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1. Introduction

In extremum control, the task is to find and track the best operating point
of a nonlinear process. The optimal setpoint is usually given by a nonlinear
static input-output map presenting an extremum. There are also applica-
tions where it is desirable to drive the process to a saturation instead of an
extremum. The classical approach consists in adding a known time-varying
signal to the process input and correlating the output with the perturbation
signal to get information about the nonlinearity gradient. The controller
adjusts continuously the control signal towards the optimum.

In [8], the authors presented the stability analysis of an extremum
seeking scheme for a general nonlinear dynamical system. Stability of the
seeking scheme was proven under restrictive conditions: small adaptation
gain and fast plant dynamic. In [7] they developped a tighter analysis
where the process was modelled by a Wiener-Hammerstein system. No
stability region was provided.

In [1] and [2] a probing controller based on a pulse technique is de-
scribed. The main difference with the classical scheme is the separation
in time of the correlation/probing phase and the control phase. Pulses are
periodically introduced at the process input and a control action is taken
at the end of every pulse. The control algorithm has been implemented and
tested on real plants where good performance could be achieved, see [1].

The objective of this paper is to provide a rigorous analysis for stabil-
ity and robustness of the probing controller. The analysis is local but it
is possible to characterize the region where stability is guaranteed. The
paper is organized as follows. In Section 2, we present the control strat-
egy and formulate the problem in a piecewise affine framework. Stability
and performance analysis is carried out in Section 3, using linear matrix
inequalities. We finally examine in Section 4 an example that was at the
origin of the probing controller.

2. Problem formulation

We assume that the process is a Hammerstein model: a static nonlinearity
followed by a dynamical linear process, see Figure 1. The analysis would
be similar for an output nonlinearity.

static dynamic
input linear | output
— | nonlinear > L -
v process y

Figure 1 Hammerstein model

The control objective is to drive the system to the extremum of the
static input-output map of the process. It may also be desirable to control
the process to a saturation instead of an optimum.

The probing controller gets information about the nonlinearity from
pulses that are periodically superimposed to the control signal. The size of



the pulse response, which depends on the local gain of the nonlinearity, is
used to adjust the control signal.
The controller law can be written as:

ups1 =ug + K[y((k +1)T) — y(kT + Tc) — y7]
v(t) =ur+up(t) telkT, kT +T]

where v is the control signal and u, () is the T-periodic perturbation signal
defined by:

up(t) =0 t € kT, kT + T.)

up(t) = ud t € kT + T.,(k+1)T)
A reference value y, is used for the desired pulse response. It is usefull
when the nonlinearity does not present an extremum but a saturation.
During the control phase with length T, the process input is kept constant.
In [1], this phase is used to control the output by manipulating a second

input variable. The duration of the probing phase is T, =T — T..
The state space representation of the process can be written as

x=Ax+ Bf(v) x € R"
y=Cx
Since the controller is time-periodic, one can regard the feedback system
as a sampled data system where the sampling time is the period T of the
perturbation signal. Denoting by ® the transition matrix for the linear
plant we get
x((k+1)T) = O(Tp)x(kT + T¢)

TP
+ [0, - 0)Bf (wh + uf)do
0

upt1 = up + K[C(x((k + 1)T) — x(RT + T¢)) — y,]
where
(kT + T.) = ®(T,)x(kT)

+ /OTC ®(T, — 0)Bf (up)do

By augmenting the process state with the controller state, we finally get
the closed loop equation

f(ur)
f +u2)] T (1)
Uup = [0 ...0 1]Xk

X1 =AaXr + By [



where

rx(kT) O(T) 0
o ] Aa= [KC@(T) — &(T.)) 1]
. [ | o(T —0)Bdo  [» ®(T, — 0)Bdo

‘| ke 1Eg(0)Bdo  KC [)» ®(T, — 0)Bdo
wi=| o, | 9@ =0-0)-0(1 -0

Assumption: the static nonlinearity f is a piecewise affine function de-
fined on p + 1 intervals.

The functions f(JJand f(F-«)) in (1) induce then a partition of the state
space into 2p + 1 polyhedral cells {X;};c;. The regions X; can be defined by
the matrices E; and e; such that:

X, ={X eR"", EX +¢ >0}

where the inequality > should be taken componentwise.
The closed-loop system has a piecewise affine structure and can be rep-
resented by:
Xpi1=AiXp+a;, forX,eX;, 1€l

We assume that the closed-loop system has a unique equilibrium, that
is shifted such that it coincides with the origin.

3. Stability and performance analysis

Stability analysis of the closed-loop system can be done using piecewise
quadratic Lyapunov functions as in [5] or [6] in continuous time and [4]
or [3] in discrete time. In the piecewise affine framework, H,, performance
can also be evaluated. It is then possible to study the effect of uncertainty
in the nonlinearity or in the plant dynamics on the probing control strategy.

3.1 Stability
The Lyapunov function candidate is piecewise quadratic:

VX)=XTPX forXeX; iel

where X denotes the state vector augmented by 1:

=]

Stability can be tested by checking that the following linear matrix in-
equalities are feasible

P;—9,G; —b;B, >0, tel
ATP;A; — P + h;G; + k;jGij + bi;B, <0, L, jel
9:>0, b;>0, h;;>0, k; >0, b;;>0, i, jel



where

- A; a; _ -D 0
A; = B, = )
0 1 0 R
and D is a positive diagonal scaling matrix. The so-called S—procedure [9]
has been used to reduce the conservativness of the LMIs:

e the domain of analysis is limited to the ball XTB,.X > 0. Global
stability cannot be investigated because of the integrators introduced
by the control law. Stability can be still proven for a large bounded
set of initial conditions.

* the matrix G; is used to restrict the domain of validity for LMIs to
the cell X;. It takes the form

a_[0 SET
e SE; e;

« the relaxation term G; ; describes when a switch from the cell X; to
the cell X is possible in one step:

XkT(hiGi + kijéij)Xk >0
when X; € X; and X3 € X;

We use a matrix G; i of the following form:

- 0 B5ATET
Yo .5EJ'Ai €; + EJ'Ai

3.2 Robustness

We assume that the model uncertainty can be represented by a multiplica-
tive perturbation as follows:

u
Xpt1=AaXy + By [f(zf;ffl?,)
- [ f(uz) ]
fur+ ug)
wy, = (I2 + D)z,

] + Bawy, + a4

where A is any stable transfer operator. With this representation, vari-
ations in the nonlinearity gain or equivalently in the process gain can
be considered. Indeed, using a diagonal matrix for the uncertainty A =
ols, 0 € R, we get

f (ur) ] vay
f(ur +ud)
Applying Lemma 5 in [3]|, an upper bound y of the /o gain from w to z

can be computed. The small gain theorem can then be used to get a robust
stability test:

Xpy1=AgX) + (1 +90)By [

1
llzll2 < y|lw|l2 = stable for all A with [|A||« < v



4. IMlustrative example

In this section, the properties of the probing controller will be illustrated
through an example. We will consider the control of glucose feeding in
Escherichia coli fed-batch cultivations. It should be pointed out that the
probing strategy presented here was developped for this specific applica-
tion. The control problem consists in driving the system to a saturation
instead of an optimum. In fed-batch cultivations, substrate is fed into the
reactor at a growth limiting rate. High feed rates imply short cultivation
times, but overfeeding may cause accumulation of by-products. Above an
unknown substrate concentration, the oxygen uptake rate of the cells sat-
urates and the by-product acetate starts to be produced. The manipulated
variable is the feeding rate F' and the measured variable is the dissolved
oxygen concentration O,. The objective is to keep the substrate concen-
tration G slightly below the critical level G.,;; by manipulating the feed
rate. The closed-loop system can be represented by the block diagram in
Figure 2.

F Glucose G 3 Oxygen Op
dynamics / dynamics

Probing
controller

Figure 2 Block diagram of the closed-loop system. By making pulses in the feed
rate F, it is possible to determine if the glucose concentration G is below or above
the critical value G,,; when the oxygen uptake rate g, start to saturate.

The oxygen dynamics is modelled by a first order transfer function

K
H(s) = o
() 1+ Tys

with K, =10and T, = 1

Numerical values corresponding to a laboratory scale biorector are used
for the simulations. The glucose dynamics is neglected and represented by
a static gain K, = 5, that is included in the nonlinearity f

G =K,F
f(F) = min(G,Gcrit) with Gy = 1

In [1], tuning rules for the probing controller are given. The pulse du-
ration and the pulse height are chosen such that the pulse response can
be clearly seen in the output signal. We choose T, = 1 and ug = 0.12 to
get suitable variations in the dissolved oxygen signal. The desired pulse
response Yy, is taken to be y, = 2. In the original problem, the output O,
is controlled by means of the agitation speed during the control phase of
length T.. Although we do not take this second control loop into account,
we follow the rule given in [1], that is 7. ~ 3T, = 3. We choose a rather



low controller gain K = 0.02, which corresponds to a feed increase of one
pulse size when the response in the dissolved oxygen is 10.

The state is composed of the dissolved oxygen concentration O, and the
controller state u:

The functions /() and f(C#+ uY) induce a partition of the state space into
3 regions:

X1 ={X € R*,u < Geyit/ Ky — u}
= {X € R%,u < 0.08}

Xy = {X € R? Gerit/ Ky —uY < u < Geyi /| Kq}
={X € R?,008 <u <02}

X3 ={X € R%,u > Geit/K,)}
={X € R%,u> 02}

The dynamics in each region is given by

0.018 49.08 [1.726

Al = a; =

| —0.0005 1.025 1 0.027

[ 0.0183 1747 [0
Ay = az =

| —0.0005 0.519 10

[ 0.0183 O [ 1.142
A3 = as =

| —0.0005 1] _—0.031]

It can easily be shown that the two dynamics A; and A3 contain an
integrator that drives the state to the middle region where the unique
equilibrium point is located.

0, =883
u=0.134

A simulation of the closed-loop system has been carried out and the
results are shown in Figure 3. The feed rate starting at 0 is gradually
increased by the controller. At time ¢ 15, the glucose concentration
reaches the critical point and the pulse response becomes smaller. As a
consequence, the feed rate is increased carefully until the size of the pulse
response equals the setpoint y,. The stationary feed rate corresponds to a
glucose concentration that is just below G.,;.

~

The stability test from Section 2 consists of 33 LMIs with 22 decision
variables. Feasibility of the LMI system, and as a consequence stability,
could be established using the LMI Control Toolbox for Matlab. Conver-
gence to the equilibrium is guaranteed for all initial states in a ball of
radius R = 50. This allows an error for the initial feed rate of at most
AF = 50u,, which is very large.
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Figure 3 Simulation of the closed-loop system using the probing controller. The
feed rate is gradually increased until the response in dissolved oxygen equals the
setpoint y, = 2. The dashed lines represent the cell borders.
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T
Figure 4 Graph giving the maximal relative variation in the gain K, as a function
of the time constant 7,. For T, = 1, stability of the closed-loop system cannot be
guaranteed for variations in K, larger than 8%.

0 L L L

Since the oxygen dynamics may vary significantly during a cultivation,
robust stability tests are valuable for the design evaluation. The norm
|Al| of the largest allowed uncertainty has been computed and plotted in
Figure 4 as a function of the process time constant 7,. The design done for
the nominal system allows around 8% variations in the process gain K,
without affecting the closed-loop stability. This robustness result is how-
ever rather conservative. Unstructured uncertainty was considered in the
analysis although a constant diagonal matrix A suffices to model a uncer-
tain gain K,. Stability was not established for time constants 7, greater
than 2.2. The rule of thumb T}, ~ T, seems to give good stability margin,
comparable to the case of a static process T, = 0. The choice of the relative
pulse duration is however a compromise between performance and robust-
ness: long pulses result in good stability margins but slow convergence
speeds.



5.

Conclusion

A probing control strategy has been analysed for linear systems with an
output nonlinearity that is piecewise affine. Techniques for piecewise affine
systems have been used to derive stability tests of the closed-loop system.
The analysis is local but large bounded regions of attraction can be guar-
anteed. Robustness with respect to uncertainty in the plant dynamics has
also been investigated.
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