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Summary

Vertical flame spread is first discussed in terms of a dimensional analysis. This follows Deli-
chatsios’s definition of a characteristic length based on the heat transfer from the flame but

another length? g, characteristic of the burner and the initial condition is also introduced.

A differential equation of second order is deduced for a linear law between flame length and
heat release rate. To evaluate the constants in the equations one requires measurements at a
minimum of five heights.
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1. Introduction

There are essentially two versions of the theory of flame spread up a thick flammable solid.
Either the flame and gas phase is discussed in detail beyond its representation by an impo-
sition of a heat source onto the solid or, instead of attempting to calculate the properties of the
gas phase, the heat transfer from it is expressed as an independent variable to be measured or
assumed. There are two versions of the latter thermal theory based on the two types of corre-

lation between flame length, and heat release rate per unit width of flame frQnt,

Z, = K,Q*" (1)
or Z, = KQ 2

whereK, andK, are constants, i.e. a power law form or a linear form.
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2 Dimensional Analysis

In the linearised theory described by Quintiere [1], Saito, Quintiere and Williams [2], Thomas
and Karlsson [3], Thomas [4] and Baraudi and Kokkala [5], equations are given involving va-
rious parameters -

1) Z,, - the initial length of the pyrolysed zone

2) the burner strengt, - KW per metre width of burner - which is constant

(t>ty,)

3) K a constant (not a dimensionless one) as in equation (1) or (2)

4) t,, - the ignition time derived from the heat transfer to the fuel

5) tg - the burn out time. This could be based on another parametdre.qg.

heree™ gives the decrease with time of the
pyrolysis rate

6) the heat release rate per unit area from the fuel produced by pyrolysis.

This last quantity is characterised by an initial va@javhich is proportional to the mass rate
per unit area of pyrolysi#/, i.e. Q. = gM, which for a noncharring material may be written
asQ = ne AH_/AH, whereq is the heat release per unit mass (as in references 1-5), i.e.

q=AH,.

AH_ is an effective calorific valugyl, is a characteristic pyrolysis rate e.q..,/AH, . q ., is
an effectively mean net heat transfer rate from the flame\&f)ds a characteristic heat of

pyrolysis.

Dimensional analysis permits us to write

qv, 2

—% = N function °o__* (3)
/ %BOCpTOA/ge =

whereN is a dimensionless constant anid a dimension characteristic of the fipg, is

density G, specific heat anddis the absolute ambient temperature.
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Following Delichatsios and Saito [5], we write

0 - AH, f
|:| qnet AHC D
/= v_[l (4)

%oonToﬁzg

Hence, assuming a power law formation, we have

Zn
/

andf = 1 or 2/3for linearised and natural convection controlled spread respectively.

The development of theory using the 2/3 power instead of the linear law (equation (1) instead

of equation (2)) defines a dimensionless parameter (see Appendix).

et e f

ST M) ©

which witht/t, , t, /t, , andK,(aM;)"” defines the behaviour of flame up a thick solid with

the 2/3 power flame length law.

If we write for the two notations
3
Z, = N%Z?pg 7 (7i)
= K ifgm; f°z2° (7ii)

whereN, is a dimensionless constant afg = K Q'° att = 0

we have
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- L+ty /ta ) [0 EM’ ®)

N2 Ho

In summary, whatever power law applies to flame length we have, following Delichatsios and

Saito [6]
Z t.
—P =function—*>>, =, t 9)
/ 0t

If the width of the spreading zone were finite and of widtthenD is a dimension characte-

ristic of the source and/D is an additional ratio on the right hand side.

If there is preheating ahead of the flame and it is represented by an additional distance it can
be expressed to a first approximation as having two components - one a constant and another
proportional to the appropriate scale length. This can be éither /. Since their ratio is al-

ready included in the set of independant ratios in the functional equation we can write the hea-

ting as taking place over the distange- C{(ZfI —Zp) instead of oveZ, —Z,. ThusZ, /¢

a andg/’.

ig?

and Z, /¢ are functions ofZ , //, t,, /t; , t/t

The form of this functional relation is, in principle, independent of geometry, e.g. a corner,
unless this is characterised by a relevant diment§fbnHowever, in the Appendix, another

characteristic length/; IS introduced,; it is characteristic of the burner and the initial

condition.
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3 Testing the Theory

Consider

Zy/l as afunctionof(Zpo/f, id/ d ,/tigt) (10)

Neglecting preheating ahead of the flame, and assuming that we can nzaasra function

of t, we write, for any given non-charring material,
)
(0 One (11)
2 . 2
tig 0 (Tp _Ts) /qnet (12)

whilst Z ,; depends on the burner strength. If we also initially neglect "burn out" for short dis-

tances and times of spread the relationship to be tested is therefore

Zy /¢ = function(Z,/¢, 1) (13)

One can experimentally changeby preheating the specimen: one cannot easily
experimentally varyq;et2 for a given material over the length of the flame. However, one can
measureq;et2 and calculate though not precisely in view of the many possible errors in

q. . AH,, etc.

Preheating the specimen can, of course, chakjeandAH_! It seems difficult, if not imp-

ractical, to test this general result.
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4 A Differential Equation for Flame Spread

The two equations we have used for assessihdghe speed of the spread are:

V=dz, /dt=(z, -2, )1, (14)
and

Z, =KQ + KQJi M;(t _tp)(dzp/dtp)dtp + KqM;Zpo (15)

These have been solved fiit' = M'e™* andM™ = constant fort < .

We solve forZ instead ofZ, believing it may be easier to measire We consider first

M =M.

For simplicity we consider the most practical case of a constant val@.féollowing Tho-

mas & Karlsson [3] we take the Laplace Transforms of each equation and with the notation

y :I:yEém Celt
we have
(1+ ptlg)7P = Zﬂ + Zpo l}g (16)
and
_ KgM pzZ
Z, =005 K9 a7)
pty p

whereQ;, is simplified toQ.

Hence
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%§?+Zm%p+ﬁ

Z = / Ty (18)
"opt+ (]/tig ty- KqMo/tig)p+ Y/t
so that
Mﬂ%pgﬁg+zmg
Zy = KQ + P (19)

p p2+(]7/tig +y_KqM:)/tig)p+y/tig

Writing the quadratic denominator of equations (19) & (20) as

p*+Hp+G
where
H :i+ y—%
tIg tig
G=y/t,
_—-H++JH?-4G
and a, B = 5

then P = 1 E a __ B %
p’+Hp+G H2-4GOp-a p-B
Hence equation (19) for constapieads to
Zy = KQ+(aé" - bé)

wherea andb are constant.

a andf3 may be both positive, both negative or both complexZi,eexpands asymptotically
exponentially or reaches a limit as dags However there are two terre€ ande™ so the

test for compliance with exponentiality is not strictly to check for exponentiality &t all
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One can obtain the differential equation (of which the above is the solution)

_ dZZfI dz, y y .
viz. e +H at +GZ, = . KQ = - KQg (20)

g g

if Q is constant.

. . d’z : .
To test this equation one needs to evaluadﬁgﬂ— which requires at least 3 measurements -

dz
one on each side of a particular measuring poinZforThese points also definedt—fI and

Z,. The need to defind andG and KQ, and their error requires at least 4 points. With one

point below and one above one requires at least 6 measurement points.

dz
The three point®;, P, and P, in Fig. 1 defineZ, at each point, dtﬂ

at two points

9z, _ Z; at one
at

intermediate position, sd3, . Likewise we get another set of values frBgP; andP, and a

d2z d’z
(preferably intermediate) aneIdtT" at one point. Hence we can g%ttz—"

third set fromP;, P, andPs. These three sets of values provide 3 equatiortd,fGrand

Y KQ. To estimate error, departures from constancy of the coefficient etc., at least one more

ig

set of values is required, i.e. a minimum of 6 in all.

v

torZ
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Figure 1

The Quintiere model with

requires us to define the locus of the régroncet exceedd;.

Then

dZ,/dt=(Z, - Z. )1, (21)
Also

Z, -Zy =KQ+KqM.(Z, - Z,) (22)

To test the model in full requires testing the three equations (14), (21) and (22).

In principle it should be easier to obse®g andZ, so we eliminateZ ; and from equations

(21) and (22) obtain
Zy - Zy = KQ+ KgM, t, dZ/ dt (23)

Data onZ, — Z, need to be plotted agairdZ,/ dt. We need a minimum of two points to

evaluate the constants KQ akKdM t, and two are needed to obtal#, /dt. Five points are
required to estimate the error.

Alternatively one can obtain from equations (14), (21) and (22)

d’z, +B£+i_ KgM, Epzfl _ KQ (24)
d  He te t, Hdt el

dz '
e gty LKMo kAL, (25i)
da H, ts t tat,
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: : _— dz :
whereA is a constant determined by the initial values—c?[fL and Z, which can be shown to

a=kqQl + 1o KMo, (25ii)
ig tB tB

These two equations (24) and (25) also need five points.

be

Equation (24) is like equation (20) except for the t&H) and withtg instead oflL/y. The use

of the minimum set of data measurement points - 5 points for equation (20), 4 for equation

(24) - will define values offl, G andKQ irrespective of whether the models are valid. At least

one - preferably several more data points are required for adequate tests to be made of the de-
partures from constancy k, G andKQ'". We can here suppose these tests have been made of

the results acceptable so that from equation (20) we have three equatibh@tq[}/— KQ.

g

O
Even so to obtaii, gm andy we must make use of the known valuegfand an

independent measure gf. The Quintiere model summarised by equations (14), (21) and (22)

is an approximation of what would occur in practice. Equations (14) and (25) are quasi-steady
and equation (21) implies that at time zero the rear of the flame moves upward with a speed

Z,,/tg- But this is not so for < tg. For this initial stage the behaviour is obtained from

equations (14) and (22) wi#zg=0, i.e.

dz, + ﬁ %_ Kq an- ﬁz KQ (26)

dt ty

which agrees with equation (25) fgr — «. This and equations (24) and (25i) show the well

known role ofKgm'" in relation totj; andtg in determining indefinite accelerating spread.
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5 Conclusion

The flame spread models introduced into the discussion of vertical flame spread require
measurements at 5 heights or times. 7 are barely more than the minimum to test for non-

constant coefficients in equation (21) or (24).
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Appendix

The equations that are needed to describe upward flame spread are, for ignition

dz, _Z,-Z, 1A
dt T.

and for burn out

dz, 72, -Z
B (2A)
dt Ty
We use these with equation (1) (Whfreplaced by - Zg) and
Q =Q, +aM,(z, -Z,) (3A)
Subtracting equation (2A) from equation (1A) gives
d T;
Tig dt(zp_ZR):Zfl _Zp_Tg(Zp_ZR) (4A)
B
which from equations (1) and (3A) gives
d T : . 23
fy gt A =K (0 ray,) (58)
B
where
Y,=2,- Z
dy _ 23 _
e Pl (SR (6A)

where
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ot lh
Ho Tol

+T, /TBD3 ;
=Y 9/ M
y PO KgM, Eq °

and

AL+ T, /TBD3
E=Q 0 9~
QBD KaM, E

=(1+1/75) (¢6/)°

Q g
2P C OTO@Q

[
where lg = %Z

(g is a constant (and as such does not enter into a dimensional analysis) so4gng &

which does obtain for a linear relationship between flame length and heat release but does not

for the 2/3 power law, in which cadg is an additional characteristic length.



