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INTRODUCTION

The mathematical theory of optimal control has developed very rapidly
since the maximum principle and the method of dynamic programming
were discovered in the late fifties. A very large number of contributions
have been presented in different books and papers, and the theory for
optimal control of deterministic processes has now reached a fairly
satisfactory stage. In parallel with the development of the theory,
computational methods have been continuously studied, and considerable
progress have been made in this area too. However, there is still a
remarkable gap between theory and practice, a fact which is emphasized
by the small number of industrial or other applications that have been
reported. There may be many reasons for this gap, but one certainly

is that the existing computational methods are not efficient enough.
However, except for such obvious reasons as too long execution times
etc., it is in general impossible to isolate a few reasons that explain
why the developed methods often are insufficient for problems with the
complexity encountered in many industrial processes. It is rather a
wide range. of reasons that are accumulated, and which together make
the development of efficient numerical methods both difficult and
time-consuming.

In this thesis we consider different problems related to the numerical
solution of optimal control problems. The thesis is divided into four
separate parts, which in principle are independent of each other, but
they all treat problems in the wide range between theory and applica-
tions. The titles of the different parts are:

Part 1 - On the Matrix Riccati Equation. (In an earlier version published
in "Information Sciences", vol, 3, 1971),

Part 2 - A New Approach to Constrained Function Optimization.
(Accepted for publication in the "Journal of Optimization Theory
and Applications'),

Part 3 - A Constraining Hyperplane Technique for State Variable
Constrained Optimal Control Problems.

Part 4 - Optimal Control of a Travelling Overhead Crane - a feasibility
study.




The four parts are organized independently of each other. Thus all
equations are numbered afresh in the different parts, and the references
are collected at the end of each part. Since the different parts were
originally written as separate reports or papers, they are also some-
times referred to as papers. Hopefully this will not lead to any confusion.

Part 1 of the thesis treats the linear-quadratic optimal control problem.
We thus consider the linear system

dx

FTy = Ax + Bu x(t,) =X, 1)
with the quadratic cost functional
t
T f T T
T =x"(t)Qux(t) + [ [x7(5)Qx(s) +u” (5)Qyu(s)} ds )
t0

where QO and Qq are nonnegative definite symmetric matrices and
Q, is a positive definite symmetric matrix. It is well known that the
solution of (1)-(2) is given by the linear feedback

u() =- @, B SOX0 3)

where S(t) is the nonnegative definite symmetric solution of the
Riccati differential equation

ds T -1_T
o =A S+SA—SBQ2}3 5+Q S(tf)~€»)0 4)

The problem formulation (1)-(2) becomes particularly useful by

letting ty tend to -, It is then referred to as the regulator problem,
and the solution (if it exists) is given by the stationary solution of (4),
that is, by a solution of the algebraic equation

ATX + XA - XBQz"lBTX +Q =0 (5)
A thorough study of this equation will thus yield further insight into
both the regulator problem and into properties of the optimal solution

of (1)-(2) for large time intervals tf-to.

The properties of (5) have previously been studied by Kalman (7],
part 1) and Wonham ([8], part 1). In [ 7] it was shown that if the system



[ A, B] is completely controllable and the pair [Ql, A completely ob-
servable, then there is only one nonnegative definite symmetric solution
of (5). Moreover, this solution is positive definite. In [8] Wonham
relaxed the assumptions to stabilizability and detectability, that is, modes
of Awith Re{\} >0 are controllable in [A, B] and observable in
[Q1,A]. It can then be proved that there is still a unique nonnegative
definite symmetric solution of (5), but this solution is not necessarily
positive definite.

We make a further generalization, and consider properties of (5) for
arbitrary nonnegative definite symmetric matrices Qq, that is, the
observability assumption is completely relaxed. It is then shown that
every solution of (5) may be expressed in terms of the eigenvectors of
the Euler matrix

A -BQ;IBT
E= T (6)
-Q -A
1

and conditions for Hermitian, real symmetric and nonnegative definite
solutions of (5) are established. These results are mainly generaliza-
tions of the results given by Potter ([1], part 1). In[1] it was assumed
that E has a diagonal Jordan form. This restriction is shown to exclude
many interesting cases, and our results hold for a general Jordan form
of E,

We then prove that the eigenvectors of E have a particular structure
in case any mode of A is noncontrollable or nonobservable, and it is
shown that this implies that there may be several nonnegative definite
solutions of (5) if A has nonobservable unstable modes. It is also
possible to order these solutions.

There is a weakness in the algebraic results which are presented, namely
that we have not been able to prove the existence of the different nonne-
gative definite solutions. The explicite expression for the solutions invol-
ves a matrix inverse, and the statements about the character of the
solutions have been necessary to make under the assumption that this
inverse exists. However, it is probably possible to give a proof also

for the existence, and in all numerical problems considered these
solutions have actually existed.

The algebraic results are then used to study the asymptotic properties
of (4), and it is shown that the different nonnegative definite solutions
of (5) can be given a nice interpretation. It is also shown that the existence




of several stationary solutions of (4) implies that a straightforward
integration can be a numerically unstable procedure. This is illustrated
by numerical examples, and it is briefly discussed how this property
influences the choice of numerical methods. The results on numerical
properties yield valuable insight also into numerical methods for non-
linear problems, since these methods often are based on the integration
of similar Riccati equations.

Finally, it is shown that the regulator problem can be generalized to
arbitrary nonnegative definite matrices Q. However, notice that to
prove this result it is necessary to assume the existence of a largest
nonnegative definite solution of (5).

In part 2 we consider the problem of minimizing a real-valued function
f(u) subject to the equality constraints g@) =0, g:R"® -» R™, and a new
approach is presented. It is shown that the conventional Lagrange mul-
tipliers can be generalized, and the new concept "Lagrange multiplier
function" is introduced. Thus the m~-dimensional vector function W)
is called a multiplier function of the problem if y satisfies some
simple conditions for the optimal solution u*. The basic condition is
M@#*) =x*, where A* are the corresponding optimal Lagrange multi-
pliers. We also introduce the generalized Lagrangian

T
H(u,c) = f(u) + 1 (u)g(u) + cg g )

and it is shown that there exists a finite real-valued parameter c,,
such that H(u,c) for nonsingular problems has an isolated local mini-
mum for u =u* if ¢» c,.. The problem is thus converted from a
constrained optimization problem into an unconstrained problem. Notice
that c¢( in this case is finite, while ordinary penalty function methods
require that the penalty parameter tends to infinity.

Compared with the earlier works by Hestenes (L 3], part 2y, Fletcher
(51, part 2) and Mértensson ((4], part 2), the approach made in this
thesis is more general, and it contains all these previously suggested
methods as special cases. This is illustrated by examples.

The multiplier functions can be used in different ways to design
computational methods. One possibility is to directly minimize the
generalized Lagrangian H(u,c) with ordinary function minimization
methods. This is a very straightforward way, and it is illustrated

by an example that the multiplier function can be chosen so that H(u,c)
becomes well conditioned for direct minimization. Another possibility
is to use the multiplier functions to get succesive estimates of the



optimal Lagrange multipliers A¥. This can be done in many ways. We
have here chosen to investigate the following basic scheme:

i) Let ;J.k be an estimate of A¥ and minimize
T T :
Flu,p) - fw) w4 g) +cg (wgl) ®)
with an ordinary function minimization method.

ii) Compute a new estimate uk+1 on the basis of the minimizing

solution of (8) and return to i).

The advantage with this kind of estimation methods compared with
direct minimization of H(u,c) is illustrated, and different first and
second order methods based on the outlined scheme are derived. We
also prove the convergence properties of the algorithms.

There are many analogies between the finite-dimensional problems
considered in part 2 of this thesis and optimal control problems for
dynamic systems. For example, in optimal control problems the
equality constraints

t] 9)

dx fx,uit) =0 ¥telt ¢

dt 0’
can be handled through adjoining of (9) to the cost functional with the
adjoint variables A(t). The numerical methods are then generally

based on schemes similar to the one outlined above, and the optimal
multipliers A%(t) are succesively estimed. However, the cost functional
J(u, k) is generally not completely minimized hefore a new estimate is
computed. Besides it is not necessary to include the quadratic term

T

c (g—? - f(x,uyt)) (%? - f(x,u;t)) in the cost functional if the constraint (9)
is always satisfied. Thus most of the proposed algorithms are based

on forward integration of (9), and backward integration of the adjoint
equations which gives an estimate of the optimal multipliers A%(t).

Also notice that the additional constraint x(ty) = x is automatically
satisfied when the boundary condition in the forward integration of (9)
is:equal.to Xg-

Recently, a new algorithm, the e-technique has been proposed by
Balakrishnan. The method is a straightforward generalization of the




ordinary penalty function method, and is based on the fact that the
unconstrained solution of

b T

- 1 dx dx

J=J+2 [ (3¢~ fewt) (g - f(x,u;t))dt (10)
%

tends to the optimal solution of J subject to the constraints (9) as ¢
tends to zero. It is thus interesting to notice that in analogy with finite-
dimensional optimization, numerical methods based on both Lagrange
multipliers (or adjoint variables) and penalty functions exist for the
optimal control problems. However, the possibility to combine the
multipliers and the penalty functions in the way it is done in this thesis
for finite-dimensional problems has not yet been investigated for the
control problems. The results presented here also suggest the further
possibility to convert the control problem into a completely unconstrained
problem.

In part 3 a new approach to the numerical solution of optimal control
problems with state variable inequality constraints is presented. We
thus consider the general problem of minimizing the cost functional
t
f
J = Fx(tit) + J‘ L(x,u; fdt (11)
t
0

subject to the constraints

dx

Gt =fx,u;t) X(to) :XO

P ()it =0 (12)
S(x;t) < 0 vte [t t]

g, u;t) <0 vite [to,tf]

where the state variable inequality constraint S < 0 is of arbifrary
order ¢. That is, the g-th total time derivative of S is the lowest
order total time derivative that explicitely contains the control variable
u.

The appearance of pure state variable constraints S increases the



complexity of the problem in a drastic way, and considerable effort has
been dedicated to develop numerical methods for this problem, In (47,
part 3) Denham and Bryson exploit necessary conditions at the entry
times, that is, the times when the constraint becomes active. The main
drawback of their method is that it is necessary to a priori know the
number of entry points, and it may also be necessary to have good
estimates of the different entry times. This & priori knowledge is seldom
available which is illustrated by part 4 of this thesis. Different penalty
function methods have been proposed by different authors, e.g. Kelley
((11], part 3). The basic idea in these methods is to convert the original
problem into an unconstrained problem by adding penalty terms to the
cost functional J, and the methods are thus straightforward generaliza-
tions of existing penalty function methods for finite dimensional problems.
However, it turns out that these methods are extremely sensitive to
numerical errors, and it is difficult to compute the optimal solution
accurately. Recently an alternative method has been proposed by Jacob-
son and Lele ([9], part 3). This method is based on a slack variable
technique, and by introducing 2 sufficient number of additional state
variables, the problem is converted into an unconstrained problem of
higher dimension. However, the transformed problem becomes a singu-
lar problem, and then new computational difficulties appear. In spite of
this disadvantage, this slack variable technique has in general proved

to be superior to penalty function methods.

The basic idea in the method presented in this thesis is to approximate
the feasible region S(x;t) < 0 in the state space with a region that can
be expressed as an explicite function of the control variables, that is,
g(x,u;t) 0. The transformed problem can then be solved with the
same technique as problems with pure control variable constraints
g(u;t) < 0. The approximation can be done in many different ways, but
a simple and natural approach is to choose g(x,u;t) as hyperplanes in

ds ds
the (S, :i?’ ceey —q')—space, that is the new constraint is
dt
ds q-1
gx,mt) =—(x,u;t) + a (x3t) +...+a S(x;t) <0 (13)
at® gl @ T

It is shown that this half-space tends to the half-space S<0 as the
Zeroes {._'.1, cee ,gq of the polynomial

-1
quralpq +...+aq:0 (14)




tend to ~e. To simplify the analysis we have assumed that Agsees ,aql

are chosen so that 51 <... < Eq < 0, but the generalization to more

general parameters is straightforward.

To solve the mixed state-control variable constrained problem, a second
order algorithm based on Differential Dynamic Programming is then
derived. The multiplier function concept introduced in part 2 is used in

the derivation, and is shown to be very simple compared with the ordinary
Lagrange multiplier technique. We also indicate some possible generaliza-
tions of the algoi'ithm on the basis of the results in part 2,

The efficiency and the accuracy of the constraining hyperplane technique
are investigated on a number of different problems. Comparisons are
made with the established methods mentioned above, and it is shown that
the combination of constraining hyperplanes and the second order algo-
rithm is much superior as far as both accuracy and efficiency is con-
cerned, For example, a problem with a third order constraint is

solved, and to our knowledge this has not been done before with neither
the penalty function methods nor with the slack variable technique. It is
also illustrated that it may be possible to derive the existing necessary
conditions for state variable constrained problems by letting the zeroes
of (14) tend to - . It is thus believed that the constraining hyperplane
technique could also contribute to a better understanding of these problems.

Part 4 consists of a feasibility study of optimal control of a travelling
overhead crane. The problem originates from a container terminal,
‘and the purpose of the optimization is to minimize the load transfer
times. The transfer is performed by a travelling overhead crane, and
can be described by a set of ordinary differential equations, Two diffe~
rent models corresponding to different properties of the crane are
studied. In both cases six state variables and two control variables are
necessary to describe the operation, and the magnitude of the problem
is thus unusually large.

The study illustrates the present status of computational methods, and
also a lot of problems that must be taken into account in a practical
realization, e.g. disturbances, execution times and available computer
programs, It is also shown that there are further interesting analogies
between the finite-dimensional problem considered in part 2 and optlmal
control problems.

It should be emphasized, that the optimal solutions for the different



cases have been obtained with a pre-designed programming package.
To our knowledge, this is the first attempt to reduce the necessary
programming work and to make optimal control theory available as a
standard tool for analysis and synthesis of control problems.
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1. INTRODUCTION

The matrix Riccati equation appears in many optimal control and filtering
problems. In this paper the Riccati equation is studied from an algebraic
point of view, and the results are applied to optimal control of linear time
invariant systems with quadratic loss. Consider the system

d—;‘éﬁ = AX(t) + Bu(t), x(to) = X (1.1)

where x is the n~dimensional state vector, u is the r-dimensional
control vector, and A and B are matrices of dimension nx n and
n x r. Itis desired to determine a control u(t), so that the loss function
t
T f T T
— 4
J=x()Qux(ty + [ [x7 (5)Qx(s) + u (s)Q,u(s)}ds (1.2)

t
0

is minimized. QO and Q1 are symmetric nonnegative definite n ¥ n
matrices, and Q2 is a symmetric positive definite r x r matrix. It is

well known (5] that the optimal control is given as a linear feedback
from the state of the system

u(t) = = Lt)x(t) (1.3)
where
-1 7T
L{t) = Q, B S(t) 1.4)

and S(t) is the solution of the Riccati equation

- %ﬂ = ATS(t) + S(HA - S(t)BQ;BTS(t) +Q, 1.5)
The boundary condition is given at t = tf as
S(ty) = Q- 1.6)

A special case of great interest is what is called the regulator problem.
The task of the control is then to minimize

1= i ©)Qx(s) +u” (5)Q,u(s)1ds. .7



Introducing controllability or stabilizability conditions on the system
[A, B], this can be considered as the limit of (1.2) as t_ - -« [5, 8].
The optimal control then is a linear time invariant feedback

u(t) = - Lx(t) (1.8)
where
L= Q;IBT S (1.9)

and S is a symmetric nonnegative definite solution of the stationary
Riccati equation
-1_T
ATSﬂLSA—SBQ2 B S+Q1:0. (1.10)

If an observability condition is imposed on the pair [C, A], where
Q1
solution of (1.10). Moreover, this solution is positive definite, and the
optimal closed loop system

= CTC and rank C = rank Ql’ there is a unique nonnegative definite

%‘9 - (A-BL)x(t) (1.11)

is asymptotic stable [5,6]. If [C, A] is just detectable, that is, modes
such that Re {A\1> 0 are observable, the optimal system is still asymp-
totic stable, but the unique nonnegative definite solution of (1.10) is not
necessarily strictly positive [8].

In this paper we will consider the Riccati equation and the optimal
regulator under the more general assumption that @ is an arbitrary
nonnegative definite symmetric matrix. It will be shown that the observa-
bility or detectability condition may be relaxed, and that the Riccati
equation has some very nice unexploited properties.

In Section 2 the equation (1.10) is considered from an algebraic point
of view. A general form of all possible matrix solutions is proved

in 2:1, and in 2. 2 the Hermitian and real symmetric solutions are sorted
out.” These sections are generalizations of the results presented by
Potter [1]. In [1] the Euler matrix is assumed to have a diagonal Jordan
form; while our results hold for a general Jordan form in the case of
multiple eigenvalues of the Euler matrix. Thus the possible choices of
the criteria matrices Qq and Qg will be less restricted. The effect of
noncontrollable and nonobservable modes is considered in 2.3, and in 2.4
conditions for the existence of several nonnegative definite solutions are



given. Similar to Section 2.1, Theorems 8 and 9 in Section 2.4 are
generalizations of [1] to the multiple eigenvalue case.

In Section 3 we return to the optimal regulator problem, and in 3. 2

new upper and lower 4 priori bounds for (1.5) are given. In 3.3 con-
vergence properties are discussed and proofs are given for some spe-
cial cases. Although computational results indicate that convergence
holds under more general assumptions about the criteria matrices Q>
Q1, and Qy, we have not succeeded in giving a general proof of conver-
gence. That a straightforward integration of the Riccati equation may

be an unstable procedure, even in what is considered as the stable
direction, is illustrated in 3.4, and it is shown that only one of the
stationary solutions is a numerical stable solution. Finally, in 8.5 and
3.6 the different nonnegative definite solutions are given a physical inter-
pretation, and the optimal control theory for linear systems with quadra-
tic loss is generalized to cover arbitrary nonnegative definite matrices

Ql'

-1
2, THE ALGEBRAIC EQUATION ATX + XA - XBQ2 BTX + Ql =0

2.1. General Form of the Solutions

In this section we will consider explicit expressions for the solution of
the quadratic matrix equation

ATx + xa - XBQ;IBTX +Q =0 2.1)

In [1] it is shown that if the 2n x 2n matrix
A -BQ;BT
E = (2. 2)

has a diagonal Jordan form, it is possible to express X in terms of the
eigenvectors of E. The restriction that E must have a diagonal Jordan
form may be important from a pure computational point of view, but will
be shown to be an unnecessary restriction for the result to hold, We will
use the notation



for the 2n-dimensional eigenvector of E corresponding to the eigen—
value )\.. a, is partitioned into two n-dimensional vectors bi and ci
i i

which constitute the upper and lower parts of ai. If Xi is an eigenvalue

of E of multiplicity k, it will be assumed that the corresponding Jor-
dan block has a minimal polynomial of degree k unless otherwise
explicitely stated. The corresponding eigenvectors are then defined as
the nontrivial solutions of

(E -\Day = 0,

(E - )\iI)a2 =2,
(E - )\lI)ak = ak_l. (2. 3)
a_,a_,...,a will be called the generalized eigenvectors [2], and

172 k
a, is the eigenvector of rank j corresponding to the multiple eigen-
]
value )\i. The eigenvectors of E, if generated according to (2. 3) in

2n
the case of multiple eigenvalues, span the space R , and the trans-~
formation

tlgT
where
T = [al’ ,a2n]

will bring E on Jordan form.

In the sequel we will frequently consider a collection of n eigenvectors
Ayrreendy of E. Assume that a, of rank £ (corresponding to )\i of

multiplicity greater than £ ) belongs to this collection. To simplify the
notations, it will then in the following be assumed, unless otherwise
explicitely stated, that all the eigenvectors (corresponding to Ay of
rank less then £ are also included in the collection COEREERLIE
Similar to [1] we then have n



Theorem 1

Each solution of (2.1) can be expressed as

-1
X—[cl...cn][bl...bn] (2.4)
where
b,
i
a, =
i
C.
i
i=1,...,n are eigenvectors of E. Conversely, let CTLEREEEN be
eigenvectors of E such that [bl. .e bn] is nonsingular. Then
-1
X = [cl. . .Cn][bl. . .bn]
is a solution of (2.1).
Proof: Suppose X is a solution of (2.1) and introduce
-1_T :
G:A-BQZB X. (2.5)

(In the optimal control problem, G is the closed loop system matrix.)
Premultiply with X

-1
XG = XA - XBQ, BTX (2.6)
and substitute in (2.1). Then
T
XG= -A"X -Q,. (2.7

Let S be a nonsingular transformation that brings G on a Jordan
form J, that is,

-1
S GS=J
Further, let
R =XS
Then
-1
G =8JS
1

X =RS (2.8)




Substitute into (2.6) and (2. 7).
-1_T
SJ=AS—BQ2 B R,
R = -A'R - S,

S A —BQ;BT S S
[J] = =E . (2.9)

Let al, e ,an be the columns of the 2n x n matrix

)

J consists of the eigenvalues of G, and if >‘i is an eigenvalue of rank
one we then have

and then >‘i is also an eigenvalue of E, and a; is the corresponding
eigenvector. Now let >\i be of rank k>1. (2.9) then yields

a A = Ea.,
il i
a, +A.a, Ea

e A T B FS |

-+ =
2geee T MRkl T PRk

or

E - =

( )\il)ai 01

A TE

=203 e ™ Bageer (2.10)
Since S is assumed nonsingular, aj, i=1...n, cannot be identical to the

null vector, and thus the system (2.10) must have nontrivial solutions.



But this holds if and only if ), is an eigenvalue of multiplicity k to E,

and then 2. are the corresponding generalized eigenvectors

' H k-1
of E [2]. Then the columns of the composed matrix

{S}
R
constitute the eigenvectors of E.

Finally from (2.8) follows

X =[eyo..e 10by...b 17

The extension to nondiagonal Jordan forms obviously restricts the possi~
hilities for composing a solution out of 2n arbitrary eigenvectors.
Suppose A; is an eigenvalue of E with multiplicity k. If the genera~
lized eigenvector a, of rank k constitute one column in the matrix

i+k=-1
[
R

then the eigenvectors a;,
columns in

S

R
Consequently the & priori upper limit for the possible number of solutions
of (2.1) is larger when E is assumed to have a diagonal Jordan form.

vees@, with rank 1,...,k=1 must also be
i+k-2

For the sake of simplicity we have assumed the eigenvectors in

S
R
to appear in increasing rank. To prove that the order is nonessential,

let the solution X be composed in the following way

-1
X = [cl. . .cicj. . .cn][bl. . .bibj. bn]

and assume that




where dk’ k=1...n, are n-dimensional row vectors.

It is easy to verify that

d
n

and the solutions will then be the same since

-1 -1
[cl Cicj cn][bl bibj bn] [cl Ojci cn][ 1 bJ ; bn]

The second half of the theorem is proved by carrying out the steps above
in reverse order, which completes the proof of Theorem 1., @

The restriction imposed by a nondiagonal Jordan form is illustrated
in the following example: Let

The eigenvalues of E are +1, +1, -1 and =1, and the corresponding
eigenvectors are



1 -1 1 1
r {2 2 [-3/2 1 |1 2 | 3/2
het b2 BTl ) ™= Tlo ) BTl o
-2 0 0 0
1 2 ,
Suppose ax:1 and a)\:_l are combined Then

2 N/t 1\ [6 4
=2 o/\2 312/ “\6 -4/°
However, X does not satisfy the equation
ATX + XA - XBQ;BTX +Q =0
and thus is not a solution.
From the proof of Theorem 1 we extract the following properties of the
closed loop system matrix G.

Corollary 1

Let

A 3o st
2
E= T
_Ql _A
corresponding to \ X If X=[c b b ]-1 i
ponding to TRRRERL S =legewve Jlbovib is a

solution of (2.1), then >‘1’ v ,)\n are eigenvalues of A - BQ;IBTX

and bl' cen ,bn are the corresponding eigenvectors.



Proof. The corollary follows immediately from the fact that J is the

-1 T o .
Jordan form of A - BQ2 B X and S = [bl. . .an is the transforma-

tion matrix. @&

Since the matrices A, B, Qq, and Qy are assumed to be real, it is

trivial that the eigenvalues of E are symmetric with respect to the real

axis. But it is easy to prove that they are symmetric with respect to
the imaginary axis too [3].

Then, if A isan eigenvalue of E, ): ()I is the complex conjugate of )),

-\, and -\ are eigenvalues of E too. If E has no pure imaginary

eigenvalues, it is then possible to find n eigenvalues with negative real

parts, and, provided that [bl. . .bn] -1 exists, it is possible to find a

solution X of (2.1) such that the closed loop system matrix

-1_T
A - BQ2 B X is asymptotic stable.

2.2, Hermitian and Real Symmetric Solutions

Next we concentrate upon those solutions X of (2.1) which have the

property that they are Hermitian. The following theorem is a generali-

zation of the theorem given in [1] for the diagonal Jordan form.

Theorem 2

Let agree- ,an be eigenvectors of E corresponding to eigenvalues
-1 . -
Aprees ,)\n, and assume that [bl. . .bn] exists, If )\j + —)\k,
1 <j, k< 'n, then
X =[c,...c IJTb_...b ]'1
1 ety by

is Hermitian.

Proof.  The proof is a generalization of the proof in [1] to the non-
diagonal Jordan case. Let

P :[bl...bn]*[cl...cn] (2.

11)



where [ ...b 1¥ is the adjoint of [b,...b 1. Then
1 n 1 n

-1 3% =1,
X:{[bl...bn] }P{lbl...bn] |

and it remains to prove that P is Hermitian. Let T be the 2n x 2n
matrix

where On is the n x n null matrix, It is then easily verified that

ETT+TE =0.

From (2.11) we have

and

-3 —bi#*c -t —g
pjk pkj bj ck c]_ bk aj Tak.

Assume that (Xj + xk) % 0. Then

- -1

- = Y #*
pjk pkj (Xj + Xk) (kjaj* Ta) + xkaj Ta, ). (2.12)

If E is assumed to have a general block diagonal Jordan form,

X]_aj* .does not necessarily equal aJ_*ET since aj may be of rank

larger than one. Then consider the different possibilities that may
occur:

A. )\j % —)\k and Eaj = Xjaj, Eak = )\kak. Then

- -1 T
- * T
()\]. + )\k) (aj E Ta, + aj TEak)

Py ™ Pj k

- -1 T
= * s =
(Rj # X0 (BT TRy =0

and thus p,, = D ..
p]k pk]



ak-—l' )\k then is a mul-

tiple eigenvalue, and a generalized eigenvector of rank larger than one is

B. >‘j #—)\k and Eaj :xjaj but (E—xkx)ak

used to determine the solution X.

- - - T
—p, T #F Ta, +a*TEa -a™
pjk pkj (XJ >\k) (aJ a, aJ a aj Tak—l)

- -1, T
— ks + - Er3
()\j +>\k) (aj (E T TE)ak aj Tak_l)
Lf e T
==y AT e
Analogous to (2.12) this is equivalent to
- - -9 -
- =- ¥* + *
ij pkj O\j+)\k) O‘jaj Tak—l )xkaj Tak—l)'
If a4 18 of rank one, then, according to A, pjk = pkj' 1f the rank
is higher than one, the procedure above is repeated, say m times,
until

A L)Y ERELIY
ij - pkj = (-1) ()\j + )\k) aj Tak—m

and. a is of rank one. Then p tﬁ _ according to case A.
k~-m kj

jk

c. 7‘3 ¥ —xk and (E - ij)aj =a, ;s (E - )\kl)ak =a, g Both >\j and

j_
kk ave assumed to be multiple eigenvalues, and aj. 2, are generalized

eigenvectors both of rank larger than one. Then

- -1 T
—- L= + .* - g% T + #*T(E - 1
Pikc ~ Pij (Xj A [(a] E aj_l) a Tt T(Ea, a, )3

which vields

Y -1 "
pjk pkj = O‘j +>\k) (aj_lTak+aj Tak—-l)' (2.13)

1f aj—l or a 4 is of rank one, the corresponding term in (2.13) will
vanish according to B or A. If both have larger rank, the procedure is

repeated:

+a,*Ta

- 2 - -2
| EER W * * T .
Py =Py = AD @t R = k-2

97




The rank of one of the eigenvectors in the product a* 1Tak - is

lowered by one in each step, and finally a situation arises in which
either A or B can be applied. Then pjk = ﬁkj‘ and this finally proves

that X is Hermitian if ij ¥ A l<i kin @

Now let )\r be an eigenvalue of multiplicity r, and CRERE ,ar the
corresponding eigenvectors. Then any attempt to include apre-enay
butnot a, _..... a ., l<k<r, inthe solution will violate the con-

k+1 T
dition Xj % —,\k. The reason for this is as follows: If we have selected

Bpsenady We cannot make use of any of the r eigenvectors correspond~
ing to =—Xr. From the remaining 2n - 2r eigenvectors we must choose
either the one corresponding to )\i or the one corresponding to _Xi’

but not both. Then it only remains (n - r) possible ways to choose n -k

eigenvectors. But n -r < n -k since it was assumed that k< r,

Summarizing, we then conclude that the only possibility to satisfy the
sufficient condition for X to he Hermitian is to include all eigenvectors
corresponding to )\r or all eigenvectors corresponding to —Xr.

In the next section, conditions will be given that allow both )\ and -x,
to be included in a Hermitian solution. )
i -1

If E has 2n distinct eigenvalues, and if [bl. . bn] exists for all

combinations of eigenvectors the theorem states that among the

211)

n

possible solutions X, at least 2" are Hermitian. In the case of multiple
eigenvalues of E, more complex combinatorial problems are obtained.

In the optimal control problem, only real solutions of (2.1) are of inte—
rest. since the system matrices A, B and criteria matrices Ql

2
are assumed real. Moreover, since Ql and Q are assumed

symmetric we will next concentrate upon real symmetric solutions
of (2.1).



Theorem 3

Let
X= [cl. . .cn][bl. . .bn]

be a solution of (2.1). Then X is real if and only if either

i) all eigenvectors a -»a arereal, or

=
ii) both a; of rank k corresponding to }‘i and a-mi of rank k

corresponding to )-:i are included in the solution,

Proof. (i) is trivial. To prove (i), let a; and Ei be included in the
solution. Then

- = -1
X:[cl...c....ci...cn][bl...bi...bi,..b ]

and

- - -1
- "
X=[c '"C""C""Cn“'[bl"'bi"'bi"'bn] .

Since the order of the eigenvectors is immaterial, it follows that

and thus X is a real solution. This proves the sufficiency. The prove
the nece351tv consider the closed loop system matrix

-1
G=A - BQZ BTX.

G is realif X is real, and then the eigenvalues of G are real or
complex conjugated. But according to Corollary 1 of Section 2.1, the
eigenvalues of G will be those eigenvalues that correspond to the
eigenvectors used in the solution X. This finally proves that a
necessary condition for X to be real is that (ii) holds. &

Combining Theorems 2 and 3 will finally give sufficient conditions for
symmetry of a real solution X of (2.1),



2.3. Nonobservable and Noncontrollable Modes

Now consider the optimal control problem defined in Section 1. Since
the criteria matrices Gy and Q9 are symmetric nonnegative and
symmetric positive definite, we must look for a symmetric and non-
negative definite solution of (2.1) [5]. 1t is well known [5, 67 that, if
the pair [C, A], where Q= CTC, is completely observable, the
stationary solution of (1.5) will be positive definite and the optimal
system is asymptotic stable. In that case, there is only one nonnegative
definite solution of (2,1) [7]. In (8] Wonham makes a generalization,
and proves that detectability of the pair [C.A] is sufficient for the
optimal system to be asymptotic stable. In this case the stationary
solution is no longer necessarily positive definite. but may only be
nonnegative definite.

We will now generalize further, and consider arbitrary real, symmetric
and nonnegative definite matrices Q.- Thus A is allowed to have
unstable modes nonobservable in [C,A]. (In the sequel we will use the
notation [Q, . AJ.)

In particular we will assume that the eigenvalues of A are distinct. It
is then possible to diagonalize A, and simple definitions of observability
and controllability may be used.

It will also be assumed that the nonobservable modes of A are real.
However, it is easily verified that the following statements will also
‘hold for complex nonobservable modes. In that case a nonobservable
mode must always he considered together with its complex conjugate
mode, and thus the assumption is made to simplify the notations. How-
ever, we will allow for a distinet nonobservable mode )‘i = 0.

Then introduce the following definition of observability,

Definition

Let T be a nonsingular linear transformation such that

where >\1, - ’An are distinct eigenvalues of A. The mode /\i is then




an observable mode of the pair [Ql, A] if and only if the i~th column

-1
of the matrix CT ~, where Q1 = CTC, has at least one element not
identical zero.
If )\i is a nonobservable mode of [Ql,A], and X is the corresponding
eigenvector of A, it follows from the definition that Cxi =0 and lei =

= Clei = 0. We then have the following theorem.

Theorem 4

If ) is a nonobservable mode of the pair [Ql,A], then )\i is an eigen-
value of

-1
A -Bq, BT

and the corresponding eigenvector of rank one is

n

(on is the n-dimensional null vector.)

Proof. The proof is a straightforward application of the definition of
eigenvalues and eigenvectors.

-1 l
A -BQ, BT X, AX, X,
2 i i i

T -
-Ql -A on —lei o)

Controllability of the pair [A, B] is defined in a similar way.



Definition

Let T be a nonsingular linear transformation such that

-1 )\1 °
TAT = ’
0 A
n
where )\1, .. ,,\n are distinct eigenvalues of A. The mode )\i is then

a controllable mode of the pair [ A, B] if and only if the i-th row of the
matrix TB has at least one element not identical zero.

If )\i is a noncontrollable mode of [A,B] and yiT the corresponding
lefthand eigenvector of A, then, analogous to nonobservability, the

T
definition vields yiTB =0 or B v, = 0. The following theorem,

similar to Theovem 4, is then easy to prove.

Theorem 5

If )\, is a noncontrollable mode of the pair [A, B, then —)\i is an
eigenvalue of

-]
A -BQ, BT

[¢]
n
Proof.
B 1.7 -1_7T
A By Boljo | | -BQy By, %
T - T >‘i
Q A Vi “AY i
N @




In the following it will prove to be simplifying to have conditions available
for the existence of eigenvalues of E on the imaginary axis. This can
be established from Theorems 4 and 5 and from the definitions of
controllability and observability.

Theorem 6

)\j =i, o€ R, isan eigenvalue of E if and only if >\j and Xj are

either nonobservable modes of [Ql, A] or noncontrollable modes of
[A,B] (or both).

Proof: The sufficiency is proved in theorems 4 and 5. To prove the
necessecity, consider the definition of eigenvectors. There is then at
least one nontrivial eigenvector of rank one satisfying

B 1T [T
A -BQ., B X, X,
2 L I j
AT *
-Q A yj
. J LA
and
- i T I
-1_T - -
A —BQ2 B xJ - Gia x3
T - -
-Q -A . .
g 1 1 f)_ Y5

Multiply the first relation from the left with [yj%, xj*] and the second
relation from the left with [yJ_T, ij]. Then

-1_T T
y¥Ax, -y ¥BQ By, -x*Q.x, -x Ay, =ioxMx, +y. Mty
|| R 2 = Y JQlJ J Y (JJ nyJ)

and

T, = T -1_T- T = T T- T- T~
y. Ax, =y BQ_ By, -X, Q,X, =X, Ay, =-l0(X, X, +ty.y,
170 7% Y JQlJ it (]J nyJ)
A straightforward addition then yields
s =1_7T
~2y'BQ, By, - 2x¥Q.x, =0
Y Qy Y JQl i

or




T

. 1T
38 36 —
~y'BQ, By, -x*C Cx, =0
j QZ yJ i i

But QZ is positive definite, and then xj and yj must satisfy

From the definition of eigenvectors of E then follows that x, and y
must also satisfy ]

Ax, = iox,
] ]

T
=A"y, =iqy,
yJ ay]
Since the eigenvector is not identically zero, either xj%—O or yj#O.
If Xj+0’ the definition of observability implies that >‘j =i is a non=-
observable mode of [Ql, A], and then Xj = -i¢ is also a nonobservable

mode of [Ql,A]. Similarly, if yj%O, the definition of controllability
implies that Aj and ):j are noncontrollable modes of [A B]. @&

Corollary 2

>‘i =0 is an eigenvalue of E if and only if >\i =0 is either a non-

observable mode of [Ql, Al or a noncontrollable mode of [ A, B].

Corollary 3

Let )\. =0 be a distinct noncontrollable (nonobservable) mode of

[A,B] ({Q,,A]). Then there are two eigenvectors of E of rank one,
correspon&mg to )\1 =0, ifandonly if A, =0 is also a nonobservable
(noncontrollable) mode of [QI,A] (CA, Bj’).

Proof: In the proof of theorem 6, it was shown that a nontrivial
eigenvector of E, corresponding to >‘i =0, satisfies

Ax. =0
i

.Cx, =0
i



and
T
=0
A yi
T
B y. =
Let
Xl N
Y1 Yo

be distinct eigenvectors of E of rank one, corresponding to )\i = Q,
Since )‘i is assumed noncontrollable, one of the xi:s, say Xl’

satisfy X, = 0 according to Th;orem 5. Butif >\i isa distilz_[(‘:t
eigenvalue of A (and thus of A™), any two solutions A of A v, = 0
are linearly dependent, that is, Vo = ayl. Then both eigenvectors
are of rank one only if xz%O, and thus >‘i =0 is also‘ a nonobservable
mode of [Ql, A]. The alternative formulation is proved in the same
way, and the reverse follows from Theorems 4 and 5. ®

It is interesting to notice, that the requirement of controllability of

modes such that Re{)\i} > 0, can now be justified with simple algebraic
considerations.

Suppose there exists a noncontrollable mode of [A,B], such that
Re{)\i} % 0. Then according to Theorem 5, —)\i is an eigenvalue of E,

and the corresponding eigenvector is

n

C.
1

There is then no solution X of (2.1) such that A—BQ;:[BTX is

asymptotic stable, since this would require the inclusion of the eigen-
vector

in which ease [bl. i bnj is singular.




If ). = 0 is a noncontrollable mode, the situation is similar. Assume
for the sake of simplicity that E has n-1 eigenvalues satisfying
Re{)\j} < 0. Then )\i =0 is an eigenvalue of E of multiplicity two.

If the )\.-block of the Jordan form of E is nondiagonal, there is only
one eigenvector of rank one corresponding to )\ =0, and then there is

no solution X of (2.1) such that the exgenvalues of A-BQ B X satisfy
Re{xj] < 0. The only possibility to satisfy this condition is that )\i =0

is also a nonobservable mode of [Ql, Al (Corollary 3), in which case
the eigenvector

b,
i

(o]
n

may be used.

When formulating the optimization problem, the ultimate goal is in
general an asymptotic stable closed loop system. It is thus natural to
claim controllability of unstable or purely imaginary modes.

Having verified that noncontrollable and nonobservable modes imply
structural properties of the corresponding eigenvectors, it is now
possible to relax the sufficient conditions for symmetry proved in
Section 2.2. As before it is sufficient to prove that

P=[b,..

. bn]*[cl. .. cn]

is symmetric (Hermitian). For )\j%—ik it was proved in Theorem 2 that
pjk = pkj' We will now prove that although )\j = —)\k, the solution may
still be symmetric (Hermitian).

Consider first the case when A, =-A, and both X, and )\k are real non-
observable modes of [Ql,A}. JThen L

- T T
- . = b = =
Pjie " Pk 7P % 70 Ok
since cj = Ck = On’ and thus P is still Hermitian.
Then consider the case when >‘j is a real nonobservable mode of

EQl, A], and the criteria matrices Ql and QZ are chosen so that




= =\. is an eigenvalue of E, thatis, A, isnot due fo the symmetry
Ak i K ¥ 3

property of the eigenvalues of E. Since the eigenvalues of a matrix are
continuous functions of the entries, it then follows that both x. and >‘k
will be multiple. Since >‘j is nonobservable, cj =0, and

- T T T

e I e

With the assumption that there is only one eigenvector of rank one
corresponding to Ay, it can now be proved that br.rck = 0, and thus
that P is still Hermitian. )

.=1 .
Let T be a nonsingular linear transformation such that TAT is
diagonal. Then

T—lz[xl,...,b,,...,x 1.

where On denotes the n x n null matrix. As V is nonsingular the
eigenvalues of

~ -1
E =VEV

are the same as those of E, and the corresponding eigenvectors are

5 = Va.. (2.14)

This holds for generalized eigenvectors too.

Carrying out the transformation VEV“1 we have

ATt —TBQ'Z'IBTTT
B
1T -1 -1 ’
- hier™t -ahTale?t

which reduces to




t=32
i

_______________ , (2.15)

..—>\
n

——— e e e ———— e — -

=1
where R = —TBQ2 BTTT

- - - -1
and P = (T l)TQlT L -(CT l)T(.CT ).

-1
As )\j is a nonobservable mode of [Ql, A7, the j-th column of CT
equals zero, and hence both the j=th column and the j-th row of P
equal zero.

Now consider that >‘k ==\, is a multiple eigenvalue of E and ﬁ, and
introduce ]

as the corresponding eigenvector of rank one.

~, 1 1.1
Then Eak —/\kﬁk = —)\jak .

determined through

2
The eigenvector of rank two, ﬁk , 1is




But

(B -+ =l T LT : (2.16)°

' —)\n+>\j

which, since the j-th row of P equals zero, implies
1

g, =0,
J

From (2.14)

1
L1 T 9 by
k -1.7T 1
On (T ) °k
d si Tan—(x b X )~ we have
and since ( y = 10 Py ¥y
1 T 1
¢ =b.c =0
J ik
Then
pjk = pk) = 0!
which completes the proof. If A, = -\, is an eigenvalue of multiplicity

m, the proof still holds for the gener‘lllized eigenvectors corresponding
to )“k up to rank 'm -1, This follows from

~ ~ 1 1-1
[E -(-)Lj)I:fak = ﬁk , 2<l<m,

and then




T 1-1 -
b. ¢ :5% ! = 0.
bk i

Notice that we have only proved symmetry for the case where A or Ak
are due to nonobservable modes of [Ql,A ]. For eigenvalues of E not
due to nonobservable modes we can still not make any statements about
the symmetry except for the sufficient conditions of Theorem 2
(X.%—Xk). Also notice that we proved symmetry under the assumption
thit there is only one eigenvector corresponding to )‘k of rank one.

The results are summarized in the following theorem.

Theorem 7
Suppose )\j is a nonobservable mode of [Ql, A]. Let BpyeeesBy be
eigenvectors of E corresponding to )\1, cee ,Xj,Xk, s ,)\n and assume

that [bl. . .bn]_l exists. If the sufficient conditions of Theorem 2 are
satisfied except for )\k = —Aj, then

X =[e.-.c Jlb;. ..bn]'l

is still Hermitian if either

1) A is a nonobservable mode of [Q,,A] and only the eigenvector
of rank one corresponding to )\k is included in the solution, or if

(ii) there is only one eigenvector corresponding to A of rank one,
and the number of generalized eigenvectors corresponding to )\k
included in the solution is less than or equal to m-1, where m
is the multiplicity of )\k.

The theorem is illustrated in the following example:

The eigenvalues of E are

A = 2, nonobservable mode of [Q'l,A]‘.

g =B Ay T Ay




)\3 = =2, due to the specific choice of Ql and Qz; )\3 is a continuos

function of the elements of Ql and QZ;

Ay =2 hy = Ay

Eigenvectors of rank one corresponding to +2 and -2 are

O O O+
)
O

Then

S i N ]

which is a symmetric solution,

2.4. Nonnegative Definite Solutions

Among the symmetric solutions we will now look for solutions with the
property that they are nonnegative definite. Since the criteria matrices
Qq and Q, are nonnegative respectively positive definite, this is a
necessary condition for X to be a solution of the optimal control
problem [ 5], Then what choice of n eigenvectors CEREEELN will

-1
cause X = [cl. .. Cn][bl. v bn] to be nonnegative definite or positive

definite?

The following theorem states necessary conditions for a positive definite
solution.

Theorem 8

Let Agre.epa be eigenvectors of E corresponding to xl, ce ,)\n.

Assume that

—l
X~-‘ CoweiC l)
- 1 n 1.'.bn

is real, symmetric and positive definite. Then Re{)\i} <0, i=1,..,,n



Proof. Consider the cloged loop system matrix

-1
G=A-Bq, BTx.

As X is a solution of (2.1) itis easy to verify that
aTx + xG - ~(Q, + XBQ;BTX).

From Lyapunov stability theory, it follows that Ref{).} <0, and it then
remains to prove that Re{Ai} % 0. But according to Theorem 6,

Re{)\i} =0 implies that )\i is either a noncontrollable or g nonobservable
mode (or both). However, noncontrollability contradicts the assumption
that X exists, since eigenvectors with the structure

o
n

C,
1

in that case should be included in the solution. For similar reasons,
nonobservability contradicts the assumption that X is positive definite.
The eigenvector then has the structure

b,
i

n

and thus
X :[cl_. 0 - .Cn][bl...bi...bn]

is singular. m

Corollary 4

Let A; <0 be a nonobservable mode of [Q1,A]. Then there is no
positive definite solution of (2. 1),

Proof: If >‘i =0 is a nonobservable mode of [QI’A]’ )\i =0 is also
an eigenvalue of E. Thusg there are at most n-I eigenvalues of E
such that Re{);} < 0, which excludes the possibility of a positive
definite solution of (2.1). 1f >‘i < 0, a positive definite solution X
must include the corresponding eigenvector 2; with the structure
b,
i

(o]
n




and thus X is singular, which contradicts the assumption that X is
positive definite. @

Notice that since there is only one way to select n eigenvalues of E
with RE{P\i} <0, Theorem 8 implies that (2.1) can never have more
than one positive definite solution.

Sufficient conditions for the existence of a nonnegative definite solution
of (2.1), are given in [1] for the case when E has a diagonal Jordan
form. The following theorem is a generalization of [1], and covers
nondiagonal Jordan forms of E.

Theorem 9

Suppose that @, and Q, are nonnegative definite respectively positive
P 1 2

definite real symmetric matrices, and let agye ey be eigenvectors
of E corresponding to Apr-- ,)\n. 1f Re{xi} <0, i=1, ...,n, and
[bl. .. bn] is nonsingular, then

-1

X = [cl. . .cn][bl. ..bn]
is real, symmetric and nonnegative definite.

Proof: That X is real and symmetric follows from Theorems 2 and 3.
To prove that X is nonnegative definite, let

X = {‘[bl. ..bn]'l}*P{[bl. . .bn]'l}
where
P =[b.. .bnj*[cl. e 1.

Since [bl. ‘e bn] is nonsingular, it is sufficient to prove that P is
nonnegative definite. Introduce the 2n x n matrix U (t)
ALt At
1 n
U@) =Te COERRRR an].
If }\k is a multiple eigenvalue of multiplicity r, then U(t) is

defined as



)\nt
e a (2.17)

It is easily verified that U(t) satisfies the differential equation

du(t
_dé"l: EU(Y), U©) =lag,....a 7.

Let L be the 2n x 2n matrix

Then
P = U*0)LU(0)

Further introduce
S(t) = ~U* ) LUt) + U*(0)LU(0). (2.18)
Since Re{);} <0, 1=1...n, the definition of U implies that

lim U(t) = O

t00

Zn x n

and thus

limS(t) = P.
txo

(2.18) is equivalent to




t
T S,
S(t) = ~ | G U" () LU(s)]ds
0
t T
== [U*(s)E~ LU(s) + U*(s)LEU(s)]ds
0
¢ T
=~ [ [US)[E" L + LE]U(s) ds.
0
But
-Q o)
E L+ LE = 1 B

0 —BQ"lBT
n 2

and then S(t) > 0, t >0, When t =, S(t) » P, and thus P is non-
negative definite. @

It is possible to relax the assumptions of Theorem 9, and include one
eigenvalue }\i = 0. This is proved in the following Theorem.

Theorem 10

Assume that the conditions of Theorem 9 are satisfied except for one
eigenvalue ), =0 of E. Then X is still real, symmetric and non-
negative definite.

Proof: Since A; is an eigenvalue of E, and X is assumed to exist,
it follows that ); =0 is a nonobservable mode of [Q,A], and the
corresponding eigenvector (of rank one) has the structure

b,
i

o
n

From Theorems 2 and 3 then still follows that X is real and symmetric. '
To prove that X is nonnegative definite, consider the definition of U,
L and S in the proof of Theorem 9. It is easily verified that

lim U@t) $ O

teo

2n ¥ n



but

lim U*)LU®) = O

t-m
since c.=o . Thus
in

lim S(t) =

tm

still holds, and the last part of the proof of Theorem 9 is then still
applicable. 8

In [ 7] it is proved that, if [Q A] is completely observable, then a

unique nonnegative definite solutlon of (2.1) exists. Moreover, this so-
lution is positive definite. However, this is no longer true if the observ-
ability criterium is relaxed. This is illustrated below with an example.

In Theorem 11 sufficient conditions for two real symmetric solutions of
(2.1) to be nonnegative definite are given. Notice that we must assume
that the solutions exist, since we have not given any sufficient conditions
for the nonsingularity of [by.. .bn] . However, we have not found any
example contradicting the assumption that both solutions exist.

Theorem 11

.Let )\ 0 be a nonobservable mode of [Q ,A]., Assume that X1 isa

solutlon of (2.1) corresponding fo —)\i and n-1 eigenvalues of E with
Re {)\]} < 0. Assume that X2 is another solution with the same eigen-
vectors except for the one corresponding to —)\i. This eigenvector is
replaced by the eigenvector corresponding to )\i. Then both X_ and X2

1
are real, symmetric and nonnegative definite.

Proof: That X, is real, symmetric and nonnegative definite follows
from Theorem 9. According to Theorems 3 and 7 Xg is real and sym~-
metric, and then it remains to prove that Xg is also nonnegative definite.
To simplify the proof, we assume that the eigenvalues of E are distinct
Connecting to the proof of Theorem 9, we will prove that U*@t)LU(t) —

as t-®. From the definition of U then follows™)

+) In case of multiple eigenvalues of E, U is defined according to (2.17).
The theorem may then be proved in the same way, but the notations
will be more involved.
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U*)LU(t) is an n X n matrix, and the elements are

b AL
4 =p *
[Ué(t)LU(t)]kl bk ce e

Since
b #c_...b *
1711 %y

P = U*(0)LU(0) =

b *c....b *c
n 1 n n

is symmetric, it follows that U*(t)LU(t) is symmetric too. For k{:i
and 1 the elements

\otoAt

A >\1

k
#* -
bk cle e 0

as t - » since Re{lk}<0 and Re{)\l} < (., Butthe i-th column
of U*(t)LU(t) is identical to the zero column vector since ¢;=o -

The symmetry then implies that the i-th row equals zero too. Thus
U*E)LU®E) - 0 as t—w, and

S(t) = ~U*(t)LU(t) + U*0)LU(0) » P.

It then follows from Theorem 9 that X2 is nonnegative definite. The

solutions X, and X2 are not identical, since the eigenvalues of
-1.T -1_T

=A - = A - iff ] i

G1 A BQ2 B X1 and G2 A BQ2 B X2 are different, This

completes the proof of two different nonﬁegative definite solutions
of (2.1), B




The theorem is easily generalized to multiple eigenvalues A, ,
Re{X 1 <0, andtoan arbitrary number of distinct nonobservable
modes of [Ql’ Al. This is illustrated in the following example:

1 0 0 1 0 0 0
A={0 2 0], B=l1/), Q-F 00 0, Qy=@).
0 0 -3 1 0 0 0

The eigenvalues of E are

). =1, due to the nonobservable mode of [Ql, Al

s Ay =\

1
12
2, nonobservable mode;

2
3
4= -2, >\4:—>\3;
5
6

il

-3, nonobservable mode;

A
A
A
A
A

Since \.= -3 is a nonohservable mode, there is no positive definite
solution™ (Corollary 4). The eigenvectors a; corresponding to Ki are

1 3 0
0 2 1
G B R
1 o | 2 6 3 0
v 0 0
0 0 0

4 0 -3

3 0 -6

. - -12 o - 1L W - -1

4 0 5 0o I 6 1 0

12 0 \ o

0 0 \_6

In this case there are four different nonnegative definite symmetric
solutions:




i
g

0 0 0\/1 o0 o -1 0 0 0
(i) a,,a_,a; X =10 0 0J{0 1 0 =10 0 07,
1ste 0 0 o/\o o0 1 0 0 0
-1
6 0 0 3 0 0 2 0 0
@) a,apas X,=[0 0 0 2 1 0 =lo o 0],
2785 0 0 0/\-3 0 1 0 0 0
-1
0 0 0\/1 4 0 0 0 0
dii) a,,2,2; X,=|0 12 0 {0 3 0 =l0o 4 0],
14 s 3 0 0 o/\0 -12 1 0 0 0
-1
6 0 0 3 4 0 18 =24 0
(iv) a,,a,a; X, ={0 12 0 2 3 0 =\ =24 35 0
2'74ns 4 0 0 0/\-3 -12 1 0 0 0

In Section 3 the different solutions will be discussed from an optimal
control point of view. It is shown that they all in some sense can be
considered as solutions of the optimal control problem,

In the general case, assume that )\1, ce ,)\m are m distinct nonobservable

modes of [Ql, A7 such that Ref )\i] >0,i=1... m. Using the result of

Theorem 11 in a combinatorial way, it is possible to prove that there are
at least

m m m
> (7)-
=0 )

-1
nonnegative definite solutions, provided that [bl. . bn] exist, It is

also possible to get some kind of order between the different solutions
in the sense that there is always one largest and one smallest solution.

Theorem 12

Let >"1’ i ,)\m be distinct nonobservable modes of [Ql, A] such that
Re{Ki} >0, i=1... m, Assume that X1 is the nonnegative definite
solution obtained by the eigenvectors corresponding to the eigenvalues
of E with-Re{\} <0, If X2 is another nonnegative definite solution

of (2. 1), then X ZX2-

1



Proof. Both X1 and X2 satisfy (2.1). Then

-1_T

T -
A"X +X A-XBQ,B X, +Q =0

T -1_T
A X2+X2A—X2BQ2 B X2+Ql—0.

Subtracting the second equation from the first and reordering the
terms yields

-1.T,. T -1_T
(A - BQ2 B Xl) (Xl - XZ) + (Xl - XZ)(A - BQ2 B Xl)

-1 T
= ~(X, ~X,)BQ, B (X} =X

1 2)'

Since A = (A - BQ—lBTxl) is asymptotic stable, it follows from the
Lyapunov stability theory that the symmetric solution Y of

ATy + YA = —YBQ;BTY

is nonnegative definite., Then Y = X1 - X2 > 0, which finally proves that

X, >X

1 a2

9°
In the previous example X, is the largest solution, Using a similar
technique it can be shown tﬁat among all nonnegative definite solutions
there is a smallest solution. This solution is obtained if the eigenvectors

corresponding to >\1, ce ,)\m all are included. In the example above X1

is the smallest solution.

Notice that Theorems 11 and 12 can not be extended to cases where A, = 0
is a distinct nonobservable mode of [Qq, A7, The corresponding eigen-
vector of rank one must then be included in the solution, and the only
possibility to vary the solution with respect to A =0 is to include also
the eigenvector of rank two. But it is easily verified that the structure

b,

i
o
n
is not preserved for eigenvectors of E of rank greater than one.
To prove this, assumé that there is one eigenvector




%y

[¢]
n

of E of rank one, and one eigenvector

)

(o]
n

of E of rank two, both corresponding to >‘i =0. Then

-1._.T
A -BQ2 B x2 ) X 1
AT o ) o
-9 n n
and thus
Axy =%y

Since lefo and XZ:*EO, this implies that A has an eigenvalue Ai= 0 of

multiplicity two, which contradicts the previous assumption that X, =0
is a distinct eigenvalue of A, The eigenvector of rank two then mus
have the structure

%9

Yo

where y %0. Then nothing can be stated about symmetry and existence
of nonnegative definite solutions.



3. THE RICCATI EQUATION IN OPTIMAL CONTROL PROBLEMS

3.1. The Optimal Control Problem

Consider the linear time-invariant system

d
d—f:Ax+Bu9 X(t)) =%, (3.1)
with the criteria
t
T f T T
J=x ()t + [ [x (5)Qx(s) +u (5)Qyu(s)}ds, (3.2)
t
0

where QO and Ql are nonnegative definite symmetric matrices and Qz

is a positive definite symmetric matrix. The minimum value of (3.2) is
known to be [5]

0 T
Tty =x SR (),

where S(t) is a nonnegative definite symmetric solution of the matrix
Riccati equation

as_,T -1,T -
- A S+SA-SBQ, B 5+Q, S(t) = Qe (3.3)

The optimal control u(t), tO <t< tf, is a linear time-varying feedback

from the state of the system
u(t) = ~L(t)x(t),

where
L(t) = leBTS(t).

In particular we are interested in the optimal regulator problem, that is,
we look for a time=invariant linear feedback

u(t) = -Lx(t)

such that




<. T
J =J‘ {x (S)le(s) + uT(s)QZu(s)}ds (3.4)
0

is minimized. This problem is generally solved by a straightforward
integration of (3. 3) until a stationary solution is reached.

Existence and uniqueness of solutions of (3. 3) is proved in [58] and [67.

It is also shown that, with the assumptions made about Q; and Q, the
solution S(t) is nonnegative definite and symmetric. If the pair [A,B]
is completely controllable and the pair [Q,A] is completely observable,
it is shown in [5], [67], and [7] that S(t) tends to a unique positive
definite solution S of the algebraic equation

ATs +sA - SBQ;IBTS +Q =0. (3.5)

Then L = Q BTS will be the solution of the optimal regulator problem,

and the optimal closed loop system A-BQ_ BTS is asymptotic stable (c.f.
Theorem 8). It is also shown that the bounzclar'y condition Q is arbitrary.

In[8] Wonham generalizes to [A, B] being stabilizable and [Q,A]
being detectable. Then S(t) converges toward a unique nonnegatlve
definite solution S of (3.5). The closed loop system A-BQ; 1pTs is
then asymptotic stable, and the boundary condition Q is still arbitrary.

In this section we will consider the optimal control problem under the
assumption that Q is an arbitrary symmetric nonnegative definite matrix.
Detectability of [Ql, A] is thus no longer assumed. Existence, uniqueness
and symmetry of the solution S(t) of (3.3) then still hold [ 5], but accord-
ing to section 2 there may be more than one nonnegative definite solution

of the stationary Riccati equation (3.5). Then the boundary condition Q
can not be chosen arbitrarily, but will determine to what stationary
solution S(t) converges. As for the numerical solution of the optimi-
zation problem, this implies that a straightforward integration of the
Riceati equation may be an unstable procedure.

The asymptotic dependence on QO will be shown to have a nice physical
interpretation, and this will finally lead to a generalization of optimal
control theory for linear systems with quadratic loss functions.

To simplify the analysis we will throughout this section assume that the
nonobservable modes of A are real, distinct and not identical to zero.
Since it was shown in Section 2 that nonobservable modes )\, =0 will
not cause several nonnegative definite solutions of (2.1), this restriction
is of no importance for the purpose of this section.



3.2, Upper and Lower a priori Bounds of S(t)

Suppose that the control variable u(t) is given through an arbitrary
linear feedback from the state of the system.

u(ty = -Ix(t).

Since [ A, B] is assumed stabilizable, it is always possible to choose
L so that the closed loop system matrix_ A-BT. is asymptotic stableN
[97]. Introduce the fundamental matrix ¥{t;s) associated with A - BL:

3 (t. ~
ZEI - 4 - BDT i),

Y(t;t) = 1.
The corresponding cost is

F=x' 0% 600, W %0
t
Eor o1 Y
+ [x 0% (si{Q + L7, L1 w(sitx(t)ds
i

or
T =xT m8tx(),

where
tf

Sty = \"I'JT(tf;t)QO?Lr (tgst) + J‘ @T(s;t){Ql + ﬁTQZE}{I/(s;t)ds. (3. 6)
t

(A-BT)) being asymptotic stable, §(t) tends toward a nonnegative
definite matrix § as t-»-o, §is the unique solution of the algebraic
equation

(A - BI':)T§ +§A - BI) + Q * I:TQ L=o. (3.7)

Obviously JO < J, andthen S(t) < S(t) t< tf Then any linear feedback
L suchthat A - BT is asymptotic stable yields an upper bound for S(t),
t<t;. This is a very rough bound, and we will show that there exists a
smaller & priori bound,

Let S; be the solution of the stationary Riccati equation corresponding
to Ref\j} <0, i=1.., n, (Notice that we will throughout Section 3
assume that the different nonnegative definite statiomry solutions exist.)
Then




T -1_T
A Sl+slA_SlBQ2 B Sl+Q1—O,

-1_T
and the closed loop system matrix (A - BQo B Sj) is asymptotic
stable, Further, assume that Sz(t) is the solution of

dS2 -1.T

T
- - S +Q.,
T T A8y T8yA -8By B S, +Qy
with boundary condition
Sz(tf) =ol.

I is the identity matrix and & is a positive scalar.

Then (52 - Sl) satisfies the differential equation

- %— (Sy = 5;) = (A - B«;g;’lBTsl)T(s2 =8+ (S, = 5))
(A - BQ;BTsl) - (8, - Sl)BQ;BT(SZ -8) (3.8)
with boundary condition
(8, - 8)(t) =al -8, .
Now choose
a> ”SlH (ot > max Ay where Xi are cigenvalues of §,).

i
Then al - Sy is positive definite, and the solution of (3.8) exists and is
unique. It is also nonnegative definite for t< tf. Let U (t;s) be the

fundamental matrix associated with (A - BleBTS Then

1)'

T

O witis) = (A - BO L .
e V(i) = (A - BQ, B7S)¥(ks),

1)
() =1,

D Sy = oDt -potpT
35 V(6s) = - U (t:s)(A - BQ, B'S,)),

and (3. 8) is equivalent to the integral equation

(S, =S =
2 1 tf -1

T -1 T -1.T A
T (t) {(oz{—sl) +Jt“\p (t;9)BQ, B \I/(tf;s)ds} Wty (3.9)



-1 exists since o> HSIH, and then

tf -1

1 ..T 1T
{(ozI -8)) +{\1/ (t9)BQ, B \p(tf;s)ds}

@l - S)

exists and is positive definite. If P1 and P2 are two arbitrary positive

definite matrices, the inequality P

holds [10]. Then

< P_ implies that P ZP; also

1 2 1

tf -1

a Ly 1T
{(al - ) +{\p (t;5)BQ, B \I/(tf;s)ds} <@I-8)
and

T
(8, =S)O <V (i@l - S)T(EsD).

-1_T .
The fundamental matrix ¥ {t;;t) »0 as t >= o sgince (A - BQ2 B Sl) is

asymptotic stable, and then (S2 - Sl) t)y=>0 as t»>~w,

The solution of (3. 3) with boundary condition
St =al; o> |18 ||

then converges to the largest solution 87 of (3.5). Now let Q, be an
arbitrary nonnegative definite symmetric matrix, and assume that
Qo 1s the boundary condition of

ds

1 T -1.T

T =A Sl+SlA_SlBQ2 B S1+Q1,
t)=Q .

5,(t) = Q

Further let 82 (t) be the solution of

ds

2 T -1.T
- = - +
S-=A’S, +S,A-85BQ B'S, +Q,
S,(t,) = AL

As before the difference (Sz - Sl)(t) satisfies

fe

Rl A o I S

n



d _ -1, T, T _ LT
T (S2 - Sl) =(A = BQ2 B Sl) (S2 - Sl) + (82 Sl)(A BQ2 B Sl)
-1_T
- (82 - Sl)BQ2 B (S2 - Sl), (3.10)
(S, = 8t =B - Q.
With W(t;s) being the fundamental matrix associated with
(A - BQ;BTSl(t)), (3.10) is equivalent to
= T . - .
(8, =S = T (30 (8L = Qp)¥ (it
t
+f\11T . )(S.(8) - S. (5)BO_ BT (S, (5) - S, (5)W(sit) d 3.11
{ (8;1)(S4(5) = 8, (5))BQ, B (S,(s) - 8, (s))¥(sst) ds (3.11)
(82 - Sl)(t) is then nonnegative definite, and
Sz(t) pd Sl(t)
for
8> [lQOH.

For a solution S(t) of (3.3) with an arbitrary nonnegative definite
boundary condition S(tf) = QO, it is then always possible to find an upper
a priori bound S(t), such that S(t) < Sit), t < tf, and S(t) - Sm as

t= - g(t) can be chosen as the solution of (3. 3) with boundary con-
dition S(t,) =1 where 7y > max {HSmH , HQOH}, and 8_ is the largest

solution of the algebraic equation (3.5).
In a similar way it is easy to give 4 priori lower bounds for the solutions

of (3.3). Let S (t) and S (t) be solutions corresponding to the boundary
conditions Sl(tf =0 and 2(tf) = QO’ QO > 0. From (3.11) it then follows

that Sz(t) > Sl(t), t<t,. The smallest solution S(t) (= S1 (t)) of (3.3),
= 0. S(t) is the

£
will then correspond to the boundary condition S(t
solution of the integral equation

t
f

T -1
S) = [ U (s:){S(s)BQ, BS(s) + @, 1 (sst)ds, (3.12)
t

o

where



3 wits = (A - Bo BT .
S Uts) = (A - BQ, B SO) ¥ (ks).

From (3.12) follows that S{t) is monotonic nondecreasing as t - -,
and since the solutions are bounded, S(t) converges toward a solution
of the stationary Riccati equation (3.5). This obviously is the smallest
solution S’, because assume that S(t) converges toward the solution
S’ of (3.5), and 8"">8". This contradicts the fact that S(t) < s,

t < tp, unless g’ =8'". Thus the solution S(t) of (3.3) with boundary
condition S(tf) = 0 converges to the smallest solution of the algebraic
equation (3.5).

When the pair [Qq,A] is completely observable [7] or detectable [8],
there is a unique positive definite or nonnegative definite solution of
(3.5). The upper and lower 2 priori bounds for S(t) are then identical,
and then convergence of S(t) follows. In the case of nonobservable
unstable modes of [Qy, A], however, these bounds do not coincide,
and it then remains to prove convergence of S(t) toward a stationary
solution of (3.5) as t-— -, for arbitrary nonnegative definite boundary
conditions QO.

3.3, Convergence Properties

The convergence of S(t) toward a stationary solution is proved in [67
for the pair [Qq,A] completely observable, and in [8] for the case of

[Ql,A] completely detectable. In this section we will prove convergence

for the particular case Q =0, Q> 0, and all modes of A unstable.
Tt may then be possible to combine this result with those of [6] and [8]
to prove convergence for arbitrary nonnegative definite matrices Qq
and Q.

0

As before, the differential equation

ds T -1_T
Edt'A S+SA-=SBQ2B S+Q1, S(tf)~Q0,
ig transformed into an integral equation

+ 4

t
T - T -1
5 =0 (60 {Q, + [V ()RR, B Yk Wik,
:

where




D gits) = A - B BT .
2 ¥(t9) = (A~ BQ, B SOIV(E),
T(tt) = L.

Since QO > 0, and \I/(tf;t) has full rank for t _<_tf, S(t) is positive
definite and hence invertible for t< tf. Then consider S_l(t)'

-1

g8t 1,7 -1 -1.T (3.13)
SS—=-S A -AS +BQ, B

-1 -1

st =Q,

Let ¢(t;s) be the fundamental matrix associated with -A.

D) = - Ab(ts
S 6(t:s) = - AB(:9),
Pkt =1

It is then possible to give an explicit expression for the solution of (3.13):
tf
-1 T =1 T -1_T
sy =9 (tf,t){QO + J;¢ (s:t)BQ, B ¢(s;tf)ds}¢ (£, (3.14)

which reduces to ¢

3
S 1(t) :¢T(tf;t>le¢(tf;t) + | ¢T(s,t)BQ;1BT¢(s,t)ds.
t

{-A} being asymptotic stable implies that <Z>(tf ,t)~»0 as t- -, and

b

s - s (s, t)BQ;BTas(s,t)ds. (3.15)
t

The pair [ Qq,A] having just nonobservable unstable modes implies
that stabilizability is equivalent to complete controllability, and thus
(3.15) is positive definite for t<tg. s~1 (t) then converges toward the
unique positive definite solution of

asta sHAT - BQ;I Too

as t - -, and thus S(t) converges toward a positive definite solution of

ATs+sA- SBQ;IBTS = 0



as t- -, This completes the proof of convergence for the special
case Ql =0 and QO > 0.

Now assume that convergence holds for arbitrary Q_ and Ql’ symmetric

and nonnegative definite. It is then of interest to examine to what stationary

solution 8(t) converges as t-— -w». Consider the equivalent integral

equation
tf

-1_T
50 =0 (00t + [ ¢ (e Q, + S6)BQBS(E) W 13 9)ds
t

where ¥(t;s) is the fundamental matrix associated with the closed loop

=1_T
system matrix [A ==BQ2 B S(#)]. When t, 5 ~x,

T
U (ta)Q(tt) - 0
and
T
U () Q) T(tis) - 0.

since 8(t) is bounded, and since it is assumed that the eigenvalues )\i
of the stationary closed loop system satisfy Re{}\i} £ 0.

Now let A; > 0 be a nonobservable mode of [Ql,A], and assume that
two stationary solutions S1 and S2 of (2.1) exist, such that )\i >0

=1_T
is an eigenvalue of the closed loop system A--BQ2 B'S

=1_T
an eigenvalue of AuBQle S

1 and —}\i<0

9° From section 2.4 then follows that
82 > Sl' if }\i also is a nonobservable mode of [QO, Al, >\i will have
no influence on the cost functional, and then it is not necessary to
stabilize this mode. Then S, Wwill be the solution of the optimization
problem, and the optimal closed loop system will contain an unstable
mode. However, if ); is observable through Q@,S1 can not be the
optimal solution, since the unstable mode of the closed loop system will
then result in a large cost due to the term xT (tf)Qox(tf). When

t - o  this contribution to the cost tends to infinity, and then it follows
that S(t) convergesto S_as t- -w. The boundary condition QO will
thus have the same influeilce on the stationary solution as Ql‘

In the general case, assume that A has r unstable eigenvalues

Al,..,,xr, nonobservable in [Ql,A]. If Kl,...,)\k, k<r, are

observable in [QO,Aj, 5(t) must converge toward a stationary solution

S of (3.5), such that the optimal system A - BQ;lBTS has eigenvalues
-\ A . ,)\r'

1""’_kl<’ k+1"""




3.4, Numerical Instability

The optimal regulator problem is generally solved by straightforward
integration of (3.3) until a stationary solution is reached with desired
accuracy. In the case of complete detectability of the pair [Qq, Al, this
is a stable procedure when (3. 3) is integrated backward in time. However,
the existence of several stationary solutions may cause even the back-
ward integration to be an unstable process. This is illustrated in the
following example [ 7]:

01 0 (1 4 B
A:<1 0)’ Bz(l)’ Q1‘<=-=1 1>’ Qy = ().

The unstable mode )\ =1 is nonobservable in Ql’ and there are two
nonnegative definite solutions of (3.5).

g = 3+/2 1+/2 g - J2 -1 =/2+1
1 \1+/2 1+/2) 2 \-/2+1 /2-1/°

S1 (positive definite) yields the closed loop mode X = =1, while 8,, which
is the solution of the optimal regulator problem, leaves X =1 unchanged.
It is easily verified that S > Sg.

If the boundafy condition S(t) =0 is chosen, S(t) converges toward S
according to Section 3.2, From (3. 3) then follows that 8(t) will have
the structure

oty =xlt)
St = <—oz(t) oz(t)> ’

ds
where of(t) >0, t <tf. Depending on how a{ is computed, numerical

inaccuracies may occur in different ways, Suppose that at time tl, t1 <tf,
the computed solution is

S¢t.) = Upre
) = -o(t ot ’

7 1)

where €3> 0 is a small quantity. S(ty) is then positive definite, and
can be considered as boundary condition for further computation of

S, t <t <t



Sy (1)

—_—
1 - Direction of solution
T T T T T e
0 4 8 12 18 20 ty -t
Fig, 1. - Sll(t) computed with a fourth-order Runge~ Kutta method,

-7
_ (10" 0
Q = (0 o)'

But [S(tl) ,A] is completely observable and the solution will converge
toward the largest solution Sl' This is illustrated in Figure 1, where
the computed 1-1 element of S(t) is shown. A disturbance e= 10~7

was introduced in the 1-1 element of QO’ and a fourth-order Runge-Kutta

method was used.

The same situation arises if the errors are equal in all elements of
S(tl):
o + t )+
(t)+re odt))+e

YT Lt re at) e




For afty)>0 and ¢>0, S(ty) is positive definite, and S(f) will
converge toward Sy as t-—--=,

Another way to solve (3.3) is the fundamental matrix approach [4,11],

With the algorithm proposed in [117, the numerical errors entered in

the following way:
ot

) ) e

ST ) -6ty
For ¢ >0, S(t,) is indefinite, and can no longer be considered as a new
boundary condifion for further computation. However, computational ex-
periments show that S(t) still converges toward Sy, and the fundamental
matrix method can then be considered as a stable method. The 1-1 ele-
ment of the computed solution S(t) is shown in Figure 2 for different
values of Qg. Notice that the differences for small values of ty -t is
slightly exaggerated.

With the same errors introduced, the Runge-Kutta method was applied.
Due to large values of 3 exponent overflow occurred and the sta-
tionary solution S1 was never reached.

3.5. Generalization of Optimal Control Theory for
Linear Systems with Quadratic Loss

The preceding section indicates a possible generalization of optimal
control theory for linear systems with a quadratic loss function. We
then drop the requirement that [Qq,A] is detectable (except for modes
Ay = 0), butitis still assumed that [A, B] is stabilizable. Since
asymptotic stability of the optimal system is a desired property, we
will look for the minimizing control in the class of asymptotic stable
linear feedback controls.

Theorem 13

Consider the stabilizable system

%f:AXJrBu



Sy (1)
20{‘

10
L Q,=1.0
r—————" Q,=01
R T T T T T L
4 8 12 16 20 ty -t
JUOREEIVS.
Direction of solution
_10 -

Fig. 2. = 5971 computed by the fundamental matrix method for various
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with the loss function
< T
1= (<" @©ayxE) +u’ ()Q,u()1ds,
0

where Q is nonnegative definite symmetric, and Q9 positive
definite symmetric. Assume that there is no nonobservable mode

A =0 of [Ql,A]. In the class of asymptotic stable linear feedback
controls, the minimizing control is given by

u=- Q_lBTSx
2
where

S= lim S¥).

to=—o

S¥*(t) is the solution of

it

das _ Tow | o sy~ 1o T o
T =A"S +8"A SBQzBS +Ql

with boundary condition

St(t) =yI(y> ]|sm||, te is arbitrary)l)

Proof: From Section 3.2 follows that S%*(t) converges toward the
largest stationary solution S,, of (3.5). But, if there are several
nonnegative definite solutions of (3.5), S,, is not the solution of the
optimal control problem, and it remains to prove that in the class
of stable linear feedbacks u=-Ix, L, = Q'2'1BTSm yields the
minimum value of the loss function V.

Consider an arbitrary stable linear feedback u = - Lix. The correspond-
ing value of J is

J= XT(O)Slx(O).

where

T
bt (A-BLl) s T (A—BLl)s

Sy =£ e {Q +1L; Qle}e ds (3.16)

1) From Section 3.3 follows that probably any 7 >0 will do since Q
has the same influence on the stationary solution as Q. Sy, denotes
the largest stationary solution of (3.5).



is nonnegative definite symmetric. Since (A - BLl) is asymptotic stable,
81 satisfies the algebraic equation

T T B
(A-BL))"S +8§(A=BL)+Q +L QL =0. (3.17)
Th di tion for L =@ BYS i
e corresponding equation for m = Q2 'y 1S
(A-BL )'S_+S (A-BL )+Q +L TQL =0 (3.18)
m m m m 1 m 2 m : :

(3.18) is equivalent to

T T,T
(A - BLl) Sm + Sm(A - BLl) + Ql + Ll B Sm + SmBL1

- L TBTS -8 BL + L TQ L =0. (3.19)
m m m m m 2 m
Subtract (3.19) from (3.17):

T T
(A=BLj) (] =8 )+ (S, =8 )A-BL)+L QL

T T

-LTBTS -S BL_+ L BTS +S BL -1 QL =0
1 m m 1 m | m m m m 2 m

Si L —BTS thi ti d t
ince QZ m m’ 1s equation reduces to

A-BL)T(S, -8 )+ (S, -5 )(A-BL)+LlQL

( 1) <1 m) (1 m)( 1) 17271

T T T
- - + =
Ll QZLm Lm Qle Lm Q2Lm 0 (3.20)

or

T T
(A - BLl) (S1 - Sm) + (S1 - Sm)(A - BLl) + (L1 -Lm) QZ(L1 - Lm) =0.

Since (A - BLl) is asymptotic stable, the solution Sy - Sm) is nonne~
gative definite, and is zero if and only if L1 = Lm' This completes the
proof. @

It is now possible to give a physical interpretation of the different sta-
tionary nonnegative definite solutions of (3.5). Suppose that [Ql,A] has
some unstable nonobservable modes. Then the smallest solution, which




is the solution of the optimal control problem, leaves these modes
unchanged, and the closed loop system is unstable. If it is desired

to stabilize just one mode, the best linear feedback is given by the
stationary solution which corresponds to that mode stabilized. Naturally
this requires more energy, and thus the term

g uT(s)Qzu(s)ds

becomes larger, The most expensive case is of course when all modes
are stabilized, which corresponds to the largest solution of (3.5).

The stationary Riccati equation then has the nice property that it contains
the optimal solutions for all degrees of stability.

3.8, Minimum Energy Regulator

As an interesting special case, consider the problem of finding an.
asymptotic stable linear feedback u = -1Lx for the system
dx

EE-:AX+Bu

with the criteria

T

J=1{u (s)Qzu(s)ds.

o8

Qg is positive definite symmetric, and J can then be interpreted
as the total energy required. If A already is asymptotic stable, the
problem has the trivial solution u(t) =0.

Then assume that A has eigenvalues )‘1’ ..+,A, such that Re{)&} >0,

k
and >‘k+l""’>‘n with Re{)\1 < 0. Since Ql =0, >\1""’>‘k are

nondetectable, and then E has the eigenvalues +\ L ,:bkk,

:l:)\kﬂ, . ,i)\n, independent of Q. The optimal stable system thus

has the eigenvalues —)\1, cees _>‘k’ Y )\n. This can be formulated

REREEY
as some kind of minimum energy principle.




Theorem 14

Consider the system

dx
it = Ax + Bu

where A has eigenvalues )\1, . ,)\k such that Re{\} > 0, and
>‘k+1’ ee ’>‘n with Re{\1 < 0. The minimum energy regulator

u = ~Lx then has the property that the eigenvalues of the closed loop
system are —)\1, cee, —Ak, )\k+1’ cee ’>‘n'

Notice that in case of a multidimensional control vector u(t), the feed-
back L will in general depend on the particular choice of Qy. How-
ever, in the single control variable case, L is independent of Q2.
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Part 2

A NEW APPROACH TO CONSTRAINED FUNCTION
OPTIMIZATION

ABSTRACT

A new approach to the constrained function optimization problem is
presented. It is shown that the ordinary Lagrange multiplier method
and the penalty function method may be generalized and combined, and
the new concept "multiplier function" is introduced. The problem may
then be converted into an unconstrained well-conditioned optimization
problem. Methods for numerical solution are discussed, and new
algorithms are derived.



1. INTRODUCTION

In this paper new methods and algorithms for constrained function

optimization are presented. The problem considered is minimization
of a function f(u) subject to the equality constraint g(u) =0, where
g(u) is an m-dimensional vector with components gl(u), (The super-

script will be used to denote components of a vector, This will simplify
the notations later.)

Many methods for solving this problem have been published, but gene-
rally they are based on one of two main ideas.

One is the Lagrange multiplier technique, where the constraints are
adjoined to the function by means of multipliers X, to form a new
function

m i «
L)) =fw+ T Ng W
i=1

generally called the Lagrangian of the problem. The problem is then
reduced to finding a saddle-point of L(u,A) inthe u-\ space, and
thus the dimension of the problem is increased from n to n+m.

The other basic approach is the penalty function method. A function

including the constraints in a proper manner is adjoined to the original
function f(u), e.g.

f(a) + cg” (Wg(u)

where c is a positive real-valued parameter. Under very mild
conditions, the solution of

min{f(u) + ch(u)g(u)}
u

tends to the solution of

min {f(u)}
u

subject to g(u) =0, as c tends to infinity. However, the penalty
function method is not very attractive from a numerical point of view,
since the functions created become very badly conditioned for nume-
rical optimization. Different ways to overcome this difficulty have
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peen suggested, e.g. by Fiacco and McCormick [1] and by Powell [2].
The basic idea in these papers is to change the penalty function in an
iterative way, so as to make the optimum of the penalty function agree
with the optimal solution of the problem. However, this requires intro-
duction of a new set of parameters to be iterated on, again increasing
the dimension of the minimization problem.

These two basic ideas are combined by Hestenes in [37. The function
m .
ii T
Fu,\) =f)+ T Xg () +cg We)
i=1

is introduced, and it is shown. that for nonsingular problems, F(u,1¥),
where M\* are the optimal multipliers, has a local minimum for

u=u®, provided that c>ci. ¢, is a finite real-valued parameter. This
is a considerable improvement over both the original Lagrange mul-
tiplier technique, and the penalty function methods. The reasons are
that c( is finite in contrast to the penalty function methods, and that
u* constitutes a minimum of F(u,\¥), while the extremum of L(u,\*)
could have any character. However, it still remains to determine the
optimal multipliers A%,

The method presented in this paper is a generalization of Hestenes’
method. We will introduce the concept "multiplier function", and the
m~dimensional vector function u(u) is called an admissible multiplier
function if it satisfies some simple conditions. The basic condition is
that p(u¥) =x¥*. We also define a ngeneralized Lagrangian’ as

Hu, ) = £(0) + p (g + cg WEW

Using wellknown results, which are priefly stated as lemmas in Sec-
tion 2, properties of H(u,c) are established in Section 3. It is shown
that H(u,c) has an extremum at u=u¥, and that there is a finite real-
-valued cg, such that H(,c) for nonsingular problems has an isolated
local minimum for u=u® if c¢>c,. Properties of H(u,c) for singular
problems are also investigated in Section 3.

In Section 4 the multiplier function concept is illustrated with some

simple examples. The choice of pu) is discussed, and it is shown that

the particular multiplier functions p(u) = A*, which is chosen by Heste-
-1

nes, and p(u) = -[gu(u)gg(u)] gu(u)flrf(u), which has been investigated

by Méirtensson [4]and Fletcher [5], may be considered as special cases
of this general approach.



Numerical methods for the minimization of H(u,c) are considered in
Section 5. Straightforward minimization of the generalized Lagrangian
with ordinary function minimization methods is compared with new
algorithms based on properties of the multiplier function Hw).

2. NECESSARY AND SUFFICIENT CONDITIONS FOR A CONSTRAINED
LOCAL MINIMUM

In this section we state the necessary and sufficient conditions for a

local isolated minimum. For proofs and a more detailed treatment, see
r
e.g. [17, [6].

Introduce the Lagrangian L(u,A) associated with the minimization
problem formulated in Section 1.

m
La) =fw + T Mgl
i=1

Al are components of the m-dimensional vector A, generally called
the Lagrange multipliers.

We then have

Lemma 1 (First order necessary condition)

If

i) f has a local minimum at u% subject to the constraints
gw =0,

ii) f and g are once differentiable at ui,

iii) glll, i=1, ..,, m, are linearly independent at u¥,
then there exists a unique m-dimensional vector A¥, such that
* 3o =
L, * )% =0

Notice that i) - iii) are sufficient conditions for the existence of finite
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Lagrange multipliers A*. The constraint qualification iii) may for some
problems be replaced by weaker conditions that are sufficient for the
existence of \*. However, iii) is very useful from a computational
point of view, and is assumed to hold in the sequel.

A stronger necessary condition for a minimum is given by the following
second-order condition.

Lemma 2
1 f and g are twice continuously differentiable at u*, and if the
constraint qualification of Lemma 1 holds at u*, then a necessary

condition for u¥ to be a local minimum, is the existence of a vector
A%, such that

gu*) =0
# O\ =
L (%) =0
Further, for every n-dimensional vector y such that gu(u*)y =0,
yTL (u*, Ay >0
w -

This can be strengthened to second-order sufficient conditions.

Lemma 3

Sufficient conditions for u* to be an isolated local minimum,
are that

i) the necessary conditions of Lemma 2 hold,

ii) for every non-zero vector y such that gu(u*)y =90,

T
*AFy >0
y Luu(u Ay



3. LAGRANGE MULTIPLIER FUNCTIONS

We now introduce the concept "Lagrange multiplier function',

Definition 1

Let p(u) be a real-valued m-dimensional vector defined on R".

Then p(u) is a Lagrange multiplier function for the minimization
problem if and only if

i) () exists and is twice differentiable in a neighbourhood of u,
ii) () =)\
iii)  for every Ve Rn, such that y%O, gu<u*)y =0,
T
LY = isfi
and y L (W% y =0, pu) satisfies

{ gu(uae) Luu(u%’ ) + gu(u%)g:fm%wu wHly =0

Condition iii) will prove to be hecessary to handle singular problems.
In iii) it is also assumed that f(u) and g(u) are at least twice diffe-

rentiable at u=u*, We assume throughout the paper that thig holds
in a neighbourhood of u*,

With the properties of K(u) established, we define a "

generalized
Lagrangian" Hqu, c) as follows,

Definition 2

The generalized Lagrangian H

(1,c) associated with the minimization
problem, is defined as

H(u, 0) = £() + u” (W () + og L g

where p(u) is an arbitrary multiplier function (Definition 1) and ¢
is a real-valued parameter,

With the assumptions made about f(u), g(u) and ), H

u,c) exists and
is twice differentiable in a neighbourhood of u*,

In the following theorems we will est

ablish some important properties
of H,

T
H

it



Theorem 1

Tor any value of the parameter c, the generalized Lagrangian
H{u,c) has a stationary point at u=u¥*,

Proof: A straightforward differentiation yields

T T T
H =f + + + 2
uu H gu & ’J’u 8 gu

Since g@®) =0, and, according to Lemma 1 and to the definition

of p(w),

T
fu(u*) + MT (u*)gu(u*) - fu(uae) + () gu(u*) =0

it follows that Hu(u*,c) =0, ¥c @

Intuitively it now seems reasonable that the stationary point u=u*

can be made a minimum point by choosing the parameter c large enough.
To prove this, we have to distinguish between nonsingular and singular
problems.

Theorem 2

Let u* be a local isolated minimum of f(u) subject to the constraints
g(u) =0, and assume that the sufficient conditions of Lemma 3 are
satisfied. Then there exists a real-valued parameter cg, such that
Hu(u*, ¢) = 0 and Huu(u*, c) >0 for c>cO.

Proof: In Theorem 1 it was shown that Hu(u*, ¢) = 0 independent of c.
Then consider Huu(u,c).

m
_ ii T T ii
Huu(u’c)_fuu+.2 “guu+“ugu+guuu+.zg”uu+
i=1 i=1
m
T ii
- chu gu T ae ifl & Buu

For u=u*, this reduces to




ii T T T
* = + + + + 2
Huu(u ©) fuu Loy Bau " Hulu T By a8y

or

T T T
#* = * AW + + +
Hypg (0 0) = Ly (WA + g +g 1 + 208 8

Now let Q be the subspace of Rn spanned by the rows of gu(u*),

and let Q-L be the orthogonal complement. Since the constraint quali-
fications are assumed to hold at u¥*, @ has dimension m. If v, € Q

and Vg € Q- , we then have Y19, 0, guy2 0 and ¥y gua, where
e R™ is uniquely determined by yy- Similarly, we can choose an

iy ) Al L
arbitrary basis el, v e en-m in. Q* . Then any y2 €Q may be

written
n-m
y2=i§1 Bie, or y,=GB

n—
where B R m and G is an nx(n-m)-dimensional matrix of rank
n-m. Conversely, Yy =GB lies in QJ- for any B¢ Rn—m. Then we

may write an arbitrary vector y ¢ Rn in the form
T
= +
y=g,0 GB
. T .
Now consider y Huu(u*, c)y.

T N T T T
= 3 =
y H, @ e)y = (g orGh) H (W c)(g a+Gh)
T T T T
-a {chugu 88y guLuugu *
veuTe gl g g% eTly
guuu gugu gugu ;.Lugu o
T T
+ -
to (g L Gtree bG8+
T..T T T T T
S
BTG Luugu +G p’ugugu}a *

+8(G L, G




where all quantities are evaluated at u=u’.

To get a better survey, we introduce

T T T T T T T
= L +
Ale) 2Cgugu gugu * gu uugu gup‘u gugu * gugu"l' ugu
T
B= guLuuG * guguu uG
D= GTL G
uu
Then
T . o A(c) Bllo
y Huu(u ,C)y~ o, B T
B DB

It now remains to prove the existence of a parameter ¢ 0’ such that

A(c) B
>0
BT ‘D i
for c>c .
0

This will be done in three steps. First A(c) is considered, and it is
shown that for every real k>0, there exists a cok), such that
A(c)>kL for c>co(k). Then we will prove that D>0, and finally

it will be shown that

kI B
m

BT D

>0

for k large enough.
Consider

T T T
Afc) -KkL = 2e(g,8, ) @8,) * gULuugu *

+ T T + T gT - kI
guuu gugu guguu uu m



Since the constramt qualifications hold at u', g, g is nonsingular,

and (g g )(g g ) is positive definite symmetric. Then there exists

a nonsingular transformation S(k) such that [7]

Z(g g, )(g 8, )— k)S(k)

and

T
g L gIJ-gg ggug -kl =

u uu u uuuu uu uu m
- a, )
=8 (k) . S(k)
K
0 am( )

This yields

c+a1(k) 0
A(c) - kI —STk ’ Sk
() -k =5 - ()
0 c+am(k)

‘and thus A(c) - kIm >0 for
¢>-min a, k).
i
Next consider the matrix D. For every Yo € Q 1-, Yo {: 0, we have

T

LD
Yg Iy @ A9y, > 0

according to Lemma 3. But any ¥y in Ql- may be written

Vg = GB, and any vector GB lies in QJ-. Then

BTGTL (u*, AMGR> 0
uu

for B%0, which proves that D = GTLuu(u*,}d’r)G is positive definite.




Finally we will consider the matrix
kI B
m
BT D

Introduce the nonsingular transformation

r
1
Im m B
Lik) =
l_0 In-m
Then ~
kI B k1 0
m m
T
L (k) L) =
1 T
LBT D 0 k(kD—B B)

and thus it is sufficient to prove that kD - BTB >0 for k large
enough. But D is positive definite, and then there exists a non-
singular transformation T, such that

D:TTT

and

Thus we have kD - BTB >0 for

k>max bi
i

This completes the proof of the existence of a finite ¢ o such that
Huu(u*, ¢)>0 for c>cO. 7]

The theorem evidently breaks down if the problem is singular, i.e. D
is only nonnegative definite. To be able to extend the multiplier function



concept to this case, it is natural to require that H(u,c) should have
the properties

# -
Hu(u ,¢) =20
H @u¥c)>0
uu -
independent of the character of the optimal solution. We will now
prove, that this is attained by including the condition iii) in the definition
of the multiplier functions.
Theorem 3
Let u* be a local minimum of f(u) subject to the constraints
g(u) = 0. Then there exists a Cor such that H,(u*,c) =0 and
H @*c)>0 for cc_,
uu - 0
Proof: It is necessary and sufficient to prove that
kD - BTB >0

for k large enough. The theorem will then follow from the proof
of Theorem 2.

Since D may be singular, a necessary condition obviously is
BB =0
for every B¢ Rn—m’ such that
T
B DB=0
But from the definition of B, D and 8 follows that this is equivalent to
T
L + =
(gu uu gugu“u)y 0
for every y € Rn, such that
gy =0
and

T
L =
y uuy 0




Thus condition iii) in Definition 1 is a necessary condition for

H u(u"*,c) >0. To prove that iii) is a sufficient condition (together
with i) and ii) ), and to get a measure of k, assume that rank D = r,
0< r < (n-m). Then D may be written

T
D—DlD1

where Dy is an rx(n-m) matrix of rank r. Let P be the subspace
of RA-M “spanned by the rows of Dy, and let Pl be the orthogonal
complement, Then every B € RM™™ may be uniquely decomposed into

T
B_D1V+Bz

where Drlr'ye P and B, € Pl-. Since Dlﬁz =0, VBZ € P-L, it follows

T_ T T . .
that B8, D, Dlﬁz = /32 DB, =0, and thus Bﬁz =0 according to condi~
tion iii). Then

T

B (kD - BTB)ﬁ = (D;ry + Bz)T

T T T _

(kD; D, B B)D, ¥+ B,) =
T T T T T-

=y [k(DlDl)(DlDl)-DlB BD, ]'y

But (DlDrlr) (D 1D;Lr) is positive definite symmetric and then there exists

a nonsingular transformation V such that

T T T
(@, D)D) =V"V

and
T_ T T Sl’ ’
D.B"BD, =V ‘. A%
1 1 .
0 s
r
Thus
T T -
BT (D -B BB>0, BER
for

k > max Si'
i




We have then proved the existence of a finite 00, such that

H (u¥ c)>0 for c>c . @
uu - 0

4. EXAMPLES

To illustrate the multiplier function concept, some particular choices
of p(u) are investigated in this section. We will also try to make clear
by examples, how different choices of 1) may result in different
properties of the generalized Lagrangian. The possibility to generate
different generalized Lagrangians is of great importance for the
numerical solution of the optimization problem,

Example 1

Assume that the optimal multipliers \* are 2 priori known, A simple
choice of the multiplier function might then be

p(a) = A* = const,

This special case has been considered by Hestenes [3). It may seem
strange to assume the optimal multipliers to be A priori known, when
the optimal solution is not known, The reason for this will become
clear in the next section, where computational methods based on suc-
cessive estimations of \* are considered. It is then important to
establish properties of

T T
Hi(U, c) =f(u) + )‘i g() + cg ™ (u)g(u)
as )\i tends to the optimal multipliers )*,

For nonsingular problems, H(u) = X\* obviously is an admissible
multiplier function since it trivially satisfies conditions i) and if)

of the multiplier function definition. In the singular case, however, it
depends on the particular problem whether () = x# satisfies condi-
tion iii) or not. This condition becomes particularly simple for this
multiplier function. Consider

T
L + = =
(gu uu gugu u’u) y2 gu Luuyz 0




Thus Luuyz € le, where QL is the orthogonal complement of the
gubspace spanned by the rows of g, But in the singular case, there

exists y, € Q‘-, Vo £0, such that

TL =0
Yo luu'e ~
and thus Luuy2 € Q. Since QN Q.L = {0}, the condition iii) then reduces

to Luuy2 = 0.
Consider the following simple singular problem. Minimize
2

fu) = (ul—uz)
subject to the constraint

gw) =uy —u, = 0 (Problem 1)
Choosing y. = -0 and y 1, y. =0 for any value of

oosing y, = (@,0), 8., =0 and ¥y, L, Vo = any value of q.

But Luuy2 =0 andthus p) =X* =0 is an admissible multiplier

function. In this case the generalized Lagrangian is H(u,¢) = (1+c)(u1mu2)2.

For the following problem p(u) =)%* isnota multiplier function.

Minimize
2 2
fu) = u - u,
subject to
g) = uy tu, = 0 (Problem 2)

T T
i = = = t 0.
Choosing y, = (@ -0), 8.9, 0, ¥y LYo 0 bu Luuy2 $0, od0

2

The generalized Lagrangian becomes H(u,c) = uy = u? + )\*(u1+u2) +

+ 2
c(u1 uz) , Or
1 2¢t+2 2c
H(u,c) = Y (u=u) (u=-u’)
2c 2c=2




where u¥* js the optimal solution corresponding to the particular choice
of A% (% turns out to be arbitrary). It ig easily verified, that for this
problem, the optimal solution u* cannot be made g minimum of H(u,c)
by choosing ¢ large enough. To brove this, choose

u o= {uié - 2¢0/ (2¢+2), u¥ +a}. Then
- 2
H(u, c) -~ Hu*, c) = ~4q

for any finite ¢, and thus H@*,c) > H(u, c) if a0,

Example 2

-1
T
ule) =~ (g, e @] g @i

neighbourhood of u¥, it can be shown (4], that K(w) exists and is twice
differentiable in g neighbourhood of u®,  that K(u®) = x* and that
gu(u*)Luu(u*, Xby gu(u*)gg(u*) uu(u*) =0. Thus pu(w isan admissible

multiplier function for both singular and nonsingular problems,
With this choice of multiplier function, we get the same generalized

Lagrangian for Problem 1 as in the previous example, namely
H(u,c) = (1+c)(u1-u2)2. However, for Problem 2, the generalized

2
Lagrangian now becomes Hu,c) = c(u1+u2) » and this possesses all
the desired Properties.

We will illustrate the multiplier function concept with one more simple
problem. This also illustrates the possibility of handling inequality
constraints by means of slack variables, Minimize

16 3 2
5 e - -+
f(u) 3 Y 2u1 2u1

subject to the constraint




u - 1<0 (Problem 3)

The problem has two local isolated minima, one at the consiraint
ulzl, and one at u{==0.5. The inequality constraint may be
transformed into an equality constraint by adding a slack variable u,
in such a way that the constraint qualifications of Lemma 1 are
satisfied, e.g.

g@) =uy -1+u§ =0
In Fig. 1, contour levels of H(u,c) are drawn for ¢=0, 1.0 and 5.0.
since H is symmetric with respect to ugp, the contour levels are drawn
only for ug > 0. From the figure it is clear that any minimization method
should be able to reach one of the minima if we choose ¢ large enough,
and if the initial guess is not too far from the curve representing the
equality constraint g(u) =0. For further examples of the slack variable
technique, we refer to [4].

Example 3

In this example we will indicate some obvious generalizations of the
preceding example.

One drawback of the multiplier function

T -1_ T
pw =- @) &k

T
is that (gugu) may be singular for some u outside the equality

constraint. A possible way to overcome this, is to choose

~ T T -1 T
p=-@Ege +g8 Im) gufu

It is easily verified that this is an admissible multiplier function for
both singular and nonsingular problems.

It is also clear from TFig. 1, that one may get into trouble if the initial
guess of the optimal solution is too far away from the curve representing
the constraint. To get the right slope of H(u,c), but preserving its
smooth character around the optimal solution, one could select

T -1

T T
p =-@:8) 8f +® 2)'e
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Fig. 1 = Contour levels of the generalized Lagrangian for Problem 3:

_ T-1 T
p) = (gugu) gt -



If n>0, g{u) is an admissible multiplier function.

In Fig. 2, the possibility to improve the properties of H(u,c) is
illustrated. For Problem 3 we have now (rather arbitrarily) chosen
the multiplier function

T T -1 T T 2
=~ f +0.1f
B =- @8, t585°8 gl +@& 88 g
to get the right slope of H(u,c). Contour levels of H(u,c) are drawn
in Fig. 2 for ¢ =10.5, and comparing with Fig. 1, the improvement

is considerable.

u, &
1.5

0.5

0
-1.5 -1.0 -0.5

Tig. 2 - Contour levels of the generalized Lagrangian for Problem 3:

T T -1 .T T 2
pw = - @8, +587 e gf +@E ag+oiie, ¢ =0.5,

The multiplier functions considered in this section have been explicite
functions with similar basic structure. An interesting problem is then,
whether there exist multiplier functions with different structures or
not. It may also be of great interest to try to define the multiplier
function implicitely. These problems have not yet been investigated.
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5. ALGORITHMS AND COMPUTATIONAL ASPECTS

A number of different algorithms can be designed for the minimization
of the generalized Lagrangian H(u,c). Roughly they can be separated
into two major classes, direct minimization of H(u,c) with ordinary
function minimization methods, and iterative estimation of the multiplier
function p(u) . Although the latter methods require iteration in a larger
space, they can be made very efficient by using the function properties
of the multiplier p(u).

5.1. Direct Minimization Methods

A straightforward way to minimize Hu,c) is to use a minimization
method where only function value evaluations are required, e.g. the
methods of Powell 8] and Stewart [9]. Stewart’ s method, which is g
modification of Davidon’ s method [10], is generally considered to be
somewhat more efficient since difference approximations of the de=-
rivatives can be used. However, as was illustrated in Section 4, the
multiplier functions must be chosen carefully since we do not have
any & priori estimate of the parameter c,

This problem can to some extent be avoided if it ig possible to
evaluate ,uu. Then the derivative

T T T
H =f + + + 2
w o u M B TE it 8 u
of H(u,c) can be computed, and a more efficient minimization method
can be used, e.g. the method of Fletcher and Powell [11]. But it will
also be possible to get an a priori estimate of ¢, and thereby make the

minimization of Hu, ¢) less sensitive to the particular choice of Bu).

Consider the quantity gT(u)g(u), which equals zero if and only if the
constraints are satisfied. If it is required that H(u,c) has the property

d T T
[du (8 g)] Hu >0

then the magnitude of ng can be decreased by moving in the direction
opposite to Hu’ that is, in the steepest descent direction. But




d, T T T T T T T
=2 +
[—-(du g g)] H g gu(fu Hig +8 Ky + 2cg gu)
and then this condition is satisfied if

T T, T T
g gu<fu+guu+uug)

c> - ZT T
g gugug

for g(u) % 0. Further properties of this measure are discussed in [47.

5.2. Multiplier Estimation Methods

An obvious disadvantage of direct minimization methods is the time-
-consuming function and gradient evaluations that have to be carried
out for every step. It then seems reasonable that methods based on
iterative estimation of the optimal multipliers could be made more
efficient than the direct minimization methods.

In this section, different estimation algorithms are derived, and they
will be classified according to their convergence properties for quadratic
functions with linear constraints.

Consider the following simple iteration scheme:
Make an initial guess of A%, say Mgk (subscripts will be used to
denote the iteration step). Then minimize F(u, uk) =f(u) + I-‘Eg(u) +

ch (wg() with an efficient minimization method. Assume that the
minimum occurs for u = LR if g(uk+l) <8, where § is a small

quantity, then W1 is the optimal solution. Otherwise compute a new

estimate Mk+1 = u(uk+1) and repeat the procedure.

Notice that the algorithm does not depend on any particular choice of
the multiplier function p(u). Itis then natural to examine if p(u) can
be selected so that the algorithm is further simplified.

Assume that W minimizes F(u.uk). Then

T T
£ ) 8y ) T 28 )8 W) =0

k+1



T
) (g (uk+1)gu(uk+l)] , we get

T
and post-multiplying by g, (uk+1 .

=1
T T T T _
fu (uk+1) gu (uk+1) [ gu(ukJrl) gu (uk+1)] TH k + Zeg (uk+l) =0

-1 T X
From this we conclude that Bu) =~ (guglrf) gufu is a suitable choice

of the multiplier function, since the new estimate st then satisfies

T T T B
THyeg Tyt 2eg () =0

or

Prepg =y T 2080 )

This will drastically reduce the computations involved. It is also
interesting to notice, that this recursive relation, which also has been
suggested by Hestenes [3], can be considered as a special case of a
more general estimation algorithm.

The algorithm can then be summarized as follows:

First order algorithm:

a) Set My = 0.

b) Minimize F(u,gk) =f(u) + ugg(u) + ch(u)g(u) with an ordinary

function minimization algorithm, e.g. Fletcher-Powell, Notice
that the evaluations of the function value and of the gradient are
very simple. Assume that the minimum occurs for u= uk+1.

c) It || g, ) [l <6, where & isa small quantity, then

u¥ =y .
k+1

d) If |1 By, ) [1>6, set g =t * ch(ukﬂ) and return to b).

It is possible to establish convergence properties of the algorithm for
quadratic functions with linear constraints,




Theorem 4

Let f(u) be quadratic, and assume that the constraint g(u) is linear.

If () =\%* isan admissible multiplier function for the problem, the
algorithm converges to the optimal solution for ¢ > max(0,2c,), where

c, is defined in theorem 2, and refers to the multiplier function p(u) =)*.

Proof: Consider the situation at stage k. Since Wit minimizes
F(u,uk), we have

f(

T T
u uk+1) i “Lk gu(uk+1) *2cg (uk+1)gu(uk+l) =0

or

T
E M) ¥ B8 W) =0

At stage k+1, u minimizes F(u,;,Lkﬂ), and

k+2

T T -
£ o) Ty 8 (o) T 2e8T (1 o)g () = 0

Combining these conditions, and expanding f(u) and g(u) yields

T T T T
2eg g = (W o) fip T 2008y By
where g is evaluated at u=0. Then consider the identity

T T
C[g )8y 0) 8 (“k+1)g(”k+1)] -

T T

T T
= cuk+2gu guuk+2 - 011k+1gu guuk+1 + 2cg gu[u = U

k+2 k+1]

"

T
Insert the expression for 2cg gu and rearrange the terms to get

T T _
o8, ety ) - (“1<+1)g(“k+1)] )

T
I vegig ) )

uk+2 - uk+1 uu uu uk+2 - uk+l

=~

Since p(u) = \* is assumed to be an admissible multiplier function,




T
-+
fuu 8y gu 20

for c>2c according to Theorem 3, and we then have to investigate
two different cases separately.

Assume that f +chg >0 for c>2c_. Then
uu u-u 0

)<glm, Ew,)

T
g (uk+2)g (uk+2 uk+1

for ¢ > max(0, 2c0) provided that u Since

e T 1
[1ec)|l=>0, gT(ui)g(ui) will converge either to zero or to a

finite G>0. In the latter case we get ui+2 = ui+1 and ui+2 = [J,i+1
= + i t = i
But Fiio p’i+1 2cg(uiJr 2), which proves tha Yo =Wy if and

only if g(ui+2) =g(u,, .) =0. Thus the algorithm converges for non-

singular problems.

i+l

Then consider the singular case, that is, there exists B % 0,
T T
h that + = . i
suc at y, (fuu cgu gu)y2 0, c> maX(O,ZCO) Then, according
to the multiplier function definition and to Theorem 3, gV = 0

and L =1 =0, is i ies th
n e S e 0. This implies that

T T T T
2 = - -
cg gu (uk+1 uk+2) fuu ZCUk +2gu gu
reduces to
T
2cg (uk+2)gu =0

and then g(u, ) =0, c>0, since gu is assumed to satisfy the

k+2
constraint qualifications, i.e. to have full rank. This completes the
convergence proof of algorithm. @

It is instructive to verify the convergence for the following simple
example. Minimize
2 2

fu) = u Ty,




subject to

- -92=0
u1 21.12 2

1 2
For this problem CO = 5 , and for ¢> 5 the algorithm converges to
th timal soluti _.2 u, = 3 For c<g-th lgorith
e optimal solution u, =-73, Uy, = =3 3 e algorithm

2 .
diverges, while for ¢ = 3 the quantity gT(ui)g(ui) is constant,

The convergence rate depends on the choice of c. Introduce

€ = (G || and choose c=1. The following residuals are then
obtained:
1
= = 1
1”2 ‘K €1

Increasing ¢ to c=b, convergence is improved considerably, and
the residuals are

1
€ =77 €

1
k+tl 14 "k 17

So far, the multiplier function concept has been used only for estimation
of the optimal multipliers. The properties of u(uy will now be exploited
to develop second order algorithms, that is, algorithms with one-
3 step convergence for linear-quadratic problems. The following theorem
§ will be required.

Theorem 5

Let u* minimize f(u) subject to the constraints g(u) = 0, and assume
that the sufficient conditions of Lemma 3 are satisfied. Define the
projection P(u) as

T T A7
P =1 -~g () [gu@‘)gu (u)] g,
Then
PAL (wh\¥) + 28 (@H)E (1)
s u u

is nonsingular for c}0.




Proof: The theorem is proved by contradiction. Assume that

PLuu + ch;fgu is singular, that is, there exists z+0, such that

T T T
+2 = 0. int +z_, wh
Z (PLuu cgu gu) 0. Decompose z into z gua Z,, Where
gga € @, the space spanned by the rows of gu, and z, € Ql . Then

T T . .
+ =
Z (PLuu 2cgu gu) 0 is equivalent to

T T T
2ea (g 8 )8, T2 L, =0

uu u
: T T .

since g P=0 and z_ P = Now assume that there exists z {:o,

u 2 2 2
such that 2c¢ T( T + ZTL =0, Postmultiplying by z, then

a o gugu)gu 2 . piying by 2
yields

T

z2 uuZZ =0

which contradicts the assumption that Z'ZI‘Luuz2 >0 for 22{:0 (Lemma 3).

If z, =0, o¥0, then aT(gugE)gu =0 for c}0, which contradicts the
constraint qualification, i.e. the linear independence of the rows of gu.
Thus, for c+0, there is no nonzero solution, and P(u¥) Luu(u%,)\*) +

: T
+ 2cgu (u*)gu(u*) is nonsingular. @

Corollary

If f(u) is quadratic and the constraints g(u) are linear, then

T
+
PfulJI chu gu

is nonsingular for c}0,

T L. . :
Proof: Pf -+ 2cgu gu is independent of u and is nonsingular for
u=ui, @

Using these results, we will now design a second order estimation
method. Assume that an estimate My of the optimal multipliers

# =1 + 0 i i * = )
A I-Lk uk is available. Let u W + W where W



—T—w——————-

minimized F(u,y.), be the optimal solution. Approximate F_(u¥, ¢
i u )

with a first order series expansion about uk+1, I.Lk. Then

F (u )% = F (@ B )0

a gt T F

uu(uk+1’ k uk+1 i

Oy =

Since Fu(uk+1,uk) =0, this reduces to

F M 00y + Fy Cpq 100, = 0

In contrast to the first order algorithm, the quantity &pj 1is now
unknown. But p@) is a function of u, and so we make the following
approximation of 6u,k
= - +
by =K, ) - By) R CNI LN

Now choose the particular multiplier function Uu) ==~ (g gT)_lg fT,
Then u-u uu

% Inserting this into the series expansion, we get

+ =
F bu FuuGuk Fuuéu

uu k+l " 20Fuug " Fu,t.l,I'Lu(Sul& =0

k+1 1

where all quantities are evaluated at u Noticing that

k+1’ Mk

T
F =g, thisis equivalent to
u, u

m m
ii T ii T
+ , +
\:fuu " ifl “eBuu 2cgu By ™" 2 i§1 B8 " &y uu:\ auk+1

T
+ 2cgug =0

or




f+1}_§1i i+2c:T+T Su +2CT—0
L Pir1Buu &8 &y ly k+1 g8 7

i=1

To evaluate “u(ukﬂ-l)’ we have to differentiate the multiplier function

T-1 T . .
=- . Itisth asily verified that
e (w) (gugu) gufu 1t is then easily verifi

A | moy i
}‘Lu( k+1) (g g ) gu uu M ,21 uk+lguu

1=

and thus

i T T
2 p—4
P [fuu LR uk+1g ] M zcgu gu 6uk+1 " cgug 0

1_.

where P is the projection matrix.

Po= In g\l (gugu) gu

T
In Theorem 5 it was shown that P(u%)Luu(u*,)\*) + 2cgu (u%)gu(u*)

is nonsingular for c+0, so that for Ut sufficiently close to u¥,
we get
6 = = +
Y1 [Py, Pl M1 et
-1

T
208, (0, 1)8, ()] 208, (B, )

For the linear-quadratic problem, this will yield the optimal solution

# = + -
wk=u 6uk+1 in one step. Also notice, that in case g, is non

singular, duy 4 =~ By (g 80 )

the condition g(u¥*) = 0.

), that is, u* is determined by

Summarizing, we get the following algorithm:

)

Ve



Second order algorithm I:

a) Select My = 0.

b) Minimize F(u,py) with an ordinary function minimization
algorithm. Assume that the minimum occurs for u = W
c) i 1] g(uk+1) [l< &, where & isa small quantity, then
* =
wk =

d) Compute

Mipr =My T 2080 q)

T
G= P(uk+1)Luu(uk+l’ “k+1) i 2cgu (uk+1) gu(uk+1)
and
-1 T
Buy g =7 200 B ()80, y)

If G is singular, return to b) and minimize F(u,uk+1).

e) Estimate Biero = 1 bu and return to b).

Uy ¥ O%4q)

Notice that this algorithm depends heavily on the particular choice of
p(). To allow for arbitrary multiplier functions, one possibility is to
simply approximate ((u) by the series expansion

p(w) = puy) + uu<uk) (u-uk>

We then have

Second order algorithm II:

a) Set u(uk) =0 and p,u(uk) =0,

b) Minimize f(u) + [u,(uk) + “u(uk) (u-u,) ]Tg(u) + 2ch(u)g(u)

with an ordinary minimization algorithm. Assume that the

minimum occurs for u=u .
k+1

e) i |l g ) [l <8, then u =g



d)

Compute u(uk+1) and ’J‘u(ukJrl) and return to b).

The function and gradient evaluations at stage b) are still very simple,
since ;,,L(uk) and ;J,u(uk) are evaluated only at the minimizing point -

The convergence properties of the algorithm depend on the choice of

-1 T
g(). Inparticular, if p) =- (gugg) gufu the algorithm has one-step

convergence for linear-quadratic problems for c>Cye In this case the
approximation of p(u) is exact.
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Part 3

E FOR

A CONSTRAINING HYPERPLANE TECHNIQU
STATE VARIABLE CONSTRAINED OPTIMAL CONTROL
PROBLEMS

ABSTRACT

A new approach to the numerical solution of optimal control problems
with state variable inequality constraints is presented. It is shown that
simple approximations of admissible state variable regions by means

of constraining hyperplanes transforms the problem into a mixed
state~control variable constrained problem. A second ovrder Differen~
tial Dynamic Programming algorithm is derived for the transformed
problem. The efficiency and accuracy of the combination of constraining
hyperplanes and the second order algorithm are investigated on problems
of different complexity. Comparisons are made with the slack variable
technique and with penalty function methods.




1. INTRODUCTION

Optimal control problems with state variable ineguality constraints
have for a long time been subject to a great interest. Reseavch efforts
have been concentrated on computational methods as well as conditions
for optimality, and considerable progress has been made during the
last years.

Necessary conditions for optimality have been investigated by several
authors. Of particular interest are the conditions given by Bryson, Den=
ham and Dreyfus [1], Speyer and Bryson [207, and Jacobson, Lele and
Speyer [8]. These conditions are quite different. In[1] and [207 con=
ditions at entry points, that is, the times when the constraint becomes
active, are considered. This results in discontinuities of the adjoint
variables at entry times, and thus an 2 priori unknown mumber of
discontinuities (Lagrange multipliers) must be determined. In [8] the
constraint is directly adjoined to the cost functional by means of a
Lagrange multiplier function. It then turns out that the adjoint variables
in general are discontinuous at both entry and exit times. However, the
aumber of discontinuities is still & priori wnknown. It has heen shown by
examples [ 87, that these conditions are somewhat stronger than the
necessary conditions based on entry point considerations.

Similarly, different computational methods have heen presented. A
suitable way to classify these, is to relate them to either of three basic
ideas; entry point conditions, penalty functions and slack variables.

Entry point conditions have been exploited by Denham and Bryson 47,
and by Dreyfus [5]. Different modifications have also been reported,
e.g. [22]. The basic idea of these methods is to iterate on the unknown
adjoint variable discontinuities and on the unknown entry times. Thus
it is necessary to a priori know the number of entry points, which for
some problems is very difficult to predict (see e.g. [17]), and it may
also be necessary to have good estimates of the different entry times.
In general this approach is thus restricted to rather simple problems,
e.g. problems with only one entry point and some knowledge about the
entry time. However, for such problems very efficient algorithms may
be constructed from the necessary entry point conditions,

Penalty function methods have been presented hy Kelley [11] and Lasdon,
Waren and Rice [13]. The main idea is to convert the original problem
into an unconstrained problem by adding penalty terms to the cost
functional. These methods can be considered as straightforward genera-




lizations of existing penalty function methods for finite dimensional
problems. Thug the unconstrained problem is solved for successively
increasing penalty weights, and it has been shown [9] that the solutions
tend to satisly the necessary conditions given by Jacobson et al., as the
penalty tends to infinity. In penalty function methods it is thus not ne-
cessary to guess the number of entry points, and this is an obvious
advantage compared with the methods mentioned above. However, it turns
out that these methods are extremely sensitive to numerical errors, and
it is difficult to reach solutions close to the optimal solution,

An alternative method has been proposed by Jacobson and Lele [97]. The
method is based on a slack variable technique in function space, origi-
nally introduced by Valentine [ 217. By introducing a sufficient number

of additional state variables, the problem is converted into an unconstrained
problem of higher dimension. Thus the number of entry points need not be

3 priori known. However, hy introducing slack variables, the original
problem is converted into a singular problem, and then new computational
difficulties appear. In spite of this disadvantage, the slack variable tech-
nique has proved superior to penalty function methods [97].

In this paper a new approach is presented, The basic idea is to approxima-
te the feasible region S(x;t) < 0 with a region possible to express as an
explicite function of the control variables, that is, g, uit) < 0. Compu-
tational methods to handle the mixed state~control variable constrained
problem may then be derived with e.g. a Differential Dynamic Program-~
ming technique [ 107, It will be shown that a simple and natural approach
. . . . ds als
is to construct g(x,u;f) as hyperplanes in the (8, TR ,”"a“)=space,

] dt
where g is the order of $(x;t). The half-space g(x,u;t) < 0, thatis,
the accuracy of the approximation is then determined by the choice of
the hyperplane. The method can be considered as a penalty function
method in the sense that the slope of the hyperplane tends to infinity as
the half-space g(x,u;t) < 0 tends to S(x;t) < 0, However, it will be shown
that from a numerical point of view there are considerable advantages
compavred with ordinary penalty function methods.

In section 2 the problem is stated, and a brief survey of necessary

conditions for optimalitly is given in section 3. The constraining hyper-
plane techunique is p
approximating constrai
problem. The necessa
mic Programming algor
is outlined. In section 6 the

 are derived in section 5, and an algorithm
iciency and.the accuracy of the constraining




hyperplane fechnigue are investigated on problems of different complexity.
Comparisons are made with the penalty function methods and with the
slack variable method, and it will be shown that the combination of con=
straining hyperplanes and a second order algorithm is superior to these
methods, It will also become clear from the solved problems, that the
constraining hyperplane technique may contribute to the understanding

of the nature of state-variable constrained problems.

5. S8TATEMENT OF THE PROBLEM

Congider a dynamic system described by the following set of ordinary
nonlinear differential equations

=X (2.1)

where x() is the a-dimensional state vector and u(f) the m=dimensional
control vector., We wish to determine a control history u(t), té[to,tf] s
such that the cost functional

t
f

J=Fxlt)st) + | Lewtyde (2.2)
0

ig minimized. The terminal time t, may be given either explicitely
or implicitely. The minimization shall be carvied out subject to the
following constraints:

b e(ty)s ) = 0

Sst) < 0 wie et (2.3)
(g, uyty <0 ste Tt L.]
gix,u ) 5 v Le [to o

nonlinear vector
ned that the optimal solution

minal constraint 3 is an s~dimensional (s <
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be a scalar, the generalization io the vector case being straightforward.
We also assume that S is of order q, thatis, the q-th total time de-
rivative of S is the first to explicitely contain the control variable u.

The mixed state~control variable constraint g is a p-dimensional non-
linear vector function. g is an explicite function of the control variable
u, but the explicite dependence on x is arbitrary.

The dimension p of g(x,w;t) is also arbitrary, but at any time

te [t ,tf], the number p of active components of g must not exceed
the number of control variables m. Moreover, if §(x,u;t) denotes
the P active constraints at time t, it will be required that rank
{Qu} =p < m. If in addition the state variable inequality constraint S
is active at time t, the rank of the composed (f + l)xm-matrix

gu
q

3 . dlg

- {“""q } (2.4
dt

must equal p+ 1, where p+1<m.

3. SURVEY OF NECESSARY CONDITIONS FOR OPTIMALITY

Different necessary conditions for optimality can be derived for the
problem stated in the preceding section. Particularly useful from a
computational point of view are the conditions given by Bryson, Denham,
Dreyfus [17, and the conditions recently given by Jacobson, Lele and
Speyer [8]. In this section we will briefly summarize these two sets

of necessary conditions.

3.1. Necessary conditions according to Bryson, Denham
and Dreyfus

Assume that ty¢ (tO, tg) is an intermediate time when the state variabie
constraint S fecomes otive, snd assume that € (t1,ty) is the first

time when S | :comes .uactive igain, Ll ‘and 1Z are not 4 priori known,



The basic idea is now to transform the state variable constraint S in the
interval [tj,tg] into a control variable constraint. Since S is identically
zero on [ty,ty], allits total derivatives with respect to t must be zero

. . dls
and in particular — X, wt),
dt

the lowest order derivative that contains

u explicitely, must be zero. The interior point constraint N(x(tl)’;tl) =0,

where

Nex;t) =

S;t)

ds

&mm

(3.1)

is then imposed at the entry time, and the control variable constraint
in [tl,t2] is given by

q

dt

The exit time ty is then determined by (3.2) becoming inactive.

The transformed problem then is to minimize the cost functional

J= F(x(tf);tf) +f L(x, ust)dt
t

subject to the system equations

dt’

d—§(X,u;’c) <0

Y

0

=f(x,u;t)

and the constraints

b (x(tity) = 0

Nex(t,)ity) =0

(3.2)




q

S
g“m(x:,u;t) <0 w te [tl,t?]
dt :
g(x,u;t) < 0 wie [t),t,]

Following [17], we then adjoin the control variable constraints by means
of Lagrange multipliers p(t) and 7y(t) to the cost functional. The Hamil-
tonian H of the problem is then defined as

A

H = Lex, ust) + A L (00, ust) + B g6, ush) + y) S i, upt)
atd
where
>0 if gi(x,u;t) =0
ui(t) = (3.3)
0 if gi(X,u;t) <0
and
>0 if Set) =0
y(t) =
0 if Sty < 0

Necessary conditions for optimality then are

ol -

su Y te [ty )

d)\T oH

Ao (3.4)
dt Jok:s

T T
M) =y )

Txt=t
f
where p is an s-dimensional vector of multipliers. p(t), v(t) and p
d’s
are determined by the conditions gz, wt) < 0, — (x,mt) < 0 and

dtq




Redy );tf) = 0. If the terminal time tf is given implicitely, the additional
condition is

T
SRS 3.5)
f

At the entry point tl, the adjoint variables A(t) may be discontinuous,
and

T T T 3N
e B SR Sx Bty (3.6)

where 7 is a g-dimensional vector of multipliers determined by
the condition N(x(tl)-,tl) = 0. Also the Hamiltonian may suffer dis-
continuities at tl according to

T 3N
(o) =B -1 o K

It should be noticed that the interior point constraint (3. 2) could equally
well be imposed at the exit time ty. The discontinuities in A and H
will then appear at to instead of t;.

3.2. Necessary conditions according to Jacobson,
Lele and Speyer™

An alternative approach, originally introduced by Chang [37, is to
directly adjoin the state variable inequality constraint S<0 to the
cost functional by means of a multiplier function 7(t), where

>0 if §=0

0 if S5<0
Defining the Hamiltonian H as

T
H = Loe,ust) + AL (OFG, wt) + 1 (980, ust) + nOSED

—

+ These conditions will for brevity in the sequel be referred to as
Speyer’ 8 necessary conditions, since they first (in a weaker ver-
sion) were presented in r20l. We wi' also for hravity refer to ‘he
previous condit.ons as Bryson’ s con.itions.




where p(t) is defined through (3.3), tie necessary conditions are given
by (3.4) and (3.5). However, the adjoint variables X\ may now suffer
discontinuities at both the entry and the exit points, and

T

T
AT (67 =X () S, ()it )
(3.7)
T T , )
>L (tz) - >\ (t2+) + UZSX(X(tZ) 7t2)
The multipliers v 0 are determined by the conditions
S(x(t.):t.) =0 i=1,2 (3.8)

By inspection of (3.7) and (3. 6), it is also clear that the directions of
the discontinuities at the entry point are different.

These necessary conditions are of particular interest in the following
sections. It will be illustrated by examples in section 6, that the com-
putational method based on constraining hyperplanes converges to these
necessary conditions, and not to the conditions given by Bryson et al.

4, THE CONSTRAINING HYPERPLANE TECHNIQUE

The basic idea in the constraining hyperplane technique, is to approximate
the admissible region S{x;t) < 0 with an appropriate region in the

s dls

77’-'"9
d dt

state~control variable constrained problem.

S y-space. Thus the problem will be converted into a mixed

We will first consider the approximation technique applied to first and
second order constraints (q = 1 and 2). Conditions for the application
to constraints of general order are then established.

g%
|



4.1. First order constraints

a)

das ds
Tet S(xt) be of lirst order, that is, ar = “d‘t(x w;t). Approximate the

d
feasible region S< 0 inthe (8, a—?) ~gpace with the half-space

ds
e S 4.. 1
dt a1 <0 (4 1)

generated hy the straight line (hyperplane)
o = g 5= ~ .2
My~ { qt”dt 8 =0. 2y 0} (.2)
This is illustrated in Fig. 1. Now suppose that the solution is computed

ds
di

Tig. 1. - Constraining hyperplane my for first order constraints.

subject to the mixed state-control variable inequality constraint

ds
poi=dy 4y A Dty <
I (x,ust) alo(x,t) -0

Tt is then easily verified that S@(t);t) <0, ¥l > t , if and only if

S(x(t )? 4)) < 0, Thus ) eQ, ut>t if and only if (S ) €0,

-
11

C
& ’1t dt

aad



The slope of 7, obviously determines the accuracy of the approximation,
and cansequent{'y it should be favourable to choose a; as large as pos=
sible. In section 6 the computational aspects on the approximation accuracy
are discussed and illustrated with solved problems.

4,2, Second order constraints

The extension to second order constraints is straightforward.
Assuming that

ds
prrclon et t
T ( )
2 2
ds ds
5 Ty (& ust)
dt dt
ag d’s
we approximate the admissible region $< 0 in the (S, a ,,,m) space
with the half-space dt
2
€5 va Lrasco (4. 3)
2 1dt
dt
The half-space is generated by the plane (hyperplane)
2 2
ds d”s a’s ds
:{(s,m;w)'—-nwr m+asﬁo} (4. 4)
2 dt dtz dtz 1dt

Furthermore, if is postulated that the parameters 2, are real, and
that the zeroes {;1 Ez of

pta_ =0

2,
p+a 9

i
are real with El < EZ < 0. (These conditions may be somewhat relaxed,
as will become clear from the following).

We will now prove that 8« 0, wt>t , if (4.3) plus some simple con-
ditions at t; are satisfied. Then rewrite the differential inequality (4. 3)
as the inhomogeneous differential equation



o 2
9—548» *ay %‘;— Ta St () =0 (4.5)
dt "
. X ds o .
d introduce the state variables Z =50 Zy = 8. Then (4.5) is equiva~-
nt to
- a -4 =1
d 1 2 2 2
a—f— = 7+ e“t) = Az + Be' (t) (4. 6)
1 0 0

y be able to establish the relevant properties of the system (4.6), we
fine new state variables wy and w, through the linear transforma-

on w =Tz. Then
dw

-1 2
Tl TAT “w + TBe (t)

@.7)

=1 =1
ow choose T so that TAT is diagonal. Then T ig given by the

andermonde matrix

1 1

nd (4. 7) becomes

I3 0 -1/, = &)
1 Lo 62(t) (4.8)

rrom the explicite solution

gl(t - tO) t, El(t = 8} 5
Wl(t) =e Wl(tg}} + J e [~ 1/(5{,1 - gz):]G (s)ds

t
0

£yt = to) t & (t-s) .
w,(t) =e w2<t0) +j e [1/(51 - 52)15 (s)ds

of (4.8) and from the assumption ggl <E£,<0, it is obvious that

or

Ve
ful



Wl(to) >0e Wl(t) >0, vt zto
4.9)

w_(t )g()ww?(t)i(), wi>t

2°0 0

Since w =Tz, (4.9) is equivalent to
(2 (tg) = EyZo L)/ (6] = £,) 2 05 (2 (1) = £z, (0)/(E] = £)) 20, ¥tz t,
(2 (b)) + £ 2, () /(6] = £,) SO (-2 (0 + £ 2, O) /(€ = £,) S0, ¥t t,

or

ds ds .
== = —_— -8 t =1,2 .
a0 a‘;’ngO, t toc I Ei <0, ¥ ZtO’ i , (4.10)

We have thus proved that (4.10) holds if the inequality (4.3) is satisfied
for all t> tG. But if

and

ds
— =850, *t>
a CESE0 TR

is satisfied for i =1 or 2, then S5<0, vt >tg, that is, S bhelongs to
regions similar to 2 for the first order constraint, It may then finally
be concluded that

2
d S ds
Y =, uty +a, —

. _}. -
. 130 B a8t £ 0, vt ty

implies that
if

and if



(4.11)

ds
a &80 =g

holds for either i =1 or i=2. The solution thus always satisfies

S(x;t) < 0 if the constraining hyperplane 7y is never violated, and if

the initial state of the system satisfies the inequalities (4.11). Notice

that (4.11) is a very weak restriction, since it can be satisfied by choosing
the parameters aq and ag such that min (éji) ig negafive enough, (Qi are
in the sequel frequently referred to as the eigenvalues of the hyperplane).

4.3, Higher order constraints
The constraining hyperplane technigue is easily generalized to state

variable constraints of arbitrary order. Tet Sty be of order q,
that is,

ds _ds

dt  dt 650

ds _d8 o
att ot

The feasible region S< 0 is then approximated with the half-space

— g mﬁ“~i+...+aq8§0 (4.12)

which is generated by the constraining hyperplane

dg qg=1
ds 4.8

o s s
q ldtqml

Mo~ {(b,a‘;,..,, q)i

+... +a s=o} (4.13)
dt L

dt

The parameters a; are assumed real and positive, and it is assumed that

the zeroes £., £.1-0., & of
1 T2 q
=1
13q+apq + +a =0

1 q



are real, distinct and satisfy £ <f,<...< &“q < 0.

We will now prove that (4.12) implies 8< 0, wt>1t , provided that the
initial state satisfies some relations similar to (4.11). The differential
inequality (4.12) is then rewritten as the inhomogeneous differential
equation

q q-1

d 2

48 ., 4 8, +aqS+€ ty=0

q 1.9-1

dt dt

and the state variables

ga-t

s
Z. = ” 1
boogd

are introduced. Then

. . -,

al 3.2 aq ‘\

10
0z _ T N
at o 1 0 o| €O~

_ i L

2
= Az + Be () (4. 14)

-1
The linear transformation w = Tz, where T is given by the
Vandermonde matrix

ra-1 q-=1 q-1
£ £ e kg
-1
T =
£ £ £y
L1 1 i

then transforms (4.14) into



, w + TBEAM) (4.15)
dt : ,
0 £

Before proceeding with the analysis of the system (4.15), an explicite
sxpression of T will be derived.

ntroduce the polynomials

. q .
i -1 i -2
Gl = T p-g)=p Trept ..

1 .
jFi

with c; > 0. With the assumptions made about Ei’ Cl(p) has the
following properties.

c'te) =0 P45

i

C(E) 0 (& +€;)

q
clE) >0 (B, <y <oe <E)

Further, if

Ci(Ei) >0

then

It is now easily verified that

anvl

The

anc

ine

thu
be



1 1 1
1/C (El) 0 1 € e Cqml
T = " .
el ; q 'q
0 1/C (gq) 1o Cq -1
and
Lt
TB = :
q
-1/C
/ (Eq)
The solution of (4.15) then is
§i(t -t g (t-s) . )
w () =e W (t) + g“ e [-1/c (Ei)]e‘ (s)ds
0

and if we avbitrarily assume that cl(gi) > 0, it follows that
wi() < 0wixty, ifandonlyif w (t)<0. (f cl(gi) <0, the

inequalities are just reversed). Since w = Tz, the inequality

a1

ad 71

@]
i

)

IN
=}

i i
= 1 | 3
wi(t) =[1/CHENI ey, eie : (4.16)
8
thus holds for all t>t_, if and only if it holds for t = tO. 4.16) may
be further simplified to

4 d
{ﬁ(a’{" —gj)}sio wt>t,i=1,...,q (4.17)
=1
it
if and only if (4.17) holds for t = tO’ where (‘C-% - g;j)s is interpreted

as the operator (ﬁ - Ej) acting on S. (If cl(gi) < 0, the inequalities



(4.16) are reversed, but (4.17) are unchanged) .

The order of the differential inequalities (4.17) are q = 1, and to these
the same procedure may be applied until the order of the inegualities
is 1 or 2. The conditions derived for first and second order constraints

are then applicable.

Sufficient conditions for the solution to satisfy the constraint
S<0, vt Zto, can now be summarized as follows:

Assume that the inequality

q -1
ds (x,w;t) + al—d——_—1§ =t + ... ta Sxit) <0
at’ dt™ 4

holds for all t > tO’ and let El < 52 <...< Eq < 0 be the zeroes of
the polynomial

q q-1
+ =
P alp +...+aq 0

Then a sufficient condition for

<
S<0 vtz ty
to hold, is the existence of a sequence of q -1 zeroes gi e Ei ,
such that 1 q-1
S<0
d
(zr — £ )5 <0
1
d d
(o -f )G £ )8<0
dt . i dt i,
a-1 4
N -¢6) 8S<0 (4.18)
. dt i, -
j=1 j
hold for t =1t .

0



a1 1g
ad 1
. If S(to) < 0, (4.18) are easily satisfied by

The inequalities (4.18) generate half-spaces to which S, ...,

must belong for t= t0

choosing the parameters a, such that the eigenvalues {. are negative
enough. All the half-spaces then tend to the half-space S < 0, while
the corresponding hyperplanes become perpendicular to the S-axis.

5. A SECOND-~-ORDER DIFFERENTIAL DYNAMIC PROGRAMMING AL-
GORITHM FOR MIXED STATE-CONTROL VARIABLE CONSTRAINTS
g(x,ust) < 0

As was shown in section 4, the constraining hyperplane technique trans-
forms the original state variable inequality constrained problem into a
problem with mixed constraints, g(x,u;t)< 0. The fact that g now
depends explicitely on the state will have consequences for the numerical
solution of the problem, since existing algorithms, see e.g. [2] [6]
[107], deal only with pure control variable constraints g(u;t) < 0, Thus
a suitable principle for the algorithm must be selected and then genera-~
lized.

Our choice is based on personal computational experiences. Methods
based on Differential Dynamic Programming have in general proved

to be superior to other existing methods, and we have thus chosen this
approach. Further, the choice between first and second order methods
is simple, since the additional work required for second order methods
always pays back.

In this section we will thus develop a second order Differential Dynamic
Programming algorithm for a particular class of continuous time control
problems, This class consists of those problems for which the optimal
control is a continuous function of time, i.e. bang-bang control problems
are not covered. It will alsc be assumed that the problem has normality
properties [2]. The algorithm is a generalization of the algorithm given
by Jacobson and Mayne [10] for the case g(u;t) <0, and with some
exceptions, the same technique will be used to derive the algorithm for
the general case g, u;t) < 0.



5.1. Differential Dynamic Programming

Let us briefly recapitulate the problem that results when the constraining
hyperplane technique is applied. Given the dynamic system

dx
- f(x,ust) x{t

=x (5.1)
we want to determine the control strategy u(ty, t0 <t< tf, that mini-
mizes the cost functional

t
f

J =Tt + tj L(x, u;t)dt (5.2)
0

subject to the constraints
Dix(t)it) =0

gx,uzty < 0 vte [to,tf] (5.3)

where 3y and g are nonlinear vector functions of dimension s(<n)
and p. Notice that the dimension of g is arbitrary. However, as will
hecome clear later, it is necessary to put restrictions on the number
f of active constraints §.

A possible way to handle the terminal constraints, is to adjoin y to the
cost functional by means of Lagrange multipliers [ 2], and in the sequel
we will thus consider the augmented cost functional

t
f

J= Fx(t)it) + by (x(ts tp) + [ Lk, wtydt (5.4)
t
0

It is assumed that the problem (5.1) = (5.3) has properties such that
the minimal solution constitutes a minimal solution also of (5.4). For
some problems this does not hold. However, by adding the quadratic
form cz])Td) to F. the extremal of (5.4) canin general be made a
minimizing solution [ 167.

Now define V°(x,b;t) as the minimal contribution to the cost over the
time interval [t t.], when the state of the system at time t is X(1),
i.e.



t
f
VO (x,b;t) = mi {F + szb + j“ Lds} (5.5)
u(y) t
tgrgtf
gx,u;r) <0

Assuming that V°(x,b;t) exists and is twice continuously differentiable

with respect to x and t, wte [to,tf], VP (x,bst) satisfies the well-known
Hamilton—~Jacobi-Bellman partial differential equation+

“%W(X'b;t): mén {L(X,u;t)+V;(X,b;t)f(x,u;t)} (5. 6)
g(x,u;t)<0

f G(t), i(t) and b is a nominal solution close to the optimal solution

u(t) = () + du(t), x*(t) =x(t) + 6x(t) and b* =b+ b, (5.6) can be
written

- %2—].:()2 + 6x,b + 5bst) = min {L(SE + Ox,u + dust) +

. bu
g(x+6x, utbu;t)<0

V2R + Bx, b + Bbst)f(x + ox,u + Gu;t)} (5.7)

Equation (5.7) will in principle yield no further information about the
unknown quantities &u, 6x and 0b, since V°(x,b;t) is not known.

But assume that V° (X, b;t) is known, and also the first and second order
partial derivatives with respect to x and b, all evaluated at X, b;t.
Also assume that V° is sufficiently smooth to be expanded in a second
order Taylor expansion. We can then approximate V°(x,b;t) with

+
Notice, that with the definition of V° (5.5) and the assumption that
V° possesses continuous partial derivatives with respect to x and
t, V%(t) can be identified with the adjoint variables A(t) (sec. 3).



VO (x, bst) = VO (X + 0x, b + Obit) = V° (, bit) + VOOx + V}Ob +

1 1
+ (6x,V?§b5b> +3 <6x,v°m6x> +3 (6b,V‘]’3b6b> (5.8)

for x(t) and b sufficiently close to x(t) and b. Similarly V;(X,b;t)
may be expanded to first order as

VO (x, bst) = VO (x + Ox, b + Obit) = V7 (X, bit) + bx VO + Sb Ve T

X X X XX xb
(5.9)

All quantities are evaluated at }—{, B;t. We also introduce J

2° (%, Bit) = VO (%, bit) = V(x, bit) (5.10)

that is, the difference between the optimal cost with initial state x at
time t, and the nominal cost produced by the nominal control G(t) from
the same initial condition, To simplify the notations, the superscript
indicating the optimal solution will from now on be dropped.

Substituting (5.8) - (5.10) into (5.7), we then have

= vV oV oV oV
3V  2da X b. xb 1 XX
L2 == e —= o —— - -=(d 1) -
T w oy o (Bx, 5 0b) =5 (%, = 0)
VvV
- l((?)b, ———E-Eéb) = min {L()'Z + 6x,u + dust) +
2 ot 5
u
g (x+0x, utdu;t)<0
+ <VT +V bx+V b, I(X+0x,u+ 5u-t)>} (5.11)
X XX xh ' ’ ’ ’

That higher order terms may be neglected in these expansions is
justified in [10] where also a detailed error analysis is given. Our
notations will differ from those in [10]. We will thus consider Vy
as an element of the dual space of R™ and not as the gradient.
This means that transposes will appear throughout the derivation
when compared with [10]. (, ) is used as the scalar product
between two elements of R™.




Equation (5.11) is the fundamental relation in Differential Dynamic
Programming, and from this the algorithm will be derived. Notice that
V and the partial derivatives are evaluated at %x,bit. Since V is
approximated with a second order expansion, we then have the following
relations between the total and the partial time derivatives

d v + a(Y7+ +Vf(‘?at
a. a) = — (% -
I ( ) St a) L ust)
dv vV

X X T = =
el i e : u'Hyv
m 5 f & ut) v
dv av

XX XX
dt ot

(5.12)

™y i 1T E hv
dt T at R DA
Vi, wavbb
dt Tat
dVXb ) 3 Vs
dt T oat

5.2, Derivation and outline of the algorithm

The derivation of the algorithm is based on the fundamental equations
(5.11) and (5.12), where the former is used twice. First the optimal
solution is characterized in terms of neighbouring optimal solutions
under the assumption that these are known. This step constitutes a major
part of the derivation. When the optimal variation fu is determined (in
termg of 8x and Ob), the left hand side of (5.11) will then be identified
with the right hand side of (5.11) where the optimal variation Su is
substituted, This will result in a set of partial differential equations for
the optimal return Vx, bhit) and its derivatives. The relations (5.12)
will then yield the total time derivatives, and boundary conditions for




these can be determined from (5.5). These differential equations will

thus characterize V(x,bst) to second order about X, b;t, if either the
nominal control u(t) (resulting in the nominal state X(t)) is sufficiently
close to the optimal solution u¥*(t), or if the problem is Linear-Quadratic
and no control variable constraints are active.

These differential equations and the computed expression for the optimal
variation Ou, constitute the fundamental relations on which the algo-
rithm will be based.

In principle. it will then be apparent how the unknown quantity 6x should
be determined. We could just apply the new control u+8u to the dyna-
mic system (5.1) since 8u has been expressed in terms of 6x and O8b,
However, it should be emphasized that we are in general dealing with
highly non-Linear-Quadratic problems, and the second order approxima-
tions of the optimal cost may be very bad. Then there is no guarantee
that the new nominal solution x + &x, u+ 0u, b+ 6b is a better approxi-
mation of the optimal solution than the previous one.

A very elegant and powerful way to keep this problem under control, the
"step-size adjustment technique', was proposed in [107, and is included
in the algorithm.

For similar reasons, the computation of the corrections &b may be
critical for the efficiency of the algorithm. In the outline of the algorithm,
this problem is treated. The computational technique proposed is a gene-
ralization of the method proposed by Gershwin and Jacobson [7], and has
proved in practice to be a substantial improvement.

We then introduce the Hamiltonian
H(x,u,Vx;t) = Lx,ut) + fo(x,u;t)

and consider the right hand side of (5.11) with 6x and 8b equal to
ZEero.

ngiln { H, o+ bu, V) } (5.13)

g(x, u+bu;t)<0

Determine the variation Su* that minimizes H subject to the constraint
g(x,u+ dust) < 0, and assume that the minimum is

- 113 .t
Hx,u ’Vx’ )




where u® =u+ 0u®. Thus u® would be the optimal solution if the
corresponding trajectory was X and the corresponding multipliers b,

Consequently, u¥* must be corrected by an amount Su that takes into
account that X and b differ from the optimal solution with 0x and &b
respectively. We then reintroduce these variations, and also the Su
required to maintain optimality.

min { HE + Ox,u™ + 8u, V_ (X + 0%, b + 6b;t);t) } (5.14)
du X
g(x+bx, u*+dust)< 0

Depending on whether the constraints g(g, u*;t) are active or not, we
must now separate between two cases, A and B.

Case A. Let us first consider the case where some of the constraints g
are active at x,u”. (The unconstrained case B will then follow as a simple
special case). Denote by {i(=u") the minimizing control, and assume

that p of the constraints g are active (p <m). Let § stand for these
constraints, that is, &@,q:;t) = 0. We assume that g satisfies the
constraint qualification (compare (2. 4))

rank §u(§,ﬁ;t) =P (5.15)

We could now handle the active constraints § in the same way as the
terminal constraints 3, i.e. by introducing Lagrange multipliers A
and a corresponding Lagrangian

i(;,u,)\,vx;t) = H(;E.u.vx;t) + O 8%, wst))

Necessary conditions for a local minimum in u =@ then are
- - T -
1) = t) + i) =

L (K ANV = H K4V 0 X8 (K, 60 =0

8(x ) = 0
where the multipliers )\ > 0 exist and are unique if the constraint
qualification (5.15) is satisfied. This approach is used in [10] for the
pure control variable constraints g(u;t) < 0.
An alternative possibility is to use the mu'tiplier function technique [16].
Since this approach is very well suited for neighbouring or disturbed

solutions, the minimization problems (5.13) and (5.14) will be approached
with this technique. Restricting ourselves to nonsingular problems, the



p-dimensional vector function u = y{x,u,bst) will be called a multiplier
function if and only if

i) u exists and is twice differentiable with respect to u in a
neighbourhood of X, b;t.

i) @, abit) =)
Necessary conditions for optimality then are
H (X,Q,V -t)+uT(§Z 4. b:t)8 (x,Q;t) = 0
1 Ay My X’ g 2 chy My )gu [l

' (5.16)
gx,0:t) =0

The choice of 4 is now free within the frame of the definition. In
particular

-1
o ,T T
R, bit) = - [gug‘u ] 8. H,

is easily shown to be an admissible multiplier function, and this will
be used in the following.

Now reintroduce the variations 6x, Ob and du according to (5.14), and
‘assume that the constraints g are still active (since the variations are
small). Analogous to (5.16) the following conditions then are necessary
for minimum, and from these conditions the optimal correction &u will

be determined.

Hu(i—i +6x,0 + 6u,VX(§ + 8x,b + Obst)st) +
+ R+ 6x, &+ bu, b+ éb;t)gu(i + 6x, 4+ dust) = 0
g + 6%, 4 + dust) = 0 (5.17)

To determine_ &u _as a function of &x and &b, we expand (5.17) to first
order about x,q, bs;t. Then




HT+H 6u +H 5x+fT(V 6x +V &by +
u uu ux u XX xb

AL _ .
+8, uxﬁx + uuﬁu + ubéb) + u@uuﬁu + ’“‘Lguxéx =0 (5.18)

"N

g+ 8 bur éxax =0

All quantities are evaluated at x,Q,b;t. The notation uguu symbolizes

2/\

agi

T,
i auz

and similarly for ugux. o By and B, are determined through a straight-

forward differentiation, i.e.,
-1
T ~
me =80 ] 80 T HE )
7t T
Hy =7 [gugu] gu(Hux * fu Vxx i u‘gux) (5.19)

-1
Hp =~ [guglrf] g fTVXb

uu

T
Substituting (5.19) into (5.18), noticing that Hu +u gu =0 and =0

according to (5.16), the necessary conditions (5.18) reduce to

T T
Y [(Huu " uguu)éu - (Hux * fu Vxx N “gux)ﬁx * fu beﬁb] =0

(5.20)
guéu + gxéx =0

where
T 771
Y=1 - &
Im gu [ngu1 gu

is an orthogonal projection. Im stands for the unit matrix of dimension




m (= the number of control variables). Thus
H + du+ (H +ug +fTV 6x+f_TV ob
( uu ’J‘guu) ut ux Loux " xx) u xb
. . T
belongs to the range space of the linear transformation gu , and then

T T T
+ f b =
(HU.U i uguu) 611 - (Hux * ugux M fu VXX) GX uVXb b gua

with the p-dimensional vector « determined by the condition
Quéu + QXGX - 0. To solve for ¢, we assume that Huu + ,J,guu is non-—

singular,™ in which case

-1 T T T
bu = - (Huu " u'guu) DHux i “gux N fu VXX)GX " fu beéb - Qua]

(5.21)
Substitute (5.21) into gu5u—%gX5X::0. Then
-1 T -1.T
- + ub Ox - o)
gu(Huu ugull) (Hux " ugux - fu VXX) x gu(Huu * y’guu) u xb b+

-1, T
* gu(Huu * uguu) gua N gX % 0

and

-1
B -1,T -1 A T ‘
o= [gu(Huu * uguu) gu] l:gu(Huu " Mguu) (Hux * ugux * f1.1 VXX) Ox +

-1.T
o 6 - "N
* gu(Huu " uguu) fu be b gxéxll (5-22)

-1 1]“1

The inverse [gu(Huu +ug ) gu exists since Qu is assumed to have

uu
full rank § < m. With ¢ determined by (5. 22) the optimal variation bu
(5.21) finally becomes

+
Although this assumption is very natural for nonsingular optimal control
problems, it may probably be relaxed. See e.g. ri6],



-1 T
PO ~ - + f V 5b -+
bu=- (5 +pg ) O pg LV O - (H HE

1T -1.T-1 - T
. & ; +f Ox
N (HUU+MQUH) g‘tl [gu(Huuﬂ’Lguu) gu ] gtl(}qu+#guu) (HuX_'_ugux Rkl Vxx) X+

"‘1 T ~ "'1/\T "‘lA ~ “1 T
" & : &b -
i <H ] " Mguu) gu [gu(Huu * Mg ) & } gu(Huu - ngu) fu VXb b

. -1, T-1
= (Hoy T HE Q F@ uu guu) glﬂ gX‘SX

or
T-1, . -]
bu =~ (H +pg {I =-g u(Huumg gu] g (H_-+ug ) } ,
T T
' {(Hux ¥ ugux 1 Vxx)éx 4 beéb} )
& -1, T n -1 T1-1
- g )T [Qu(Huu +pg ) gu] 8 bx (5.23)

To simplify the notations, we introduce the mxp-matrix
-1 T -1 -1
= +
Q (Huu " "'Lguu) gu [gu(Huu “guu) glﬂ

and the m ¥ m=-matrix

u\uuu

-1, T Tq-1
Z= Im - qu - Im— (Huu i ’J’guu) g l'g N uQ gu] gu

where Im stands for the unit matrix of dimension m x m. Since

+ug

uu is symmetric, the variation 8u necessary to main-

uu



tain optimality (5.23), can then be summarized as the linear feed-
back

b — 8,6+ 5,55 (5. 24)
where
-1 R T ,
B, == B THE ) T (H g V) - QEL
(5.25)
) ~1 fTW
BZ - Z(Huu + !“Lguu) u va

Except for the Qf -term, these equations are identical to the equations
derived in [ 10] for pure control variable constraints g(u;t) < 0 (and of
course yield the equations in [10] as a special case).

To proceed with the derivation, the optimal admissible variation (5.24)
shall be inserted into the basic relation (5.11). However, at this stage
it is convenient to first establish some properties of Z, Q, -81 and Bz,
since this will simplify the subsequent derivation.

] 2
1, Z and Zf are projections (2~ = Z), and ZT projects the range of

v

gu on zero. However, the projections are not orthogonal (in the

metric used).
ZTHT =0 (5. 26)
. m
where o is the null element in R, (5. 26) follows from the
~ /\T
fact that HE = - gri 1. belongs to the range of gu , and from proper-

ty 1.

-1_T -1_T =1
+ = ] =
3. Z(Huu Mguu) z (Huu - yguu) Z z (Huu N Mguu) (5.27)

-1
The symmetry of Z{( _+pug ) that is, the second equality in
uu uu A

(5.27), is easily verified. Then ZE +pg ) ZT‘:
ua uu

2 -1 1
= = + i i
Z (Huu + ngu) Z(Huu yguu) , where the last equality

follows from the projection property of Z.




7Q =0

mxp
A straightforward multiplication yields

-1 Tr, ol Tl )
20 =Q- (Huu+ 'uguu) gu [ng(Hu11+ '!ﬂguu) guJ =Q-Q= Omxf)‘

where Omx 5 is the mxp-dimensional null matrix.

g9 :Iﬁ

This follows from the definition of Q.

@uﬁl =-8 (. 28)

From the definition of Bl (5.25), we get

ml g P - T . 3 o —
(Bt g, LV )-8 Q8 =

& Bl T ngz(Huu+ Mguu) ux

u

- qugx - gx
since ZTQT =0 according to property 1, and & Q =1
u mxp g properiy 1, A 6
according to 5.
guﬁz = Oﬁxs (5.29)

From the definition of 62 (6. 25) follows
6B —-8 7@ +pg )Ll
u 2 u o ouu w’  u xb

and since guz = according to 4, (5.29) is proved.

O
prm

T __ T T _ T ;
62 (Huu+ uguu)ﬁl - BZ (Hux+ ugux+ fu vxx) - be fuBI (5.30)



The second equality is trivial. To prove the first, we notice that
T ~ T T T
+ = - + + f - +
B 2 (Huu H g;uu)ﬁl BZ (Hux ugux uvxx) 62 (Huu “guu)ng

and

=1
T T.T -1,T
B 2 (Huu+ “guu)Q - B2 gu [gu(Huu+ u'guu) gu] - Omxp

since gusz =0 according to (5.29)
s

(We will now drop the subscripts on the null elements, since the
dimensions in the following will be obvious).

For future availability we will also derive an expression for the
variation

B = (x + bx, @ + Bu, b + Bbst) ~ px, @, bit)

in terms of 8x and 8b. Approximating &y with a first order series

expansion about )_c,ﬁ,l-o-;t, and substituting g , 4 and p,_ according
u "X b
to (5.19), we get

n ATl A T
} gu [;(Huu+ uguu)ﬁu + (Hux + ugux + fu Vxx)éx +

T
)
+ fu be b]

or

-1
T T T
6“ - [gugu,‘ gu [ (Z - Im)(HuX * “guX * fu VXX)6X *
T T
T uguu)QgX§x LRCAER N beéb:\

where Ou has been replaced by the local linear feedback (5.24).
Since, by definition, ZT - Im = - QEQT, by finally reduces to




_-Q(H U +fV 5x+£g(H + g )lT"‘] g&xm

uu

-Q fuvxbﬁb (5.31)

Now return to the fundamental equation (5.11), and expand the right hand
side to second order under the assumption that the constraints are active,

that is, expand

m1n{H(x+6x @+ Bu, A & + 0x,b + 6by t)5t) +
bu

+ uT()_c + 6x,0 + bu, b + Bbst)g(x + Ox,a + Gu;t)}
to second order about X,f,b. Then we have

mm{H+H ox + H 5u+(5u H 5x) +-—(5x H 5x> +
bu
+—1-<6uH Buy + (0x,V__f) + (bb VTf>+

2 "Tuu TURX " xb

o) ) o)
+(Ox,V_1 Ox) + <6b,vfbfx x) + (Ox, V£ Bu) +
# (B, V£ Bu) +(u, 8) + (s, 8 Ox) +

' 'xbu Ko TPx

+ (Y, 8 5u)+(6u,g)+(6p 6x)+(6ug6u)+
+-1-<5u ug 5u)+l'<6x g Ox) + (Ou,ug Ox) +
2 > Puu 2 'HByx ’“gux
+ higher order terms}

We now insert the minimizing variation du = 615X + Bzéb and the

variation 8y given by (5.31). After some simplifying calculations,

where we also make use of the relations § =0 and H + y,T =0,

the following expression is obtained.



T T T
g ) &
H+(Hx+p, gx+f VXX) x + f beb+

" T T T A
* <6X' {(Hux * “gux * fuVXX) 32 * Bl (Huu * uguu)ﬁZ *
T T T.T
* (fx N fuﬁl) be - (gx * guﬁl) Q fu be -

T

-1
~ T ~Tra -1 T
- H uéux * fu Vi) quﬁz ey ‘:gu(Huu+ uguu) gu] guBZ}éb )+

1. T T T
- o)
* <5b’ {Eﬁz(Huu * pguu)ﬁz - befuBZ bequguB2} b+
1 ~ 1,T
* <6X’ {E(Hxx * ngx) * Vxxfx N Eﬁl (Huu T guu)Bl *
T ~ T ~ T T
+ /31 (HuX THE LT fu VXX) - (Hux tpg fu VXX) Q(é’x + guBl) +

8T @ +up '1§T-1"+g,3 bx) 5.32
6 [, ~ug ) 8 | @ +ES)) .32)

All quantities are evaluated at )—<,ﬁ, B;t. The series expansion (5. 32)
is now identified with the left hand side of equation (5.11). Identifying
terms of equal power in 0x and &b, and making use of the equations
(5.12), a set of ordinary differential equations for the optimal cost
and its partial derivatives are obtained. It should be kept in mind that
these are evaluated at X, b;t.

1, Identifying terms of power zero in 0x and 0Ob, we get
dV da
"3t Ta o

Equation (5.12) then implies

da i\ - - - - - -
- = H A — - A - ) - .
T H ” fo (x,u;t) = H = L(x, u;t) fo (x, ust).

where the last equality follows from the relation




5 - L&)
Then
93 _ &8,V 5 - HE W Vst 5.33
dt - X’) ( s Uy X’ ( . )
2. Terms of power one in 0% and zero in Ob.
BV
-—=-H + + 5T
St HgtTH g Vix

(5.12) then implies

dav
X

T - = T
- = H rpte (- Ik u) Vo (5. 34)

where all quantities are evaluated at X, 0, b;t unless otherwise indicated.

3. Terms of power zero in 6x and one in 0b.
oy
ot xb
Then
dv
b - = T
-~ E - wt) TV (5.35)

4.1 Mixed terms,

?V
xb ~ T T T

_at *(Hux+“gux+fuvxx) B2+Bl (Huu+uguu)32+
s 1BV - @ +§3)Qf§v

. ) —1:\T n
- H Y HE +f A\ ) [@ H FHE ) B | 85



According to (5.29), gugz =0, and-then the last two terms equal zero.
Further,

A ~ T T.T
+ =
(gx guﬁl) Q fqub 0

since 8 + guﬁl =0 (5.28). Finally, from (5.30), follows

~ T T, _ T N
(Hux T gﬁx * fu Vxx) 62 - Bl (Huu " uguu)BZ

and then
v
xb _ T, T
Tt - (fx N fuBl) be

which, together with (5.12), implies

dv
xb T T
el (Ve £ B) Vo (5. 36)
5, Terms quadratic in b,
vV
bb _,T T T.T
- at - 62 (Huu * “guu)BZ " befuﬁz * 62 fu be
T T.T TT
- bequguﬁz - 62 qu fu be

Again, the last two terms will vanish since guB =0 (5.29). It is also
easily verified by straightforward calculations, plus (5.27) and the
projection property of Z, that

TT T T
ﬁzfuvx =V B

b~ Vxbu"2 By My ™ uguu)BZ

Then (5.12) implies

av
bb _ T
T B, (H  +HE B, (5.37)




6. Terms quadratic in 0x.

aVxx T T
T Bt Box "IV * Vextx t Bl H ™ uguu)Bl *

T T T T
N Bl (Hux+ugux+fuvxx) " (Hux+”gux+fuvxx) Bl -

~ T T T.T ~ T
s T o Vix) Q(§X + 8.8 - €. Quﬁl) QM *ug V. )

-1
T -1 T
ve [em rue )8 | B 8B

-1
~ T -1 T "4
@ v8 ) 8,0 g8, | B

The last four terms will vanish since (gx + §uB1) =0 (5.28). Then

dvxx T T
= +ug + + f +
dt Hxx ug}o{ fx Vxx Vxx fx B 1 (Huu * “guu)'gl *

T - T o T T
* Bl (Hux " ugux " fuvxx) * (Hux " “gux - fuvxx) Bl (5.38)

Summarizing the equations (5.33) - (5. 38), we thus get the following dif-
ferential equations for the optimal cost and its partial derivatives:

da _ - - .
-5 = H = HEw V50

dv

X

B Ta == T
T —Hx+“ gX+ (f = £(x,u;t)) VXX

av
—b R ey T
g = (-G w) TV

(. 39)
v,

~ T
& % EAD Vi




PN * .- S + s )8

dt B (Huu K guu)' 2

dav
XX ~ T T

- — = H 4+ + f + f o+ + 1 +

dat ®X '”gxx cv L Vxx. b4 31 (Huu H guu)ﬁl

T T ~ T T
+pug +f + + + f
* Bl (Hux ’”’“"u}: uvxx) (Hux ’”Lgux uvxx) Bl

where

-1 n T
Bl o Z(Huu T Quu) (Hux * Peyx " fu Vxx) - ng

(5. 40)
~A =17
By =" ZH T H guu> fu Vb
and
<1,.T 1,17t
= - ~ o> + "~ =L a ~
Z=1 (Huu THE &y [Qu(Huu "Lguu) gu] 2u
B (5.41)

-1 T ~ =1, T
Q=(H_ +ug ) & (o, * 1B, & ]

u

All quantities in (5. 39) - (5.41) are evaluated at ;g,ﬁ, B;t, unless
otherwise indicated.

The boundary conditions of (5.39) are identical to the boundary condi-
tions given in [10] for the case where no control variable constraints
are present, thatis,

a(x(tf), b;’cf y=0

- - - T -
V, (i), Bt = F E ity + b h (x(t)3t)

- - T -
V, (x(ty), bit) = 7 (x(tp)ity)
bt f 7 (5.42)

- - T =
V() Bit) = by G(tity)
Vbb(?c(tf), B;tf) =0

v, (). Bit) = B @ity + by (it




Case B. When no constraints ave active at &, the differential equations
corresponding to (5. 39) are easily obtained from these equations if we

put
p=290
Z=1
m
Q=0

The boundary conditions are the same.

The influence of Z and @ can be given a simpls interpretation, Let
us first assume that gx =0, The correction Ou = B, bx + Bzéb then
becomes -

-1 T T
= - H Ox + f
bu=-2Z(H +p8 ) [(‘x, IV beéb]
and thus

guéu =0

since £,Z =0. The new control @t + Ou then satisfies (@ + 6u) =0
to first order as was required (5.20). An alternative way to express
this, is to say that Z projects the correction &u which should he
made if no constraints were present, into the tangent plane of ¢.
However, 7 is notan orthogonal projection, since 0Ou is the mini-
mizing correction in the tangent plane, and thus the curvature of H
must be taken into account,

Then consider the general case éx % 0. From (5.24) and (5. 25) we
have

=15 T T
bu =~ Z(Huu+ H guu) [(Hux " I“!’gux i fu Vxx) Ox + fu beﬁb] ) ngﬁx

Ou now consists of a projection of the unconstrained correction on the
tangent plane, plus a term where the change of the tangent plane due
to Ox is taken into account.

Having characterized the optimal cost in terms of a neighbouring optimal
solution, it is now obvious how an algorithm for numerical solution should
be constructed. With some smaller, but from a numerical point of view
essential modifications, the algorithm we outline here is a generalization
of the algorithm given by Jacobson and Mayne in [10].



Algorithm:
1. Guess a nominal control ﬁ(t), tO <t<g tf, and compute the corre-
sponding nominal trajectory )-c(t). Store i_l(t) and ;c(t). Guess a nominal

set of multipliers 5, and compute the corresponding cost \7(x0, E;t 0).

2. Compute boundary conditions for a, VX and VXX from (5.42).

da de dVxx
t prf v and i backwards from ’cf to to while mini-
mizing H(x,u,VX;t) subject to g(x,u;t) < 0. If no constraints are active,

3. Integrate

then Z =Im and Q=0. If P constraints g are active, then Z and Q
are given by (5.41). Compute Bl according to (5.40), and store the
minimizing control Q(t), 51 and a(x, b;t) fc:; all t, tO gtstf.

If possible, store also Z and (Huu + uﬁuu) , since this may later

save a lot of computations.

4, 1If ]a(xO,B;tO)‘ < n where n is a small quantity, the predicted

possible change in cost is small, and thus G(t),)?(t) is considered as
the optimal solution of the cost functional
- T tf
J=F+b y+ [ Lds (5.43)
t0

Otherwise proceed to 5.
If in addition Hlb(’_‘(tf);tf)n <My where My is a small quantity, then
ﬁ,}_;,f) is considered as the optimal solution of the original problem.
If |al <n, but Il > 1y, 80 to 6.
5. Apply the new control
u=ﬁ+[315x=ﬁ+31(x-§) (5.44)

to the system, initially over the whole time interval [to, tf]. When

integrating the system equations, the constraints g(x,u;t) are checked




so that they are not violated. Even for rather small variations this may
happen in the neighbourhood of entry and exit points. The new control is
then, if possible, determined by the condition § =0,

If the reduction in cost V-V is greater than zero, and Wiﬂ_’_l sufficient
accuracy agrees with the predicted reduction in cost [a(xo, b;to)[ , e.g.

V-V
|a]

then choose u(t) and x(t) as the new improved nominal solution and

go to 2. A suitable choice of ¢ has proved to be 0.5, but for many
problems the convergence may be greatly improved by other choices

of c. If (5.45) does not hold, we apply the "step-size adjustment tech-
nique', that is, the new control (5.44) is applied only over a smaller
part [ts, tf] of the whole interval [to, tf]. A detailed description of this

>c (5.45)

is found in [10].

6. When the cost functional (5,43) is minimized, that is
lagx ,b;to)l <ny the multipliers must be adjusted by an amount §b, so
that the minimuin of
t
- T f
F+ (b+8b) 3+ J‘ Lds
t0
corresponds to i = 0. Then compute boundary values for V

s Vx and
Vbb according to (5.42).

b b

- -1
7. With o(t), x(t), Bl’ Z, and (Huu + uguu> available in a storage

dVb dVXb av
EREEN.~ S S~ int t .
area, TR and e are integrated from ¢ to tO For all
dvy
times t, we then compute and store 62. Although e should equal

zero (5. 39) when G(t)(z ﬁ(t)),);(t) minimizes the cost (5.43), we have
found it necessary and highly improving upon accuracy to integrate this
equation also. The reason for this is that although f(X,ust) - £(X, @;t)

should be rather small, the product (f()-(,a;t) - f(}?,ﬁ;t))TVXb may be

large, since the magnitude of be is in no way restricted.



8. To compute the corrections Ob, we notice, that for the optimal
solution

);it) =0

3. = T *
Vg bR = B (< (gt

Then expand Vb to first order about b.

- T -
- . = . 4] .
Vb(xo,b,to) Vb(xo,b,to) +0b"V, (X ,b,to) (5.46)

bb™ 0

To be able to solve for 8b, we assume that Vbb(xo,G;tO) is nonsingular,

which is equivalent to claim normality of the problem [2]. The correc-
tion Ob is thus given by

-1 - T -
6b = - Vbb(XO, b;tO)Vb (XO, b;to)

Since (5.46) is an exact representation of Vb(XO, b;to) only for Linear-

Quadratic problems with linear terminal constraints ¥, it is necessary
to be able to modify Ob when it turns out that (5.46) is a bad approxi-
mation, A straightforward way is to choose

-1 - T -
Bb = - €V @ it )V g, Dit))  0<e€ <1 (5.47)

with e initially equal to one. To get a rule for the modification of ¢,
we also predict the change in the optimal cost V(x b;t ) when the mul-

tipliers b are changed the amount Ob.

To predict the change in V, we use the second order expansion of
V about b, thatis,

- - 1
) - 4 )=V Ob+=¢(5 )
V(xo,b + 6b,t0) V(xo,b,to) Vb b + 3 { b’vbb b)

Substituting &b (5.47), the predicted change in the optimal cost then is

- - 12 _-1_T
6h- - . = - -
Vexg, b+ 8bst) = Vex ) bitg) == (€ = GV VYV (5.48)

Notice that (5. 48) always is positive, since is negative definite and
0<¢<1. However, (5.48) may be a bad predoctlon from a numerical
point of view, especially in the neighbourhood of the optimal multipliers
b#, The reason is that we do not compute the optimal cost V(X , bt )

of the functional (5.43), but the approximation V(x bst ), where




- e = B - h- 5 AG
V(XO, byto) V(XO’ b9t0) a(XO’ bvto) (09 4J)

Since the cost functional (5.43) is considered to be minimized when the
predicted improvement [a(xo, b;to)[ is less than e the difference
V - V may be as large as ™ when we try to change the multipliers
b. Close to b*, when the corrections b are small, this error may
then be dominating over the predicted change (5. 48) The relevant
change in cost to predict is thus V(x_, b + b i) = V(x bt )
Substituting (5. 49) into (5.48), we then have

1
Viry B+ Obitg) - Tix  Bito) =t Bit)) - (e ﬂ%ﬂivf

(5. 50)

Also notice, that except from improving the accuracy, (5.50) makes

the algorithm more flexible since an accurate minimization of (5. 43)

is not critical. It may then be possible to allow for a greater value of

the parameter 7, and this can sometimes improve the convergence
rate of the algorithm. (For Linear-Quadratic problems with linear
terminal constraints and no active control variable constraints, the
choice of ™ is now completely arbitrary. The convergence will be
one=-step, and the predicted change (5. 50) is identical to the actual change
for any value of nl).

9. Apply the new control

u=ﬁ+/316X+326b

to the system over the whole time interval [to,tf]. Compute the corre=-
sponding state x(t) and loss {T(XO,E + 6b:,t0), Store x(t) and u(t)., We

now apply two separate tests to judge if 8b should be accepted as an im~
provement of the multipliers b or not, The first is to examine if the
magnitude of i) is decreased, that is, if the condition

ety 1= 1] wexest) || >0

holds. If not, we proceed directly to 10. The second test is a comparison.

of the actual change in cost

Vm b+%t) Vg bit,)



with the predicted change (5.50). If the condition

Vixy, b+ Bbitg) = Vxg, bito)

Y, < <Y
1 N 2 (5.51)
V(Xo,b + éb,to) V(xo,b,to)

where and are suitably chosen (e.g. 0 <y, <1, > 1), is
"1 Yo "1 Y2

satisfied, Ob is accepted as an improvement, and u(t),x(t) is a new
improved nominal solution, The new nominal multipliers are b+ b
and the nominal cost is ¥. Then return to 2. If (5.51) is not satisfied,
proceed to 10.

10. If any of the tests for acceptance of Ob is violated, set € =¢€/2

and return to 8. If no correction has been approved after a certain num-
ber of reductions of ¢ (e.g. 10), set ¢ =1 and return to 8. Condition
(5.51) is then released, and the only demand on b isthat || ¢ || should
be reduced. In practice, this will often get the algorithm out of the diffi-
cult situation.

This completes the outline of the algorithm. However, to get an efficient
computer program, problems such as storage exploitation, integration
routines, interpolation and extrapolation methods should also be con~
sidered. These problems are treated in [18].

6. EXAMPLES

In this section different properties of the constraining hyperplane
technique will be illustrated. To get an idea about the accuracy and
efficiency of the method, three problems with explicite solutions avail-
able are solved. It will be shown that the solutions of the transformed
problems tend to satisfy the necessary conditions given by Speyer

et al. (cf. sec. 3) as the slopes of the hyperplanes increase. The
hyperplane technique will also bo compared with Kelley’ s penalty func-
tion method [11] in respect to sensitivity and computational accuracy.

In a fourth problem, the efficiency of the combination of constraining
hyperplanes and a second order Differential Dynamic Programming
algorithm is compared with the slack variable technique proposed by
Jacobson and Lele [9].




1t should be pointed out, that all the computations have been executed
in single precision on a UNIVAC 1108.

Example 6.1

We will consider the system

dxl
@ T MO0
6.1
dx, (6.1)
(—i-t“ =u X2(0) =1
with the cost functional
1
1 2
J :—f udt (6.2)
2
0
the terminal constraints
o, =%, @)
(6. 3)
U :xz(l) +1=0
and the second order state variable inequality constraint
S@st) =x, () = £< 0 L =1/9 (6.4)

In [2] it is shown that if { >1/4, the constraint (6.4) is not active,
if 1/6 < <1/4, there is a tangency point, and if { < 1/6, the con-
straint is active over a time interval of length greater than zero.
For ¢ =1/9 the analytic solution of the problem is [2]:

1A%



[1 - - 3t)3]/9

x 0= { 1/9
[1 ~ (8t = 2)3]/9
@ - 31)°
Xz(t) =40
-3t -2
18t - 6
u(t) = 0
12 - 18t

2/3<t<gl

AN

0<t

1/3

i

1/3<t<2/3

2/3<t<l

0<t<1/3
1/3<t<2/3

2/3<tel

Thus the entry time is ’c1 =1/3, and the exit time is t2 =2/3. The

corresponding cost is J =4.0.

Since § is of second order, the constraining hyperplane is

Substituting S = Ky L,=— =X

ut+tg X, +a

(Kot Ay 4} =0

=1u, we then have

The transformed problem thus is to minimize the cost functional (6. 2)
subject to the terminal constraints (6.3) and the mixed state-control

variable constraint




g, W) = u+a X, Fayx = 4) <0

The problem was solved for three different hyperplanes A, B and C,
The parameters a, of these hyperplanes and the corresponding eigen-
values ¢, are given in Table 1.

i

Table I. Constraining hyperplanes

4y & £ £y
A 45 500 - 20 - 25
B 105 2750 - 50 - 55
c 165 6800 - 80 - 85

In Figs 2 and 3 the optimal solution (6.5) is compared with the computed
solutions for the different hyperplanes. Notice, that the solutions cor-
responding to B and C are almost identical to the optimal solution, and
the maximum deviations in x; are 0.00016 and 0. 00003 respectively.

This accuracy was obtained with g = 0,002, that is, the latest
nominal solution was considered o Jﬁlma% when both the predlcted im-
provement in cost a(x, b;t ) and || o || (Euklidian norm) were less
than 0,002,

Some interesting qualities of the constraining hyperplane technique can
be observed in Figs 2 and 3. Firstly, the entry or contact time t{ is
reached too early, and around t, the solution is sensitive to the slope
of the hyperplane. The first phenomenon is naturally explained by the
construetion of the hyperplane, which must intervene before the con-
straint S is reached. An investigation of the sensitivity is presented
below. Secondly, the exit time ty is found with very good accuracy,
and the computed solutions agree very well with the optimal solution
in the interval [t t ] This is due to the separability of the problem
[23 and to the constructlon of the hyperplane, which never prevents
S5(t) to move from S(t) =0 into the halfspace S(t) < 0.

The total number of iterations (including iterations on the multipliers
b) and the computed costs for different hyperplanes are shown in Table II.



%4 (1)

INFEASIBLE REGION

///////////////////////////////L
A

=
!
i
|

Fig 2. -

T T T T

1 0.5

{
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
||
t2

|
|
!
|
|
|
|
|
|
|
|
!
|
!
|
|
|
|
!
|
|
|
|
|
|
|
I
|
!
!
I
|
|
|
|
|
II
t

Example 6.1: Computed solutions Xy (t) for the hyperplanes
A(--=), B(-- -)and C compared with the optimal solution (—).
(Notice that the difference between the computed solution for
hyperplane B and the optimal solution is exagerated.)
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Fig 3. - Example 6.1: Computed solutions u(t) for the hyperplanes

A(===), B(~+~-) and C(~- - -) compared with the optimal solu-
tion (—).
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=T
The initial guess of the terminal multipliers was b~ = (- 5,5), and the

problem was "balanced" [19] by adding the term ZOszzb to the cost
functional. This slightly decreased the number of iterations, but was
not critical for convergence. Nor was the computed solutions sensitive

to the initial guesses b and G(t).

Table II. Example 6.1: Computed costs and number of iterations for
different hyperplanes (nl =0.002)

Computed No. of
cost iterations
A 4,0213 5
B 4,0015 12
C 4.0004 18

The computed adjoint variables A\(t) illustrate further interesting
properties of the constraining hyperplane technique. We have:

I. Bryson’s necessary conditions:

18 0<t<1/3
)\1('6) =

- 18 1/3<t<l

16 - 18t 0<t<1/3
Xz(t) =

18t - 12 1/3<t<1

11. Speyer's necessary conditions:

18 0<t<1/3

A0 = 0 1/3<t<2/3

- 18 2/3<t<l




6 - 18t 0<t<1/3
)\2(1:) = 0 1/3<t<2/3

18t - 12 2/3<t<1
nt) =0 0<t<l

Thus \(t) suffer from discontinuities in both Bryson’s and Speyer’ s
necessary conditions. In Figs 4 and 5 these conditions are compared
with the computed adjoint variables (Vg(t)). It can be seen that the
adjoint variables converge toward Speyer’s necessary conditions as
the slope of the hyperplane increases, and not toward Bryson’s, A
plausible explanation is the similarity between the constraining hyper-
plane technique and the derivation of the generalized Kuhn-Tucker theorem
in function space [14], from which Speyer’ s necessary conditions are
derived. It is thus suggested that the necessary conditions given by
Jacobson, Lele and Speyer [8], can be derived from the constraining
hyperplane technique through a limiting approach. This problem is
subject to present research.

The overshoot in )y (Fig 4) is a typical property of hyperplane con-
strained problems. It should be emphasized that this is not due to
numerical errors in the integration of )\, but to inherent properties
of the problem. In Fig 6, computed solutions kl(t) for the hyper_'_plane
C and for different values of the acceptance parameter ™ (a(xo,b;to) <m)
are shown, It can be seen that the reduction of the overshoot is a
matter of reducing the cost as far as the numerical accuracy permits.
The corresponding values of the cost and the number of iterations are
shown in Table IIT1. This clearly illustrates the fast convergence to an
approximate solution, and the slower convergence thereafter to an
accurate solution. The corresponding control variables are shown in
Fig 6, By inspection of Tables II and III, it can be seen, that if a
modest accuracy is required, the fastest convergence is obtained

with hyperplane A and the acceptance level m = 9. 002, Thus it is

of no sense to use a steep hyperplane (C) unless the computation is
carried out to a high degree of accuracy, that is, the acceptance
parameter s should be as small as the numerical accuracy per-
mits. This similarity between state variable constrained problems
and singular problems has been noted previously [87 [9].
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Table III.
different values of ™ (hyperplane C).
771 Computed No. of
cost iterations
0.1 4, 0401 11
0.01 4.0025 15
0.002 4.0004 18

In Fig 8, the second order partial derivative V

of the optimal return

Example 6.1: Computed costs and number of iterations for

X
11
is outlined. When the constraint is active, Z =0, Q =1, and then
Vg x, (1)
a? /2aq,
-
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Fig 8. - Example 6.1: Outline of computed VX <

1

1

(t).




(5. 39) reduces to

dex T T
Todt - (fx - fugx) Vxx N Vxx(fx B fugx) * gx Huugx (6.6)

But fx - fugx is stable with eigenvalues equal to the eigenvalues of the

hyperplane (Table I). When the constraint is active, VXX then tends to
the stationary solution

_ a2 a -
2 2
Zal 2
Pch = a a a
L al n

of (6.6). Thus V_ (t) >, te [tl,tz), as the slope of the hyperplane

fonds to infinity, that is, when the admissible region tends to the half-
space S(t) <0, V then gets the interpretation as the optimal return

of the adjoined functional J subject to the constraint S(x;t) =0,
te [tl,tzj .

Trom this point of view, it is interesting to compare the constraining
hyperplane technique and the Kelley penalty function technique [11].
In [11] the following modified cost functional is formed

t
f
2
J = Fx(t)ity) +tj {Loc,wst) + 1 W(S)ST(x5) } dt (6.7)
0
where
1 S>0
h(sy =
0 5«0

The cost (6. 7) is then successively minimized for a monotone in-

creasing sequence {rk} with lim T e Disregarding the possi-~
koo

bility of local isolated minima of the original problem, it is obvious

that the optimal solution of each rk—problém does not satisfy the con~




straint S(t) < 0, andin general S(f) >0 over some interval

t ,t ith i t =0. iti Y -
(1k’ Zk) wit klm (tlk’ Zk) 0. Necessary conditions for the rk
problem in (tlk’tzk) then are
Dyl oo ssT Ao, =) =X
dt X k x 2k 2k
H =0
u
where

Hx,u, 1) = Lx,ut) + )\Tf(x,u;t)

By restricting the analysis to the open interval (t tZk) , we may thus

1k’
disregard the possible discontinuities in A at entry or exit times.

Then consider the second order derivatives VXX of the optimal return

function of (6.7) in the interval (t,, ,t_ ). From (5.39) - (5.41) follows
1k’ 2k
that
dv
-1
Xy Ty sV i -V tH LY (6. 8)
dt XX X XX XX X XX U uuu XX

gince there are no control variable constraints present. It is easily
verified that

4r /21“{ /21‘k

is a stationary solution of (6.8) for any r, -problem, and that Vxx

k

in (t ) converges to P, independent of the boundary condition

1!{’t2k k

Vxx(tZk -)T15]. Since Pk »>® as rk - o  the previous interpreta-

tion of V as the optimal return subject to S(x;t) = 0, tg[tl,tzj,

is thus preserved. However, the rates with which the stationary

solutions Pch and Pk tend to infinity differ significantly. To see




this, consider the hyperplane C. Then

1.4X105 3.4X103
P~ (6. 9)
3 2
3.4x 10 1.0x 10
i = = 68 ield
while . az( 00) yields
3
1.8x 10 1.2x102
PkN
1.2x102 1.5}&:101

7 8
It turns out that it is necessary to increase I to 10 ~10 to get

a stationary solution P, of the same magnitude as (6.9). This is well

k
confirmed by computational results with penalty function methods. In
[9] and [13] it has proved necessary to successively increase e

to 106 - 108 to reach a sufficiently accurate solution, It may then be
concluded, that the constraining hyperplane technique transforms the
original state-variable constrained problem in a much "harder"

and sensitive way than penalty function methods.

The difference in sensitivity will also affect the computation of the
adjoint variables. Recalling the necessary conditions of Speyer et al.,
it is clear that n(t), te(t should be identified with lim (2rkS)

ke
in the penalty function method, and with lim (u(t)a,) in the constraining
hyperplane technique (for second order constraints). From the preceding
sensitivity analysis, it can then be expected that u(t) tends to zero
much slower than S, and consequently that the computation of p(t)a

is less sensitive to numerical errors than the limit value of ZrkS.

1’t2)’

2

The computed Lagrange multipliers p(t) for different hyperplanes are
shown in Fig 9. It is easily verified that p(t)a, - 0 in the interior of
[tl,tzj, and that ;.L(t)a2 - » in decreasing neighbourhoods of 1:1 and t2’

thus providing the discontinuities in )\ at entry and exit times.

-
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- Example 6.1: Computed Lagrange multipliers pu(t) for the

hyperplanes A (===), B (-*=) and C (="-
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Example 6. 2
We will consider the system

by
1 0) =0
e %, 0

4y %,(0) = 0

with the cost functional
1

1 2
J== u dt
20“['

the terminal constraints

lbl :xl(l) -1=0

¢2 :xz(l) =0

S(xst) = x, (1) - 8(t - 0.5 + 0.5< 0

The optimal solution is:

,—

3 2

(2048t~ - 1512t7)/243
2

X (= ( (16t - 16t +3)/2

3
(-2048t° + 5208t% - 4272t + 1139) /27

s

o

.y
(2048t“ - 1008t) /81

X,(0) = | 16t-8

2
| (-2048t" + 3472t - 1424)/9

149

(6.10)

(6.11)

(6.12)

and the second order state variable inequality constraint

(6.13)

0<t<9/16
9/16 <t < 13/16

13/16 <t <1

0<t<9/16

9/16 <t <13/16 (6.14

13/16<t <1



(4096t - 1008)/81 0<t<9/16
uty = ( 16 9/16 < t< 13/16

(~4096t + 3472)/9 13/16 <t< 1

Thus the entry time is tl =9/16 and the exit time is t2 =13/186,
The optimal cost is J =4736/27 ~ 175.407.

Since the constraint (6.13) is of second order, the constraining hyper-
plane is

2

ds ds

—= t+a —+a5=0
dt2 14dt 2

and the transformed problem then is to minimize the cost functional
(6.11) subject to the terminal constraints (6.12) and the mixed state-
control variable constraint

2 3
g, wt) =u =16+ al(x2 =16t + 8) + az(xl -8t + 8t - 2) =90

The same hyperplanes as in example 6.1 were chosen (Table I). In
Figs 10 and 11 the optimal solution (6.14) is compared with the computed
solutions for the different hyperplanes, and it is clear that very little
is gained by increasing the slope of the hyperplanes. The maximum
deviations in x, are in all cases about 0.006, and the acceptance
parameters 7; =0.1 and p, = 0.002 were used. This relative
insensitivity of the solution to the steepness of the hyperplanes is
also illustrated by Table IV, where the resulting optimal costs and
the number of iterations are shown, It can be seen that very small
decreases in the optimal cost are obtained at the rate of a substantial
increase in the number of iterations. (Notice that the computed costs
in case B and C are smaller than the optimal cost, This is due to

the fact that the terminal constraints are not exactly satisfied

(n, = 0.002)).




%y ()
1.0 -
4
|
0.5
INFEASIBLE REGION .
Sty 13716
0 T T t
1.0
=0.54
t, =9/16

Fig 10, - Example 6. 2: Computed solutions Xy (t) for the hyperplanes

A (-=-), B (---) and C¢ B) compared with the optimal
solution (=-).
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Fig 11. - Example 6. 2: Computed solutions u(t) for the hyperplanes
A (-==), B (---) and C (= B) compared with the optimal
solution (—).




Table IV. Example 6.2: Computed costs and number of iterations for
different hyperplanes (171 =0.1).

Computed No. of
cost iterations
A 175,47 6
B 175.35 17
c 175.22 22

The adjoint variables exhibit the same properties as in the preceding
example. We have:

1. Bryson's necessary conditions:

4096,/81 0<t<9/16
X =

- 4096/9 9/16 <t<1

(- 4096t + 1008)/81 0 <t< 9/16
A ) =

(4096t - 3472)/9 9/16 <t<1

il. Speyer’s necessary conditions:

4096/81 0<t<9/16
AB= (0 9/16 <t < 13/16
- 4096/9 13/16<t< 1

(- 4096t + 1008)/81  0<t< 9/16
A, = (-16 9/16 < t < 13/16

(4096t ~ 3472) /9 13/16 <t <1




nit) =0 0<t<l

In Fig 12 the computed adjoint variables are compared with Bryson’s
and Speyer’ s necessary conditions, and it can be seen that they tend to
satisfy Speyer’ s conditions as the slope of the hyperplane increases.

Example 6.3

We will consider the system

1
& 2 * 0= °
dx
2
L R =1 6.15
dt XS XZ(O) { )
3
@ x50 =2

1
f u dt (6.16)
0

the terminal constraints
'bl = xl(l) =0
¢2:x2(1)+1 =0 (6.17)
b :x3(1) -2=0

and the third order state variable inequality constraint

S(xyt) = x, () - £ 20 (6.18)

The explicite solution for different values of the parameter £ was
given in [8]. It was shown that if £ > 3/8, the constraint is not
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active, if 9/40 < £ < 3/8 there is only a tangency point at t = 1/2,
and if ¢ < 9/40 there are two tangency points. The solution thus never
remains on the constraint. For £ = 293/2080 (~ 0.14087) the tangency

points are ty = 1/4, tg = 3/4, and the optimal solution is:

’

\

N

r

5 4 3
at® bttt 2,
60 24 6

4 3 2
9L+§I_+£L+ t+h
24 6 2 '8

4 3 2
da -1 e -1° , fd-19
6 2

+
24

60 24
4 3 2
at bt ct
—— S +
12+6 +2 +2t+1
3 2
%1—:‘—+§L+ft+g
3 2
dd -1t) e(l - 1)
6 - 5 -fl-t)-¢g
4
_a(l—t) ubil—t)3_0(1=-t)2_
12 6 2
g‘.t.?:_l,p_t_'_z__‘,ct_(_z
3 2
dt2+et+f

2

W=Dy ca -+t

2

3 2
all - )" b -t

3 3

r-t)+2

2¢1

+gl-ty+h

5 4 3
al - t) +b(1—l +c(1;t) +(1=—-t)2+(1~t)

-ty -1

0<t<1/4

1/4<t<1/2

1/2 <t < 3/4

3/4<t<l

0<t<1/4

1/4<t<1/2

1/2<t<3/4

3/4<t<l
(6.19)
0<t<cl/4

1/4<t<l/2

1/2<t<3/4

3/4<t<l



ra’c2+bt+c O<t<l/4

dt + e 1/4<t<1/2
0= -d@d ~-t)~-e 1/2<t<3/4

\—a(l—t)z—b(l—t)—c 3/4<t<1

Speyer’ s necessary conditions are:

A, =

Ay =

n) =0

~
- 22

2a

2at + b

d

2a(1 -t) + b

AN
( 2
-at -bt-c
-dt - e

dd -t) +e

a(l—t)2+b(1—t)+c
\

O<t<l/4
1/4<t<3/4

3/4<t<1

O<ctgl/4
1/4<t<3/4

3/4<t<l

0<t<l/4
1/d<t<1/2
1/2<t<3/4

3/4<t<1

0<tgl

Thus ); Is discontinuous at the entry and exit times, while X5 and \g
are continuous. The numerical values of the parameters are:

a = - 43008/13, b =19776/13,
f=-198/13, g=27/183,

e = 864/13,

costis J =734976/845 ~ 869, 794.

c=-1824/13,
h =~ 17/130,

d=-1728/13,
and the optimal




ince the constraint is of order three, the constraining hyperplane

wm

Pt

I$)

3 2

ds ds ds

—=ta —=+a, — t+taB=0
2

dt3 1dt 2 dt 3

and the mixed state-control variable constraint becomes

gE,wt) =u+a X, +ax

+ 3 B
Kyt agk, Ty~ <0

2

The problem was solved with the following parameters of the hyper=

plane: a; = 153, 8y = 7802, Bg = 132600 (corresponding to: 51 =~ 50,

=-51 = - 52).

In Figs 13, 14 and 15 the computed solutions Xl(t)’ u(t) and kl(t) are

shown together with the corresponding optimal solutions. Notice that the
computed solution x¢ (t) never reaches the constraint at the tangency
points. This is a natural but undesirable consequence of the construction
of the hyperplane. A simple way to overcome this problem is to slightly
increase the parameter £, and this will also have a counsiderable influence
on the computed cost. For the £ chosen (£ =0.14087), the optimal

cost is J = 869.8 while the computed cost is J = 903, 6. Increasing {

to 0.143, the original constraint is just slightly violated (max x; = 0. 1419),
but the computed cost is now reduced to J = 862.3. This sensitivity of the
cost seems to be typical of optimal control problems with high order

state variable inequality constraints.

The success of the algorithm proved to be dependent of good initial guesses
of the terminal constraint multipliers b aund of the initial nominal control.
In this case BT = (- 6000,1500, = 100) was chosen, and the algorithm

then converged to the optimal solution in 13 iterations (n, =1.0). A main
problem was to get a new nominal control accepted over the whole inter=
val [t ,tf] (cf. section 5). Once this was achieved, the algorithm pro-
ceedeg smoothly. A possible way to overcome these difficulties is to

start with a less steep hyperplane, and then use the computed terminal
multipliers and optimal control as initial guesses for the actual hyper-
plane,
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Fig 15. - Example 6.3: Computed solution )\l(t) (-=-) compared with

Speyer’ s necessary conditions (—.



Example 6.4

n this example we will compare the efficiency of the constraining hyper~
plane technique with the slack variable technique proposed by Jacobson
and Lele [9]. We will then consider the system

% (0) =0
L©
(6.20)
f}\? ==Xt x, (O =-1
a2 "2
with the cost functional
! P/ 2 2
J=0 @ +x_+0,005u")dt (6.21)
. 1 2
0
and two different state variable inequality constraints
S‘l (3t = Ky - 8t~ 0.5) +0.5<0
- ' (6.22)

2
Syt =x - 8(t-0.85) +0.5<9

of first and second order respectively. The comparisons will he made
rith the

with the results reported in [ 97,

1. Tirst order constraint.

The constraining hyvperplane is

the transformed problem then is te minimize the cost functional
{{ 21) subject to the mixed state-control variable constraint

e x, - 16 = 0.5) +ay [x, - 8(t - 0.5)2 +0.5]1< 0



The problem was solved for a; =20 and a; =50 with the acceptance
parameter 1)y = 0.001. In Figs 16 and 17 the computed solutions xo(t)
and u(t) are compared with the slack variable techuique solutions.

It can be seen that these agree fairly well with the soluticus for ay =20,

However, the efficiency of the methods differ significantly, and the
obvious reason for this is that the slack variable technique transforms

the original problem into a singular problem (where second order methods
cannot be used). Thus the slack variable solution was reached after 16
iterations with a conjugate gradient algorithm M12] , and the improvements
in the last iterations were negligible. This should be compared with the
constraining hyperplane technique, where 1 iteration was reguired for

aj =20 (J = 0.17199) and 2 iterations for aq =50 (J = 0.16996). Notice
that the same initial nominal control as in [ 9] was used. It may thus

be suspected that the accuracy obtained with a; =50 is impossible to
reach with the slack variable technique.

Contrary to the previous esamples, the adjoint variables are continuocus
at the entry and exit times, and p(t) is not identically zero. This is
illustrated in Fig 18, where the product a(u(t) is shown for increasing
values of aj. Identifying with Speyer’ s necessary conditions, it can thus
be concluded that lim alu,(t) exists and is equal to 5(t).

a_ -

II.. Second order constraint.

The constraining hyperplane is

d282 dS2
+a, — +a S =0

2

dt 1dt 272

and thus the state-control variable constraint becomes

gx,u;t) =u - x2 - 16 + a1 [XZ = 16(t - 0.5)] +

oy 2 )
+a2[xl=8(tn=0.b) +0,5]§=0



xz(t)

INFEASIBLE REGION

NOMINAL TRAJECTORY

2
Fig 16. - Example 6. 4: First order constraint xz(t) -8 -0.5) +

+0.5< 0. Computed xz(t) for a; = 20 (~==) and a, = 50 (=),

compared with slack variable technique solution (---) reported
by Jacobson and Lele (J-L).
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Fig 17. - Example 6.4: First order constraint xz(t) -8(t=-0.5 +

+0.5< 0. Computed u(t) for a. =20 (---) and a, =50 (—),

1
compared with slack variable technique solution (-+-),

a4~ N
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xample 6. 4: First order constralnt x_{) = 8(t ~
0.5« 0. Compuied product alsg(t} for ay (===},

=50 (- -) and a, = 100(~).



The hyperplanes given in Table I were used, and in Fig 19 the computed
optimal control u(t) is compared with the slack variable technique
solution. Notice that the same initial nominal control was used.

The slack variable solution was reached after 32 iterations with the
conjugate gradient algorithm, In Table V the corresponding figures for
the different hyperplanes are given together with the computed optimal
costs. These clearly indicate that the combination of constraining
hyperplanes and a second order method is superior as far as accuracy
and efficiency are concerned.

Table V. Example 6.4: Second order constraint. Computed costs and
number of iterations for different hyperplanes (fr,1 =0.001).

Computed No. of
cost iterations
A 0.77754 2
B 0.74345 4
C 0.74101 5
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Fig 19. - Example 6. 4: Second order constraint xl(t) -8(t-0.5 +

+0.5 < 0. Computed u(t) for the hyperplanes B (--~) and
C (=), compared with slack variable technique solution (-+-).
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Part 4

OPTIMAL CONTROL OF A TRAVELLING OVERHEAD
CRANE - A FEASIBILITY STUDY

ABSTRACT

The possibility to use optimal control theory to design efficient control
strategies for a travelling overhead crane is studied. Two different
mathematical models corresponding to torque control and acceleration
control are derived, and the computed minimum-time control strategies
are presented. Optimal control in the presence of disturbances and the
possibility to realize the optimal control strategies is considered. The
study illustrates the current status of numerical methods for the solu-
tion of optimal control problems, and serves as a vehicle to discuss
advantages and disadvantages of existing algorithms.




1, INTRODUCTION

The theory for optimal control of dynamic systems has developed very
rapidly during the last ten years. A large number of important contri-
butions have been published, and the theory has been considerably

ext ended since the interest in optimal control arose in the late fifties.

In parallel with the theoretical work, considerable progress have also
been made in the development of efficient methods for numerical solution
of the problems. Although there still is a considerable distance between
the theoretical results and the computational methods, many powerful
methods now exist for different kinds of problems. In particular, methods
for problems where the system, or process, can be modelled by a set

of ordinary differential equations are well established. However, apart
from a large number of space vehicle problems, very few industrial
applications have been reported. There are certainly many explanations
to this gap between theory and practice, but a main reason may be the
preparatory work required to develop computer programs to solve the
stated problems. Thus even a simple feasibility study will in general be
both expensive and time~-consuming. Consequently, it is still rather
difficult to form an opinion about the applicability of optimal control
theory, and about the efficiency of existing computational methods.

In this part we will consider these aspects in a feasibility study of
optimal control of a travelling overhead crane. The purpose of the

paper is thus not only to present computed optimal strategies for a par-
ticular process, but also to discuss problems such as computer and
computer program requirements, necessary preparatory work, and pos-
sibilities to realize the optimal control strategies. It is also believed
that the paper illustrates the range of different problems that can be
analysed with a pre-designed computer program package.

The problem considered originates from the container terminal illustrated
in Fig 1. When the ship is unloaded, the containers are first transferred
by a quayside crane to a waiting lorry. The lorry then drives to a storage
house or an open storage area, where another crane stacks the containers
in predetermined positions. The empty lorry then closes the loading cycle
by returning to the quayside crane. The bottle-necks of this cycle are the
times required for the cranes to transfer and exactly position the con~
tainers. Minimizing these transfer times would reduce the residence

time of the ship, and would result in large economic profits.

Since the two cranes have rather identical properties, we will concentrate
on the stack crane, and for this we will consider a typical transfer. This
problem is stated in Section 2, where also the different kinds of restric-




Fig 1. - Outline of the container terminal.

tions and constraints that may appear are defined.

In Section 3 we will derive two different sets of ordinary differential
equations describing the operation of the crane. In Model 1 we assume
that the available control variables are the accelerations of the trolley
and the winch. This corresponds to a crane designed for manual opera-
tion, in which case the crane is equipped with different regulators to
make the operation independent of the mass of the load. The second mo-
del (Model 2) is derived under the assumption that the control variables
are the torques of the trolley driving motors and the winching driving
motors. This model will depend on the masses of the load and the trolley,
and thus is impossible to operate manually in an effective way. However,
this model is believed to be of interest, because if a computer is used to
realize the optimal strategies, it is possible to save a lot of the conven-
tional control equipment.

In Section 4 we consider optimal control of Model 1. The problem stated
in Section 2 is formulated in mathematical terms, the control and state
variable constraints are specified, and the possibility to choose different
cost functionals to simplify the numerical computations are discussed.

We also motivate the selection of method for numerical solution. Approxi-
mate minimum time control strategies are presented for different stack
profiles, and some experiences from the numerical computation of these
are accounted for. The implementation of optimal strategics in the pre-



sence of disturbances is also treated, and a possible method is indicated.

Optimal control of Model 2 is considered in Section 5. The analysis is
restricted to minimum time control strategies and it is shown that the
structure of the solutions are similar to those of Model 1.

1t should be emphasized that all the numerical solutions have been
computed with a general-purpose programming package. This possibility
to reduce the preparatory programming work to a minimum is considered
as an important progress to make optimal control theory available as a
standard tool for analysis and synthesis.

2. STATEMENT OF THE PROBLEM

Since the properties of the quayside crane and the stack crane are similar,
the feasibility study is restricted to the stack crane. The particular transfer
considered is illustrated in Fig 2. When the lorry arrives, the gauntry is

3 20 |

Fig 2. - The particular transfer considered. All distances are in meters.




assumed to be positioned so that the final transfer to the stack can be per-
formed by the trolley and the winch. Thus the problem is reduced to two
dimensions. It is assumed that the final position is 6 meters above and 20
meters away from the lorry, and that the distance between the load and the
trolley is initially 12 meters. Further, it is assumed that the containers
can be considered as point masses, and that the centre of mass is equal

to the geometrical centre. All distances then refer to this point.

When the transfer begins, the trolley is positioned straight over the

lorry, and has no velocity in either direction. Besides, the vertical
velocity of the load is zero. At the end of the transfer, the system is
similarly required to be in complete rest. In general this requires a
skilful operator when the crane is controlled manually, since the
osoillations of the load must be completely damped out. One possibility

is then to operate the crane according to the full curve of Fig 2. How-
ever, it is easily seen that this strategy may be very time-consuming, and
that it may be favourable to be able to operate the erane as indicated by
the dashed line.

As stated'in Section 1, the available control variables will be different
for the two types of cranes studied. In Model 1 we assume that the
control variables are the accelerations of the trolley and the winch,
while in Model 2 it is assumed that the control variables are the torques
of the driving motors. In both cases the trolley and the winch may be
operated separately. The control variables as well as the trolley and
winching velocities are bounded in both cases. This is due to the limited
effect of the driving motors, and these constraints will in general depend
on the characteristics of the electric motors. In this study we have for
simplicity assumed that the constraints are simple magnitude limits.
Finally, it may be necessary to take the actual profile of the stack into
acecount. Inthis paper we have restricted the study to the particular
situation indicated in Fig 2, However, the solution technique used is
applicable to rather arbitrary stack profiles.

The storage area is in general an out-door area, and the transfer may
be subject to heavy wind disturbances. The control strategy should thus
also be able to compensate for these.

We may then summarize the problem as follows: Determine a control
strategy for the trolley and the winch, so that the load is transferred to
the predetermined final position as fast as possible. The control strategy
must take all existing constraints into account, and the possibility to
compensate for disturbances should be considered.




3. MATHEMATICAL MODELS OF THE CRANE

Different simplified models of travelling overhead cranes have been
published. In [4] and [ 8], a crane with constant load cable length was
modelled as a fourth order dynamic system with a single control variable.
The control variable was assumed to be the acceleration of the trolley
[4], respectively the torque of the trolley driving motors [8]. In[8] it
was also assumed that the angular deviations of the load are small enough
to allow for linearization, and thus the crane could be described with a
simple linear model. A slightly more general model was considered in
[1], where the control variables were chosen as the trolley acceleration
and the winching velocity, However, the generalization was restricted

to constant winching velocities. Similar to [87, the model was simplified
by the assumption that the angular deviations are small, The crane could
then be described as a fifth order dynamic system with two control
vaviables, one of which is constant over the time interval considered.

The assumption that the angular deviations are small was necessary for
the solution technique used in [4] and [ 8] to be applicable. Also, for the
goods handling problems considered in [4] and [8], e.g. coal and ore
loading, the accuracy is not critical, and thus the approximations may

be well justified. However, for the container transfer problem considered
in this paper, the accuracy of the terminal state is essential, and simu-
lations have clearly indicated that approximations based on the assumption
of small angular deviations are not accurate enough, It can further be
noticed that the winching strategies of [4] and [8] are very special, and
the full capacity of the crane is not considered.

In this section we will thus derive more general models, and it will be
assumed that the trolley and the winch may be operated arbitrarily and
separately. (Restrictions on the operation due to different constraints will
be specified in Section 4 in connection with the mathematical formulation
of the optimization problem.) In the first model, referred to as Model 1,
we assume that the available control variables are the accelerations of
the trolley and the winch. This corresponds to a crane designed for
manual operation. In the second model (Model 2), the control variables
are related to the torques of the electric driving motors of the trolley
and the winch. The dynamic properties of the crane will then depend on
the mass of the load, and the oscillations of the load will influence the
motion of the trolley. In both models all frictional forces are neglected.
Although these may be very important to include in practice for accuracy
reasons, they have no essential influence on the basic dynamic proper-




ties of the models. +

To describe the system, a coordinate system (f, 7) with the ¢-axis
along the gauntry according to Fig 3 is introduced.

k (Ey,0)
Mo —
R Fi
g
e F2
1
(E2.,m2)
m.g

Fig 3. = Simplified model of the crane.
The following notations are used:

M - mass of the trolley.

m = mass of the load,

(£.,0) ~ position of the trolley.
(éz,nz) ~ position of the load.

+Notice that with the assumption that the angular deviations are
not small enough to allow for linearization, the complexity of the
problem is already raised above the level where simple solution
methods might apply. The inclusion of the frictional forces would
thus not further contribute to this complexity.



F. - the force acting on the trolley due to the trolley driving

motors.

F2 - tension in the cable, This is directly proportional to the torque
of the driving motors of the winch.

§ - angular deviation.

¢ - length of the cable.
g - gravity acceleration (9.81 m/s ).

It is assumed that the load can be considered as an idealized pendulum
with variable pendulum length. From Fig 3 then follows.

gz = 51 + {* sin §

(3.1)
My =~ L cOs 8
and a straightforward application of Newton’s law to the load yields
m.g. =-F_- sing
2 2
. (3.2)
mn2~F2- cos B - g
Elimination of ]5‘2 and m in (3.2) then results in
.g.z-cosei-q'fz-sine:—g-sine (3.3)

'g'z and 77 9 are obtained through differentiation of (3.1) with respect
to time, that is,
52=El+ i sing+2 (6-cos@- (0 -sing+ (6-cosh

.. .. . .2 . (3.4)
My == L° cos@+2 (0-sinp+ (0 -cosh+ (0 sing

Substituting (3.4) into (3.3), we get
:E.l' cos § + 2 06+ g =-g- sing
or y
g-sing 208 £ " cosh

o =- - - 3.5
0 0 0 ©-9




Notice that (3.5) is independent of the choice of control variables, and
(3.5) is the fundamental relation used in both models.

3.1. Model 1 - Acceleration control

Assuming that the accelerations of the trolley and the cable length are
the available control variables, a model of the crane is easily derived
from (3.5). We then introduce the control variables uy andu_ as

2

u, =t

! ! (3.6)
u2 =9

and the state variables Xl’ ce ’X6 as

*17g
%8
X.=8

2 (3.7
X4 =0
X5 =g
Xo = 1

‘Then by definition and from (3. 5) we get
X, :xz
%, =u1
= (Model 1)
i 2 u

. g smx3 i X4X6 oY cosx3

4

X5 X5 X5

x5 =x6
X =u

- O



Tor transfers from the lorry to the stack, the initial state is

%, (0) =%, (0) =%,(0) =%,(0) =%,(0) =0

(
8 (3.8)

XS(O) =12

From the model it can be seen that the position of the trolley and the
load cable length are simple to control, since these parts of the model
contain only pure integrations. However, the oscillations of the load
are governed by a highly nonlinear equation, and a simple analytical
solution of the problem stated in Section 2 is obviously excluded.

3.2 Model 2 - Torque control

In this case we will assume that the dynamics and the inertias of the
cable drum and the driving motors can be neglected. As pointed out
above, such factors may be necessary to consider in a practical
application, but they will not change the basic properties of the model.
Thus the forces Fq and F2 (Fig 3) can be considered as directly pro~
portional to the torques of the driving motors.

Compared with Model 1, we have to express g and Q in terms of
the state variables and the forces F1 and Fz. We then apply Newton’s
law on the trolley too, that is,

Mél = F1 + Fz-sm 2]
or
F F .
. i 2 .
£, =30 T one 3.9)

Substituting (3.9) into (3.5) yields

" g-sinf 208 F.rcosf Fy cosg - sing
=" B - (3.10)
£ 2 M¢ My

Now choose the same state variables (3.7) as for Model 1. From (3.9),
(8.10), and by definition the time derivatives Xl, cee ,5{5' are then

determined. To determine 5{6 =7, consider the equations (3.2) and




(3.4), thatis,
mﬂzzrz © cos § = mg

and

772:»-12- cos@G+2 18- sinf+ 0§ -cosh+ (8- sinh

Substitute 7 5 into the first relation. Then

F, cos @ . - .2 .
M};ﬂﬂ —g==0"cosf+2L0-sing+( G -coshP+l H-sing
(3.11)
or
v g 2(H- sing . 16-sing 2
U =-—4+ + . 4 2 + g ¢ )
Z m cosé@ cos § cos 8 Lo (3.12)
Finally, we substitute § (3.10) into (3.12), and then
:Q._ . ose»i‘zmivsineuf‘iminz 4 Q"Z 313
gt c m m M 6 o (3.13)
Thus the model obviously will depend on the masses of the trolley
and the load. To simplify the notations, we then choose the control
variables
.
1 M
P (3.14)
.2
2 m
and also introduce
m
6==— (3.15)

M

From (3.9), (3.10), (3.13) - (3.15), and by definition, we then get the
following model.



1 2
=u + . si
X uy u26 smx3
X =X
3 4 (Model 2)
. ai . X . . ai
. g sin X, 2x4x6 wy cos X, u26 cos Xq° sin X,
7T X Tk T X - X
5 5 5 5
*5 7%

. 2 . . 2
= . + - . - . =
X6 g coSs X3 X5X4 ul Sin X3 u26 Sin X3 uz

The initial condition is the same as for Model 1. Notice that the

choice of control variables is rather arbitrary. However, with the
particular choice made here (3.14), the control variables can be inter-
preted as accelerations, and it will easier to compare the properties
of the two models.

Also notice that in Model 2 the coupling between the load and the
trolley is mutual, and the oscillations of the load will influence the
velocity of the trolley. The strength in this coupling is determined by
the magnitude of u, and the quotient & between the mass of the load
and the mass of the trolley.

4, OPTIMAL CONTROL OF MODEL 1

In this section, the problem stated in Section 2 will be formulated in
terms of an optimal control problem for Model 1. We will thus specify
the control and state variable constraints, and different possibilities to
choose the cost functional will be considered. The choice of numerical
method to solve the problem is motivated, and a brief account for the
necessary programming work is given. Further, we will present the
computed minimum time control strategies both for a situation where
the stack profile must be taken into account, and for a case where it can
be neglected. Finally, the possibilities to handle disturbances and to
implement the optimal strategies are discussed. For the different cases
considered, we will give rough estimates of the computer requirements




and the execution times. All computations have been performed on a
UNIVAC 1108.%

4.1 Control and state variable constraints

In section 3 the following model (Model 1) was derived under the
assumption that the available control variables are the accelerations
of the trolley and the cable length:

Xm
s X, (0) =0
at "2 1@
dx

2 _
N x (0)=0
. 0 2()
dx
g X0 =0
a 4 3
ﬁ_ g sinx3 2xx6—ul-cosx3 () 0
dt 0 X X, X, 4
dx5
— X (0)y =12
a e 50
d
—X—qu X (0) =0
dt 2 6

We also recall that the state variables are: x1 = El’ X2 = '51, x3 =0,

=0. At the end of the transfer, the container must

* For comparison some representative figures are:
floating addition 2.6 {s, multiplication 3.4 ps and division 9.0 Us.



be in the correct position in the stack, and the system is required to
be in complete rest. These conditions at the terminal time tf, are
specified in the following terminal constraint vector :
x, (t) - 20
x (t
X, ()
Pty = X, (t)
X 4(t f)
X5<tf) -6
x6 (tf)

The requirement on the terminal state thus is

Vex(t)ity) = 0

Since the torque of the electrical driving motors is limited, it is natural
to assume that the magnitude of the accelerations and retardations are
bounded. In this case it is assumed that

-0.46<u, < 0,46

1
and
- 0.61§u250.61

- 2 X . :
where the unit is m/s”. The constraints may be summarized in vector
notations as

u1 - 0.46
- u1 - 0.46

hust) = uy - 0.61 <0 (4.1)
-, - 0.61

Notice that the constraints (4.1) must be satisfied for all t such that
0< t< tf.

Due to the limited working area of the regulators which make it possible



to choose the accelerations as control variables, the velocities of the
trolley and the winch are bounded. It is thus assumed that

and

(The unit is m/s.) Similar to the control variable constraints, these
state variable constraints are summarized in vector notations as

x2 -1.4
- -1.4
86c3t) = K <0 .2)
x6 = 0.5
—x6 -0.5

where the inequalities must be satisfied for all t such that
0<tet,

.

These state variable constraints complicate the problem, since they
are not possible to directly include in any existing computational method.
To handle these constraints the constraining hyperplane technique was
developed [12]. The basic idea in this technique is to convert (4. 2) into
mixed state-control variable constraints g(x,u;t) < 0, where the control
variables appear explicitely. The transformed constraints can then be
handled in the same way as the pure control variable constraints

h(u;t) < 0. The transformation technique is applied to each component

S, of the constraints S< 0. If Si is of order q, thatis, the g-th
total time derivate of Si is the first that explicitely contains the control
variables, S (x;t) < 0 is approximated with the mixed state-control
variable constraint

s, a4 1s.

1 1
(x,ust) + a _
atd T gt

a2

(x3t) +, ..+ aqSi(x;t) <0 4.3)

It is shown in [12] that the half-space generated by (4. 3) in the

q
d s
1000, Si -space, tends to Si < 0 as the zeroes of the polynomial

at’




q q-1
+a,p +..,+ta =0 4.4
p 1 a (4.4)

tend to - . Inpractice the choice of the parameters a, depends on
the time scale of the problem. However, this transformation technique
has proved to yield very accurate solutions even for comparatively
modest values of the zeroes of (4.4). '

We thus directly convert all components of (4. 2) with this technique.
Since all Si:s are of first order, the constraining hyperplanes are

u +ay (x2—1.4)§0

-u, +bh, (-x,=-1.4)<0
2 —_—

! 1 4. 5)
uercl (x6-0.5)_<_0

—\12+d1 (—x6—0.5)50

where a suitable choice of the parameters a
has been found to be 10.

..,d, in this case

1 1

Summarizing the control variable constraints (4.1) and the constraining
hyperplanes (4.5) in a common constraint vector g(x,u;t), we thus have

ul - 0,46
- u1 - 0.46
U, - 0.61
—u’2 - 0,61
gx,ut) = <0 (4.6)
u1 + 10 (x2 -1.4)

—u1+10 (—x2-1.4)

+1 - 0.
u, + 10 (x, = 0.5)

—u2+10 (—x6—0.5)

and these inequalities should then be satisfied for all t such that
Ozt<ty



Notice that we have not yet included constraints due to a particular
stack profile. This problem is treated separately in Section 4. 5.

4.9 Choice of cost functional

Since we are mainly interested in minimum time transfers, one possi-
pility to formulate the optimal control problem is as follows:

Deterimine a control strategy u(t) for Model 1, so that the cost
functional

t

I
It

D ey
-
[oN
=3

is minimized subject to the constraints
. =0
Pix(t) st
gx,ut) <0

It is thus assumed that t, is given implicitely. From the Maximum
Principle [15] then follows that the optimal control strategy will either
be a bang-bang solution in both uy and u,, ora combination of bang-
bang arcs and singular subarcs.

However, there are several reasons why we have not chosen this
approach. Firstly, there are no efficient computational methods
developed for bang-bang or singular problems of this complexity.
Secondly, the possibility to handle disturbances must be taken into
account. For a large class of problems with continuous optimal
control solutions this may be achieved by a local feedback around the

optimal solution. However, for bang-bang problems similar possibilities

do not exist, Different approaches to this problem have been presented,
but the methods are either not applicable in real time since they do not
produce causal feedbacks [5] [9], or will not satisfy the terminal
constraints accurate enough [ 67 [77.

An alternative possibility then is to formulate the problem as a problem
with explicitely given terminal time. We must then choose the terminal
time tf so that it is possible to reach the terminal state () =0) with a



control strategy satisfying g(x,uit) < 0. With te explicitely given,

it is then natural to choose the cost functional with regard to the desired
properties of the optimal solution. However, at this stage it is also
important to keep in mind that a numerical solution shall be computed.
Thus it is obviously favourable if the cost functional can be chosen also
with regard to the properties of the numerical method, In this case we
have as a first attempt chosen

2 2
J= [ 1w +u 4.7

ot

Physically this implies that we look for the minimum energy control
strategy, and further this choice of J implies that bang-bang solutions
and singular solutions are excluded.

A possible way to compute approzimate minimum time strategies is now
to succesively decrease the terminal time until it becomes impossible
to satisfy all the terminal constraints, This technique has been used for
both models, and although it has proved to be difficult to determine the
minimum time strategies with very high accuracy, this approximation
technique will prove to have many advantages. For example, it will
clearly illustrate the sensitivity of the control strategy structure with
respect to the terminal time,

Although the cost functional (4. 7) is chosen to exclude singular and
bang-bang solutions, it will be shown in Section 4.4 that (4.7) must be
further modified to simplify the numerical computations. However,

(4. 7) constitutes the basic cost functional, and the necessary modifica~
tions will be discussed in connection with the presentation of the computed
optimal solutions in Section 4.4.

4.3 The computer program

For the regular problem formulated in the preceding section, there are
several different numerical methods available, e.g. succesive-sweep
methods [3], conjugate gradient methods [11] and methods based on
Differential Dynamic Programming [97]. The ultimate choice between
these methods is not uniquely determined, but is merely a weighing
between the preparatory programming work and the efficiency of the
algorithm. For example, the conjugate gradient method requires rela-

an A




tively little programming work, but the algorithm has poor convergence
properties close to the optimal solution. We have chosen a second order
method based on Differential Dynamic Pregramiming, and although this
method initially requives a great deal of preparatory programming work,
we. think that this is repaid by the efficiency and flexibilify of this
algorithm compared with the other methods mentioned above. In contrast
with first order methods, the second order method chosen gives a local
linear feedback around the optimal solution, and this feedback may
sometimes be used to handle the disturbances on the process.

The derivation and a detailed description of the algorithm is given in
[12] (part 3 of this thesis). To aveld reiterations, all necessary
references will thus be made to this part. We will then use the notation
(3.x.x) when veferring to the relation (x,x) in part 3.

However, the basic structure of the computer program deserves a
commentary., The program consists of a main program which is inde-
pendent of the particular problem considered, and a subroutine where the
particular optimal control problem is specified. The necessary prepa-
ratory programming work is thus resiricted to the subroutine, In this
the system equations, the cost functional, the terminal constraints, the
control variable constraints, the Hamiltonian, the partial derivatives
and the different parameters are specified. Besides, the minimization
of the Hamiltonian is carried out in this subroutine. To our knowledge,
this is the first attempt to design a program package for numerical
solution of a wide class of optimal control problems. The package has
proved applicable to a wide range of problems, and will be described

in detailin [13]. However, it should be noted, that since the main
program is designed for general problems, the computer memory
requirements are rather large (~ 30 k). Besides, the execution time may
be considerably larger than for a program where all the structure of the
particular problem considered is taken into account. These facts should
be considered when the possibility to compute optimal solutions with a
small computer is estimated on the basis of computations on a big
computer,

4.4 Minimum time control strategi

3

o
w

e

In this section we will illustrate the possibility to compute approximate
minimum time control strategies for the case where the stack profile
can be neglected. We will then consider the veformulated fixed terminal

Sy



time problem, and succesively decrease t; until the terminal constraints
can not be satisfied.

In principle, the cost functional (4.7) makes the problem well-defined,
and for different values of tf in the range of interest, it can be verified
that an optimal solution satisfying all constraints exist. However, the
best way to include the terminal constraints ) in the problem is in
general to adjoin 3 by means of a Lagrange multiplier vector b to

the cost functional, This approach is used in the computer program
described above, and thus the actual cost considered would be

oy 2
J=b zp+f{u1 +u, ) dt 4.8)
0

The multipliers b are then determined so that the extremal solution
of (4.8) satisfies ) =0. In optimal control litterature it is always
tacitly assumed that this extremal constitutes a minimum of (4. 8).
However, comparing with finite~dimensional optimization, this is ob~
viously a rather strong assumption, and it was in this case found that
the extremal is not a minimum of (4.8). Consequently, no minimum
solution of (4.8) could be determined, and in particular it was found
that the Riccati equation (3.5.39)

dvxx T T
- = + + f + f+ + +
dt Hxx ugxx X Vxx Vxx X Bl (Huu “guu)ﬁl

T

T T T
+B (H _+HE +LV )H(H bpg 4LV )8 (4.9)

1

got unbounded solutions. This problem was overcome with the technique
described in [14] (part 2 of this thesis) for finite~dimensional problems.
Through inclusion of the quadratic term clpT;b in the cost functional,

it thus became possible to convert the extremal of (4.8) into a minimum
of

t

t
Tocp penty « | {ulz 4 uzz}dt 4.10)
0

where c¢ = 2 was found to be sufficient.

With the cost functional (4.10), the problem was solved for a decreasing




sequence of terminal times tf, with t initially equal to 25.0 secs.,
and the minimum time was determined to tp = 18.12 secs. (For te=.
18.10 the algorithm failed to satisfy the terminal constraints within
the specified numerical accuracy, ” Y H < 0.01). The computed control
strategies and the movements of the trolley and the load are shown in
Fig 4. It can be seen that the control strategies are very close to
bang~zero~bang solutions, and that u; exhibits a rather unexpected
behaviour with three retardation-acceleration phases for t=~ 4, 10 and

15.

Since there is no analytic solution available, the exact minimum time
can only be roughly estimated. For example, the time required to bring
the trolley to the final position (not considering the state of the load) is
easily shown to be about 17.4 secs. Consequently the additional time
required when the oscillations and the position of the load are taken into
accotnt is rather small, The computed minimum time should also be
compared with the full curve strategy of Fig 2., This transfer takes about
55 0 secs. and thus the minimum time strategy implies a reduction with

a factor three.

The corresponding state variables X, (trolley velocity), Xgq (angular
deviation) and Xg (winching velocity) are shown in Fig 5. The behaviour
of the trolley velocity Xo well illustrates the advantage of the constrain-
ing hyperplane technique compared with the interior point constraint
method suggested by Bryson et al. [2]. Rather unexpectedly, the trolley
reaches the velocity constraint twice. With the solution technique suggest-
ed in [ 2], it would then be necessary to & priori know this property of

the optimal solution, and also to have sufficiently good estimates of the
entry times. In the constraining hyperplane technique, the structure as
well as the entry times fall out automatically.

There are several possihilite to speed up the iteration procedure on the
unknown optimal terminal time tf. Firstly, the structure of the control
variables is rather informative. This is illustrated in Fig 6, where the
computed optimal control variables are shown for tp = 18.2, 18.6 and
19.0. It can be seen that the bang=bang structure is very rapidly lost,
and the control variable uy (t) becomes rather smooth already for

tp= 18,2 Very little in time is thus gained at the price of a complex
control signal. Secondly, the eigenvalues of Vpp (3.5.39) constitute a
useful measure of how much t; may be decreased. When tg approaches
the minimum time, one or more eigenvalues of V), tend to zero, and
the corresponding components of the multiplier vector b tend to plus

or minus infinity (3.5.47).
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Fig 4. - Computed optimal solution for ty =18.12 secs,
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b) = acceleration of the trolley (ug(t) ).
c) - acceleration of the winch (uy (1) ).
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compared with other numerical methods, the Differential Dynamic
Programming algorithm used here has a characteristic quality, namely
the minimization of the Hamiltonian H in the backward loop (see

part 3). For some problems, this may cause much trouble, and it may
be necessary to use a separate subroutine for this finite~dimensional
minimization. It may thus be worth while to consider this problem already
when the cost functional is formulated. In this case the admissible region
QO in the control space will always constitute a rectangular region, and
iith our choice of the cost funetional (4.10), the contour levels of H

will be circles. Thus the minimization of H becomes very simple,

and may be performed analytically. In Fig 7 two typical situations are
illustrated. In Fig 7a it is assumed that the velocity limits are not
reached, while Fig 7b illustrates ‘the feasible region ¢) when the
velocities of the trolley and the winch have reached the limits 1.4
meters/sec respectively -0.5 meters/sec.

'p) N U9
0-61 /. yd //1; 0.6‘ ;/ /|/1;
Q 7 420
/ L/
7 > //// L/, >
7 ' ’ Uy
4 -046
-0.61 777N
- 046 046
(a) (b)
Fig 7. - Feasible region () in the control space for
a) —1.4<x2<1.4 and - 0.5<x6<0.5
b) X, =1.4 and Xg =~ 0.5.

With the inclusion of the quadratic term C$T¢ in the cost functional
(4.10), the algorithm converged fairly fast provided that the initial
gless of u(t) was sufficiently close to the optimal solution. A signi-
ficant property is that the number of iterations depend heavily on the
terminal time tf.

Typical figures are 3-4 (tf = 20.0) to 8-9 (tf =18.12). The corresponding

14




execution times varied from about 1 min. to about 7-8 min. However,
for bad initial guesses of u(f) the Riccati equation (4.9) still lacked
bounded solutions, and the algorithm then rapidly diverged. There are
different possibilities to avoid this numerical difficulty. One way is to
completely reformulate the cost functional, and for example punish
the deviation of the state variables from a suitably chosen smooth
trajectory. Another way, and the one chosen heve, istoput H_ =0
in (4. 9). This will not affect the optimal solution, but only the E8cond
order terms and the local linear feedback arcund the optimal solution.
This change of the Riccati equation can be inferpreted as if we in
reality considar the cost functional
t
. T T t . 2 2 711 _
J=cih b +b7yp + h{’ {ul +u_ - (&Z-x) I {#E-x)}
0

% HE

where the nominal trajectory x(f) is succesively updated, and where

‘ . 7~ Pz . 2o L
H_., is evaluated at' x, U (see part 3), With this modification, the conver-
LA

gence rate was slightly decreased in the vicinity of the optimal solution,
but the stability was considerably improved, and even very bad initial
guesses of the control variables could be accepted. Notice however, that
since there are no general results established concerning the preserva-
tion of convergence when (4. 9) is modified, this can only be verified
through numerical experviments, However, this possibility to change the
second order terms has proved useful for many different problems. It

ig thus thought that a thorough study of this computational trick could be
very profitable and might contribute to further knowledge about computa=
tional methods.

4.5 Stack profile constvaints

So far we have neglected the possibility that the stack profile must be
taken into account, In this section we will briefly consider this problem,
and a straightforward way to include the stack profile constraints is

illustrated, The analysis is restricted to the particular situation indicated

in Fig 2, and we will for siinplicity assume that this stack profile can
be approximated with the smooth curve

7 o
== =10 =5 =0

Thus the motion of the load must satisly

|
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-y -1 -5« 0 4,11
My~ 25 (&, 0) < ( )

1t should be pointed out that the solution technique used here allows

for an arbitrary number of constraints. At the price of increased
programming work, it is thus possible to characterize the constraints
very accurately with a large number of inequalities. However, to
simplify the notations, we will also make the further approximation that
the angular deviations are small enough to substitute ¢, by x; (the
position of the trolley) and - Mg by X (the length of the cable). The
additional state variable constraint then is

2

(x, =10) -5<0 (4.12)

7
Sgeit) = X5 = 95 (5
(4.12) is a second order constraint, and in analogy with the velocity
constraints it could be transformed into a constraining hyperplane,
However, since (4.12) is a rather crude approximation, it makes
o sense to strive for very accurate solutions. We have thus chosen
to include S5 with the Kelley penalty function technique [10]. The cost
functional is then modified to

t

f
- T T 2 2 2
J=cp p+b g+ J“{ul +u,” o ch[8.] - 8.7 dt
0
where
1 5,20
h[85]=
0 85:<0

and to satisfy 85 <0, J should be succesively minimized for a
monotone increasing sequence {rk} with lim E However,

) €O
since we also want to determine the minimum time necessary for the
transfer, we must iterate on both T} and ty. Inthis case we chose t;
sufficiently large (25 sec.), and with t; fixed, the problem was solved
for increasing values of r,. It was found that r,_ =10 was sufficient
to satisfy 85 < 0 with the specified accuracy. The optimal solution for
o= 10 was then used as the initial nominal solution for a somewhat
smaller value of te. In this way ty was succesively reduced until the
corresponding minimum values of the cost began to rapidly increase.

This increase occurred around tf = 23.2 secs., and thus tf =23.2 is




considered as the minimum time. As a comparison, the time required
to decrease the cable length to x5 =5, and then, with maximum velocity
at xq =10, bring the trolley to final position is 23. 0 secs.

The computed optimal control strategies and the movements of the
trolley and the load are illustrated in Fig 8, and the corresponding
state variables X, (trolley velocity), xq (angular deviation) and xg
(winching velocity) in Fig 9. It can be seen that the winching velocity
is the limiting factor before the point xy = 10 is reached (t =14.4),
and that the trolley velocity is the determining factor after this point
has been reached. It can also be noticed that the computed optimal
solution agrees fairly well with the intuitive strategy considered above.

4.6 Optimal control in the presence of disturbancies

The load transfer is generally exposed to different kinds of disturbancies
e.g. heavy wind disturbances, and since the accuracy of the terminal
state is critical, it must be possible to compensate for these.

One possibility is then to linearize the nonlinear system equations 5
(Model 1) around the optimal solution, and design a stabilizing regulator
for this linearized system, for example with linear-quadratic optimal
control theory. The corrections du to the optimal control strategy will
then be given by a linear feedback Bu(t) = - L(t)0x(t) from the devia-
tions Ox from the optimal state variables. With a suitable choice of

the quadratic criterion, the deviations bx may then be effectively damped
out. However, the actual performance of this local regulator will depend
on both the control variable contraints g(x,u;t) < 0, which may prevent
the corrections Bu to be realized, and on the properties of the distur-
bancies. In practice, the efficiency of the local regulator can thus only

be verified through simulations. ;

The second order Differential Dynamic Programming algorithm provides
a similar local linear feedback (3.5.24)

bu = 816x + 825b (4.13)

for neighbouring optimal solutions, and with a slight modification this
may sometimes be used to handle the disturbancies, Recalling that
(4.13) is obtained when 4 is directly adjoined to the cost functional by
means of Lagrange multipliers b, (4.13) thus determines the neigh-
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bouring solutions for a free end-point problem, However, from (3. 5. 46)
follows that Ob and bx are related (to first order) by

=1 T

- Vbb be &x

6b =

provided that Vy,,, is nonsingular. For the terminal constrained
problem, the relevant feedback thus is

bu =6 -8, Vyy

T
V) 0% (4.14)

where all quantities are evaluated along the optimal solution, Notice
however, that the properties of /31 and 52 (3.5.40) exclude correc-
tions (except for QExdx) of the optimal control strategy {i when the
control variable constraints are active, that is, when g(@) = 0. If these
constraints are active most of the time, which was shown to be the case
for the minimum time problems considered above, the feedback (4,14)
will consequently be active only for a small part of the time interval.

In practice, this kind of feedback is probably useless. However, the
problem may be overcome by increasing the terminal time tp. In
Section 4. 4 it was shown that the bang-bang structure of the minimum
time solution is rapidly lost when t; increases, and that the influence
of the control variable constraints in a corresponding degree is reduced,
At the price of increased transfer times it may thus be possible to
increase the activity of the local regulator. However, the full efficiency
can still only be verified by simulations where the transfer is exposed
to realistic disturbances.

4,7 Some aspects on the possibility to realize the
optimal control strategies

The analysis in the preceding sections has clearly indicated that the
container handling problem is very complex in case a lot of different
stack profiles and terminal states must be considered. Due to the many
different situations that may occur, off-line computation and storage of
the optimal strategies in a mass memory of a computer attached to the
process is probably excluded., To realize the full optimal strategies,
it then remains to compute the optimal solution in real time. However,
_ even with an extremely capacitive computer like the UNIVAC 1108,
these computations are too time=-consuming to be done between two




succesive transfers. In Section 4.5 it was reported that the execution
times are as large as 1 minute in the most advantageous cases and 7-8
minutes in case the initial guess of u(t) is bad and the terminal time

te is close to the minimum time. Since the transfers take about 20 secs.,
it is thus clear that the execution times will be much too long even if the
computer program is specially adapted to this particular problem. With
the present capacity of digital computers, it can then be concluded that
the implementation of full optimal strategies probably is restricted to
cases where the crane either has a rather limited repertoire, or where
there are suffiecient time available between two succesive operations to
compute new strategies.

However, the knowledge of the full optimal solutions may be valuable
and it may be possible to exploit this knowledge to design some kind

of suboptimal control strategies. For example, it can be seen in both
Sections 4.4 and 4.5 that the strategy to damp out the oscillations at

the terminal time is the same. The load is swung ahead of the trolley,
and then the trolley retardates as much as possible. Although this
principle seems very natural, and generally is used in manual operation
too, it might be worthwile to further investigate this structure to design
a control strategy for only the last part of the transfer. Other possibi-
lities might be to operate with a limited number of control strategies or
to divide the total transfer into a number of characteristic movements
and then utilize the local feedback., However, it should again be empha~
sized that the full efficiency of the suboptimal as well as the full optimal
control strategies can only be verified through simulations where the
transfer is exposed to adequate disturbances.

5, OPTIMAL CONTROL OF MODEL 2

Most of the problems considered in the preceding section apply equally
well for a torque controlled crane (Model 2). We will thus restrict the
study for Model 2 to the simplest case, that is, minimum time transfer
when the stack profile can be neglected. Tt will then turn out that the
structure of the optimal strategy is rather similar to Model 1, and thus a
detailed study will probably not contribute with any new results, However,
a verification of the similarities between the two models is valuable,
since it indicates that if the crane is designed to operate with advanced
control strategies, it may as well be constructed without the expensive
acceleration control equipment.




Similar to Section 4, we will thus briefly account for the state and

control variable constraints, and specify the cost functional. The same
iterative technique as in Section 4 was used to determine the minimum
time, and the computed optimal solution is illustrated. Finally the mini=
mization of the Hamiltonian is briefly discussed, since it proves that

this operation is significantly more involved in this case than for Model 1,

5.1 State and control variable constraints. Choice of
cost functional

In Section 3 it was shown that the operation of the torque controlled
crane can be described by the following model:

1. _
it 2 x,(0) =0
dx
—L .+ . i =
T Y u25 sin x, X,(0) =0
dx3
a4 Xq(0) =0
dX4 ) g sinx, 2 X Xo U5 COS Xg u2<3- cos X, sin x,
a = x T ox - X - x
5 5 5 5
0) =0
X4()
dX5
R 0) =12
ET x,(0)
dx
—=g- +xx2—u-sinx -u 5~sin2x-u X (0) =0
gt T BT eOSXgTAZ, Tl 37 3" % %

The state variables are the same as for Model 1, but in this case the
F

- 2
control variables are u, = - and u, = — ., O gstands for the
1 M 2 m



quotient between the mass of the load and the mass of the trolley, that is,
:";% . Since both u, and 8 depend on m, the optimal control stra-

tegies will be different for different masses of the load. To simplify the
analysis, we have thus assumed that 8 = 0.4, In practice, this roughly
corresponds to a container of medium weight.

To make the properties of the models as equal as possible, we have

further assumed that u, is restricted by

gm0.61§u25g+ 0.61

This implies that the maximum acceleration and retardation of the cable
length is the same for both models when the angular deviation and the
angular deviation velocity of the load are zero. Similarly, it is assumed
that

- 0,46 §u150.46

that is, the maximum acceleration and retardation of the trolley are
the same for both models when the angular deviation of the load is zero.

The terminal constraints ) are independent of the model, and thus
x, (k) = 20
xz (tf)
x_(ta)
RANi
hEE(t);t) =
B (t)
AN
x5(tf) -6
X 6 (tf)
The velocity constraints are also assumed to be the same as for Model 1.

However, the transformation of S(x;t) < 0 into constraining hyperplanes
is dependent on the system dynamics, and in this case we get
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Similar to Model 1, the slopes Biseons d1 were all gset equal to 10,

For the different reasons discussed in Section 4, the adjoined cost
functional was chosen as

3=2¢sz+sz/)" j’{u 7y (1" )2} dt

and for stability reasons, H‘CV was set equal to zero in the Riceati
equation (4.9). ‘

5.2 Numerical solution

To determine the minimum time required for the transfer, the iterative
procedure described in Section 4 was used, that is, t; was succesively
decreased until the terminal constraints Y could not be satisfied, How-
ever, in this case it turned out that the structure of the optimal control
strategy was extremely sensitive to the terminal time, and the accuracy
reached for Model 1 was impossible to reproduce. We can thus only
conclude that the minimum time is about 18.4 secs. In Fig 10 the com~=
puted optimal control variables are shown for tf =18.5, and the cor-
responding state variables Xy (trolley velocity), 5 (angular deviation)
and xq (winching velocity) are illustrated in Fig. 11., It can be seen that
the basic structure of the control and state variables are the same as
for Model 1. The additional time required for the transfer (compared
with Model 1) is explained by the negative angular deviation during the
lirst five seconds, The trolley acceleration is thus decreased in this
interval, and since the deviation does not become positive until the
trolley velocity is veached, it is not possible to compensate this through
an increased acceleration, It should also be noticed, that the strategy
to damp out the oscillations at the terminal time is the same as for
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Model 1, namely to swing the load ahead, and at the same time retardate
the trolley as much as possible.

Model 2 also well illustrates that the complete minimization of the
Harniltonian may be a drawback of the Differential Dynamic Programming
algorithm (see part 3). In Fig 12 the feasible region §2 in the control
space is illustrated for the case when both the trolley velocity and the
winching veloeity limits are reached. Fig 12a roughly illustrates the
character of §) for negative angular deviations xg, and in Fig 12b,

) is outlined for a positive angular deviation. It can be seen, that

?
£
!
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| i
7 Q jﬁ ug T /"é{%\ u2

/ < -0.46 —7% >
20 10.42 9.20 10.42
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9.

Fig 12. - Typical feasible regions () in the control space for
a) negative, and b) positive angular deviations Xge

although the contour levels of the Hamiltonian are circles, the mini-
mization is not straightforward, and the analytical minimization thus
required a great deal of programming work. An alternative would then
be to use a separate algorithm for finite~dimensional optimization in
each step in the backwards integration loop. However, this was found

to heavily increase the execution time, which already was rather

large (about 6 min.), and to decrease the accuracey below an acceptable
level.
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