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Introduction

This thesis deals with design of proportional integral derivative (PID)
controllers. PID control is by far the most common control algorithm
and very much has been written about it, see e.g. Astrém and Hégg-
lund (1995b). In spite of this there are no uniformly accepted design
methods. There are several reasons to look for better methods to design
PID controllers. One reason is the significant impact it may give be-
cause of the widespread use of the controllers. In a plant with several
hundred subprocesses and control loops there is no way to model each
of them and custom design controllers for each one. There is a need
for a single controller structure with few parameters to tune. Another
reason is that auto tuners and tuning tools can benefit significantly
from improved design methods.

In the thesis new design methods for PID controllers will be pre-
sented and a number of considerations in PID controller design will
also be discussed.

The thesis consists of the following three papers:

I. AstroM, K.J., H. PANAGOPOULOS, AND T. HAGGLUND (1998):
“Design of PI controllers based on non-convex optimization.”
Automatica, 35:5.

II. PANAGOPOULOS, H., K. J. AsTrOM, AND T. HAGGLUND (1998):
“Design of PID controllers based on constrained optimization.”

Department of Automatic Control, Lund Institute of Technology,
Box 118, S-221 00 Lund, Sweden.



Introduction

III. PanacorouLos, H., AND K. J. AsTROM (1998): “PID controller
design and ., loop shaping.” Department of Automatic Control,
Lund Institute of Technology, Box 118, S-221 00 Lund, Sweden.

1.1 A Perspective on Control Design

Development of design methods has been a goal for control theory for
a long time. The classical frequency domain methods were developed
in the thirties and forties starting with the breakthrough in stability
theory made by Nyquist and continuing with the work on feedback
amplifiers by Black and Bode.

In the classical approach the main concern was to design feedback
compensators such that a certain stability margin was achieved, see
e.g. Truxal (1955). The emphasis was then on model uncertainties.
Feedback was used to decrease sensitivity to disturbances and model
errors. The compensator design was done mainly by graphical methods
evolving from the Nyquist stability criterion.

The development of analytical design methods in the fifties, see
e.g. Newton et al. (1957), made it possible to give specifications on
the transient performance by giving a process model together with a
closed loop specification. At the same time, less attention was given to
robustness and sensitivity issues. In the last two decades analytical
methods have been developed in which robustness has regained its
importance.

In the sixties the development of methods for control design based
on optimization techniques had the advantage to capture many differ-
ent aspects of the design problem. During this time efficient computer
methods were developed to solve these optimal control problems. A gen-

eral discussion of the use of optimization for control design is found in
Boyd and Barratt (1991) and Mayne and Polak (1993).

What about PID Controller Design?

Despite the development in control theory the PID controllers are the
most used controllers in industry, see, for instance, Yamamoto and
Hashimoto (1991). There are a number of reasons for this: To begin
with PID controllers are well understood by industrial operational,
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technical, and maintenance individuals. Secondly, they have a long
history of proven operation. As a matter of fact, in many applications
a properly designed and well tuned PID controller meets or exceeds
the control objectives. Finally, there are many extensions which make
an industrial PID controller practical for operating a process. For ex-
ample, it has automatic and manual switching, set point tracking, and
emergency manual modes.

In spite of the wide spread use of PID controllers there is a lack
of a universally accepted tuning method. Many design methods for
PID controllers have been proposed in the literature, see e.g. Astrém
and Hagglund (1995b) and references therein. Finding design methods
which lead to the optimal operation of PID controllers is therefore of
significant interest. One reason is the significant impact it may give
because of the widespread use of the controllers. Another reason is
that emerging auto tuners and tuning devices can benefit significantly
from improved design methods, see e.g. Van Overshee et al. (1997).

The simple tuning rules enjoy considerable success because of their
computational simplicity and the moderate process knowledge required.
The simplicity is, however, obtained at the expense of restrictive condi-
tions on the plant and the lack of tuning parameters. A tuning method
as Ziegler Nichols is simple and widely used, but it is not applica-
ble to a wide range of systems, where it is necessary to have more
information. Consequently, more elaborate methods which are based
on process modeling, formulation of specifications, and control design
gives better performance for a wide range of systems. In these cases
optimization is a powerful tool.

1.2 Automatic Tuning of PID Controllers

The original scheme for auto tuning in Astrom and Higglund (1984)
used a very simple design method based on a modified Ziegler-Nichols
method. An improved method, dominant pole design, was proposed in
Higglund and Astrom (1985) and further developed in Persson (1992).
This method is based on knowledge of the process transfer function.
The relative damping of the dominant poles is specified and their dis-
tance to the origin is chosen to optimize integral gain. A drawback
with the method is that it is difficult to find a good universal choice

11
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Figure 1.1 Block diagram describing the design problem.

of the relative damping. A search method which sweeps over the rel-
ative damping to obtain a given value of M, was proposed in Pers-
son (1992) where extension to PID control were also given. A com-
mercial product PIDCona, used in the ABB Master distributed control
system, based on a discrete time version of dominant pole design is
described in Modén (1995). The main drawback of the dominant pole
design is that we must either specify the relative damping or resort to
elaborate sweeping methods. It is difficult to obtain reliable numerical
methods for the sweeping. The present work can be viewed as a con-
tinuation that is based on a direct solution of an optimization problem.

1.3 Contribution

There are several requirements on an efficient design method. It should
be applicable to a wide range of systems and it should have the possi-
bility to introduce specifications that capture the essence of real con-
trol problems. The method should also give all parameters of the PID
controller including set point weight and filters for set point and mea-
surement noise if such filters are desired. Furthermore, the method
should be robust in the sense that it provides controller parameters if
they exist, or if the specifications can not be met an appropriate di-
agnosis should be presented. These requirements are satisfied by the
design methods for PI and PID controllers presented in the thesis.
First a general formulation of the design problem is given before
the two design methods for the PI and PID controller are presented.
Consider the design problem illustrated in Figure 1.1. A process with
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transfer function G(s) is controlled with a PID controller with two de-
orees of freedom. Transfer function G.(s) describes the feedback from
process output y to control signal u, and G¢(s) describes the feed for-
ward from set point ys, to u. Three external signals act on the control
loop, namely set point y,,, load disturbance [ and measurement noise
n.

The design objective is to determine the controller parameters in
G.(s) and Gys(s) so that the system behaves well with respect to
changes in the three signals y.,, [ and n as well as in the process
model G(s). Therefore, the specification will express requirements on

Load disturbance response

Robustness with respect to model uncertainties
Measurement noise response

Set point response

Consequently, the formulation of the design problem takes care of re-
jection of load disturbances and measurement noise at the same time
as it gives good set point response. Note that, even if it has been em-
phasized many times by practitioners such as Shinskey (1988) and
Shinskey (1990), a lot of papers still focus primarily on the set point
response only. Also, the formulation takes into account the sensitivity
of model uncertainties, which was one of the major drawbacks of the
classical Ziegler Nichols method.

In virtually all applications it is useful to have a tuning parameter
that permits adjustment of the trade off of aggressiveness versus ro-
bustness. The effects of the tuning parameter should be transparent to
the user. The design problems to be presented have a tuning parame-
ter to specify the sensitivity to model uncertainties. A nice feature of
the methods is that good default values of the tuning parameter can
be found. Therefore, the user can simply supply the process transfer
function and the method gives the parameters of the controller. Mod-
ifying the tuning parameters give a flexible way to change the main
characteristics of the system.

In the formulation of the design problem it is expected that the
process is given and the properties of the input signals of the system.
The process is assumed to be linear, time invariant, and specified by
the transfer function G(s) which is analytic with finite poles and pos-
sibly an essential singularity at infinity. The description covers finite
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dimensional systems with time delays and infinite dimensional sys-
tems described by linear partial differential equations. Furthermore,
this is very useful as it admits design of controllers for a very wide
range of systems.

To begin with a short resumée of the paper Astrom et al. (1998) is
given.

Design of Pl Controllers based on Non-Convex Optimization

This paper presents an efficient numerical method for designing P1
controllers. The specifications capture demands on load disturbance re-
jection, set point response, measurement noise and model uncertainty.
The primary design goal is to obtain good load disturbance responses.
This is done by minimizing the integrated control error I E. Robustness
is guaranteed by requiring that the maximum sensitivity is less than
a specified value M,. Good set point response is obtained by using a
structure with two degrees of freedom. This requires an extra param-
eter, the set point weighting b, in the algorithm. The primary design
parameter is the maximum sensitivity, M;, but auxiliary design pa-
rameters such as the maximum of the complementary sensitivity, M,,
can be added. Thus, the formulation of the design problem captures
three essential aspects of industrial control problems, leading to a non-
convex optimization problem.

The proposed method formulates the design problem as a constrained
optimization problem: optimize the load disturbance rejection with a
constraint on the maximum sensitivity. By exploiting the structure of
the optimization problem it is reduced to the solution of nonlinear al-
gebraic equations. Efficient iterative methods are given together with
good methods for finding initial values.

There are unique solutions for special classes of systems but very
complicated situations may occur for complicated systems. The method
will give a solution if one exists and it will indicate when there is no
PI controller that satisfies the specifications.

The design procedure has been applied to a variety of systems;
stable and integrating, with short and long dead times, with real and
complex poles, and with positive and negative zeros.

Parts of the proposed method builds on previous works. The use of
optimization was discussed in Hazebroek and van der Waerden (1950).
In this and in other early works the emphasis was on criteria that
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admitted analytical solutions. The idea of optimizing load disturbance
rejection with sensitivity constraints was suggested by Shinskey (1990).
He used a constraint in terms of a rectangle around the critical point
but the idea to use a constraint on the maximum sensitivity, M;, was
proposed by Persson (1992) and Persson and Astrom (1992). The use
of both M, and the maximum complementary sensitivity, M,, as design
parameters was suggested by Schei (1994).

The new contributions in this paper are: the analysis of the nature
of the sensitivity constraints, the efficient numerical procedures, and
the method for determining set point weighting.

A natural step would be to extend the work on designing PI con-
trollers presented in Astrom et al (1998) to the design of PID con-
trollers. The outcome of this idea is presented in the paper Panagopou-
los et al. (1998), for which a short resumée follows.

Design of PID Controllers based on Constrained Optimization

This paper describes a new design method for PID controllers. The
PID controller to be discussed has four primary parameters, gain £,
integral time T, derivative time T,; and set point weight 6. In addition
there is filtering of the measured signal and sometimes also of the set
point. The design method gives all parameters and filters required.

A design method for PI controllers based on maximization of inte-
gral gain subject to a robustness constraint was developed in Astrém
et al. (1998). In the present paper it is shown that this method cannot
be extended directly to PID control. The reason for this is that the
optimization problem in most cases has ridges which result in poor ro-
bustness and thus also poor control. Having developed an understand-
ing for the problem it is possible to introduce additional constraints.
The result is that design of PID controllers can be formulated as a con-
strained optimization problem which can be solved iteratively. Initial
conditions are very important since the problem is non convex. A good
way to find initial conditions is also presented.

The solution of the optimization problem gives a PID controller with
a pure derivative. Simple rules for choosing a filter for the measured
signal are then presented. Adjusted controller parameters are obtained
simply by repeating the design with the process replaced by the combi-
nation of the original process transfer function and the transfer func-
tion of the chosen filter. This gives a very flexible way of choosing the
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filter.

Having obtained a controller able to deal with load disturbances,
measurement noise and plant uncertainty it is then designed for good
set point response. First it is attempted to determine the set point
weighting so that the maximum of the transfer function from the set
point to the output is less than a given value. Sometimes this cannot
be accomplished and a filter for the set point is then designed. The
advantage of this approach is that a filter is only introduced if it is
necessary.

The design procedure has been applied to a variety of systems:
stable and integrating, with long dead times and with right half plane
ZEeros.

The new contributions of this paper are: the analysis of the nature
of the derivative part of the PID controller, the additional constraints
needed to solve the design problem, the methods for determining filters
for measurement noise and set point weighting.

All the robustness constraints in Astrom et al. (1998) and Panagopou-
los et al. (1998) can be encapsulated in a constraint that the loop trans-
fer function avoids a circle in the Nyquist diagram. This establishes
also a nice connection between traditional design of PID controllers and
9. control, which is described in Panagopoulos and Astrém (1998). A
short resumée of the paper is given next.

PID Control Design and %/, Loop Shaping

The paper shows how the specifications for the PID design in Astrém
et al. (1998) and Panagopoulos et al. (1998) should be chosen to guar-
antee that the weighted %, norm, see Glover and McFarlane (1989),
of the transfer function from load and measurement disturbances to
process inputs and outputs is less than a specified value y. Also, a new
way to determine for which class of systems a PID controller will be
stabilizing is presented.

Many different methods have been proposed to design PID con-
trollers. In Glover and McFarlane (1989) and Vinnicombe (1998) a
loop shaping method was developed and in Astrém et al (1998) and
Panagopoulos et al. (1998) a method for designing PID controllers were
presented. In this paper it is shown that these two methods are closely
related to the H,., loop shaping method developed in Glover and Mec-
Farlane (1989). In particular it is shown how the specifications for the
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PID design should be chosen to guarantee that the weighted H ., norm
of the transfer function from load disturbances to process inputs and
outputs is less than a specified value y.

Also, a new way to determine for which class of systems a PID con-
troller will be stabilizing is presented. By ensuring that a PID design
is such that y < 7 a good guarantee for robustness of the closed loop
system is given.

The new contributions of this paper are: If the robustness mea-
sure of the H,, design y is accepted as a good performance measure
the results of this paper suggest that the robustness constraint of PID
controllers should be chosen as the combined MM, -circle. In this way
it is guaranteed that a design will automatically satisfy the H., ro-
bustness constraint.

1.4 Future Work

The method for design of PI control is very straightforward, maxi-
mize the integral gain, k;, subject to a robustness constraint. The work
shows clearly the importance of using a robustness constraint. Analysis
of PID control shows that maximization of %; subject to the robustness
constraint does not necessarily result in good controllers. Additional
constraints are required in this case. In our work we have introduced
these in turns of constraints on the shape of the Nyquist curve. It may
be worth while to consider some alternatives.

Two design methods have been presented, one for PI control and
one for PID control. A comparison between the results of PI and PID
control shows that in some cases derivative action gives substantial
improvements but in other cases the improvements are very marginal.
It would be interesting to explore this further and to try to characterize
the different cases.

The design method require that the transfer function of the pro-
cess is known. Results for particular examples show however that it
is sufficient to know the transfer function in certain frequency ranges.
It would be interesting to explore this further and develop some de-
sign rules. In Astréom and Hagglund (1995a), it was, e.g., shown that
good results could be obtained using process models with only three
parameters.
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The design methods are based on non-convex optimization. Local
optimization may occur in such problems. This has not been encoun-
tered in the particular examples. It would be interesting to investigate
it. Conditions for uniqueness can be found for particular classes of
systems.

Finally, it would be useful to package the design procedures so that
a user-friendly interface is obtained.
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Abstract—This paper presents an efficient numerical method for
designing PI controllers. The design is based on optimization of
load disturbance rejection with constraints on sensitivity and
weighting of set point response. Thus, the formulation of the
design problem captures three essential aspects of industrial
control problems, leading to a non-convex optimization prob-
lem. Efficient ways to solve the problem are presented. © 1998
Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The PI controller is unquestionably the most com-
monly used control algorithm; see Yamamoto and
Hashimoto (1991). In spite of its wide spread use
there exists no generally accepted design method
for the controller. PI controllers have traditionally
been tuned empirically, e.g. by the method de-
scribed in Ziegler and Nichols (1942). This method
has the great advantage of requiring very little
information about the process. There is, however,
a significant disadvantage because the method in-
herently gives very poor damping, typically { ~ 0.2,
see Astrom and Hégglund (1995b).

There are several reasons to look for better
methods to design PI controllers. One reason is the
significant impact it may give because of the wide-
spread use of the controllers. Another reason is that
emerging auto-tuners and tuning devices can bene-
fit significantly from improved design methods.

There are several requirements on an efficient
design method. It should be applicable to a wide
range of systems and it should have the possibility
to introduce specifications that capture the essence
of real control problems. Furthermore, the method
should be robust in the sense that it provides con-
troller parameters if they exist, or if the specifica-
tions cannot be met an appropriate diagnosis
should be presented. We believe these requirements
are satisfied by the method presented in this paper.

*Received 24 March 1997; received in final form 10 December
1997. This paper was recommended for publication by Associate
Editor C. P. Jobling under the direction of Editor Sigurd
Skogestad. Corresponding author Professor K. J. Astrém. Tel.
+46-46 2228781; Fax + 46-46 138118; E-mail kja@controllth.se.

+Department of Automatic Control, Lund Institute of
Technology, Box 118, §-221 00 Lund, Sweden.
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The approach gives a simple way to solve simple
control problems and more difficult ones where more
efforts are needed. The method will give a PI control-
ler which satisfies the specifications, provided that
such a controller exists. If not, the reasons for failure
will be indicated. It can also be used to develop
simpler methods for restricted classes of systems as
was done in Astrém and Hégglund (1995a).

The method proposed in this paper formulates
the design problem as an optimization problem:
optimize the load disturbance rejection with a con-
straint on the maximum sensitivity. By exploiting
the structure of the optimization problem it is re-
duced to the solution of algebraic equations. Effi-
cient iterative methods are given together with
good methods for finding starting values.

The method presented assumes a linear process
whose dynamics is characterized in terms of a transfer
function, which does not have to be rational. Thus, it
can be applied to systems described by partial differ-
ential equations. If the transfer function is not known
it can be obtained by system identification.

Parts of the proposed method builds on previous
works. The use of optimization was discussed in
Hazebroek and van der Waerden (1950). In this and
other early works the emphasis was on criteria that
admitted analytical solutions. The idea of optimiz-
ing load disturbance rejection with sensitivity con-
straints was suggested by Shinskey (1990). He used
a constraint in terms of a rectangle around the
critical point but the idea to use a constraint on the
maximum sensitivity, M, was proposed by Persson
(1992) and Persson and Astrom (1992). The use
of both M, and the maximum complementary sen-
sitivity, M ,, as design parameters was suggested by
Schei (1994). The new contributions in this paper
are: the analysis of the nature of the sensitivity
constraints, the efficient numerical procedures, and
the method for determining set point weighting.

2. FORMULATION OF THE DESIGN PROBLEM

The formulation of a design problem includes
a characterization of the process and its
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environment, the controller structure, and speci-
fications on the performance of the closed-loop
system.

Requirements: Before going into details we will first
discuss the requirements. The method should be
applicable to a wide range of systems and it should
be based on specifications that reflect the essence of
real control problems. Furthermore, the method
should give a simple solution to simple problems.
With more efforts and more skills from the
designer it should also be possible to sharpen the
specifications,

The process: It is assumed to be linear, and speci-
fied by a transfer function G(s) which is analytical
with finite poles and possibly an essential singu-
larity at infinity. This description covers finite
dimensional systems with time delays and infinite
dimensional systems described by linear partial
differential equations.

The controller: 1t is a PI controller described by

i

t

u(t) = k(byy, (1) — y(1) + kif (¥sp(1) — y(0))dz, (1)
4]

where u(f) is the control signal, y(t) is the process
output, y,,(¢) is the set point, and k, k;, and b are
controller parameters, .

When there are substantial measurement noise, it
is customary to filter the measurement signal with
a filter, typically of the form

1

Gels) = ————
f(S) 1+STf’

2
where T is the filter time constant.

Thus, the controller has three or possibly four
parameters, k, k;, b, and T Tt is industry practice to
use integration time, defined as T; = k/k;, instead of
parameter k;. However, for the computations it is
more convenient to use k;. Industrial controllers
typically use either b = 0 or b = 1, but lately it has
been recognized that it is advantageous to use full
range of b-values, that is 0 < b < 1. The controller
given by equation (1) is said to have two degrees of
freedom when b # 1. The advantage of such struc-
tures has been pointed out by Horowitz (1963)
and their use in PID controllers is discussed in
Shigemasa et al. (1987) and Astrém and Hagglund
(1995b).

Specifications: They express requirements on

» load disturbance response,
» set point response,
» robustness with respect to model uncertainties.

In process control applications efficient rejection of
load disturbances is of primary concern, whereas
set point responses are typical of secondary import-
ance. However, set point response may be of pri-
mary importance, for example, in motion control
systems. Although it has been frequently pointed
out by engineers that load disturbances is of pri-
mary concern, it is interesting to note that papers
on PI control traditionally focus on set point re-
sponse, see e.g. Shinskey (1990).

The sensitivity to model uncertainty is of pri-
mary significance, and observe that the poor sensi-
tivity is one of the major drawbacks of the classical
Ziegler—Nichols method.

In virtually all applications it is useful to have
a tuning parameter that permits adjustment of the
trade off of aggressiveness versus robustness. The
effects of the tuning parameter should be transpar-
ent to the user. In the method presented, we have
a tuning parameter to specify the sensitivity to
model uncertainties.

2.1. A formal description

In order to use a formal design method it is
necessary to capture specifications in a suitable
mathematical form. This is extensively discussed in
Astrom and Hégglund (1995b).

2.1.1. Load disturbance rejection. It can be conve-
niently expressed in terms of the integrated abso-
lute error due to a load disturbance in the form of
a unit step at the process input, i.e.

IAE = f " e de. 3)
0

This criterion is difficult to deal with analytically
because the evaluation requires computation of
time functions. The integrated error defined by

IE = Jw e(dt, ()

0

is much more convenient. In Astrdm and Hiagglund
(1995b) it is shown that IE = 1/k;. Thus, the cri-
terion I E is directly given by the integrating gain of
the controller. Remember that, IE = IAFE if the
error is positive. Furthermore, if the system is well
damped the criteria will be close which, in our case,
will be ensured by the sensitivity constraints.

2.1.2. Sensitivity to modeling errors. They can be
expressed in terms of the largest value of the sensi-
tivity function. Let the loop transfer function be
L(s) = G(s)G.(s) where G, is the controller transfer
function, and let the sensitivity function be S(s) =
1/(1 + L(s)). The maximum sensitivity is then
given by M, = max|S(iw)|. Keep in mind that the
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quantity M, is the inverse of the shortest distance
from the Nyquist curve of the loop transfer function
to the critical point — 1. Typical values of M, are in
the range of 1.2-2.0.

With a constraint on M, it follows from the circle
criterion that the closed loop system will also
remain stable with a static nonlinearity in the
loop, provided that the nonlinearity is bounded by
two straight lines with slopes M (M, + 1) and
M/(M, — 1), see Khalil (1992).

Let T(s)=1—S(s)=L{(s)/{(1 + L(s)) be the
complementary sensitivity function. The sensitivity
can also be expressed by the largest value of the
complementary sensitivity function, ie. M, =
max | T (iw)|. The value M, is the size of the reson-
ance peak of the closed loop system obtained with
b = 1, see equation (1). Typical values of M, are in
the range of 1.0-1.5.

2.1.3. Set point response. The design has so far fo-
cused on the response to load disturbances, which
is of primary concern. However, it is also important
to have a good response to set point changes. The
transfer function from set point to process output is
given by )

Y(s) ki+bks Lis)
Yep(5) k4 ks 1+ L(s)

= Gpls). (9

One way to give specifications on the set point
response is to specify the resonance peak of the
transfer function G,,(s), i.e.

M., = max |G, (iw)]. (6)

Consequently, the b-value is determined such as it
fulfills equation (6). Notice that M, < M, ifb < 1.

2.1.4. Measurement noise filtering. The PI control-

ler has a high-frequency gain k. The effects of -

measurement noise can be reduced, substantially,
by filtering the signal with the filter given by equa-
tion (2). The specifications can be expressed in
terms of the magnitude of the high-frequency gain
of the controller. This specification is optional and
only used in exceptional cases.

2.2. Design parameters

The tradeoff between performance and robust-
ness varies between different control problems.
Therefore, it is desirable to have a design parameter
to change the properties of the closed-loop system.
Ideally, the parameter should be directly related to
the performance of the system, it should not be
process oriented. There should be good default
values so a user is not forced to select some value.
This is of special importance when the design pro-
cedure is used for automatic tuning. The design
parameter should also have a good physical

interpretation and natural limits to simplify its
adjustment.

The variables M, and M, are both possible can-
didates for design variables. The influence of these
design parameters is illustrated in Fig. 1. The
curves to the left show that M, is a suitable design
parameter. Decreasing values of M, results in time
responses that are slower but less oscillatory. The
curves to the right show that M, is not suitable.
Although M, is varied between 1.2 and 2.0, no
significant variation in the time responses is no-
ticed. The reason is, that the M, circles are too close
to each other in the frequency region around

—180°. Therefore, we will choose M, as a design
variable.

On the other hand, it is important that the result-
ing M, value is not too large. We will therefore also
calculate M, when the design is completed. If M, is
too large there are several possibilities. One is to
repeat the design with a smaller M, value. Another
is to use constraints on both M, and M. This will
give rise to difficulties in the optimization because
the set enclosed by M, and M, circles is not convex.
This difficulty can be avoided by constructing
a circle that ha$ the M, and M, circles in its in-
teriors. A straightforward calculation shows that
this is a circle with a center C and a radius R where

M, — MM, —2M M2 + M2 — 1

C

MO —1)
R Mot M, —1 ™
T 2M (M, — 1)

An advantage with this is that the same optimiza-
tion procedure can be used because the constraint
set is a circle.

3. THE OPTIMIZATION PROBLEM

The design problem discussed in the previous
section can be formulated as an optimization prob-
lem: Find controller parameters that maximize
k; subject to the constraints that the closed-loop
system is stable and that the Nyquist curve of the
loop transfer function satisfies the encirclement
condition and that it is outside a circle with center
at s = — C and radius R.

Introduce L(s) = (k + k;/s)G(s) and the function

fk, ki, 0)=|C + <k — 1%) G(iw)|*. (8)

The sensitivity constraint can then be expressed as
f(k, ki, @) = R? )

and the optimization problem is to maximize k;
subject to the sensitivity constraint (9).
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Fig. 1. Tllustrates the effects of using M, (left() and M, (right) as a design parameter. The upper curves show the Nyquist curves of the
loop transfer functions together with the M, and M, circles for M, = 1.2, 1.4, 2.0 and M » = 1.2, 1.4, 2.0. The lower curves show process
outputs and control signals for the different design parameters. They give responses to a set point change followed by a load disturbance.

Let a(w) and B(w) be the real and imaginary
parts of the process transfer function. Hence

G(iw) = a(w) + if(w) = r(w)e'?,
where

a(w) = r(w)cos p(w),

Blw) = r(w)sin ¢(w).

The function f can then be written as

flk, ki, w) = C* + 2Ca{w)k + 2C ﬂ(Tw) k;

2

+ 2 (w)k?* + 162&) k. (10)
)

In the following, we will occasionally drop the

argument @ in «, f, r, and ¢ in order to simplify the

writing,

The optimization problem is nontrivial because
the constraint, which is infinite dimensional, defines
a set in parameter space which is not convex. There
are also other subtleties which may cause problems.
For a specific problem it is not difficult to solve the

problem numerically with standard optimization

routiries because the search range can often be
limited and if the optimization fails it is possible to
interfere manually. Since PI controllers are very
common it is, however, worthwhile to make
special algorithms which are tailored for the
problem. Such procedures are also required for
automatic tuning where manual interaction is very
inconvenient.

Before discussing the solution to the optimiza-
tion problem we will investigate the sensitivity con-
straint which is a key difficulty of the problem.

3.1. The sensitivity constraint

The sensitivity constraint given by equation (9)
has a nice geometric interpretation. For fixed w,
equation (9) represents the exterior of an ellipse in
the k—k; plane. The ellipse has its axes parallel to the
coordinate axes. For 0 < w < oo the ellipses gen-
erate envelopes that define the boundaries of the
sets of parameters which satisfy the sensitivity con-
straints. [t can be assumed that the process transfer
function is such that a stable closed system is ob-
tained with positive k;. It is thus sufficient to con-
sider the upper-half of the k—k; plane. The center of
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k

Fig. 2. Geometrical illustration of the sensitivity constraint (9) and the envelope generated by it. The envelope to the left has
a continuous derivative, but the one to the right has a corner.

the ellipses generate the boundary of the stability
regions. The envelopes for different systems may
have different characters as shown in Fig. 2. Notice
in particular that the envelope may have a corner
as is illustrated in Fig. 2b.

3.1.1. Stability. The stability region can be ex-
pressed in terms of a condition on k and k; which is
obtained by setting C = 1 and R =0 in equation
9), ie.

kM@+hE@2+<wmﬂ—hﬂ@>=—L
(03] (63}
(10
Hence
ko) + 6, P2 = 4,
— ,

aw) _

Solving these equations for k and k; gives the
following parametric description of the boundary
of the stability region:

o(w)
)
B(w) (D

r*()’

ki: —

where 1* = o*(w) + p*(w), and the parameter w
ranges from zero to infinity. Notice that the stabil-
ity region may consist of disjoint sets.

3.2. Optimization

Having understood the nature of the constraints
it is now conceptually clear how to solve the optim-
ization problem. It is simply a matter of finding the
largest value of k; on the envelope. The difficulties
that may occur are due to the fact that there may be
several local maxima and that the maximum may
occur at a corner.

Since it is quite time consuming to generate the
envelope it is desirable trying to find algorithms
that can give a more effective solution. It is also of

interest to characterize the situations when there is
only one local minimum.
The envelope is given by

f(ks kb CO) = R2>
¥y (12
(ke 0) = .

Since the function f'is quadratic in k; the envelope
has two branches. Only one branch corresponds to
stable closed-loop systems. Compare with Fig. 2.

Instead of generating the envelopes and search-
ing for the largest value of k; on the envelope, we
will characterize the points where k; has its largest
value. From the discussion of the constraint it is
clear that there are two cases. The simplest case is
when the largest value of k; occurs at a point where
the envelope has a continuous derivative. The other
case is when the envelope has a corner.

The envelope given by equation (12) defines im-
plicitly k; as a function of k. To find the maximum
of this function we observe that

of of of
df_akdk+6kidki+awdw—o' (13)
It follows from equation (12) that df/0w =0 on
the envelope. At a local extremum we have dk; = 0.
For arbitrary variations of dk we must thus require
that df/0k = 0. Combining this with the envelope
conditions (12) we get

of

ﬁ (ks kis C()) = 05

3]

—f (k, ky, ) = 0, (14)
0w

flk, ki, w) = R?,

which corresponds to the situation when the max-
imum occurs at a point on the envelope where it
has continuous derivatives, see Fig. 2a. In the
Nyquist diagram this agrees with the case when the
loop transfer function is tangent to the circle at one
point.
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We will now consider the case when the largest
value of k; occurs at a point where the envelope has
a corner. This occurs at the intersection of ellipses
corresponding to two different frequencies, w; and
,, see Fig. 2b. The envelope condition (12) is
then satisfied for both frequencies. This gives the
condition

f(k, ki’ 0)1) = RZ,

E‘f_ (k, kia COI) = O,
w

’ (15)
f(k7 kia CUz) = RZ)

A4 ke g) = 0.

Jdw

In the Nyquist diagram this corresponds with the
case when the loop transfer function is tangent to
the circle at two points.

It is thus possible to characterize the point where
k; has its largest value by algebraic equations. This
means that the design problem is reduced to solv-
ing algebraic equations (14) or (15), and that elabor-
ate search procedures are avoided. Both equations
can be solved by using the Newton-Raphson
method. Equation (14) which represents the most
common situation can, however, be simplified
substantially.

3.3. A simplification .

Equation (14) is a nonlinear equation in three
variables, k, k; and w. It is possible to solve this
equation directly, but a much more efficient
algorithm will be obtained by eliminating some
variables.

Inserting expression (10) into equation (14), gives

o _ 2
£—2C(X+27k—0,
g Y :

2\
+ <’—2> ki + 2r'k? =0,
@)

szZ:

where prime means differentiation with respect to
. Solving k and k; from the first and last equations
gives

o

1
k= _Cr_zz —C;cosgu,

17)
C R (
k;Z—wa —6_077-2 —$(Csin<p+R),

where the positive sign is chosen to satisfy the
encirclement criterion. The following condition is

obtained by inserting the expressions of k and k; in
the second equation of equation (16),

h@) = 2R <<c§ " R><'7 ﬁ) B C<§>>

W 1
= 2R<(R + Csin ¢) <’— — E> — C¢'cos qo>

.
=0. (18)

Thus, the solution to equation (16) is reduced to
a single algebraic equation (18) in . Solving it gives
the frequency w, for which we can compute the
controller gains k and k; given by equation (17).

The condition (16) does not tell if the extremum
is a minimum, a maximum or saddle point, but
constraint (9) implies that the function should be
a minimum with respect to w. This gives the follow-
ing local condition:

—2 (o) > 0. (19)

Equation (18) can be solved iteratively with the
Newton—-Raphson method which converges very
fast if suitable initial conditions are given. Notice,
however, that in general there may be several solu-
tions which can be found by starting the iteration
from different initial conditions.

For special classes of systems, for example sys-
tems with monotonic transfer function, it is possible
to provide good initial conditions. The following
result is useful.

Theorem 1. Let w, denote the frequency where the
process has a phase of ¢. Assume that the transfer
function G(s) has positive low-frequency gain and
that

dargG(i
arg G(iw) -

0
dw ’

(20)
dlogyo|Glim)| <1
leglo w

Then there exists a solution to equation (18) in the
interval

Wog < W < @4 = (180 —arcsinR/C* (21)

Proof. It is assumed that the low-frequency gain
of the process is positive. Then the integral gain
k; must be positive if the closed-loop system should
be stable. For this reason equation (17) implies that
R + Csing < 0. It follows from the assumptions
(20) that ¢’ <0 and #/r — 1/w < 0. As a result
equation (18) and the assumptions imply that
h(wge) > 0 and h(wy) < 0. But h is a continuous
function, therefore equation (18) must have a solu-
tion in the interval (21). O
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Remark 1. Notice that since a PI controller has
negative phase for all frequencies, the solution must
be found in the interval weg < w < w;. Thus, the
monotonicity condition has to be valid in that
interval.

Remark 2. Tt follows from equation (17) that the
condition (21) implies that both k and k; are posit-
ive. Systems with monotone transfer functions sat-
isfy the condition (20). For such systems it is thus
straightforward to find a good range of frequencies
to solve equation (18). Also notice that as long as
the phase decreases monotonically it is possible to
have an increase in the amplitude curve, provided
that the slope is never larger than one. Most sys-
tems encountered in process control satisfy these
conditions.

A necessary condition for stability of the closed-
loop system is that the parameter k; is positive
which implies that wy > @gg.

3.4. Initial conditions

Good initial conditions is a crucial factor for the
computational efficiency of the Newton—Raphson
iterations when solving the optimization problem.
The two cases when the envelope has a continuous
derivative or a corner has to be treated separately.

First we consider the case when the envelope has
no corner. The solution to the optimization prob-
lem is obtained by solving the algebraic equation
(18) with Newton—Raphson for a suitable search
range. According to Theorem 1 the search range is
chosen as [wgo, w;]. To obtain better initial condi-
tions we narrow it by applying interval bisection in
equation (18).

Finally, the case when the envelope has a corner
is considered. This problem is more difficult to
solve, because it is necessary to solve a system of
equations (15), which in this case requires four
initial conditions of w;, w,, k and k;. They can be
obtained with the following procedure.

For fixed values of o the sensitivity constraint,
equation (12), represents ellipses in gain space
which generates envelopes. It is quite complicated
to compute the envelopes, however, they can be
approximated by the loci of the vertices of the
ellipses. The horizontal vertices are given by

k= _giﬁa
r r
22)
C (
ki: _wﬁz s

¥

where the left vertex corresponds to a minus sign
and the right vertex to a plus sign. The loci of the
vertices define curves in the gain space that enclose
the envelope. Good initial values for the Newton—

Raphson iteration can be obtained by finding the
point on the loci where k; has its largest value.
When there is a corner this value is obtained as the
intersection of the vertices given by equation (22),
see Fig. 2b, giving w,; and w,. Thus, k can be
computed from equation (22) for either w; or w,.
Because of the construction this value overesti-
mates the integral gain.

Note that the same technique can be used as an
alternative way of finding initial conditions in the
case of no corners. In this case the envelope can be
approximated by the loci of the lowest vertex of the
ellipse, that is

EC_C‘—
r?’
k; = _wﬂzc _oR

¥ r

k= —

(23)

Notice that this equation is identical to equation
(17). The upper vertex is not of any interest because
it gives an unstable closed-loop system.

4. THE DESIGN PROCEDURE

We have thus found efficient procedures to deter-
mine feedback gains k and k;, by optimizing load
disturbance rejection subject to constraints on sen-
sitivity to model uncertainties. To complete the
design procedure, it remains to determine the set
point weighting, i.e. parameter b in equation (1).

4.1. Set point weighting

The set point response is governed by the trans-
fer function G, given by equation (5). In order to
have a small overshoot in set point response, set
point weighting b will be determined so that M, =
max |G, (iw)] is close to one. It follows from equa-
tions (5) that M, < M, when 0 < b < 1. A bound
of M, is thus given indirectly through M.

We will make the approximation that maximum
of |Ggp(im)| occurs for wg,, where w = wy, is
the frequency where the maximum of |L{iw)/
(1 + L(iw))| occurs. Parameter b will be determined
so that

| GopliOmp)] = 1 (24)

with the constraint 0 < b < 1. Using equations (5)
and (24) this implies that

VRPok, — kK (ME—1)
kwm,M,
if (Ompk/k)® = MZ— 1,

(25)

0 if (mpk/k)? < M2 — 1.

If b = 0, it is not sure that the design objective (24)
will be obtained. If the set point response is
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important and the M, value is large, the design can
then be repeated with a lower value of M, or using
the constraint given by the circle (7).

4.2. Measurement noise filtering

Having performed a design of the controller we
obtain the controller gain k, which is also the high-
frequency gain of the controller. Combined with
the specifications on roll-off we can then determine
the order and the bandwidth of a suitable noise
filter.

Here we will only consider the first-order filter
given by equation (2). The choice of filter-time
constant T in equation (2) is a tradeoff between
filtering capacity and loss of performance. A large
value of T provides an effective noise filtering, but
it will also change the control performance. A small
value of T; means that the control performance is
retained, but the noise filtering is less effective.

A nice feature of the new design procedure is that
it provides a systematic way to determine T;. The
choice

1

Tf = B
Mg

(26)

makes it possible to determine the effects of the
filter at the frequency w,. We get

1
|Gt (iwo)| = —F——5.,
T N uym?
arg Ge(img) = — arctan(rl/m).

Reasonable values of m are in the interval 5-10. For
m =15 we get |G(iwg)| = 0.981 and arg G¢(iw,) =
— 11° For m = 10 we get |G{iwg)] = 0.995 and
arg Ge(iwg) = — 5.7°. These modifications of the
loop transfer functions give normally only minor
changes in control loop performance. If needed, it is
also possible to recalculate the parameters by de-
termining the filter as described above, and then
perform a regular design of the PI controller with
the transfer function G¢(s)G(s).

4.3. The procedure
To sum up we find that the design problem can
be solved by the following procedure:

(1) Choose the design parameters M, and/or
M, and compute C and R.

(2) Determine the search range (v, < o < w,). We
have @; = wgg and w;, = w,g¢. For systems that
satisfy the monotonicity condition (20) we have
O = W1g0.aresinkjc- NOtice that there may be
several search intervals. Narrow the search
range by applying interval bisection to equation
(18).

(3) Normal case: Use the initial values from Step
2 and solve equation (18) by Newton—Raphson.
Evaluate the condition (19) and compute

M, and M,. If both are satisfactory go to Step
5 otherwise compute new C and R and go to
Step 2.

(4) Corner case: Compute the approximate envel-
ope for values in the range o; < @ < wy. Deter-
mine largest value of k;, the frequencies of tan-
gency w; and w, and compute k. These are used
as initial values too solve equation (15) with
Newton—-Raphson. Compute M, and M. If
both are satisfactory go to Step 5 otherwise
compute new C and R and go to Step 2.

(5) Determine the parameter b from equation (25).

(6) Evaluate the design including noise sensitivity.
Modify the design parameters if required.

For simple systems it is sufficient to choose only
the design parameter M,. For special classes of
systems all choices can be made automatically.

5. EXAMPLES

The design method has been tested on a large
number of examples. In this section we will give
a number of examples illustrating its properties.

5.1. Typical process control problems

To start with we will consider some representa-
tive systems which are normally encountered in
process control. They have the following transfer
functions, :

1
Gi(s) = m,
G B 1
2(s) = (s + 1)(1 + 0.25)(1 + 0.04s)(1 + 0.008s)
e 158 1
G2 = Gl =G
1—2s 9
GO =577 im0

Systems G, and G, represent processes that are
relatively easy to control. System G; has a long
dead time, and G, models an integrating process.
System G5 has a zero in the right half plane, and
system G¢ has complex poles with relative damping
0.33. Systems of type G5 and G4 are not common in
process control, but they have been included to
demonstrate the wide applicability of the design
procedure. For all systems, except Gg, we can, by
inspection, verify that they satisfy the monotonicity
assumption. The system Gg(s) will be discussed
further on in Example 5 where it is shown that it
also satisfies this assumption. We thus know that
there exists a solution where the envelope has
a continuous derivative.

Figure 3 shows the Nyquist curves of the loop
transfer functions obtained for two values of the
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Fig. 3. The Nyquist plots of the open-loop frequency response
for the systems Gj(s), j=1,...,6 for M, =14 in the upper
figure and M, = 2.0 in the lower one.

design parameter M,. The responses to changes in
set point and load are shown in Fig. 4, and the
details of the design calculations and simulations
are summarized in Table 1.

Even though the systems G,—Gg represent pro-
cesses with large variations in process dynamics,
Figure 4 shows that the resulting closed-loop re-
sponses become similar for each value of M. This is
important because it means that the proposed de-
sign procedure gives closed-loop systems with de-
sired and predictable properties. The fact that even
integrating processes can be treated in the same
way as stable processes is interesting. In many
other design approaches, stable and integrating
processes have to be treated separately, see istrém
and Higglund (1995b).

There is also a large similarity between the re-
sponses obtained with the different values of the

tuning parameter M. This shows that the M-value
is a suitable tuning parameter. Responses obtained
with M, = 1.4 show little or no overshoot. This is
normally desirable in process control. Responses
obtained with M, = 2.0 give faster responses. The
settling time at load disturbances, t;, is significantly
shorter with this larger value of M,. On the other
hand, these responses are oscillatory with a larger
overshoot. This can be seen from the comparison
between IE and the integrated absolute error TAE
in Table 1.

The controller gain k varies significantly with the
design parameter M. However, integral time T} is
fairly constant for the stable processes, i.e. all pro-
cesses except G,. This means that, for PI control,
the different design specifications are mainly ob-
tained by adjusting only the gain. This observation
is made earlier, see Astrom and Hégglund (1995b).

For the systems in Table 1 the values of M, are
smaller than the M, values except for the system
G, with M = 1.4 where M, and M, are equal. The
constraint on the sensitivity function is thus the
critical constraint for these systems.

Except for the integrating process Gy, the M,
values obtained for M, = 1.4 are all close to one.
Consequently, parameter b is also close to one. For
M, = 2.0, the M, values are, however, larger. This
means that the overshoots would have been signifi-
cant if the set point weighting were chosento b = 1.
However, acceptable set point responses are ob-
tained by using small values of b. In some cases,
b = 0. It means that the procedure has failed to
obtain M,, = 1. If set point responses are impor-
tant and if the overshoots are unacceptable, a re-
design may be done using smaller values of M, or
optimization with constraint on M,, see Section 4.

5.2. More complex systems
We will now discuss several examples with more
complex dynamics.

Example 1. Pure time delay (see Example 2). Many
design methods for PI controllers perform poorly
for systems with long relative time delays. The
system Gj is of this type because the ratio between
the dead time and the dominating time constant is
15/3. A more extreme case is

G(s) = e~

This system has wgo = n/2 and w;go = 7. It satis-
fies the monotonicity condition (20). Making the
design for M, = 1.4 and 2.0, the design procedure
gives the controller parameters which can be found
in Table 2. The Nyquist diagrams and the set point
and load disturbance responses are shown in Fig. 5.
The figure shows that the design procedure man-
ages to obtain controller parameters even for sys-
tems with extreme dead times.
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Fig. 4. Comparison between the PI controllers for M, = 1.4 and 2.0. The graphs shows a step response followed by a load disturbance of
the closed-loop system when designing for M, = 1.4 (dashed line) and 2.0 (full line).

Example 2 (Pure integrator with time delay). A pure
integrator with a time delay is another common
model. The transfer function for such a system is

-Ss

Gg(s) = SE— .

This system has wgo =0 and w50 =7/2. It
fulfills the monotonicity condition (20). Making

the design for M =14 and 20, the
design procedure gives the controller parameters
which can be found in Table 2. The Nyquist
diagrams and the set point and load distur-
bance responses are shown in Fig 5, which
demonstrates that the design procedure produces
suitable controller parameters in this example
too.
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Table 1. Properties of controllers obtained for system G,—G, for different values of the design parameter M,

Process M, k T; b 1IE IE/IAE wo te M,
Gy(s) 14 0.633 1.95 1.00 3.07 1.00 0.74 10.3 1.00
1.6 0.862 1.87 0.93 2.17 095 0.79 7.87 1.05
1.8 1.06 1.82 0.70 1.72 0.86 0.82 6.77 1.24
2.0 1.22 1.78 0.50 1.45 0.77 0.85 6.27 1.45
G,(s) 1.4 1.93 0.745 0.89 0.387 1.00 333 2.25 1.10
1.6 2.74 0.672 0.75 0.245 1.00 3.83 1.68 1.27
1.8 347 0.625 0.63 0.180 0.96 4.25 1.39 1.46
2.0 413 0.591 0.52 0.143 0.91 440 1.21 1.66
G;(s) 14 0.164 6.16 1.00 375 1.00 0.096 91.3 1.00
1.6 0.208 5.87 1.00 28.2 1.00 0.099 51.2 1.00
1.8 0.241 5.66 0.92 23.5 0.88 0.101 39.8 1.02
2.0 0.266 5.51 0.00 20.8 0.75 0.102 359 1.17
G4(s) 1.4 0.167 14.0 0.70 84.0 097 0.29 353 1.40
1.6 0.231 10.7 0.64 46.2 0.99 0.34 24.1 1.49
1.8 0.286 9.00 0.57 31.5 099 0.38 18.5 1.62
20 0.333 8.00 0.50 24.0 0.96 0.41 15.7 1.77
Gs(s) 1.4 0.179 1.78 1.00 9.90 0.90 0.38 28.6 1.00
1.6 0.228 1.69 1.00 743 0.87 0.40 18.6 1.00
1.8 0.265 1.64 0.87 6.18 0.80 0.41 147 1.04
2.0 0.294 1.60 0.00 542 0.70 0.41 135 1.20
Ge(s) 1.4 0.313 0373 0.88 1.19 0.87 1.98 4.13 1.04
1.6 0.387 0.344 0.51 0.891 0.79 2.05 294 1.15
1.8 0.441 0.325 0.00 0.739 0.70 2.05 2.69 1.26
2.0 0.482 0.313 0.00 0.648 0.64 2.12 2.56 1.37

Table 2. Details of the design calculations of the systems
GG, for different values of the design parameter M,

Process M k k; b wy, M,

G(s) 14 0.158 0472 100 173 099
20 0.255 0.854 000 183 117

Gyls) 14 0282 00418 066 054 145
20 0488 0131 046 073 182
Gols) 14 294 115 081 789 117
20 531 270 048 968 159
G1o(s) 14 125 162 078 349 123
20 248 443 051 459 1.68
Gy1(s) 14 130 203 086 375 LI3

20 2.59 5.24 051 4.82 1.64

Example 3 (A distributed parameter system). The
method also applies directly to systems described
by partial differential equations. To illustrate
this we consider a system described by a linear
heat equation. Such a system has the transfer
function

Gg(S) =e VS
Hence
Goliw) = e~ VoPe~oR,

The system satisfies the monotonicity condition
(20) and we have wgo =4.93, w50 = 13.7, and
wig0 = 19.7. Making the design for M, = 1.4 and
2.0, the design procedure gives the controller
parameters which can be found in Table 2. Notice
that in this case there is a significant increase in

performance when changing from M, =14 to
M,=20.

Example 4 (Fast and slow mode). Consider a system
with the transfer function

100 [ 1 0.5
(s 15 0.05)' @)

This system has two fast modes with time constants
0.1s, one mode with a time constant of 1s, and
a slow mode with time constant 20s. The static
behavior is dominated by the slow mode which has
a low-frequency gain of 10. The step response is
dominated by the slow time constant, but it is the
faster modes that are critical for the closed-loop
system. The properties that are important for con-
trol are thus hidden in the step response. This
means that most attempts to tune the system based
on step response data will give poor results. Mak-
ing the design for M, =14 and 2.0, the design
procedure gives the controller parameters which
can be found in Table 2. The properties of the
closed loop systems obtained are illustrated in
Fig. 5.

It is of interest to compare with the controller
parameters obtained for the system

150
s+ 102G + 1)’

Giols) = G+ 10)2

G11(s) = (28)

which is obtained by removing the slowest mode
from the system (27). In this case when making the
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Fig. 5. Nyquist curves of the loop transfer function and time responses of the closed-loop system when designing for M, = 1.4 (dashed
line) and 2.0 (full line) for systems G(s), Gg(s), Gio(s) and Gy4(s).

design for M = 1.4 and 2.0, the design procedure
gives the controller parameters which can be found
in Table 2. These parameters are close to those
obtained for the system (27), which shows that the
design procedure manages to disregard the slow
mode. The Nyquist curves for the two systems are
compared in Fig. 5. Here it can be noticed that the
two curves coincide for frequencies above w,,.

Example 5 (An oscillatory system). Consider the
system with the transfer function

9

Gia(s) = G+ +as+9)

This is an interesting system from two points of
view. First, the system has two oscillatory poles
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with relative damping { = a/6. When parameter a is
decreased it becomes more and more difficult to
control. Second, depending on the value of para-
meter a the envelope may have a continuous deriv-
ative, a > 1.0653, or a corner, a < 1.0653.

For the case when the envelope has a continuous
derivative a controller has already been designed
for a = 2, see process Gy at the beginning of this
section. According to Fig. 4 the design gives a con-
troller with good performance.

For the case when the envelope has a corner
a controller was designed for M, = 2.0. In Fig. 6 the
Nyquist curves and the time responses are shown
for the cases a = 0.2,0.5,1.0. The controller be-
haves reasonably well in spite of the poorly damped
poles.

In Table 3 the controller parameters and the
frequencies at which the loop transfer function is
tangent to the M,-circle are shown. Notice in
Table 3 how the proportional gain is negative for
small values of a. This is the only way to increase
the damping of the oscillatory poles with a PI
controller.

Finally, we illustrate how our design method will
provide a reasonable PI controller for the extreme
case a = 0. With the design parameter M, = 1.4 we
obtain the following controller parameters:
k= —0.183,k; = 0251 and b= 0. The time re-
sponses are shown in Fig. 7. We observe that the set
point response is quite reasonable, even if there is
a trace of poorly damped modes. The load distur-
bance will, however excite the oscillatory modes.
The fact that the PI controller is unable to provide
damping of these modes is clearly noticeable in the
figure.

Example 6 (A conditionally stable system). Consider
the system with the transfer function

(s + 6)°
G130 = 5 16 + 36)

This system does not satisfy the monotonicity
assumption because the phase lag is not mono-
tonic. The system is conditionally stable, since the
Nyquist curve crosses the negative real axis at
points s = — 0.0191 and s = — 0.1656. We have
woo = 0, and wygo = 1.69 and 4.17. With propor-
tional feedback the system is stable for k < 6.04 or
k > 52.26.

There are two solutions to the optimization
problem for M,=20: k=047, k; =0.067,
b =0.52,and k = 921, k; = 1098, b = 0.50. The first
solution gives wg = 0.5196 rad/s and the second
gives wq = 25.93 rad/s. Nyquist curves and time
responses to set point changes and load distur-
bances are shown in Fig. 8. Notice the similarities
of the Nyquist curves and the differences in

1

0.5
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0 ) 2 . . 1 1
0 5 10 15 20 25 30

Fig. 6. Nyquist curves of the loop transfer function and time
responses for Example 5 with a = 0.2, 0.5, 1.0, when designing
for M, = 2.0.

Table 3. Interesting parameters when designing a controller for
M, = 2.0 and different values of a in Example 5

a k k; Wy [
0.0 —029 0.68 0.97 2.75
0.1 —0.25 0.82 1.08 2.71
0.2 —0.20 0.93 1.16 2.67
0.5 —0.09 1.17 1.37 2.55
1.0 0.09 1.38 1.65 2.30
2.0 0.48 1.54 2.79 2.79

response speed for the solutions. The frequency
scalings of the Nyquist curves are different.

Only one solution k = 0.214, k; =0.0178 and
b =0.710 is obtained for M, = 1.4 with wy =
0.3531 rad/s. This illustrates that the method indi-
cates that there is no controller that satisfies the
specifications.
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Fig. 7. Time response of the closed-loop system of Example 5 obtained for a = 0, when designing the PI controller for M, =14
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Fig. 8. Nyquist curves of the loop transfer function and time
responses for the closed-loop system of Example 6 when design-
ing for M, = 2.0.

Example 7 (An unstable system). To show that PI
control can also be used for unstable systems we
consider a systerh with the transfer function

_ a
T s+Fais—1)°

This system does not satisfy the monotonicity as-
sumption (20) because its phase does not decrease
monotonically. The phase lag is 7 both at very low
and at very high frequencies. The smallest phase lag
is

G14(5)

- m-arctan w
2a

which occurs for v = \/Z. To have a loop transfer
function that lies outside a circle with center C and
radius R it must be required that

(a—1)\/a .__R
2a - /CZ_RZ’

which implies that

(C + R)?

R

For C =1 and R = 0.5 we get a > 3. To solve the
design problem we will therefore start with an inter-

val of frequencies around \/5. Figure 9 shows the
Nyquist curves and the set point and load distur-
bance responses obtained for a = 4 and 8, respec-
tively. The design is made for M = 2.0. For a = 4,
the design procedure gives the controller para-
meters k = 3.31, k; = 0.82, b =0.50, and the fre-
quency wo = 3.04 rad/s. For a = 8, we get k = 8.70,
ki=104, b=0.5, and the frequency w, = 7.85
rad/s. The M,-values becomes quite large,
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Fig. 9. Nyquist curves of the loop transfer function and time
response of the closed-loop system of Example 7 with a = 4 and
8. The design is done for M, = 2.0 in both cases.

M, =198 fora =4 and M, = 1.87 for a = 8. Stll,
we obtain set point responses with acceptable over-
shoots because of the set point weighting b.

Example 8 (Filtering of measurement noise). In
most cases in PI control it is not a primary
design consideration that measurement noise is
fed into the control system through the controller.
With reasonable sensors it is often sufficient
to check the fluctuations of the control signal
generated by the noise and introduce a filter on
the measured signal if necessary. The design of
such a filter was discussed in Section 2 and is
illustrated here with the system in Example 1.
Measurement noise is particularly difficult in this
case because the process has constant gain for high
frequencies.

We consider the case of a first-order noise filter
with the transfer function

Gel(s) = 1+ 5Ty
A PI controller is first designed without consider-
ing the noise filter. The design gives the frequency
w, from which the parameter T is determined as
T = 1/(mw,). The design is then repeated for a sys-
tem with the transfer function G,Gs.

To evaluate the effectiveness of the noise filter we
observe that the transfer function from measure-
ment noise to control signal is given by

G.G
< N(s) ~ M,G.G¢N(s),

VO =176,06.

where N is the measurement noise. The approxima-
tion is obtained by replacing the sensitivity func-
tion with its maximum M,. This will overestimate
the control signal by at most a factor M. Further-
more, assume that the measurement noise is ob-
tained by filtering white noise by a system with the
transfer function

Gu(s)

Tsta
The control signal is then white noise filtered by

ks + k;

G,(s) & M.G.G;Gy = My —— 1
() f G+ a)l +sTy)

Assuming that the spectral density of the white
noise is ¢ we find that the variance of the control
signal is
’ ak® + ki T¢

M2 ——.
7  2aTo(l & aTy)

Table 4 shows the results of the PI controllers de-
signed by the method mentioned above for different
values of m. It has been computed for M, = 2.0,
¢ = 1,a =2and { = 0.707. In the table we have also
shown the ratio between integration time T; and the
filter time constant T;. The tradeoffs are clear from
the table. Decreasing the value of m makes the
system less sensitivity to measurement noise but
more sensitive to load disturbances. It is possible to
introduce loss functions which capture this compro-
mise but it is rare that the data required is available
with sufficient precision to justify the analysis.

Table 4. Parameters of PI controllers with filtering of the
process output discussed in Example 8

m k ks o 1E a T,/T;
2 0.31 0.73 1.48 1.36 089 1.25
5 0.27 0.78 1.66 1.26 125 282

10 0.26 0.81 174 1.21 1.67 551

20 0.26 0.83 1.78 1.17 228 110

0 0.26 0.85 1.83 1.12 o0 -
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6. COMPARISONS WITH OTHER METHODS

Many different methods have been proposed for
tuning PI controllers. A comprehensive presenta-
tion which includes many comparisons are given in
Astrom and Higglund (1995b). In this section, the
new design procedure is compared with two other
common methods, namely the Ziegler-Nichols fre-
quency response method, see Ziegler and Nichols
(1942), and the Lambda tuning procedure, see
Rivera et al. (1986).

All methods differ with respect to the process
knowledge required and the design specifications.
In the Ziegler—Nichols method, the process model
is specified in terms of the ultimate gain and the
ultimate frequency. No design specification can be
made. In Lambda tuning, the process model is
specified in terms of the static gain, time constant,
and time delay. The design variable is the desired
closed-loop time constant. A common rule-of-
thumb that is used in this section is that the desired
closed-loop time constant should be three times the
open-loop time constant, see EnTech (1993). The
new design method requires that the transfer func-
tion of the process is specified, and the design is
given in terms of the M-value. The value M <= 1.6
is used in this comparison.

The design procedures have been applied to the
processes Gy, G,, and G5 given in Section 5. The
controller parameters and some performance
measures are presented in Table 3.

For process Gy, the Ziegler—Nichols method
gives a very oscillatory response with an overshoot
of 36% and a high M value. This is due to the high
controller gain. The Lambda tuning method gives
a well damped but sluggish response. The settling
time and the IAE values are three times larger than
those obtained in the new design. This is due to the
low controller gain.

For process G,, the Ziegler-Nichols method
gives a control loop that is close to the stability
boundary. The overshoot is 47% and the M,-value
is M, = 11. Again this is mainly due to the high
controller gain. The Lambda tuning method gives
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a very sluggish response, were the IAE value and
the settling time are almost a magnitude larger than
in the new design method.

Process G; has a long dead time. For this pro-
cess, the Ziegler—Nichols design results in a control-
ler with too high gain and too long integral time.
This gives a control loop with a large M, value, and
a very long settling time. Lambda tuning gives
a low controller gain and an integral time that is
too short. This results in oscillatory behavior with
an overshoot of 21%. The rule of thumb for choos-
ing the desired closed-loop time constant is not
suitable for processes with a long dead time. There-
fore, it is sometimes suggested to relate the desired
closed-loop time constant to the dead time L in-
stead of the open-loop time constant T when the
dead time is long.

The Ziegler-Nichols method gives systems which
are inherently poorly damped. The examples dem-
onstrate that it is not trivial to choose the desired
closed-loop time constant in Lambda tuning. The
new design procedure manages to obtain consistent
behavior for a wide range of processes. On the
other hand, the-procedure assumes that the com-
plete transfer function of the process is known,
whereas the other two methods only uses simpler
models.

Many traditional methods fail to give acceptable
control for several of the more difficult control
problems discussed in the paper. For example, both
the Ziegler—Nichols method and the Lambda
tuning method gives controller gain k = 0 for the
pure delay process G(s) = e~ "

7. CONCLUSIONS

This paper describes a design method for PI
controllers. The method assumes that the transfer
function of the process is given. The specifications
capture demands on load disturbance rejection, set
point response, measurement noise and model un-
certainty. The primary design goal is to obtain
good load disturbance responses. This is done by

Table 5. Comparison between the three design procedures. The table shows controller parameters k, T;, and k;, and performance
measures M, My, IAE, overshoot o, and settling time r,

Process Design k T; k; M, JIAE o % ts M,
Ziegler-Nichols 3.60 3.02 1.19 4.93 1.40 35.9 18.0 4.39
G, Lambda tuning 0.278 1.92 0.145 117 6.90 0 25.8 1.00
New design 0.862 1.87 0.461 1.60 2.28 8.80 8.12 1.05
Ziegler-Nichols 13.6 0.468 29.1 114 0.098 471 2.28 11.1
G, Lambda tuning 0.312 1.05 0.299 1.06 335 0.00 14.0 1.00
New design 2.74 0.672 4.08 1.60 0.246 9.95 1.83 1.27
Ziegler—Nichols 0471 30.0 0.0157 1.86 63.2 0.00 237 1.00
G; Lambda tuning 0.081 1.73 0.0465 2.15 373 21.5 118 1.39
New design 0.208 5.87 0.0355 1.60 282 0.00 51.2 1.00
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minimizing the integrated control error IE. Ro-
bustness is guaranteed by requiring that the max-
imum sensitivity is less than a specified value M.
Good set point response is obtained by using
a structure with two degrees of freedom. This re-
quires an extra parameter, the set point weighting
b, in the algorithm. The primary design parameter
is the maximum sensitivity, M,, but auxiliary de-
sign parameters such as the maximum of the com-
plementary sensitivity, M,, can be added.

The design problem can be formulated as a con-
strained optimization problem. It is shown that this
problem can be reduced to a solution of nonlinear
algebraic equations. Efficient ways of solving these
equations are presented. There are unique solutions
for special classes of systems but very complicated
situations may occur for complicated systems. The
method will give a solution if one exist and it will
indicate when there is no PI controller that satisfies
the specifications.

The design procedure has been applied to a var-
iety of systems; stable and integrating, with short
and long dead times, with real and complex poles,
and with positive and negative zeros.
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Erratalist for "Design of PI Controllers based on
Non-Convex Optimization"

p. 587 Equation (7): The expressions C and R should be,

_ My(2M,~ 1)~ (M, — 1)

C =
2M,(M, — 1) ’
p_ Mo+ M, -1
oM,(M, — 1)’

p. 589 Equation (10): Equation (10) should be labelled out.

p. 597 Figure 6: The time response in Figure 6 is wrong. The correct one
is as follows,
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Figure 1 The time responses for Example 5 with a = 0.2, 0.5, 1.0, when design-
ing for M, = 2.0.
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Abstract This paper presents a new design method for PID controllers
based on optimization of load disturbance rejection with constraints on ro-
bustness to model uncertainties. The design also delivers parameters to
deal with measurement noise and set point response. Thus, the formu-
lation of the design problem captures four essential aspects of industrial
control problems, leading to a constrained optimization problem which can
be solved iteratively. A straightforward way to find initial conditions is also
presented.

Keywords PID control. Design. Optimization. Specifications. Load dis-
turbance rejection. Measurement noise filtering. Set point response. Ro-
bustness. Sensitivity.

1. Introduction

The PID controller is todays most commonly used control algorithm, see
Yamamoto and Hashimoto (1991). At the moment, there exits many differ-
ent methods to find suitable controller parameters. The methods differ in
complexity, flexibility, and in the amount of process knowledge used. De-
pending on the application, there is a need to have several types of tuning
methods. There are simple, easy to use methods which require little infor-
mation, e.g. the method described in Ziegler and Nichols (1942), and on the
other hand more sophisticated methods which requires more information
and more computations. But with todays computational capacity this is no
disadvantage.

There are several reasons to look for better methods to design PID con-
trollers. One is the significant impact it may give because of the widespread




use of the controllers. Another is the benefit emerging auto-tuners and tun-
ing devices can derive from improved design methods.

There are several requirements on an efficient design method. It should
be applicable to a wide range of systems and it should have the possibility to
introduce specifications that capture the essence of real control problems.
Furthermore, the method should be robust in the sense that it provides
controller parameters, if they exist, or if the specifications can not be met,
an appropriate diagnosis should be presented. We believe these require-
ments are satisfied by the method presented in this paper. The approach
gives a simple means of solving both simple control problems and more
difficult ones. The method provides a PID controller which satisfies the
specifications, provided that such a controller exists. If not, the reasons for
failure will be indicated. It can also be used to develop simpler methods for
restricted classes of systems, as was done in Astrém and Higglund (1995a).

This paper describes a new design method for PID controllers based
on the assumption that the process transfer function is known. The pri-
mary design goal is to obtain good load disturbance responses. This is
done by minimizing the integrated control error IE. Robustness is guar-
anteed by requiring that the maximum sensitivity be less than a specified
value M,. Measurement noise is dealt with by filtering. Good set point
response is obtained by using a structure with two degrees of freedom.
Such response can often be achieved by set point weighting, see Astrém
and Hagglund (1995b), p. 73-76. Filtering can be used when this is not
sufficient. Consequently the presented method captures demands on load
disturbance rejection, set point response, measurement noise and model
uncertainty. The design method for PID contr ollers is based on earlier work
of designing PI controllers presented in Astrom et al. (1998).

The PID controller we discuss has four primary parameters: controller
gain k, integral time 7j, derivative time 7y and set point weight b. In
addltlon there is filtering of the measured signal and sometimes also of
the set point. The design method gives all parameters required.

The specifications are expressed in terms of a number of parameters for
which good default values can be found. In the simplest case good default
values can be given to all parameters. The primary design parameter is the
maximum sensitivity, M,; auxiliary design parameters are the maximum
of the complementary sensitivity, My, and the largest magnitudes of the
transfer functions from set point to output M, and from measurement
noise to control signal M,,.

The user simply supplies the process transfer function and the method
provides all the parameters of the PID controller, controller gain k, integral
time T}, derivative time 7; and set point weight b. In addition the filters
of the measured signal and the set point are delivered. A natural next
step is to modify the maximum sensitivity M;. This gives a flexible way of
modifying the main characteristics of the system. If the user so desires the
specifications can gradually be modified for fine tuning.

The primary design goal, i.e. ensuring good rejection of load distur-
bances, can be formulated as constrained optimization of the integral gain
k;. Constraints are introduced to ensure robustness, which can be encap-
sulated in a constraint that the loop transfer function should avoid a circle
in the Nyquist diagram. This establishes a nice connection between tra-
ditional design of PID controllers and o control, see Panagopoulos and
Astrom (1998). Simple measures of the robustness are the maximum sensi-




tivity, the maximum complementary sensitivity alternately the H oo-norm of
the multi variable transfer function of the system, see Vinnicombe (1998).

A design method for PI controllers based on maximization of integral
gain subject to a robustness constraint was developed in Astrom et al. (1998).
In the present paper it is shown that this method cannot be extended di-
rectly to PID control. The reason for this is that the optimization problem
in most cases has ridges which result in poor robustness and thus also poor
control.

Having developed an understanding for the problem, it is possible to in-
troduce additional constraints. The result is that design of PID controllers
can be formulated as a constrained optimization problem which can be
solved iteratively. Initial conditions are very important since the problem
is non convex. A good way to find initial conditions is also presented.

The solution of the optimization problem gives a PID controller with
a pure derivative,thus providing a very flexible way of choosing the filter.
Simple rules for choosing a filter for the measured signal are presented.
Adjusted controller parameters are obtained simply by repeating the design
with the process replaced by a combination of the original process transfer
function and the transfer function of the chosen filter.

Having created a controller able to deal with load disturbances, mea-
surement noise and plant uncertainty, the system is then designed for good
set point response. First the set point weighting must be determined so that
the maximum of the transfer function from the set point to the output will
be less than a given value. Sometimes this cannot be accomplished and a
filter for the set point must be designed. The advantage of the approach is
that a filter is only introduced if necessary.

2. Problem Formulation

l n

S

4

Figure 1 Block diagram describing the design problem.

The design problem is illustrated in Figure 1. A process with transfer func-
tion G(s) is controlled with a PID controller with two degrees of freedom.
Transfer function G.(s) describes the feedback from process output y to
control signal u, and G (s) describes the feed forward from set point yp
to u. Three external signals act on the control loop, namely set point ysp,
load disturbance ! and measurement noise 7.

The design objective is to determine the controller parameters in G (s)
and Gy (s) so that the system behaves well with respect to changes in the
three signals ys,, [ and n as well as in the process model G(s). Therefore,
the specification will express requirements on




Load disturbance response

Measurement noise response

Set point response

e Robustness with respect to model uncertainties

Process and controller structures

The design problem was formulated so as to apply to a wide variety of
systems. Thus it is assumed that the process is given as well as the prop-
erties of the input signals of the system. This is very useful because it
admits design of controllers for a very wide range of systems. Later it is
seen that only certain properties of the processes are needed for the design.
Consequently, the process is assumed to be linear, time invariant, and spec-
ified by a transfer function G(s), which is analytic with finite poles and,
possibly, an essential singularity at infinity. The description covers finite
dimensional systems with time delays and infinite dimensional systems
described by linear partial differential equations.
Initially it is assumed that the controller can be described by

ult) = k{byn0)~3(0) + i [ (lr) 3O + k=), )

where k, k;, kg and b are controller parameters.
It proved beneficial to replace the signals y and ysp with their filtered

values y/ and yécp. The filtered signals are generated by

¥/ (s) = Fy(s)Y(s),

st;,(s) = FSIJ(S)YSP(S)’

(2)

where the filters are low pass filters of first or second order, for example

1
F.(8) = ——+
S = Ty (3)
with n =1o0or n =2.
The controller can thus be characterized by either four parameters
E, ki, kg, b, and two filters F,, Fy, or by two transfer functions: the
feedback G, and the feed forward Gy transfer functions where

Gols) = (4 has) Fy ),

k.
fo(s) = (bk + ’S_l)FSP(S)-

Consequently, the relations among the three external input signals, yp,
[ and n, on the one hand, and process output y and control signal , on the

other, become

G 1 GGy
_ | 4
y=1766 ' tivea T irea (4)
e G, Gy
L=10G6 T a6 T 1v G660 (5)




Load Disturbance Attenuation

The primary design goal is to achieve good rejection of load disturbances
where no detailed assumptions are made about the load disturbances ex-
cept that they are low frequent. Assuming that the transfer function of the
process does not go to zero for small s, the transfer function between [ and
y, see Equation (4), can then be approximated according to

G s

1+ GG,

for small s. Thus, by maximizing the integral gain k; the effect of the
load disturbance [ on the output y is minimized. According to Astrom
et al. (1998) it is shown that this is equivalent to minimizing the inte-
grated error (I E) for a step change in the load disturbance.

Measurement Noise

Assuming that the process has such a high roll off that GG, goes to zero
for large s, the transfer function between n and u, see Equation (5), can
be approximated according to

G,
m ~k+ kygs
for large s.

This shows that the transfer function from measurement noise to con-
troller output goes to infinity for high frequencies. This can be avoided by
filtering the process output.

In traditional PID controllers the filters are often chosen in an ad hoc
manner. Typically the filters are only applied on the derivative term. A
common choice is to give the derivative term

kTys
1+ s%

de

D(s) = ——
) 1+s,f—]‘{,

Y(s) =

Y(s),

where N is a number in the range 2-10. This will reduce the high frequency
gain to 2(1+ N). Since the filter is only applied on the derivative term and
not on the proportional term, the high frequency gain can never be made
smaller than k.

In this study all terms in the controller were filtered. For first order fil-
ter with filter time constant T, the high frequency gain becomes kq/Ts. For
second order filters the high frequency gain goes to zero as the frequency
goes to infinity. Therefore it seems reasonable to use a second order filter.

The largest gain from measurement noise to controller output

B G.(iw)
M, = max 1+ GG, (o) (6)

was used as a simple quantitative measure of the noise rejection.




Set Point Response
The transfer function relating set point to process output is given by

Gfo k; + bks GG, Fsp
— = 7 7
Gorl$) = T97GG, ~ Iyt ks + bys? 1+ GG, ), 2

see Equation (4). When the controller has been designed to give good at-
tenuation of disturbances, the parameter b and the filter I, can be chosen
to give an appropriate set point response. The maximum of Gyp is chosen
as a simple criterion, i.e.

M, = max |Gy (io)|. (8)
@

Robustness

Sensitivity to modeling errors can be expressed in terms of the largest
value of the sensitivity function, i.e.

1
M; = max|3—aos| ()

Keep in mind that the quantity M is simply the inverse of the shortest
distance from the Nyquist curve of the loop transfer function to the critical
point —1. Typical values of M, are in the range 1 to 2.

The sensitivity can also be expressed by the largest value of the com-
plementary sensitivity function, i.e.

GG (iw)

M, = max mc(iw) . (10)
Typical values of M, are in the range 1.0 to 1.5.
Another possibility is to use the H oo-norm
. 1+ |GG (iw)]
y =max|5— GG. (o) I (11)

which is discussed in detail in Panagopoulos and Astrom (1998).

In Astrém et al. (1998) it was shown that the condition that My and M,
are sufficiently small can be guaranteed by the condition that the Nyquist
curve of the loop transfer function should be outside a circle with center at
s = —C and radius R. Such a condition can be expressed by the inequality
flk ki kg, @) > R?, where

Flk, iy kg, @) = \c + (k - é(ki - a)2kd)> G(ia))\2. (12)

In Panagopoulos and Astrom (1998) it is shown that the condition on the
H-norm (11) can be expressed by a similar condition.




Tuning Parameter

The tradeoff between performance and robustness varies among different
control problems. Therefore, it is desirable to have a design parameter
to change the properties of the closed-loop system. Ideally, the parameter
should be directly related to the performance of the system; it should not be
process oriented. There should be good default values so a user is not forced
to select a value. This is of special importance when the design procedure is
used for automatic tuning. The design parameter should also have a good
physical interpretation and natural limits to simplify its adjustment.

For the proposed design method the robustness constraint is a good
measure of the performance of the system. It has been shown in Astrém
et al. (1998) that the variable M; fulfills all the requirements of a good
design parameter. Another choice is to use both M, and M, as a design
parameter, see Astrom et al. (1998).

The advantages of the chosen tuning parameter is that it gives a good
way to determine the performance of the closed loop system. At the same
time it is directly related to the robustness and stability. Furthermore, the
chosen tuning parameter is dimension free which makes it suitable for
automatic tuning.

The disadvantage of the chosen design variable may be that it is di-
mension free, compared with the Lambda tuning procedure, see Rivera
et al. (1986), which has dimension time. It might be an advantage to have
a dimension on the tuning parameter as in the special case of blending.
But in general it is not necessary, then a tuning chart presenting the over-
all behavior of the closed loop system for different values of the tuning
parameter is enough, see Figure 2. Here the time response to changes in
set point and load for different values of M; as a design variable has been
presented. According to Figure 2 the expected responses to changes in load

0.4 T T T T T

0.3

0.1

10 20 30 40 50 60

Figure 2 Tuning chart showing the response to a load disturbance for the tuning
parameter M,=1.2, 1.4, 1.6, 1.8, 2.0.




will be transparent to the user for each values of the design variable.




3. The Design Procedure
According to the previous section design of a PID controller can be made
using the following procedure:

Step 1: Find controller parameters k, k; and kg which maximize k;
subject to the constraints that the closed loop system is stable and the
constraints on sensitivity expressed by M, M,, or some other norm.

Step 2: Determine the filter F, and repeat step 1, iterate if necessary.

Step 3: Determine parameter b and the filter Fy, so that My, is less
than a specified value.

The details of the procedure will be discussed in Section 5.




4, A Difficulty

The design problem discussed in the previous section can be formulated as
an optimization problem: Find controller parameters maximizing k; subject
to the constraints that the closed loop system is stable and the Nyquist
curve of the loop transfer function is outside a circle with center at s = —C
and radius R. Another way to express the optimization problem is

max k;

such that f(k, ki, kg, @) > R? (18)
where f is defined in Equation (12). This formulation has been shown to
work very well for PI controllers, see Astrom et al. (1998), but not for PID
controllers where difficulty arises.

The constraint (12) conceptually defines &; as a function of £ and k.
Thus, the design problem is simply to maximize the function ki(k,kg).
The difficulty is that in most cases the function will have a discontinuous
derivative. This is illustrated in Figure 3 which shows a graphical illus-
tration of the function. Consider for example the contours for constant 4.

o, e

T N

Figure 3 Geometric illustration of the sensitivity constraint.

For small values of &, the curves are smooth with a regular optimum. For
larger values of &y the curves have a discontinuous derivative at the peak.
The discontinuous derivative causes problems in optimization but more
seriously it implies that the optimal solution is very sensitive to changes
in the controller parameters, because small changes in k£ and k4 may give
large changes in k;. In the following these difficulties will be more closely
investigated. The insight gained is used to introduce additional constraints
for the optimization problem.

Geometric Interpretation of the Sensitivity Constraint

The sensitivity constraint (12) has a nice geometric interpretation which

10




will be exploited to gain some insight into the problem. Introduce
G(iw) = r(0)e @ = a(w) + if(v).
The sensitivity constraint (12) can then be written as

B()
()

C? +2Ca(w)k+2C

(m—w%@+#mm#+fzw%kwwk) > R?.
(14)

In the following, the argument @ in «, 3, r, and ¢ will be dropped in order
to simplify the writing. Then Equation (14) can be written as

2
RZ

7‘2
<k+ac)-+5ﬁﬁ<k ﬂc) > 1, (15)

which is for fixed @ the exterior of a cylinder in R®. It will be shown that
the intersection of the cylinder with the k-%;-plane is an ellipse with axes
parallel to the coordinate axes. When @ sweeps over the range 0 < @ < o0
the ellipsoidal cylinders generate a volume that defines the boundaries of
the sets of parameters which satisfy the sensitivity constraints. It will be
shown that the boundary of this set may have discontinuous derivatives
even for very simple processes. Recall that in Astrom et al. (1998) it was
shown that a similar situation may also occur for PI control. However in
that case it was not so common.

An Example

Now it will be shown that the boundaries of the sets of parameters which
satisfy the sensitivity constraint has discontinuous gradients even in the
simple case when the process has the transfer function

1

(16)

Consider the case of constant @ and kg4, then the constraint (15) is an
ellipse in the k-k; plane. As @ changes the ellipses form an envelope. Since
it is quite complicated to compute the envelopes they are approximated by
the envelopes of the ellipses vertices. It follows from Equation (15) that
the horizontal vertices are given by

h=—cos®
r r

wb
ki = —072— + (02kd,
where the left vertex corresponds to a minus sign and the right vertex to
a plus sign. The vertical vertices are given by

o

h=—-C,
i }‘2

k~——C—é+wﬁwi %5,

11
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Figure 4 How to derive the set of (&, k;)-parameters which satisfy the sensitivity

constraint.

Systems ky; = 3 (left) and &y = 4 (right)

Figure 5 The set of (k, k;}-parameters which satisfy the sensitivity constraint for

ka=1, 2, 3, 4 with G(s) = 1/(s + 1) for M, = 14.

How to derive the approximated envelopes of the ellipses is explained
in Figure 4. To begin with consider the left figure, where the loci of the
left (L;), right (R;), and bottom (B;) vertices, have been plotted respec-
tively, for fixed values of ky. When o is changed a new set of vertices
(L;i+1, Rit1, Bi+1) are given. Finally, when enough sets of vertices (Li, Ri, B;)
have been plotted, they will form the envelopes of the ellipses vertices in
the k-k;-plane. Consequently, it will be possible to derive the set of (&, k;)-
parameters which satisfy the sensitivity constraint of Equation (15). In the

left figure of Figure 4 it corresponds to the shaded area.
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Table 1 The obtained controller parameters when maximizing k&; for fixed k&y.

ky k ki w1 we | IAE
1.0 096 { 0.5 | 0.59 - 2.82
1.5 121 097 | 051 | 1.37 | 2.52
2.77 1.1 | 0.98 | 047 | 146 | 2.72
2.897 | 1.05 | 0.99 | 046 | 1.42 | 2.83

In Figure 5 the envelopes of the ellipses vertices have been plotted for
ky = 1, 2, 3, 4 with the process in Equation (16) when M; = 1.4. The
shaded areas correspond to the set of (k, k;)-parameter which satisfy the
sensitivity constraint. The following conclusions are made: for small values
of k4 the maximum of &; occurs on one curve. As kg increases the maximum
occurs at a corner where two curves intersect. The corner becomes sharper
as the value of k£, increases. This is clearly seen in the curve for k; = 4. The
presence of the corner explains the difficulties encountered in optimization
of k;, see for example Persson (1992).

0.5

“15F

0.5

Juys

[ 0.5 1

Figure 6 The Nyquist curves of loop transfer functions for designs with 2, = 1
(upper left), 1.5 (upper right), 2.77 (lower left) and 2.897 (lower right).

Bode and Nyquist Diagrams More insight into the problem can be
obtained by investigating the Nyquist curves of the loop transfer functions

13




Bode Diagrams
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-180-
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Figure 7 The Bode diagrams of the loop transfer functions of the designs with
kg = 1 {full line), 1.5 (dashed line), 2.77 (dotted line) and 2.897 (dashed dotted
line).

for systems with different controller parameters. Again the system with
the transfer function (16) will be considered. The parameter k; will be
fixed and controllers that maximizes %; subject to the sensitivity constraint
will be determined, by using essentially the same code when designing PI
controllers. The design parameter is chosen as M, = 1.4.

Calculations are performed for k5 = 1, 1.5, 2.77 and 2.897. The values
obtained are summarized in Table 1.

The results are shown in Figure 6. For small values of k; the loop
transfer function has one point tangent to the sensitivity circle. As kg4
increases two points will be tangent to the circle. As k4 is increased even
further the Nyquist curve will actually have a cusp. The curve with a cusp
has the largest value of k; which should be the preferred solution if k; was
the only concern.

Another illustration of the observed phenomena in Figure 6 is given in
Figure 7 which shows the Bode diagrams of the loop transfer functions.
The figure indicates that an increase of k; increases the phase advance
which makes it possible to increase k; a little. The increase of k; is however
marginal and it may be questioned if the designs with the larger values of
k4 are reasonable.

Time Responses Additional insight into the problem is obtained by in-
vestigating the time responses. Figure 8 shows the responses to load dis-
turbances for the different systems and in Table 1 details of the simulation
are summarized.

According to Figure 8 the elimination of a load disturbance is best for
Nyquist curves with a cusp but not with any remarkable amelioration of

14




the control performance given by the integrated error TAE in Table 1.
Thus, to have an overall good performance it is preferable to choose the
controller for which the Nyquist curve has no cusp.

0.3 f T ‘ i T T ! '
0.2

0.1

10 20 30 40 50 60 70 80 90

Figure 8 Comparing load responses for ky = 1 (full line), 1.5 (dashed line), 2.77
(dotted line} and 2.897 (dashed dotted line).

Conclusion

This section has shown that a direct generalization of the method used to
design PI controllers in Astrom et al. (1998) where %; is maximized subject
to a sensitivity constraint is not a good formulation of the design problem,
which can be explained geometrically. The sensitivity constraint can be rep-
resented as manifold in parameter space. This manifold has unfortunately
not a smooth tangent even for the simple well behaved system discussed
in the section. One consequence of the discontinuous tangents is that the
optimal solution may occur at a corner which makes it quite sensitive to
parameter variations.

Also, the consequences in the frequency domain have been investigated
to show that the Nyquist curve of the loop transfer function may have
a cusp. This cusp is associated with a significant increase of the phase
advance. This type of phenomena was also encountered for design of PI
controller for systems with resonant poles. However, for most systems the
problem does not occur for PI control.

To have a good method for PID control the design problem must there-
fore be reformulated, which will be done in the following section.
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5. PID Design

From the insights of the previous section, it is now possible to formulate
at good method for designing PID controllers. It has been shown that only
the sensitivity constraint in the formulation of the constrained optimiza-
tion problem in Equation (13) is not enough to obtain a design which is
insensitive to parameter variations. Thus, more constraints are needed to
obtain the desired shape of the Nyquist curve of the loop transfer function
in the upper left figure of Figure 6. A good method for designing PID con-
trollers is obtained if the following two constraints are added in the design
formulation of Equation (13), i.e.

max ki
such that > R?,
F= (1)
K <0,
0 <0,

where x is the curvature of the loop transfer frequency function, L(iw),
and & is the difference in phase change of L(iw) at two consecutive fre-
quency points. Consequently, the first constraint in Equation (17) express
the sensitivity condition, the second constraint specifies that a negative
curvature of L(iw) should be obtained and the third constraint prevents
L(iw) to have undesirable phase leads.

For systems with integral action and close to integral action, i.e. a pole
relatively close to zero, the second constraint in Equation (17) is, however,
too severe. Omitting it will in these cases be appropriate. Consequently,
the design of PID controllers is separated into two cases depending on the
considered system. This separation between integrating and non integrat-
ing processes is done in several previous design methods, see Astrom and
Hagglund (1995b).

Measurement noise filtering

When there are substantial measurement noise, it is customary to filter
the measurement signal with a filter given by Equation (3), see the dis-
cussion in Section 2. The choice of filter time constant T; in Equation (3)
is a tradeoff between filtering capacity and loss of performance. A large
value of Ty provides an effective noise filtering, but it will also change the
control performance, on the contrary to a small value of Ty for which con-
trol performance is retained, but with less efficient noise filtering. When
comparing different kinds of filters the effectiveness of the noise filtering
measured as M, defined in Equation (6), is to be compared with the con-
trol performance measured as the integrated absolute error (IAE), defined
in Astrém and Hagglund (1995b).

A nice feature of the new design procedure is to provide a systematic
way to determine T. The choice

Ni{) for first order filter,
Ty = 0 (18)
1
N for second order filter,

i6




04
03
y y oz
o1
o ‘ : ‘ : : ; : ; o ; ; . : ‘ ; ; : .
0 20 40 60 80 100 120 140 160 180 o 20 40 €0 80 100 120 140 160 180
]
s . : ; ; X . . . : e . ; . . ; . ; . ‘
L 20 40 &0 80 100 120 140 160 189 1] 20 40 &0 80 100 120 140 160 180
Filter constant N = 2.
04 0.4
03F 03
y o2l y b
DA LAl
o ; i : . ; ; i . ; o ; H i ; ; ; . ; ;
o 20 40 &0 80 100 120 140 160 180 o 20 40 &0 a0 100 120 140 160 180
0 20 40 €0 80 100 120 140 160 180 [} 20 40 &0 80 100 120 140 160 180
Filter constant N = 5.
04 04 T

: s i i L L :
[ 20 40 60 80 100 120 140 160 180

i L i L L L i i i L
120 140 160 180 “o 20 40 60 80 100 120 140 160 180

Filter constant N = 10.

Figure 9 The response to a load disturbance followed by measurement noise
using first (left) and second (right) order filters with different values of N. The
graphs show responses from F,G (full line) and load disturbance responses from
G (dashed line).

makes it possible to determine the effects of the filter at the frequency wy,
where wq is the frequency at which the sensitivity function is maximal.
Reasonable values of N are in the interval 2-10. In Table 2 the amount
of modification by the filter on the loop transfer function at the critical
frequency wg is displayed by calculating the arg F,(iwp). Because of the
special choice of Ty the first and second order filter has the same amount
of modification on the loop transfer function at wyg.

Inserting a filter modifies the loop transfer function which gives minor
changes in control loop performance. Consequently, adjusted controller pa-
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Table 2 Properties of the PID controllers obtained for system F,G with M, = 1.4
and different orders of filter n.

n 1 1 1 2 2 2

N 2 5 10 2 5 10
argF,(iwy) | —266° —11.3° —571° —281° —114° —572°
Ty /Ty 0.4432 0.1933 0.0988 0.2053 0.0972 0.0495

ki 0.25 0.30 0.32 0.23 0.30 0.32
I1AE 5.05 4.41 4.12 5.20 4.44 4.13
M, 1.59 3.75 6.82 1.62 3.89 7.84

i ;
10" 10° 10° 10° 107 10° 10

Figure 10 The amplitude curve of the transfer function from measurement noise
n to control signal u for the process F,(s)G(s). First (left) and second (right) order
filter for filter constant N = 2 (full line), 5 (dashed line) and 10 (dotted line).

rameters are obtained simply by repeating the design with the process G
replaced by the transfer function F,G.

The process G(s) = 1/(s +1)% has been used to demonstrate the effects
of the tradeoff between filtering capacity and loss of control performance.
Figure 9 shows the responses to changes in load disturbances and measure-
ment noise of the measurement signal and the controller output. It is also
of interest to consider the response of the process output to measurement
noise. But with the actual choice of measurement noise as a sinusoidal
signal with frequency 40 rad/s, the effects will not be visible why it is
not plotted in Figure 9. In Figure 10 the amplitude curve of the transfer
function from measurement noise n to control signal u is presented, see
Equation (5). The details of the design calculations and simulations are
summarized in Table 2. Note that in Figure 9 the obtained PID controller
designed for F,G is compared to the one designed for G to show the loss
of control performance.

Figure 9 show that the incorporation of a measurement filter gives
only a small deterioration in control performance, compared to the case
with no filter. According to Table 2, the control performance decreases for
decreasing values of N, which is shown by the performance measure TAE.

Figure 9 demonstrates the efficiency of filtering measurement noise
with second order filters compared to first order ones. Notice how the fil-
tering capacity is decreased for increasing values of N, which can also be
seen in the amplitude curves of Figure 10 and in the values of the perfor-
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mance measure M, in Table 2.

According to Table 2, the difference in control performance and in filter-
ing capacity between the first and second order filter are almost the same
because of the choice of T in Equation (18). Only in the case of filtering
a measurement noise around the frequency 1/T} it is preferable to choose
a first order filter because of the large values of the amplitude curve in
Figure 10 for second order filters.

Consequently, the proposed design method determines measurement
noise filters in a systematic way, such that the noise level is reduced. People
working with traditional PID controllers, such that

T EL (19)

would prefer that the proposed design method should optimize on the con-
troller parameters k&, k;, kg and N. This approach would also determine
the filter applied on the derivative term automatically, but at the expense
that the filter constant N in Equation (19) would be optimized with respect
to the load disturbance and not the measurement noise.

Set point weight

The design has so far focused on the response to load disturbances, which
is of primary concern. However, it may also be important to have a good
response to set point changes. One way to give specifications on the set
point response is to consider the transfer function from set point to process
output given by Equation (7).

In order to have a small overshoot in set point response, set point weight
b and filter F,, will be determined so that the resonance peak of the trans-
fer function Gyy(s), i.e.

M, = max |Gy, (io)

, (20)

is close to one.

As Equation (20) is a function of the set point weight b and filter F,, the
following approximation is made: the maximum of |Gg, (iw)| occurs for @ =
®pmp, Where @, is the frequency for which the maximum of |L(iw)/(1 +
L(iw))| occurs. First, try to solve the problem without filtering the set
point, i.e. with Fy, = 1. Attempting to choose parameter b such that

ki + ibk O

Gop(iw = M, =1, 21
l Sp(l mp)l lki""ikwmp_kda)%zpl D ( )
implies that
'¢k2w'2np + (ki — f pka)? — REM £ R2@?h,, + (ki — @} ka)? > U2
kay, M k2 = ¥p>
b= mpHp :
. Rk, + (ki — 0% ka)? 9
0 if 2 2 2 <M.
(22)

Only positive values of b are allowed, since negative values of b may result
in inverse step responses in the control signal. This is an undesirable way
to reduce overshoots.
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In those case when b > 0, Equation (21) holds, but it may happen that
|Gsp| becomes large for values of @ # @pp. To avoid this, b is restricted to
values such that

k; + ibko
ki+ikow — kda)2

l

<1, (23)

for all frequencies w. This gives the following additional constraints on b

T
: fl T; < 4Ty,
b= 9or 1 (24)
d
T, > 4T,.
T; 1— /1-4TyT, P
Notice, that for set point weight of PI controllers, (k4 = 0), it follows from
Equation (23) that the corresponding upper limit of b is 6 < 1.
If b = 0, it is not sure that the design objective (21) will be obtained. If

the set point response is important and the M, value is large, the output
of Ggp(s) may be filtered by a first order filter, i.e.

1
F, A 2
P(S) 1 i STsp ( 5)
If the filter time constant T, is chosen as
1 k2M?2
T = Lo -1, 26
"= Oy ka ¥ (i — ol ke (26)

then |Fsp(iw7np)Gsp(ia)771p)|2 =1

Implementation Aspects of Matlab

Finally a brief presentation of the numerical solver and some implementa-
tion aspects are given. According to Equation (13) and (17) the design of
PID controllers is formulated as a constrained optimization problem. Thus
a numerical optimization problem is to be solved as it is not possible to
solve it analytically. In this project the Optimization Toolbox in Matlab 5
has been used.

As for most numerical optimization routines it is of great importance to
have good initial conditions, and a suitable search interval. Here a natural
choice of initial conditions are the controller parameters & and %; from the
PI design, i.e.

[£® kY RY] = [k k; O],
and a suitable search interval is given by,
Dstart = 6_00/2a
Ostop = (D180 + D270)/2,

where @ is the frequency at which the sensitivity function from the PI
design is maximum. @150 and @g79 are the frequencies where the argu-
ment of the loop transfer function from the PI design is —180° and —270°
respectively.

The design problem can be solved by the following procedure:
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(1) Give the transfer function of the process. Choose the design parameter
expressed by Mg, M, or some other norm.

(2) Determine the number of constraints, as it differs depending on the
considered system.

(3) Make a PI design to obtain the initial values [ &; 0] and the frequencies
(¢ @180 D270] -
(4) Solve the design problem with the Optimization Toolbox in Matlab 5.

(5) Verify that the resulting controller parameters fulfills the constraints.
If not adjust the initial values or settings in the accuracy of the nu-
merical routine.
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6. Examples

The design method has been tested on a number of examples which illus-
trate its properties. The following transfer functions have been considered,

1
= S
6—53
@)= s
Gas) = -
SV T s 1)1+ 0.25)(1 + 0.045)(1 + 0.008s)’
1
Gn(s) = Gt n=4,5,6,717,
1—2s

The first seven models capture typical dynamics encountered in the process
industry. Model (G1 is an integrating process and G9 models a process with
long dead time. Model Gg has a zero in the right half plane, which is
uncommon in process control, but it has been included to demonstrate the
wide applicability of the design procedure.

Figures 11 and 12 show the responses to changes in set point and load.
The details of the design calculations and simulations are summarized in
Table 3. Note that the PID controller obtained is compared to the cor-
responding PI controller to show the amelioration of the PID design. Al-
though models GG1 — (g represent processes with large variations in process
dynamics, Figure 11 and 12 show that the resulting closed loop responses
for a load disturbance become similar for each value of M. This is impor-
tant because it means that the proposed design procedure gives closed loop
systems with desired and predictable properties.

There is also a clear similarity between the responses obtained with the
different values of the tuning parameter M;, thus indicating the suitability
of the M -value as a tuning parameter. Responses obtained with M,=1.4
show little or no overshoot, as is normally desirable in process control.
Faster responses are obtained with M;=2.0. The settling time at load dis-
turbances, £, is significantly shorter with the larger value of M;. On the
other hand, these responses are oscillatory with larger overshoots. This
can be seen from the comparison between I E and the integrated absolute
error {AE in Table 3. Notice the agreement with the conclusions made for
design of PI controllers in Astrom et al. (1998).

The controller gain %k varies significantly with the design parameter
M,: it is larger for designs when M, = 2.0 than for those when M, = 1.4.
However, integral time 7j is fairly constant for the stable processes, i.e., all
processes except G1. The derivative time T} is usually larger for designs
with My = 1.4 than for those with M, = 2.0. In all cases the PID design
generates a controller with complex zeros for M; = 2.0. Thus, the controller
will not be realizable in serial form.

For M;=2.0, the M,-values are large. Consequently, the overshoots
would be significant if the set point weight is & = 1. However, acceptable
set point responses are obtained by suitable choices of either the set point
weight b or the filter Fy,. According to Table 3, it is not always enough to
set b = 0 to obtain a small overshoot filtering may also be needed.
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Systems G (left) and Gg (right)

Figure 11 Comparison between the PID (full line) and the PI controller (dashed
line) for M, = 1.4. The graphs shows a step response followed by a load disturbance

of the closed loop system.
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Systems Gy (left) and Gg (right)

Figure 12 Comparison between the PID (full line} and the PI controller {dashed
line) for M, = 2.0. The graphs shows a step response followed by a load disturbance
of the closed loop system.
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Table 3 The properties of the obtained controllers for system G,-Gg with different
values of the design parameter M.

Process | M, k T; T, b Top IE % Wy ts M,
G1(s) 1.4 0291 8.03 3.15 0.00 3.58 27.6 0.71 0.90 235 1.37
2.0 0.645 520 266 072 0.00 8.05 0.72 0.99 14.0 140

Gy(s) 1.4 0.180 2.33 2.04 094 0.00 12.9 092 0.18 272 1.00
2.0 0.618 3.39 1.95 0.00 3.98 5.47 0.62 0.35 547 1.29

Gi(s) 14 1592 0322 0.15 0.39 0.00 0.020 081 194 072 126
2.0 4281 0254 013 0.71 -0.00 0.0069 0.86 26.1 - 1.64

Gy(s) 1.4 0.758 207 082 000 0.86 2.74 0.83 055 108 1.05
2.0 1.74 1.69 0.96 0.00 1.91 0.97 048 073 154 1.75

Gs(s) 1.4 0.870 2.41 1.50 0.00 2.27 2.77 073 066 121 1.12
2.0 1.57 2.13 1.42 0.00 2.85 1.37 050 068 9.05 1.63

Ge(s) 1.4 0,703 2.93 1.77 0.00 2.39 4.17 0.79 055 161 1.06
2.0 1.23 2.72 1.62 0.00 2.78 2.20 0565 053 118 149

Gr(s) 1.4 0.553 3.90 1.50 0.62 0.00 7.05 0.97 037 229 1.00
2.0  1.067 3.26 1.85 0.00 2.85 3.06 060 045 141 140

Gg(s) 1.4 0.330 224 090 064 0.00 6.78 085 089 193 1.00
2.0 0569 208 086 000 201 3.66 061 064 173 1.33

7. Conclusions

PID controllers were designed to capture demands on load disturbance
rejection, set point response, measurement noise and model uncertainty.
Good load disturbance responses were obtained minimizing the integrated
control error I K. Robustness is guaranteed by requiring a maximum sensi-
tivity of less than a specified value M;. Measurement noise is dealt with by
filtering. Good set point response is obtained by using a structure with two
degrees of freedom, which requires an extra parameter in the algorithm:
the set point weighting b, and a filter for filtering the set point. The pri-
mary design parameter is the maximum sensitivity, M;, auxiliary design
parameters such as the maximum of the complementary sensitivity, M,
can be added.

The design problem is formulated as a constrained optimization prob-
lem, where constraints are introduced to ensure robustness. A design method
for PI controllers based on the same problem formulation was developed in
Astrom et al. (1998). In the present paper it is shown that this method can-
not be extended directly to PID control, because it leads to an optimization
problem which in most cases, has ridges, thus resulting in poor robustness
and also poor control. However, it is possible to introduce additional con-
straints. The result is that design of PID controllers can be formulated as
a constrained optimization problem which can be solved iteratively. Initial
conditions are very important since the problem is non convex. A good way
to find initial conditions is also presented.

The solution of the optimization problem gives a PID controller with a
pure derivative. Simple rules for choosing a filter for the measured signal
are then possible.

The design procedure has been applied to a variety of systems: stable
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Abstract The present paper relates traditional methods for designing
PID controllers to robust #,, control. In particular it is shown how the
specifications for the PID design in Astrom et al. (1998) and Panagopoulos
et al. (1998) should be chosen to guarantee that the weighted #., norm,
see Glover and McFarlane (1989), of the transfer function from load and
measurement disturbances to process inputs and outputs is less than a
specified value y. Also, a new way to determine for which class of systems
a PID controller will be stabilizing is presented.

Keywords 7, Controller Design. PID Controller Design. Specifications.
Robustness.

1. Introduction

Traditional methods to design PID controllers make a compromise between
robustness and performance. For example, in Shinskey (1990) robustness
is expressed by requiring that the Nyquist curve is outside a square which
encloses the critical point, and performance is expressed as maximization
of integral gain. The present paper relates traditional methods for design
of PID controllers to robust #,, control, in particular the loop shaping
methods developed in Vinnicombe (1998). The idea of robust control is
to design a controller that minimizes the signal transmission from load
disturbances and measurement noise to process input and output. This can
be expressed by the H, norm, y, of a two-by-two transfer function matrix.
It is shown that the requirement that y is sufficiently small can also be
expressed such that the Nyquist curve should be outside a certain region.




It is also shown that this region can be bounded internally and externally
by circles that are closely related to the circles of constant sensitivity and
constant complementary sensitivity. The ideas can also be used for efficient
computations, see Astrém et al. (1998).

Many different methods have been proposed to design PID controllers.
In Glover and McFarlane (1989) and Vinnicombe (1998) a loop shap-
ing method was developed. In Astrém et al. (1998) and Panagopoulos
et al. (1998) a method for designing PID controllers were presented, where
the parameters of the controller were determined to maximize the gain of
the integral term subject to a robustness constraint. The methods give a
straight forward approach which is quite flexible. It is easy to introduce
various forms of filtering and it can also find a proper set point weighting
that also gives a good set point response. In this paper it is shown that
these two methods are closely related to the %, loop shaping method de-
veloped 'in Glover and McFarlane (1989). In particular it is shown how
the specifications for the PID design should be chosen to guarantee that
the weighted #,, norm of the transfer function from load disturbances to
process inputs and outputs is less than a specified value ¥.
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Figure 1 Block diagram describing the design problem.

2. H., Control

First a brief overview of H,, design is given, emphasizing the parts rele-
vant for the understanding of the paper. Typically a control problem has
specifications for

e Attenuation of load disturbances
o Effects of measurement noise

e Robustness to modeling errors

e Set point response

Load disturbances, measurement noise and robustness are primary issues
for process controllers which mostly operate as regulators. In the case of
H control a multi variable transfer function is first derived describing how
all disturbances influence the deviations in interesting variables. Then, it
is attempted to find a controller which minimizes the %, -norm of this
transfer function. This approach is well suited for dealing with the first
three design criteria mentioned above. When a controller satisfying these
requirements has been found a good set point response is obtained by using
a structure with two degrees of freedom, see Horowitz (1963).

As an illustration consider the block diagram shown in Figure 1. The
major inputs are the load disturbance / and the measurement noise n.
The outputs of interest are the process output x and the signal v which
represents the combined action of the load disturbance and the control
signal. The signals are related through

where
H = [ﬂ (I+GG) -G, I].

Notice, that the multi variable transfer function H, includes also the trans-
fer functions relating / and n to v and y in Figure 1. Furthermore, the block
diagonal elements of H are

T = G( +GG,)'G.




and
S=(I+GG)™"

which represent the complementary sensitivity function 7' and the sen-
sitivity function S. The off-diagonal elements are the transfer functions
G(I + GG,)™! and (1 + GG.)"1G.. Good control requires both x and v to
be small in spite of the disturbances [ and n. One way to express this is to
require the %, norm

¥ = [1Hlloo (1)

to be small. To use the parameter y as a criterion for loop shaping was sug-
gested by Glover and McFarlane (1989) and McFarlane and Glover (1992),
where recommended values of ¥ were in the range [2,10]. Also, it is shown
how this design method gives many nice properties.

e It gives a good controller if such controllers exist.

e It provides robust stability against coprime factor uncertainties,
Vidyasagar (1985).

e There is a good design variable, y.

Also, in Vinnicombe (1998) a nice interpretation of Equation (1) is given,
i.e. as the metric [|G,—1/G|.

-

Figure 2 Block diagram describing the design problem.

Freguency Weighting
Frequency weighting may be introduced to emphasize the response at cer-

tain frequencies, see Figure 2. Then the problem is solved for the trans-
formed system G and the transformed controller G, with

G = W,GW;,
G. =Wl w1,

where W; is the input weight and W, is the output weight. The transfor-
mation is equivalent to design for the disturbances

[ = Wi,
i=W,n
Consequently, the transformed system becomes
- W,GW;
H — ’: 0 i

; ]WO<I+GGC)—1W;1[—W;1GCW;1 . @




Single Input Single Output Systems
For single input single output systems the transfer function H becomes

1 -GG, G 1 G
H='1+TGCLGC J“m[z][“@ e e

As the matrix I is of rank 1, it is easy to compute its largest singular
value,

(1+G.G)(1+ GG
) = rea)utaa)

Thus the parameter y is,

2 (1+G.GH(1+GGY)
, 4
Sgp (1+GG:)(1+ G*Gy) (4)

Also frequency weighting of single input single output systems will be sim-
plified. In this case it is sufficient to use only one weight, i.e. W; = W and
W, = 1. Then the transformed system matrix in Equation (2) becomes

H

Il

1 { -GG, GWJ 1 [GW

— - -G, W=t I]. (5
1+GG. [ -G.W1 T 1+ GG. I}[ ¢ I ()




3. PID Control

To show that the methods for designing PID controllers found in Astrom
et al. (1998) and Panagopoulos et al. (1998) are closely related to the %,
loop shaping method developed in Glover and McFarlane (1989), a brief
overview of the PID controller designs are given. The PID controller is
described by the transfer function

ki

Gels) = b+ * + s, (6)

where £ is the controller gain, %; is the integral gain and %k, is the derivative
gain. In reality its structure is more complicated, because of filtering of the
derivative term and set point weighting, see Astrém and Hagglund (1995).
For the purpose of this paper, both methods for designing PID controllers
are based on an idea to maximize the integral gain k;, subject to the con-
straint on the Nyquist curve of the loop transfer function to lie outside a
specified circle. This idea, which goes back to Shinskey (1990) is discussed
in detail in Astrom et al. (1998) and Panagopoulos et al. (1998), where the
robustness is measured in the classical terms of the maximum of the sen-
sitivity function, M, and the maximum of the complementary sensitivity
function, M,. Thus, the robustness measure will be a transparent design
variable. The robustness constraint is expressed as either

M = ”(I + GGC)—lnoo,

which implies that the Nyquist curve of the loop transfer function avoids
the circle with center at C = —1 and radius R = 1/Mj, see Figure 3, or it
is expressed as

M, = |GG (I + GG.)™Y|cos

which implies that the Nyquist curve of the loop transfer function avoids
the circle with center at C = —M7/(MZ—1) and radius R = |M,/(MZ—1)],
see Figure 3. It is possible to replace the constraint on M; and M, with a
combined constraint which reduces the computational effort substantially,
see Astrom et al. (1998). The combined constraint implies that the Nyquist
curve of the loop transfer function avoids the circle with center at

o _ _2MM, — My — M, +1

2M,(M, —1) ’
and radius at
R M+ M, -1
- 2M (M, — 1)’

see Figure 3. For practical purposes the combined constraint is not much
more stringent than combining the two constraints on M, and M, respec-
tively.

The combined constraint is simplified if both the sensitivity and the
complementary sensitivity function are less than or equal to M, which




implies that the Nyquist curve of the loop transfer function avoids the
circle with center

OM?2—2M + 1

C=- oMM —1) ’

and radius

2M —1

R=cuar—1

The circle has its diameter on the interval [-M /(M —1),—(M — 1)/ M].
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Figure 3 The M,-circle (dashed line), the M,-circle (dotted line) and the com-
bined M,- M, circle (full line) for M, = M, = 2.0.




4. Comparisons

In this section it is shown that the #, design problem for single input sin-
gle output PID controllers presented in Section 2 is closely related to the
methods for designing PID controllers developed in Astrom et al. (1998)
and Panagopoulos et al. (1998). In particular it is shown how the specifica-
tions for the PID design should be chosen to guarantee that the weighted
H ., norm of the transfer function from load disturbances and measurement
noise to process inputs and outputs is less than a specified value .

The minimization of the robustness measure y in the %, design gives
a controller that compromises between attenuation of the disturbances [
and n. By introducing frequency weighting it is possible to emphasize the
weighting of the two disturbances by a proper choice of the weighting func-
tion W, which will serve as a design variable. For reasonable choices of
W the largest value of y will occur in the neighborhood of the crossover
frequency. Note that the rejection of low frequency disturbances can be
influenced by the weighting function but it is not particularly critical.

What will the best choice of W be regarded as a design variable? For
the frequency weighted transfer function G in Equation (5), the robustness
measure ¥ is given by

v )2, = A GeGW W (1 + GE W) (7)
” (1+GG.)(1+GGy) :

The most favorable frequency weighting is the one that minimizes the nu-
merator of Equation (7). Let X = WW*, then the numerator of Equation (7)
becomes

1+GG'X + G.G:X 1+ GG*G.G:.

which has its minimum for X = /G.G}/GG*. Thus, the weighting factor
becomes,

W= ¢/G.G: /GG~ (8)

The weighting will typically enhance low and high frequencies. With PID
control the low frequency weight is proportional to 1/y/@. Introducing the
weight W given by (8) into (7) gives

_ 1+ |GG,|)?
2 H 2 _ ( 4
7= W = )
which is equivalent to
7 = 1Hlleo = max(|S (iw)| + | T (iw)]). (10)

Notice that even if the weight (8) depends on the transfer function of
the controller and the process, the quantity ||H||., depends only on the
loop transfer function GG,.. Consequently, Equation (10) shows that the
robustness measure y is related to the values M, and M, which are also
used as robustness constraints in the PID design presented in Section 3.




Although the robustness measure of the H,, design and the robust-
ness constraint of the PID design are related, there are some fundamental
differences between the two designs. For example, in the #,, design y is
insensitive to k; for low frequencies and the requirements on the transfer
functions G./(1+ GG, ) and G/(1+ GG, ) appear explicitly in Equation (3)
compared to the PID design.

1.5

Figure 4 The loci of (14 |L|}/(|1 + L|) = y for y = 2 (outer curve), 4, 6, 8, 10
(inner curve).

The Gamma Contour

A graphical interpretation will be given of the robustness measure y in
Equation (9). Let L = GG, be the loop transfer function. It follows from
Equation (9) that

+ |L(iw)|

Y = max m,

(11)

The condition that ¥ < ¥ can thus be interpreted graphically. That is, the
Nyquist curve of the loop transfer function should be outside the contour

Lt |LGo)| _
1+ Liw) ™

Therefore it is of interest to investigate the level curves of the function

_1+[L|

fL) =g
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Figure 5 The y-curve.

in the complex plane. Introduce L = re'? then Equation (11) becomes

o 14+r 1+7r
[1+re?]  \/T4+r242rcosgp

14

Thus, the y-curve can be represented as

2 2 2
_ Yicosp—1 [ ricos@ —1N\T

A few examples are given in Figure 4. Straight forward calculations show
that

OA =1,
0B r+1
y—1
2
14
C=———
0] v
OD:__y__l,
v+ 1
o
Aczz—a/ﬁl_g—l’

which is shown in Figure 5. Note that OB - OD = 1.
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Figure 6 y-curve (full line) for y = 2.06 (left), 3.16 (right) enclosed by the com-
bined M -circle (dashed line) for M = 1.4 (left), 2.0 (right).

Relations Between M and y

In the following several relations will be established between M and y
which will give further insight into the relations between the two design
methods. According to Equation (10),

y = max(|S|+|T|) < max|S| + max|T| = 2M,
and
y = max(|S|+ |T|) = max(|S|+ |1 —S]|) > max(2|S|—1) =2M —1,

where the second equality follows from S + 7' = 1 and the inequality from
the triangular inequality. Consequently, the following inequality has been
established

2M — 1<y <2M,

which gives an indication of how to chose M to guarantee a certain y.
Sharper results can be obtained from simple but tedious calculations
which show that the y-curve is inside the combined M,M,-circle with

2 /2
= t2vyr -1 (12)
2+ 2+/y%2 -1

See Figure 6. Solving Equation (12) for y gives

y = V4M? —4M + 2. (13)

Accordingly, a controller designed for the combined constraint M; = M, =
M guarantees that y is larger than the value given by Equation (13). Ta-
ble 1 and 2 gives numerical values of corresponding values of M and y.
The choice M = 2.0 guarantees a y is less than /10 which according to
Vinnicombe (1998) gives good robustness. Lower values of M give even bet-
ter robustness. Figure 6 shows corresponding y- and M-curves for M = 1.4
and M = 2.0.. The figure indicates that the design based on the combined
M-curves are not much more conservative than design based on y partic-
ularly for M = 2.0. However, the calculations for constraint on ¥ are much
more complicated.
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Table 1 Numerical values of corresponding M and y.

M| 14 1.5 1.6 17 1.8 1.9 2.0
y | 206 224 242 260 279 297 3.16

Table 2 Numerical values of corresponding M and y.

14 2 2.5 3 3.5 4 4.5 5
M | 137 165 191 218 244 269 295

Classification of Stabilizable Systems

A way to determine for which class of systems a PID controller will be
stabilizing is presented. In Vinnicombe (1993) and Vinnicombe (1998) the
parameter b defined as

L if[G, @] is stable,
b:=1{7
0

otherwise,

has been introduced as a performance measure, also called the generalized
stability margin. The parameter is in the range 0 < b < 1. It follows
from the definition that the system is unstable for b = 0 and performance
improves with increasing values of 6. Solutions of many design examples,
see Vinnicombe (1998) and McFarlane and Glover (1992), indicate that
the value should be larger than 1/4/10 to have reasonable robustness and
performance.

In Vinnicombe (1993) and Vinnicombe (1998) the parameter b has been
used to derive some very interesting results relating robustness to model
uncertainty. To do this the following norm is introduced to measure the
distance between two stable systems P and @

S(P.Q) =+ QQ)7VXQ-P)(1+PP) (14)

provided that a certain winding number constraint is satisfied, see Vinni-
combe (1993). It is shown that if the closed loop system (G, G.) is stable
with (G, G;) > [ then the closed loop system (G, G,) is stable for all G
such that §(G, G) < 8. Due to symmetry the system (G, G.) is also stable
for all G, such that §(G,G.) < .

By ensuring that a PID design is such that y < y gives a good guaran-
tee for robustness of the closed loop system, i.e. it is possible to determine
a set of systems which are stabilized by the controller.
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5. Conclusions

This paper describes how traditional methods for designing PID controllers
are related to robust H, control. In particular it is shown how the spec-
ifications for the PID design in Astrém et al (1998) and Panagopoulos
et al. (1998) should be chosen to guarantee that the weighted %, norm,
see Glover and McFarlane (1989), of the transfer function from load distur-
bance and measurement noise to process inputs and outputs is less than
a specified value y. It is shown that the requirement that y is sufficiently
small can be expressed such that the Nyquist curve should be outside a
certain region. It is also shown that this region can be bounded internally
and externally by circles that are closely related to the circles of constant
sensitivity and constant complementary sensitivity. The ideas can also be
used for efficient computations, see Astrom et al. (1998).

A new way to determine for which class of systems a PID controller
will be stabilizing is presented. By ensuring that a PID design is such that
7 < % a good guarantee for robustness of the closed loop system is given.
If y is accepted as a good performance measure the results of this paper
suggest that the robustness constraint of PID controllers should be chosen
as the combined MM, -circle. In this way it is guaranteed that a design
will automatically satisfy the #, robustness constraint.
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