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METHODS FOR CONSTRAINED FUNCTION MINIMIZATIONT

K. Martensson

ABSTRACT. .

A method for the minimization of a function f(u) sub-
ject to the nonlinear constraints g(u) = 0, h(u) ¢ 0,
is presented. It is shown that the problem may be con-
verted into an unconstrained well-conditioned minimi-
zation problem, where ordinary minimization methods

can be applied.

T This work was supported by the Swedish Board for
Technical Development (Contract 70-337/U270).
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1. INTRODUCTION.

In this paper a method for constrained function opti-
mization is presented. The problem is to determine

the n-dimensional vector u*, which minimizes the func-
tion f(u) subject to the constraints g(u) = 0 and

h(u) s 0. g(u) and h(u) are the m-dimensional and p-

dimensional vectors

g (u) n'(u)
g(u) = h(u)
g™(u) hP(u)

Many different methods for the solution of equality
constrained problems (g(u) = 0) have been published.
Generally these are based on one of two main ideas.
The first is the Lagrange multiplier technique, where
the constraints are adjoined by means of multipliers

n, to form the Lagrangian

m
Llu,n) = £(uw) + § nPgh(u)

i=1

The problem then is to find a saddle-point in the
u-n space, and thus the dimension of the problem is
increased from n to n+m. The other basic approaches
are penalty function methods. A function including
the constraints in a proper manner is then added to

the original function f(u), e.g.
T
f(u) + cg () glu)

Generally the optimal solution of f(u) + CgT(u)g(u)
approaches the optimal solution of f(u) subject to




the constraints as ¢ tends to infinity. However, this
method is less attractive from a numerical point of
view, since it will create functions which are badly
suited for numerical optimization. Different ways
around this difficulty has been suggested e.g. by
Fiacco and MeCormick [1] and by Powell [3]. The main
idea in these papers is to change the penalty func-
tion in an iterative way to make the optimum of the
penalty function agree with the optimal solution.
However, this often includes a set of new parameters
to be iterated on, and then again the dimension of

the problem is increased.

The method presented in this paper is in a sense a
combination of the two basic methods. An m-dimensio-

nal vector function

w1 (w)
pCu) =
™ u)

is defined as

oy~
ww) = - (gu8,)  g,f,
where
1 1]
gu1 ce gun
gy = | - :
m m
g tl.g

Conditions that guarantee nonsingularity of (gugi)

are assumed to hold in a neighbourhood of u*.

In section 3 properties of u(u) are established, and




it is shown that for the optimal solution u(u) equals
the optimal Lagrange multipliers. A generalized

Lagrangian is then defined as
- T T
H(u) = f(u) + p (ulglu) + cg (u)glu)

Using well~-known results, which are given as lemmas
in section 2, it is shown that H(u) has an extremum
at u = u'., It is also shown that there exists a fi-
nite parameter Coo such that for c > Cq (c < cO),
H(u) has a local isolated minimum (maximum) at u*,
provided that the optimization problem has a local
isolated minimum at u®. Contrary to the penalty func-
tion method, there thus is a finite value of ¢, for
which the unconstrained optimum of the generalized
Lagrangian agrees with the solution of the optimiza-
tion problem. Further, the dimension of the problem

is independent of the number of constraints.

Inequality constraints are considered in section 4.
These are handled by introducing slack variables so
that the constraints are transformed into equalities.

Results similar to those of section 3 are proved.

Two examples which illustrate the method are given
in section 5, and numerical aspects are discussed.
The major problem, namely the & priori choice of the
parameter c is discussed, and a possible measure of

¢, is given. Some numerical experiences are also pre-

0
sented.

Since this paper was prepared, the same idea has been
published by Fletcher [7]. However, it is focused
upon methods using only function evaluations, while
in this paper it is found that minimization methods
using gradients seem to be necessary for an efficient
minimization. It is also thought that this paper pre-

sents more efficient & priori estimates of the para-




meter cg, both from theoretical and computational

points of view.




2. NECESSARY AND SUFFICIENT CONDITIONS FOR A
CONSTRAINED LOCAL MINIMUM.

In this section necessary and sufficient conditions
for a local isolated minimum are stated. For proofs

and a more detailed treatment we refer to i11.

Introduce the Lagrangian L(u,n,)) associated with the

minimization problem stated in section 1.

m P
L(u,n,A) = £Qu) + J atghw) + ] A Ind (u)
iz1 j=1

where n' are components of the m-dimensional vector n,
and A of the p-dimensional vector A. These are gene-

rally called the Lagrange multipliers. We then have

Lemma 1 (Existence theorem)

If
. * . e . * *
i) ub satisfies the constraints g(u ) = 0, h(u' ) s O
ii) f, g, and h are once differentiable at ot
1ii) at u’ the set
T i T, ] T

Z = {z; 2 g, = 0, z ha < 0, 2 fu < 0}

is empty
then there exists an m-dimensional vector n = {nt}

1]

and a p-dimensional vector X {x*}, such that

gi(u*) = 0 i=1, ¢eeym
hj(u*) < 0 3 =1, «eos P
yndw*) = o 3= 1, «ees P
Aj 2 b J =21y eves P

¥
L, (u sNy2) = 0




Different conditions which assure that the set Z is
empty, and thus guarantee the existence of the Lag-
range multipliers, can be stated [1], [2]. The most
valuable from a computational point of view is the

following.

Lemma 2?2 (Constraint qualification theorem)

A sufficient condition for the set Z to be empty, and
thus for the existence of finite Lagrange multipliers
n and A, is that the gradients {gi} {ha} are linearly

independent at u*.

Notice, that this is a sufficient condition for the
existence of n and A. For some problems it may fail,
and then it is still an open question, whether finite
multipliers exist or not. In the following it is as-
sumed that the sufficient condition of lemma 2 holds.

o, . . . . E .
A stronger condition for a minimum point u  1s given

by the following second-order necessary condition.

Lemma 3

If £, {gi} and {hj} are twice continuously differen-
tiable at u*, and if the constraints qualifications
of lemma 2 hold at u*, then a necessary condition for
u¥ to be a local minimum is the existence of vectors

n and X such that

gi(u*) = 0 i=1, soeym
nIw*) < o j =1, «ves D
And™® = o =1, vees P
Aj 2 0 3 21y vees D

ES
Lu(u ,n;)\) = 0




Further, for every vector y such that yTha = 0,
jeB = {3; Wi = 0}, and y'gl =0, i =1, ..., m,
it follows that

yTLuu(u*,n,x)y > 0

Sufficient second-order conditions for a local mini-

mum is given by the following theorem.

Lemma Uu

Sufficient conditions for u* to be an isolated local
minimum are that there exist vectors n and X such
that

gi(U*) = 0 i=1, oo, m
hj(u*) < 0 3= 1, eeay D
Mnd*) = o 521, cuuy P
A3 2 0 3 =1y ¢eey P

Lu(u*,n,x) = 0

Further, for every nonzero vector y such that yTha =
jeD = (33 hi* =0, 23 > 0}, y'nd 3 0, jeB - D
= {33 nI®) = 0, 23 = 0}, yTgi =0, 1i=1, vou, m, it
follows that

]
o
-

T o
y Luu(u sNsA)y > 0




3. LAGRANGE MULTIPLIER FUNCTIONS.
EQUALITY CONSTRAINTS.

The Lagrange multiplier technique for constrained mi-
nimization is very attractive from a theoretical point
of view, but generally of limited value for the nume-
rical solution of a minimization problem. Since the
optimal multipliers are 3 priori unknown, an algorithm
must iterate in both the u-space and in the multiplier
space. For equality constraints the optimal solution
u*, n¥ constitutes a saddle-point of the Lagrangian
[2], and a good initial guess is often required to

make the algorithm converge to the optimal solution.

In this section we will specialize to equality
constraints g(u) = 0. An obvious generalization then
is to add the scalar ch(u)g(u), where ¢ is a scalar,
to the Lagrangian. It is then easy to prove [6] that
there exists a cqy 0, such that for c 2 cg,, the func-

tion
L(u,n*) + ch(u)g(u)

has a local isolated minimum at u = u*, However, the
problem to determine the optimal multipliers n¥ still

remains.

Next we introduce the concept "Lagrange Multiplier
Function" as follows. Let g(u) satisfy the constraint
qualifications of lemma 2, and assume that f(u) and
g(u) are three times differentiable at u”. Then the
m x m matrix gugg is nonsingular in a neighbourhood

of u*, and the m-dimensional vector
_ Ty =1
uCu) = (gugu) gufy

is well defined. The conception "multiplier function"




is obvious from the following theorem.

The m-dimensional vector function

Ty=1
wlw) = - (gugu) gufu
has the following properties:

i) p(u) exists and is once continuously differen-
tiable in a neighbourhood of u®

i) pu®) = ¥

1

Proof: That u(u) is once continuously differentiable
T- and the as-

follows from the continuity of [gugu
sumption that f and g are twice continuously differen-
tiable.

The second part of the theorem follows from lemma 1,
which states that there exists a unique vector n*

such that fu(u*) + gz(u*)n* = 0. Substitute fu = ,

= - ggn* into u(u), and it follows that u(u®) = n™.

Using the multiplier function, a generalized Lagran-

gian H(u) is defined.
- T T
H(u) = f(u) + v (ul)glu) + cg (w)glu)
With the assumptions made about f(u) and g(u), H(u)

exists and is once continuously differentiable in a

neighbourhood of u®,




10.

Theorem 2

For any value of the real parameter c, the generalized

Lagrangian

H(u) = f(u) + uT(u)g(u) + ch(u)g(u)

has a stationary point at u = u¥.

Proof: A straightforward differentiation of H(u) yields

T

T
oM + chug

_ T
Hu - fu + Hué te

Since g(u*) = 0 and fu(u*) + gg(u*)u(u*) = fu(u*) +
+ gg(u*)n* = 0, it follows that Hu(u*)

0 independent

of c.

Intuitively it seems possible that the stationary
point u = u* can now be made a minimum by choosing
the value of the parameter ¢ large enough. That this

is true is shown in the following theorems.

Theorem 3

Let u* be a local minimum of £(u) subject to the
constraints g(u) = 0. Then there exists a cy, such
that for c = Cys H (u*) = 0 and H _(u*) = 0.

u uu

Proof: In theorem 2 it was shown that Hu(u*) = 0 for
any value of the parameter c. To prove the second

part of the theoremn, Huu(u) is considered.
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m
- i i T
Huu(U) - fuu + 2 g Mpu t By * Eutu
i=1
m m
i i i i T
+ z T Lu + 2c¢ z £7°8u + 2cgugu
i=1 i=1
which for u = u* reduces to
m
£, _ i i T T T
Huu(u ) = fuu + 2 ¥ Buu a8y  guMu + chugu

i=1

To compute uu(u*), u(u) is differentiated with respect

to u..
i
A [g gT]-1 g gT g gT ][g g }-1g -
vy u®u uu; “u ufuu, | (Fufu utu
-1 -1
T T -
- [gugu] guuifu - [gugu} Bofuu, *
()t T T
T kguguj [guu.gu ¥ guguu.]u * Bou,fu t Bufuu,
i i i i
For u = u*, fu = - gzu, and
du # T -1 T
() = - [gugu] &u|Buu M ¥ fuu.‘
BUi 1 l)

-1 m
# T 1
uy, (u ) = - (gugu] gulfuu ¥ ) b Byu
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Substitute into H .
uu

i i

T
VBuu| * 2Cgugu

m
° f +

i=1

Now let Q be the subspace of R™ spanned by the rows

of gy and let Q’L be the orthogonal complement. If

vy € QTand Yy € Ql, then y%‘y2 = 0, gy * 0, and

Vi = 8,%s where o is uniquely determined by Yqe An
arbitrary vector y € R" can then be uniquely facto-
rized into y = Vg * Yy = gza + ¥,, where y, & Q and
Vo€ Qt. To prove that Huu(u*) is positive semidefi-
nite for ¢ sufficiently large, the quantity yTHuu(u*)y
is considered.

T %
v Huu(u )y

1}

T *
(gua + y2) Huu(u )(guu + y2) =

m
T T ]
of|2¢(g ) (2,80) - &y|fuu * L W Bay|By o
i=1

1

" guu y2

Since (gugg} is nonsingular, Z[gugg}(gugz) is positive
definite and then there exists a nonsingular matrix T
such that
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uu uu gu .
i=1 0 umJ
Then
m
T Ty il
2¢(guey) gyey) = gylfun * L viEg,le, > O
521

for ¢ > ¢ where
03

CO = mgx ui
1

According to lemma 3

since g,y, = 0. This finally proves that
y H, (uF)y 2 0

for c = Cqs and for any ye R". Notice that ¢y may be ne-

gative.

Theorem 4

Let u® be a local isolated minimum of f£(u) subject to
the constraints g(u) = 0, and assume that the suffi-
cient conditions of lemma 4 are satisfied. Then there
exists a cy > 0, such that for c > Cys Hu(u*) = 0, and

»
Huu(u ) > 0,




4.

Proof: The proof is identical to the proof of theorem

except that strict inequality holds in

m
T i1i
y2 fuu + 2 H guu Yo

i=1
according to lemma 4. Then there exists cy» not ne-

cessarily positive, such that

T #
y Huu(u J)y > 0

for ¢ > Cqo and for any y € rR™,

For maximum problems, equivalent results are easily
obtained by changing the sign of cy and c.

Theorems 3 and 4 state the existence of the parameter
SIE and also provide a measure of cq when u® is known.
For the numerical computation of u*, it would, howe-
ver, be desirable to have an d priori knowledge of a
value of ¢ that guarantees that the necessary or suf-
ficient conditions for a minimum of H(u) at u* are
satisfied. This problem will be considered in section

5‘
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4, INEQUALITY CONSTRAINTS.

If some of the constraints are present as inequalities,
h(u) £ 0, a straightforward way to handle them is to
introduce slack variables. This could be done in many
ways, The most obvious probably is to add the square

of a slack variable, i.e.

gi(u) = hicu) + vi

To simplify the notations it is assumed that just m

inequality constraints h*(u) are present. Further the
T T

(n + m)=-dimensional vector w~ = (u sVs eees vm) is
introduced as the new variables, and the constraints
then are gl(w) =0, i=1, ..., m, where
B | . 7]
| 2V1 B O ¢ ® & & & b © @ 0
I 0 .
Ew © hu | . 0
I O e & ® ¢ e o 0 2V
L I m |

If the constraint qualifications hold for those
constraints hi(u) that are active at u*, i.e. hi(u*)=0,
then gw(w*) has rank m, and the equivalent equality
constraints also satisfy the constraint qualifications
at w'. Notice, however, that it is not necessary that
h, has rank m. This will for example not be the case
for the constraint a ¢ u., ¢ b when split up into

; i
ht(u) = u; = b ¢ 0 and hl+1(u) = - us -oa g 0.

1

Assume that the constraints h , ..., hz, 2 ¢ m, are

. 8 +1
active at u , and that hg s ey n™ are not. To sepa-
rate active and inactive constraints, the g-dimensio-
nal vector a(u) and the (m - g)-dimensional vector

b(w) are introduced.




16.

1 ] o+ 2]
h (u) h (u) + Vo
a(u) = . b(w) = .
2 m 2
_h(u)_ _h(u)+vm |

From lemma 1 it then follows that
S
fu(u ) = au(u )R

where ) is an f%-dimensional vector consisting of non-

negative multipliers X;, ..., A Similar to section

2,.
3, the m-dimensional multiplier function

T -1
wlw) = - (gwgw) gwfw

is introduced. As before f(u) and h(u) are assumed to

be three times differentiable.

Theorem 5

The multiplier function

-1

plw) = - (gwgg) gwfw

has the following properties

i) u({w) exists and is once continuously differen-
tiable in a neighbourhood of wh

ii) ul(w*) = Ai l = 1, e @ b 4 Ql
utw®™) = 0 i= g+41, sc., m

Proof: To prove the existence of p(W*), it has to be

roved that |g gT is nonsingular at w = wh. Using
P wow
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the notations a(u) and b(w) for active and inactive

. #
constraints, gw(w ) can be expressed as

gw(w*) =

where all quantities are evaluated at w = w¥. Then

a aT | a bT
u u u
N A
Fu b | b bl + V2
ud | "uu
where
2V 41 0
Vo= .
0 2v
v? is positive definite since hg+1, ceey h™ were as-

sumed to be inactive. For the special case where all
constraints are active, that is gwgg z auag, the non-
singularity follows from the constraint qualifica-

tions. On the other hand, if no constraints are ac-

T

tive, gwgg = bub + V2, and then again gwgg is non-

singular since V° is positive definite. To prove non-

singularity for the general case where some constraints

are active and some inactive, the following inversion

formula for block matrices is used.
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[_ B4 : By Ay
e
L Boar | Baz | A1
where
I -1 -1 -1
Agq = Byq *+ ByqByyBy BoyByy
i -1 -1
Aqgp = = ByyBy,Bg
- -1
Ayq = = By BoyByy
R
Ayp = By
and
B. = B.. - B..B B
0o = Boo 2181184

Sufficient conditions for the nonsingularity of the

block matrix B are thus that B11 and BO are nonsingu-

lar. Substituting gwgg into

get
7y~ Ty
A11 = (auau) * (auau) aub
A, = - | T)—1 ply~
12 °© %’ FPu
A - X_1b T( T)—1
21 ~ 7 ulu Gy
-1
Ay, = X
T 2 T 7y~
X = bbb+ V" - buau(auau)
= b {T - a ( T)—1 bl 4
T Fu 2y 8y aufPu

the inversion formula, we

-1

Ty=1 T T
uX buau(auau)
a bT =
u
V2
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(auag} is nonsingular since the constraint qualifica-
+ions were assumed to hold for the active constraints.
To prove that X is nonsingular, it is sufficient to

T Ty =1

prove that {1 = au[auau a,f 1s nonnegative definite.

Let Q be the 2-dimensional subspace of R™ spanned by
and let QL be the orthogonal comple-

E(auag)—1au. P takes

any vector in Q into itself, because if x € Q, then

the rows of a,s

ment. Consider the matrix P = a

X = aEB and Px = agﬁ = x., P also takes any vector in
Ql'into the null vector, because if y € Qiy then

ay = 0 and Py = 0. Thus P is a projection matrix.
Now let z ¢ R™ be an arbitrary vector. z can uniquely
be factorized into z = x + y, where x € Q and y € le
Then

2T(T = P)z = (x + y)°(I - P)(x + y) =

(x + y)T(x +y - x) =

(x + y)Ty = yTy > 0

Thus {I - ag(auaz)_1aul is nonnegative definite, and
#
)

X is nonsingular. [gwg )is then nonsingular and ulw

W
exists. That u(w) is once continuously differentiable
in a neighbourhood of w' follows from the continuity
of (gwgg)—1, and from the assumptions made about f(u)

and h(u).

To prove the second part of the theorem, the relation

fu(u*) = = az(u*)k igs used. Then




20.

and
a aT | a bT B a
. u“u 1 uu a
pw ) = |——— —— — — — — | |—— ——}a
T | T 2
buau ‘ bubu + Vv bua

Using the block matrix inversion formula

T T
A11auau * A12buau Iz
ww™) =2 |—m— — — — — — — — AE o= A
T T
A21auau + A22buau 0

where I  is the f-dimensional unit matrix. Then

i, % . i .
pH(w™) = Ays i Ty ooey Ly and ul(w*) = 0, i = 2+1,

¢ 0 & 9 M.

Similar to section 3 the generalized Lagrangian is

now defined as

HCw) = £(w) + ul(wdglw) + gl (w)g(w)
That the properties of H(w) given by theorems 2 to u
hold also for the inequality case is shown in the fol-

lowing theorems.,

Theorem 6

The generalized Lagrangian
- T T
H(w) = £f(w) + v (w)g(w) + cg (w)glw)

has a stationary point at
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for any value of the real parameter c.

Proof: Differentiate with respect to w.

- T T T _ |\ R
Hw = fw tgMtu gt 2cg g = + = 0

The last equality follows from lemma 1.

Theorem 7

Let u” be a local minimum of £(u) subject to the

constraints h(u) ¢ 0., Then there exists c such

O’
that for ¢ 2 ¢,, H (w¥) = 0 and H (w*) 3 0.
0 w WW

Proof:
m
#®, i i T T T
wa(w ) = fww + E W 8w ¥ Hwbw + BV * 2nggw
i=1
-1 m
o _ T i i
“w(w ) = - [gwgw) 8y fww + 2 o Byw
i=1

where all quantities are evaluated at w = w*. For any
(n+m)~-dimensional vector Y4 s%ch thit yq = ggq, it
follows from theorem 3 that y1wa(w )y1 > 0 for ¢ > Cqye
Then consider y = y, where gy = 0. Since f is a
function of u only and the slack variables are added

as squares, the second derivative matrix wa(w*) can

be simplified to




22,

£
i i |
fou ¥ Low Suu | 0
" i+1 L
H (w)=s|"7—"—— — — 1/~ — — — — 77— +
WW | 2u1
O | ..'
2
] 2u
[ 0
L | o
T T T
* Mubuw ¥ Bty 2nggw

= 1 i l =
But 8,4Y2 0 implies that [:au | QJyz 0, andlthen.
from lemma 3 and from the fact that u', ..., v 20, it
follows that ngww(wﬁ)y2 3 0, independent of the

value of the parameter c.

Theorem 8

Let u* be a local isolated minimum of f(u) subject to
the constraints h(u) < 0, and assume that the suffi-
cient conditions of lemma 4 are satisfied., Also as-
sume that the multipliers corresponding to the active
constraints are strict positive, that is all the ac-
tive constraints do really affect the solution. Then
H (w*) = 0 and

there exists ¢ such that for ¢ > ¢

0’
wa(w*) > 0,

O,

Proof: It should be proved that ngww(W*)y2 > 0 for
any nonzero (n+m)-dimensional vector Yy such that

g = 0. Let y, be partitioned into

T [T T T
Yo = |Y215 Y222 Y23

where y,4 is an n-dimensional, Yoo an ¢=dimensional,

and Y,3 an (m=g)~dimensional vector. Then
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T L
LY, ., Y92

Thus if y,, $ 0 or Yoo $ 0, ngwwy2 > 0. Assume that

Vo1 = 05 ¥pp = 0, Yoq $ 0 and g,y = 0. Then

byYoq + Vygz = Vyyg = 0

which, since V is nonsingular, contradicts the as-
sumption that y,, $ 0. For every Y, $ 0, such that
g,y = 0, it then follows that ngww(wﬁ)y2 > 0.
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5. EXAMPLES AND NUMERICAL CONSIDERATIONS.

The principle of Lagrange multiplier functions will
be illustrated in this section with some numerical
examples. Aspects on an algorithm for numerical com=

putation will also be briefly discussed.

Consider the problem of minimizing the function

2 2

+ (u, - 5)

f(u) = (u1 - 5) 9

subject to the equality constraint

g (u) = (u, - 6)% - uu, = 3) = 0

The optimal solution 1is uy; = ou, = M

In fig. 1 contour levels for
- T T
H(u) = f(u) + p (wglu) + cg” (wiglu)

are drawn for ¢ = 0.0 and ¢ = 0.1. In the latter case
any minimization method should easily find the opti-
mal solution. The example clearly shows the advantage
of the method compared with penalty function methods.
In these the term uT(u)g(u) is missing, and to reach
the optimal solution the parameter c must tend to in-
finity. The gradient of the function f(u) + ch(u)g(u)
will then be very large for g(u) # 0, and even refined

minimization methods could get into trouble.

The second example illustrates the slack variable

technique to handle inequality constraints. Minimize

16 3 2
f R ! -
(u) ; uy 2u,l + 2u1
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subject to the constraint

1 - o
h(u1)-u1 1T ¢ 0
There are two local isolated minima, one at the
constraint u, = 1, and one at ug = o %, where the
constraint is not active. The inequality is trans-
formed into an equality constraint by adding the

slack variable U, .
1 _ 2 _

Contour levels for H(u) are shown in fig. 2 for

c = 0.0, 1.0, 5.0, Since H(u) is symmetric with res-
pect to the uy axis, the contour levels are drawn on-
ly for U, 2 0. The example illustrates the main prob-
lem of the method, namely the choice of the parameter
¢, For ¢ = 1.0, a rather good initial guess of the mi-
nimum point is required to get convergence to the op-
timal solutions, while for ¢ = 5.0 it should be easi-
er to find the solutions. Making c very large, as in
the penalty function method, should guarantee conver-
gence in the right directions, but as described above
it also destroys the smooth properties of the genera-
lized Lagrangian. A powerful algorithm then should
have the possibility to adjust the value of ¢ from a
large value at the starting point to a smaller value
as the minimum is approached, just to make H(u) as

well-conditioned as possible,

Although the slack variable technique increases the
order of the system, and for large values of the pa-
rameter ¢ creates functions H(u) of the famous Rosen-
brock valley type, it can be very useful for problems
of smaller dimensions. The method was applied at the

following problem [3].
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Fig. 1 - Contour levels of the generalized Lagrangian

for f(u) = (u1—5)2 + (u2—5)2 and the equality
constraint g(u) = (u2-6)2 - 4(u1-3). Contours
are drawn for c=0.0 and c=0.1. The dashed line

represents the constraint.
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Fig., 2 - Contour levels of the generalized Lagrangian
for f(u) = - %ﬁ u? - 2u$ + 2u1 and the const=
raint g(u) = u, =1+ u% = 0. Notice that the

contours are symmetric with respect to the uy

axis.
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Minimize

2

=10)/3) + (ug-5)°

2
£(u) = (uy-u, ) + (Cuy+u,

subject to the constraints

The seven inequality constraints were transformed in-
to equality constraints by introducing slack variables
Ups eoes Ugps and the magnitude of the problem was
then very much increased with this brute force app-
roach. Using Powell's minimization method [4], where
no gradients are required, the optimal solution was
not reached unless the starting point was close to the
optimal. The method of Fletcher and Powell [5], which
makes use of the gradient, was then chosen. Computa-

tion of the gradient

_ T T T
Hu = fu + uug + guu + 2cgug

then requires the computation of My which in section

3 was shown to equal

| -1

apCul) _ Ty T T

-—‘:r = - (g,84) [(guuigu LRE-ST-SNS ST
1
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As initial guess Uy = Uy = Uy E 0 was chosen. The
slack variables were chosen so that the constraints
were approximately satisfied, and the values of the
parameter ¢ were ¢ = 1.0, 2.0, 5.0 and 10.0. The op-
timal solution Uy = ou, = 3.65050, Uy = 4.,62036, cor-
responding to F(u*) = 0.95353, was found in all ca-
ses without any trouble. However, the number of ite-
rations required increased somewhat with increasing
value of c¢. At the optimal solution only the first
constraint is active, and a more elaborate algorithm
should be able to drop the nonactive constraints,
just to keep the dimension of the problem as small

as possible,

The expression for cy given in theorem 3 is of little
value for the & priori estimation of ¢, since it is
difficult to compute the diagonal matrix {ui}. More-
over, it just describes a local property of the gene-
ralized Lagrangian H(u). A more useful estimate is
the following. Consider the quantity gT(u)g(u), which
equals zero if and only if the constraints are satis-

fied. If it is required that

T
[9—- (gT(u)g(u))} H, > 0

du

the magnitude of gT(u)g(u) can be decreased by moving

in the direction opposite to Hu’ Then

T T T T T T T
gg,fy teaeM,e teg gt 2cg’g 8.8 > 0

which implies

T
8ig (fy * uggr+rg§u}

T T
28 8,8,8
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for g(u) + 0. Numerical experiments indicate that
this could be useful to estimate a lower bound of

the parameter c. For example, consider the point

U, = u, = 3.8 in fig. 1. For this point the measure
yields ¢ > 0.019, and thus for ¢ = 0.020 H(u) should
decrease when moving towards the constraint. This

was also confirmed in numerical experiments. However,
the parameter value ¢ = 0.020 will not cause monotone
decrease to the optimal solution, but will create a
very flat local minimum in the neighbourhood of uy =
u, = 3.9. For this point the ¢ estimate gives ¢ > 0.021,
which indicates that c¢ should either be chosen well
above the limit, for example five or ten times the 1li-
mit, or there should be possibilities to update c if

required.
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