i.e. for a case where the stress tensor is T : -?I.For more general materials, explicit formulas for the entropy are not easy
to come by either in thermodynamics or in statistical mechanics. However,
the main use of the thermod¡rnamic concept of entropy and the second axiom
of thermodynamics is to check that the introduced material functions fulfiIt
the second law.



7.2 The Gibbs relation, entropy is a variable coqiugate
to temperature

Here the underlying assumption of the Gibbs relation will be discussed. the
important difference between extensive and intensive variables will also be
dealt with.

For a reversible process we have

; ot dq:|dït (2t)or: (#).".

The simplified energy equation or the frrst law for an ideal fluid is

¿6: _pdulâ,q

Hence, the expression (21b) and (22) combines to yield

¿6 : -pdu*îd,r¡; (necessarily reversible)

(22)

(23)

(24)

which is the so-called Gibbs relation (o4V valid for reversible ideal fluids).
For a homogeneous system in equilibrium the Gibbs relation can be written
as, dU : -pd,V*dd,9 where, S : ,lv p\dV and, II : [u ped,V. This shows
that the entropy ,S is the ertensiue conjugate to the i,ntensi,ue variable d (for
calculating the thermal energy input), and the volume V is the ertensiue vart-
able conjugate to the stress -p (for calculating the mechanical energy input).
An ertensiue uari,able is one that in a homogeneous system is proportional
to the total mass; in general the total amount of it in the system is the sum
of amounts in all its parts, e.g., S : Ivpqdv. An i,ntensiue uari,able, on
the other hand, has the sarne value at all points in a homogeneous system
in equilibrium, in general the point value of an intensive va¡iable does not
depend on the size of the system. The densities of extensive variable e.g. e,

4 and u are intensive variables. Since in continuum mechanics one mainly
work with densities, the distinction between extensive and intensive variables
tends to be obscure.

Considering, again, a reversible ideal gas where the change of internal
energy density de can be formulated, as

¿6: -pdu+C,d0 + ne\; (necessarily reversible)



te

where (16) and (23) has been used. Using also the perfect gas law, i.e.
p: R0fu, the expression (24) takes the form

d,e: -R04+C,d0 + R0þ; (necessarily reversible) (25)

(26)

cgclic
dq :0; reversible and irreversible

and it is concluded that also the Gibbs relation results in that the change of
the internal energy density de can only be a function of the temperatuie in
an reversible ideal ga"s or fluid.

1.3 Entropy change in an irreversible process
only reversible processes are possible in the ideal gas of equations (2) and
(4). This shows that the in the ideal gas the entiopy is a state function.
Classical thermodynamics postulates that the entropy of an equilibrium state
is a state function, determined by the equilibrium values of the independent
state variables. Although explicit formulas for either e ot n in terms of the
independent state variables are rare, the first /ø,r¿ still furnishes a method for
calculating the change in e by recording the work input and the heat input for
the process. And equation (1) furnishes a method for computing the change
in 4 if we know the heat-input and the temperature history for any (possibiy
h¡4qothetical) reuersible process between the same two states. Unforiunately,
this may not be a use method for, for example, inelastic deformation pïocesses
in materials.

For a reversible process undergoing a cycle returning to its initial state ,

we have

l"o"o' 
o, : f* " (+) ,",:, (27)

d,e: Cd?

* 0; irreversible

8

But for a irreversible process we still have

(2s)

(since the entropy q is assumed to be a perfect differential returning to its
initial value), but

f"o"n" (2e)



In fact, experiments indicates that in general

l*'" (#) ,,,".- 
o (30)

One interpret the d,qle as the entropyinput from outside (or in continuum
mechanics, lnput from the neighboring points in the material) carried by the
heat input Jg; thus in a ,irreuersible cycle the neú entropy input is negative,
This means that in a irreversible process where a change from a state 1 to
2 (not a whole cycle) is performed, the entropy increase is greater than the
entropy input by heat transfer, i.e.

(31)

because the internal entropy production, which is always positive in an irre-
versible process.

In isolated systems, i.e., one with no heat transfer, reversible processes
do not change the entropy, while irreversible processes always inciease the
entropy. all real processes are irreversible, but in some special cases the
dissipation is small enough to be negligeable.. It is clea¡ that when studying
cases where the heat input to a point is due to a heat flr¡x q (remember that
dq : r-di"(q) lù the assumption of a reversible system is irrelevant due to
the entropy increase being greater than the input due to d,q (inthe reversible
system these to must always equal).

Within the continuum mechanic approach one usually adopt the general
inequality of the form (2) to check that introduced material assumptions
do not violate the second axiom of thermodynamics. Such methods will be
analyzed in detail later.

L.4 Example of ideal gases and van der -waars' 
gases

A pure substance is one which is chemically homogeneous and remains invari-
ant in chemical composition during the process. Experience indicates that
in the absence of motion, gravity, capillarity electricit¡ and magnetism the
state of a pure substance in the form of a fluid is completely d.etermined by
any two independent properties. Assuming that this is strictly correct, then
the various other properties are in principle expressible as functions of two

As, 
{(+),...,



chosen independent properties by equations of state. For example, if temper-
ature d and specific volume u:|lp are chosen as independent properties,
then

€:€(0,u); and p:p(0,r).
Alternatively, we may invert the second equation to obtain

u : u (0,p)

whence, the first equation becomes

(32)

e: e(0,u(0,p))

(33)

expressing the specific internal energ'y 6 as a function of g and the thermo-
dynamic pressure p.

The following examples are concerned with substances which are assumed
to obey such equations of state. Both ideal gases and van der \Maals' gases
are considered.

Example 1a. A specific heat is defined by the ratio ã,q/0, whi,ch in a
flui,d pure substance is equal to (de+pdu) lde bg the first law. It turns out
that the specifi,c heat at constant pressure i,s q: @e lôï)o+p@u/00)o. fh"
subscript indicates that the uariable held constant. To show this cortíd,"r,

FTom (32) and (33) we have

(34)

(35)

(36)

e:€(0,p); u:u(0,p)
Differentiation of (35a) gives (not that the pressure is constant)

*: (#),0'* (*o) ,oo: (#),*
and differentiation of (35b) gives

*: (#) 
oo, 

* (H),oo: (#),* (32)

Then (de + pdu) ld0 which is the specific heat cofor a pure substans, becomes

do.tp(#),ae) rae: (#),.,(H), (38)

10



which was the relation to be shown.
Example Lb. Show that (0e100.)r^:.lõelAe,+ @el}u)r(0u100)o and,

\:":" !!ot ""- c1,: þ+(0el7Qrl@ulA0)t, uhere c, ts defined, ai*", :
(0e 100)".

The expression (36) is

*: (#) 
oo, 

* (#),* (3e)

and (34) is 
€ : e (o,u (o,p)) (40)

Differentiation of (40), gives

*: (#).0, * (#) d,u(o,p) (41)

and, further differentiation of. u (0,p), gives

*: (#) oo'* (H),* Ø2)

Combine (41) and (42), to yietd

*: (#) do +(#) ,((#),*. (H),*) (43)

The following is to be shown

(#),: (#): (#) ,(H), Ø4)

Fhom (38) we have the expression for co, i.e.

/âe\ / ða\
,: 

\æ ) o*, \æ ) , 
(45)

and cu is defined as 

"' 
: / ou¡

\æ), 
(46)

11



Hence

%- c,: (#),.,(#), (#) " $7)

By using (44) and (47) one obtain

cp - c. : (#),., (H),- ((*)" (#), (#)") (48)

which can be rearanged to yield the expression

%-c,:,(#),- (#) ,(#),: þ* (#),)(#), (4e)

This is the result to be shown in this example.
Example tc. Show that co-ca - þ+ (õel7u)rl@ulAen co,n be brought

to the form % - c! : puþ + uB @el7u)e, where B : (0ul\eTo 1".
Condisider (49), i.e.

%-c-:,(H),* (#) ,(#), (50)

rnsert the expressions for B into the above relation to yierd

cp - co : pup .,u (#,)0 (51)

Example 2. Eualuate % - c, for the ideal gas d,efined, bA p, : R0 and,
e:e(0).

For an ideal gas we have

u: Re; (#),: i (52)

The derivative B is according to example 1c, in this case, given as

p:# (53)

And (51) gives co - c, for an ideal gæ, æ

%-q:p118:Il (54)

12



which was to be shown.
Example 3. In an ad,iabatic process, ,i.e. âq : 0, ,it an id,eal gas,

i.e. pu: R0 ande:e(0), anequation(%-R)pdu+c,udp:0 canbe
obtained,, by using the first law of thermodynamics i,.e. (de + pdu) ld| : 0
(obserue that d,q : 0 i,n this a sumed, case)-and, ¿¿ : c,d,O.

Consider a differentiation of the ideal gas law as

d(pu): d(Rî) (55)

i.e.

Pd'u I udP: P¿g (56)

The 'adiabatic' first law ('adiabatic' energy balance) is

de du

*+n*:O (57)

see the information in the example. Inserting ¿6 : cod,0 in (57) gives

ø+nffi:o; or do ': (58)

The temperature is a function of specific volume and pressure, differentiation
gives

o: o (,,p); ,t: (X) 
oo, 

* (#),* (5e)

For a ideal gas we, hence, have

':H, (x)":fi, ffi)":# (60)

Flom (56) one conclude that

ae : 
fiau * #0, (61)

Inserting the e>pression for d0 in (58b), gives

-* : 
#ou * hoo rc2)

Rearangement, yield

-Rpdu : crpdu + c"udp (63)

13



i.e.

þo-n)pdu*cuudp:g (64)

Which was the result to be derived.
Example 4. Show that in a fluid, pure substance where e : e(0,a),

the total di,fferenti,al de is giuen by de: cod,O + ((q - c") luþ _ p)da. See
erample 1c.

Differentiation of e: € (d,t') is

e: e(o,o); *: (#) de * (#) ,^ (65)

The parameter co is accoding to example lb defined as

"": (#). (66)

%-c" -(p.fP) I, 
:\ 

\ou/e/
%-c- _ /ôr\o: \^),

*:(#).0,*(W-o)0"
¿6 : c,d,o + (% 

^^ - o) ,,\'P '/
Example 5. Use the results of Erample /¡ to show that E: €o¡ ¡!^c"d0 +
a(lf u,-Ilo) in a uan de Waals' gas d,efi,ned, bg (p-t a/u2)(u -t) : R0
and (Ôelôu)e: o/r', where a, b an R are constants.

cp-(h:puB*u O:(H),t,

(

% - c" olr'

14



þo-""). ó: a _ (Ae\-T -P- ,r: \ar),
e: e(o,u); *: (#) do + (#) ,^

*: (#) 
'o'* 

(#) 
'^

^: 
(tr\
\ae)"

¿6: c,d,g. (#) ^
€:€o+ lnt"",do*"(*-;)

Example 6a. When the equati,ons of state relating three uariables such
as p, a, 0 are inuertible some important relationships antong the partial
deri,uati,ues can be deriued. For erample, from u :,t)(0,p(0,u)) one can
establish that I :- (õulôu), : (0ulôp)r@p/AQ, and, 0 : (0u100), :
(0u100)o+ @ulAflr@p/00), this the second, relation can be uerified, o,i ¡ot-
lows:

'u :'u du : , u))

dp:

du .(# 
)

d'u: ae (H) o u ,o'

(#) ,(#),:u
o': (H),0'. (H),ffi).do +du

':(H),#.&),(H),#*,



(#),-(#) ,(H).:0
Example 6t:.. Show that the results of Enample 6a imply the cyclic relation
(0u I ôfl , @p I 00) 

" 
(00 I au)r- -1,

Multiplication with (õ0 I ôu)o gives

'.(H),(H),ffi).:o
(H)"(H),ffi).:-,

Exarnple 7a. The Gibbs relati,on 'i,.e. d,e : ïdq - pda is assumed
uali,d for aII pure fl,uid substo,nces, since it is a relati,onship between state
uari,ables, euen though it was obtained, by using âq : ïd,r¡ which applies
only to a reuersible process. If e : e(O,u), show that the Gi,bbs relation
Ieads to dq . j(\e¡Ae¡"d0 + L.lp+ @e/AQrld,u and, that thi,s i,mpli,es tttat
(Aql00)": | (ôelA0)o and that (0r71ðu)e : àlp + @el0u)rl.

The first law is 
d^e : od.n - pdu

For a reversible Process 
âq: od,rt

further

(#),- (#) ,(#).: o

(#),(#),.(x),(H),ffi).:o

16



ând

n : 'n (o,r) ; *: (H).do + (H),^
Therefore

(H) ":i(#) ", 
and (#) ,:l((#) ,*o),

Example 7b. Use the result of Erample 7a to show that the equality of
õ2q/ð00u and, ô2r¡f 00ôu results in the equati,on n+ @elTu)e:0 @p/AQ,.

/0n\ 1 /âs\
\*)": t\at),'

0rn
-0

ô'n - ô'rr
0u00 õ00u

i(#).: #((#) ,*,),
/ae\ :o (õo\o*\*),:'\*)"

Example 7c. use the result of Erample 1, Erample 6a and Erample 7a and
the defi,ni,tion of co i..e. co: (ôef ô0), and of n: -@ul7flrfu i,.e. the
'isothertnal compressi,bi,lity, to obtai,n: dq: ffd,0 + fldu.

(H),:ä(#,.,),,
:-#((#),*,) 

,*l(H)"
0rrt

or:l ),^

^: (#). (#),,"

77



)

-0

(H).:ll('. (#),)

'C,aaq:|ae+Lodu

at:
K

of

/u
and the isothermal compressibilitg n

(n+"¡"')@-b):Rg

pu-pb:R0-i.#
na a 0,0ã-- _L_ì- (r-b) a(u-b)' yz(u-b)

(ôp\ R

\ôr/ u: Tu - b)

R0u2 - au * ab R0u2 - a(u - b)P:--a2(u-)-:@T-

h(u):#,t'(u):W
l@l - lu2 (u - b)ll2R7u - al - lfuTu2 - a(u - b)llu (Bu - 2b)l

\au),
( W\ - [u (u - b)]lzfu?u - al - [R0u2 - a (u - b)]l(Bu - 2b)l

\Au)s uz@T
(Ap\ _ -R?us - au2 *o,bu *Bøu(, -b) -2ab(o -b)t-t

\4"/o us(u-b)z

18



-R0u3 r2au2 - 4abu l2ab2
u3 (u _ b)2

-R0u3 r2a(u - b)2

0

(

yt (u _ b)z

H),W),:u
u3 (u - b)2

þ: n(#).: (å)R0u3 - 2a (u - b)2

Ru2 (u - b)

R0u3-2a(u- b)2

Example 8b. Use the result from Erample 7c and, Erample 8a to show that,
rt - To: ï3" ?do * ßtn ((, - b) / ("" - b)).

aït:\ae+9a,
AK

p: Ru2 (u - b) u2 (u - b)2

R0u3-2a(u-b)'' R0u3 - 2a (u - b)2

u2 (a - b)2

p:
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an:|ae.(å) ,
rt -,qo: Ir!"nror* Brn ((, - b) I @" - b))

1-.5 Examples on irreversible processes, the continuum
approach,

The example to be dealt with here is an introduction to the thermodynamic
methods within the continuum approach. By identif¡¡ins so.called thermody-
namic definitions which make sure that the constitutive relations always will
satis$r the second axiom of thermodynamics. Of course, dissipations must
be allowed in general models, that is the assumption of reversibility is not
introduced.

Example t, show that a class of u'iscous fl,uids assumed defined bg four
const'itut'iue equati,ons of the form: the stress, T: T (n,7lp,D), heat flur
uector q: q (q,7lp,D), internal energg density e:e(q,Llp,D) and, , the
temperature 0:0 (n,1lp,D), can onlg respond adiabati,cally.

opù - grad (e) .q,lo - pèl-tr (rrl) > o

T: TT

tr (TL) : tr (TD)
Since tr(L):tr(D)

p@rt - e) - grad @) .q,le + rr (TD) 2 0

þ + p div* :0; þ + ptr (D) :0
Since div*:tr(D)

e:e(rt,rlp,D); è:ffir*ffi{fr1 +ffi tt

lpit-grad(d) .qtr-r(ffio.ffiTD+# ó) +rr(rD) >0

, (u - #), - ,#Ã {fi) -offi D +t. (rD) - srad (e qt| > 0



(ú):

o(t-ffi),.ffii-r# D+t,(rD) - grad (0) qtlto

þ: _ ptr (D)

, (t - ffi), - #rtr(D) - r#. D +t, (rD) - srad (0) . qll >- 0

T: _pI

o('-#)r- (ffi+r) t,(D)- ,# ó-grad @) qt.>o

Since, tr(-plD) : -ptr(D). The change in entropy n, the trace of the
symmetric.part of the velocity gradient D, i.e. tr(D), and the rate of change
of D i.e. D, must in a general model be allowed to be a.rbitrary. Therefore
one defines the following thermodynamic relations

0:ffi
0e

r' - a ílp)
0e

ãD 
:0

Hence the internal energy e is independent of D and therefore is the deter-
mination of the thermodynamic temperature d also independent of D since
the thermodynamic definition of the temperature is a function of the internal
energ'y 6.

The constitutive relations therefore reduces to

€:e (n,Ilù; and 0:0 (rt,Il p)

Indeed, the thermodynamic pressure p must also be independent of D since
e is independent of D in this specific example with its choice of constitutive
relations and thermodynamic relations, i.e.

T : T (rt,ll ò - -p (rt,Ll òr

_p
p2

2l



At last it is concluded that the heat flux q must be equal to zero e : 0, in
this model of a fluid since no restriction is placed on grad (d). It is concluded
that a model defined with the constitutive equations ro(-xx, must respond
adiabaticaþ Eviderrtly a more general assumption is needed for a realistic
description of a fluid, including grad (0) arnong the independent va.riables,
furthermore a sophisticated method to tackle the stresses (not only the ther-
modynamic pressure p) caused by the motion of the fluid, must be dealt with
in a stringent way.

22


