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Introduction

Industrial robots are important and frequently used components in indus-
trial production. Robots are distinguished from fixed automation mainly
on the basis of their programmability and ability to be adaptable to dif-
ferent tasks. This implies that software issues for the control system are
central for the applicability of robots. There is also a desire to handle
more complex situations since it is likely that future applications will
demand even more flexible systems. Apart from flexibility there is also
a strong demand for efficiency since performance of the robot system is
often related to productivity.

This thesis takes a problem oriented approach to the software issues
for robot control. It starts with a discussion of real industrial prob-
lems. Solutions to these problems are the major topics, but the problem
formulations are in some cases contributions in themselves. There is
also emphasis on a software architecture, called the Open Robot Control
(ORC) architecture.

The physical characteristics of industrial manipulators, which are
rather precise but not perfect, influence many of the design choices. If
industrial robots were almost perfect, like NC machines, a fixed servo
system with a robot independent motion description system or planning
system on top of it would suffice. Such a system structure is, however,
currently used for industrial robots. This has some drawbacks that will
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Chapter 1 Introduction

be discussed in the thesis. The other extreme case is autonomous mobile
robots dealing with a very uncertain environment, e.g. in space applica-
tions. Such robots must be careful and therefore also slow. They rely
heavily on external sensors and maintenance of a world-model data base.
The software architectures are designed to support high level (often Al
related) software concepts, and with no special coupling to the low level
control. Industrial robots, however, typically operate in a well known,
but not completely known, environment. External sensors and internal
control signals reflect external states that often need to be known at
both high and low levels of the control system. A typical situation is
when a robot is used for welding or grinding. Software for industrial ma-
nipulators must therefore provide a strong interplay between user level
commands, sensor signals, and low level control. This interplay is crucial
to obtain flexibility and performance, but also to avoid the cost of other-
wise necessary external sensors. The software architecture suggested in
the thesis pays careful attention to these issues.

An intermediate software layer between the standard motion control
system and the user programming environment is suggested [38], instead
of trying to obtain a general purpose motion control that can suit all
applications. It should then be possible for an experienced application
engineer to tailor the motion control to a specific application in a con-
venient way, instead of deficient utilization of the device or tricky user
programming, which is often the case today. The underlying motion con-
trol system has also been given a structure to aid in the implementation of
state of the art control algorithms for use in an industrial context. These
lower layers of the system then have to fit with higher level software for
programming and execution of user programs.

The user programming, i.e. the type of robot programming that
is possible in current systems, can be carried out either on-line using
the physical robot, or off-line without use of the robot. It turns out that
these two approaches impose contradictory demands on the system. This
is perhaps the reason why existing systems primarily support only one of
these approaches. A common framework that merges these approaches is
described. The main idea is to find a representation for robot programs
that allows transformations between the different approaches. Both the
representation and the transformation is treated.

10




Outline of the thesis

The thesis is organized as follows. Programming of application features
for welding or grinding are good examples where the interplay between
different software levels is crucial to obtain performance. This is dis-
cussed in Chapter 2 which also contains some additional examples. One
may note that even a very mature application like spot welding needs
special care to obtain the best possible performance in the short moves
between spots. The need is even greater in more complicated sensor
based applications.

Chapter 3 gives a first coarse partitioning in software levels. They
also serve as a coarse design of the ORC architecture. The software in a
robot control system should contain an abstraction level with high-level
concepts for simple reprogramming, but also a level that allows efficient
computation of the low-level control. These two levels are traditional.
The interplay between user level programming and low level control, e.g.
when solving the application examples in Chapter 2, naturally implies
the need for an intermediate software layer for application specific motion
control.

Chapter 4 treats the intermediate level and the solutions to the ap-
plication examples in Chapter 2. It is shown that this level makes it sim-
pler to deal with dynamics, constraints, and external feedback loops. The
robot functions are favorably hand crafted considering the constraints of
the specific problem. The robot functions are thus based on the skill of
the human operator and his knowledge and experience in robot applica-
tions. A novel key idea in the proposed solution is to introduce a concept
of method passing. This can be implemented in an ordinary compiled
language and executed in a multiprocessor control system.

Chapter 5 treats the basic motion control level. Internal layers are
proposed and the interface to the application level in Chapter 4 is treated.
Special care is given the problem of combining motion commands with an
interface for external sensors. A solution to the problem of using the basic
control level for off-line programming purposes (see below) is proposed.
It is also demonstrated how a control algorithm can be structured and
implemented.

Chapter 6 serves as background material, introducing currently used
concepts for robot programming. Programming without use of the phys-
ical robot, so called off-line programming, is often desirable, and some-

11



Chapter 1 Introduction

times necessary. Available off-line programming systems simplifies this
type of programming. When the robot and its surrounding equipment are
used for the programming, so called on-line programming, much of the
abstract models are replaced by the physical robot and its environment.
A proper programming environment can then make the programming
more concrete, and the programming can be done by the production en-
gineer with no or little experience in computer programming. These two
concepts, unsufficiently integrated today, are separately described.

Chapter 7 presents a revised view of the robot programming prob-
lem. A new way to combine on-line and off-line programming is proposed.
The proposed solution differs from today’s integration of teach-in proce-
dures [9], which is a way of using teach-in data in off-line programs.
Instead, different special purpose programming tools should be used for
on-line and off-line programming. This implies that the program needs
to be transformed when transferred from the off-line to the on-line pro-
gramming environment or vice versa. The programming style and the
world modeling are primary aspects considered in the proposed solution.

The problems formulated in the thesis, and the solution developed,
can not be evaluated by theoretical analysis. An experimental platform
built around reconfigured commercially available industrial robots has
therefore been developed. Chapter 8 describes how the original robot
control systems have been changed to allow full control and programming
in an external computer. Chapter 9 presents the complete experimental
platform including the computers, their connections, and their use. De-
bugging of robot systems is a special issue. A robot program may fail
due to many reasons, logical errors, bad tuning, broken sensors, unfore-
seen end-effector forces, etc. Debugging benefits from a special blend of
conventional debugging tools for software, and interactive evaluation of
signals and their dynamic properties in the system. Software components
have been developed which allow connection of host computer software
to the robot controller for such analysis.

The architecture, which was first briefly described in Chapter 3 and
refined in Chapters 4, 5, and 7, is summarized and discussed in Chapter
10. Conclusions are given in Chapter 11.
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Application Examples

This chapter gives some examples of applications that are nontrivial to
handle with current systems. Such application examples are today, in
most cases, handled by modifying the basic motion control of the robot.
This can normally only be done by the robot manufacturer, and requires a
substantial engineering effort. It seems that the interesting research field
of application oriented robot programming and control, as defined in the
thesis, has been overlooked within robotics research and development,
and the formulations are thus believed to be contributions in themselves.

The approach taken here is that robot control systems should be
open for the experienced user on a fairly low level tightly connected with
the motion control system. The application problems in this chapter can
be better solved in such an open system if it contains an intermediate
level for application programming of robot motion control. The first ex-
ample, which is deburring of castings, will be used extensively in the
thesis to explain the design and the implementation of the system. The
second example which treats a very mature application, spot-welding,
shows that high performance motion can be encapsulated in the inter-
mediate software layer. The third example on arc welding treats software
aspects of the path tracking problem. There are then two examples in
the section about assembly on how the application layer can improve
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Chapter 2 Application Examples

the performance of assembly operations without additional sensors or
hardware. The first case deals with a single assembly cycle, while the
objective in the second case is to improve the performance over longer
time periods. A concept of method passing will be used later in the the-
sis to separate the application specific motion control from the standard
motion control. The final application example on materials handling also
illustrates how that concept can be used also on the user programming
level to add generality of application features.

Additional sensors are sometimes necessary, but they have draw-
backs since they cost, fail, complicate the installation, etc. A basicidea in
most of the examples is to have a system that makes it possible and con-
venient to use information already existing in the system, which however
is not possible in today’s commercially available motion control systems.
This can often eliminate the need for additional sensors, i.e. a variable in
the software comprises the sensor signal. A more detailed illustration on
information already existing in internal signals in the servo system will
be given in Section 3.4.

A note on robot programs

The pieces of robot program code appearing in this chapter are sup-
posed to be written by an ordinary robot programmer. The code is then
executed in the robot controller, typically by an interpreter. The require-
ments on the compiled procedure called by the interpreter is the topic
in the examples. Computations are programmed in a Pascal-like syntax,
but motions are requested with MOVE statements. Rather than having
a procedure MOVE with formal parameters, MOVE (and other types of
move instructions) is a reserved identifier and parameters are specified
with predefined attributes belonging to the MOVE instruction. Example
(identifiers written with capitals are reserved names):
MOVE grinder TO right_edge

WITH SPEED=0.15%mps

WITH FORCE=MyForcel
Thus, programs for simple tasks with no or little computing involved are
quite readable, also for the user with limited experience from computer
programming. The syntax of the language used is of minor importance
in the thesis. A syntax similar to the most common robot programming
languages [9] is therefore used.

14




2.1 Deburring of castings

Nominal profile

Figure 2.1 The profile of an edge on a casting.

2.1 Deburring of castings

Deburring of castings is a task that is preferably performed by indus-
trial robots. Specific problems are to make the robot recognize where
additional grinding is required and if so, to program suitable deburring
strategies. This example illustrates the need for convenient possibilities
to program control strategies on the intermediate level of the system.
Consider an edge of a casting according to Figure 2.1. Deburring will
normally be accomplished by moving the grinding tool with position con-
trol along a nominal path, and with force control in a direction normal
to the path. The tool will make the surface smooth (with proper tuning
of speed etc.), but exceptional places with much material may remain.
The result after deburring will then be as in Figure 2.2. Computation of
additional grinding motions, like the ones a human worker would have

Figure 2.2 The profile of the edge after a single grinding
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Chapter 2 Application Examples

performed, is possible without additional hardware sensors, since the re-
sulting profile of the edge after deburring is known from the actual joint
positions and the kinematics during the motion. One approach is to pro-
gram some strategy on the user level of the robot controller, i.e. in the
robot programming language used. Considering the fact that the detec-
tion of the remaining burr and the further grinding of it is quite involved
with the motion control, a better approach is to extend the basic MOVE
primitive of the system with a special version for deburring. A part of
the user level program can then look like:
GRINDMOVE grinder ALONG burrpathl

WITH DEBURRING = burrparsl

WITH VELOCITY = 100mm/s

WITH ...
where the meaning of GRINDMOVE and DEBURRING has been added at a
level below the user level of robot programming, i.e. tightly connected
with the motion control. Such application features should on the other
hand be encapsulated and separated from the general purpose motion
control system. More on this in following chapters.

2.2 Spot welding

Spot welding is one of the most successful applications for industrial
robots. As the application has become more mature, the performance
demands have become clearer. The time needed to weld a spot, includ-
ing the move to the spot and the closing of the weld-gun, is of major
importance for the applicability and economical pay-off.

Consider the welding of some part of a car. The spots to weld are
the black spots in Figure 2.3. The distance between the spots is around
50 mm, and a typical time for the motion is around 0.3 seconds, which
is significant compared to the welding time. When the welding of the
spot left to the spotx is just finished, then the statement WELDMOVE
WeldGun TO spotx is executed to move to spotx and weld as fast as
possible. The statement WELDMOVE on the user level will be interpreted
and a compiled procedure will be called. It is the actual coding of this
procedure that is the problem considered. It has to be built on existing
primitive motion commands, to use information from the basic servo
loops, to handle signals from the tool, and to include other types of

16




2.2  Spot welding

Figure 2.3 Spot weldings around a corner in a car.

application knowledge. Some of the typical characteristics will now be
given, and it should be easy to imagine that it would be a tricky task to
implement the feature by modifying the basic motion control system. The
desirable user level primitives are on the other hand not designed for this
type of fast timing, which motivates implementation in the intermediate
level of the system.

The short distance between the weldings usually result in short mo-
tions for each joint. In this application this means that the major limiting
factors are the maximum jerk and the maximum acceleration. The joints
will not get close to their velocity limits, and the manipulator dynamics
can be considered constant with respect to the joint angles during the
motion. Application knowledge, based on heuristics or formal methods,
has to be included to optimize this type of motion.

The timing of the events must also be considered. When the move
has been completed, then the robot controller orders the weld-gun to
close by asserting some signal to the welding equipment. After the weld-
gun is closed, the welding itself is controlled by the welding equipment.
Since some time passes, after the signal has been set, until the weld-
gun is almost closed (i.e. wuntil the motion has to be completed), it

ot el eo
o° © 5O OO«\Q A0°
R \§ D
N0 0) \O o)
WO o2 WY <@ time
— — -

Figure 2.4 Timing for stop of motion and start of welding.
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Figure 2.5 Timing for stop of welding and start of motion.

is desirable to signal ”close and weld” some specified time before the
motion is completed, as shown in Figure 2.4. Similar tricks can also be
applied at the start of the motion, where it is required that the welding
equipment generates the ”"welding OK” signal a certain specified time
before the welding is estimated to be complete. (Welding is event driven
and depends on the welding current and other signals monitored by the
welding equipment.) In Figure 2.5 the estimated ”welding OK” event
is denoted Welding soon ok, and the Open gun ordered and the Motion
requested events are scheduled so that the last three events in the figure
occurs as close to each other as possible. The performance and timing
requirements of this application require that the signaling and scheduling
of actions must be performed within the motion control system, or tightly
coupled with it.

2.3 Arc welding

Following a path using an external sensor signal is common in arc-welding
and gluing applications. Path tracking performance is a key issue for
improved productivity, but the optimal parameters depend on the appli-
cation and the task. As the sensor signal has to be used continuously
during the motion, it should be clear that execution of the path tracking
algorithm has to be integrated into the motion control system. It is sug-
gested that application procedures should have continuous read access to
data in the motion control layer.

Consider for example seam-welding of thin sheet-metal (thin implies
high speed), tracking the seam with a laser scan sensor. If the pieces
to be welded together have ragged edges, then the raggedness will be
equivalent to noise in the path tracking control loop. Good parameters
for the path tracking depend among other things on the noise, i.e. on
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2.3 Arc welding

the raggedness. The tuning must be requested from the user level of the
control system, and involves recording of sensor signals during slow path
tracking and then computation of the parameters.

Sensors can be incorporated in two different ways in typical commer-
cial robot system currently available. Either sensors are incorporated on
a user programming level, affecting the flow of the program but not the
behavior of the robot during motions, or sensors are utilized in a prede-
fined way during motions. In the latter case, it may be possible to set
some parameters, but the type of sensors (e.g. force, torque, vision, or
laser scanner) that can be used and the algorithms for the sensor based
control can not be influenced by the user. New types of sensor based
motion control can then only be added by the robot manufacturer after
considerable reprogramming of the motion control system.

Assume a system where new algorithms for path tracking can be
added at a motion control level that is open to the experienced applica-
tion engineer. Such an application level of the system will of course be
application specific, but the tuning of the path tracking in this case will
be task specific. The tuning of the path tracking control must therefore
be accessible from the user level of the system. A part of the robot pro-
gram on the user level can then look like the following, where -- means
comment:

-- Auto tuning:

EdgeData = RecordSeam(CalibPath)
OptSpeed = OptimalSpeed(EdgeData)
OptTrack = Tracking(EdgeData, OptSpeed)
-- End; Optimal parameters computed.

where RecordSeam (which is a measurement procedure including motions
and standard path tracking), OptimalSpeed() and Tracking() are ap-
plication features added to the underlying control system. A new feature
compared to existing robot program executives is that application fea-
tures added can sample or record signals in the motion control system,
and export the data to the user level of the system. Note also that the
procedures OptimalSpeed() and Tracking() can be given an alternative
implementation. One example is in application research, where software
packages available on host computer can be used. The variables Opt-
Speed and OptTrack can then be used in the user program as follows:
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Chapter 2 Application Examples

LaserSensor.0On
MOVE effector TO StartPos
WITH V=searchspeed
UNTIL LaserSensor.EdgeDetected
Weld.On
TRACKMOVE effector TO EndPos
WITH V = OptSpeed
WITH SENSOR = LaserSensor
WITH TRACKING = OptTrack

where TRACKMOVE (special version of MOVE accepting the SENSOR and
TRACKING parameters), SENSOR, and TRACKING are application features
added to the underlying control system. The encapsulation and imple-
mentation of such features will be described later in the thesis.

Other arc welding features, perhaps even more interesting, could be
control of the arc welding equipment, integrated with the robot controller.
For example, a laser scanner can be used both for path tracking, control
of welding equipment, and weld quality supervision.

2.4 Assembly

Assembly cycle time is the key measure of the performance for an as-
sembly robot. It is often too long a cycle time that is the reason for
using fixed automation or manual work instead of robots, resulting in
less flexibility and manual work that is monotonous. The first example
deals with the peak performance cycle time (i.e. reduction of the time
required to mount one piece or component), while the next deals with the
continuous performance cycle time (usually over half a minute or longer
time periods).

Peak performance

In many industrial assembly applications, the part of the cycle time that
is spent in excess to the theoretical minimum time is mainly due to slow
approach of precise positions (due to robust servo tuning fixed for the
robot). The work cell is typically designed with the assembly taking place
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2.4 Assembly

in the middle of the working area, and parts are picked up from feeders
and magazines in the periphery of the area, see Figure 2.6. Motions
between different stations in the work cell are performed at maximum
speed. Before a position can be reached accurately, the robot either has
to do a smooth deceleration, or make a fast deceleration and then a slow
approaching motion. The dynamic effects from the high speed motion
will otherwise make the accuracy deficient. It is not practically possible
today to have the servo so accurately tuned that a fast motion can end
directly at the proper location. Such a tuning would be dependent on
pay-load, actuator and gear temperature (which depend on the task,
time, and the room temperature), etc.

Control problems with time varying unknown parameters are some-
times solved with adaptive control[26]. This means, however, that the
servo parameters will vary during motion, and depend on recent mo-

/ W
Figure 2.6 An assembly work cell, from [22] with permission from IVF.
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Chapter 2 Application Examples

tions. Hence, adaptive control for industrial robots requires special care,
as repetitive accuracy is very crucial. One solution is to use auto tun-
ing[26] of the servo in one or a few critical locations of the workspace.
The request for auto tuning should be issued from the user program, typ-
ically when the robot has to wait anyway, e.g. for new parts. This kind
of auto tuning is called dynamic calibration here. It is related to static
calibration of positioning errors and kinematic calibration [25]. The in-
struction in the user program requesting dynamic calibration can look
like:

Gripperl.Close -- Holding bolt now

MOVE gripperl TO AssemblyPos

BoltTuning = CALIBRATE(ShakyPath)
The computed control parameters BoltTuning can then be utilized in
move instructions like:

MOVE gripperl TO InsertBoltPos

WITH SPEED=Vmax
WITH TUNING=BoltTuning

There will of course be several tunings for the different work-pieces and
for the different locations. User access to auto tuning and use of the task
specific parameters should be supported by the control system software.

Overall performance

Time optimized assembly operations sometimes have a problem: The
thermal load of the motors gets too high. The problem is that the “time
optimal”, i.e. torque demanding, motions sometimes need energy saving
modifications. The nominal torque demanding motion can be developed
with formal methods [10], or interactively by an experienced robot pro-
grammer, as well as the modifications can. Assume that we can detect
for which joints there is a risk for overload, and that we program modified
motions for those cases. How should then the proper motion be selected
during execution of the robot program? The temperatures of the ac-
tuators are needed in the program to select the right motion. Adding
thermal sensors on the actuators can be difficult and expensive. (Built in
sensors used for protection of the motors are of on-off type and normally
directly connected to the drive power for safety reasons.)

It would on the other hand be quite easy to reconstruct the motor
temperature from the torque reference, if the software architecture allows
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proper access to the signals required. This can be quite accurate if the
room temperature is known. Such a feature should be implemented in
the basic motion control, or possible for the experienced user to add.
The system software should support use of low level information, as the
thermal load, on high levels of the system.

2.5 Materials handling

The solution to the materials handling problem exemplifies how a concept
of method passing, that will mainly be used in lower layers of the system,
can be utilized also from the user level of the system.

External sensors are sometimes used to identify an object to be
grasped, or to detect if the object has been grasped. In the case that
it is possible to grasp an object without use of external sensors, enough
information to identify the type or existence of an object is very of-
ten available in the signals that today are internal to the system. For
instance, consider the following piece of code proposed for a materials
handling application:

MOVE gripper TO GripPosition

WITH ...
Gripper.Close
IDENTMOVE gripper TO DropPositions[ Id ]
VIA TopPos
WITH Id = IDENT(proc, possible_parts)
CASE Id OF
NoObject
where IDENTMOVE and IDENT are application specific features of the sys-
tem. The algorithm proc for performing the object identification should
be coded by an experienced application or control engineer. Note that
the destination in the IDENTMOVE instruction is not known when execu-
tion of it starts. However, when the via-point is passed, the identity of
the object should be known, and motion continues to the correspond-
ing element of the position vector DropPositions[]. The algorithm for
identification is passed as an executable parameter to the application
level, where it gets access to the data structure internal to the motion
control system.
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Note that there will be parallel activities going on in the under-
lying control system, implied by an attribute of a motion instruction,
i.e. implied by the user robot program. Parallel activities programmed
or exposed at the user level are possible in other systems, and parallel
computing within the underlying motion control system is very common,
but this type of implicit parallelism seems to be a new idea in robot
programming.

2.6 Summary

Some examples have been given of industrial applications which can be
better solved if the control system allows a tighter coupling between the
servo control level and a level for programming of application features.
The examples are interesting and important industrial applications, and
they also illustrate at least one important software issue each, namely:

¢ Programming of application specific real-time control strategies.

e Embedding high performance application features which are based
on timing and signaling to and from external equipment.

e Export to the user level and utilization of data sampled in the low
level motion control.

e System support of task specific tuning of the motion control system.
e Software demands for emulation of thermal motor load used for mo-
tion planning.

e Implicit parallelism caused by move attributes.

These issues give the flavor of the demands on the control system software
for current applications. It is believed that these aspects will be even
more important in future more demanding applications. This means that
the control system must allow the advanced user to introduce new robot

motion primitives on a lower level of the system then possible today. The
principles for such a system will be developed in the thesis.
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Levels of Control
and Programming

The purpose of the first section in this chapter is to give an introduction
to programming of motions. The applicability problems with current
systems is described in Section 3.2, and a first coarse outline of an archi-
tecture is presented in Section 3.3. This outline will define three main
levels of which the upper and lower levels are the traditional ones for pro-
gramming and control of robots, and the middle level is introduced to
solve the application examples in the previous chapter. Each of the three
levels will then be refined in Chapters 4, 5, and 7. Section 3.4 discusses
the use of internal control signals versus the use of additional external
sensors, and Section 3.5 treats the choice of the system programming
language used in the following chapters.

3.1 Computer control of motions

Historically, the individual joints of a robot were programmed and con-
trolled directly. The abstraction level and ease of use of the system was
increased by having a kinematic model of the robot built into the control
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Figure 3.1 Programming and control of motions today. The executive is
normally an interpreter executing the user program that specifies the mo-
tions. Execution of motion statements result in procedure calls and access
of data in the “interface”.

system. Robot programming was still manipulator oriented, i.e. the ma-
nipulator motions were specified rather than the task to be performed,
and further increase of the abstraction level of the interface and the un-
derlying control system has been desirable. A robot motion specified
by some instructions in a robot program, as in the application examples
in Chapter 2, is typically handled at different levels of the control sys-
tem. The physical world is controlled by the algorithms implemented
at a control level, which communicates with a user programming level
via a software interface, see Figure 3.1. The interface can from the user
program be viewed as a model of some parts of the physical environment,
just like a reference signal to a simple control loop can be viewed as a
model of the controlled output. The interface is, in the simplest case,
some variables or procedures that allow change of set-point, and possibly
change of parameters. The set-point and parameters in the robotics case
could be the goal position for the end-effector and motion attributes like
speed, end-effector dimensions, etc.

A current trend is to include more knowledge about the physical
environment, and thereby having the interface to reflect the robot and
its environment in more abstract ways like motions expressed in manipu-
lation of the objects handled. This solution can be suitable for high level
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3.1 Computer control of motions

motion description [24], but it has little to do with the feedback control of
a robot in normal industrial cases. The reason is that the task, the tools,
and the objects manipulated are fairly well known at the time when the
robot program is written, or at least at the time when the motion is re-
quested from the user program. A model of the environment is then only
required to compute the manipulator oriented motion commands. The
database containing such a model of the physical environment is called
a world model. It would then be attractive from a software engineering
point of view to separate the world modeling from the motion control
system. Such a separation will be treated in Section 3.3.

One interesting approach for a motion control interface is the MDL
language [13], which can be viewed as PostScript (used in modern print-
ers) for robots. However, an intermediate motion description language
does not necessarily lead to proper solutions for control of non-perfect
robots, just like PostScript does not support printing by use of non-
perfect printers. The MDL language is therefore based on so called modal
segments [20], which makes it possible to select the control strategy quite
freely with only a few basic primitives. The MDL language will be re-
turned to in Chapter 4.

The issue how robot programs should be expressed on the user level
is reformulated in Chapter 7. Until then, we can assume that the robot
programming language used in Chapter 2, i.e. a notation similar to the
one in [9], is used on the user level of the system. The robot programs can
be created in a host computer, but are interpreted in the robot control
system, where the motions are controlled by a number of computers. The
hardware can for instance look like the experimental platform that will
be shown in Figure 9.1, where micro processors and signal processors are
used in the embedded control system. The structure of the executive
software and the motion control software is the subject in remaining
sections in this chapter, and in Chapters 4 and 5.

Relations to PLC and servo controllers

The most common way to program motions in the industry today is
by use of sequencing controllers or Programmable Logical Controllers
(PLCs). Programming in this case means to compose a number of blocks
or elements containing the code to be executed into a data structure to
be used for periodic execution. Executing the program means to scan
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through the data structure, execute the executable code, and map in-
put and output signals according to the attributes of the elements. This
model of programming and execution introduces some overhead. High
performance servo control is therefore often implemented in separate con-
trollers normally supplied by the motor vendor. The corresponding PLC
element then only contains a controller interface for change of set-point,
parameters, etc. The demands on the PLC programming environment
are quite different from the demands from robot programming which is
treated in Chapter 6. On the other hand, robots often work together with
equipment which is, or would preferably be, controlled by PLCs. Thus,
there is a need to merge the two types of motion control, but PLCs are
not well applicable to robot motion control.

Some “stand alone” servo controllers can control and coordinate
multiple axes of motions. Such servos are not designed for a particu-
lar mechanical configuration and the axes are therefore assumed to be
dynamically decoupled, which implies that the user has to implement
quite a lot of algorithms and control strategies to achieve best possi-
ble performance when the system is multivariable and non-linear with
non-ideal dynamics (friction, backlash etc). Robot manufacturers spend
many man-years on this control software which is delivered with the robot
itself. If we view that motion control software as the internal code in a
PLC element, an attempt to structure robot control software can look
like a minor issue, but the engineering effort to design that single ele-
ment can equal the effort to design the rest of the entire PLC system,
thus motivating the research presented in the thesis.

3.2 Applicability problems with current systems

The conclusion from the previous section is that robot control systems
today have a structure according to Figure 3.2, even if some experimental
control systems have a more sophisticated interface to the control algo-
rithms. This means that the motion control part of the system provides
a set of predefined primitives for the programming environment and that
an industrial robot is adapted to different applications by adding tools,
fixtures, etc, and by writing programs on a user level of the system. This
is, however, not sufficient for the examples in Chapter 2.
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Figure 3.2 Main levels of motion control in (commercial or experimental)
systems today.

Inexpensive production equipment combined with demands for high
performance, or needs for unforeseen sensor based motion control, there-
fore result in a need to include application know-how also in the basic
motion control system, as indicated in Figure 3.2. The problem with
modification of the motion control is that it often requires a substantial
engineering effort, or it can even be impossible for the user. A robot
manufacturer for instance, does not want to reveal the control solutions
developed. It is also a complex task even with access to the source code
etc. The reason is that it is complex software with many coupled func-
tions, that are based on mutual primitives, include timing and so on.
The seemingly harmless task to include a new robot function may actu-
ally require a new control system including new real-time primitives and
motion primitives. In practice, it is usually not that bad, but it may
represent a major effort. There are also safety reasons for not letting
users modify the motion control of the robot. Built-in fault detections
can be very sensitive to modifications of the control strategy, resulting in
decreased personnel and equipment safety, or spurious emergency stops.
If systems should be open on the control level, careful attention must be
paid to these issues.

The state of currently available robot systems is that some robot
manufacturers have included special motion control features for a few
major application, but sensors can only be used in some predefined way,
e.g. for certain force control strategies. Application engineers have prob-
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Figure 3.3 Proposed intermediate application level. Each level will be
further refined into software layers later in the thesis.

lems using available robot systems for new applications, and robots are
unnecessarily expensive for some applications. The problem is to find a
way to support tailoring of the motion control for certain applications like
those in Chapter 2, often including incorporation of additional sensors
installed by the user.

3.3 A new approach

The problem stated in the previous section naturally leads to a solution
with an intermediate software level for implementation of application fea-
tures, see Figure 3.3. This intermediate level has not received the same
attention as other software aspects in robotics like the higher levels, or the
low level with explicit joint control. It has been neglected by statements
of the type “just implement a procedure” or “implement another robot
function”. The advantage of the intermediate level is that application
know-how does not have to be put in the basic motion control system.
On the other hand, just proposing a structure is not a solution until the
implementation problems associated with it have been solved. It actually
turns out that the structure is not that easily achieved in combination
with efficient real time computing. The implementation aspects and the
considerations made in adjacent layers will be returned to in later chap-
ters. Typical users at the different levels of the system are indicated in
Table 3.1, which is a coarse outline of a more detailed description that
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3.8 A new approach

Level in Figure 3.3 Typical programmer Full design in Chapter

User Program Ordinary robot 7 ; The User
programmer Programming level

Application Features Experienced application 4 ; The Application
engineer Level

Control Algorithms Control engineer 5 ; The Control Level

Table 3.1 Typical users at different levels of the system.

will be given in Chapter 10. The curious reader can look at Figure 10.1
which is the final architecture corresponding to the outline in Figure 3.3,
and the more detailed user table corresponding to Table 3.1 is shown in
Table 10.1. Some general aspects of each of the proposed three levels
now follows.

Separating the world model from motion control

Recall from Section 3.1 that there is a trend to include knowledge about
the environment in the motion control system to increase the level of
motion commands. Also recall that such knowledge is contained in a
database called a “world model”. By utilizing a method-passing concept
which will be introduced in Section 4.2, the world model management
and advanced robot programming language features can be separated
from the motion control, which instead can be focused on the manipula-
tor control. (The commercially available robot programming languages
can be supported even without the method passing.) The need for more
advanced robot programming capabilities instead leads to multi-layered
software for execution of robot programs. High level concepts are im-
plemented in an upper layer, possibly executed in a host computer. We
will see later that the robot programming language, including its high
level concepts, will be implemented in an executive software layer, which
can be viewed as a run-time interface to the user level programming
environment. The robot programming languages mentioned in [9], and
others, can thus be supported as special cases of the architecture that is
developed in this thesis.

The approach in the thesis is to include knowledge about the robot
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itself only in the control level. Such knowledge is utilized both for high
performance control and for best possible manipulator oriented motion
descriptions. Therefore, maintenance of a so called world model is con-
sidered as a feature in the user programming environment or executive,
which not necessarily has to be supplied with the robot. However, there
are special cases when it can be convenient to have the model of the
environment integrated in the motion control system. One example is
motion relative to a moving work-piece whose position is measured by
some sensor. The robot program can then be programmed for a non-
moving work-piece, and a separately managed world model data base
can be extended for the moving case, without affecting the robot pro-
gram. However, a concept of method passing that solves these special
cases without having world model management included in the motion
controller will be introduced later in the thesis. The advantages will be
improved generality, improved computing efficiency, and that controllers
for simple applications can be kept simple.

The user programming level

Robot programs can be developed on-line or off-line as mentioned earlier.
The output from the user programming is robot programs expressed in
some Robot Programming Language (RPL). Even if the user programs
with the help of some robot programming system with a language that is
less complex than computer programming languages are, an RPL just as
rich as computer programming languages should be used in the bottom.
It turns out that major parts of robot programs consist of statements
that are not robot specific [17].

The robot program is interpreted by some kind of interpreter or
executive, as described in Section 3.1. Compilation is not used because
the programs should be possible to develop and debug interactively and
incrementally, and the interpretation overhead is normally not a problem
since the mechanics is slower than the computer. There has been some
attempts to standardize RPLs. However, standards so far (like [44])
have not dealt with parallel activities, exception handling, special control
strategies, and modern computer science concepts in a proper way. They
are therefore ignored in the thesis.

The user programming environment must be mainly composed by
existing software tools to make an implementation feasible for one or two
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persons. (The more advanced off-line programming systems available
today for instance, have required more than 50 man-years to develop.)
We will return to the internal design of this level in Chapter 7.

The application level

Application features can be of two different types. The first type, which
is possible to implement in most systems today, is procedures or data
that define operations or primitives that are common for a certain ap-
plication. These primitives often handles external equipment or sensors
that are connected to the robot controller via the customer I0. In an
arc-welding application for instance, the welding equipment is controlled
via general primitives (like WeldOn etc.), rather than specifying exactly
what signals are to be asserted for the equipment. This is simply data ab-
straction. Such primitives can also include motions of standard types. An
instruction like clean_tool in the arc-welding application would mean:
Turn the welding off (if it is on), move to a predefined cleaning position,
have the weld-gun cleaned by e.g. compressed air, and return to the
original position. Only predefined types of motions are used, however,
and this type of application features can be defined on the user level of
what is called open systems today, and is not further commented in the
thesis.

The other type of application features requires a tighter coupling
with the motion control system, and should be implemented on the in-

MOVE grinder TO first_corner
WITH SPEED=0.8*Vmax
VIA above_first_corner
GRINDMOVE grinder ALONG right_edge
WITH SPEED=0.15*mps
WITH FORCE=grind_force
WITH GRINDING=grind_pars
MOVE grinder TO above_end_pos
GrinderOff

Listing 8.1 A sample standard MOVE command, followed by a special mo-
tion command GRINDMOVE implemented in the application level of the sys-
tem. The GRINDMOVE accepts the new GRINDING attribute. The last MOVE is
the standard motion instruction again, and GrinderOff is defined on the user
level as e.g. DigOut [5]=0.
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termediate level of the system as mentioned above. This type of feature
can employ special control strategies for dealing with physical effects like
process forces, or new types of sensor based motion control that have
not been foreseen during design of the base system. (There is no way
the robot manufacturer can foresee all ideas the application engineers
will come up with.) This second type of application features defines new
instructions that can be interpreted on the user level of the system. It
would be possible to change the meaning of a standard MOVE instruc-
tions to better suit a certain application, but a program that does not
use any special features should perform in the same way, whether special
tricks have been implemented or not. New names should therefore be
given to the special motion instructions that are defined in the applica-
tion layer that will be designed in the thesis. The user can then define a
motion sequence looking like the code in Listing 3.1.

The normal user or programmer of the robot should only program
the robot on the user level. The intermediate layer for application ori-
ented programming is intended for e.g. experienced application engi-
neers, application researchers, designers of manufacturing equipment, or
control engineers working with customer support for the robot manufac-
turer. An ordinary computer programming language is to be used for
programming on the application layer. The user program executive, the
application layer, and lower levels of the control system have to be imple-
mented with a compiled language to achieve type safety and computing
efficiency. Chapter 4 will describe a design and implementation suited
for efficient real-time execution.

The control level

The extensive research within robotics control have resulted in a number
of promising control schemes (see e.g. [17]) which, however, have not
been implemented in the systems that are commercially available today.
One major reason for this is that the structure of the motion control has
evolved from cost optimized solutions with the software structure reflect-
ing the (sometimes old) hardware structure, which makes the implemen-
tation quite hard. The design that will be developed in Chapter 5 defines
an application and implementation oriented structure for the standard
motion control. Features for “pipelining” of motion commands are intro-
duced, as well as a sensor interface for external sensors. That interface is
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then used for sensor-based motions, and for simulation of such motions
for off-line programming purposes.

3.4 Software sensors

Recall that industrial robots are rather precise machines, which implies
that signals in the control system reflect the state of the robot arm rather
well, but not perfectly. A basic idea in most of the application examples
shown in Chapter 2 is to make use of such information already existing
in the system. The application layer and a well designed software archi-
tecture makes this possible. It is, however, often not clear to people not
familiar with control systems, how much information that exists in the
servo for an industrial robot. The purpose of this section is to clarify this.
Even researchers within the robot control field have used more sensors
than would be feasible in many industrial applications, but algorithmic
solutions utilizing internal signals have been developed in a few cases, for
example in [3].

Consider one link of a robot, i.e a single servo. Assume we use a
quite simple control strategy with a PI type velocity controller, and a P
type position controller. This is shown in Figure 3.4. It is basically the
type of control that is used for the jointwise control of most commercially
robots available today. The system can be given desired compliance and
damping by only using two P regulators (i.e. K; = 0), but the I-part is
introduced to take care of unknown disturbance forces. The output of
the inner regulator can be interpreted as an acceleration reference to the
controlled system if we have K; = 0 or if we have no disturbance forces.
With disturbance forces and with a properly tuned K;, the output from
the control system is a torque (or force) reference to the servo drive unit.

Some information used for dynamic control can be useful also outside
the controller according to the following examples. The first example is
the most important one; that principle will be used to solve the deburring
application problem.

e Recording of the signals e, and 6 during motion over a surface will
give the profile of the surface along the path. The deviation of the
profile from the nominal one is simply e, as a function of 6.
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Figure 3.4 Simplified servo control.

o The 7 signal is an estimate of the Columb friction in the joint during
slow motion with constant speed and no contact with the environ-
ment.

o  The friction coefficient of an object, or the existence of an object,
can be computed from the 7 signal, as for previous case and with the
internal friction already estimated according to the previous item.

o  The signal w during acceleration and deceleration contains informa-
tion about the inertia of the joint, which will give the inertia of the
load if the inertia of the robot itself is known.

In a complete servo for all joints in a real robot it gets more complicated
to identify or compute signals of interest, but the information is in the
system, the problem is to get it out. Signals depending on friction or
external forces can of course be practically hard to estimate accurately,
but can still be feasible in some heavy applications. Note, however,
that the first example using the position error during force control is
not sensitive to friction effects. The problem of designing the software
architecture for the motion control in such a way that safe and efficient
real-time access of the control data can be provided, without exposing
the internal data structure, will be returned to in Chapter 5.

The essence of this section is that when additional information about
the physical environment is needed, then it is sometimes advantageous
to use information already in the system instead of installing external
sensors. From the user programming point of view it makes no differ-
ence, if a procedure called to get sensor data samples the signal from an
electrical signal, or if sampling is performed inside the system.
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3.5 System programming

3.5 System programming

The normal robot programmer only programs in a so called robot pro-
gramming language, while the implementor of the system uses some
computer programming language. The programmer implementing ap-
plication features and sensor interfaces is an intermediate type of user.
Should such users program in a more “simple to use” language than the
system implementor does, or can the same language be used? The an-
swer is that it is up to the user, but the object code must be possible to
link together with the system software. Only one system programming
language, selected according to the discussion in this section, will be used
in the thesis. The most important criterion is that the language must be
well suited for implementation of control systems.

The fact that the control system software reflects different physical
properties of the robot and its environment makes an object oriented
implementation feasible. A complication with the object orientedness
is that it relies on internal states in the objects, which combined with
the so called message passing (i.e. calling of methods, not to be confused
with the method passing introduced in this thesis) can cause complicated
sequences of events that are hard to debug in a real-time system. A
complicated inheritance structure can also make it hard to realize what
code that will actually be executed, and this deteriorates predictability in
a practical sense. In spite of this, the author believes that with awareness
of the complications and with proper use, object oriented programming is
the best paradigm to achieve good modularization of the software. There
is also a need to introduce better abstractions for real-time behavior, e.g.
according to [8], but this is left for further research.

An implementation of the system presented in the thesis will use
the object oriented paradigm as a base. The C++ language [42] will be
used because the C language is the only language that is available for
most micro processors and signal processors, and new processors nor-
mally come with a C compiler. C-code can be generated from C++,
which supports the desired programming paradigms. There is also no
garbage collection in C++, which makes the language practically useful
for demanding real-time applications. Both C++ and Modula-2 (used
for some prototyping) are supported by the real-time programming en-
vironment developed within the department [5].
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3.6 Summary

Control and programming of robot motions have been described on a
conceptual level, and has been compared with other types of motion
control. The difficulties to solve the application problems in Chapter 2
with current control systems was pointed out. A new coarse system
design with an intermediate level for programming of application specific
motion control was then proposed as a solution. This coarse design will
then be refined into a complete architecture in the following chapters
according to Table 2.1

It was pointed out that many of the, usually internal, control signals
can be useful when solving application problems. Both the use of inter-
nal signals and external sensor signals are reasons for having a a tight
coupling between the low level control and higher levels that open to the
user. Such a tight coupling is a key feature of the solutions presented in
the thesis.

A so called robot programming language (RPL) is used on the user
level of the system. A conventional computer programming language is
used for the implementation of the control system itself. A third case is
programming on the new intermediate level of the system. The choice of
the same programming language and programming paradigm for both the
system implementation and for the intermediate level programming was
mentioned to give a background to solutions in the following chapters.
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The design of the intermediate level for application specific motion con-
trol will be presented in this chapter. This level is open to the advanced
user and contains the application features as was indicated in the out-
line in Figure 3.3 and Table 3.1. The software levels in the outline are
refined into software layers in the final architecture that will be shown
in Figure 10.1 and Table 10.1. This means that each functional level
in the system is implemented by one or several software layers, and the
main layer in the application level is the application layer. The software
at this level of the system should be implemented in the compiled lan-
guage used, cross compiled, and executed in the embedded robot control
system. A possible hardware configuration will be shown in Chapter 9.

An important part of the specification of the application level is its
interfaces to adjacent software layers. These interfaces will be described
in general terms in Section 4.1 and 4.3. Some details depend on the
solutions that will be presented in the Chapters 5 and 7, and will therefore
have to wait until then. Some features required to solve the application
problems in Chapter 2 are presented in Section 4.2, which leads to the
software environment that is to be used for application oriented robot
programming. Some real-time aspects are discussed in Section 4.4, and
the application problems are solved in Section 4.5.
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4.1 Interface to user programming

The interface to the user programming logically contains two types of
interfaces, one used at compile time and one used at run time. The
run time interface has been given a software layer of its own, called
the executive layer, which encapsulates the robot programming language
(RPL) used. The compile time interface is simply the interface of the
application layer to the executive layer.

The executive software layer

The motion control system, including application features, must be ac-
cessible from the user programming level of the system. The user re-
quests motions by executing instructions like MOVE. Execution typically
means interpretation of program instructions or manually entered com-
mands. Compilation of user programs is generally not used as mentioned
in Chapter 3. The layers below user programming, however, form a com-
piled system to achieve efficient real-time computing. The interpretation
of the user’s MOVE instruction will have to result in a call to a compiled
procedure which we name Move. Attributes to MOVE specified with e.g.
WITH or VIA will be passed as actual parameters to the Move procedure
in some specified way. Other parameters to Move could be e.g. the target
frame, and the frame in which the target frame is specified (see [17] for
a description of frames as coordinate systems are usually called). In a
simple case a user program instruction can look like:

MOVE gripper TO drop_pos

WITH SPEED=0.5%Vmax
VIA top_pos,above_pos

which may result in the following calls performed by the interpreter:

path = make_path(gripper, drop_pos);

via_path(path, parsed_vias);

par = make_par(parsed_pars);

Move(path, par);
The syntax of the RPL used for the user program is not important here.
Some RPLs are well known from the literature [9], while others are spe-
cific for different robot vendors like [2]. The thing that matters here is
that the motion control system is accessed via compiled calls written in
an ordinary computer programming language. The software implement-
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User programming
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Figure 4.1 Software layers between user programming and basic control.
Opposed to the functional description of the coarse design according to Fig-
ure 3.3, this figure describes the underlying implementation. The applica-
tion layer implements the application features in Figure 3.3, except for the
run-time interface to the features. That interface depends on the RPL and
therefore belongs to the ezecutive layer.

ing these calls, as well as interpretation of other RPL instructions, forms
a layer of its own, namely the executive layer. This layer provides an
interface to the user programming level, and separates the user’s view of
motion requests from the underlying implementation. The major part of
the executive will, however, provide facilities comparable with those of
any computer programming language. When the RPL is changed, the
layers below the executive layer does not need to be changed.

The application layer

The motivation for the intermediate software layer presented in Chapter
3 was that the basic motion control should not need to be changed when
the motion control system is given new features for a new application.
Such a feature can be the GRINDMOVE instruction described in section
2.1. The application layer should first of all make the interface to the
basic motion control system (see next section) available to the executive
layer. It should then also be possible for e.g. the experienced application
engineer to implement features required. The structure developed so far
is shown in Figure 4.1.
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Application layer interface to executive

The purpose of the executive layer is to provide a suitable user program-
ming view of the control system, regardless of how it is implemented. The
application layer must provide a procedural or object oriented interface
to the executive layer. One of the advantages with the proposed structure
is that the application layer can be used to give the motion control sys-
tem an interface that is tailored to special executive demands. Assume
for instance that we want to make the control system directly compati-
ble with the RIPE [35] programming environment. The motion control
system is then modeled by the following abstract base class, written in
C++ [42] and quoted directly from [35].

class Robot : public Transport
{ protected:
point home, current;

// <... some more private data...>
public:

// Abstract class so contructor is empty

Robot();

virtual “Robot();

virtual int move(point loc,
int motion_attributes,
double speed=0.0);
virtual int move_rel(point delta,
int motion_attributes,
double speed=0.0);

// <... 15 more virtual member functions...>

virtual void where(point cur_loc,
int coordinate_type);
virtual int report_status();
};

If we want an interface to an ABB IRB-6 robot control system for ex-
ample, we then inherit from the Robot class to a class IRB6 in which
we implement all the virtual methods (for that robot) of the base class.
A general purpose robot programming environment (that calls the vir-
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tual functions) can then remain unchanged when the robot is changed.
This standard interface can be given to any commercially available robot
system (since the functionality of these systems can be expressed by an
abstract data type [35][1]), but then built on top of the executive and
RPL provided by the robot vendor. The system presented in the thesis
can be interfaced directly, but even more important, application features
can be added. Continuing the RIPE example, a new abstract base class
called GrindingRobot can be defined according to:

class GrindingRobot : public virtual Robot {
protected:
GrindingPars grind_pars;
public:
GrindingRobot () ;
virtual “GrindingRobot();

virtual int GrindMove(point 1loc,
int motion_attributes,
double speed=0.0,
GrindingPars gpars=NULL) ;
virtual int GrindMove(path gpath,
int motion_attributes,
double speed=0.0,
GrindingPars gpars=NULL) ;
s

The executive interface for an ABB IRB-6 grinding robot can then be
defined through multiple inheritance from class IRB6 which is derived
from class Robot, and from the abstract base class GrindingRobot. This
is shown in Figure 4.2, which perhaps not shows the best object oriented
style, but this solution is compatible with RIPE and provides proper
functionality and reuse of code (the implementation part of the IRB class
might be pre-compiled and not possible to change). Another solution
would be to say ’a robot has bahaviors’, instead of saying ’a grinding
robot is a robot’ as shown in the figure, and have a separate inheritance
hierarchy for behaviors.

Thus, we see that an object oriented interface to the motion control
system, including application features, is quite practical. The RIPE ob-
ject oriented interface is one example of how the motion control system
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Robot

IRB6 GrindingRobot
T o
GrindinglRB6

Figure 4.2 Both the properties of a certain robot (IRB-6) and the features
for a specific application (grinding) are gathered through multiple inheritance
to an IRB-6 grinding-robot class.

can be encapsulated. However, it would need to be extended with the
features, like method passing, that will be presented later in the thesis.

The executive provides a run-time interface, i.e. the RPL, for the
user programming level. Such a run-time interface or language can be
based on some fundamental primitives for motion control, like the modal
segments [20] in the MDL language [13], which uses a basic motion spec-
ification in terms of reference signals, gain scheduling vectors and time
segments which are applied to a state space model exposed to the user.
The advantage with that approach is that generality is achieved with a
small number of primitives, but it is not believed to be the best solution.
But anyway, assuming we would like to have a system based on the MDL
approach, then note the following feature with the proposed architecture.
We can use the application layer, not only to encapsulate application spe-
cific control features, but also to change the interface to the underlying
motion control system so that the so called modal segments can be used.
This is provided that the standard motion control features are general
enough, which they will be according to the next section.

The MDL language, which is only one of over hundred RPLs, was
mentioned above because it is very general with only a small number
of primitives. It was claimed, however, that it is implementable within
the ORC architecture. A more traditional user level language is, how-
ever, more feasible for industrial use, and then combined with program-
ming in the application layer, where the expressiveness of the system
programming language together with the architectural features can be
used. Improved control performance and computing efficiency can then
be achieved, at the price that new motion primitives cannot be included
at run-time, which is not a problem for industrial applications.
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4.2 Method passing

The motion control system must provide the following features for the
application layer to improve performance and flexibility compared to tra-
ditional systems:

1. The data in the path specification (refer to the piece of code in the
previous section) should be allowed to be functions of states and
time.

2. Functions should also be possible to give as control parameters.

3. An optional third argument containing so called actions should be
possible to pass to any motion procedure. Actions are not restricted
to pure functions, with all arguments passed as input data and the
output being of a specific type, the actions can be scheduled as
parallel processes communication with the calling process.

A special type of function is a table look-up function, which together
with a general version of the Move procedure can provide the same func-
tionality as the MDL language does. Items 1 and 2 can be incorporated
in a ordinary abstract data type interface, while the third case needs
special software support. A call to the basic motion control level from
the application layer can then look like (in C++):

ML = new MotionLayer; // Once at startup

ML->Move(path, par, act);

The par parameter could in principle be as general as the act parameter,
thus making the latter unnecessary. It has, however, been decided that
the par parameter may only contain functions that are free from side
effects, while the act parameter can have side effects on a supplied data
structure but cannot effect the states in the standard controller. The risk
that control stability, built in fault detection, proper real-time scheduling,
etc. is deteriorated by included application features should thereby be
minimized.

Software mechanisms like call-back routines and inheritance are
needed to achieve a proper structure of the robot control software, and
particularly of the application layer. However, such concepts are not
supported by the programming language in the multiprocessor case. The
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actions will instead be used as a fundamental concept to achieve a proper
structure and efficiency. This motivates a separate treatment of that con-
cept.

Actions

It has been claimed that robots are nothing more than abstract data
types [1]. This is basically true, because even if classes are used to define
the interface to the robot, it is basically only abstract data types that are
needed. This means that inheritance and other object oriented features
can be used for convenience when different robots share some properties,
but if we consider a single specific robot, an abstract data type is suffi-
cient. We then have some methods (like move) we can use to access the
data that is internal to the system. However, if the robot is considered
to be an abstract data type (in our compiled system), the methods have
to be known at compile time. The problem is that when the basic mo-
tion control is compiled (by the robot vendor), the application specific
control strategies are not known. Thus, robots cannot always be viewed
as abstract data types, if the software also should encapsulate general
motion control, application specific motion control, etc.

The natural extension of the abstract data type paradigm to cope
with the need for adding more methods (in the object oriented sense), is
to use inheritance and object oriented programming. All methods of the
basic motion control system could be inherited, and additional features
could be added in a subclass, but this is not a general solution in the
multi processor case. The base class can then have an implementation
part (also containing some interprocessor communication code) running
in processor A, and an interface part defined for the program in processor
B. The processors can be of different types, for instance one M68030
micro processor and one DSP32C signal processor as in the system that
will be presented in Chapter 9. The processors then have totally different
executable code, different sizes of standard types, different addressing of
memory, etc. Even if the processors were of the same type, there would
be problems with different address spaces.

Consider development of the application layer program for processor
B. A standard object oriented implementation would mean inheritance
of basic motion control (implemented on processor A), and adding ap-
plication features as new methods in the derived subclass. The problem,
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which has been named “the method passing problem”, is the following:
Application specific methods must be possible to pass to the base class
object (in another processor) for execution with proper real-time perfor-
mance and efficiency. Four different possibilities to pass executable code
as parameters have been examined.

1. A interpreted language, like LISP, can be used. A textual represen-
tation can then be passed, and the method is executed by calling
the eval function.

2. Methods can be composed out of a small set of operations required
for typical known applications. The set of operations is predefined,
and they are composed according to ordinary data parameters.

3. Modify the compiler to make it possible to interleave different types
of cross compiling according to new compiler directives.

4. Combine existing compilers and tools into a two stage compilation
strategy. Some code processing programs might be required to in-
terface standard software.

Solution 1 does not fulfill the hard real-time requirements, and a language
like FORTH is not rich enough. Alternative 2 is not flexible enough. The
third alternative leads to programming and maintenance (updating for
new processors and language extensions) requiring too much manpower.
Alternative 4 will be the approach for implementing actions and function
arguments in the sequel.

The method passing problem has also been recognized in process
control of batch processes. So called recipes contain a formula (i.e. the
data part), and a procedure (i.e. the method) that should be passed
to the process control system for execution. This problem has normally
been solved by approach 2, but since batch processes normally are slow
compared to the control system, approach 1 could also be used.

Implementation of actions

Actions are relocatable procedures that are defined at an upper layer of
the system, and passed as a parameter for execution in the next lower
layer. Actions are needed because otherwise the execution and hardware
structure of the control system does not match a layered application ori-
ented structure. Consider for instance the deburring application example
in Chapter 2. A GRINDMOVE command was introduced in the user pro-
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User program. User programming layer

GRINDMOVE path
WITH motion_attributes
WITH grinding_parameters

Interpretation: Executive layer
scan, parse, ...

GrindMove(path, motion_attributes, grinding_parameters)

In GrindMove(...): Application layer
CatchBulge
ML->Move(pos, par, act);

pos = f(path);

par = g(motion_attributes);
In Move(...). Motion control layer
passed
actions

act = new Actions();
act->AddAction(CatchBulge),
do
"move one step on the path”
"perform actions”
Figure 4.3 Execution of GRINDMOVE at different levels of the system. An
action is passed to the bottom layer where it is called at " perform actions”.

until "path completed”

gramming level, and no additional sensors were to be used. The key
problem is to detect a bulge during the motion, without slowing it down,
and utilizing a general purpose (i.e. without features for grinding pre-
defined) motion control system. The bulge detection and identification
must then be implemented as an action. The principles of the execution
of the GRINDMOVE instruction are illustrated in Figure 4.3. The action is
called CatchBulge in that figure. Parts of the application layer code will
be presented in Section 4.5.

Actions are to be (cross)compiled into relocatable executable code.
Most C compilers (and thereby C++) can be given directives to produce
code with PC relative addressing of executable code, i.e. no linker is
required to modify the addresses. Additionally, data must be addressed
in a relocatable way. This is achieved by having all variables allocated
on the stack, i.e. no global or static variables in the C++ program. All
actions are given a data structure of a fixed type via an argument to
the procedure. The address of the data environment will then be passed
via the stack, and all data addressing will be relative to that address.
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Base Target data
environment

classes

methods

Communication

Inheritance
Derived classes

Source code

Executable program

~,

Definition
of action

Compiler for
processor A

\

Application
layer base

Application
layer

Code to const
merge program

Compiler and
linker type B

Application
layer program

Figure 4.4 Generation of the application layer executable program, in-
cluding actions to be passed at run time. The actions are to be executed in
processor A which can be a DSP, they are defined in (and passed from) the
application layer program which is to be executed in processor B. Thus the
executable code for the action is treated as data in the processor B, which
can be an M680x0. The entire code generation strategy shown in the figure
is executed in the host computer of type C.

An action can therefore be treated as data on the upper level, and as
executable code on the next lower level of the system. The system gen-
eration is illustrated in Figure 4.4. The data environment passed to the
actions must of course contain pointers to procedures for communication
with the upper level, data IO, etc. The aim of the software solutions
in the thesis is that the execution in the control system tailored for a
certain application should be as efficient as if the entire system was hand
coded for that application. Further implementation details are given in

Chapter 5.
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4.3 Interface to basic motion control

The interface to the underlying motion control must contain methods for
accessing the robot arm control as well as external joints for e.g. fixtures
or feeders. The arm control system is normally provided by the robot
vendor, while additional servos of almost any type must be possible to
incorporate into the motion control. The definition of the motion layer
interface below provides some functionality for external axes, but meth-
ods for customization of kinematics and dynamics to include external
axes are not included. Management of customer IO on the servo level is
also not included. The interface is, however, sufficient for motion requests
including the external servos. Note the different overloaded versions of
the move procedure, which are further commented below.

class MotionLayer {
public:
enum mv {ready, spawned, illegal, fault, act_stopped};
// Optional arguments default to NULL => default used.
mv Move(JointSpace motion, Params pars=NULL,
Actions act=NULL);
mv Move(JointSpace motion, FuncParams pars,
Actions act=NULL);
mv Move(CartSpace motion, Params pars=NULL,
Actions act=NULL);
mv Move(CartSpace motion, FuncParams pars,
Actions act=NULL);
mv Move(FuncSpace motion, Params pars=NULL,
Actions act=NULL);
mv Move(FuncSpace motion, FuncParams pars,
Actions act=NULL);

Params GetDefaultDefault();
Params SetCurrentDefault(Params pars);
Params GetCurrentDefault();

enum mode {off, standby, block, brake, run, track};
mode* SetMode(mode new_mode, JointSet joints);
mode* GetMode(JointSet joints);
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jlag ResetRef(JointSet joints);
clag ResetRef(DOFs dofs);

mode* Reset();

protected:
\\ States, modes, etc...

};

The class definition above is a simplified definition of the interface
to the underlying motion control, and is to be included when compiling
the application layer program. The basic motion control is separately
compiled and its implementation is normally invisible to the user. Base
classes for the arguments to Move will also be defined, but are not shown
in this chapter for brevity. Three types of motion spaces times two types
of parameters (constants or functions) result in six versions of the Move
procedure, which are named the same by use of overloading. A return
from a Move procedure call can be either when the motion is ready or
interrupted in some way, or can be immediately when the motion has
started. Suitable behavior is requested via the act parameter, and the
result is obtained via the returned value of type mv, which is the enu-
meration type defined. Motions can be performed in joint space or in
Cartesian space. A third alternative is what has been named “function
space”, which means that the components in a Cartesian space motion
are allowed to be functions of some variables, like time or path coordi-
nate. Problems like specification of motions relative to moving objects,
or motions relative to a fixed object but with a varying end-effector, are
then solved in a uniform way that has not been seen anywhere else.

Parameters are also allowed to be functions, which explains the type
FuncParams. The reasons for having different types for function objects
and data objects are that efficiency can be improved, and the implemen-
tation of the function objects have some specific problems, as actions
have. Actions contain a predefined data structure and procedures that
can operate on much of the data internal to the MotionLayer, so they
can be viewed as methods of the MotionLayer class that are not known
at compile time. This imposes some problems that are commented under
the method passing problem below.
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A number of different servo controller modes can be handled by the
SetMode and GetMode procedures. ResetRef is something that is useful
in sensor based search strategies. The implementation of the Motion-
Layer will be returned to in Chapter 5.

4.4 Real-time considerations

It is well known that additional unknown dynamics are often introduced
into the controllers due to deficient real-time system design. The prob-
lem is not in the inner fixed control loops, which can be implemented
according to the standard sequence:

"initialize"

LOOP
"Sample“
"compute control output"
"output control signal"
"update controller states"

END
The problem is that the outer control loops for sensor based motion con-
trol and application features are closed around the inner control loops
and other algorithmic computations, which have to be split into different
real-time processes to get a modularized and practical design. Fluc-
tuations in CPU load due to algorithms requiring more computing in
special cases, multirate sampling, non-periodic processes, etc., combined
with buffering in the interprocess communication, introduce unwanted
time varying dynamics. Seam tracking by use of a seam-finding sensor
can serve as an example. The basic position control is then part of the
outer application specific control loop.

The experience is that a variety of real-time primitives are required
to achieve both efficiency (e.g. data shoveling kept to a minimum) and
proper dynamic behavior for the software. Some commercially available
real-time operating systems and kernels have tried to simplify the pro-
gramming by only providing a few real-time primitives. These primitives
are then either on too low a level for some problems, or the primitives
are on a higher level (e.g. pipes, messages, etc) resulting in more com-
plex dynamics in some cases. The real-time kernel used in the current
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work is developed within the department and assumes no specific con-
currency model [5]. A number of different primitives like semaphores,
events, monitors and messages can be combined to achieve the wanted
real-time structure. Other suitable real-time kernels may exist, but more
complex real-time operating systems like OS-9 and VxWorks are less at-
tractive for low level control. Hard real-time problems are preferably
solved, in our case, with small, simple and fast primitives that can be
extended according to special demands. (Hard real-time means (here)
that the “cost” for an additional execution delay is significantly more
than proportional to the delay.)

Scheduling of actions

Execution of the actions described earlier requires some care. Actions are
to be executed in the context of a process that is predefined in the system.
This should prevent improper scheduling of other processes, for e.g. fault
detection, due to errors in actions implemented by the user. In principle,
hierarchical scheduling [11] would be a good solution to ensure proper
scheduling. That would mean that a low level scheduler would be used
for the actions, ensuring that the execution is kept within the time slot
given from the standard motion control. That low level scheduler would
run under the scheduler used for other processes in the motion control
layer, but the following execution scheme is instead adopted for simplic-
ity: Actions to be performed during execution of a standard method are
passed to that method (i.e. to a move procedure) and collected in a pre-
defined data structure like:

class ActionSet {
friend class MotionLayer;
ActionSet* actions;
ActionSet* pre_actions;
ActionSet* post_actions;
ActionSet* cont_actions;
/...
}
The pre_actions are executed before motion starts, post_actions are
executed when the motion is finished, and cont_actions are installed for
execution also after the motion is completed. The actions that are to be
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executed during the motion are simply executed in sequence according
to the order they are passed to the motion command. Actions can there-
fore not interrupt each other, and actions cannot interrupt the motion
control, as they are called as procedures in that context. The question
whether or not the motion control should be allowed to interrupt actions
is still open. It is clear that it must be possible in a timeout situation
to ensure control of the equipment, but the mutual exclusion problem is
eliminated if execution of the actions is interrupted only between actions.
Which solution that is the best depends on the following details (given
without comments): The execution rate for the scheduler, if a timeout
counter in hardware (for times shorter than a clock tick) is available, if
the (C library) routines setjmp and longjmp are implemented (or possi-
ble to implement for the processor used), how the compiler treats floating
point registers, and if exception handling is supported by the compiler.
A simple approach sufficient for experimental use is to assume short ac-
tions, but also to provide a procedure that can be called from the action
when interruption is allowed.

Exceptions

Exceptions in robot control can be of two types [16]: System software
error, and external state errors. The former type should be supported
by the compiler and the run-time library and is not further commented.
The latter type should, however, be supported by the control system.
The action structure simplifies the implementation of these exceptions
as the exceptions in the application layer can be defined as actions, and
exception handlers are then the code that handles the result of an ac-
tion. Exceptions exposed to the robot programmer can be implemented
by use of actions in the same way. The way exceptions are used on the
user programming level is then defined by the executive layer. Exam-
ples: It will be shown in the next section how an action can be used
to detect a bulge in the deburring application presented in Section 2.1.
The occurrence of a bulge is not considered as an exception, since it is an
expected case which is explicitly taken care of in the application layer. In
the arc-welding application on the other hand, loss of the tracked seam
would preferably be defined as an exception in the application layer, and
passed to the user level in a way defined by the executive layer. Returning
to the deburring example, the new motion primitive GRINDMOVE which
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was used in Section 2.1, will call the standard Move procedure (supplied
by the basic motion control) from the application layer. Any exception
which is predefined for the standard MOVE is only passed to the executive
by calling ExceptionHandling as will be shown in the next section. (The
actions corresponding to the predefined user exceptions are included in
all Actions objects by the constructor for that class.)

4.5 Solving application problems

We will now return to the application problems stated in Chapter 2.
A few of these problems have been partly solved in e.g. robot con-
trol systems developed at ABB Robotics, and probably also by other
manufacturers. The software and controller design in such a commer-
cially available control system requires an effort of several (more than
10) man years to develop. The application features that have been im-
plemented are, however, not well encapsulated. The implementation of
such a feature therefore requires several months of programming, tuning,
and retesting of the basic motion control system. This has to be done by
the robot manufacturer’s control engineers, and the result is that only
features for major well-known applications get implemented.

With the system developed in this thesis, motion control applica-
tion features should be possible to implement by e.g. the experienced
application engineer. Less effort should also be required due to better
encapsulation of control features. It will now be indicated how applica-
tion features can be added according to the principles developed so far
in the thesis.

Deburring

A grinding tool is moved along the edge of a casting in the deburring
application. The nominal profile is known, see Figure 2.1, but rather
than following the nominal path exactly, force control is applied in order
to make the edge of the casting smooth. The purpose of the application
layer is to encapsulate things like the special handling of remaining bulges
that should be ground down. Strategies for doing this extra grinding
should be programmed in the application layer, while the parameters of
a particular task have to be specified by the ordinary robot programmer.

55



Chapter 4 The Application Level

%

Figure 4.5 A remaining bulge after deburring.

These parameters are collected in a structure that is type compatible with
the DEBURRING parameter (please refer to Deburring of castings section
in Chapter 2) which are passed down from the executive of the system.
The parameters are then utilized in the application layer as explained
below.

A simple grinding strategy would be to apply a grinding force that
is proportional to the deviation from the nominal (i.e. programmed)
path. A more advanced solution is to compute a modified path reflecting
the actual desired profile of the edge, and use the modified path for
the detection of bulges. (The modified path can be estimated from the
programmed nominal path and the actual position during force control.)
This strategy allows larger tolerances for work-pieces and fixtures. The
modification of the nominal path is not shown below, but use of this more
advanced strategy implies that bulges are detected after they have been
ground once.

Assume that a remaining bulge can be characterized by the start
and stop path coordinates sy and s; and the height h as shown in Figure
4.5. The detection and recording of the bulge is done in the CatchBulge
procedure in the program below. The maximum deviation between the
modified path end the actual path equals h. After some checking that sg,
s1 and h are within reasonable limits, an additional grinding strategy can
easily be computed since the entire profile of the bulge is known from
internal sensor signals. This is done in the procedure ComputeBulge
below. Note that all computation on the application level is done while
the underlying motion control moves the robot. At a path coordinate s
(close to s1), the nominal motion is interrupted, and the bulge is ground
down, according to the procedure GrindDownBulge, by moving the tool
back and forth over the bulge (like a human worker would have done).
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Grinding is then resumed at s;. The central part of the application
level code (written in C++) would then be as follows (neither handling
of multiple events for one MoveSignal (e.g. a bulge at the end of the
path), nor support for multi processor execution according to Figure 4.4,

is covered for clarity):

// Declarations:

enum ActIndex {0K, BULGE};

ActionResult

Finished(MotionData Environment) <{
// Def of procedure.

}

ActionResult

CatchBulge(MotionData Environment) {
// Def of procedure.

}

// Application feature initiation:
Act = new Actions;

Act->AddAct (Finished, O0K);
Act->AddAct(CatchBulge, BULGE);

// Procedure implementing the grinding strategy:

GrindMove (Path BurrPath, ...// Pars
do {
Move (BurrPath, GrindPars, Act);
Wait (Act->MoveSignal);
ActResult = GetResult(Act);

event = ident(ActResult);
if (event == BULGE) {

sOs1hEtc = ComputeBulge(ActResult);

s2 = StopMove();
GrindDownBulge (sOs1hEtc, s2);

BurrPath = PathLeft (BurrPath, s2);

}
} while (event == BULGE);
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if (event != 0K)

ExceptionHandling(event) ;

else

return; // Motion complete
}
where text after // are comments, and where ActionResult before the
procedure definitions denote (as in the C language) the type of the data
returned by the function.

Recall from the motion control interface above that a motion was
requested with a call from the application layer, invoking a motion pro-
cedure on the motion layer. The generic form is: Move(Pos, Par, Act).
Depending on the type of motion we have different versions of the Move
procedure overloaded with respect to the first argument. In this case we
do the following call: Move(Path, Par, Act), or whatever is suitable for
specifying the nominal path. As mentioned above, Par contains control
parameters used to achieve the desired dynamical behavior in the motion
control layer. In this case the force control parameters, path speed etc,
are put in Par. The third parameter Act (actions) is used to achieve de-
sired logical behavior not preprogrammed in the motion control system.
In this case we want to monitor the Cartesian position error, which will
be the input to the “deburring controller” implemented in the applica-
tion layer. The Act parameter will contain a request for the Cartesian
position error as a function of the path parameter s which is to be sup-
plied too. In this way, it should be a straight forward programming task
to implement the deburring controller.

Spot welding

In the spot-welding application we execute robot program instructions
like WELDMOVE WeldGun TO spotx, wanting highest possible performance
for the usually short motion. Let us examine how the WELDMOVE instruc-
tion is executed at different levels of the ORC structure. For brevity,
we only consider the timing when welding starts according to Figure 2.4,
and not the complete timing in Figure 2.5.

In the application level, tuned for spot welding in this case, the appli-
cation specific parts of the instruction should be executed or transformed
to calls to the application independent motion control level. The robot
controller has been integrated with the spot welding equipment at the
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application level. The tool can be installed from the user programming
level via an INSTALL instruction, implemented in the executive layer as it
does not request any motions. Arguments to an INSTALL instruction will
then be the identities of the physical IO channels used, and some charac-
teristics of the particular equipment (e.g. timing). When executing the
WELDMOVE instruction on the application level, the timing is known, and
the demand for special control for short motions is also known. Assuming
there is a special control feature for short motions in the motion control
layer, the central part of the application level code can look like:

// Code executed when installing the tool

Gun = new WeldGun(... // I0 channels etc.

// Procedure for optimal spot welding:
WeldMove(Pos,

if (ShortMotion)
ShortMove(Pos, Par, Act);
else
Move(Pos, Par, Act);
Wait (Act->MoveSignal);
Gun->Close();
Gun->Weld() ;
Gun->WaitWelding();
Gun->0pen() ;
return;

}

where MoveSignal is a semaphore, and the arguments to the ShortMove
procedure have the meaning as for the move procedure, which has been
explained earlier.

In spot welding, the pay-load is constant and known for the applica-
tion and the mass and inertia parameters of the load are sent as parame-
ters in Par to the motion control. The Act parameter will contain an ac-
tion that will evaluate the condition ¢ < Ty — 7, where ¢ denotes the time,
Ty the time when the motion will be completed, and 7 the reaction time
of the welding equipment. The variable T is computed in the motion
control layer, and 7 is passed as a numerical value from the application
level. When the condition evaluates to true, the action will signal the
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semaphore MoveSignal (possibly a remote semaphore in another com-
puter). Return from a call of a move procedure is done regardless if the
motion is completed or not. The call Wait() for the MoveSignal can be
called immediately if waiting is desirable, but if some computing should
be performed during the motion, this can be done before calling Wait.
In this way the application level programmer can achieve this without
dealing with tasking etc. It is also easier to utilize the computing power
of a multiprocessor control system.

Arc welding

The following primitives need to be implemented in the application layer
to achieve proper path tracking performance:

1. RecordSeam(path) moves along the path using low performance
path tracking.

2. OptimalSpeed and OptimalTracking are design procedures for com-
puting optimal path tracking parameters.

3. The types of the variables used in the auto-tuning code in Section
2.3 should be defined (not shown).

4. The TRACKMOVE and TRACKING keywords should be defined, i.e. it
has to be possible for the user to request motion using the optimal
path tracking parameters computed.

An alternative design would be to have only one procedure for the en-
tire path tracking controller design, with data invisible to the user. The
reason for the implementation presented here is that the design stages
should be open to the user. If someone with extensive application knowl-
edge is not satisfied with e.g. the OptimalSpeed procedure, it should
be possible to replace that part only. In a development stage this can
be done without recompiling the application layer by implementing the
function in an interactive computing package running on a host computer
system. The possibility to connect the robot controller to programs in a
time sharing environment is an example of tools required for development
of advanced industrial robot control systems.
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Assembly

The solution to the peak performance problem stated in Chapter 2 was
to introduce auto tuning controlled (i.e. requested) from the user level
program. How this is implemented in the application layer depends on
what features that are available in the basic motion control system. We
have three different cases:

1. Auto tuning is available in the basic motion control system. The
tuned parameters can be accessed from the application layer.

2. Variables of interest for the tuning can only be recorded (e.g. via
actions), but programs for tuning are supplied (possibly only object
code) with the standard application layer software by the robot man-
ufacturer. The underlying motion control can then be simplified.

3. No direct support for auto tuning, but the system structure pre-
sented in this thesis makes it possible. Actions for recording of
variables are implemented in the application layer, as well as a con-
troller tuning algorithm. This algorithm can also be run on a host
computer if the robot controller is connected to a communication
network.

It should be a fairly straight forward programming task to implement the
auto tuning feature in the executive layer, possibly except for the algo-
rithm itself which requires more extensive knowledge in control theory.
It is then up to the application engineer programming the application
layer, what primitives that should be added to the user level.

Another part of the assembly application problem was to make use
of the maximum continuous torque of the motors. The maximum peak
torque and superior tuning gives good peak performance, while letting
the motors of the robot work close to the maximum continuous torque
gives good overall performance. The continuous torque is limited by
the thermal load of the motors, which is basically a first order low pass
filtering of the difference between the environmental temperature and the
square root of the integral of the squared torque signal. The model can
easily be calibrated by running the robot to emergency stop caused by
thermal overload, which is detected by sensors of on/off type built into
the motors and connected directly to the emergency stop hardware. The
executive layer must make it possible to use the thermal load estimate in
a convenient way on the user level, e.g. by simply supplying a predefined
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variable or procedure as for any sensor. The application layer software
must handle the updating of the estimate, which can be achieved in the
following ways:

1.  An action that does recording and prefiltering of the torque signal
can be passed to the motion control layer. Filtered torque signals
are sent to the application layer with a certain sampling rate, all the
time from start of the system.

2. The passed action can also do the computing of the thermal load,
which increases CPU load in the motion control, but decreases the
amount of data that need to be sent to the application layer.

3. Thermal load estimation is built into the standard motion control.

The user program can remain the same independent of which alternative
that is selected, but alternative 3 is judged as the best engineering solu-
tion as this is such a basic feature (even if it is not found in commercially
available systems).

Materials handling

In the materials handling application it should be possible to use the
IDENTMOVE command with the IDENT attribute. This is implemented in
the application layer as the following steps:

1. Request a proper type of motion from the motion control layer to-
wards the first via-point (there has to be at least one). Recording
for a fixed time (say 0.2 seconds) of torque references and internal
sensor signals is requested via the Act parameter described earlier.

2.  When recorded data has been received, objects are identified (if pos-
sible) by applying the procedure obtained as a parameter from the
executive level, on the recorded data.

3. The complete motion request to the proper final frame is sent to
the motion control system. If the final motion specification does not
arrive to the motion controller in time, the movement is slowed down
and eventually stops.

No special features other than recording of signals are required in the
motion control layer and below for this application. There are also no
special algorithms defined in the application layer, it is mainly an exten-
sion of the executive so that the IDENTMOVE in the user program can be
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executed. The reason for this is that the identification procedure is task
specific, so the definition must be done on the user level of the system.
The real-time execution of the procedure, however, is to be performed in
the application layer. The conclusion is that action passing is needed not
only from the application layer to the motion control layer, but also from
the user programming level to the application level. The latter type of
actions can be defined, compiled and executed just as the application ac-
tions. Which user instructions that accept this type of actions is defined
in the executive software layer.

4.6 Summary

The design of the intermediate level for application features has been
made in this chapter. An executive software layer was introduced to
encapsulate the robot programming language used. That layer then
provides an interpreter for the user programming level, and compiled
procedures in the underlying motion control system are called during
interpretation of motion instructions in the user program. The set of
motion procedures available can then be extended by the advanced user,
without changing the standard motion control system. This is achieved
by having a software layer, called the application layer, on top of the ba-
sic motion control software. The possibility to extend the set of motion
primitives, rather than dealing with low level effects on the highest level
of control, can be compared with a skilled human worker that performs
the work efficiently without having to think about the details of how to
do it.

The interfaces between the layers have been briefly described, and
the implementation is preferably done in an object oriented style. The
main implementation problem is to achieve a tight and efficient coupling
between the application layer and the underlying motion control layer.
This is solved for the multiprocessor case by so called actions. Actions
are a type of parameters consisting of executable relocatable code that is
passed from a higher to a lower layer, where they are called and can access
otherwise internal data and control signals. Some more features, such as
function parameters, have also been presented, as well as solutions to the
application problems stated in Chapter 2.
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This chapter presents the design of the bottom control level of the system
as shown in Figure 5.1, which will result in the lower software layers in
the final architecture that will be summarized in Figure 10.1 and Table
10.1. A partitioning into three software layers for proper encapsulation of
dynamic and real-time properties of the control algorithms is presented in
Section 5.1. The upper of these three layers, which provides the interface
to the application layer, is then treated in Section 5.2. The interface
must of course support “actions” as described in Chapter 4, but also
other demands have been recognized. These novel aspects have not been
found in the literature, and are introduced and treated below.

Recall that these lower layers of the system must be designed for
efficient real-time execution in micro processors and signal processors.

\ Application Features /

Control Algorithms

(Basic motion control)

Figure 5.1 Lower half of Figure 3.3. The structure of the basic motion
control will be developed in this chapter.
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Robot motion algorithms have therefore traditionally been split into two
types. One type is algorithms that can be used at run-time and thereby
also for motions which depend on sensor inputs. The second type is algo-
rithms that require substantial CPU-time (before the motion can start)
with the computing power normally provided. Such algorithms have only
been possible to use in an off-line context, but features for precomput-
ing and buffering (called pipelining) of motion commands presented in
Section 5.2 will allow more powerful algorithms to be used for on-line
execution. A special issue is then how sensor signals should be managed,
since the required signal is not available in advance.

Off-line programming also requires special features for incorpora-
tion of sensors. The motion control system should provide a simulation
mode for off-line programming purposes, because the basic control soft-
ware written by the robot manufacturer is kept secret for practical and
business reasons. The software design for simulated motions combined
with pipelining of motions and combined with incorporation of external
sensors is a major issue in Section 5.2.

Section 5.3 presents the arm control layer, and describes how an
algorithm for path velocity control can be rewritten to suit incorporation
of external axes. Both external axes control and parts of the manipulator
joint control can be distributed to the individual servos. This part of the
software belongs to the lowest software layer, and is described in Section
5.4. Some implementation details will be discussed in Chapter 9.

5.1 Background and basic design

The motion control system includes software for all servo controlled mo-
tions in the work cell. The control system has to provide servo control
for both the joints of the robot, and for axes external to the robot. The
difference between the control of the robot joints and the external axes
is that a multi-variable servo controller for the robot joints is supplied
by the robot manufacturer, while the control and configuration of the
external axes must be possible to select also by others, e.g. by a control
engineer not working with the basic arm control. Commercial systems
today only offer very restricted reconfiguration and tuning of external
axes, and experimental systems do not treat external axes in a way that
allows separate and user friendly configuration of them. The software
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design and control structure must support solutions to such practical
demands.

Classes, in the object oriented programming sense, are used for dif-
ferent purposes in the design of the control system. Classes will encapsu-
late features of physical objects, real-time and multiprocessor aspects will
be encapsulated, and computational entities are collected into package-
like or module-like classes. Some of the class interfaces model the inter-
face to a software layer in the system. Mirroring the model of the physical
world, as shown in the lower half of Figure 5.2, in the controller/process
interface gives a feasible motion control structure. The resulting motion
control structure is shown in the upper part of Figure 5.2. The servo
controllers for the individual joints form the Local control layer, and the
fixed structure control that is tailored for the robot arm is captured in
the Arm controllayer. The upper layer for the general motion control is
called the Motion controllayer, which interfaces to the application layer
described in Chapter 4. These three layers will be described in the next
three sections. Only one arm is considered for simplicity, but multiple
arms can be incorporated on different levels of the system depending on
the degree of control interaction required.

Application

Motion control

Arm control

Control system

Local control

Physical world

Application dynamics

Figure 5.2 The control software layers correspond to process dynamics.
J1 to Jk denotes joint 1 to joint k, each having a local control interface as in
Figure 3.1. Only one arm is considered for simplicity.
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5.2 The motion control layer

The motion control layer contains the general purpose motion control
algorithms for all incorporated servos. It may also provide execution of
the parts of the arm control algorithms that do not fit into the more static
real-time scheduling used in the arm control layer. Such aspects will,
however, be left as implementation details, and the rest of the section
treats the interface aspects to the environment and to the application
layer. A concept for high throughput of motion control computations,
similar to pipelining used in CPU hardware, will also be introduced.

Services provided for the application layer

The services available to the programs outside the general motion control,
i.e. to the application layer software in this case, can be divided into two

types:
1. Services for performing motions.

2. Services for acquiring knowledge about motions.

Systems today are designed for type 1, while the second type of services
is not supported, at least not by commercially available systems. Such
acquiring services can be to return information about:

e Suitable parameters for a certain motion.

e Predefined kinematic parameters and inverse kinematic solutions.
e Dynamic performance in certain locations.

e Simulation of a sequence of motions.

The acquire services can be utilized in the robot control programs on
upper levels (i.e. in the application layer, executive layer, or on the user
programming level) of the system to improve performance and flexibil-
ity of the robot and its programming environment. The need for such
knowledge has also been noticed from the field of off-line programming.
Robot manufacturers do not want to reveal their control solutions and
software models for the robot due to confidentiality reasons and software
maintenance reasons (improving the control system should not impose
updating of software tools distributed all over the world). Note that ser-
vices like the kinematics are included in one specific software layer, even
if can be viewed as a public service in the system. The reason is that the
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the layered architecture being developed, specifies layers of programming
and not the underlying implementation.

The acquire services listed above are handled in two different ways,
depending on if it is for simulation purposes or not. Simulation of the
robot system is proposed to be achieved by instantiating a motion control
object that controls a dynamic model of the robot instead of the real
robot. An extra argument to an overloaded MotionLayer constructor
implies that the motion control object controls a virtual robot instead
of a real robot with its drive power electronics etc. Instead, additional
computing power for the simulation might be required, but the entire
control software is the same. Whether or not the virtual robot (i.e. the
simulated one) and the real robot can be run simultaneously depends on
the real-time performance of the system, but it is possible in principle.

The other type of acquire services is available via special member
functions, or they can be requested via parameters to ordinary member
functions, like Move. This looks the same for both simulated and real
robot motions.

Special member functions are used to provide access to the kine-
matics, dynamics, and other algorithms of interest for motion planning
on higher levels of the system. The idea is that the same executable
code should be used as for the motions control of the robot, but
the execution is of course made in the context of the calling process (or
in the context of a call-server process in the multiprocessor case) with a
lower priority than the actual motion control.

Another kind of parameter acquisition is used to improve real-time
performance of the system. The background is that when more powerful
algorithms are used to achieve improved motion performance, and com-
puting power is limited, computations necessary before the motion can
start, may delay the motion more than improved performance can speed
it up. However, much of the computations can often be performed in
advance, i.e when the motion specification is known but before the mo-
tion may start. The standard approach is then to do all precomputations
in a robot program as an intermediate stage after the user program is
written, but before execution starts. The problem is that robot motion
instructions are often interleaved with conditional expressions which de-
pend on sensor input. Positions may also be taught in or modified by
the robot operator after the program execution has started. The impli-
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cation is that run-time support for precomputations is necessary for e.g.
optimum time algorithms.

Features introduced to solve the precomputing problem shall as
much as possible be hidden for the normal robot programmer. Soft-
ware solutions similar to hardware solutions like pipelining and cache
memories (used in modern CPUs) will therefore be used. Recall from
Chapter 4 that one version of the Move procedure in the interface to the
motion control looked like (omitting default values for clarity):

mv Move(CartSpace motion, Params pars, Actions act);

The parameters Params supplied with a motion request contains the data
members causality and mv_descriptor declared as:
class Params
{ public:
enum causality {done, during, save};
causality computation;
int mv_descriptor;
/...
}

The value of the variable computation means the following:

during: Computations and motion are performed in the same call. The
motion starts as soon as possible, and remaining computation are
performed during the motion.

save: As much as possible of the computations for the motion are made
in advance, and the result is stored in a simple precomputed-motion
data-base as element number mv_descriptor.

done: The motion can start immediately, as the preparatory computa-
tions have already been made. Such a preparation can for instance
be computation of the minimum time trajectories, and the result
can be retrived by using the index mv_descriptor.

Use of the wrong move descriptor (compare with file descriptors in UNIX)
for a motion, or if the descriptor points to data that has been overwritten
by a more recent call of Move, must not result in disaster. Start and
target positions for the motion are therefore checked to be the same (as
those of the corresponding Move of type save) before parameters of type
done are used. In case of mismatch, the during case is simply imposed,
which means that the motion must be fully specified also when it refers
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to already computed and stored data.

Making use of the caller’s knowledge about motions

Two cases have been identified where it should be possible for the appli-
cation layer to supply extra information in addition to the motion speci-
fication itself. This type of knowledge from the calling layer answers the
following questions:

1. To what extent will the motion be subject to change by external
sensors at run time?

2. Can the robot dynamics be assumed to be constant (i.e. not de-
pending on the joint angles) during the motion? If so, we call the
motion short.

The application layer may of course need the motion layer services de-
scribed above to conclude if a motion can be considered to be short,
but the conclusion will depend on the application (and possibly on the
task) so the final information flow goes from the caller of Move to the
motion control layer. Utilization of both types of knowledge will now be
described.

The short and simple solution for the second question is that the
motion control layer should contain an additional member function for
short motions, named ShortMove. The ShortMove procedure can com-
pute trajectories in a simplified way considering special control strategies
for short motions. Please refer to the spot welding application example
in Chapters 2 and 4.

The rest of this section treats Question 1 and incorporation of sen-
sors. Motions, as specified in the call of Move, depend on sensor informa-
tion to one of the following extents:

o  Completely known, i.e. does not depend on sensor information.

o  Almost known, i.e. only minor modifications according to sensor
information will be made at run time.

o  Partly known, i.e. the motion basically depends on sensor informa-
tion, but some nominal path exists.

o Not known, i.e. the motion is entirely specified by sensor signals.

Note that in the motion control layer, the task is to create references to
the underlying arm control and local control. This is called planning and
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generation of nominal trajectories in the sequel, and the nominal trajec-
tories do not depend on internal sensor signals used in the underlying
arm control and local control. This assumption simplifies the data flow
in the system. The nominal trajectories can then, however, be modified
into actual trajectories utilizing internal sensor signals, which will be de-
scribed in the arm control section. The sensor dependency discussed here
considers only external sensors, i.e. sensors added for a certain applica-
tion or task (sensors can still be internal in the sense of software sensors,
see Section 3.4).

The application layer program passes the information about the de-
gree of sensor dependency via one additional enumeration data member
which is added to the Params class above according to:

enum mv_spec {completely, almost, partly, not};

mv_spec motion_known;

The meaning of the mv_spec enumeration constants is explained by the
following examples:

completely: Most motions occurring in the user’s robot program are
completely known at the time the instruction is interpreted. All
services available from the motion control (like optimal trajectory
planning in advance) can be employed.

almost: The motion is requested from a user level instruction immedi-
ately after the starting position has been found by a sensor based
search strategy, or a path tracking sensor is used to follow a path
with only small deviations from the nominal path. Proper trajecto-
ries can be computed in advance, but full performance should not be
requested (to leave space for control actions due to sensor signals)
and too fine tuning does not make sense.

partly: A path tracking sensor can be used to track an almost unspec-
ified path. Specifying a nominal path can be good for:

- Influencing the path tracking to search in preferred directions.

- Specification of a motion termination condition. A motion from
one location to the same location in a specified time will for
instance result in a specified time for the path tracking motion.

- Having both a specified and an actual motion provides data
that can be used in actions for e.g. supervision.

A partly known motion is otherwise treated as a not known motion.
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Goal case 2 Goal case 1

Sensor input

Start position
Figure 5.3 Path and trajectories not known in advance. The goal position
depends on the input from a sensor.

not: The typical example is manual move of the robot arm by use of
a joystick. None of the optimal trajectory planning schemes, like
minimum time, can be used. Instead, trajectory planning and gen-
eration schemes useful at run-time must be used. Note that this
also applies to a situation like the one shown in Figure 5.3.

Solutions to the run-time trajectory planning and generation problem
have not been found in the literature. (Do not confuse this with e.g.
the solutions in [17] where the trajectory generation is done at run-time,
but not the trajectory planning.) Such trajectory generation is, however,
necessary in practical applications, and at least one major robot manu-
facturer therefore has considerable competence within this field. Tech-
nically, motion increment buffers for a distance at least as long as the
distance required to stop is maintained. The buffers are then scanned
through and used together with a reference model of the robot. Joint
synchronization algorithms including extensive heuristics are applied.

Incorporation of sensors — system aspects

We have so far considered the fact that motion may depend on exter-
nal sensor signals supplied by the robot user, but how should sensors be
managed in the control system software? Some principles and specifica-
tions for a sensor interface will be given in this section, considering the
following aspects:

e Object oriented modeling of sensors.

e Application specific or task specific control and filtering of sensor
signals.

e Sensor signals in precomputation of motions.

e  Sensor signals for simulated motions.
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It is quite natural to model sensors with a general base class, like the
class Sensor shown in Appendix A, and with derived subclasses for each
special type of sensor. Each sensor class must specify three different
behaviors to support pipelining and simulation of all motions:

o  Real sampling is the normal case. The data is read from a sen-
sor interface for external sensors. Some hardware handlers may be
predefined, but scaling and possible transformation have to be im-
plemented by the sensor engineer.

o Dummy sampling must be provided so that precomputation (e.g.
computation of minimum time trajectories) of almost known mo-
tions can be carried exactly the same way as for completely known
motions. The dummy sampling typically returns a worst case value
(possibly depending on time, positon etc.) for the sensor signal that
will affect the motion.

o  Simulated sampling must be defined to allow sensor based control of
purely simulated motions, i.e. virtual sensors should be possible to
use with the virtual robot arm. The behavior of each sensor (given
by the application or task) is defined, compiled, and passed to the
sensor object in the motion control layer, in the same way as actions
are.

Note that dummy sampling must be possible also in the simulated case,
and that real sampling, dummy sampling, simulated real sampling, and
simulated dummy sampling might be executed simultaneously in differ-
ent real-time processes (with priorities in the order mentioned). From
the sensor engineering point of view, it is required that all behaviors for
a certain type of sensor are specified in one subclass (to simplify incor-
poration of new types of sensors) and the system has to automatically
ensure that all required objects are instantiated. This is solved in the
following way.

A motion layer object is dedicated to either control of the virtual
servos (simulation), or to control of the real servos. The proper case is
selected at instantiation time via an argument to the constructor of the
motion layer object, which then instantiates a MotionSensors object for
the proper case. The object of type MotionSensors is the manager for
all sensors, either for the simulation case or for the real control case.
The sensor manager remembers which case it handles via an internal
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flag, but the remaining sensor software system will be designed in a
way that the flag is only needed when new individual sensor objects are
instantiated. The following two overloaded constructors are defined for
the MotionLayer class:

class SimulationParameters;

class MotionLayer {

// ... see earlier definition...

MotionSensors *sensor_env;

MotionLayer() { // Creates object for real control.
// Create the real sensor interface:
sensor_env = new MotionSensors;
/...
};
MotionLayer(SimulationParameters SimPars);
// Create sensor interface for simulation:
sensor_env = new MotionSensors(SimPars);
/...
};
// ... and so on according to Chapter 3...

};

The simulation version of the constructor will replace the process inter-
face, including drive unit interfaces, internal sensor interfaces, and the
external sensor interfaces mentioned in this section, with their predefined
dynamic models. This is implemented in a few constructors. All other
executable motion control code remains the same, including sensor man-
agement and motion precomputation using dummy sampling of sensors.
We can then concentrate on the normal real control case. The system is
designed to provide the other modes automatically.

Before an external sensor connected to the control system can be
used, the corresponding object has to be instantiated from the class defin-
ing the interface to the sensor. Such an interface for a specific type of
sensor should be derived from a base class with features that must exist
for all sensors (e.g. a method for returning the value of the sensor signal).
Member functions declared as virtual in the base class (called Sensor
in Appendix A), can then be (re)defined in a derived class specifying a
specific sensor type, and by defining a virtual function as pure virtual
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(virtual £() = 0;), the compiler checks that the implementation of
that method has not been forgotten. The use of inheritance makes it
possible to separate the sensor specific parts of the program from the
standard software.

Because we always allow precomputations of sensor based motions
using the so called dummy sampling, it must be ensured that both a
dummy sensor object and a real sensor object are instantiated. This
is achieved and checked at compile time, via a class SensorPair which
is predefined in the system. By having all members of the SensorPair
class declared as private, and the sensor manager declared as a friend,
the compiler checks that the sensor pairs are only created by the sensor
manager MotionSensors. Please refer to the C+4- code in Appendix
A for details. The system software solutions are quite tricky in some
parts to simplify the parts that are subject to change when new types of
sensors are incorporated.

Incorporation of sensors - user aspects

New types of sensors, that for control performance reasons must be incor-
porated in the motion control layer, cannot be introduced in the software
by the ordinary robot programmer. However, an engineer with some
programming skill can be certified to write sensor interfaces, following
a methodology with seven steps shown below. The system will support
incorporation of quite complex sensors with different operation modes,
dummy behaviors, etc., but we will focus on the normal simple case here.
As an example, a laser sensor interface follows (note that the complete
code that needs to be written by the sensor engineer is given):

1. Define the data type returned by the sensor, e.g.
class LaserSensorValue {

public:
float distance;
};

2. Define a class specifying how sampling is performed. The only thing
required by the compiler is that we have a Sample() method, and
that we derive the specific sensor from the base class Sensor. In
this case we define a constructor too, because we want to be able to
specify the hardware connection at run time:
class LaserSensor : public Sensor<LaserSensorValue> {
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private:
I0_spec connection;
LaserSensor(const I0_spec HW_connection);
LaserSensorValue *Sample();

s
3. Write the implementation part for the constructor:
LaserSensor::LaserSensor(const I0_spec HW_commection); {
connection = HW_connection;
DummyVal.distance = 0.05; // 50mm = middle of range.
SetMode(single); // Sample when Sample() is called
¥

4, Write the implementation part for the sampling:

LaserSensorValue *LaserSensor::Sample() {
LaserSensorValue *val = new LaserSensorValue;
val->distance = MotionIO(IO_spec, FLOAT, READ);
return val;

};

5. Implement other features like special dummy sampling, other sam-
pling modes, sensor driver process, prefiltering, exceptions, etc. Note
that the constant dummy value could be set in the constructor above,
and simulation sampling is never implemented in this layer of the
system because it is unknown at compile time. No additional fea-
tures are needed for this simple sensor.

6. Include the enumeration number, the textual name, and the class
name in the static SensorDefs class shown in Appendix A. This
defines the sensor interface to the upper layer of the system, i.e.
to the application layer, which together with the executive layer
provides the user programming level view of all sensors defined.

7. Compile the new code, and link it together with the original system.

It is around 25 lines of code that have to be written for a simple type
of sensor. Quite strong inheritance and type checking is made at com-
pile time, but a preliminary linking with a sensor interface debugging
program would be a good idea. Computing efficiency and simple coding
for new sensors, in spite of the precomputation and simulation aspects,
is achieved at the price of a more complex system software, which is
implented and tested once for all.
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The sensor can then be installed from the application layer, e.g. as
in the following:
ML = new MotionLayer;
/...
sensor_descriptor LS; // For Laser Semsor.
LASER = ML->GetSensorType("Laser distance");
if (LASER>0) {
LS = ML->InstallSensor(LASER, AnalogIn, channel);
/...
If the sensor should be used in an action for example, the sensor descriptor
is the key to get access to the right sensor in the motion control layer data
structure available to actions, function parameters, and paths specified
by functions of sensor values.

5.3 The arm control layer

The arm control layer was introduced to separate the optimized arm con-
trol algorithms, and the fixed and efficient implementation of them, from
the general purpose motion control and from the local control of indi-
vidual joints. The arm control actually contains what is normally meant
by robot control. Algorithms like “computed torque” and “hybrid force-
position control” are still not much used in real industrial applications,
but one aim with the system structure developed in the thesis is to ease
implementation of such algorithms.

Functionality — specification and problems

The arm control software layer is encapsulated in a class. The features
provided for the motion control layer are basically the following:

e Kinematics and inverse kinematics for the robot arm,
e Dynamic parameters for the robot arm.
e Setting of control parameters and modes.

e On-line trajectory time scaling for torque limited path following [18]
must be implemented and possible to activate. The nominal tra-
jectories are then modified with respect to the actual torque. The
modified trajectories are called actual trajectories.
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Nominal trajectories can be passed to the arm control, either as
generated trajectories passed incrementally point by point, or as
complete trajectories parametrized in some predefined way to be
generated in the arm control.

Acquiring of control data used in the arm control. For example:

o  Actual generated trajectories for a motion.

o Internal sensor signals.

o  Control errors for position, velocity, and force (for force control)
can be read (and preset in special modes) by the motion control
layer.

Feed forward signals to torque and velocity references can be set.
For example, signals that are added to the torque reference for the
joint drives can be useful when implementing force control strategies
not supported by the arm control layer itself.

It is interesting to see that internal control and sensor signals, which are
supplied to the motion control layer by the ar control or local control
layers, can be accessed during execution of an action. The action is
implemented in the application layer, but used via the executive layer
from the user level of the system. This is used to solve some of the
application problems in Chapter 2, for example the deburring application
problem.

The software layers within the basic motion control level are appli-

cation oriented, as opposed to other systems which usually are algorithm
oriented. This has the following two structural implications:

1.
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Several of the algorithms used in the arm control often need to be
extended to handle all joints in the work cell, i.e. also the exter-
nal axes which are installed by the user. The algorithms should
then be structured in a way that additional joints can be added in
computational stages outside the arm control layer.

The design of the multivariable arm controller is complex if the com-
plete dynamics including compliance, friction, backlash, torque rip-
ple, unknown pay-load, and external forces on the end-effector is
considered. This is a major reason why e.g. computed torque is
not used in commercial robots today. The design could instead be
divided into joint-wise controllers (to be implemented in the local
control layer) and a multivariable part (to be implemented in the
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Figure 5.4 Path following according to [18].

arm control layer) considering some of the joint-wise effects.

Implementation of joint-wise control, useful for external axes or for robot
joints according to item 2, will be treated in the next section, but separa-
tion of the joint-wise control and design of the multivariable controller is
left for further research. An example how an algorithm can be rewritten
according to item 1 is given in the rest of this section.

Introduction to on-line trajectory time scaling

The aim of the on-line (i.e. at run time) trajectory scaling [19, 18] is to
change the time scale of the motion along a specified path, in such a way
that required torques for the motion are within admissible limits. This
fits very well into the proposed system structure, since the precomputa-
tions mentioned then do not need to (or cannot) take the actual torque
into account, which would lead to an unfeasible data flow. The torque
available for the motion varies because e.g. friction (in the robot or to
the work-piece) varies. Some spot welding robots, for instance, need to
be exercised several minutes after maintenance or cold start before they
can continue performing optimized motions. Instead, the control sys-
tem should automatically rescale the trajectories to cope with the time
varying friction.

The time scale of the nominal trajectory is changed at run time by
the path velocity controller shown in Figure 5.4, in such a way that the
required torque matches the torque limits. If no joint exceeds its torque
limit for the nominal trajectory, the actual trajectory will be the same
as the nominal. If one or several joints need more torque than allowed,
the motion is slowed down but the path is kept. The basic idea behind
the algorithm is to parametrize the standard robot controller in the path
coordinate s. It is assumed that the path is specified as a vector func-
tion f(s), the nominal trajectories are specified as two scalar functions
v1(8) = § and wva(s) = § specifying the velocity and the acceleration
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along the path. The path velocity controller then executes the path and
velocity specifications by sending the path coordinate s and its first and
second time derivatives s and 5 to the standard robot controller in such
a way that the required torque 7 is kept within the limits. To do so, the
controller is written on the form 7 = b1§ + by, and b; and by are fed back
to the path velocity controller. Please refer to [18] or [19] for a detailed
description. Figure 5.4 is basically taken from [18], but the data flow for
the path specification is explicitly shown.

Rewriting of the on-line trajectory time scaling algorithm

Some restructuring will now be made in order to make the path velocity
control fit into the system, still maintaining the same basic algorithm.
First an explicit time scale is introduced with the motion specification. In
[18], the time scale is implicitly given by the functions v; and ve which
are derivatives of the path coordinates s. This means that when the
functions are integrated up to the final value of s, round-off errors will
be integrated and the motion will not last exactly as long as might be
specified in the call to Move. A time correction term can easily be added
to the path velocity controller, and a small percentage of overspeed can
be allowed to let the controller catch up with the specified time.

The second modification is that the motion specification (including
the nominal trajectories) is not any more considered as a precomputed
matrix with columns s, v1, vs and f, and with rows corresponding to steps
along the path. A time column ¢ was introduced above, and the nominal
trajectories and the path can just as well be generated at run time based
on e.g. external sensors. The columns therefore form a time signal X.
The reason for having a dashed line for the path information in Figure
5.4 was that the motion specification was considered to be pre-planned

External axes interface

e
T aux s s
Path oG A 066
Nominal )y Palth Stgndard ‘lt/ T Robot qq
trajectory velocity robot ;
creation control controller / | dynamics

N
Figure 5.5 Path following as in Figure 5.4, but with proper time signals
and an interface for external axes
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Figure 5.6 External axes can be incorporated in a “bit-slice” style in the
proposed system.

nonlinear functions [18]. The signal ¥ on the other hand is a proper
signal as shown in figure 5.6. Precomputations are still allowed according
to earlier sections, but the controller should work with signals giving a
more or less constant real-time data flow allowing higher utilization of
the hardware.

A third modification can now be introduced to solve the external
axes control problem we were looking at. Additional motion reference
signals ¥; are supplied to each axis i. X; is a vector signal consisting of
the same values of t and s as sent to the arm controller, but also of the
scalars vy, vg and f; specifying the nominal motion for axis i. Exactly the
same values of the path coordinate reference o and its derivatives that
go to the arm controller also go to each external axis controller. Each
external axis controller then computes the allowed range for ¢ according
to [18], but in stages as shown in Figure 5.6. The time lag A is also
computed as the maximum of the input A and the time lag for the axis
itself.

It has been shown how one algorithm can be modularized to fit into
a structure suitable for industrial use with external servos connected to
the robot controller. It is even straight forward to incorporate multiple
arm synchronized with the same path coordinate s. It is believed that
many other algorithms can be modularized in the same way, but when
not possible, other features in the system (like motion in function space)
will always make it possible to program and perform a motion, although
a larger user or application programming effort will be needed.
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5.4 The local control layer

The purpose of the local control layer is to support controller implemen-
tation in two ways:

e A complex multivariable arm controller can be better modularized
if axis specific features are put in separate modules, as mentioned in
the previous section.

e The local control software can be decentralized to each individual
joint, and possibly be put in hardware together with the drive units
and the internal sensor measurement system. Such hardware mod-
ules can be relocated away from the control computer to improve
flexibility of the system and reduce cabling and hardware cost.

A suitable structure for the local control will be examined. The structure
consists of well known basic elements, and can be viewed as an example
of what the local control layer is intended to contain. Interface aspects
due to hardware distribution or multiprocessor are ignored for simplicity
of the example.

Assume the arm control has been designed for a rigid robot, but
some of the joints on the robot have gears with backlash. It then seems
like a sensible engineering principle to cope with the backlash effects,
which are joint-wise, in the joint-wise control, i.e. in the local control
layer. The arm control layer software (and layers above) can then be the
same as for the high cost version (without backlash) of the same type of
robot. This corresponds to the object oriented way of modeling shown

in Figure 5.2, but what can the control structure inside the local control
object look like?

Visible Visible states ~ References for Control Additional
parameters and signals visible states parameters control signal Arm ContrOI

A
Local control
Fixed QZ@ te Fixed Disturbance
parameters l
Output

Parameters references
Optional _, - 55\
gg,eg;arl —> State Feedback h) T One joint
p A observer control dynamics

+ ;

Standard internal sensor signals

Figure 5.7 General structure of one local controller.
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A general control structure of an axis controller in the local control
layer is shown in Figure 5.7, and Figure 5.8 shows the same structure
with a simple controller of the type commonly used today as an exam-
ple. Torque limits are not included for clarity, and all signals are shown
as if they where continuous time signals. Major parts of the observer
and controller are normally implemented digitally, but A/D conversion
is then considered to be included in the state observer, as having part of
it implemented with analog circuits (e.g. together with an anti-aliasing
filter) sometimes is a good way of achieving high bandwidth disturbance
rejection. The D/A conversion can also be put in different ways, depend-
ing on how much of the controller that is analog, and depending on the
drive system which can be purely digital or purely analog.

Both standard sensor signals and optional ones are connected to the
state observer, which also includes filters etc. An optional sensor for
local control can be a force sensor used for force control of a single joint.
Some of the states in that block are output, i.e. —&, to be used by the
feedback control after the reference z,, has been added. Only the part
of z,, that is of interest for the arm control can be given reference values
from that layer. The same applies to the motion control layer if the joint
is an external axis. Parameters are also divided into one changeable and
one fixed part. The additional control signal allows a combination of the
local control and the arm control, or an alternative control strategy can
do all the control in the upper layer, possibly based on external sensor
signals not available in the local control layer.

Arm control

Local control

Filter .
parameters —Jl}_ Disturbance
l Joint angle
Filter and .| Onejoint
derivative

dynamics
A ]
Motor angle
Figure 5.8 Local control of a type commonly used today with a P-type

position control and a PI-type velocity control. The notation of signals

should be obvious for those that are familiar with robot control, or please
refer to [17].
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The optional internal sensors, see Figure 5.7, are statically defined
in the system. Parameters from the layer above can, however, affect
how, or if, the internal optional sensors are utilized in the control. The
sensor signals can as an alternative be filtered and sent up to higher
layers for further processing. The reason for such a solution would be
to simplify the hardware by using the ports for internal sensors also for
external motion control sensors. An example with a sensor serial bus will
be given in Chapter 9.

Reconsidering the example above with the rigid robot with backlash,
the local control should provide signals ¢ and ¢ that can be used in the
arm control layer as if the robot did not have backlash, and the local
controller should compensate for the backlash effects in such a way that
highest possible performance is achieved. The performance will of course
never be as good as if the robot did not have any backlash, but note that
it might be possible to get around the effects of the backlash in certain
applications, i.e. the application software layer (see Chapter 4) can be
extended while keeping other layers unchanged.

5.5 Summary

The design of the standard, i.e. application independent, part of the
motion control system has beed developed in this chapter. A partitioning
into three software layers was obtained from an object oriented view of
the hardware and dynamics structure of the physical robot system. A
design of the interfaces and the internal structure of the layers has also
been made. The design is based on encapsulation of motion control
features at compile time and flow of motion data at run-time. Both the
general analysis and design of the motion control system, and the specific
solutions (for incorporation of sensors, pipelining of motion commands,
etc) are contributions from this chapter. The solutions to the software
problems will improve the usefulness of the standard motion control as
seen from levels above, but also support better ways of programming
within the layers.
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Robot Programming
Concepts

The purpose of this chapter is to introduce some of the concepts that are
currently used in robot programming on the user level. The presented
concepts can be found in the literature or in practical use in the industry,
but the intention of the collected descriptions and comments given in this
chapter is to give the reader a proper view of the problems that will be
tackled in Chapter 7. The main references for the material are [9] for
robot programming languages, [17] for off-line aspects, and [2] for on-line
features.

Section 6.1 describes some ways of classifying robot programming.
A classification according to where the programming takes place is then
used in Section 6.3 treating on-line programming, and in Section 6.2
covering off-line programming. Section 6.4 finally presents the current
style of world modeling, which will be extended in Chapter 7.
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6.1 Classification of programming concepts

Many preferences by robot programmers for one or the other robot pro-
gramming method stem from the way different methods are combined
in today’s commercial systems. For example, some programmers prefer
off-line programming (explained below) because some important feature
is not supported by the teach-in interface they have access to. Others
prefer on-line programming because their system provides an easy to
use programming interface for on-line programming. Even major books
in robot programming like [9] and [17] have such preferences, but some
factory floor aspects (mostly to the favor of on-line programming) de-
serves some comments. This section tries to classify robot programming
in four different ways to serve as a background when different concepts
are further examined later in the chapter.

Level of abstraction

The following levels of abstraction for robot programming languages and
systems are conventional (and will be reflected in the final software ar-
chitecture):

- Task-level programming is the highest level of abstraction allow-
ing instructions specifying what to do without specifying how the
task should be performed. The task can be either a complete task
like assemble relay-X, or the task can be a subtask like fetch
bearing from box-B. True task-level programming does not exist
yet but is an active topic of research. Two main problems are that
very extensive models for the robot and its environment are needed
in the system, and planning and scheduling of motions utilizing such
models have not been accomplished yet[17]. Another problem which
is addressed in this thesis (Chapter 10 and [38]) is that it is unfeasible
to deal with low-level physical effects in high-level planning.

- Object-level programming also utilizes a world model consist-
ing of objects described by e.g. frames, but a full world model
with obstacles etc. is not used, as the system does not plan the
paths. Instead, paths are implicitly or explicitly given by spec-
ification of relations between objects. The system computes the
necessary motion to achieve the object relation, and performs the
motion according to a defined strategy like straight line motions in
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Cartesian space. Systems supporting a more implicit type of pro-
gramming are ROBEX and RCCL. A ROBEX instruction can look
like: MOVE/box,underside,AGAINST,table, top

Most robot programming languages described in [9] support object-
level programming, usually in an explicit way like:

MOVE ARM TO box

CLOSE HAND

AFFIX box TO ARM

MOVE box TO table

OPEN HAND

UNFIX box FROM ARM

MOVE ARM ...

where the ARM object is predefined in the system, and the frames
for box and table objects have to be specified. All objects make up
the so called world model. The instructions AFFIX and UNFIX are
used to maintain the world model when the objects are manipulated.
Systems with database management of the objects, supported by the
user interface, have been developed to simplify robot programming
in assembly applications [40, 41].

- Manipulator-level programming focuses on manipulator mo-
tions rather than on the objects that are manipulated. Instructions
can still refer to objects in the working space, but the objects are sim-
ply named frames and no full world model is maintained. Motions
in joint space can also be used, as well as other manipulator specific
parameters like acceleration and speed as a percentage of maximum
for the manipulator, and type of manipulator control used.

An object oriented language would be appropriate for robot program-
ming. The fact that object-level programming support software objects
belonging to the world model does, however, not imply that object ori-
ented programming in the computer programming sense is supported by
the RPL. In fact, the object-level RPLs described in [9] does not support
object oriented computer programming, and an advanced RPL like SIL
has quite recently been updated for object oriented programming.

The use of manipulator-level programming, which is the most com-
mon method used in practice today, is sometimes considered as a problem
in robot programming as it hinders general purpose task-level program-
ming algorithms. The use of object-level programming maintaining a
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world model has two advantages. It provides a base for sophisticated
software tools for off-line and task-level programming, and the flow of
program execution is better separated from the description of the en-
vironment. Separation of the world model from the program itself is
particularly interesting for so called intelligent robots acting in a dynam-
ically changing environment. A parallel process can then utilize sensor
information to update the world model, which is accessed by the robot
program executive.

While much of the research in robot programming aims at increas-
ing the level of abstraction, there are industrial needs to support low
level manipulator-level programming. One reason is that manipulator
constraints have to be considered to achieve a high utilization of the
comparably expensive mechanical device. Another reason, which we will
come back to in Section 6.3, is that manipulator-level programming is a
quite natural method for on-line programming.

To conclude the level of abstraction issue, different levels are suitable
in different situations. A software architecture therefore has to support
combined use of manipulator-level and object-level robot programming.
The approach in the thesis is to use a manipulator-level style for the mo-
tion control interface as shown in Chapters 4 and 5, and to provide such
features that the object level can be added according to the “separation
of the world model” issue in Chapter 3. Task-level programming should
then be put on top of the object-level programming.

Programming languages

Most languages used for robot programming resemble, or are, computer
programming languages, which is natural since major parts of the pro-
grams consist of instructions that they have in common with computer
programming. Some languages are, however, quite robot specific, and
RPLs can therefore be divided into three categories [17]:

o Specialized manipulation languages have been designed specifi-
cally for robot programming, but are not expressive and rich enough
to be considered as a general purpose language. One such language
is AL (Assembly Language) which was developed at Stanford al-
ready in the 1970s, and another is the ARLA language [2] which
has been developed by ABB Robotics. Many of the specialized ma-
nipulator languages, like ARLA, have evolved from simple teach-in

88



6.1 Classification of programming concepts

programming and are being extended until they resemble computer
programming languages.

o Robot library for an existing computer language is feasible
in the way that a popular and well supported computer program-
ming language can be used also for robot programming. However,
additional syntactic and semantic support for robot specific pro-
gramming is sometimes desirable, and robot programs are normally
interpreted while most computer languages are compiled. Examples

of this approach are RCCL [24], PASRO [9], and HAL [36].

o Robot library for a new general purpose language well suited
for robot programming can be technically feasible but requires a sub-
stantial development and maintenance effort. Examples are KAREL
and SIL which are both Pascal like languages, the latter with several
LISP-like features.

The main problem with robot programming languages is that each robot
vendor provides a robot system that must be programmed in their spe-
cific language, and sometimes a programming environment supporting
programming in that particular language has to be used for the pro-
gramming. This causes significant problems for factories using robots
from different robot vendors. One way to get around the problem is to
use an off-line programming system in which programming is indepen-
dent of the native language for each robot, and then have the system to
generate code for the actual robot used. Another approach is to standard-
ize the robot language. Such an attempt is IRDATA, which is intended
as a low level language that is to be generated from higher level robot
programming systems. While IRDATA is very good in its intentions, it is
nowadays quite old fashioned since modern computer programming fea-
tures are not supported. Other standardization activities are going on,
and can be appropriate for some applications, but are of minor interest
here since the new robot control and programming solutions are not fully
considered.

User interface

Robot programming and supervision can be performed via a user inter-
face comprising one or several of the following alternatives:

e Free text edit input in a usual computer programming style.
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e A structured editor or programming tool supporting the program-
ming language can be used.

e A graphical user interface, possibly with 3D world modeling.

A well designed system will use all three alternatives in an appropriate
way. Fancy graphics is not always the best alternative. Use of the phys-
ical world can for instance be more appropriate than a graphical view of
it in some cases.

Use of mechanical robot

The key type of classification of robot programming is by use of the
mechanical robot, i.e. on-line or off-line programming as mentioned in
earlier chapters. One opinion within robotics is that how the program-
ming is carried out should be decoupled from where it takes place. The
approach in this thesis is the opposite. The programming methods should
be specially designed according to where the programming takes place,
i.e. on line or off line, or it will be a compromise that cannot suit both
cases. The importance of the on-line and off-line programming methods
has therefore motivated separate descriptions of them in the next two
sections.

6.2 Off-line programming

Off-line programming means that the mechanical robot is not occupied
during programming, which instead takes place in a host computer. Note
that even if the control computers of the robot control system are used,
the programming is considered to be off-line in this thesis. Off-line pro-
gramming is the subject for almost all research in robot programming.
One research goal is to increase the level of abstraction towards task-level
programming, while others look at suitable object-level systems which
should provide a base for future task-level programming, and the trend
has been that modern approaches focus on computer programming. A
major problem for many advanced off-line programming systems is to get
around limitations in the basic control system. One aim of the thesis is
therefore to design the control system in such a way that it suits off-line
programming, and thereby making available off-line programming sys-
tems more useful. Only the lower level of off-line programming, which
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needs to be resigned together with the control system, is therefore con-
sidered here. The main motivations for off-line programming are:

+
_I._

The production equipment is not occupied during the programming.

A work cell can be designed, programmed, and simulated before it
is actually built. The result of the simulation can be which type of
robot that should be used, or how the equipment in the work cell
should be arranged.

A uniform style of programming for robots of different brands can
be achieved.

Major parts of the robot programs are often computations, which
are better programmed in a computer programming style.

An off-line programming systems can provide an interface to task-
level programming systems.

problems with the off-line programming are:

The accuracy of positions is deficient compared to teach-in program-
ming.

Simulation of the robot behavior will be inaccurate since the actual
control software cannot be used because it is considered confidential
by the robot manufacturer. The dynamics of the mechanics is also
often unknown, but could possibly be identified.

Transfer of the programs to the embedded controller often imposes
restriction on the programming, since embedded controllers are often
not flexible or open enough.

Programming tends to be abstract since a computer representation
of the robot and its environment is used.

On-line modification of the program by the robot operator with-
out computer programming experience is too hard when languages
suited for off-line programming are used. The teach pendant user
interface supported by current systems is not powerful enough.

Some of these problems have been addressed in research before, while
others have not been noticed by computer science researchers and others.

The

current state can be summarized as:

The accuracy problem has been approached by calibration methods,
additional sensors, and by using teach-in for certain locations (refer
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to [9] for integration of teach-in procedures).

= The simulation problem has been solved in earlier chapters of the
thesis by designing the motion control system also for a simulation
mode.

= The problems with embedded controller limitations is addressed in
the thesis by designing an open and flexible system.

= The problem with abstract world models is partly solved with off-
line programming systems providing a graphic user interface with 3D
modeling etc. It can still be a non trivial task to define the objects
in such a system, but can sometimes be derived automatically from
CAD data available from the mechanical design.

= On-line modification of a program that has been generated by an off-
line programming system has so far been restricted to the following
cases:

1. Modification of positions via a teach pendant interface. The
program itself cannot be modified, but modified positions can
be transferred back to the off-line programming system.

2. Also the program expressed in the syntax used in the embedded
controller can be modified, either via a structured editor (as
in the ABB approach described in Section 6.3), or via a text
editor requiring some familiarity with computer programming.
In any case, the modified program cannot be translated back
to the representation used in the vendor independent off-line
programming system.

This problem will be addressed in the next chapter.

6.3 On-line programming

The major advantage with on-line programming is that it is concrete,
i.e. abstract world modeling and computer simulation is not needed. The
programmed motions will also be accurate since locations and frames can
be defined via teach-in. Test and debugging is also often simplified by
facilities like stepwise execution forward and backward, and adjustment
of positions etc during robot motions while the true (i.e. not simulated)
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behavior is studied. The disadvantages are basically the same as the
advantages with off-line programming.

There has been a trend that embedded robot control systems have
approached general purpose computer systems in complexity, i.e. robot
manufacturers have tried to reinvent the computer in order to support
robot programming [36]. The approach taken in the current research
is to focus on the on-line programming needs for the embedded system,
and otherwise make use of available tools for computer programming and
off-line robot programming.

What are then the system demands for user friendly and flexible
on-line programming? The answer depends, of course, on the type of
user, but since on-line programming is a concrete style that can be used
by the production technician with no or little experience in computer
programming, that type of user is considered. A successful such system
on the market is the ARLA language and programming environment
from ABB Robotics. Some of its main intentions and features will now
be presented to give a view of typical industrial requirements, at least for
smaller work shops. The aim is then to design a system structure that
fulfills these requirements and other demands for higher level off-line
programming.

Interactive menu-based teach-in programming

The ABB way of programming robots can be characterized by the fol-
lowing:

+ All programming can be carried out via a hand held terminal which
is called “programming unit”. The programmer can stay close to
the workpieces of interest during the programming.

+  The programming unit has a joystick for manual control of the robot,
and for manual control of other equipment if feasible. Some fixed
buttons for manual operation are available, e.g. open/close gripper,
coordinate system selection, and a few more. Most features are ac-
cessed via function buttons, i.e. buttons that have different meaning
depending on which buttons have been pressed earlier. The current
meaning is displayed above each button.

+ [Entering of new program instructions are done by pressing a button
for positioning instruction, or another button for other instructions
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(like computing, testing or branching), and then by pushing func-
tion buttons for type of instruction, its attributes, attributes to the
attributes etc.

+ Program editing is activated through one fixed button and then done
via function buttons.

+  Other features include start of program execution and modification
of programmed positions while the robot is running.

In essence, a hand held terminal is possible since most features are ac-
cessed via function buttons, which also has the advantage that the un-
experienced programmer always has only a few possibilities to choose
between. No picture of the programming unit is shown here since a more
modern design would probably look different with e.g. a larger graphical
display, “track-ball” and pull-down menus instead of function buttons,
voice input of characters and identifiers, etc. The important thing is
that the robot is operated and programmed via a structured command
interpreter and a structured editor, without abstract modeling of the
environment since the physical environment is used.

Interactive menu-based teach-in programming has turned out to be
preferable in most standard applications, but too primitive on-line pro-
gramming environments is probably the reason for statements like the
following which can be found in [17], where it relates to a sample appli-
cation: “It should be clear that the definition of such a process through
'teach by showing’ techniques is probably not feasible. For example, in
dealing with pallets, it is laborious to have to teach all the pallet compart-
ment locations; it is much preferable to teach only the corner locations
and then compute the others making use of the dimensions of the pallet.
Further, specifying interprocess signaling and setting up parallelism using
a typical teach pendant or menu-style interface is usually not possible at
all. This kind of application necessitates a robot programming language
approach to process description”. It is true that only the corners of a
pallet should be taught, but that is possible also in a powerful teach-in
programming environment. Pallets are predefined in the ABB system.
One attribute to the positioning instruction is PALLET, which can be
selected by pushing a function button. Additional arguments will then
be available from the function buttons, like pallet identifier and counters
for row and column in that pallet. An object oriented RPL is preferable
in a case like this, as will be further commented in Chapter 7.
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6.4 World models for off-line programming

Examples of world modeling for off-line purposes can be found in [17],
[9], [24] and others. The world model consists of objects which can be
described by the frame concept in robotics. Apart from the base frame
of an object, additional frames for different parts of the object can be
given with respect to the base frame for that object. Frames can then
be used explicitly in motion instructions, or they can be used implicitly
by specifying equations with frames to the system which then computes
the arm configuration that solves the equation. There are, however, also
reasons for having more complete world models, as in the CimStation
off-line programming system. The world modeling is best described by
quoting the section “Objects and world models” in [17], which describes
the CimStation.

Every simulated entity such as a workpiece, fixture, or link of a robot
is represented by an object. The object data structure contains the model
of the entity, several other attributes, plus room to add future data. A
simple example of another attribute stored with an object is a label by
which the object is referenced. Objects can be built from their models
and stored in data base libraries for later use.

It is natural to group objects into structured objects in a tree struc-
ture. For example, an n-jointed robot is a structured object having a
null model as its root, and having n + 1 subobjects (‘link0’ through
‘linkn’). Subobjects are referred to by their path names, for example,
‘pumal/link3’. The entire simulated world is a single structured object
with a null model at the root named ‘world’. Any time an object is

World

Lens

Pedestal |

----
....
R

Right finger

Left finger

Link0

Figure 6.1 Example of the world model tree
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moved, all of its descendants move with it, but a motion of a child-object
does not affect its parent-object.

Figure 6.2 shows an example of a simple world model containing
a robot, an end-effector, a part (‘bolt’), and an object upon which the
robot is mounted (‘pedestal’). Dashed lines in Fig 6.2 indicate affix-
ments which are used to temporarily create a rigid connection between
two objects. Aflixments connect an end-effector to the final link of the
robot. These aflixments also enable a simulated robot to pick up a sim-
ulated bolt. In the situation shown in Fig 6.2, a command to move
‘pumal/linkn’, ‘gripper’, or ‘bolt’ would result in motion of the manip-
ulator.

In addition to the model attributes mentioned in the above quote,
kinematics can be attached to structured objects, and paths (possibly
generated from a CAD system) can be attached to an object.

6.5 Summary

Current methods and concepts used for robot programming have been
presented in this chapter. The concepts have been classified according to
level of abstraction, programming language, user interface, and accord-
ing to on-line/off-line programming. The latter of these classifications is
based on the physical use of the mechanical robot and its physical en-
vironment, and is therefore more fundamental than the others. Off-line
programming was then described as in the literature, while the descrip-
tion of on-line programming is more based on products and methods. A
description of world models, that are used in off-line programming today,
finally concluded this introduction to the problems tackled in the next
chapter.
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The User
Programming Level

The on-line and off-line robot programming concepts presented in Chap-
ter 6 will be improved and combined in this chapter. This will lead to a
programming environment where on-line and off-line programming each
are supported by different software layers, and task level programming
forms another layer on top of the off-line programming layer. These layers
form the user programming environment as indicated in Figure 7.1, and
interface to the (possibly application specific) motion control system via
the executive software layer presented in Chapter 4. The layers designed
in earlier chapters all reside in the embedded control system, but the

User Program

Application Features
\ /

Figure 7.1 Upper half of Figure 3.3. The structure of the software for
user programming will be developed in this chapter.

97



Chapter 7 The User Programming Level

software components comprising the user programming level must be a
mixture between host computer software and embedded system software.

The approach here is to make use of current off-line programming
systems as much as possible. The enhancements that will be proposed in
Section 7.1 about off-line programming should therefore be easy to imple-
ment. Section 7.2 then considers the on-line case, and shows that proper
methods for on-line programming need support by both the programming
environment and by the programming language to ensure consistency be-
tween states in the program and in the physical environment. Section
7.3 then presents a new way of combining the principles treated in the
first two sections. The proposed principles for robot programming lead
to a design of the top layers of the ORC architecture, which is finally
presented in Section 7.4. Figure 7.4 in that section, showing the top of
the architecture, will be included in the total architecture later in Figure
10.1.

7.1 Refined off-line programming

The intention to make use of currently available off-line programming
systems does only include the most powerful systems. One such system
which is both powerful and open is CimStation, see [17] and the references
therein. That system uses a powerful RPL called SIL. CimStation and
SIL will be used to represent off-line programming (OLP) tools in the
sequel.

Solutions for lower levels presented in earlier chapters put some de-
mands on the OLP system. It was shown in the materials handling
application example that the action feature, otherwise used in the appli-
cation layer, was useful also at the user programming level of the system.
Generation of such actions will follow the principles shown in Figure 4.4,
but the generated executable parameter should be included in the code
defining the application specific motion primitive. This is believed to
be possible to do with the quite open CimStation. The same applies to
motions in function space presented in Section 4.3, but possible graphical
support for programming of such motions is not known. The simulation
features in the motion control system presented in Chapter 5, including
the sensor interface designed for it, map well on the so called on-line
mode in CimStation. That mode normally allows the real robot to be
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run instead of the off-line simulated one. It should then be possible to
use the on-line simulated robot instead, since it makes no difference for
the OLP system, except for the simulated behavior of sensors which can
be managed separately. Sensor behaviors can then be programmed in
SIL or C++, translated to C and then to executable code, and passed to
the control system as actions are.

A major problem for designers of OLP systems are to generate robot
programs for, and interface to, different vendor specific robot control
systems, which are often too primitive. The approach in this thesis on
the other hand, is that each specific robot control system shall support
or be compatible with off-line programming. The features introduced in
earlier chapters seem to be compatible as explained above, but two other
issues will possibly need some minor modifications of the OLP system
considered. These issues will be considered in the rest of this section.

Object oriented robot programming

The object oriented programming paradigm has been selected for imple-
mentation of the system. Object-level robot programming, as described
in Chapter 6, can be viewed as object oriented support concerning the
physical properties of the objects within the workcell. This means that
objects will have attributes reflecting their geometry, but are there cases
when such objects also should have attributes corresponding to logical
or computational properties? Consider a pallet for instance. Modeled in
a off-line programming system, the pallet has some attributes needed to
give a nice graphical view of it, some attributes that define the locations
that can be used in the robot program, and some attributes that contain
the states in a certain task. Attributes of the two latter types for the
pallet can be:

1. The frame for one corner location of the pallet relative to a base
frame, the frame for the diagonally opposite corner relative to the
first corner frame, the grasping position of the part relative to its
pallet location, and the number of rows and columns.

2. A representation for the state of the pallet can be the row and column
for the next part.

There is a need to have the attributes classified in a way that suits later
on-line access of the objects. Recall that a world model generated from
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the off-line environment consists of a tree-like data structure as shown in
Figure 7.1, where the nodes are objects. The attributes can be classified
according to the following:

e Model attributes describe the graphical models of the objects.
These attributes are only used by the graphical user interface for
off-line programming. These attributes need not be passed to the
embedded control system, except for making it possible to pass the
(possibly modified) on-line program back to the off-line environment.
The conclusion is that these attributes should be stored in an off-line
model database, and they should be replaced in the on-line model
by keys to that database. The keys cannot be used on-line, but the
full world model can be retrieved later off-line.

e Spatial attributes describe the spatial properties needed for spec-
ification of the robot motions. Properties that can be both model
and spatial attributes are considered to be spatial attributes. These
attributes will be available on-line according to Section 7.2.

e Soft attributes are used to keep the software states associated with
the object within the object. The use of free variables as RPLs used
today leads to unreliable software. These attributes must also be
accessible from the on-line system.

There can of course in some cases be a choice between different types of
attributes, and between attributes and program flow. It is then up to
the programmer to choose. It is not known how well these ideas can be
supported in the CimStation.

Representation of robot programs

Robot programs, on-line or off-line, should be represented by syntax trees
to allow structured and efficient access of the programs. Assume we have
programmed a robot off-line and have a robot program written in the SIL
language. We will then see in Section 7.3 that the program and its data
need modifications before it is transferred to the robot control system.
It will also be mentioned in Section 7.2 that programs can be modified
in the on-line system via a structured editor. These different types of
operations needed on the robot program can be efficiently implemented
if the program is represented by its syntax tree.

It is not known if the SIL parser available in CimStation, or the
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output from it, can be accessed by the user of the CimStation today,
which would be nice for prototyping. A more general solution is to de-
velop a (public domain) formal definition of possible nodes in syntax
trees and semantic rules, and then use parsers for SIL and other off-line
languages that produce syntax trees with the proper data format. A
textual representation can also be agreed on, which would correspond
to the IRDATA [9] standard, but updated to include modern computer
programming paradigms.

7.2 Refined on-line programming

On-line programming should be possible to do via a programming unit
that can be used close to the manufacturing process. It could be possible
to connect a personal computer or a terminal to the embedded control
system for more efficient programming in some cases, but all features
must be accessible from the hand-held terminal, which will be called just
a terminal below.

Some of the operations that must be possible to do have already
been described in Section 6.3. A joystick and commands (i.e. buttons)
for manual operation of the system are nicely implemented already in
commercial systems today. Structured editors developed within com-
puter science research show solutions that are applicable in writing and
editing robot programs in an on-line environment, but such solutions
have as far as known not been seriously applied.

A robot program created in an off-line programming system makes
use of the world model, which is an abstraction of the real world. In
on-line programming, however, the real physical world is there, which
makes some simplifications possible. Frames that are not accessed in
the robot program itself can first be neglected. Frames that are used by
motion instructions form what is called position equations in RCCL [24].
A position equation can look like:

ARM*TOOL = Fixture*BasePlate*Beam*StartWeld
It is then normally only two frames of this off-line equation that are
needed on-line, namely the frame TOOL and the frame defined by the
right hand side product. These frames are called the tool frame and
the goal frame. The goal frame will simply be a named location for the
on-line programmer.
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All motion instructions in the robot program will refer to a position
equation, and each new left hand side will define another goal frame
that will be passed to the on-line system, where they define the locations
used in the on-line program, just as if it was programmed by teach-in.
The intermediate frames of the right hand side of the equations appear
physically, and are thus not required on-line. Instead of single frames,
frame sequences modeling a path on the object can be retained for on-line
use.

Objects with spatial features which vary with time, path coordinate,
sensor signals etc. need special treatment. Assume that the off-line pro-
gramming was done in the CimStation. Expressions for the these special
features should then be written in the SIL language, and transferred to
the robot control system according to the beginning of Section 7.1.

After these simplifications of the spatial part of the world model,
only a minor part of it is directly accessible via the on-line user inter-
face (remaining parts exist physically). However, it is probably a good
solution to pass the entire spatial (i.e. not the model attributes) off-line
world model to the embedded system which would only require a minor
increase of memory (slow disc storage is sufficient). The complete world
model can be useful for the off-line programmer calibrating the fixed
parts of the world model on-line, and for support of the off-line program-
ming style on-line, but such features should only be available under an
“advanced feature” button in the on-line user interface and not used by
the ordinary robot programmer.

In the case that the robot program is first created on-line, the ordi-
nary robot programmer will define a number of taught locations which
are used in the robot program. These locations can then be utilized by
the off-line programmer in the definition of the off-line world model. The
combination of on-line and off-line programming form a complete robot
programming environment.

There is one exception to the simplifications of the world model
above. It is sometimes desirable even in on-line programming to be able
to specify that taught positions should be relative to some frame. For
example, programming of welding of a part of a car can start with defining
the base frame of the part, and by specifying that subsequent positions
should be stored with values relative to the base frame of the part to be
welded. A simple tree structure consisting of a root and some leaves is
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Figure 7.2 Part of off-line world model for an ABB Irb-6 robot welding
a bolt on a plate, both fixed in a fixture, and welding a beam which is first
fetched from a magazine and placed on the plate in the fixture.

then created on-line. The leaves of that tree still corresponds to the leaves
of the off-line world model, but the root need not be the node closest to
the leaves. The root can correspond to a node higher up in the structure
as shown in Figure 7.2. Such a feature is available in the ARLA on-line
programming environment [2], where it is called FRAME. The notion in
this thesis will be on-line frame. On-line frames are nothing abstract,
they provide a way of specifying that motions taught in one place should
be possible to relocate when for instance the fixture is relocated. On-line
frames can be specified during off-line programming by adding a tag to
the world model node corresponding to the on-line frame, and will be
returned to in the next section.

7.3 Combining off-line and on-line programming

Just like world models for on-line programming need to be simplified
for on-line use, robot programs also need to be changed to suit the way
the ordinary robot programmer programs the robot. Transformation of
the off-line program with its world model to an on-line representation,
and then transformation back again, must return the original program.
The off-line world model is then reduced according to Section 7.2, and it
should then be inserted as a global data declaration in the syntax tree
obtained from a SIL parser. The following example about on-line frames
tries to establish that the way on-line programming is performed requires
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some special support from the language used. Languages designed for off-
line programming do typically not meet these requirements, and special
treatment of robot programs is therefore needed for combined on-line and
off-line programming.

On-line frames

Any off-line generated robot program is represented by the defined syntax
tree data structure. That structure needs to be transformed due to the
on-line frames, which are currently used as follows in the ARLA system
today.

Assume we have an off-line program with three move instructions
according to:

moveto posO

moveto base_plate.posl

moveto base_plate.pos2

moveto pos3
This program will be translated to the following on-line program in the
simplest case (note: different syntax but the same syntax tree, and posi-
tions are expressed differently because of the transformation of the world
model).

MOVE ARM TO posO

MOVE ARM TO base_plate_posl

MOVE ARM TO base_plate_pos2

MOVE ARM TO pos3
If the base_plate is defined to be an on-line frame, the program corre-
sponding to the FRAME concept in the ARLA language would look like
(not in the ARLA syntax):

MOVE ARM TO posO

FRAME base_plate

MOVE ARM TO posi

MOVE ARM TO pos2

FRAME world

MOVE ARM TO pos3
The problem with this concept is that the FRAME instruction has a too
weak syntactic and semantic support in the on-line language. It works
well if the instructions are executed or programmed sequentially, but
it does not work if the FRAME base_plate instructions is not executed
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before the moves to posl or pos2 are programmed or executed. For
example, the on-line programmer wants to insert an instruction MOVE ARM
TO poslb between the motions to the posl and pos2 instructions. The
programmer selects the instruction MOVE ARM TO posl as the current
instruction by help of the structured editor. Two dangerous situations
can then occur:

1. The programmer issues an “execute current instruction” to move
the robot close to the posi. This will normally result in a totally
different motion that can cause significant damage. The reason is
that posl should be relative to the base_frame, but the motion got
executed relative to the default world frame (i.e. relative to the
on-line frame that was currently active).

2. The programmer drives the robot directly to the new position posib
manually by help of the joystick, and then issues an “insert instruc-
tion after the current one”. The instruction is programmed by is-
suing a “move to the current location” instruction via the program-
ming interface. The robot arm is manually moved away and the
program is started from the beginning. The result will be a motion
that is totally different from the one expected by the programmer.
The reason is that the posib was programmed relative to the world
frame (i.e. relative to the on-line frame that was active at the time
of programming), but posib will be relative to the on-line frame
base_plate at time of execution.

The error in both cases is that the programmer forgot to execute the
FRAME base_plate instruction. The real problem, however, is that the
system relies on external states that are not ensured to be updated. Note
that even if a functional language were used, the states would still be
present because of the physical states in the environment and the allowed
single instruction execution by the on-line operator. The problem was
not present during the off-line programming where the entire world model
is separated from the program.

The problem in a more general sense is that a practical on-line pro-
gramming environment must allow the programmer to select any motion
instruction (and many other types of instructions) and have that instruc-
tion executed, forward or backward. On the other hand, some instruc-
tions (like the FRAME above) require initialization etc. which then must
be required to be done before execution, and other instructions (like indi-
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vidual instructions within a computational procedure) may be illegal to
execute in this way. The full problem has not been studied yet, but the
use of on-line frames can serve as an example of program transformations
needed for practical robot programming.

One solution for the FRAME instruction would be to have each
motion instruction tagged with the present on-line frame, or actually
tagged with a list of on-line frames since there could be an hierarchy of
them. This solves most of the problems in a way that is convenient for e.g.
“pick-and-place” applications, where pick is performed in one frame, and
place is performed in another. However, in many other applications there
is a need to have regions in the program, i.e. parts of the robot’s task,
where motions are ensured to be expressed relative to some base frame. A
welding sequence should then not get cluttered with information about
the base frame, and the system should ensure that the base frame is
properly set when new instructions are inserted. The following solution
for the FRAME instruction is therefore also proposed.

During transformation of the world model to on-line use according to
Section 7.2, all frames that have been tagged by the off-line programmer
to be used as on-line frames are found by traversing the world tree.
For each on-line frame, the frames used by the on-line program in that
subtree are expressed with respect to the on-line frame, and the syntax
tree for the off-line program to be translated to the on-line representation
is traversed in the following way: A FRAME instruction is inserted before
the first instruction that references a position that belongs to the on-line
frame subtree, and an ENDFRAME instruction (restoring the frame that was
valid before the FRAME instruction) is inserted after the last reference for
the on-line frame. The program above will then look like:

MOVE ARM TO posO

FRAME base_plate

MOVE ARM TO posi
MOVE ARM TO pos2
ENDFRAME
MOVE ARM TO pos3

It should be possible to insert the FRAME clause by use of the on-line
syntax-sensitive editor, just like other compound statements are created.
Regardless if the FRAME block was created on-line or off-line originally,
the program transformed back to the off-line environment looks the same.
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Figure 7.3 An off-line robot program needs to be transformed to an on-
line representation for proper interactive on-line use. The transformation is
denoted f, and its inverse f ! transforms an on-line program to its off-line
representation. The off-line server typically has an upper “target system
handler” part running on the host computer, and a lower part linked with
the embedded control system software.

Note that even if the FRAME statement looks like WITH in Pascal, there
is a fundamental difference due to the syntax sensitive programming en-
vironment, and due to the coupling with external states and properties
of the workcell. The transformation of robot programs, and the con-
nections with the executive software layer, are illustrated in Figure 7.3.
Investigation of other cases requiring program transformation, as well as
development of the exact algorithms, is left for further research.

Tool frames

Tool frames can be subject to simplifications in the same way as goal
frames are. For instance, if a left hand side of a position equation looks
like ARM*Holder*Grinder, a Grinder tool frame to be used in the on-
line system would be calculated (off-line) as Holder*Grinder, i.e. the
Holder frame is not needed in the on-line system.

The tool frame is conceptually on the same level as the goal frame,
which is explicitly given in the motion instruction. Another approach,
used in the ARLA language, is to have a separate TCP instruction defin-
ing the tool frame to be used in subsequent instructions. That approach
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leads to the same type of problems with external state dependencies
as those for the FRAME instruction, though less dangerous since tool
frames do not differ that much. The on-line programming environment
will, however, provide a TCP or “tool frame” command defining the
default tool frame to be used in subsequent motion instructions. The
default tool frame is normally called ARM, as in the FRAME example
programs above, which corresponds to no tool being mounted.

Reconsidering the Grinder tool frame example above, things are a
little bit more involved if we want to model that the grinder gets worn
down during grinding. A simple solution is to define a set of tool frames,
one frame for every interval of grinding time, and have the program to
keep track of grinding time and select for each new work piece which
tool frame to use. A somewhat more sophisticated solution is to define
one frame, but containing functions of grinding time. Motion in function
space (refer to Chapter 4) would then be requested from the motion
control system. An even more sophisticated solution is to define an action
(refer to Chapter 4) that keeps track of the wearing by making use of the
torque signals (i.e. tool forces). Such a feature is preferably encapsulated
in the application software layer, where the action would also be designed
to raise a user exception when the tool is worn out.

Recall from Section 4.4 that the first argument to the Move procedure
contains the motion specification, which can now be specified to include
the frames START, GOAL, TOOL, and WORLD. The START frame
was needed in Chapter 5 for safety reasons in the “software pipelining”
of motion computations, the GOAL frame and the TOOL frame have
been discussed in this section, and the WORLD frame in the so called
on-line frame from Section 7.2. Each frame contains a type flag that
tells in what way the frame is represented. It is mainly the orientation
part which can be represented in many ways, but a pure joint coordinate
representation can also be used, particularly for joint space motions. The
Move procedure was overloaded with respect to the first argument, i.e.
with respect to the motion specification. Three different types were used
to indicate Cartesian space, joint space, or function space. Note that the
types used for overloading express the type of the motion, i.e. in what
coordinate system the robot should move, and should not be confused
with the types of the individual frames in the motion specification.
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7.4 Towards a practical programming environment

The main topic in this chapter has been to combine on-line and off-line
robot programming in a practical programming environment. As men-
tioned earlier, most of the research in robot programming aims at task
level programming, or even automatic programming from CAD data, by
increasing the level of abstraction and by employing AI related tech-
niques. Such solutions are to be put on top of currently existing off-line
programming system, e.g. implemented as tools in an off-line program-
ming system. Such tools will be useful for the system developed in the
thesis, since current approaches for off-line programming are joined.

The upper levels of the proposed system structure are shown in
Figure 7.4. A normal “host computer” /“embedded controller” boundary
have been marked in the figure, but there is nothing in the proposed
structure that prevents e.g. off-line programming to be implemented
in the embedded control system (which will partly be the case anyway
because of the support for simulated motions in the embedded controller),
or the on-line programming software to be run in the host computer. The
aim of the system structure is to support the most practical way of using
robots, but also to provide an open system that can be used in alternative
ways.

The off-line programming software uses a library of routines com-
prising a “target system handler”, which is the host computer part of
the executive layer. These routines are normally linked together with
the off-line programming software, but can also be linked directly with
user programs written directly in an available computer programming
language. Another way of using the system is for fixed automation, i.e.
reprogramming of the equipment is less supported. Software libraries for
the interfaces to the motion control layers and to the application layer
should be available for the experienced user. Some application features
can possibly be put in the application layer, but the executive layer in
the embedded system is replaced by a single new instruction. That in-
struction is the entire robot program (or only servo program if all servos
are supplied by the user as external axes) which is automatically called
at start of the system.

An interesting aspect is that the proposed system structure with its
programming tools used for robot programming can be used for control
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Figure 7.4 Upper layers of the proposed system structure. The task-level
programming layer, the off-line programming layer, and a “target system
handler” part of the executive is normally implemented in the host computer
system, while lower layers are implemented in the embedded robot control

system.

and programming of a production cell, or part of a production cell, which
then is to be controlled by an industrial process control system (refer to
Chapter 3). Robot control systems and process control systems are de-
signed to solve different types of control problems, and offer different
types of programming, but some problems are in common. For instance,
how shall parallel activities in the production cell be programmed? With
tasks defined in the robot programming system, or should the robot pro-
gramming system only cope with robot specific features? The problem of
integrating the two into an uniform approach for programming of man-
ufacturing equipment is left for further research. The first step towards
a solution is to implement the control and programming principles pro-
posed in the thesis, which then offer a system with the flexibility needed

for the further research.
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Open Robots for
Control Experiments

An important part of the experimental platform that will be presented
in Chapter 9 is the commercially available robot systems that have been

reconfigured to allow control experiments. The modifications will now
be briefly described.

8.1 Opening up an ABB IRB-6/2 robot system

The main goal of the reconfiguration of the control system is to be able
to do experiments in control, where the experiments can be done on sev-
eral levels ranging from basic servo experiments to overall programming
of the robot functions. The modification of the robot system was ap-
proached with the goal to keep the mechanics and the power electronics,
and also as much as possible of the existing safety system, and only add
parts necessary to create general interfaces to our own computers. The
descriptions and drawings of the modifications included in [12], together
with manuals available from ABB Robotics, form a complete description
on how to do the reconfigurations.
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Figure 8.1 Overview of modifications. There is one Resolver to Digital
converter (RDC) module for each joint, but only one axis is shown for clarity.
The analog control signal inputs is also located at the RDC modules, where
analog signals for joint speed and position are available, mainly for test
purposes. The joint signals are normally accessed via the Data 1/O module,
which comprises a 16 bit (plus address and control signals) parallel resolver
data bus. An interface for a laser distance sensor has also been included.

An overview of the resulting design can be seen in Figure 8.1. The
original control computer is kept to make it easy to change the system
back to its original shape, and to keep the changes in the safety system
small. However, the original functions to take care of the measurement
are not used. Instead, we have built our own sensor interface, and we
have done it in a way that makes it possible to keep the sensors and cables
already available inside the robot. The sensor system for measurements
of robot joint angles is based on resolvers.
to drive and read the resolvers in our own hardware based on existing
commercial chips for resolver-to-digital (R/D) conversion. The solution
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8.1 Opening up an ABB IRB-6/2 robot system

principle can be seen as part of Figure 8.1, which also shows the solution
principle for driving the motors. The user can select to use the original
analog PI-speed-control available on the drive units by selecting the PI
mode shown in the expanded part of Figure 8.1. If the user wants to
implement also the local control layer, the Ext mode should be selected.

In conclusion, major problems were to find the right points to cut
into the system while still keeping some of the functions available, and
then to design and implement the additions needed. If the modifications
are carefully done, the system can easily be converted back to its original
shape.

8.2 Opening up an ABB IRB-2000/3 robot system

The IRB-6 robot which has been reconfigured according to the previous
section is sufficient for research concerning the computer scientific prob-
lems in the current research. When it comes to implementation of the
control software layers, however, a more modern 6 DOF industrial robot
like the IRB-2000 from ABB Robotics is a better testbed.

The IRB-2000 is equipped with AC motors, and because we want
to be able to implement all of the control layers, the interfacing to the
S3 control system used has to be at a lower level compared to the IRB-6
interface. The system is simply cut at the drive unit interface, which
means that not only all motion control must be implemented in our
computing hardware, but also the AC motor current references must be
computed in such a way that the desired torque is achieved. The AC
motor control should be computed with a rate of at least 1 kHz, but the
system has been designed to run at the sampling rate of 8 kHz to give
some margin for future experiments. All computations are carried out in
floating point, and programming in C++ also for the low level software
has been made possible [33].

The same type of resolver to digital conversion as for the IRB-6
interface is used, but with the accuracy of 14 bits per motor revolution
and 10 revolution counting bits in hardware. The use of commercially
available R/D converters with an internal analog velocity signal and a
phase locked loop makes it possible to get proper anti-alias filtering by
tuning that loop. This is not possible with optical encoders, or with other
types of resolver measurement principles (higher sampling frequency and
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Figure 8.2 Overview of the modified IRB-2000 system. The main com-
puter board in the control cabinet has been disconnected, and an interface
to external computer and the interface boards has been added. The mea-
surement board on the robot is also replaced to simplify the interfacing and
improve performance.

the role-off of the process then have to be used instead). The 24 bit
position data for the motors can simply be differentiated to get the speed;
that signal has been filtered in the analog phase locked loop. The R/D
conversion hardware is located on the robot which keeps the length of
the wires for analog signals to a minimum.

The current references for each motor are output from the computer
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Figure 8.3 Signal processing hardware [6] with serial communication for
simple interfacing with the reconfigured IRB-2000 control system. An ad-
ditional parallel interface to the master computer for e.,g. DMA transfer of
data to and from all six DSPs via the VME bus is not shown for clarity.

hardware as two 12 bit values for two of the phases of the motor (the
third phase is generated in the drive units). D/A conversion in hard-
ware presently being built provides the current references that can be
connected to the original drive units. The two 12 bit current references
are transferred together as a 24 bit word from the computing hardware,
i.e. the same number of bits as for the resolver data.

The interface of the modified IRB-2000 system is designed according
to the following (see also Figure 8.2 and Figure 8.3):

e The robot system communicates via synchronous serial communica-
tion. A bit transfer rate of 2 Mbit/s makes it possible to transfer 32
bits of data with a sampling frequency of 8 kHz for each joint, if up
to eight joints are used. The hardware protocol used allows simple
interfacing to the serial ports of most DSP types, (i.e. no additional
circuitry except for line drivers is required).
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The serial communication signals between the computer system (i.e.
the computers that replace those of the original system) and the
interface hardware, as well as between the interface hardware and the
robot, are connected via IEEE-422 line drivers. The measurement
board on the robot is replaced, but the original cables are used.

Data is transferred in 32 bit words. A word going out to the robot
system contains the current references, the address of the joint, a
“current references to be used” bit, a “read the resolver for the
addressed joint” bit, and parity. An addressed resolver sends a word
containing the 24 bits position data back to the computer interface
on another serial communication line.

Additional control and status bits for the drive units are connected
directly to standard IO boards on the VME bus. Those signals are
used by the master computer for initialization and fault detection.

The experimental IRB-2000 control interface has been designed recently
and is presently being built, and a full description of the modifications
will be available. The DSP board used provides additional IO DSPs (of

type -5E shown in Figure 8.3) which are mainly useful for:

IN

Unpacking resolver data (extracting angle data and joint number),
error checking, conversion to floating point, scaling to SI units,
digital filtering from 8 kHz to a possible lower sampling rate used
by the main processor, compensation for resolver and commuta-
tion offset (to get both the commutation angle for the AC motor
drive and the true joint angle in spite of resolver offset), and data
transfer to the main DSP of the cluster.

OUT Hold circuit implementation and interpolation schemes can be use-
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ful when the new control signals are computed less frequently. The
8 kHz rate is then used for computation of current references (from
torque reference and commutation angle received from the main
DSP), offset compensation, conversion to fixed point, and packing
of the current references together with the joint address and other
bits to be output to the robot control hardware.




Experimental
Platform

Experimental verification is of great importance in the current research.
The experimental platform will now be briefly described, including some
more comments on the implementation of the principles presented in ear-
lier chapters. Section 9.1 sketches the hardware structure used. Section
9.2 gives a brief discussion of real-time aspects, including programming
of signal processors in C++. Debugging is another important aspect.
Section 9.3 examines the characteristic problems with debugging of real-
time control systems, and proposes a way of utilizing host computer
software for evaluation of dynamic properties of the embedded control
system software.

9.1 An experimental robot control system

The experimental platform for robot control consists of the reconfigured
IRB-6 and IRB-2000 (under development) systems, a VME based board
computer systems, and a host computer system consisting of Sun work-
stations and file servers, see Figure 9.1 (only the IRB-6 part of the plat-
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form is described in this section for brevity). Signals from the internal
sensors of the robot to the VME system go via the sensor interface de-
scribed in [12] to IO boards connected to the VME bus. Apart from
an analog interface, position data from the resolver measurement sys-
tem is read via a 16 bit parallel interface to the resolver measurement
system. The access time to internal sensor data is then 2 us. Communi-
cation between the VME computer and the host computer system goes
via ethernet as between the workstations.

The master processor in the VME computer is a M68030 with a
floating point co-processor. A six DOF joystick can be connected to a
serial port of any of the Motorola computer boards. For implementation
of powerful control algorithms with possibly high sampling frequency,
the board with six floating point signal processors used for the IRB-2000
can be used also for the IRB-6. Ports on the board make it possible to
connect sensor signals directly to the DSP board.

Ethernet = — - =
Sun Sun File Sun
gOSt . work— work— Server work—
omputers station station station
UNIX
Real-Time
Micro— Ethernet DSP-
Computer processor Node board
boards (M68030, Processor (6 x
M68882) (M68010) DSP32C)
I
VME bus = I = -
Sensor IO:I
I10-boards
Sensor Interface
Industrial Original
robot Robot
system Controller

Figure 9.1 Overview of the experimental platform for one robot.
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9.2 Real-time aspects

A real-time kernel developed within the department is used for the Mo-
torola 680x0 boards [5]. No specific concurrency model is assumed, and
real-time primitives are built on top of coroutine and interrupt routine
facilities. Sampling rates presently supported ranges up to 1 kHz for the
M680x0 boards. Programming has been done in Modula-2, but C++
and a new version of the kernel will be used in the future.

Real-time in the proposed architecture

A real-time operating system is preferably used in the embedded part
of the executive layer if host communication is not used, or local file
management etc. is needed. In the layers below the embedded execu-
tive, only real-time kernels are to be used. Waste of computing power on
too general primitives and too heavy real-time processes is then limited.
Another approach, used for the current research is to use a real-time
kernel also for the embedded executive, and always have the system con-
nected to a host computer which provides operating system services like
file management via a server process in the target system. In the host
computer layers, an operating system suitable for a time sharing environ-
ment is normally used. The UNIX operating system is used for the upper
host computer layers in the current experimental setup, and a real-time
kernel with light-weight processes is used in the embedded system. File
management is provided by the host computer via computer communica-
tion facilities. The special aspects arising when implementing the lowest
levels in the signal processors is the next subject.

Real-time control using DSPs

A digital signal processor (DSP) is optimized for repeated operations of
the type a = b+c*d, which are frequently used in convolutions and matrix
operations, i.e. the most common computations in signal processing and
control algorithms. The processor DSP32C from AT&T has been selected
for the experimental platform mainly for the reasons of simple low level
programming (C-like assembly language and data directed programming
[30]), compatible performance, and that the DSP, the VME board, and
the software required was provided by a single source (AT&T).

It is of course desirable to use the same programming language for
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DSP programming as for programming of the rest of the system, and
the software objects map well on the computational blocks in the control
system. The C+4 compiler Cfront used on the Sun workstations has
therefore been adapted to produce C code for the DSP, making it possible
to use the object oriented paradigm also on the lowest levels of the system.
Real-time primitives have been developed and encapsulated in C++ [33],
making it possible to connect C++ procedures to hardware interrupts for
example. DSP32C serves interrupts in a quick interrupt fashion. This
means that the floating point registers, the four stage pipeline, and some
other states in the DSP, is automatically stored in shadow registers during
a single machine cycle (80 ns). This allows very quick interrupt routines
performing for instance sensor input and buffering in less then 0.2 us,
including overhead. Clock interrupt handling resulting in no task switch
will also be very rapid. The problem is, however, how to do a context
switch including the floating point registers. The only shadow register
accessible is the shadow register for the program counter, so the only
possibility is to modify the code that will be executed after returning
from the interrupt, in a way that the pipeline is emptied before the
context switch. Two problems still exist; programs in ROM, and latency
effects when branching due to the pipelining (one or more instructions
after the branch instruction are executed before the branch occurs). Due
to these drawbacks, static scheduling into interrupt driven procedures is
used.

Critical parts of the algorithms sometimes have to be implemented
in the C-like assembly language of DSP32C to fully utilize the comput-
ing power of the DSP. The C++ compiler has therefore been extended
to allow easy and structured interfacing of inline assembly code. This
feature is also useful when implementing new real-time primitives. It has
been made possible to write interrupt routines for the DSPs in C++,
and enable/disable of all the different interrupts have been implemented.
These basic real-time primitives have been encapsulated in C++ classes
but implemented in assembler and, provided by our own extensions of
the C++ compilation, the code is inlined at assembly level for maximum
performance. The C++4 compilation can easily be adapted to other DSP
brands as well, except for the feature (added by the author) that data
can be passed to and from inlined assembly code. That feature relies on
extensions of the underlying AT&T C compiler [7].
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Figure 9.2 Sample connections of Matlab processes in the host computer
with real-time processes in the target system.

Utilizing host computer software in real-time control

As an example of how host computer software can be utilized as a tool
also for the lower levels of the proposed system structure, a Matlab in-
terface for real-time control analysis has been developed. One or several
Matlab processes running in the UNIX system can dynamically be con-
nected to one or several real-time processes in the target system, as shown
in Figure 9.2. The interface routine to Matlab is called matcomm, and ap-
pears as an ordinary function in Matlab even though it is implemented
in C. A simple interface called MatComm is provided for the real-time pro-
cesses in the target system. Data matrices can be sent and received,
and features for managing communication errors are included. A full
description will be given in [37].

9.3 Debugging of robot control systems

Debugging of robot control system software share the problems with soft-
ware debugging in general, and particularly the problems with debugging
of hard real-time systems. In-circuit emulators and logical analyzers are
practical tools, and often necessary, when trouble-shooting also includes
the hardware or when the timing of the software must be maintained. The
approach taken in the current research is to use commercially available
reliable computing hardware, and to manage without additional special
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hardware for debugging. The approach to conventional debugging will
first be described in this section, followed by an additional method for
debugging of control systems. The proposed method has for some rea-
son not been considered in the ongoing research on debugging methods
within computer science. The software solutions are also appropriate to
build into a commercial system.

Approach to debugging

Strongly typed compiled languages supporting abstract data types are
used to ease development of reliable and efficient software. The use of
C++ as a language that is supported for almost all computers (as C code
is produced) makes it possible to initially test and debug the sequential
and algorithmic parts of the software in a host computer environment.
Standard debugging tools can then be used. The next step is to test the
algorithms with the computing accuracy used in the target system. The
M680x0 processors used in the experimental platform are used also in
some of the host computer workstations, but the DSP software requires
simulation (i.e. emulation) on the host computer. Each DSP manufac-
turer does provide simulation software for this purpose. The nice thing
with the AT&T software is that the DSP simulator can be run under
a powerful high level symbolic debugger, which also supports execution

of host computer programs and also execution of other target system
hardware like the M680x0. The name of the debugger is rtpi.

The rtpi debugger (Real-Time Process Inspector) [27] can be used
both on the C44 code level and on assembly level. For instance, it is
possible after single-step in the C++ code, to do single-step in the as-
sembly code, and then continue on C++ level. Up to six DSPs running
in parallel can be simulated from the same debugger. Rtpi also supports
execution of some (or all) programs in the target system, but the device
driver has not been modified yet to support the special communication
with the DSP board in the target system used. Target system debug-
ging is instead performed via a set of self-written debugging commands
used from the workstation but mainly executed in the master computer
(M68030) of the VME system. (Most of that software should be writ-
ten anyway to provide real-time communication between the master and
the DSPs.) Communication via DMA into the DSPs internal or exter-
nal memory hardly affects the execution timing as DMA only imposes a
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minor cycle steeling from the DSP.

Regardless of the software debugging tools available, when it comes
to finding the hard errors in the control software, tracing of control signals
during true real-time control is necessary. How to do that is the last topic
of this chapter.

Debugging by use of control signals

The function of control software is often hard to verify by looking at
conventional debugger traces of control signals. The reason is that the
software implements dynamic systems which interact with the process
dynamics, which implies that the time histories of the signals are of ma-
jor importance. The tools required for debugging then resembles tools
used in system identification or monitoring, i.e. the interface (see previ-
ous section) to Matlab and its graphics and identification tools form an
important debugging tool. An error can be either a programming error
or a control design error showing up only in special control cases.

The software that makes it possible to connect real-time processes
in the target system with host computer software has been extended
with an additional software layer providing the following features (some
features not debugged yet):

e  Simple export of variables to be available for logging. See the Submit
call in the example below.

e  Variable selection and logging parameters selectable from the host.
e The control loop only needs to do an Update call each sample.

e Continuous trace (no samples lost) mode and different trig condi-
tions implemented. Both soft triggs from the host computer and
hard triggs defined as procedure parameters possibly accessing hard-
ware IO can be used. Post-triggering and other features normally
found on logic analyzers implemented.

e Code optimized to keep the peak CPU load to a minimum and to
keep control timing undisturbed.

This type of software is appropriate even for a commercial system, which
would possibly have a connection for a memory and communication board
not to make the base system more expensive. The control code only
needs to call the Submit and Update member functions in class Logger
according to the following:
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#include Logger.h;
#define LOOP for(;;)

float s, PathErr;
Logger Plot;

Plot.Submit(s, "Path coord");
Plot.Submit(PathErr, "Grinding dev.");
LOOP {

// Control...

Plot.Update();
};

where the strings supplied in the Submit call define the name used at the
host computer side. The system clock time is automatically submitted.

An industrial aspect is that it should be possible for control engi-
neers to analyze certain control problems, e.g. with sensor based control,
without visiting the site of the application. Together with some com-
puter communication facilities, the experimental software developed for
simple debugging can be seen as a prototype for solving also this future
industrial problem.
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10

The Software
Architecture

The internal structure for each of the three main control system lev-
els programming, application, and control according to Chapter 3 have
been presented in Chapters 4, 5, and 7 respectively. These structures
together form the complete proposed architecture for industrial robot
control, which is described in Section 10.1. Section 10.2 relates the pro-
posed solution to other approaches.

10.1 The Open Robot Control (ORC) architecture

Different parts of a total system structure for robot control systems have
been presented in earlier Chapters, and a possible hardware configuration
was given in Chapters 8 and 9. The different parts can now be put
together into an architecture which is called the Open Robot Control
(ORC) architecture, which is shown in figure 10.1. Recall from the
development in earlier chapters that the architecture has been designed
for connection of external sensors to many of the software layers belonging
to the embedded control system, and the software solutions are quite
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Figure 10.1 The Open Robot Control (ORC) architecture.

different in each of the layers. The ability to include sensors in the ORC
architecture therefore adds an extra dimension to it. The same thing
applies to the software tools. It was shown in Chapter 9 how software
available on the host computer could be connected to the embedded
control system. Such software can, for instance, be used for debugging
of low level control, or for analysis of external sensor based control loops
defined by the application engineer. Software tools can also be used for
computational support as was described in the solution of the arc welding
application example in Chapter 4.

The main properties of the ORC structure is summerized in Table
10.1, which can be compared with the outline in Table 3.1. A system
designed according to ORC will be an open system where more advanced
users have access to more advanced features and reprogramming facilities.
The most important layer is perhaps the application layer, which provides
a new degree of freedom for configuration of robot systems for certain
applications. The software layers also encapsulates different properties
of the robot control system, which bounds the software changes when
the robot, the application, or the programming facilities changes. A very
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Typ.
ORC layer Encapsulates Typical programmer e)zg)c.
Task level Automatic programming Implicit from work—piece g,
programming from design data design (not possible today) g
e o
5] —
Offline user Programming without Robot programmer with =t =
programming use of robot computer experience §
=]
Online user Programming with Production engineer or
programming use of robot robot operator
Executive RPL and control Computer programmer and
system interface exp. application engineer
g
Application Application specific Experienced application &
motion control engineer »
=B =
= | 3
Motion General control of Control engineer ‘B 9
control workcell motions g <
C| &
Arm Arm specific Robot control engineer
control motion control
Local Control suitable for impl. | Servo control engineer
control in distributed hardware

Table 10.1 Users and properties of software layers in the ORC architec-
ture.

hard constraint in the design of the architecture has been computing
efficiency. This means both that powerful hardware is well utilized in
hard applications, and that simple control or programming principles
that is feasible in some simple application allows a minimum of hardware.
In other words, there is no big overhead connected with features that are
not used. The real-time demands for the different layers span from no
real-time in the top layer to hard real-time in the bottom layer.

10.2 Discussion

A system structure like ORC can be compared with e.g. the OSI, or
more specifically the MAP, layered system structure for computer and
machinery communication in the sense that the structures try to encap-
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sulate low level details from higher level aspects. However, a technical
comparison is not feasible since it is hard to compare robot control with
computer communication, and also because ORC is primarily a struc-
ture for the functionality and programming of the system, rather than
an attempt to specifying the details in each software level interface. It
would be a mistake to currently develop a detailed standard for e.g. the
language to be used at the user programming level. The primary goal
is to use a structure of the control system that aids in making robots
more applicable, particularly for new applications that might put new
requirements on the robot programming language.

The central part of ORC is the application software layer which in
the simple case provides a set of robot functions. Seen from the outside
it consists of data and procedures. The functions may even be nicely
encapsulated like in the RIPE (Robot Independent Programming Envi-
ronment) system [35]. When considering the internal implementation,
why is an architecture proposed? Omne could instead consider the possi-
bility of trying to find a complete set of well-defined procedures, i.e., some
form of generic set of robot functions. These functions could then form a
hard shell (no reason to get inside) library, where the internal implemen-
tation is hidden and optimized. In fact, several of the currently available
robot control systems seem to have this structure. This is a major reason
for the difficulties to slightly modify a function, to include a new sensor
etc. Instead, the internal implementation should be easily accessed. An
architecture makes this access possible and hopefully efficient.

The field were system architectures have been most extensively stud-
ied is within control of vehicles and telerobots. The most significant dif-
ference between such robots and more conventional industrial robots is
the ability to cope with unforeseen changes in the environments of the
robot. This is important also for more autonomous industrial robots that
should be possible to use in fully automated, but still flexible, factories.
The ORC architecture is designed for robots that shall be useful together
with people, but a comparison with architectures for more autonomous
robots is appropriate for the discussion.
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Architectures for robots in changing environments

A major problem for robots in space, and for autonomous robots and
vehicles in general, is to maintain a model of the dynamically chang-
ing environment and to replan (in real-time) the motions according to
environmental changes. A comparably large number of sensors is then
required, as well as advanced sensory processing and world model up-
dating. Special manipulators can also be required to position sensors
in places where the unknown parts of the environment is best observed.
The need for an architecture to support system design, control and pro-
gramming have been noticed, as for industrial robots, but the problems
with a changing environment is very much reflected in these architec-
tures. Differences in programming methods and applications are other
reasons why these architectures do not provide much help for practical
industrial robot applications.

The most well known architecture is the “NASA /NBS Standard Ref-
erence Model for Telerobot Control System Architecture (NASREM)”
[4], which has some background in automated manufacturing research,
and show some similarities with the ORC architecture. The NASREM
structure is shown in Figure 10.2. The horizontal partitioning into sen-
sory processing, world modeling, and task decomposition is not opposed
to ORC where the software very well can be partitioned in this way, but
it has not been found necessary to include this aspect in the ORC struc-
ture. On the lowest level for instance [21], sensory processing (G) means
reading and filtering the internal sensors, world modeling (M) contains
the kinematic and dynamic model of the robot, and the task decomposi-
tion (Hy) includes the control algorithm itself. The vertical partitioning
into hierarchical layers roughly corresponds to the ORC layers in the
following way:

- Thelocal control and arm control layers in ORC corresponds to level

1 in NASREM.

- The motion control, application, and executive layers in ORC ap-
proximately corresponds to the primitive and E-move levels in NAS-
REM. The executive layer have to be somewhat sophisticated to
interface to the task level in NASREM.

- All programming layers in ORC corresponds to the TASK level in
NASREM.
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- Higher levels of NASREM, which primarily deals with planning and
job assignment, are not explicitly represented in ORC but features
that are relevant for programming of a work cell are included in the
task level programming layer in ORC.

Clearly, support for application oriented programming of industrial rob-
ots (as defined in the thesis) is not supported by NASREM. In fact it
is believed to be supported only by the ORC structure. Major parts of
NASREM instead tries to support high level planning, job assignment
for many cooperating robots and devices, and real-time knowledge-based
solutions, while ORC supports (without specifying any particular so-
lutions) such principles that are relevant for the work cell in the task
programming layer. Complete factory automation planning systems etc
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Figure 10.2 The NASREM control system architecture for telerobots
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are not supported in any other way than making the local control system
flexible and powerful enough to fit into such systems, as explained in the
section about task level programming and executive agents below.

Abstractions and architectures

An interesting question about any control system architecture is what
type of abstractions or hierarchies it is built upon. From software en-
gineering we are used to concepts like data abstraction, functional pro-
gramming, object oriented programming, etc. Such concepts have mainly
been introduced to cope with software complexity. Considering a com-
plete multi-layered real-time control system with hard real-time problems
in lower layers and demands for Al related features in the top layer, it is
clear that first of all we need the concepts from software engineering to
be able to implement such a system in a practical way, but more concepts
are needed in hierarchical real-time architectures like ORC or NASREM.
These concepts are a number of hierarchies which have been proposed by
different researchers, and collected in [39] according to the following:

e  Frequency hierarchies [4, 43] are based on the common real-time
principle that the real-time processes in a lower layer run more fre-
quently than those in the next higher layer of the system.

e Data abstraction hierarchies [29] are closely related to the data ab-
straction ideas in e.g. object oriented programming. A lower soft-
ware layer provides an abstract machine for the adjacent higher
layer.

e  Representational abstraction hierarchies [4, 43] is normally used by
Al people as the method of building an abstraction by suppressing
or ignoring information.

e Deresolution hierarchies [34, 31] is often used in motion planning.
Two layers can do functionally the same computations, but with a
higher resolution on the lower level. Deresolution is related to the
previous hierarchies, but is not the same.

e Subsystem hierarchies [29, 4] are based on grouping the control of
subsystems, e.g. control of individual joints, to control of the com-
posed system, e.g. the arm driven by the joints. This approach is
often combined with data abstraction.
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e Competence hierarchies [14] are built by composing simple behaviors
of lower layers into more competent behaviors on a higher level of
the system. For example, vibrations in a robot gripper caused by a
simplified control, can be utilized on a higher level for an advanced
“non-stiction” assembly operation.

e  Temporal extent hierarchies [28, 43] are designed so that higher levels
manage behaviors over longer stretches of time. Note that the higher
level considering a longer time period can still be computed more
frequently then lower levels.

The ORC architecture developed in the thesis is based on, or supports,
all of these abstraction hierarchies. The frequency hierarchy is one of
the fundamental ones, and it is even more for the NASREM structure,
which maps well on real-time implementation and computing efficiency.
However, while a frequency hierarchy is suitable for the pure algorithmic
parts of the system, many other features are hard to implement in a pure
frequency hierarchy. An architecture shall support practical use of the
system, which normally implies that several other hierarchies must be
used, but a part of the software that belongs to a higher level in one of
these other hierarchies might very well need fast enactment.

One example of such a contradictory demand between the frequency
hierarchy approach and the competence hierarchy approach is the solu-
tion of the deburring application, please refer to Section 2.1. The de-
tection and handling of the casting bulge in that case should be defined
in the application layer of ORC, while the execution of that code has
to be performed in the lower motion control layer. The contradiction
between different architectural approaches needed for industrial robots
have been solved in ORC by introducing actions (see Section 4.4). It
has then been possible to find suitable abstractions for all the interfaces
between adjacent software layers.

An attempt to a uniform approach for the design of software ar-
chitectures is behavior abstraction [39, 15], but a further discussion is
outside the scope of this thesis.
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Task level programming and executive agents

Considering the issue how the ORC architecture can support planning
and task level programming, one of the few systems that have proved to
work is considered. The AI laboratory at University of Edinburgh has
developed a complete assembly system called SOMASS [32, 23]. The
system plans and executes assemblies in a special type of blocks world,
namely the Soma world. SOMASS has been demonstrated to work well
despite a number of possible sources of failure. The uncertainties that
may cause assembly failure include part tolerance, physical characteris-
tics such as friction or stiction and the like.

The following quote from [23] is central for the purposes of the thesis:
“The interesting point about SOMASS, for our purposes, is that it takes
a particular, and somewhat unusual, approach to the activity orchestra-
tion problem. The conventional view in assembly robotics has tended
to be that the planning component of the system should anticipate and
deal with various possible reasons for assembly failure, this has, in prac-
tice, proved computationally and intellectually intractable. SOMASS,
on the other hand, takes the position that the planner should concen-
trate on those aspects of the problem that can tractably be expressed
in symbolic form, leaving the execution agent to cope with the specifi-
cally manipulative difficulties of the assembly problem. Since the agent is
hand-crafted, most of the consequences of the uncertainties in the parts
and their manipulation are dealt with by the human programmer who
has years of experience of object manipulation to call on when diagnosing
and repairing failures in the tacit skills of the executive agent”.

The fundamental standpoint in the above quote is shared. However,
the main interest here is not planning or activity orchestration, but rather
the executive agent or what is called the software layer for application
programming. The hand crafted executive agent embodies the skill of
the human operator and describes his knowledge of the physical situation
and its uncertainties. The research goal here is this type of programming,
to structure it and thus to improve efficiency. This also illustrates how
research in structures for physical robot functions provide a link to higher
level ideas like planning.
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Conclusions

An application oriented view of programming and control of industrial
robots has lead to a layered control system software. The layers are de-
fined by the proposed architecture called ORC (Open Robot Control).
The architecture defines different levels of programming for different
types of users. The upper layers of ORC provide so called user level
programming, i.e. programming for the ordinary production engineer
or robot operator. The middle layers make it possible for the advanced
user to introduce application specific motion control strategies, and also
to modify the way the ordinary user may access any of the available
primitives. The lower layers for implementation of the motion control
are designed to support hardware utilization at run-time, combined with
flexible reconfiguration for industrial applications.

It is important to structure the control system in layers that look
independent from a user point of view. It should be efficient to work
locally in one layer. The different users should of course have differ-
ent access privileges. Efficient use of robots requires tight connections
between the layers. The underlying implementation therefore requires
special software solutions, which have to be designed considering typical
hardware and software constraints.

The principles of ORC can be summarized as follows:
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It should be possible to deal with application examples of the type
listed in Chapter 2 efficiently. In particular, it should be possible to
implement application specific motion control strategies, as pointed
out in the examples.

The executive software layer defines the system interface for the
ordinary user. The set of primitives that are available, e.g. move-
procedures, are separated from the way the primitives can be ac-
cessed, e.g. by means of a robot programming language.

The requirements on the programming language and user interface
for the on-line and off-line programming cases are different and some-
times also contradictory. This is managed by using separate layers
for these types of user programming. Robot programs, including
the world model, typically need different representations, but they
should still be possible to transfer between the on-line and off-line
programming environments.

The motion control level is divided into three different layers to
support controller implementation, hardware distribution, and in-
corporation of external joints.

The problems tackled are not well suited for a complete theoretical anal-
ysis, i.e. experimental verification is needed. A commercial robot control
systems has therefore been reconfigured for control experiments. The ex-
perimental platform includes robots, signal processors and micro proces-
sors in a VME system for real-time control, and Unix based workstations
as host computers. The software tools developed for object oriented real-
time programming of signal processors, as well as the tools for analysis
and debugging of embedded control systems by use of host computer soft-
ware, seems to be useful also outside robotics research. Turning back to
ORC, the following points describe some aspects of the implementation.

The requirement to support different programming levels implies
that methods need to be passed as parameters between different
software layers. Such methods can be algorithmic specifications of
control parameters, application specific control strategies, or treat-
ment of external sensor signals. Method passing can be implemented
efficiently even in the multiprocessor case by the introduced actions,
which are relocatable executable pieces of code generated by a spe-
cial cross-compilation procedure.
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e Transfer of robot programs between integrated, but different, en-
vironments for on-line and off-line programming typically requires
transformation of programs expressed in different languages. The
transformation also involves the world model data objects. The
attributes of such objects were therefore classified into model at-
tributes, spatial attributes, and soft attributes.

e Some algorithms requiring extensive computations, e.g. for opti-
mization of motions, have previously only been possible to apply in
an off-line style to precompute data for motions known in advance.
In many practical cases, however, motions depend on internal and
external signals, and they are sometimes known only a short time
in advance or not known in advance at all. The proposed classi-
fication of motion commands with respect to sensor dependency,
and the possibility to have motion commands interpreted befored
they are performed, makes a motion command pipeline possible.
This feature, normally not exposed to the ordinary user, makes
more powerful algorithms applicable even with limited computing
power.

e It is known that use of the true control system software and a dy-
namic model of the robot can be utilized to support simulation for
off-line programming. This is well encapsulated in the object ori-
ented design of the system. A step forward is that the solution is
integrated with the motion command pipeline, external sensors, and
motions depending on sensor signals.

e Sensor software interfaces have been designed for several software
layers in the ORC architecture. The sensor interface in the motion
control system requires three different sensor behaviors for normal
control, for pipelining of motion commands, and for simulation of
robot motions by use of the embedded system. The object oriented
design provides a simple way for the user to specify these behaviors
and incorporate new types of sensors.

In conclusion, the proposed architecture provides flexibility and effi-
ciency in a combination that improves the applicability of industrial
robots. Flexible user programming is based on a combination of on-line
and off-line programming, integrated via transformation of robot pro-
grams. Flexible adaptation to present and future application demands
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is achieved by having the system open and programmable at different
levels during configuration of the system. Efficiency is then provided at
run-time by a tight coupling between user level commands and low level
control.
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Appendix : Motion
Sensor Interface

The description of the sensor interface software for the motion control
system in Chapter 5 refers to the pieces of code in this appendix. The
interface part, including the implementation of some member functions,
for the base class for external sensors looks as follows (template<T>
class C... declares the type T to be a generic data type in class C):

class MotionIO; // HW interface specification.
class I0_spec; // HW connection for the sensor.
class SimFunction;

template<class SensorValue> class Sensor {
private:
friend class SensorPair;
Sensor () ;
“Sensor();

enum behavior {real, dummy, simu};
behavior tag;
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virtual SensorValue *Sample() =0;
virtual SensorValue *DummySample() {
SensorValue *ptr = new SensorValue;
*ptr = DummyVal;
return ptr;

};

SimFunction *simulated_sensor;
SensorValue *GetSimuVal() {
if (!simulated_sensor)
return GetDummyVal();
else
return (SensorValuex)
SimFunction: :eval(*simulated_sensor);

};

public:
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// **xxx%%* Generic method for sampling: skkkkskik
SensorValue *GetVal() {
switch (tag) {
case real:
return Sample();
case dummy:
return DummySample();
case simu:
return Simulate();
}
+;

enum mode {off, single, trace, record};
mode SetMode(const mode new_mode);

void SetSimuFunc(SimFunction* simulate_sample) {
delete simulated_sensor;
simulated_sensor = new SimFunction(simulate_sample);
};

virtual void SetDummyVal(SensorValue* newDummy);




virtual void Reset();
protected:

mode current_mode;

SensorValue DummyVal;

SensorValue CurrentVal;

};

The following class is used to ensure that both a real and a dummy sensor
interface are instantiated. The pointers to the real respectively to the
dummy sensors can then be put in structures, one for all real sensors
and one for all dummy sensors, defining the entire sensor environment
for each case. The control algorithms and precomputations can then use
either of these without knowing which. This means that algorithms only
have to consider the real case. The interface part for the SensorPair
class is:

template<class SensorType> class SensorPair {
private:
friend class MotionSensors;
SensorType* sensor;
SensorType* dummy_sensor;

SensorPair(I0_spec* HW_connection);
SensorPair(SimFunction* simulate_sample);

// Trick to force the compiler to check that

// the actual SensorType really is a Sensor

// (next line will show up in error message):

void SensorType_not_derived_from_Sensor() {

Sensor *p = sensor; p = dummy_sensor;

};
};
Objects of type SensorPair behaves differently depending on if the sen-
sor is simulated or real. The differences are handled by having two over-

loaded constructors as shown in the interface part. The implementation
part for the constructors is simply:
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template<class SensorType>

SensorPair: :SensorPair(I0_spec HW_connection) {
sensor = new SensorType(HW_connection);
dummy_sensor = new SensorType();
dummy_sensor->tag = Sensor::dummy;

};

template<class SensorType>
SensorPair::SensorPair(SimFunction* simulate_sample) {
sensor = new SensorType(simulate_sample);
sensor->tag = Sensor::simu;
dummy_sensor = new SensorType();
dummy_sensor->tag = Sensor::dummy;

}s

The interface part of the sensor manager class is:

class MotionSensors

{ private:
typedef Sensor* sensor_array[max_num_sensors];
sensor_array* real_sensors;
sensor_array* dummy_sensors;

public:

MotionSensors();
MotionSensors(SimulationParameters SimPars);
“MotionSensors();

// More code here...

};

The MotionSensors class uses a list of all types of sensors defined in
the system. Each sensor is given a unique enumeration number and a
string name that can be used to find the unique number. Sensors are
then instantiated at run-time by calling the MakeSensor procedure last
in the following sensor definition class:

class SensorDefs {
public:
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enum available {0OnOffSwitch, // Digital one bit.

Tactilel, // Tactile type 1.
Tactile2, // Tactile type 2.
Scanner, // Laser scanner.
/...

Force, // Force sensor.

// Add new sensors before this line.
END_MARK // Must be last.

};

static string name [END_MARK];
name [On0ffSwitch] = "On/off one bit";
/...

name [Force] = "Force, standard"
// Add new sensor names before this line.

static SensorPair* MakeSensor(available sensor) {
switch (sensor) {
case OnOffSwitch:
/...
};
};
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