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Introduction

In these competitive days there are substantial benefits for process indus-
try in improving control as it will, from several points of view, yield better
economy: lowered cost of raw material, energy, equipment and workforce,
and better fulfillment of the environmental conditions, As a consequence it
is possible to increase the level of competition. The required investments,
to achieve initial improvements on existing operations, are generally very
modest compared to the obtained benefits. The only real costs are the
working-hours of the workforce and, if needed, the replacement of some
control hardware. According to Bialkowski (1997), the cost/benefit ratio
of these investments is at least 1:10 and often, much higher.

In this thesis the subject of "How to impreve control?” is treated by
presenting: new design methods for proportional integral derivative (PID)
controllers, the extensions of these controllers to improve their perfor-
mance, and the applications of these design methods to industrial pro-
cesses. The thesis consists of the following papers, and supplements:

1. ASTROM, K. J., H. PANAGOPOULOS, and T. HAGGLUND (1998):
“Design of PI Controllers Based on Non-Convex Optimization.” Au-
fomatica, 34:5,

II. PANAGOPOULOS, H., K. J. ASTROM, and T. HAGGLUND (1999):
“Design of PID Controllers Based on Constrained Optimization.” In
1999 American Control Conference. San Diego, California.

Hs. PANAGOPOULOS, H, K. J. ASTROM, and T. HAGGLUND (2000):
*Supplement and Errata to "Design of PID Controllers Based cn Con-
strained Optimization".” Department of Automatic Control, Lund In-
stitute of Technology, Lund, Sweden.

II1. PANAGOPOULOS, H,, and K. J. ASTROM (2000): “PID Control De-
sign and #,, Loop Shaping.” Accepted to Robust and Nonlinear Con-
trol.



Introduction

IV. EBORN, J., H. PANAGOPOULOS, and K. J. ASTROM {1999): “Ro-
bust PID Control of Steam Generator Water Level.” In IFAC'99 14th
World Congress of IFAC. Beijing, P. R. China,

V. PANAGOPOULOS, H., A. WALLEN , O. NORDIN, and B. ERIKSSON
(2000): “A New Tuning Method with Industrial Evaluations.” Sub-
mitted to Control Systems 2000. Canada.

VI. PANAGOPQULOS, H.,, and T HAGGLUND (2000): “A New Modular
Approach to Active Control of Undamped Modes.” Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

Today’s PID controllers

In today’s process industry it is still PID controllers which are the mosé
frequently used controllers in the distributed control systems, Estimates
indicate that more than 90% of all controllers used are of the PID type.
There are a number of reasons for its popularity.

— To begin with the PID controller has a long history of proven oper-
ation, and if it is properly designed and well-tuned it gives satisfactory
control in many applieations.

- Secondly, PID controllers are well understood in operational, techni-
cal and maintenance occupations. To implement it in present control sys-
tems is not difficult, and it requires no advanced equipments or demands
of the instrument engineer. As a PID controller has fixed complexity, that
is only three controller parameters has to be set, it will not require an
exact process model, and the controller parameters can be easily adjusted
after the installation. When developing a new design method these func-
tions are important to have in mind.

— Thirdly, with today’s cheap microprocessors complex control algo-
rithms can easily be implemented, which are superior to the traditional
PID controllers. The rapid progress of control techniques has also resulted
into the packaging of control systems. Nevertheless, the PID controller
maintains its popularity in the process industry. One reason is the in-
strument engineers habit to have considerable authority over the control
of the plant, Packaged control systems such as the model predictive con-
trol in Maciejowski (1999) will then be used to support the instrument
engineers, rather than replacing him/her. For example, the model predic-
tive control is implemented on top of the conventional PID controllers to
provide set points to them. Another reason for the popularity of PID con-
trollers, are the difficulties for an engineer to understand the principles
and mechanisms of complex control systems. The intuitive comprehensi-
bility, the continuity between control methods, and the conventional expe-
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A Perspective on Control Design

rience are what engineers truly desire on automating the confrol systems
in process industries.

— Finally, there are many extensions which make an industrial PID
controller useful for controlling a process. For example, the possibility
to switch between manual and automatic mode, set peint tracking and
anti-windup, Furthermore, all new PID controllers are based on micro-
processors. This has given opportunities to provide additional features
like automatic tuning, gain scheduling, and continuous adaption. Auto
tuning is useful for instrument engineers fo keep the control loops well
tuned. The benefits are even larger for more complex loops. Tuning facili-
ties are also starting to appear in the distributed control systems. In this
case it is possible to have a very powerful interaction of the user because
of the graphics and the computational capabilities available in a system.

A Perspective on Control Design

For a long time the development of design methods has been the goal of
the control community. In the 1930’s and 1940’s the classical frequency
domain methods were developed. It began with Black’s breakthrough on
feedback amplifiers, followed by Nyquist and Bode’s work in stability the-
ory, In the classical approach the main concern was to design feedback
compensators in order to achieve a certain stability margin, see for ex-
ample Truxal (1955). The emphasis was on model uncertainties and the
feedback was used to decrease sensitivity to disturbances and model er-
rors. The compensatory design was done mainly by graphical methods
evolving from the Nyquist’s stability criterion.

In the 1950’s analytical design methods were developed, see for ex-
ample Newton of al. (1957), where specifications on the transient perfor-
mance were given. With the appearance of analog computers it was easy
to check time response criteria, and performance criteria quantitatively
expressed. At the same time less attention was given to robustness and
sensitivity issues.

During the mid 1950°s there was a renewed interest fo consider ordi-
nary differential equations as a model for control systems which typically
called for the extensive use of digital computers. Much of this work was
stimulated by a new field, the control of artificial earth satellites. At about
the same time the study of optimal control was extended to find optimal
trajectories for nonlinear dynamical systems, particularly for robots, air-
crafts and spacecrafis.

In the 1960’s the development of control design methods based on opti-
mization techniques had the advantage to capture many different aspects
of the design problem. During this time efficient computer methods were
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Introduction

developed to solve these problems. A general discussion of the use of op-
timization for control design is found in Boyd and Barratt (1991) and,
Mayne and Polak (1993).

In the 1970’, it became apparent that more attention should be given
to robustness issues, This was particularly true for systems with lightly
damped oscillating modes such as flexible space vehicles. Daring the last
two decades new controller design methods, such as the Ho-design, have
been developed in which robustness issues have regained its importance,

Why a New PID Design?

Why do we need a new design method for PID controllers? What is wrong
with the existing ones? There are a number of reasons,

— Over the past 40 years an enumerable number of books and tech-
nical articles have presented methods for the design of PID controllers,
"The fact that none of these seems to have gained widespread acceptance
indicates that, as in the case of razor blades, the best solution has not
yet been found.", see Smith et al (1975). On the other hand, there is a
need for a variety of techniques to tune PID controilers, which ranges
from simple tuning procedures to more elaborate ones based on process
modeling. It is also necessary to be aware of the fact that there are many
different types of control problems and consequently many different de-
sign methods. Only to use one method is as dangerous as only to believe
in empirical tuning rules.

— Many design methods are based on simple parameter models, ob-
tained by measuring the natural period and/or the dead time, and time,
for example, Ziegler and Nichols (1942}, and Cohen and Coon (1953).
Even if these design methods are easy to use it is important to be aware
that they are not, always, a substitute for the insight and understanding
of design methods based on more process knowledge. Today it is possible
to obtain, in a simple way, enough process knowledge needed for a good
design, see Wallén (1999), and Van Overschee and Moor (1999).

~ A lot of design methods consider only one aspect of the control prob-
lem. For example, in the classical design rule of Ziegler and Nichols (1942)
the objective was to reject load disturbances, no aspoct was taken to
changes in set point. It would be desirable to have a design method which
capture engineering ecriteria such as load disturbance response, robust-
ness to model uncertainties, rejection of measurement noise, and set point
tracking. Many traditional tuning rules in PID control do not consider all
of these aspects in a balanced way which is a considerable drawback.

— The increased popularity of automatic tuning and of field-busses in
the process industry will drastically simplify the use of controllers, Single

12
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loop controllers and distributed control systems are important application
areas of the process industry where most of controllers are of the PID type.
As this is a vast application area, there are millions of controllers of this
type in use, new funing rules would be highly beneficial.

These findings gives an indication of the need for modern methods
which take into consideration the process dynamics, and, at the same
time, several aspects of the design specifications. Concerning the partic-
ular method to use, it is toc early to draw definite conclusions, There are
many different ways to determine process characteristics, many methods
for design of PID controllers, and many ways of combining such tech-
niques to create auto tuners, see Van Overschee and Moor (1999). But, a
structured approach to control loop design and tuning is still needed.

Important Properties of a New PID Design

The discussion in the previous section will serve as a gunideline to deter-
mine an efficient design method for PID controllers.

A controller design which is based on simple model will give a straight-
forward strategy. On the other hand, the flexibility in the specifications,
and the alternatives when an unsatisfactory design is obtained are lim-
ited. A more desirable approach would be a model based method which
recognizes the importance of dynamics from higher order models. It is
then possible to obtain better control of important loops, for example slow
ones such as temperature control loops, or hard ones where the usual
thumb rules are not enough.

When solving a control problem it is necessary to understand the pri-
mary goal of control. Two common control objectives would be: good set
point tracking and fast rejection of load disturbances. It is also impor-
tant to have an assessment of the major limitations. Typical specifications
are then: rejection of load disturbances, set point tracking, robustness to
model uncertainties, and rejection of measurement noise.

Consequently, the controller design should be applicable to a wide
range of systems. It should have the possibility to introduce specifica-
tions which capture the essence of real control problems. The method
should also give all parameters of the PID controller including the set
point weight, the set point filter, and the measurement noise filter, if
desired, Furthermore, the method should be robust in the sense that it
provides controller parameters, if they exist, or, if the specifications can
not be met an appropriate diagnosis should be presented. Most of these
requirements are satisfied by the design methods for PI and PID con-
trollers presented in the thesis. A short resumée of the background of the
proposed design methods for the PI and PID controllers follows below.

13



Introduction
Background of the New PI and PID Controller Designs

Commercial PID controllers with automatic tuning facilities have only
been available since the beginning of the 1980’s. There are several rea-
sons for this: First, the recent development of microelectronics has made
it possible to incorporate the additional program code needed for the au-
tomatic tuning at a reasonable cost. Second, projects related to automatic
tuning at the universities are quite new. Most research efforts have been
devoted to the related, but more difficult, problem of adaptive control.

Projects related to automatic tuning started off in the beginning of
the eighties at the Department of Automatic Control, Lund Institute of
Technology, Sweden by the advent of the relay method in Astrém and
Hégglund (1984) for the identification procedure of the process model. It
is still used in industrial products, single station controllers as well as
distributed control systems, produced by ABB Automation Products.

The original auto tuner used a crude and simple design method, a
modification of the Ziegler-Nichols method, to determine the controller
parameters, where the process information was based on one point of the
Nyquist curve. An improved method, the dominant pole design method,
was presented in Hagglund and Astrom (1985) where the process infor-
mation was based on two points of the process Nyquist curve. Thus, the
two most dominant closed loop poles were positioned. In Persson (1992)
this method was improved and further developed. It assumed that the
process transfer function was known. The design method positioned the
dominant poles of the closed loop system such that a good rejection of
load disturbance would be obtained. This is equivalent to minimize the
integrated error

IE = / e(t)dt,

with a robustness constraint. Consequently, the dominant pole design
leads to an optimization problem, where robustness is incorporated by
searching for the relative damping of the dominant poles which obtain a
given value of sensitivity. One of the main drawbacks of the dominant pole
design is its difficulty to obtain good starting values and reliable numer-
ical methods. The present work can be viewed as a continuation that is
based on a direct solution of an optimization problem to minimize the IE.
This is a difficult problem as the complexity of the controller is restricted
compared to, for example, the #,,-design. Similar work have been done
by, for example, Schei (1994), Van Overschee and Moor {(1999), Langer
and Landau (1999), and Kristiansson and Lennartsson (1999).

14




Extensions

Exiensions

The popularity of the PID controller in today’s process industry is due to
a number of reasons:

— Gives satisfactory control for most industrial processes.

- Long history of proven operation,

- Easy to understand.

- Standard form, thus no requirement of exact process model.

- Easy adjustment of the controller parameters after installation,

It is surprising that such a simple controller as the PID works so well, But,
the simplieity implies limitations. There are applications where significant
better performance is obtained with more sophisticated controllers:

— Processes with long dead times.

~ Processes with nonlinearities.

- Processes with large interactions,

- Processes with poorly damped oscillatory modes.

For example in the first case, the performance of the system is enhanced
by dead time compensation. In the second case, amelioration of the con-
troller performance is made by gain scheduling. In the third case, improve-
ments of the systems performance are made by using cascade control, feed
forward control, or ratio control. How to improve the performance in the
last case is treated in this thesis. A new way to damp the oscillatory modes
is proposed in Panagopoulos and Higglund (2000).

Furthermore, with today’s development of more advanced, and com-
plex design techniques, it would be desirable for control engineers to tune
the three parameters of the PID controller based on these techniques,
In this thesis it is proposed how to choose the parameters of the PID
controller based on the #,-design in Panagopoulos and Astrém {2000).

15



Introduction

Figure }. Block diagram describing the problem formulation of the proposed de-
sign methods for PI and PID controtlers.

Design: A New PID Controller Design

In this thesis two design methods have been developed: design of PI and
PID controllers respectively. The formulation of the design problem for
the two methods coincide, they are therefore presented together.

Formulation of the Design Problem

Consider the design problem illustrated in Figure 1.. A process with trans-
fer function G(s) is controlled with a PID controller with two degrees of
freedom, see Horowitz (1963). Transfer function G.(s) describes the feed-
back from process output ¥ to control signal u, and Grr(s) deseribes the
feed forward from set point y,, to u. Three external signals act on the
control loop, namely set point ¥sp, load disturbance ! and measurement
noise n.

The design objective is to determine the controller parameters in G,(s)
and Gy (s) so that the system behaves well with respect to changes in the
three signals ygp, I and n as well as in the process model G(s). Therefore,
the specification will express requirements on:

¢ Load disturbance response

¢ Robustness with respect to model uncertainties
¢ Measurement noise response

e Set point response

The formulation of the design problem can Ioosely be divided into two
categories: specifications on performance and robustness. The first spec-
itication takes care of the rejection of load disturbances, measurement
noises, at the same time as good set point following is obtained. Accord-
ingly, the presented controller structure allows for independent tuning of
the feedback term G, and feed forward term Gyy. The second specifica-
tion takes care of the sensitivity to model uncertainties. One of the major

16




Design: A New PID Controller Design

drawbacks of the classical Ziegler Nichols method was the absence of this
specification.

Process and controller structures

The design problem is formulated to apply to a wide variety of systems.
Consequently, the process is assumed to be linear, time invariant, and
specified by a transfer function G(s), which is analytic with finite poles
and, possibly, an essential singularity at infinity. The description covers
finite dimensional systems with time delays and infinite dimensional sys-
tems described by linear partial differential equations.

The limitation of the design to linear time invariant systems is a minor
restriction. Many nonlinear process control plants are well modeled locally
by linear time invariant systems. The operating range of the controllers
can then be extended using gain scheduling or adaptation.

The controller is described by

Mﬂ=k®hﬁﬂ—ym)+h£%nﬂﬂwy@Wk+kd—%§%, (0.1)

where &, k;, kg and b are controller parameters. (In the well known
notation k = K, ki = K/Ti, ka = K - Ty). If it is needed the signals y
and y, can be replaced by their filtered values y/ and yérp. The filtered
signals are generated by

Y/ (s) = Fy(s)Y(s),
}?;J(S) = Fyp(s)Ysp(s),
where the filters are low pass filters of first or second order. The controller

can thus be characterized by either three or four parameters k, k;, (ks), b,
and two filters F,, Fy,,

Load Disturbance Attenuation

The primary goal of the proposed design problem is to achieve good re-
Jection of load disturbances, which in mathematical terms corresponds to
minimize the integrated error, IE, where,

IE = f(ySP“y)dt-

The idea is illustrated in Figure 2., where the output y of the closed loop
system is plotted for a unit step disturbance 7 applied at the process input.

17
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Figure 2. The output y of the closed loop system for a unit step disturbance 7
applied at the process input,

To minimize the IE corresponds to the minimization of the shaded area
in the figure, where the controller parameters are related to the IE as

IE =1/k;.

Thus, the performance criterion of minimizing the integrated error, IE, is
equivalent to maximize the integral gain, k;. The problem formulation is,
then, well suited to be solved with parameter optimization, Unfortunately,
the criterion, alone, will not be sufficient to guarantee good performance
for all systems, as undamped or even unstable responses can be obtained.
Consequently, an additional constraint is needed to guarantee the stability
of the closed loop system, which is discussed later on.

There are several reasons to optimize the process response to changes
in load disturbance instead of set point. To begin with, load disturbances
are more likely to change during operation compared to set points, which
are usually kept fixed. Secondly, the rejection of a step upset is the most
demanding of the load disturbances. A good set point tracking can be
achieved by the use of a feed forward term. Finally, the performance cri-
teria is economically related, the IE is proportional to operational cost,
see Shinskey (1990). Still a lot of papers focus primarily on good set
point tracking, even if practitioners such as Shinskey (1990) and Lopez
et al. (1967) have emphasized the importance of optimizing the process
response to changes in load disturbance.

Measurement Noise

In today’s tuning metheds the reduction of measurement noise is seldom
incorporated in the calculations, In those cases a filter is designed, it is
often only applied on the derivative part of the PID controller,

18
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A ImL(iw)

R ReL (iw)

Figure 3. The robustness constraint of the proposed design methods for PI and
PID controllers.

The advantages of the proposed design method are: First, the system-
atic approach to determine measurement noise filters , such that the noise
level is reduced. Second, the possibility to filter all ferms of the controller,
which will reduce the high frequency gain from measurement noise to
controller output. A more detailed discussion is given in Panagopoulos
et al. (1999) and Panagopoulos ef al. (2000), and an application is given
in Eborn ef al. (1999).

Set Point Response

The necessity of taking into consideration the set point response have been
observed previously, see, for example, Shigemasa eof al. (1987). A common
way, in industry, to obtain a smooth set point response is to ramp it by
using either a rate limiter, or a jump and rate limiter, see for more details
in Astrém and Hagglund (1995).

In the proposed design method the controller structure has two degrees
of freedom, that is, a feedback term G, and a feed forward term Gy,
see Figure 1.. This allows for independent tuning of the feedback and
feed forward terms since both load rejection and set point tracking are
important objectives. The parameters to be determined in the feed forward
term are the set point weight b and, if necessary, the set point filter Fy,.
A more detailed discussion of how to determine the feed forward term is
given in Astrom ef al. (1998) and Panagopoulos et al. (2000).
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Robustness

As was mentioned earlier the primary goal of the proposed design method
was to achieve good rejection of load disturbances, that is, to minimize
the IE or maximize %;. It was realized that the criterion, by itself, would
not be adequate for controller performance as it would not penalize a loop
with an undamped response. The problem has been known for a while
and to overcome it other tuning criteria have been developed such as the
integrated absolute error (IAE), the integrated absolute time weighted
error (IATE), the integrated square error (ISE), the integrated square
time weighted error (/ST E), etc., see Shinskey {1990), Zhuang and Ather-
ton (1991), Kaya and Scheib (1988) and references there in. There are
drawbacks to use these criteria: some of them have not ‘an obvious rela-
tionship to operational cost as the IE. There are criteria which uses a
bad weight on the controller error either from an aspect of time or gain,
For some criferia the mathematics needed to solve them may become too
intrinsic. Still, it was tried in Andreas and Astrom {1997) to replace the
criteria of maximizing IE with the one of maximizing IAE for the pro-
posed design method for PI controllers. The major drawback was that the
optimal solution resulted into an undamped closed loop system, for more
details see Andreas and Astrom (1997).

In the proposed design method the drawback of not being able to guar-
antee a stable closed loop system have been overcome by the addition of
a constraing. Consequently, the criterion of minimizing the I'E is retained
with the addition of a robustness constraint which guarantees the stability
of the closed loop system. The robustness constraint is given in explicit
terms: the Nyquist curve of the loop transfer function, L(im), must He
outside a specified circle with center ~C and radius R, that is,

1€ + L{iw)|| > R,

see Figure 3.. This establishes a nice connection between traditional de-

sign of PID controllers and the #, control, see Panagopoulos and Astrém (2000)
Simple measures of the robustness are the maximum of the sensitivity
funetion, the maximum of the complementary sensitivity function, and

the weighted 7{,, norm, see Glover and McFarlane (1989), of the multi
variable transfer function

1 G i
1+ GG, -GG, -G.|°
Thus, the robustness measure provides a transparent design variable.
In the case of measuring the robustness in terms of the maximum of the

sensitivity function, the Nyquist curve of the loop transfer function should

20
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Figure 4. The problem formulation of the proposed design method.
avoid a circle with center at € = —1 and radius R = 1/M,, where,

M, = [[(1+ GCY o

With a constraint on M, it follows from the circle criterion that the
closed loop system will also remain stable with a static nonlinearity in
the loop, provided that the nonlinearity is bounded by M, /(M; + 1) and
M,/(M, — 1), see Astrom ef al. (1998) and references there in.

Tuning Parameter

In almost all applications a tuning parameter is useful to adjust the trade-
off hetween performance versus robustness, since loop tuning depends on
the users knowledge and confidence of the plants dynamics, linearities and
changing conditions. Consequently, the effects of the tuning parameter
should be transparent to the user.

The tuning parameter of the proposed design method is directly related
to the robustness for model uncertainties, that is, the radius R of the cir-
cle in Figure 3., see Astrém et al, (1998) and Panagopoulos et al. {1999).
The advantages of the chosen design variable are its relationship to both
the robustness for model uncertainties and the performance of the closed
loop system. Furthermore, the tuning parameter is dimension-free, which
makes it suitable for automatic tuning. This is to be compared to the In-
ternal Model Control, see Rivera ef al. (1986}, whose tuning parameter
has dimension time. In the Internal Model Control framework, the tun-
ing parameter is the closed loop time constant which can be used to trade
performance, in terms of the time response of the process output, versus
robustness. The trade-off is not optimal in the sense that some perfor-
mance objective is minimized subject to a robustness constraint, which is
done in the proposed design.
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Parameter Optimization

The proposed design method can be formulated as a parameter optimiza-
tion problem:

max k;

] ) (0.2)
subject to  ||C + L{iw)| > R,

which is fllustrated in Figure 4.. Consequently, we have a nonlinear opti-
mization problem to solve, which is non-convex and requires a numerical
search algorithm and a method for generating good initial values.

The are several advantages when using optimization for the design of
controllers, Parameter optimization is, especially, a powerful tool for the
design of PID controllers where the controller structure and the param-
eters to optimize are given. It allows for a much greater range of perfor-
mance and robustness criteria compared to the classical Ziegler-Nichols
methods, Optimization gives the ability to apply the design method to a
wide variety of processes, which is to be compared to the restriction of
simple parameter models.

There are, also, several pitfalls when using optimization, Care must be
exercised when formulating criteria and constraints; otherwise, a criterion
will indeed be optimal, but the controller may still be unsuitable due to a
neglected constraint, The required computations may become excessive.
Numerical problems may arise if the optimization problem is non-convex.
In those cases, it is important to have a systematic approach for finding
"reasonable" initial guesses of the parameter values.

The Proposed Design Method for Pl Controllers

The proposed design method for PI controllers is given in Part I, which
confains the paper,

I ASTROM, K. J., H. PANAGOPOULOS, and T. HAGGLUND (1998):
“Design of PI Controllers based on Non-Convex Optimization.” Au-
tomatica, 34:5,

In paper I. an efficient numerical method for designing PI controllers is
presented. The specifications capture demands on load disturbance re-
Jjection, set point response, measurement noise, and robustness to model
uncertainties, which have been explained previously in this section. The
paper shows how the optimization problem in (0.2), can be reduced to the
solution of nonlinear algebraic equations by exploiting its structure. It is
shown how to find efficient iterative methods to solve the problem, and
good initial parameter values. For special classes of systems, for example
those with a monotone transfer function, it is possible to provide good
initial conditions in a systematic way.
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The design procedure has been applied to a variety of systems; stable
and integrating, with short and long dead times, with real and complex
poles, and with positive and negative zeros. It is shown that unique solu-
tions exists for special classes of systems, but very complcated situations
may occur for complicated systems. The method will give a solution if one
exists, and it will indicate when there is no PI controller satistying the
specifications,

The new contributions are: the analysis of the nature of the robustness
constraint, the efficient numerical procedures, the systematic approach to
find good initial parameter values, and the method to determine good set.
point tracking.

A natural step would be to extend the work on designing PI controllers
presented in paper L. to the design of PD and PID controllers. For the
former case, the solution to the design of PI controllers can be immediately
generalized to the design of PD controllers by replacing all %; by k4 in
paper L. On the other hand an immediate generalization of the solution
to the design of PI controllers to the design of PII} controllers is not
possible,

The Proposed Design Method for PID Controllers

The propesed design method for PID controllers is given in Part II, which
containg the papers,

II. PANAGOPOULOS, H,, K. J. ASTROM, and T. HAGGLUND (1999):
“‘Design of PID Controllers Based on Constrained Optimization.””
1999 American Control Conference, San Diego, California.

IIs. ASTROM, K. J., H. PANAGOPOULOS, and T. HAGGLUND (2000):
“Supplement and Errata to "Design of PID Controllers Based on Con-
strained Optimization".” Department of Automatic Control, Lund In-
stitute of Technology, Lund, Sweden.

In paper II., the design of PID controllers is presented. The specifications
capture demands on load disturbance rejection, set point response, mea-
surement noise, and robustness to model uncertainties, which have been
explained previously in this section,

In paper Hs. it is explained why a direct generalization of the opti-
mization problem in (0.2} for the design of PI controllers, does not work
well for PID controllers. It is shown how the robustness constraint in {0.2)
leads to an optimization problem which, in most cases, have ridges which
result in poor robustness and control. With these insights it is explained
what additional constraints is needed to get good robustness and control,
Thus the optimization problem for the design of ID controllers becomes
a constrained optimization problem. It is shown how the problem should
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be solved iteratively and, how to find good initial parameter values as
the problem is non-convex. The design procedure has been applied to a
variety of systems: stable and integrating, with long dead times and with
right half plane zeros.

The new contributions are: the analysis of the nature of the derivative
part of the PID controller, the additional constraints needed to solve the
design problem, the methods to determine filters for measurement noise
and set point weighting.

Extension: #,, Loop Shaping

Robust H,,, control is quite useful for systems under parameter pertur-
bations, and uncertain disturbances. However, the conventional output
feedback designs of the robust H, control are very complicated. In gen-
eral, the order of the controller would not be lower than that of the plant.
Consequently, practical control engineers may lack incentive to employ
them for industrial applications. On the other hand, PID controllers have
found extensive industrial applications for several decades. It would be a
desirable option if control engineers could tune the three PID controller
parameters such that the corresponding controller parameters obtained
by the robust H, control would be obtained. As many different methods
have been proposed for the design of PID controllers which compromise
between robustness and performance, see Astrom and Higglund (1995),
it would be of great interest to relate these traditional methods to the one
of Hy, loop shaping methods.

A proposed relation which ean hopefully bridge the gap between a
theoretical #{,, control and classical PID controls is given in Part III,
which contains the paper:

III. PANAGOPOULOS, H., and K. J, ASTROM (1999): “PID Control De-
sign and %, Loop Shaping.” Accepted to Robust and Nonlinear Con-
trol.

It is shown how to interpret the mathematical A, criteria in engineer-
ing terms. In Astrom et al. (1998} and Panagopoulos et al, (1999) all the
robustness constraints are encapsulated in the constraint that the loop
transfer function avoids a circle in the Nyquist diagram. This is a nice
feature as the Nyquist plot allows to assess the influence of the modeling
errors, at the same time as appropriate specifications for the controller de-
sign are derived. Consequently, it is possible to establish a nice connection
between traditional design of PID controllers and the Hoo.
The new contributions are: how the robustness constraint for the PI /PID

design in Astrom et al, (1998) and Panagopoulos ef al. (1999) should be
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Figure 5. Control with active damping. With the inner feedback loop the active
control system F rejects undamped modes of the process P, In the outer control loop
the contreller C gives good disturbance rejection, robustness to model uncertainties,
and set point following.

chosen to guarantee that the weighted H, norm, see Glover and Mec-
Farlane (1989), of the transfer function fromload and measurement dis-
turbances to process inputs and outputs is less than a specified value y.
Furthermore, a new way to determine for what class of systems a PID
controller will be stabilizing is presented.

Application: PID Control

An efficient design method should be applicable to a wide range of sys-
tems. The proposed design method for PID controllers have been tested
through extensive simulations to a variety of systems. But these results
are not enough to judge the performance of a design method, Conse-
quently, the tuning method for PID controllers have been evaluated in
a benchmark for control of steam generator water level in a power plant,
and at the pulp and paper company of Modo Paper, in Husum, Sweden,
The results from the evaluations are found in Part IV and V:

IV. EBORN, J., H  PANAGOPOULOS, and K. J. ASTROM (1999): “Ro-
bust PID Control of Steam Generator Water Level.” In JFAC'99 14th
World Congress of IFAC. Beijing, P. R. China.

V. PANAGOPOULOS, H,, A, WALLEN , O. NORDIN, and B, ERIKSSON

(2000): “A New Tuning Method with Industrial Evaluations.” Sub-
mitted to Control Systems 2000. Canada.
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Extension: Control of Undamped Process Modes

The standard PID controller have many advantages, but there are appli-
cations where significant better performance is obtained with more so-
phisticated controllers. For example, when the process contains long time
delays, processes with undamped modes, and nonlinearities, For the case
of processes with long time delays, a PID can be used for control, but slow
responses will be obtained.

There are two ways to improve the performance of the closed loop sys-
tem when the standard PID controller is not sufficient, either by using a
modular/synthetic approach or a unimodular/analytic approach. For ex-
ample, in the case of processes with long time delays a modular approach
is taken when a Smith predictor is inserted into the loop to improve the
performance of the closed loop system. Another example when a modular
approach is employed are for processes with nonlinearities. If the charac-
teristic of the nonlinearity is known, it is compensated by feeding signals
through a function module which forms the inverse of the nonlinearity. In
this thesis a modular approach is used to show how the performance of
the closed loop system can be improved for processes with poorly damped
maodes.

In Part VI a new idea is presented for the rejection of disturbances
whose frequencies lies in the same range as the undamped process modes,

VI, PANAGOPOULOS, H., and T HAGGLUND (2000): “A New Modular
Approach to Active Contro! of Undamped Modes.” Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden,

The problem formulation is illustrated in Figure 5.. It is desired to reject
the disturbance ! whose frequencies lies in the same range as the un-
damped process modes of P. The solution to the problem is to cancel out
the disturbance ! at the source by the insertion of the active controller F
in Figure 5.. Consequently, with the inner feedback loop the active control
system F rejects undamped modes of the process P, and with the outer
feedback loop the controller C gives good disturbance rejection, robustness
to model uncertainties, and set point following of the closed loop system.
As an modular approach is taken it will not complicate the original tuning
work of the outer feedback loop as the active controller F is independent
of the controller structure and design of C,

The active controller is the product of a bandpass and an allpass filter.
To determine the parameters of these two filters the only information
needed is a few characteristics of the frequency response of the process
P, see Figure 6.. The idea has been applied to simulation examples, and
been compared with other methods,
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Figure 6. The information of the frequency response of process P which is needed
to determine the active controller F.

Conclusions

This thesis deals with various aspects of PID contrel, It has considered
the design of PID controllers, the extensions of these controllers fo im-
prove their performance, and the applications of these design metheds to
industrial processes.

New tuning methods for PI and PID controllers have been presented.
These methods uses a model of the process to be controlled, given as a
transfer function. The design methods captures essential requirements of
a control system, such as:

o Load disturbance response

» Robustness with respect to model uncertainties

o Measurement noise response

¢ Set point response
The formulation of the design problems can loosely be divided into two cat-
egories: specifications on performance and robustness. The primary design
goal of the proposed design methods is to achieve good rejection of a load
disturbance with the constraint on robustness to guarantee the stability

of the closed loop system. The presented controller tuning methods are
suitable for supervisory system, since they can handle the different kinds
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of process models which may come up. This will improve the development
of automatic tuners.

To extend the use of PID control a relation which bridge the gap
between it and the theoretical H,, control have been proposed. It is
shown how the robustness constraint for the PI/PID design in Astrém
et al. (1998) and Panagopoulos et al, (1999) should be chosen to guaran-
tee that the weighted %, norm of the transfer function from load and
measurement disturbances to process inputs and outputs is less than a
specified value y. A new way to determine for which class of systems a
PID control will be stabilizing is also presented.

Furthermore, the use of PID control have been extended to handle
processes with undamped modes. A modular approach has been taken,
where an active control system has been designed, which consists of an
allpass filter and a bandpass filter. To determine the parameters of these
two filters the only information needed is a few characteristics of the
process frequency response.

The proposed design methods for PI, and PID controllers have been
tested through extensive simulations to a variety of systems which is not
enough to give a true judgment of their performance. Consequently, the
tuning methods have been evaluated in a benchmark for control of steam
generator water level in a power plant, and at the pulp and paper company
Modo Paper, in Husum, Sweden.

Future Work

The design of PID controllers are at the present time going through a very
interesting phase as the tuning problem of them have been recognized,
at least in the pulp and paper industry, during the 1990’s. According to
Bialkowski (1996) three key needs have been identified: improved tun-
ing techniques, adequate training, and suitable tools. For example, in the
the pulp and paper industry the Lambda tuning technique, see Rivera
ot al. (1986), have been adopted and chosen as a standard in the control
education of the Swedish pulp and paper organization “Skogsindustri-
ernas Teknik AB". In this thesis, ideas have been presented on how fo
improve control, but there is, still, more to be done. A couple of ideas for
future work of the presented thesis will follow below.

The two presented controller tuning methods assumed the transfer
function of the process to be known. Would these design methods, still,
work when less process information is available? For example, when the
information of the process model is based on the results of the relay
method in Astrém and Hagglund (1984). Furthermore, the optimization
problem of the design of the PID controller was based on three constraints.
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Future Work

Are there other constraints which would give a better solution? Moreover,
the proposed design methods was based on single input single output sys-
tems and on a continuous time approach. Will it be possible to extend
these design metheds to multi input multi output systems? What are the
limitations to take a discrete approach of the presented controller design
methods compared to the continucus one? Finally, it would be interesting
to have a systematic way to judge when a PI or a PID controller should
be used. For example, for systems with large time delays PID control will
not give enhanced performance compared to the PL

The aim of this thesis was: "How to improve control?”, The idea was fo
expand the usefulness of PI and PID controllers viewed as building blocks.
It would be of interest to refine this view for the following examples: How
should nonlinearities be treated? How to expand the use of the proposed
active controller for undamped process modes? How to extend the relation
between the presented controller designs to the #, design for multi input
multi output systems. Finally, it would be interesting to apply all of these
ideas to real systems.
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Design of PI Controllers based on Non-Convex
Optimization*

K. J. /&STROMT, H. PANAGOPOULOST and T. HAGGLUNDY

Key Words—PIJ control; design; oplimization; specifications; load disiurbancs rejection; set point response;
rebustness; sensitivity.

Abstract-—This paper presents an efficient numerical method for The approach gives a simple way to solve simple
designing P1 controtlers. The design is based on optimization of control problems and more difficult ones where more
load disturbanes rejection with constrains on sensitivity and oy

weighting of set point response. Thus, the formulation of the efforts are needed. The methed will give a P1 control-

design problem captures three essential aspects of industrial ler which satisfics the specifications, provided that

control problems, leading lo a non-convex optimization prob- such & controller exists. If not, the reasons for failure
lemn. Efficient ways to solve the problem are presented. © 1398 : -

Elsevier Science Ltd. All rights reserved. will be indicated Tt can also be used to develop
simpler methods for restricted classes of systems as
was done in Astrém and Hégplund {1995a).

L INTRODUCTION The method proposed in this paper formulates
the design problem as an optimization problem:
optimize the load disturbance rejection with a con-
straint on the maximum sensitivity. By exploiting
the structure of the optimization problem it is re-
duced to the solution of algebraic equations. Effi-
cient iterative methods are pgiven together with
good methods for finding starting values.

The method presented assumes a linear process
whose dynamics is characterized in terms of a transfer
function, which does not have to be rational. Thus, it
can be applied to systems described by partial differ-
ential equations. If the transfer function is not known
it can be obtained by system identification.

Parts of the proposed method builds on previous
works. The use of optimization was discussed in
Hazebroek and van der Waerden (1950). In this and
ather early works the emphasis was on critezia that
admitted analytical solutions. The idea of optimiz-
ing load disturbance rejection with sensitivity con-
straints was suggested by Shinskey (1990). He used
a constraint in ierms of a rectangle around the
critical point but the idea to use a constraint on the
maximum sensitivity, M, was proposed by Persson
(1992} and Persson and Astrom (1992). The use
of both M, and the maximum complementary sen-
sitivity, A, as design parameters was suggested by
Schei (1994), The new contributions in this paper
are: the analysis of the nature of the sensitivity
constraints, the efficient numerical procedures, and
the method for determining set point weighting.

The PI controller is unguestionably the most com-
monly used control algorithm; see Yamamoto and
Hashimoto (1991). In spite of ils wide spread use
there exists no generally accepted design method
for the controller. PI controllers have traditionally
been tuned empirically, e.g. by the methed de-
scribed in Ziegler and Nichols (1942). This method
has the great advantage of requiring very little
information about the process. There is, however,
a significant disadvantage because the method in-
herently gives very poor damping, typically £ ~ 0.2,
see Astrém and Higgtund (1995b).

There are several reasons to look for better
methods to design PI controllers. One reason is the
significant impact it may give because of the wide-
spread use of the controllers. Another reason js that
emerging auto-tuners and tuning devices can bene-
fit significantly {from improved design methods.

There are several requirements on an efficient
design method. If should be applicable to a wide
range of systems and it should have the possibility
to introduce specifications that capture the essence
of real control problems. Furthermore, the method
should be robust in the sense that it provides con-
troller parameters if they exist, or if the specifica-
tions cannot be mel an appropriate diagnosis
should be presented. We believe these requirements
are satisfied by the method presented in this paper.

*Received 24 March [997; received in final form 10 December
1997. This paper was recommended for publication by Associate

Editor C. P. Jobling under the direction of Editor Sigurd 2 FORMULATION OF THE DESIGN PROBLEM
Skogestad. Corresponding euthor Professor K. 1 Astrdm. Tel. ’ ’

+46-46 2228781; Fax + 46-46 138118, E-mail kja@controlithse. The f lati fa desi bl includ
iDepartment of Automatic Control, Lund Imstilute of ¢ formulation of a design problem includes

Technology, Box 118, §-221 00 Lund, Sweden. a characterization of the process and its
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environment, the controller structure, and speci-
fications on -the performance of the closed-loop
system,

Reguirements: Before going into details we will first
discuss the requirements. The method should be
applicable to a wide range of systems and it should
be based on specifications that reflect the essence of
real control problems. Furthermore, the method
should give a simple solution to simple problems,
With more efforis and more skills from the
designer it should also be possible to sharpen the
specifications.

The process: 1t is assumed to be linear, and speci-
fied by a transfer function G(s) which is analytical
with finite poles and possibly an essential singu-
larity at infinily. This description covers finite
dimensional systems with time delays and infinite
dimensional systems described by linear partial
differential equations.

The controller: Tt is a P1 controller described by
I

W)= k() =100+ K [ (040~ s, (1)
]

where u(f) is the control signal, p(t) is the process
output, v, (1} is the set point, and &, k,, and b are
controller parameters.

When there are substantial measurement noise, it
is customary to filter the measurement signal with
a filter, typically of the form

Ges) = 2)

14 5T
where T is the filter time constant,

Thus, the controller has three or possibly four
parameters, k, k;, b, and Ty, It is industry practice to
use integration time, defined as T'; = k/k,, instead of
parameter k;. However, for the computations it is
more convenient to use k;. Industrial controllers
typically use either b = 0 or b = 1, but lately it has
been recognized that it is advantageous to use full
range of b-values, that is 0 < b < 1, The controller
given by equation (1) is said to have two degrees of
freedom when b # L. The advantage of such struc-
tures has been pointed out by Horowitz {1963}
and their use in PID controllers is discussed in
Shigemasa et al. (1987) and Astrém and Hipghund
{1995b).

Specifications: They express requirements on

« load disturbance response,
+ set point response,
» robustness with respect to model uncerfainties.

In process control applications efficient rejection of
load disturbances is of primary concern, whereas
set point tesponses are typical of secondary import-
ance. However, set point response may be of pri-
mary importance, for example, in motion control
systems. Akthough it has been frequently pointed
out by engineers that load disturbances is of pri-
mary concern, it is interesting 1o note that papers
on PI control traditionally focus on set point re-
sponse, see e.g. Shinskey {1590).

The sengitivity to model uncertainty is of pri-
mary significance, and observe that the poor sensi-
tivity is one of the major drawbacks of the classical
Ziegler—Nichols method,

In virtually all applications it is useful to have
a tuning parameter that permits adjustment of the
trade off of aggressiveness versus robustness. The
effects of the tuning parameter should be transpar-
ent to the user. In the method presented, we have
a tuning parameter to specily the sensitivity to
model uneertainties.

2.1, A formal description

In order to use a formal design method it is
necessary to capture specifications in a suitable
mathematical form. This is extensively discussed in
Astrém and Higglund (1995b).

2.1.1. Load disturbance rejection. Tt can be conve-
niently expressed in terms of the integrated abso-
lute error due to a load disturbance in the form of
a unit step at the process input, ie.

IAE = r le¢s)] dt. (3)
[¢]

This criterion is difficult to deal with anaiytically
because the evaluation requires computation of
time functions. The integrated error defined by

IE = Jm e(f)dt, (4)

0

is much more convenient. In Astrom and Hiigglund
(1995b) it is shown that IE = 1/k;. Fhus, the cri-
terion {E is directly given by the integrating gain of
the controller. Remember that, IE = I4E if the
error is positive. Furthermore, if the system is well
damped the criteria will be close which, in our case,
will be ensured by the sensitivity constraints.

2.1.2. Sensitivity to modeling errors. They can be
expressed in terms of the largest value of the sensi-
tivity function. Let the loop transfer function be
L(s} = G{s)G.{s) where G, is the controller transfer
function, and let the sensitivity function be §{(s) =
11 + L(s)). The maximum sensitivity is then
given by M, = max|S(iw)|. Keep in mind that the
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quantity M, is the inverse of the shoriest distance
from the Nyquist curve of the loop transfer function
to the critical point — 1. Typical values of M arein
the range of 1.2-2.0.

With a constraint on M, it foliows from the cizcle
criterion that the closed loop system will also
remain stable with a static nonlinearity in the
loop, provided that the nonkinearity is bounded by
two straight lines with slopes M /(A + 1) and
MJ(M, — 1), see Khalil (1992),

Let T(s)=1—8(s)=L(AL + L{s)) be the
complementary sensitivity function. The sensitivity
can also be expressed by the largest value of the
complementary sensitivity function, ie. M, =
max| T'(iw)]. The value M, is the size of the reson-
ance peak of the closed loop system obtained with
b = 1, see equation (1). Typical values of M are in
the range of 1.0-1.5.

2.1.3. Ser point response. The design has so far fo-
cused on the response to load disjurbances, which
is of primary concern, However, it is also important
to have a good response to set point changes. The
transfer function from set point to process output is
given by

Yis) Kk +bks L(s)
Yo s} s+ ks 14+ L(s)

Gplsl  (9)

One way to give specifications on the set point
response is to specify the resonance peak of the
iransfer function G,(s), ie.

M, = max |G, lie)]. (6)

Consequently, the b-value is determined such as it
fulfills equation {6). Notice that M,, < M, il b < 1.

2.1.4. Measurement noise filtering. The PI control-
ler has a high-frequency gain k. The effects of
measurement noise can be reduced, substantially,
by filtering the signal with the filter given by equa-
tion (2} The specifications can be expressed in
terms of the magnitude of the high-frequency gain
of the contreller. This specification is optional and
only used in exceptional cases.

2.2. Design parameters

The tradeoff between performance and robust-
ness varies between different control problems,
Therefore, it is desirable to have a design parameter
to change the properties of the closed-loop system.
Ideally, the parameter should be directly related to
the performance of the system, it should not be
process oriented. There should be good default
values so a user is not forced to select some value.
This is of special importance when the design pro-
cedure is used for automatic tuning. The design
parameter should also have a good physical

interpretation and natural limits to simplify its
adjustment.

The variables A, and M, are both possible can-
didates for design variables. The influence of these
design parameters is illustrated in Fig. 1. The
curves to the left show that M, is a suitable design
parameier. Decreasing values of M results in time
responses that are slower but less oscillatory. The
curves to the right show that Af, is not suitable.
Although Af, is varied between 1.2 and 2.0, no
significant variation in the time responses is no-
ticed. The reason is, that the M, circles are too close
to each other in the {requency region around

— 180°. Therefore, we will choose M, as a design
variable.

On the other hand, it is important that the result-
ing M, value is not too large. We will therefore also
calculate M, when the design is completed. If M, is
too large there are several possibilities. One is to
repeat the design with a smaller M, value, Another
is to use constraints on both M, and M. This will
give rise to difficulties in the optimization because
the set enclosed by M, and M, circles is not convex.
This difficulty can be avoided by constructing
a circle that has the A, and A, circles in its in-
teriors, A straightforward calculation shows that
this is a circle with a center C and a radius R where

M, — MM, — 2MME + ME 1
a IMMZ = 1) ’

M+ M, 1 {7}
TOIMM, — 1)

An advantage with this is that the same optimiza-
tiont procedure can be used because the constraing
set is a circle.

3. THE OPTIMIZATION PROBLEM

The design problem discussed in the previous
section can be formulated as an optimization prob-
lem: Find controller parameters that maximize
k; subject to the constraints that the closed-loop
system is stable and that the Nyquist curve of the
loop transfer function satisfies the encirclement
condition and that it is outside a circle with center
at s = — C and radius R.

Introduce L(s) = (k + k;/s)G(s) and the function

flh oy =|C + (k —i g) Glie)>. 8}

The sensitivity constraint can then be expressed as
flk, ki, ) = R? 9)

and the optimization problem is to maximize k;
subject to the sensitivity constraint (9).
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Fig. 1. Tllustrates the effects of using M, (left) and A, (right} as a design parameter. The upper curves show the Nyquist curves of the
loop transfer functions together with the M, and M, circles for M, = 1.2, 14, 20 and M, = 12, 14,20, The lower curves show process
outputs and contrel signals for the different design parameters. They give responses to a szt point change followed by alead disturbance.

Let a{w) and f(w) be the real and imaginary
parts of the process transfer function. Hence

Glies) = alw) + if(e) = r(w)e!™*,
where

() = rw)eos o (),
Ble) = r(a)sin p(w).

The function f can then be written as

flk by ) = € 4 2Cuolk + 20 KO,

2
+ rHw)k? + %‘;’l KL (10}

In the following, we will occasionally drop the
argument @ in o, §, r, and o in order to simplify the
writing.

The optimization problem is nontrivial because
the constraint, which is infinite dimensional, defines
a set in parameter space which is not convex. There
are also other subtleties which may cause problems,
For a specific problem it is ot difficult to solve the
problem numerically with standard optimization

routines because the search range can often be
limited and if the optimization fails it is possible to
interfere manually. Since PI controllers are very
commoen it is, however, worthwhile to make
special algorithms which are tailored for the
problem. Such procedures are also reguired for
automatic tuning where manual interaction is very
inconvenient.

Before discussing the solution to the optimiza-
tion problem we will investigate the sensitivity con-
straint which is a key difficully of the problem.

3.1. The sensitivity constraint

The sensitivity constraint given by equation (9}
has a nice geometric interpretation. For fixed o,
equation (9} represents the exterior of an elfipse in
the k—k; plane. The ellipse has its axes parallel to the
coordinate axes. For 0 < < oo the ellipses gen-
erate envelopes that define the boundaries of the
sets of parameters which satisfy the sensitivity con-
straints, It can be assumed that the process transfer
function is such that a stable closed system is ob-
taied with positive k;. It is thus sufficient to con-
sider the upper-half of the k—k; plane. The center of
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Fig. 2. Geometrical illustration of the sensitivity constraint (9) and the envelope generated by it. The envelope to the left has
a continuous derivative, but the ene to the right has a corner.

the ellipses gencrate the boundary of the stability
regions. The envelopes for different systems may
have different characters as shown in Fig. 2. Notice
in particular that the envelope may have a corner
as is iltustrated in Fig. 2b.

3.1.1. Stability. The stability region can be ex-
pressed in terms of a condition on k and k; which is
obtained by setting C =1 and R =0 in equation
9, Le.

ke(m) + k; E@ + i(kﬁ(ca} —k g@) = =1,
w ®
(10}
Hence
kefw) + kiﬁ{-@ = —1,
k(o) — k2 o,
w

Solving these equations for k and k; gives the
following parametric description of the boundary
of the stability region:

(e}

(o)

Blw) (1)

i {w)

k= —w

where r* = 2%{w) + f*(w), and the parameter
ranges from zero to infinity. Notice that the stabil-
ity region may consist of disjoint sets.

1.2, Optimization

Having understood the naiure of the constraints
it is now conceptually clear how 10 solve the optim-
ization problem. It is simply a matter of finding the
largest value of &; on the envelope. The difficulties
that may occur are due to the fact that there may be
several local maxima and that the maximum may
occur al a cornet.

Since it is quite time consuming to generate the
envelope it is desirable trying to find algorithms
that can give a more effective solution. It is also of

interest to characterize the situations when there is
only one tocal minimum.
The envelope is given by

f(k’ ki! ("}} = Rz,
(12)
—aj—‘ (k, by o) = 0.
dw

Since the function {is quadratic in k; the envelope
has two branches. Only one branch corresponds to
stable closed-loop systems. Compare with Fig. 2.

Instead of generating the envelopes and search-
ing for the largest vaiue of k; on the envelope, we
will characterize the poinis where k; has its largest
value, From the discussion of the constraint it is
clear that there are two cases. The simplest case is
when the largest value of k; occurs at a point where
the envelope has a continuous derivative, The other
case is when the envelope has a corner.

The envelope given by equation (12) defines im-
plicitly & as a function of k. Fo find the maximum
of this function we observe that
af éf o

dk + -2 dk; 4~ dw =0, (13)

df= ak &k dw

1t follows from equation (12) that dfféw =0 on
the envelope. At a local extremum we have dk; = 0.
For arbitrary variations of dk we must thus require
that 8f/dk = 0. Combining this with the envelope
conditions (12) we get

af

ﬁ“\; ky, ) = G,

AT
t?.{.:',-) (k, ki) = 0, (14)

Sk, by, ) = R2,

which corresponds to the situation when the maxs-
imum occurs at a point on the envelope where it
has continuous derivatives, see Fig. 2a. In the
Nyquist diagram this agrees with the case when the
loop transfer function is tangent to the circle at one
point.
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We will now consider the case when the largest
value of k; occurs at a point where the envelope has
a corner. This occurs at the intersection of ellipses
corresponding to two different frequencies, ¢, and
0, see Fig. 2b. The envelope comdition (12} is
then satisfied for both frequencies. This gives the
condition

Sl ko)) = R2,
or

E(k» kii wl)g 0; {15)
Sk, by, 033} = RP,

of

3 o K022} =0,

In the Nyquist diagram this corresponds with the
case when the loop transfer function is tangent to
the circle at two points,

1t is thus possible to characterize the point where
k; has its fargest value by algebraic equations. This
means that the design problem is reduced to solv-
ing algebraic equations (14) or (15), and that elabor-
ate search procedures are avoided. Both equations
can be solved by using the Newton—Raphson
method, Equation (14) which represents the most
common Situation can, however, be simplified
substantialty.

3.3. A simplification

Equation (14) is a nonlitear equation in three
variables, k, k; and e. It is possible to solve this
equation directly, but a much more efficient
algorithm will be obtained by eliminating some
variables.

Inserting expression (10} into equation (14), gives

af _ 2 _
a72()m+2rk—0,
& _L(BY, .
$—2C(5) by + 2Co'k (16)

rZ r

+(—1) B2k =0,

®

/=R

where prime means differentiation with respect to
. Solving k and ¥; from the first and last equations
gives

o 1
k=-—c%_. _¢l ,
Cr2 S o8¢
17
C R . (
ks = _a)fz "%““Z _%)(CsmanrR),

where the positive sign is chosen to satisly the
encirclement criterion. The following condition is

obtained by inserting the expressions of k and k, in
the second equation of equation {16),

) = 2R ((C o R)(r?' - FL) - C(g))

= ZR((R + Csing) (r; — é) — Ce¢'cos qa)
=0 (18)

Thus, the solution to equation (16) is reduced to
a single algebraic equation (18} in w. Solving it gives
the frequency wy for which we can compute the
controller gains k and k; given by equation (17).

The condition (16) does not tell if the extremum
is a minimum, a maximum or saddle point, but
constraint (9) implies that the function should be
a minimum with respect to, 0. This gives the follow-
ing local condition:

2

;—w{ (e2g) > 0. {19)
Equation (18} can be solved iteratively with the
Newton—Raphson method which converges very
fast if suitable initial conditions are given. Notice,
however, that in general there may be several solu-
tions which can be found by starting the iteration
from different initial conditions.

For special classes of systems, for example sys-
tems with monotonic transfer function, it is possible
to provide good initial conditions. The following
result is useful.

Theorem 1. Let w, denote the frequency where the
process has a phase of . Assume that the transfer
function G{s) has positive low-frequency gain and
that

dargGlie) -
dw

dlog,o|Giw)|
dlogygm

0:
{20)

Then there exists a solution to eguation {18} in the
interval

Wyo < @ <y = (D180 —aresin RIC- (21}

Proof. Tt is assumed that the low-frequency gain
of the process is positive. Then the integral gain
k; must be positive if the closed-loop system shoutd
be stable. For this reason equation (17) implies that
R+ Csing < (. It follows from the assumplions
(20} that ¢' < Q and #fr — ljw < 0. As & result
equation (18} and the assumptions imply that
hwgeg) > 0 and hiw,) < 0. But k is a continuous
function, therefore equation (18) must have a solu-
tion in the interval (21). ]
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Remark 1. Notice that since a PI controtler has
negative phase for all frequencies, the solution must
be found in the interval wgp < @ < @y. Thus, the
monotonicity condition has to be valid in that
interval.

Remark 2. Tt follows from equation (17) that the
condition (21} implies that both k and k; are posit-
ive. Systems with monotone {ransfer functions sat-
isfy the condition (20). For such systems it is thus
straightforward to find a good range of frequencies
to solve equation (I8). Also notice that as long as
the phase decreases monotonically it is possible to
have an increase in the amplitude curve, provided
that the slope is never larger than one. Most sys-
tems encountered in process control satisfy these
conditicns.

A necessary condition for stability of the closed-
loop system is that the parameter k; is positive
which 1mplles that @y > Weo.

34, Initial conditions

Good initial conditions is a crucial factor for the
computational efficiency of the Newton—Raphson
iterations when solving the optimization problem,
The two cases when the envelope has a continuous
derivative or a cofner has to be treated spparately.

First we consider the case when the envelope has
no corner, The solution to the optimization prob-
lem is obtained by solving the algebraic equation
{18) with Newton~Raphson for a suitable search
range. According to Theorem 1 the search range is
chosen as [toqg, @y ]. To obtain better initial condi-
tions we narrow it by applying interval bisection in
equation (18).

Finally, the case when the envelope has a corner
is considered. This problem is more difficult to
solve, because it is necessary to solve a system of
equations (15), which in this case requires four
initial conditions of @, 4, k and k;. They can be
obtained with the following procedure.

For fixed values of w the sensitivity constraint,
equation (I2), represents ellipses in gain space
which generates envelopes, It is quite complicated
to compute the envelopes, however, they can be
approximated by the loci of the vertices of the
ellipses. The horizontal vertices are given by

aC R
k=t
whC @)

ki: rz )

where the left vertex corresponds to a minus sign
and the right vertex to a plus sign. The loci of the
vertices define curves in the gain space that enclose
the envelope. Good initial values for the Newton—

Raphson iteration can be obtained by finding the
point on the loci where k; has its largest value.
Wihen there is a corner this value is obtained as the
intersection of the vertices given by equation (22),
see Fig. 2b, giving o; and ;. Thus, k can be
computed from equation {22) for either wy or @;.
Because of the construction this value overesti-
mates the integral gain,

Note that the same technigue can be used as an
alternative way of finding initial conditions in the
case of no corners. In this case the envelope can be
approximated by the loci of the lowest vertex of the
ellipse, that is

k=—°;—f,
(23)
wfC owR
by = b 22
¥ r

Notice that this equation is identical to equation
(17). The upper vertex is not of any interest because
it gives an unstable closed-loop system.

4. THE DESIGN PROCEDURE

We have thus found efficient procedures to deter-
mine feedback gains k and k;, by optimizing load
disturbance rejection subject to constraints on sen-
sitivity to model uncertainties. To complete the
design procedure, it remains to determine the set
point weighting, i.c. parameter b in equation (1).

4.1, Set point weighting

The set point response is governed by the trans-
fer function G, given by equation (5). In order to
have a small overshoot in set point response, set
point weighting b will be determined so that M., =
max | G,p{iw)] is close to one. Tt follows from equa-
tions (5) that M, < M, when 0 < b < 1. A bound
of M, is thus given indirectly through M.

We will make the approximation that maximum
of |Gylim)| occurs for g, where @ = @, is
the frequency where the maximum of |L(iw)/
(1 + L(iw))| occurs, Parameter b will be determined
so that

|Gsp{iwmp)l =1 (24)

with the constraint 0 < b < L. Using equations (5)
and (24) this implies that

kzwﬁ-»p - kiz(‘w; =1
ko, M,

=i (k) = M2 — 1, 23)

0 if (mpk/k)* < M2 — L.

If b = 0, it is not sure that the design objective (24)
will be obtained. If the set point response is
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important and the M, value is large, the design can
then be repeated with a fower value of M, or using
the constraint given by the circle (7),

4.2. Measurement noise filtering

Having performed a design of the controller we
obtain the controller gain k, which is also the high-
frequency gain of the controller. Combined with
the specifications on roll-off we can then determine
the order and the bandwidth of a suitable noise
filter.

Here we will only consider the first-order flter
given by equation (2). The choice of filter-time
constant Ty in equation {2) is a tradeoff between
filtering capacity and loss of performance. A large
value of T provides an effective noise filiering, but
it will also change the control performance. A small
value of Ty means that the control performance is
retained, but the noise filtering is less effective.

A nice feature of the new design procedure is that
it provides a systematic way to determine Ty, The
choice

1

mw,’ 26)

makes it possible to determine the effects of the
filter at the frequency wy. We get

1
[Gelimg)| = ——==.
rlitoo)] S+ md
arg Gy{iwg) = — arctan(1/m).

Reasonable values of i are in the interval 5-19. For
m =73 we get |Ggicg)] = 0.981 and arg Giliomg) =
— 11°, For m = 10 we get |G;(iwo)] = 0.995 and
arg Ge(ieas) = — 5.7°. These modifications of the
loop transfer functions give normally only minor
changesin control loop performance. If needed, it is
also possible to recalculate the parameters by de-
termining the filter as described above, and then
perform a regular design of the PI controller with
the transfer function G¢(s)G(s).

4.3. The procedure
To sum up we find that the design problem can
be solved by the following procedure:

(1) Choose the design parameters M, and/or
M, and compute C and R.

{2) Determine the search range {&y < @ < w,). We
have @; = wgyp and wy, = w,3o. For systems that
satisfy the monotonicity condition (20) we have
@y = Wgoarcsingic: 1NOlice that there may be
several search intervals, Narrow the search
range by applying interval bisection to equation
(18).

(3) Normal case: Use the initial values from Step
2 and solve equation (18) by Newton-Raphson.
Evaluate the condition (19) and compute

M, and M. If both are satisfactory go to Step
5 otherwise compute new C and R and go to
Step 2.

{4} Corner case: Compute the approximate envel-
ope for values in the range w, < w < @, Deter-
mine largest value of k,, the {requencies of tan-
geney oy and ¢, and compute k. These are used
as initial values too solve equation (15) with
Newton-Raphson. Compute A, and My I
both are satisfactory go to Step 5 otherwise
compuie new C and R and go to Step 2.

(5) Determine the parameter b from equation (25).

(6} Evaluate the design including noise sensitivity.
Modify the design parameters if required.

For simple systems it is sufficient to choose only
the design parameter M,. For special classes of
systems ail choices can be made automatically.

5. EXAMPLES

The design method has been tested on a large
number of examples. Tn this section we will give
& number of examples illustrating its properties.

5.1. Typical process control problems

To start with we will consider some representa-
tive systems which are normally encountered in
process control. They have the following transfer
functions,

Gils)=——=

s+ 1)¥
G5} = !
265} = s+ 11 + 0.25)(1 + 0.045)(1 + 0.008s)
e~ 155 1
Gsls) =W’ G4(5}=Em,
1—2s 9
N N L )

Systems G, and G, represent processes that are
relatively easy to control. System G has a long
dead time, and G, models an integrating process.
System G5 has a zero in the right half plane, and
system G¢ has complex poles with relative damping
0.33. Systems of type (s and G4 are not common in
process control, but they have been included to
demonstrate the wide applicability of the design
procedure. For all systems, except Gg, we can, by
inspection, verify that they satisfy the monotonicity
assumption. The system Gg(s) will be discussed
further on in Example 5 where it is shown that it
also satisfies this assumption. We thus know that
there exists a solution where the envelope has
a continuouws derivative,

Figure 3 shows the Nyquist curves of the loop
transfer functions obtained for two values of the
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Fig. 3. The Nyquist plots of the open-loop frequency response
for the systems Gys), j=1,... .6 for M,= 14 in the upper
figure and M, = 2.0 in the lower one.

design parameter M,. The responses to changes in
set point and load are shown in Fig. 4, and the
details of the design calculations and simulations
are summarized in Table 1.

Even though the systems G,—Gg represent pro-
cesses with large variations in process dynamics,
Figure 4 shows that the resulting closed-loop re-
sponses become similar for each value of M,. Thisis
important because it means that the proposed de-
sign procedure gives closed-loop systems with de-
sired and predictable properties. The fact that even
integrating processes can be treated in the same
way as stable processes is interesting. In many
other design approaches, stable and integrating
processes have to be treated separately, see istrém
and Higglund (1995b).

There is also a large similarity between the re-
sponses obtained with the different values of the

tuning parameter M,. This shows that the M -value
is a suitable tuning parameter. Responses obtained
with M, = 1.4 show little or no overshoot. This is
normally desirable in process control. Responses
obtained with M, = 2.0 give faster responses. The
settling time at load disturbances, £,, is significantly
shorter with this Iarger value of M. On the other
hand, these responses are oscillatory with a larger
overshoot. This can be seen from the comparison
between 1E and the integrated absolute error IAE
in Table 1.

The controller gain k varies significantly with the
design parameter M,. However, integral time T is
fairly constant for the stable processes, i.e. all pro-
cesses except G,. This means that, for PI control,
the different design specifications are mainly ob-
tained by adjusting only the gain. This observation
is made earlier, see Astrém and Higglund (1995b).

For the systems in Table 1 the values of M are
smaller than the M, values except for the system
G, with M, = 1.4 where M, and M, are equal. The
constraint on the sensitivity function is thus the
critical constraint for these systems.

Except for the integrating process Gy, the M,
values obtained for M, = 1.4 are all close to one.
Consequently, parameter b is also close to one. For
M, = 2.0, the M, values are, however, larger. This
means that the overshoots would have been signifi-
cant if the set point weighting were chosento & = 1.
However, acceptable set point responses are ob-
tained by using small values of b, In some cases,
b = 0. It means that the procedure has failed to
obtain M,, = L. If set point responses are impor-
tant and if the overshoots are unacceptable, a re-
design may be done using smaller values of M, or
optimization with constraint on M, see Section 4.

5.2, More complex systems
We will now discuss several examples with more
complex dynamics.

Example 1. Pure time delay (see Example 2). Many
design methods for PI controllers perform poorly
for systems with long relative time delays. The
system G is of this type because the ratio between
the dead time and the dominating time constant is
15/3, A more extreme case is

Gyfs)=¢7%

This system has gy = 71/2 and g = 7. It satis-
fies the monotonicity condition {20). Making the
design for M, = 1.4 and 2.0, the design procedure
gives the controller parameters which can be found
in Table 2. The Nyquist diagrams and the set point
and load disturbance responses are shown in Fig. 5.
The figure shows that the design procedure man-
ages to obtain controller parameters even for sys-
fems with extreme dead times.
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Systems Qg (left) and G5 (right)

Fig. 4. Comparison between the PI controllers for M, = 1.4and 2.0. The graphs showsa step respense followed by a foad disturbance of
the closed-loop system when designing for M, = 1.4 (dashed tine} and 2.0 (full line).

Example 2 (Pure integrator with time delay), A pure

integrator with a time delay is another common

model. The transfer function for such a system is
c“!

Gy(s) = .t

This system has wep =0 and wge = n/2. Tt
fulfills the monotonicity condition (20). Making

the design for M,=14 and 20, the
design procedure gives the controller parameters
which can be found in Table 2. The Nyquist
diagrams and the set point and load distur-
bance respomses are shown in Fig. 5, which
demonstrates that the design procedure produces
suitable controller parameters in this example
too.
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Table 1. Properties of coatrollers obtained for system G,—, for different values of the design parameter M,

Process M, k Ti b IE IEfIAE o i M,
Gy(9) 14 0833 185 L0 307 100 04 103 00
i6 0862 187 093 217 095 0.79 787 105
i8 106 182 070 192 0.86 0.82 877 124
20 122 178 030 145 077 0.85 637 145
G, (9 14 193 0745 D89 0387 1.00 333 225 118
16 274 0672 075 0245 1.00 3.83 168 127
15 34 0625 06 0.180 0.96 425 139 146
20 413 0591  ¢352 0143 091 4.40 121 166
Gyls) 14 0164 616 100 375 10D 0096 913 100
16 D208 58 100 282 1.00 0099 512 100
15 024t 366 092 235 0.58 010f 398 102
20 0266 55t 000 208 075 0102 359  LI7
Gals) 14 DI§7T 140 070 840 097 029 353 140
16 611 107 054 462 099 034 21 149
18 028 900 057  iLs 099 038 85 162
20 0333 800 050 240 0.96 041 157 177
Gs(5) 14 0179 L8 00 9% 090 036 286 100
16 028 169 100 743 0.57 040 186 100
18 0265 164 087 68 0.0 041 147 104
20 0294  L&0 000 542 070 041 135 120
Gsls) 14 033 0373 088 LIS 0.87 1.9 413 14
16 0387 034 051 0891 0.79 2,05 294 118
18 0441 0325 000 07 0:70 205 266 126
20 0482 0313 000 0648 0.64 282 256 137

Table 2. Details of the design calculations of the systems
G4-Gyy for different valies of the design parameter M,

Process M, k ky b @, M,

Gsls) 14 0158 0472 100 L73 089
20 0255 0854 000 183 L7

Gyls) 14 0282 D418 066 054 145
20 0438 Q131 046 073 182
Gols) 14 294 115 081 789 117
20 531 210 048 968 159
Giols) 14 125 162 078 349 123
20 248 443 051 4359 168
Gy ls) 14 130 203 086 375 LI3

20 259 5.4 D5F 482 1.64

Example 3 (A distributed parameter system). The
methed also applies directly to systems described
by partial differential equations. To illustrate
this we consider a system described by a linear
hieat equation. Such a system has the transfer
function

Gofs) =e 5,
Hence
Goliw) = e~ vorg —ivor

The system satisfies the monotonicity condition
€20) and we have g =493, w;se = 13.7, and
thgo = 19.7. Making the design for M, = 1.4 and
2.0, the design procedure gives the controller
parameters which can be found in Table 2. Notice
that in this case there is a significant increase in

performance when changing from M, =14 to
M, =20

Example 4 {(Fast and slow mode). Consider a system
with the transfer function

00 {1 05
G+ 107 (s A 0.05)' @

This system has two fast modes with time constants
0.1s, one mode with a time constant of 1s, and
a slow mode with time constant 20s. The static
behavior is dominated by the slow mode which has
a low-frequency gain of 10. The step response is
dominated by the slow time constant, but it is the
faster modes that are critical for the closed-loop
system. The properties that are important for con-
trol are thus hidden in the step response. This
means that most attempts to tune the system based
on step response data will give poor results. Mak-
ing the design for M, =14 and 2.0, the design
procedure gives the controller parameters which
can be found in Table 2. The properties of the
closed loop systems obtained are illustrated in
Fig. 5.

It is of interest to compare with the controller
parameters obtained for the system

150
s+ 10+ 1)’

Giols) =

Gls) = 28)

which is obtained by removing the slowest mode
from the systemn (27). In this case when making the




596 K. 3. Astrom ef al.

&

2 i . H
RS °5 1
e

ES

Systems Gqg and Giy.

Fig. 3. Nyquist curves of the loep transfer function and time responses of the ¢closed-loop system when designing for M, = 1.4 (dashed
ling} and 2.0 {full line) for systems G4(s), Gyls), Gipls) and Gy,{s).

design for M, = 1.4 and 2.0, the design procedure
gives the controller parameters which can be found
in Table 2. These parameters are close to those
obtained for the system (27), which shows that the
design procedure manages ic disregard the slow
mode. The Nyquist curves for the two systems are
compared in Fig. 5. Here it can be noticed that the
two curves coincide for [requencies above .

Example 5 {An oscillatory systen:). Consider the
system with the transfer function

9

Gl = e e + 9y

This is an interesting system from two points of
view. First, the system has two oscillatory poles
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with relative damping { = a/6. When parameter g is
decreased it becomes more and more difficult to
control. Second, depending on the value of para-
meter g the envelope may have a continuous deriv-
ative, a > 1.0653, or a corner, a < 1.0653.

For the case when the envelope has a continuous
derivative a controller has already been designed
for o = 2, see process Gg at the beginning of this
section. According to Fig. 4 the design gives a con-
troller with good performance.

For the case when the envelope has a corner
a controller was designed for M, = 2.0, In Fig. 6 the
Nyquist curves and the time responses are shown
for the cases a = 0.2,0.5, 1.0. The controller be-
haves reasonably well in spite of the poorly damped
poles.

In Table 3 the controller parameters and the
frequencies at which the loop transfer function is
tangent to the M.-circle are shown. Noticé in
Table 3 how the proportional gain is negative for
small values of . This is the only way to increase
the damping of the oscillatory poles with a PI
controller.

Finally, we illustrate how our design method will
provide a reasonable PI controller for the extreme
case g = (. With the design parameter M, = 1.4 we
obtain the following controller parameters;
k= —0.183,k,=0251 and b =0. The time re-
sponses are shown in Fig. 7. We observe that the set
point response is quite reasonable, even if there is
a trace of poorly damped moedes. The load distur-
bance will, however excite the oscillatory modes.
The fact that the PI controller is unable to provide
damping of these modes is ¢learly noticeable in the
figure.

Examiple 6 (A conditionally stable system). Consider
the system with the transfer function

(s + 6)*
61l = o 6 + 367

This system does not satisfy the monotonicity
assumption because the phase lag is not mono-
tonic. The system is conditionally stable, since the
Nyquist curve crosses the negative real axis at
points s = — (0.0191 and s = — 0.1656. We have
o =0, and w50 = 1.69 and 4.17. With propor-
tional feedback the system is stable for k < 6.04 or
k > 5226,

There are two solutions to the optimization
problem for M,=20: k=047, k =0.067,
b=10.52,and k = 921, k; = 1098, b = 0.50. The first
solution gives w, = 0.5196 rad/s and the second
gives wmp = 25.93 rad/s. Nyquist curves and time
responses to set point changes and load distur-
bances are shown i Fig. 8. Notice the similarities
of the Nyquist curves and the differences in

1
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Fig. 6. Nyquist curves of the loop transfer function and time
responses for Example 5 with @ = 0.2, 0.5, 1.0, when designing
for M, = 2.0.

Table 3. Interesting paramelers when designing a controller for
M, = 2.0 and different values of a in Example 5

a k ky @0y s

0.0 - 029 0.68 .97 275
0.t —~ (125 0.82 1.08 27N
02 ~0.20 0.93 1.16 267
0.5 —009 117 1.37 255
1.0 059 138 1.65 230
20 048 1.54 219 279

response speed for the solutions. The frequency
scalings of the Nyquist curves are different,

Only one solution % = 0214, k; =0.0178 and
b=0.710 is obtained for M, = 14 with w,=
0.3531 rad/s. This illustrates that the method indi-
cates that there is no controller that satisfies the
specifications.
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Fig. 7. Time response of the closed-loop system of Example 5 obtained for a = 0, when designing the PI coatraller for M, = L4
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Fig. 8. Nyquist curves of the loop transfer function and time
respoenses for the closed-loop system of Example 6 when design-
ing for M, =20

Example 7 (An unstable system). To show that PI
control can also be used for unstable systems we
consider a system with the transfer function

a
(s+a)s—1)

This system does not satisfy the monotonicity as-
sumption (20) because its phase doss not decrease
monotonically. The phase lag is = both at very fow
and at very high frequencies, The smallest phase lag

13
(a—1)/a
2a

Gisls) =

m-arctan

which oceurs for w = ﬁ To have a loop transfer
Tunction that lies outside a circle with center C and
radius R it must be required that

(a-Dya R

2a —\/CZ—RI,

which implies that

(€ + Ry

= —-—Cz R
For C =1 and R = 0.5 we get a > 3. To solve the
design problem we will therelore start with an inter-
val of frequencies around \/E Figure 9 shows the
Nyquist curves and the set point and load distur-
bance responses obtained for @ = 4 and 8, respec-
tively. The design is made for M, = 2.0. For a = 4,
the design procedure gives the controller para-
meters k = 335, k; =082, b =050, and the fre-
quency wg = 3.04 rad/s. For a = 8, we get k = 8.70,
k=104, b=0.5, and the frequency wy = 7.85
radfs. The M -values becomes quite large,
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Fig. 9. Nyquist curves of the loop transfer function and time
response of the closed-Ioop system of Example 7 with @ = 4 and
8. The design is done for M, = 2.0 in both cases.

M, =198fora =4 and M, = 1.87 for a = 8. Still,
we obtain set point responses with acceptable over-
shoots because of the set point weighting b

Example 8 (Filtering of measurement noise). In
most cases in PI control it is not a primary
design consideration that measurement noise is
fed into the control system through the controller.
With reasonable sensors it is often sufficient
to check the fluctuations of the control signal
generated by the noise and introduce a filier on
the measured signal if necessary. The design of
such a filter was discussed in Section 2 and is
illustrated here with the system in Example 1.
Measurement noise is particularly difficult in this
case because the process has constant gain for high
frequencies.

We consider the case of a first-order noise filter
with the transfer function

1

Gils) =7 T
A PI controller is first designed without consider-
ing the noise filter. The design gives the frequency
wyq from which the parameter T is determined as
T = 1/{mwmg). The design is then repeated for a sys-
tem with the transfer function G,Gr.

To evaluate the effectiveness of the noise filter we
observe that the transfer function from measure-
ment noise to controf signal is given by

GG

Ufs) = T¥ac 5,0

N{s) ~ M,G.GN(s),

where N is the measurement noise. The approxima-
tion is obtained by replacing the sensitivity func-
tion with its maximum M., This will overestimate
the control signal by at most a factor M,. Further-
more, assume that the measurement noise is ob-
tained by filtering white noise by a system with the
transfer function

§

Gals) = .
=517

The control signal is then white noise filiered by

k5+k1

G5 =2 MG GG, =M ———.
"{S) sUcUfln S(S+H){1+ST1')

Assuming that the spectral density of the white
noise is ¢ we find that the variance of the controt
signal is

ak? + KTy
2aT{l + aTy)’

Table 4 shows the results of the PI controllers de-
signed by the method mentioned above for different
values of m. It has been computed for M, =20,
¢ =lI,a=2and { = 0.707. In the table we have also
shown the ratio between integration time T; and the
filter time constant Ty, The tradeoffs are clear from
the table. Decreasing the value of m makes the
system less sensitivity to measurement noise but
more sensitive to load disturbances. | is possible to
introduce loss functions which capture this compro-
mise but it is rare that the data required is available
with sufficient precision to justify the analysis.

ai = M{¢

Table 4. Parameters of PI cozntrollers with filtering of the
process output discussed in Example §

m k K o IE e TV
2 031 073 148 136 089 125
5 027 078 166 126 125 282

10 026 081 174 121 167 551

20 026 083 178 L17 228 110

o 0.26 0.85 1.83 112 o0 —
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6. COMPARISONS WITH OTHER METHODS

Many different methods have been proposed for
tuning PI controllers. A comprehensive presenta-
tion which includes many comparisons are given in
Astrém and Higglund (1995b). In this section, the
new design procedure is compared with two other
common methods, namely the Ziegler—-Nichols fre-
quency response methed, see Ziegler and Nichols
(1942), and the Lambda tuning procedure, see
Rivera er al. (1986).

All methods differ with respect to the process
knowledge required and the design specifications,
Tn the Ziegler—Nichols method, the process model
is specified in terms of the ultimate gain and the
ultimate frequency. No design specification can be
made. In Lambda tuning, the process model is
specified in terms of the static gain, time constant,
and time delay. The design variable is the desired
closed-lpop time constant. A common rule-of-
thumb that is used in this section is that the desired
closed-loop time constant should be three times the
open-loop time constant, see EnTech {1993), The
new design method requires that the transfer func-
tion of the process is specified, and the design is
given in terms of the M -value. The value M, = 1.6
is used in this comparison.

The design procedures have been applied to the
processes (G, 5, and G5 given in Section 5. The
controller paramecters and some performance
measures are presented in Table 5.

For process G,, the Ziegler-Nichols method
gives a very oscillatory response with an overshoot
of 36% and a high M, value, This is due to the high
controller gain. The Lambda tuning method gives
a well damped but sluggish response. The settling
time and the I AE values are three times farger than
those obtained in the new design. This is due to the
low controller gain.

For process G,, the Ziegler—Nichols method
gives a condrol foop that is close to the stability
boundary. The overshoot is 47% and the M -vaiue
is M, = 11. Again this is mainty due to the high
controller gain. The Lambda tuning method gives

a very sluggish response, were the TAE value and
the settling time are almost a magnitude larger than
in the new design method.

Process Gj has a long dead time. For this pro-
cess, the Ziegler—Nichols design resulis in a control-
ler with too high gain and too long integral time.
This gives a control loop with a large M, value, and
a very long seitling time. Lambda tuning gives
a low controller gain and an integral time that is
too short. This results in oscillatory behavior with
an overshoot of 21%. The rule of thumb for choos-
ing the desired closed-loop time constant is not
suitable for processes with a long dead time. There-
fore, it is sometimes suggested to relate the desired
closed-loop time constant to the dead time L in-
stead of the open-loop time consiant T when the
dead time is long,

The ZieglerNichols methed gives systems which
are inherently poorly damped. The examples dem-
onstrate that it is not trivial to choose the desired
closed-loop time constant in Lambda tuning. The
new design procedure manages to obtain consistent
behavior for & wide range of processes. On the
other hand, the procedure assumes that the com-
plete transfer function of the process is known,
whereas the other two methods only uses simpler
models.

Many traditional methods fail to give acceptable
control for several of the more difficult control
problems discussed in the paper. For example, both
the Ziegler—Nichols method and the Lambda
tuning methoed gives controller gain k = 0 for the
pure delay process G{s) =¢™°,

7. CONCLUSIONS

This paper describes a design method for PI
controllers. The method assumes that the transfer
function of the process is given. The specifications
capture demands on load disturbance rejection, set
point response, measurement noise and medel un-
ceriainty. The primary design geal is to obtain
good lead disturbance responses. This is done by

Table 5. Comparison between the three design procedures. The table shows conireller parameters k, T3, and k), and performance
measutes M., M, TAE, overshoot o, and sefiling time ¢,

Process Disign k T ks M, IAE 6% ts My
Ziegler—Nichols 3.60 302 .12 4.93 140 359 18.0 4.39
G, Lambda tuning 0.278 192 0.145 117 690 0 258 1.0%
New design 0.862 1.87 0461 1.60 228 3.80 8.12 1.05
ZieglerNichols 13.6 0468 2%.1 114 0.098 471 228 111
Gz Lambda tuning 0.312 1.05 0.29% 1.06 335 0.00 14.0 1.00
New design 274 0672 4.08 1.60 0.246 295 1.83 1.27
Zicgler-Nichols 0.471 300 0.0157 1.36 63.2 0.00 237 1.00
G, Eambda tuning 0081 173 0.0465 215 373 215 118 1.39
New design 0208 587 £.0355 1.69 282 0.00 512 1.00
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minimizing the integrated control error JE. Ro-
bustness is guaranteed by requiring that the max-
imum sensitivily is less than a specified value M,.
Good set point response is obtained by using
a structure with two degrees of {reedom. This re-
quires an extra parameter, the set point weighling
b, in the algorithm. The primary design parameter
is the maximum sensitivity, M, but auxiliary de-
sign parameters such as the maximum of the com-
plementary sensitivity, M., can be added.

The design problem can be formulated as a con-
strained optimization problem. It is shown that this
problem can be reduced to a solution of nonlinear
algebraic equations, Efficient ways of solving these
equations are presented. There are unigue solutions
for special classes of systems but very complicated
situations may occur for complicated systems. The
method will give a solution if one exist and it will
indicate when there is no Pi controller that satisfies
the specifications.

The design procedure has been applied to a var-
ity of systems; stable and integrating, with short
and long dead times, with real and complex poles,
and with positive and negative zeros.

REFERENCES

Astram, K. J. and Higglund (1995a). New tuning methods for
PID controllers. Evrapear Control Conference, Rome, Italy,
2456-2462.

Astrdm, K. I and T. Hapglund (1995b). PID Controllers:
Theory, Design, and Tuning, 20d edn. Instrument Seciety of
America, 1995, Research Triangle Park, NC,

EnTech (1993). Automatic Coniroller Dynamic Specification.
Number Version 1.0, 11/93. EnTech Control Engineering Inc.

Hazebroek, P. and B, L. van der Waerden (1950). Theoretical
considerations on the optimum adjustment of regulators.
Trans, ASME, 72, 309-322.

Horewitz, . M. (1963). Synthesis of Feedback Systenss. Academic
Press, New York.

Khalil, H. K. (1992). Nonlinear Systems. MacMillan, New York.

Persson, P. {1992}, Towards autonomous PID control. Py
Thesis, 1SRN LUTFD2/TFRT-1037-SE, Depariment of
Aatomatic Control, Lund Institete of Technology, Lund,
Sweden .

Persson, P. and K. J. Asirdm (1992). Dominant pole design—a
unified view of PID controller tuning.- Preprints 4th FFAC
Symposium on Adaptive Systems in Control and Signal
Processing, Grenoble, France, pp. 127-132.

Rivera, D. E, M. Morari and 5. Skogestad (1986). Internal
mode! control—4. PID controller design. Ind. Engng. Chem.
Process. Des. Dev, 25, 252-265.

Schei, T. S. (1994} Automatic tuning of PID cantrotlers
based on transfer function estimation. Autematica, 30(12),
19831989,

Shigemasa, T., Y. Tino and M. Kanda (1987). Two degrees of
freedom PHY auto-tuning controller. Proc. IS4 Annugl Conf,,
T,

Shinskey, F. G. (1990). How good are our controliers in absolute
performance and robustness? Measurement and Control, 13,
114-121.

Yamamoto, S. and I. Hashimoto (1991). Present status and
future needs: the view from Japanese industry. In Arkun and
Ray, Eds, Chemical FProcess Control—CPUIV. Proc. dth
Inter. Conf. on Chemical Process Control, TX.

Ziegler, I. G. and N. B. Nichols (1942). Optimum settings for
automatic controllesrs. Trans, ASME, 64, 759-768.



Errata for
"Design of PI Controllers based 'on Non-Convex

Optimization"
p. 687 Equation (7): The expressions C and R should be,
_ M(2Mp, — 1) — (M, — 1)

¢ oMM, —1)
R Mot ¥,—1
= M, (M, —~ 1)

p. 589 Equation (10): Equation (10} should be labelled out.

p. 597 Figure 6: The time response in Figure 6 is wrong. The correct one
is as follows,

Figure 1 The time responses for Example 5 with o = 0.2, 0.5, 1.0, when design-
ing for M, = 2.0.
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Abstraoct

This paper presents a new design method for PID controllers based on optimization of load

disturbance rejection with constraints on robustness to model uncertainties, The design also delivers parameters
to deal with measurement noize and set point response. Thus, the formulation of the design problem captures
four essential aspects of industrial control problems, leading to a constrained optimization problem which can

be solved iteratively,

Keywords
filtering. Set point response. Robustness. Sensitivity.

1, Introduction

The PID contreller is tedays most commoniy
used control algorithm, see Yamamote and
Hashimoto {1991). At the moment, there exits many
different methods to find suitable controller parame-
ters. The methods differ in complexity, flexibility, and
in the amount of process knowledge used. Depending
on the application, there iz a need to have several
types of tuning metheds. There are simple, easy to
ugze metheds which require little information, e.g. the
method described in Ziegler and Nichols {1942}, and
on the other hand more sophisticated metheds which
requires more information and more computations,
But with todays computational capacity this is no
disadvantage.

There are several reasons to lock for better methods
to design PH) controllers. One iz the significant
impact it may give because of the widespread use of
the controllers. Another is the benefit emerging auto-
tuners and tuning devices can derive from improved
design methods.

This paper describes a new design method for PID
controtlers based on the assumption that the process
transfer function is known. The primary design goal
is to obtain good load disturbance responses. This
is done by minimizing the integrated conirol error
IE. Robustness is guaranteed by requiring that the
maximum sensitivity be less than a specified value
M. Measurement noise is dealt with by filtering.

0-7803-4590-8/99 $10.00 © 1999 AACC

PID control. Design. Optimization. Specifications. Load disturbance rejection. Measurement noise

Good set point response is obtained by using a
structure with two degrees of freedom.

The specifications are expressed in terms of a number
of parameters for which good default values can be
found. In the simplest case good default values can be
given to all parameters, The user simply suppties the
process transfer function and the design parameter,
which is the maximum sensitivity, M;. Consequently,
the method provides all the parameters of the PID
controller: controller gain &, integral fime T}, deriva-
tive time Ty and set point weight 5. In addition the
filters of the measured signal and the set point are
delivered.

2. Problem Formulation

Figure 1 Block diagram describing the design problem.

The design problem is ilfustrated in Figure 1. A
process with transfer functon G(s} is controlled
with a PID controller with two degrees of freedom.
Transfer function G,.(s) describes the feedback from
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process output y to control signal u, and Gge(s)
describes the feed forward from set point y,, to u.
Three external signals act on the control loop, namely
set point y:p, load disturbance ! and measurement
noise .

The design objective is to determine the controller
parameters in G.(s} and Gyr(s) 50 that the system
behaves well with respect to changes in the three sig-
nals yep, I and n as well as in the process model G(s).
Hence, the specification will express requirements on

+ Load disturbaace response

+ Measurement noise response

+ Set peoint response

+ Rabustness with respect to model uncertainties
Process and controller structures

The design problem was formulated soasto apply toa
wide variety of systems. Consequently, the process is
assumed to be linear, time invariant, and specified by
a transfer function G(s}, which is analytic with finite
peles and, possibly, an essential singularity at infin-
ity. The description covers finite dimensional systems
with time delays and infinite dimensional systema de-
scribed by Hinear partial differential equations.

Initially the controller is described by

u(ty = k(o3p(0) = ) + b1 (vt} - 3(e))dr

- 200,

where k, %;, ks and b are controller parameters.

It proved keneficial to replace the signals y and y,,
with their filtered values y/ and y;‘rp. The flltered
signals are generated by

Y/(s) = Fy(s)¥ (s),
Yh,(s) = Fipls) Yopls),

where the filters are low paas filters of first or second
order. The controller can thus be characterized by
either four parameters k, k;, kg, b, and two filters
Fy, Fyp

Load Disturbance Attenuation

The primary design goal is to achieve good rejection of
load disturbances where no detailed assumptions are
made about the lead disturbances except that they
are low frequent, By maximizing the integral gain
k; the effect of the load disturbance 7 on the output

v is minimized. According to Astrim of al. (1998) it
i3 shown that this is equivalent to minimizing the
integrated error (IE) for a step change in the load
disturbance.

Measurement Nolse

Iu raditienal PID controllers the filters are often only
applied on the derivative term. A common choice is
to give the denvative term

deS

Disy= 1 +s%

¥E) = i‘s Yes)

Sth

where N iz a number in the range 2-10. This will
reduce the high frequency gain to #(1+ N). Since the
filter is only applied on the derivative term and not
on the proportional term, the high frequency gain can
never be made smaller than &.

In this study all terms in the controller were filtered,
For first order filter with filter time constant T%, the
high frequency gain becomes %,/ 7. For second order
filters the high frequency gain goes to zero as the
frequency goes to infinity. A nice feature of the desiga
is to provide a systematic way to determine TY.

Set Point Response

The transfer function relating set point to process
output is given by

GG{{ ki + bks [ele F;p

Geole) = 77 GG,  k+kst1 ks 1+ GG, Fy'

When the controller has been designed to give good
attenuation of disturbances, the parameter b and the
filter Fp can be chosen to give an appropriate set
point response. The maximum of Gy, is chosen

M,y = max|Gliw).

Robustness

Sensitivity to modeling errors can be expressed as the
largest value of the sensitivity function, i.e.

i
M= o\ oG )

The quantity M, is simply the inverse of the shortest
distance from the Nyquist curve of the loop transfer

function to the eritical point —1. Typical values of M.
are in the range 1 to 2,
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The sensitivity can also be expressed as the largest
value of the complementary sensitivity function, i.e,

GG (ia) l

M, = ma’xll-a-GG,(uo}

(1)

Typical values of ), are in the range 1.0 to L6.
Another possibility ie to use the Hy-norm

I+ |GGr{:m)|‘

1+ GG (iw) @)

 mgx [LH10G (0
7 o

which is discussed in detail in Panagopoules and
Astrom (1998).

Tuning Parameter

The tradeoff between performance and robusiness
varies among different control problems. Therefore,
it is desirable to have a design parameter to change
the praperties of the closed loop system.

For the propozed design method the robustness con-
straint is & goed measure of the performance of the
system, It has been shown in Astrom at 2l (1998)
that the variable M, fulfills all the requirements of a
good design parameter.

3. PID Design

The method for designing PID controllers will now be
presented. It is given by,

max ki (@)
suchthat f>R% x<0, §<0,

where x is the curvature of the loop transfer fre-
quency function, L{iw), and § is the difference in
phase change of L{iw) at two consecutive frequency
peints. Consequéntly, the first constraint in Equa-
tion (3) express the sensitivity condition, the sec-
ond eonstraint specifies that a negative curvature of
L{iw) should be chtained and the third constraint
prevents L{iw) to have undesirable phase leads,

For systems with integral action and close to inte.
gral action, i.e. a pole relatively close to zero, the sec-
ond constraint in Equation (3} is, however, {oo severe.
Omitting it will in these cases be appropriate. Con-
sequently, the design of PID controllers is separated
into two cases depending on the considered system.
This separation between integrating and non inte-
grating processes is done in several previous design
methods, see Astrém and Hégglund (1995).

Measurement noise filtering

When there are substantial measurement noise, it is
customary to filter the measurement signal. A nice
feature of the new design procedura is to provide a
systematic way to determine Ty. The choice

L for first order filter,
N&Jo

T = 1
N for second order filter,

makes it posaible to determine the effects of the fil-
ter at the frequency @, where @, ia the frequency
at which the sensitivity function is maximal. Reason-
ahle values of N are in the interval 2-10. Because of
the special choice of 7 the first and second order fil-
ter has the same amount of medification on the loop
transfer function at ay.

Inserting a filter modifles the loop transfer function
which gives minor ¢hanges in control loop perfor.
mance, Consequently, adjusted controller parameters
are obtained simply by repeating the design with the
process (7 replaced by the transfer function F\,G.

Set point weight

In order to have a small overshoof in set point
response, set point weight b and filter 5, will be
determined such that the resonamnce peak of the
transfer function G,y(s), i.e.

M,, = max|Gyp{ie)|, (4)

is close to one.

First the set point weight, b, is determined without
filtering, ie. F5 = 1, according to Panagopoules
et al. (1998). Only positive values of b are allowed,
since negative values of & may result in inverse step
reaponses in the control signal. If b = 0, it is not
sure that the design objective of Equation {4) will be
obtained. Then the filter Fy, is determined according
to Panagoepoulos of al (1998),

4. Examples

The design method hes been tested on a number of
examples which illustrate its properties. The follow-
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Table I Properties of controtlers ebtained for system G1—Gj for different values of the design parameter M,.

Process | M, & T Ty b
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ing transfer functions have been considered,

1 o5

Giis) = GO Gals) = T
1

Gl = T o T 0.045)(1 + 0.0085)"

n=4tol.  Gafs) = pt>

1
= T FF

The first seven modsls capture typical dynamics
encountered in the process industry. Model G is an
integrating process and Gy models a process with
long dead time. Madel G has a zere in the right
half plane, which i{s uncommon in process control,
but it has been included to demonstrate the wide
applicability of the design procedure.

Figures 2 and 3 show the responses to changes in set
point and load, The details of the design caleulations
and simulations are summarized in Table 1. Note
that the PID controller obtained is compared to the
corresponding PI contreller to show the amelioration
of the PID design.

Although models Gy — Gy represent processes with
large variaticns in process dynamics, Figure 2 and 3
show that the resulting closed leop responses for a
load disturbance become similar for each value of
M. This is important because it means that the
proposed design procedure gives closed loop systems
with desired and predictable properties,

There is also a clear similarity between the re-
sponses obtained with the different values of the tun-
ing parameter A, thus indicating the suitsbility of
the M,-value as a tuning parameter, Responses ob-
tained with M,=1.4 show little or no overshoot, as
is normally desirable in process control. Faster re-
gponees are obtained with A£,—=2.0. The settling time

at toad disturbances, t;, is significantly shorter with
the larger value of M;. On the other hand, these re-
sponses are oscillatory with larger overshoots. This
can be seen from the comparison between IE and
the integrated absolute error JAE in Trble 1. Notice
the agreement with the conclusions made for design
of PI controllers in Astram ef al, {1998).

The controller gain % varies significantly with the
design parameter M,: it is larger for designs when
M, = 2.0 than for those when A, = 1.4, However,
infegral time T is fairly constant for the stable
processes, 1.e,, all processes except G, The derivative
time Ty is usvally larger for designs with M, = 1.4
than for those with M, = 2.0, In all cases the PID
design generates a controller with complex zeros for
M. = 2.0, Thus, the controller will not be realizable
in serial form.

For M;=2.0, the M_-values are large. Consequently,
the overshoots would be significant if the set point
weight is & = 1. Howover, acceptable set point
responses are obtained by suitable choices of either
the set point weight b or the filter F,,. According te
Table 1, it is not always enough to set & = © to obtain
a small overshoot filtering may also be needed.

5. Conclusions

PID controllers were designed to capture demands on
load disturbance rejection, set point response, mea-
surement noize and model uncertainty. Good load dis-
turbance responses were cbtained minimizing the in-
tegrated control error IE. Robustness is guaranteed
by requiring a maximum sensitivity of less than a
specified value M. Measurement noise is dealt with
by filtering. Good set point response is obtained by
using & structure with two degrees of freedom,
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Systems @ (feft) end Oy {right)

Systems G5 (left) and &y (right]

Systarns O (left} and Gs (right)

Syztems Gr (left) and G5 (right)

Figure 2 Comparison between the PID (full line) and
the Pl controller (dashed line) for M, = 14, The grapha
shows a step response followed by a load disturbance of
the closed loop systern.

The design procedure has been applied to a variety of
systems: stable and integrating, with long dead times
and with right half plane zeros.
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Supplement and Errata to "Design of PID
Controllers Based on Constrained Optimization"

The conference paper was brief due to page restrictions. In this supplement
we provide additional material to the paper,

The first section of the supplement shows that a direct generaliza-
tion of the problem formulation used to design PI controllers in Astrém
ot al. (1998) does not work well for PID controllers. These insights mo-
tivate a reformulation of the problem for PID controller design. Section 2
and 3 show how filters can be incorporated to deal with measurement noise
and set points. Finally, Section 4 presents a numerical solver, which is used
to solve the parameter optimization problem. Some implementation aspects
are also discussed.

1. Difficulties of the PID Design

The solution of the PID design can be formulated as the parameter op-
timization problem in Astrém et al. (1998). Find controller parameters
maximizing %; subject to the constraints: 1) the clesed loop system is sta-
ble, 2) the Nyquist curve of the loop transfer function is outside a circle

with center at s = —C and radius R, ie.,
such that f(k ki kg, @) > B2 Yo >0,

where f is the function
i 2 L
|C+ (k= Lk - 0™ka))Glim)|

where the constraint in (1) will be denoted the sensitivity constraint. It was
shown in Astrém et al. (1998) that the problem formulation in {1) worked
well for the design of PI controllers. Unfortunately, it is not suitable for
the design of PID contrellers which will be explained below.

The constraint in (1) cenceptually defines k; as a function of k and kg.
Thus, the design problem is to maximize the function &;(%, &y) which is il-
lustrated in Figure 1. The upper and lower surface in the figure corresponds
to the maximum and the minimum of the function k;(k, ky) which fulfills
the sensitivity constraint. Consider for example the contours of constant
kg. Bmall values of 27 give contours with a smooth optima of the upper
surface, whereas the values of k; are 0 for the lower surface. Larger values
of kg give contours where the optima appears at an edge, or in other words,
where the upper and lower surface will coincide. The latter case makes the
optimization difficult. Even more seriously is the sensitivity of the optimal
solution to changes in the controller parameters, that is, small changes in
k and ky may give large changes in %;. It is highly desirable that small
changes in the controller parameters should not affect the performance too
much, Next, these difficulties will be treated more closely. These insights
will then be used to reformulate the optimization problem in (1).
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Figure 1 A geometric illustration of the sensitivity constraint in (1).

Geometric Interpretation of the Sensitivity Constraint

The sensitivity constraint in (1) has a nice geometric interpretation. This
is exploited to gain insight how to reformulate the optimization problem
in Equation (1). Intreduce

Giw) = r{w)e® = a(w) + if(a),

then, the sensitivity constraint in (1) can be written as

C% +2Ca(w)k + 20@(@- — 0%ky) + P (0)R2 + fa{,—g})"{k" ~ kg > R2,
(2)

In the following example, the argument @ in &, B, r, and ¢ will be omitted
in order to simplify the writing. Rewriting Equation (2) as

r? o\ g r? 2 @fBC. 2

we find that it represents the exterior of a cylinder in B® for fixed @. In the
following example the geometric characteristics of the sensitivity constraint
are demonstrated, First it is shown how the cylinder’s intersection with the
#-k;-plane is an ellipse, whose axes is parallel to the ones of the kk-ki-plane,
Secondly, it is demonstrated how to generate the boundary of parameter
sets, & and &y, satisfying the sensitivity constraint, Finally, it is shown how
the boundary of these sets may have non smooth derivatives, even for a
simple process. Recall from Astrom et al (1998) that similar situations
could occur for the design of PI controllers. However, these cases were not
Very common.
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Figure 2 How to generate the set of (k,k;)-parameters which satisfy the sensi-
thvity constraint in (3). In the left figure the loci of the ellipses vertices (L;, K), By)
have been plotted for different (w;,%3} which forms an envelope (dashed line). In
the right figure the interior of the envelope (shaded area) gives the set of {&, &)-
parameters which satisfy the sensitivity constzaint (3).

An Exzample: The Sensitivity Constraint

The following example shows how the boundaries of parameter sets which
satisfy the sensitivity constraint in 3 have non smooth gradients, even in
the simple case of a process with transfer function

1
G6) = 1y 1y (4)
First, let @ and &y be constant, then the sensitivity constraint (3) rep-
resents an ellipse in the k-k; plane. As @ changes, the ellipses forms an
envelope. Since it is complicated to compute the envelope of these ellipses,
it is approximated by the envelope of the ellipses vertices which is ex-
plained in Figure 2, and below. In the following the left, right and bottom
vertex are denoted in the following with L;, R;, and Bj, see Figure 2. From
(3) the horizontal vertices are given by,

SCLAS
r r
f 2
k; = —Cj + @ kd’,

where the left vertex L; corresponds to a minus sign and the right vertex
R; to a plus sign. The vertical vertices are similarly given by

74

h=-C%,

b= Loty s OF.
r r

where the bottom vertex B; corresponds to a minus sign. In the left figure
of Figure 2, the loci of the set of vertices (L, Ry, B;) are plotted respectively,
for (@, £). A new set of vertices { Ly, 1, Ry1, Biy1) are plotted for (w41, £7).
When enough sets of (L;, B, B;) are generated, they will form an envelope
in the £-k;-plane, that is the dashed line in Figure 2. The interior of the
envelope gives the set of (&, k;)-parameters which satisfy the sensitivity
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Systems kg = 1 (left) and by = 2 (right)

EZ .U * z L3 k

Systems ky = 3 {left) and %4 = 4 (right)

Figure 3 The envelope of the ellipses vertices for k2 =1,2 3 dand Gf) =
1/(s+1)* with € = 1 and R = 1/1.4. The shaded areas correspond to the set
of (k, k;}-parameters which satisfy the sensitivity constraint {3). Note how small
values of kg generates a boundary whose maxima has & smooth derivative compared
to large velues of k; whese maxima occurs at an edge.

constraint (3). This set corresponds to the shaded area in the right figure
of Figure 2.

As an iltustration, the envelope of the elfipses vertices have been plotted
for kg = 1, 2, 3 4, and the process (4)withC=1and R =1/14in Figure 3.
The shaded areas correspond to the sets of (k, k;)-parameters satisfying
the sensitivity constraint (3). The following ohservations are made from
Figure 3: Small values of k4 generate a boundary whose maxima has a
smooth derivative. For large values of &, the maxima occur at an edge.
From a control point of view the case of a boundary whose maxima has
a smooth derivative is preferable. It will provide an optimal solufion of
the PID design, which is not too sensitive for changes in the controller
parameters.

An Example: More Insights of the Sensitivity Constraint

In the following, the effects of the characteristics of the sensitivity con-
straint are examined for the process (4) with respect to time responses,
Nyquist diagrams, and Bode diagrams. The controller parameters are given
by the upper and lower left figures in Figure 3. The choices (k, k;, ky) =
(1.06,0.50, 1.00), and (1.00, 0.98, 3.00), respectively will display the effects
of a continuous and a discontinuous derivative of the sensitivity constraint.

To begin with, consider the load responses of the closed loop system in



Figure 4 Comparing load responses for the process G(s) = 1/{s + 1)%, with
the controller parameters (&, %;, ks) = (1.00,0.60, 1.00) {full line), and (&, &;, &g} =
(1.60,0.98, 3.00) {dashed line).

Figure 4. To measure the controller performance the integrated absolute
error, TAE, defined in Astrém and Hagglund (1995), is used. The case
kg = 1.00, gives a well damped response, with TAE = 2.71. On the other
hand, the case ks = 8.00, gives a reduced peak, at the expense of a more
undamped response, and a degradation of TAE to 2.86. The closed loop
system with &3 = 1.00, has one real pole -2.07, and two pairs of complex
poles with relative damping ¢, and frequency @ of ({, ®) = {0.69,1.04), and
(0.52,0.47), respectively. For ky = 3.00, the closed loop system has one real
pole in -2.64, and two pairs of complex poles with ({, @) = (0.41,1.41), and
(0.23,0.43}, respectively. Consequently, the second case gives poles which
are in general a bit faster, but less damped compared to the first case.

Secondly, consider the Bode diagrams of the loop transfer functions L
in Figure 5. The case, 2y = 1.00, gives a gain and phase curve which
decreases for increasing values of @. On the other hand, for 2y = 3.00 the
gain curve is greater or equal to the prior case. The phase curve will have
a phase lag and lead because of the undamped modes of I which explains
the observed undamped behavior in Figure 4.

Finally, consider the Nyquist curves of L in Figure 6. The case, kg =
1.00, gives a Nyquist curve corresponding to the decreasing gain, and phase
eurves in Figure 5. From a robustness point of view, this is a desirable
feature. On the other hand, for the case k; = 3.00, the phase lag, and lead
in Figure 5 gives a Nyquist eurve with a cusp, which is undesirable from
a robustness peint of view. Recall that this case corresponds to the one in
Figure 1 where the upper and lower surface will coincide.
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Figure 5 The Bode diagrams of the loop transfor functions for the process G(s) =
1/(s +1)*, with the controller parameters (k, &, k4) = {1.00, 0,60, 1.00) (full line),
and (k, k) = (1.00,0.98, 3.00) (dashed line).
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Figure 6 The Nyquist curves of loop transfer functions for the process G(s) =
1/(s + 1)%, with the controller parameters (k,k;, k) = (1.00, 0.50, 1.00) (left), and
(. ks, ka) = (1.00, 0.98,3.00) (right).

To sum up these observations: From a control point of view the case kg =

1.00 should be chesen. It gives, a controller with good overall performance
and robustness,



PID Design

The previous section explained why the direct generalization of the design
method for PI controllers in Astrém ef al. (1998) is not suitable for PID
controllers, Consequently, the optimization problem for the design of PID
controllers in (1) has to be reformulated by inserting more constraints
in addition to the sensitivity constraint such that well damped respenses
are obtained. This will be fulfilled with twe additional constraints which
prevents the open loop frequency response from having the phase lags and
leads which occurred in the right figure of Figure 8. Thus the optimization
problem for the design of PID controllers becomes,

max k;
subject to  F(k ki kg, @) 2 B2 ¥V o,
Bih — Db
b o (5)
(62 + 12)*/2
8 arg L(iw) <o,
8w

where L(iw) is the loop transfer frequeney function, and L{iw) = v{w} +
iw(w). Note that in the second constraint ' and " corresponds to first and
second derivative with respect to w. The first constraint in (5) express
the sensitivity eondition, the second constraint specifies that a negative
curvature of L{iw) should be obtained, and the third constraint prevents
L{iw) from undesirable phase leads and lags.

For systems with integral action or close to integral action, that is a
pole relatively close to zero, the second constraint in Equation (5) becomes,
however, too severe. In these cases, it will be appropriate to omit it. Conse-
quently, the proposed design methed for PID controllers is separated into
two cases depending on the considered system, This separation between in-
tegrating and non-integrating processes have been done in several previous
design methods, see Astrém and Higglund (1995).

2. Measurement Noise Filtering

When there are substantial measurement noise, it is useful to filter the
measurement signal with a filter given by,

1
Flis)= —F—

}{S) (1 x STf}n L] {6)
with n = 1, or n = 2, see Panagopoulos ef al (1999). An application
can be found in Eborn ef al (1999), The choice of filter time constant
Ty in Equation (6) is a trade-off between filtering capacity and loss of
performance. A large value of Ty provides an effective noise filtering, but
deteriorates the control performance. On the contrary, a small value of T
keeps the control performance, but with less efficient noise filtering. When
comparing different kinds of filters the effectiveness is measured by

G.(iw)

My = max| 3= TR (N



Table 1 Properties of the PID controllers obtained for system F,G with G(s) =
1/(s+ 1} and M, = 1.4 for different filter of order n = 1, 2.

n 1 1 1 2 ) 9 .
N 2 5 10 2 5 10 P
arg F,limy) | —80° —1257 —635 —59°  1260° —636 O
K 07895 09152 10009 0.6496 0861 09671 1140
T 28334 23322 22867 2.8285 24033 22963 2227
T 12979 10406 10130 13083 10716 1.0180 0.999
wy 0.5091  0.6695  0.7227 04703 06226 07011  0.790
IAE 42425 80711 27821 49524 3.4774  2.8825  2.4200
M, 11392 37584 T.0840 10726 20550 61308 o

defined in Panagopoulos et af. (1999), and the control performance by the
integrated absolute error (IAE), defined in Astrom and Higglund (1995).

A nice feature of the new design procedure is that it gives a systematic
way to determine Ty. The choices

ml— for first order filter,
T = N ar 8
=g (®)
SNy for second order filter,

makes it possible to determine the effects of the filter at the frequency wy.
Note, that the maximum of the sensitivity function occurs at the frequency
wg. Reasonable values of N are in the interval 2-10. In Table 1 the influ-
ence of the filter on the loop {ransfer function at the critical frequency oy
is shown by calculating the arg Fy{iwyp). Note, how the special choices of
Ty in (8) for the first, and second order filter will give the same change
of the loop transfer function at @p. Because, the insertion of a filter will
modify the loop transfer function which gives minor changes in eontrol loop
performance. Adjusted controller parameters are obtained by repeating the
design with process G replaced by F,a,.

The trade-off between filtering capacity, and loss of control performance
is demonstrated in Figure 7. The process G in (4) has been used. Note
that the PID controller designed for F,G is compared to the one designed
for G to show the loss of control performance. However, to visualize the
effects of measurement noise n on control performance, only the responses
of the measurement signal y, and the controller output u for F,G are
shown. The actual noise signal used in the simulation, is a sinuscidal with
frequency 40 rad/s. The details of the design calculations and simulations
are summarized in Table 1, Furthermore, in Figure 8 the Bode diagrams
of the transfer function from measurement noise n to control signal , that
is,

= — GC n
TN

are presented.



ERC)

Filter constant & = 10.

Figure 7 The response to a load disturbance foliowed by measurement noise
using first (left) and second (right) order filters with different values of N. The
graphs show responses from F,& (full line) and load disturbance responses from
@ (dashed line).

Figure 7 shows that a filter gives a deterioration in control performance,
compared to the case without filter. Note how the deterioration increases
for decreasing values of N. Compare, also, with the TAE values in Table 1.
Furthermore, in Figure 7 the efficiency of filtering measurement noise with
second order filters compared to first order ones is obvious. Note how the
filtering efficiency decreases for increasing values of N. Compare, also, the
amplitude curves of Figure 8, and the M, values in Table 1. Finally, it
is noted from Table 1 that the difference in control performance and in
filtering capacity between the first and second order filter will be ailmost
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Figure 8 The amplitude curve of the transfer function from measurement noise
7 to control signal u for the process F,{s)G(s) with G(s) = 1/(s+ 1)* and A, = 1.4,
First (left) and second (right) order filter for filter constant N = 2 (full line), 5
(dashed line) and 18 (dotted line).

the same due to the choice of Ty in Eguation (8),
The advantage of the proposed design method is its systematic way to
determine measurement noise filters, such that the noise level is reduced.

3. Set Point Response

The design has so far focused on the response to load disturbances, which
is of primary eoncern. However, it may also be important to have a good
response to set point changes. One way to give specifications on the set
point response is to consider the transfer function frem set point to process
output given by

Gop(5) = Gis)Grr(s) = ki+bks G(5)Gcls) Fypls) )
T 14 G(5)Ge(s) it kst hgs2 14 G(s)G.(s) Fy(s)’

which is defined in Panagopoulos ef al. (1999),where
Fip(s) = 1/(1 + sTsp). (10}

In order to have a small overshoot, set point weight b and filter Fep will be
determined such that the resonance peak of the transfer function Gp(s),

Mgp = max |Gyp(in))], {11)

is close to ¢ne.

As Equation (11} is a function of the set point weight b and fiiter Fyp,
the following approximation is made: the maximum of [Gsp(ie)| occurs
for @ = @p,. Note that the maximum of |L(iew)/(1 + L(ie))| occurs at
the frequency @,,,. First, the set point weight b, is determined without
filtering, that is, Fyp(s) = 1. By choosing parameter & such that

ki + ibked,y
k,‘ + ik(t)mp - kdw,?.-;p

[Goplimmp)| = | |M, =1, (12)

10



gives

. {\/A — M2 konM, i A2 KM, (i)
0

if A<M

where A = k2}, + (ki — @%,k4)?. Only positive values of b are allowed
as negative ones may result in inverse step responses in the control signal,
which is an undesirable way to reduce overshoots.

In those cases when b > 0, Equation (12) holds, but it may happen that
iG5p| becomes large for values of @ # @mp. This is avoided if b is restricted
to values such that
ki +ibke

lk,- + ik — kyw?
for all frequencies &. This, gives the following additional constraints on b,

VTa/T: T, < 47y,
h< . 15
< 2T/ T T, > 4T, {15)
1- /TZ4Ty]T;
Notice, that for set point weight of PI controllers, (kg = 0), it follows from
Equation (14) that the corresponding upper limit of bis b < 1.

If b = 0, it is not sure that the design objective (12) will be obtained, If
the set point response is important and the M, value is large, the output of
Ggp(s) may be filtered by the first order filter in Equation (10). The filter
time constant Ty is chosen as

Tsp = ,/k?Mg/A —1)/wk,, (16)

such that |Fyp(i@mp) Gsp(iomp)|? = 1.

i<l (14)

Improving the Set Point Weighting from a Practical Aspect

Background: Experimental tests of the proposed PID design have been
made at the pulp and paper plant of Modo Paper in Husum, Sweden, To
set the set point weight to values different from 1 was not possible which
resulted in unacceptable overshoots. The problem was overcome by us-
ing & = 1 and the set point filter in (10). The solution was proposed by
Nordin {1899)

The filter time constant T., is chosen such that the design objective
(12) is obtained. In the PI case, the following time constant was obtained,

M2 — 1/, if M221,
0

if Mg <1,

sp=

and for the PID case,

2
P);M—P’

m

{ (B2 - B M2 — Ajon, A i A< (B~ Ko
if Az (R — Fob, )M}

The insertion of the filter results in slower rise time compared to the
case with no filtering. But the settling time, defined in Astrém and Higg-
lund (1995}, is the same. Consequently, there is no loss in performance for
a set point change. The results when trying it on a real application can be
seen in Panagopoulos et al. (2000).

11



4. Numerical Solution of the Design Problem

Finally, a brief discussion of the numerical solution of the optimization
problem for the design of PID controllers in Equation (5) is given. The op-
timization problem is non-convex and the solution is obtained numerically
with the Optimization Toolbox in MATLAB 5, which requires substantial
caleulations. But with today’s personal computers, their are no major lHm-
itations,

As for most numerical optimization routines it is important to have
good initial conditions, and a suitable search interval. A natural choice of
initial eonditions will be the controller parameters &, and k; from the PI
design in Astrom ef al. {1998), that is,

(B &) RS = [k & 0},
and a suitable search interval is given by,

Dstart = @0/2s
@stgp = (CDISO + 0_)270)/2‘

@y is the frequency at which the sensitivity function from the PI design has

its maximum. Mgy and @syp ave the frequencies where the argument of the

loop transfer function from the PI design is —180° and —270° respectively.
The following procedure is used to selve the design problerm:

1. Give the transfer function of the process. Choose the design param-
eter expressed by the maximum of the sensitivity function M., the
maximum of the complementary sensitivity function M, or some
other norm.

2. Determine the number of constraints, as it differs depending on the
considered system.

3. Make a PI design to obtain the initial values [k ; 0], and the fre-
quencies [@y @15y @370

4. Solve the design problem with the Optimization Toolbox in Matlab 5.

5. Verify that the resulting controller parameters fulfills the constraints.
¥ not, adjust the initial values or settings in the aceuracy of the
numerical routine.

12



Errata to Design of PID Controllers Based on

ion

t

imiza

Constrained Opt

Table 1 should be replaced by

Table 2 The properties of the ohtained contrellers for system G,-Gy with different

values of the design parameter M;.
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Abstract This paper shows that traditional methods for design of PID
controllers can be related to robust Hy, control. In particular it shows how
the specifications in terms of maximum sensitivity and maximum comple-
mentary sensitivity are related to the weighted H, norm introduced by
Glover and McFarlane {1989). The paper also shows how to use the Vin-
nicombe metric to classify those classes of systems which can be stabilized
by the presented design methods in Astzém et al. (1998) and Panagopoulos
et al, (1999).

Keywords H,, eontroller design, PID controller design, Specifications.
Robustness.

1. Introduection

In PID control it is attempted to control a complex process by using a con-
troller with a simple, fixed structure. This differs from main stream con-
trol theory where no constraints are imposed on the controllers complexity.
Surprisingly the problem of finding a controller of restricted complexity is
often more complicated. For this reason, a number of specialized methods
have bean developed for PID control, see Astrém and Hégglund (1996). In
this paper it is attempted to show the similarities between some of the
methods developed for PID control and main stream control theory which
has also been done previously in Grimble (1990). At the general level the
problems are very similar because compromises between rebustness and



performance have to be dealt with.

The first aim of the paper is to show how the design methods for PI
and PID controllers presented in Astrém ef al, (1998) and Panagopoulos
et al. (1999), are related to the H,, loop shaping method developed in
Glover and McFariane (1989), and Vinnicombe (1998),

Traditional design methods for PID controllers make a compromise be-
tween robustness and performance. For sxample, in Shinskey (1990) the
constraints on robustness and performance are expressed as, the Nyquist
curve of the loop transfer function must lie outside a rectangle which en-
closes the critical poini, and maximize the integral gain, respectively. The
design methods for PI and PID controllers in Astrém et al. (1998) and
Panagopoulos et al. (1999) are based on this idea, but the robustness con-
straint is expressed as circles of constant sensitivity, constant complemen-
tary sensitivity or a combination of these two. Consequently, the robustness
constraint of the proposed design methods can be viewed as a mixed sensi-
tivity problem. In Kwakernaak (1985) various aspects of the performance
of linear single input single output feedback systems were translated into
required bounds on the sensitivity function and its complement.

The idea of the H, loop shaping method is to design a controler which
provides robusiness to process uncertainties, and minimizes the signal
transmissions from load disturbance and measurement noise to process in-
put and output, This can be expressed quantitatively by requiring the %/,
norm, ¥, of a two-by-two transfer function matrix to be small. The value of
7 is then viewed as a design variable which determines the performance
and robustness of the closed loop system.

The paper shows how the condition that ¥ is small can be expressed in
terms of requirements on the Nyquist curve of the loop transfer function. In
particular the curve should be outside a contour which encloses the eritical
point. An explicit formula is given for the contour of the region which can
be bounded internally and externally by circles which are related to the
maximum of the sensitivity function and the complementary sensitivity
function, This establishes the relation between classical design conditions
as in Astrém et al. (1998} and Panagopoulos ef al, (1999) to the one of H,,
robust control. In Bdny4sz and Keviczky {1999) a frequency interpretation
of the 3/, criteria is given where the sensitivity and robustness shaping
techniques are formulated on Nyquist and Bode plots.

The second aim of the paper is to show how the previous relation be-
tween classical design conditions and the H,, robust control given in Vin-
nicombe (1998) can be used to classify the class of systems which a PID
controller will stabilize. In particular it is shown how the specifications
for the PID design in Astrém et al. {1998)and Panagopoulos ef al. (1999)
should be chosen to guarantee that the weighted H,, norm of the transfer
function from load disturbance and measurement noise to process inpuk
and output is less than a specified value ¥. This problem has also been
treated in Bombois et al. (1998) where the results in Vinnicombe (1998)
have been used and the controller design is based on LQG.
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Figure 1 Block dingram describing the design problem of %, control.

2, 7., Control

The design objectives of a typical process control problem are expressed as
requirements on:

¢ Load disturbance response

* Measurement noise response

¢ Robustness with respect to model uncertainties
+ Set point response

The first three design chjectives are well captured by #,, loop shaping
which makes it suitable for the design of process controllers, since they
mostly operate as regulators. Set point weighting and filtering is then used
to obtain a good set point response using the two degrees of freedom strue-
ture propesed in Horowitz (1963).

The H,, theory was originally developed by Zames (1981) to emphasize
plant uncertainties, but it is also well suited to treat the issues of load dis-
turbance and measurement noise. Consider the block diagram in Figure 1
where the inputs are the load disturbance / and the measurement neise 7.
The outputs of interest are the process output %, and the signal v which
represents the combined action of the load disturbance ! and the control
signal u. It is assumed that the controller G, gives a stable closed loop
systems. The signals are related through

where
H= [f](HGGC)*[—Gc 1. 1)

The block diagonal elements in Equation (1) are the complementary sen-
sitivity function

T = -G + GGG,
and the sensitivity function

§=(1+Gq)™
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Figure 2 Block diagram describing the design problem of #,, control with fre-
guency weighting,

The off-diagonal elements are the transfer functions

G(I + GG,
- (I+GG,) G

A good closed loop performance requires both x and v to be small with
respect to the disturbances ! and n which implies making the transfer
function H small in the #,-norm, that is,

¥ = Hlloa, (2)

should be small. The fact that y is small will also guarantee the closed loop
system to be rebust with respect to medel uncertainties. Consequently, the
H loop shaping is understood as minimizing the complementary sensitiv-
ity function T' and the sensitivity function S indireetly rather than directly
which is to be compared to the design methods for PI and PID conirollers
in Section 3.

The use of the parameter y as a criterion for loop shaping was suggested
by Glover and McFarlane (1989) and McFarlane and Glover (1992), They
recommended values of  in the range |2, 10]. Furthermore, they showed
that their design method had nice properties, such as:

e It gives a good controller if one exists.

¢ The obtained closed loop system is stable against coprime factor un-
certainties, Vidyasagar (1985).

¢ The parameter y is a good design variable.

Frequency Weighting
Frequency weighting may be introduced in #, loop shaping to emphasize
the response at certain frequencies, see Figure 2. Tn this case the design of

the H,-controller is solved for the transformed system & and the trans-
formed controller G,, that is,

G = W.GW,
G. = WilG.w; !,

where W; is the input weight, and W, is the output weight, Consequently,
the transformed system H becomes

- [WOGW,-
I

] Wo(I+ GG) W, [-WlG W, 1. (8)



Note, that the transformation is equivalent to design for the disturbances

=Wl
=W, ln

Single Input Single Output Systems

1n the case of single input single output systems the transfer function
1 (1) becomes

-GG, G
"-iiee| o 1) @
The matrix H is of rank 1, and its largest singular value is given by
oY H) = (1+ G.GH(1+ GG‘)l
{1+GG)(1+G*GE)
It follows from Equation (2) that

In the case of single input single output systems frequency weighting will

also be simplified, since it is sufficient to use only one weight, that is,

W; = W and W, = 1. The transformed system matrix H in (3) becomes
o 1 [ -GG, GW]

— 6
1+GG [-G. W1 1 (6)

3. PID Control

Design methods for PY and PID controllers based on constraints of the max-
imum sensitivity and complementary sensitivity are described in Astrém
et al. (1998) and Panagopoulos et al. (1999). A short review of the controller
design is given in this section. The formulation of the design problem for
the two methods coincide, they are therefore presented together,

The PID controller is described by the transfer function

k;
Gc(s) =k+ '"‘;[” + kgs,

where k is the controller gain, k; is the integral gain, and %; is the deriva-
tive gain, In reality its structure is more complicated, because of the set
point weight and filter, and the measurement noise filter, see Panagopoules
et al. (1999). The problem formulation of the design methods are: Maxi-
mize the integral gain %; subject to the robustness consfraint that the
Nyquist curve of the loop transfer function should lie outside a specified
circle. This idea, which goes back to Shinskey (1990) is discussed in detail
in Astrém et al. (1998) and Panagopoulos ef al. (1999), where the robust-
ness is measured in the classical terms of the maximum of the sensitivity
function, Mg, and the maximum of the complementary sensitivity function,
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Figure 8 The M;-circle (dashed line), the M,-circle (dotted line) angd the com-
bined M M, -circle (full line) for M, = A, = 2.0.

Mp. Thus, the robustness measure provides a transparent design variable
which is expressed as

M= ”(1 + GGC)—IHDQ)

that is, the Nyquist curve of the loop transfer function aveids the circle
with center at C = —1, and radius R = 1/M;, compare with Figure 3, or

My = |GG+ GGe) oo

that is, the Nyquist curve of the loop transfer funetion avoids the circle
with center at C = —M?/(MZ—1), and radius R = |Mp/ (M2 —1)|, compare
with Figure 3. It is possible to replace the constraints on M, and M, with
a combined one which reduces the computational effort substantially, see
Astrom et al. (1998). For the combined constraint the Nyquist curve of the
loop transfer function avoids the circle with center at

MMy — My M, + 1
M (M, —1)

and radius at
M+ M, —1
2M (M, — 1)
see Figure 3. The circle will have its diameter on the interval [/ (M, —
1), —(M,;—1}/M]. For practical purposes the constraint is not much more
stringent than combining the two of 3, and M, respectively.

The eombined constraint is simplified if both the sensitivity and the
complementary sensitivity function are less than or equal fo M, that is,
the Nyquist curve of the loop transfer function avoids the circle with center

oM2 —9M 11
MM -1)

R=

C=-

and radius
_ eM -1
T2M(M-1)
The circle will have its diameter on the interval (-M/(M—-1),—(M-1)/M].
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4. Comparisons

In 7., loop shaping the frequency weights are first specified to obtain de-
sired properties, and then a controller is determined which minimizes y.
For example, for low frequencies the input weight is increased to obtain
a high controller gain, and for high frequencies the output weight is in-
creased to achieve high frequency roll-off in the controller. No restrictions
are imposed on the controller complexity.

For the design methods in Astrém et al (1998) and Panagopoulos
et al. (1999) for PI and PID controllers the complexity of the controller
is fixed, and the low frequency gain of the controller is optimized subject to
a robustness constraint expressed in terms of either the maximum of the
sensitivity funetion M, or the maximum of the complementary sensitivity
funection, M, or a combination of thesa two.

Below, it is shown how the specifications of the H, loop shaping and
the design methods for PI and PID controllers are related. In particular,
it is shown how to choose the specifications of the design methoeds for PT
and PID controllers to guarantee the H,-norm of the frequency weighted
transfer function H in (8) to be less than a specified value 7 and the
determination of its weights W.

The minimization of the robustness measure y in the H,, design gives
a controller that compromises between attenuation of the disturbances [
and n. By intreducing frequency weights it is possible to emphasize the
weighting of the two disturbances by a proper choice of the weight function
W, which will serve as a design variable. For reasonable choices of the
weight W the largest value of ¥ will occur in the neighborhood of the
crossover frequency. Note that the rejection of low frequency disturbances
can be influenced by the weight function but it is not particularly critical.

Consequently, W is regarded as a design variable. What will be the
best choice of it? For the frequency weighted transfer function H in (6),
the robustness measure ¥ is given by

18 = sup (L GOV 014 GG ) o)
@ 1+ GG+ G*Gy) )
The most favorable frequency weighting is the one that minimizes the
numerator of Equation (7). Let X = WW*, then the numerator of Equa-
tien (7) becomes

1+6G0°X + GG X1 + GGG, G,
which has its minimum for X = /G.G:/GG*. The weight factor then

becomes,
W= {/G.G:/GG™. (8}

Consequently, the weight will typically enhance low and high frequencies.
Recall that the low frequency gain of the PID eontroller is proportional to
/o,

EXAMPLE 1—DETERMINATION OF THE WEIGHT W
To illustrate the above result the following process is considered,

G(s) = ﬁ (9)
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Figure 4 The amplitude function of the computed weight W for the process
G(s) = 1/(s + 1)* with PT control (& = 0.76 and k& = 0.36).

A Pl controller is designed using the design method in Astrém ef af, (1998)
with the combined M-circle M = 2.00. The controller parameters are given
by k& = 0.76 and k; = 0.36, for which the input weight W given in Equa-
tion (8) can be caleulated. Tn Figure 4 the amplitude function of W{iw)
is shown, which looks quite reasonable as it emphasizes the high and low
frequencies. O

The determination of the weight W in (8) makes it now possible to show
how the specifications of the design methods for PI and PID controllers
should be chosen to guarantee the H,-norm of the frequency weighted
transfer function H in (6) to be less than a specified value y. By introducing
the weight W in (8) into (7) we find that y is given by

2 _ (1+]GG|)*
U N T e TR A (10)
This implies that
y = max(|S(im)| + |T(iw)]). (11)

Consequently, Equation {11) shows that the robustness measure ¥ is re-
lated to the values M; and M, which are also used as robustness con-
straints for the design metheds presented in Section 3. Notice that even if
the weight W in Equation (8) depends on the transfer functions G, and G,
the gquantity y depends only on the loop transfer function GG,.

Although the robustness measure of the #, design, and the robustness
constraint of the design methods for PI and PID controllers are related,
there are some fundamental differences between them. For example, in the
H, design compared to the design methods for PI and PID controllers,
the tuning parameter y is insensitive to f; for low freguencies, and the
requirements on the transfer functions G./(1 + GG) and G/(1 + GG,)
appear explicitly in Equation (4). On the other hand, the design methods
in Section 3 attempt to maximize k; explicitly,



el

@

" ' T
/\ ¥
ol 1

° 2]
oz
0% — o4
el
=i
—_ -osl
i P
3 -25 -2 -15 -1 05 [ .2 18 16 -14 -12 -t -8 -0 ~04 02 el

Figure 5 In the left figure the loci of (1 +[L)/{1 + L]} = y for y = 2 {outer
curve), 2.3, 2.6, 3, 4, 6, 8, 10 {inner curve) are shown. In the right figure poinzts of
interest are marked on the y coniour.

The Gamma Contour

Below, a graphical interpretation of the robustness measure y in Equa-
tion (10) will be given. Let L = GG, be the loop transfer function, then it
follows from Equation (10), that

(12)

The condition y < yo says that the Nyquist curve of the loop transfer
function should lie outside the contour (1 4 |L)/(|1 + L|). Therefore, it Is
suitable to continue the analysis in the complex plane. If L = re® is intro-
duced straight forward calculations of Equation (12) give the expression of
the y-contour, that is,

2
L. Yieesp—1 yreosgp — 13"
rlp) = A1 :i:\/( i1 1
Typical contours for different values of y are given in the left figure of
Figure 5. Straight forward calculations shows that the foilowing relations

hold for the distances between the points in the right figure of Figure 5,
that is,

OA =1, OB=—{y+1)/{(r—1),
0C =y (2-7%), OD=—(y-1/(r+1),

AC=2\(y2 - 1)/ (r*—2), OB 0D =1.

Relations Between M and y

Several relations exist between M and y. If the relation §+T =1 and the
triangular inequality are used on Equation (11), the following inequality
is obtained,

2M —1<y <2M.



Figure 6 y-curve {full line} for y = 2.06 (left), 3.18 (right) enclosed by the com- |
bined M-circle (dashed line) for Af = 1.40 (left}, 2.00 (right).

Table 1 Numerical values of corresponding A7- and y-values,

M| 137 140 150 160 165 170 1.80 180 1.81 92.00
y | 200 206 224 242 250 260 299 297 ‘300 3.18

This gives an indication of what values of M are suitable to guarantee a
certain y. Sharper results can be obtained: Given a value of ¥, the required
value of M such that the combined M-circle encloses the y-curve, should
be chosen as,

P i
242/ 1

M(y) (18)

The inverse relation is given by

y(M)= VaM? —aM 1 2. (14)

In Figure 6 the contours for constant y, and the combined M-circles which
encloses them are shown. Note how close the contours are for ¥ = 8.18
and M = 2.00, The figure indicates that the designs based on combined
M-curves are not much more conservative than the one based on y, par-
ticularly for M = 2.00. However, the calculations for constraint on y are
much more complicated. Consequently, a controller designed for the com-
bined constraint M; = M, = M will guarantee a value of ¥ smaller than
the one given by Equation (14). In Table 1 the correspending numerical
values of M and y are given. The choice M = 2.00 guarantess a ¥ < /10
which gives good robustness according to Vinnicombe (1998). Lower values
of M give even better robustness,

Classification of Stabilizable Systems

In Vinnicombe {1998) much insight was given into the M, loop shaping

10



procedure. He introduced the generalized stability margin bgg, as a per-
formance measure of the feedback system comprising the process G and
the controller G, defined as

1 if [G, G is stable,
bG,Gc = ¥

0 otherwise,

where bg g, lies in the range [0, 1]. Recall that ¥ was the H,, norm of the
fransfer funetion (1) that describes how the disturbances / and n prop-
agate through the system. Consequently, a value of bg g, which is close
to 1 implies a controller with good disturbance attenuation. On the other
hand, a value of g, which is close to ¢ implies a controller with poor
disturbance attenuation. The solutions of many design examples, see Vin-
nicombe (1998), and McFarlane and Glover (1992), indicate that a value of
bgg > 1/ V10 or ¥ < /10 gives a reasonable robustness and performance,
compare with the values in Table 1.

In Vinnicombe {1998) the v-gap metric was introduced to measures the
distance between two systems in terms of their frequency responses G (i)
and Ga(iw). For the scalar case it is defined as,

. ]Gl(iﬂ)) — G2 (ifl’)l
5u(Cr Ca) 1= 80P e e S T T 16

subject to a winding number condition (see Vinnicombe (1998), page 111
and 114). Introduce the two scalar systems Gy (s) = Bi(s)/A1(s) and Ga(s) =
Bg(s)/As(s), which are not necessarily stable and where A;(s) and By(s)
are polynomials. The winding number condition will then be satisfied if
By(s)Bo(—s)+A1(s)As(—s) have the same number of roots as deg Aa(—s5) in
the right half plane. If the winding condition is not satisfied then 6,(G1, Ga)
is defined to be 1. Thus, the v-gap metric, §,, take values in the range [0, 1].
H is an important measure, since it means that the distance between two
linear plants can be estimated directly from their frequency responses.

Vinnicombe has derived very interesting results relating the generalized
stability margin to robustness and model uncertainty. He showed that if the
closed loop system (G, G.) consisting of the controller G. and the process
G is stable with a generalized stability margin bge > B, and Gisa
process which is "close” to G in the sense that 5‘,(G,C_r') < f, then G, is
also guaranteed to stabilize G.

A PID coniroller which is designed to satisfy the constraints M, < Mp
and M; < My thus guarantees that y < y(Mpy). The results of Vinnicombe
then gives a complete characterization of the class of systems which are
stabilized by the controller,

EXAMPLE 2-—CLASSIFICATION OF STABILIZABLE SYSTEMS

To illustrate the results above the process and controller in Example 1 are
considered. The generalized stability margin for this design is bg,g, = 0.32.
It is now possible to investigate the effects of model uncertainties. Assume

for example that the true process is instead governed by the following
model,

11



To verify if the controller designed for the process @ in Example 1, also
works for @, the v-gap metric is caleulated between G and G, and compared
to the generalized stability margin. The winding number condition of the v-
gap metric is fulfilled, Straight forward caleulations gives that the largest
value of 5,(G, G) {~ 0.25) is less than the smallest value of the generalized
stability margin (= 0.32), Consequently, the controller designed for @ will
stabilize the system G. O

6. Conclusions

Traditional metheds for designing PID controllers were related to robust
J{e control, in particular the specifications of design methods for PI and
PID controllers in Astrém et al. (1998) and Panagopoulos ef al, (1999)
to the one of the weighted 7/, norm in Glover and McFarlane (1989),
denoted y. The requirement of a sufficiently small y was expressed as,
the Nyquist eurve of the loop transfer function should lie outside a cer-
tain region. The region showed to be bounded internally and externally
by circles closely related to the ones of constant sensitivity and constant
complementary sensitivity, which is of use for efficient computations, see
Astrom et al. (1998), Furthermore, it is shown how to use the Vinnicombe
metric in Vinnicombe (1998} to classify those classes of systems which can
be stabilized by the presented design methods for PI and PID controllers
in Astrom et al. (1998) and Panagopoulos ef al. (1998).
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Abstract: This paper presents a new approach to a classical solution of the level
control problem, It is a bottom up precedure- based on PID control and gain
scheduling. The controllers are tuned with a novel optimization approach. The
performance of the designed controller is very good considering the low complexity.
All of the specifications are met within the range of what is possible. The effort
required to design the controller using this approach is also discussed. Copright©

1999 IFAC

Keywords: PID control, Model reference, Windup, Gain scheduling, Level control,

Steam generators,

1. INTRODUCTION

Control of the water level in a steam generator
is one of the most important control loops in
power plants, The difficult shrink & swell phe-
nomenon, see Bell and Astrom (1896}, gives rise
to an inverse response which limits control per-
formance. Failure to keep a tight lavel control
is a major cause of plant shutdowns in nuclear
and conventional power plants, see Ambos et
al. (1996).

Very often, PID is used for water level contrel
in both conventional and nuclear power plants.
However, tuning of PID confrollers such that
satisfactory performance is maintained over a
wide eoperating range, while mzintaining ro-
bustness against disturbances and plant uncer-
tainty is a subject that has not been thoroughly
treated in the literature, Since the 60's and 70%s
the interest in the research communjty has been
directed towards optimal and adaptive control,
and later on control design hased on robustness
optimization.

1 This work has been supported by tha Swedish Research
Coundil for Engineering Sdience, contract 953-759,

In this paper it is shown that the simple PID
control structure can be used with good resuits
on an industrial plant. With a design method
based on constrained optimization both perfor-
mance and robustness is sbtained.

2. CONTROL STRUCTURE

The chosen control structure is a PID con-
troller with feedforward from the disturbance,
Q,, and a reference model. It is similar to the
so called three-point controller in Astrém and

Q:
Model
Nee
(y— PID |—G-*%— Plant |y
e
B !

Fig. 1. Structure of the PID controller ‘with
proportional feedback, feedforward and ref-
erence model.
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Fig. 8. Root loci with respect to K; € [5,50] at two different loads. There are more roots farther

away from the origin.

Higglund (1995), which is commonly used for
drum boiler level control.

To exploit the second available measurement,
Ny, simple proportional feedback was used.
This is useful at low load where it makes the
PID controller considerably faster, T; can be
lowered from 80 seconds to 25. However, at high
load there are no benefits with feedback from
N‘: and so Kz =0.

The reference model is used to “hide” the shrink
& swell effect from the controller and thus
avoid excessive undershoot. The model is a
simple second order transfer function that gives
the same transient response as the plant to a
disturbance but settles to zero. The model used
is
21,8

(1+27.5)(1+27,s)

where 7, and 7, are time constants of the
neminal plant model at low load. The process

Crroanils) =

[+] 16 20 30 40 50

Fig. 2. Water level(~) compared to reference
model output{— ~) and the difference(:--)
for a step disturbance in @, at low load.

output compared to the reference model and the
difference seen by the PID controller is shown
in Figure 2.

The implemented PID algorithm is discrete
with sampling period 0.5 second, derivative fil-
tering and anti-windup. The reference modet is
sampled with the same period as the PID.

3. CONTROL DESIGN

The design of the PID centroller and extra
proportional feedback was made in two steps;
first K> was chosen frem a root leeus plet,
secondly the PID parameters were caleculated
using the nominal transfer functions with the
proportional feedback. The root loci at different
loads is shown in Figure 3. At low load X; was
chosen as 20, which is just above the “knee” on
the root locus. At high load Ko = 0 since it did
not give any additional damping nor increased
the bandwidth.

The tuning of the contrellers is based on a new
numerical method for design of Pl controllers,
see Astrém et al. {1998); Panagopoulos (1998),
that results in a constrained optimization prob-
lem, The primary design goal is to obtain good
load disturbance responses. For non-oscillatory
systems this is the same as minimizing the
integrated control error, JE. It can be shown
that this is equivalent to maximizing integral

Table 1. PID parameters used at different loads.
Anti windup tracking time is T, = T/2. The Ny
fault only affects integral time at low load.

Case | Righload Lowload N fault
K

08 0.35 -
T 45 25 145,80]
Ty 10 5 -
K, 0 20 -
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Table 2. Achieved results for the different specifications. Results with sensor fault and delay margins
were evaluated on the simplified model, the other results are from the EdF evaluation on the detailed
medel, The recommended delay margins are shown in the table, recommended settling time is 100s.

Case High load Low load Saturation Fault handling
Step Ramp Step Ramp Stepup Stepdown Step Ramp
Time [Ng[>5[ 15s - - 197 s - 11ls - 210s
Settling time 198s 194s 11s 386s 155s 1383 50 490s
Delay margin 21 s (10 s) 23 s (25 s) - 335 (10s)

1

0 05

R 15 1

Fig. 4. Nyquist plots of the open loop frequency
response designed for M, = 1.8 in three
cases; low(- - -) and high load(::+) and low
load with sensor fault(—).

gain, k = K/T; Robustness is generated by
requiring that the maximum of the sensitivity
is less than a specified value M;. The new nu-
merical algorithm thus maximizes k; with the
constrainton K that the sensitivity peak should
be less than M,.

The design was made for nominal models on
the three cases; 80% load, 10% load and 10%
lead with sensor fault (Ks = 0). The funing pa-
rameter was chosen as M, = 1.6. The resulting
Nyquist curves of the loop transfer functions are
shown in Figure 4.

High load step

0 100 200

Fig. 5. Water level for step at high load. The
dotted lines are the preferred magnitvde
limits on the error. The strict limit is £20.

The numeric methed used for the tuning gives
PI parameters, but in the implemented con-
troller also derivative action was used by setting
Ty = Ti/4, see Table 1. After EJF completed the
evaluation also a full algorithm for optimizing
K, T;, Ty simultanecusly has been developed by
Panagopoulos {1998). Using this algorithm on
the benchmark problem gives PID parameters
similar to the ones used in this article.

3.1 Gain scheduling

The advantages of using a classical control
structure like the PID is the immediate intu-
ition of the control parameters and the con-
troller’s continuous behaviour with smoothly
varying parameters. Consequently, it is easy to
use gain scheduling to smoocthly change con-
troller parameters between the two operating
points at low and high load, For N, sensor
faults, T} is changed immediately when a sensor
fault is indicated. Naturally, a bumpless algo-
rithm is used and, as can be seen in Figure 8,
there is no visible difference between the step
responses until 20 seconds after the fault occurs
(#faun = 208),

4, CONTROLLER EVALUATION

The benchmark specifications give eight normal
“cases” that should be handled by the controller.
These include steps and ramps at different
loads and additional steps to check saturation

Low load step

% 160 %0 300

Fig. 6. Water Ievel for step at low load. Also
the case with fault on the N, measure-
ment is shown, but there is no significant
difference.
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Low load ramp
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Fig, 7. Water level for ramp at high load.

and sensor fault handling capabilities, The re-
sults from the EAF evaluation of our controller
are swmmarized in Table 2.

Most of the specifications are fulfilled by the
proposed controller. The settling times at high
load are a little long, but the output only goes a
little outside the £0.5 lines. The low load ramp
case is very difficult since saturation of the
feedwater flow makes it impossible to remove
the leve]l peak caused by excessive shrink &
swell at only 5% load Recommended delay
marging are shown in parenthesis in the table.

Plots of all eight cases are given in Figures 5-
10. Responses to step disturbances at high and
low load are shown in Figures 5-6, ramp dis-
turbances are shown in Figures 7-9 and plots
of the saturation test cases at only 5% load
are shown in Figures 8-10. All the plots were
made in Matlab on the simplified S-function
model supplied with the benchmark problem.
The strange-looking response to the high load
ramp at # = 280s in Figure 7 is due to bumpy
parameter switching in the simplified model of
the plant. Resuits from the evaluation on the
detailed model are more regular.

5. CONCLUSIONS

A solution to the water level control berch-
mark using a PID structure with feedforward
has been presented. The proposed controler de-
signed with constrafned optimization meet most
of the specifications well. Cases with actuater

_ Very low load step down

160 360

200

Fig. 8. Water level for step down at very low
load, from 10% to 5% load.

500 600 700 &0O

400

1 556 300

Fig. 9. Water level for ramps at low load. Also
the case with fault on the N, measurement
(top curve) is shown, The controller still
stabilizes the system, although there is less
damping.

100

saturation and sensor fault are handled with
almost no degradation of performance.

REFERENCES

AMB0S, B, G. DUC, and C.-M. FALINOWER {1998):
“Loop shaping H,, design applied to the
steam generator level control in EAF nuclear
power plants.” In Preceedings of the 5th
IEEE Conference on Control Applications,
pp- 1299-1304. Dearborn, Michigan.

M, K J. and T. HAGGLUND (1895): PID
Controllers: Theory, Design, and Tuning,
second edition. Instrument Society of Amer-
ica, Research Triangle Park, NC,

oM, K J., H. PANAGOPOULOS, and T Hig-
GLUND {1988): “Design of PI controllers
based on non-convex optimization.” Aufo-
matica, 35:5.

BELL, R. D. and K. J. AsTROM (1996): “A fourth
order non-linear model for drum-boiler dy-
namics.” In IFAC96, Preprints 13th World
Congress of IFAC, vol. O, pp. 31-36. San
Franciseo, California.

PaNAGOPOULOS, H. (1998): PID Controller De-
sign, Lic Tech thesis ISRN LUTFD2/TFRT-
-3222--SE, Department of Automatic Con-
trel, Lund Institute of Technology, Lund,
Sweden,

Very low load step up

P R S

.
1
160 0% 300

Fig. 10, Water level for step up at very low load,
from 5% to 10% lead.









A New Tuning Method with
Industrial Evaluations

H. Panagopoulos’ A, Wallén’
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Abstract The paper presents applications of a new interactive tool for
system identification and controller design. The tool has been applied to a
starch boiler and to a steam pressure control in a drying section of a paper
machine at the pulp and paper company Medo Paper in Husum, Sweden.
The tool has a graphical user interface for rapid system identification and
P1/PID controller design.

Keywords  Application. Interactive tool. System Identification. PI/PID
controller design. Pulp and paper. Starch boiler. Temperature control. Dry-
ing section of a paper machine, Steam pressure control.

1. Introduction

In this paper the applications of a new interactive tool for system identifi-
cation and controller design are presented. The tool has been applied to a
starch boiler and to a steam pressure control in a drying section of a paper
machine at the pulp and paper company Modo Paper in Husum, Sweden.
It has a graphical user interface for rapid system identification, see Wal-
1én (1999) and controller design, see Astrom et a/. (1998) and Panagopoulos
et al. (1999). The tool is implemented using the graphics and numeries in
MATLAB.

The identification procedure of the tool is based on open loop step re-
sponse analysis. Through the graphical user interface the user can ma-
nipulate the step response for a given model structure directly and then
perform a least squares fit to data.

The controller design of the tool determines a PI or a PID controller
upon the user’s request, where a tuning parameter has to be set which gives
a trade-off between robustness and performance. The controller is deter-
mined such that it captures the engineering criteria: load disturbance re-

* Department of Automatic Control, Lund Institute of Technology, Box 118, 5-221 00 Lund,
Sweden, Email: hp@control.lth.se, andersw@control lth.se

"Modo Paper Husum, SE-820 35 Husum, Sweden, Email: Oskar.Nordin@Modopaper.com,
Borje.Erikssen@Modopaper.com
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dies to shape the
jresponse of the model.

Figure 1 The graphical user interface for editing the epen loop step respense for
a given model structure,

jection, robustness to model uncertainties, rejection of measurement noise
and set point tracking. These engineering specifications are taken into ac-
count, through the solution of an optimization problem.

In the first part of Section 2 a review of the graphical user interface for
rapid system identification in Wallén (1999} is given. The second part of the
section gives a review of the design of PI controllers in Astrém ef 2/ {1998)
and of PID controllers in Panagopoulos et al, (1999). The application of the
new tool is presented in Section 3 for the temperature control of a starch
beiler and in Section 4 to the stecam pressure control of the drying section
in a paper machine.

2. The Tool

In this section a brief description of the theory behind the interactive tool
is explained. As with almost all design methodologies, it consists of a char-
acterization of the process dynamics followed by an optimal control design
step. A short review of the process modeling is given in Subsection 2.1 and
of the controller design in Subsection 2.2.

2.1 Process Modeling

The process modeling is an important part of the design methodology. For
PID design methods, these models typically consist of two or three param-
eters, for instance, the dead time, the time constant, and the static gain,
When using simple design methods as Ziegler and Nichols (1942), these
simplified models will probably suffice. However, when the design of the



Figure 2 Block diagram describing the problem formulation of the controller
design in Subsection 2.2.

controllers includes more sophisticated objectives as in Subsection 2.2, a
more detailed model is needed.

This paper uses the system identification tool presented in Wallén (1999).
The tool is based on analysis of open loop step responses, or sequences of
step responses, The main reason for this is that step responses are easy to
generate and that they are intuitive for the user. The tool provides a num-
ber of pre-defined model structures formulated as eontinuous-time rational
transfer functions with time delays. When the user has selected a model
structure, he may edit the model parameters interactively by dragging han-
dles in the graphical user interface, shown in Figure 1. In this case there
are handles for the time delay, the time constant, and the initial and final
levels of the step response. Both the process model and the plotied moedel
response change continuously when a handle is moved. The tool can also
find the process model which minimizes the mean square error between
the model output and the experimental data. This is an efficient way to
obtain a process model based on step response data.

The tool alse includes other features, for example a possibility to re-
move data points such as outliers and other disturbances interactively. In
Figure 1 this is indicated by the dotted parts of the experimental data.
Further, the tool is able to caleulate PI and PID controller parameters ac-
cording to Subsection 2.2 and to simulate the resulting closed loop system.

2.2 Control Design

An efficient controller design should reflect the essence of a real control
problem. It should capture engineering criteria such as load disturbance re-
jection, robustness to model uncertainties, rejection of measurement noise,
and set point tracking. The problem formulation for the design of PI con-
trollers in Astrom eé al. (1998) and of PID controllers in Panagopoulos
et al. (1999) captures these specifications which is llustrated in Figure 2.
A process with transfer function @ is contrelled with a PID controller with
two degrees of freedom. The design objective is to determine the controller
parameters in G, and Gy so that the system output y behaves well with
respect to changes in the set point yg,, load disturbance !, and measure-
ment noise n. The controller can thus be characterized by two transfer
functions: the feedback G. and the feed forward Gy transfer functions,

1
Ge(s) = K(1+ T + Tys) Fy(s),

Grr(8) = (b + ) Flo),
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Figure 8 An illustration of the control problem of the starch boiler.

where K, T;, T; and b are the controller parameters and Fy, Kp are two
low pass filters of first or second order.

The primary design goal is to achieve good rejection of load distur-
bances, with a constraint on the robustness with respect to model uncer-
tainties, to guarantee a stable closed loop system, A constrained optimiza-
tion problem has to be solved, where the transfer funciion of the process @
is needed. The solution results in a PI/PID controller, where measurement
noige 1 is treated by filtering the output y with F,, and goed set point fol-
lowing is obtained by using the set point weight b or if needed the set point
filker Fyp, for more details see Panagopoulos et al. (1999). The controller
design has one tuning parameter, the maximum of the sensitivity function
M, to be set by the user which gives a trade-off between robustness and
performance, see Panagopoulos ef al. {1999),

3. Application to a Starch Boiler

The interactive tool was applied to a starch boiler at the pulp and paper
company Mode Paper in Husum, Sweden, with the goal of improving the
existing control. Below, the control problem is deseribed and in Figure 3 it
is illustrated.

At start up the boiler is first heated with water which is passed to the
vessel. This will lower the concentration of the starch in the vessel which is
undesirable but unavoidable. When the correct temperature is reached, the
flow into the boiler is switched from water to starch. The starch entering
the vessel must be kept at about 140°C. The medium is heated by injecting
steam into the boiler. To influence the starch concentration in the vessel
as little as possible it is desirable to heat the medium as fast as possible,

The control problem is to regulate around the operating point 140°C
of the boiler which corresponds to 69% of the signal range. The main dis-
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Figure 4 Validation of the PI controller (left) compared to the PID controller
(right) for the temperature contral of a starch boiler,

turbances are varying steam pressure and change in starch flow due to
changes in viscosily, Since we have a temperature contrel loop it is sus-
pected that a PID controller may give better performance compared to the
previously used PI controller,

Modeling

In order to design the PID controller with the method in Section 2, a model
of the starch boiler is required. With an open loop step response, the ool
described in Section 2 gives the transfer function

1'342—12.93
G6)= mam T

Figure 1 shows the tool after the least squares fit has been performed.
The data points that have been deselected in the figure correspond to load
disturbances during the experiment.

Controller Design

A PID controller was designed for the tuning parameter M, = 1.6, which
provides a good compromise between performance and robustness, with
the following controller parameters: K = 1.35, T; = 46 and T; = 19,
The existing controller had a measurement noise filter on the derivative
term, whose filter constant was chosen to N = 8, Furthermore, the contrel
system did not allow for values of the set point weight parameter & other
than 1. The controller parameters of the previous PI controller were: K =
0.80, T; = 60. They were obtained by either trial and error, or from the
given settings at start up of the plant.

Validation

The PID controller was compared to the original PI for the temperature
control of the starch beiler. A performance validation was made for set
point following and rejection of load disturbances. The validation of the
PI and PID controller is shown in the left figure respectively in the right
figure of Figure 4. The variance of the controller error, ¢ = y;p — ¥, was
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Figure 5 An illustration of the contrel problem of the steam pressure control in
drying cylinders of the drying section.

used as a performance measure, It is defined as,

ISE = Efil e(k)2

M L]

where M is the number of measured data points. The ISE of the PI and the
PID contreller became 0.808 and 0.0499 respectively. Consequently, the PID
controller gives a better performance compared to the PI which is alse seen
in Figure 4. The variations around the operating point 69% are reduced
in the right figure compared to the left one because of the well-tuned PID
controller, Becauge of the valve hysteresis problems, together with periodie
disturbances, for example in the steam pressure, which affects the system,
the variations around the operating point will remain. The noise levs! in
the control signal for the PID controller is increased due to the derivative
action. But the use of the measurement noise filter on the derivative term
reduced the noise enough for not wearing out the valve.

Note that the mean of the process value in Figure 4 is not exactly 69%.
This is due to the data logger which measures a voltage/current over a
resistor with a given tolerance which induces an improper measurement
interval.

Conclusion

The PID design was appreciated by the operators as it gave a faster start
up of the process, a shorter waiting time and lowered production costs.

4. Application to Steam Pressure Conirol in
Drying Cylinders of a Drying Section

The design methoed for PID controllers in Section 2 has been applied to a
pressure control in a drying section of a paper machine at Modo Paper in
Husum, Sweden, with the goal of improving the existing control. Below,
the contrel problem is deseribed and in Figure 5 it is illustrated.
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Figure 6 A block diagram description of the steam pressure control in drying
cylinders of the drying section.

The drying section of a paper machine normally consists of two rows
of totally 40-90 drying cylinders. In normal operation paper surrounds the
drying cylinders in the drying section. The cylinders are divided into 4-5
groups, where all the cylinders in one group keeps the same steam pres-
sure. The controllers control on the one hand the pressure difference over
each group, that is, the moisture content in the paper, and on the other
hand the pressure in the steam main supply to each group. The control of
the latter case has been considered here.

The control problem is described in Figure 6 where the goal is to keep
the moisture content in the paper y; constant despite the disturbances vy
and vg. The former one represents the moisture content of the paper along
the paper web in the machine direction and the latter one the pressure in
the steam main supply. The control is realized with cascade control, where
the outer loop's controller €y controls the moisture eontent in the paper
¥1 and the inner loop’s controller G controls the pressure in the group
represented by Pp(s). Every 30 second a new set point r1 is generated
and as a consequence a new set point of the steam pressure rp. Because,
30 seconds is the time it takes for the scanner of the moisture sensor to
sweep over the transverse paper web to measure the moisture content in
the paper.

The goal is to design the inner loop controller & to obtain good set
point following of the steam pressure rz and good rejection of disturbances
in the steam main supply va.

Design

In order to design a PID controller for the method in Section 2 a transfer
function of the process Py, in Figure 6, was needed, It was modeled by the
transfer function

Tes+1
O = ey

where K, = 0.008, T} = 5.0, and T, = 30.

A PID controller was designed for the process model Py(s)e L with
L = 2 seconds because of the delay caused by the sampling. The tun-
ing parameter M; = 1.4 was chosen for the controller design, which give
good robustness to model uncertainties, The controller parameters were:
K =521, T; = 816, Ty = 1.02. As large overshoots on the output were
undesirable and the existing control system would not allow for values of
the set point weight other than 1, a first order set point filter was deter-
mined according to Panagopoules et al, (2000), with filter time constant
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Figure 7 Validation of the PI controller (left) compared to the PID controtler
(right) for a set point change of the pressure control in the drying section of the
paper machine.

Ty = 5.32. A PI controller existed already with the controller parameters
K =50, T;=50.

Validation

The PID controller was compared to the original PI for the pressure control
of a drying section in a paper machine. Two performance validations were
made: Firstly, a performance validation was made for a set point change,
see Figure 7. Secondly, a performance validation was made for set point
following and rejection of load disturbances see Figure 8 and 9.

In the first case the settling time ¢, defined in Astrém and Higg-
lund (1995), is used as a performance measure for a set point change i ry.
It is the time it takes before the process output remains within p% of its
steady state value, here the value p = 2% is used. The setiling time ¢, of
the PI respectively of the PID controller becomes13.6 seconds respectively
12.8 seconds. Consequently, the output of the PID controller is faster than
the one of the PI which is also seen in Figure 7. Note, how the output of
the PID controller is slower in the beginning of the set point change than
the one of the PL, because a set point filter is used on the former one to
give acceptable overshoot/undershoot.

In the second case a performance validation was made for set point
following and rejection of load disturbances. The validation of the PI con-
troller is shown in Figure 8 and of the PID controller in Figure 9. The
variance of the controller error, e = rp — ys, was used as a performance
measure. It is defined as,

_ TN e(k)?

'

where M is the number of measured data points. The ISE of the PI and
the PID controller beeame 0.0137 and 6.0066 respectively. Consequently,
the PID controller gives a better performance compared to the PL

4.1 Conclusions

In the first case, the PID design resulted into a faster eontroller such that
the settling time of the pressure y5 was shorter for changes in set point ry.
The system from set point ry to moisture content ¥1 can then be viewed as
a fast process, in other words, a first order system with small time constant
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Figure 8 A performance validation for set point following and rejection of load
disturbances of the PI controller for the pressure control in a drying section of a
paper machine.

{about 60 s after tuning). A tighter control of the moisture content y; can
then be used, as the rejection of the disturbance vy is improved.

In the second case, the PID design gave better rejection of the distur-
banece in steam main supply ve, which is to be considered as the severest
disturbance in trying to keep a constant moisture content y;. If the pres-
sure loops succeed in rejecting ve quickly, this implies less variations in
the 1.

5, Conclusions

In this paper a new tool is presented which gives a systematic way to
optimize PID controllers. A process model formulated as a transfer function
is needed in order to do a control design, In a first step, a transfer function
of the process is constructed with the rapid tool for process identification in
Wallén (1999) by using step response data. The simplicity of the graphical
interface is of great importance.

In a second step, a PI/PID controller is designed with the methods
presented in Astrém et al. (1998), and Panagopoulos et al (1999). The
controller designs reflect the essence of a real control problem. They capture
engineering criteria such as load disturbance rejection, robustness to model
uncertainties, rejection of measurement noise, and set point tracking. The
controller design methods also have one funing parameter which gives a
trade-off between robustness and performance,

Finally, the applicability of the tool has been illustrated in two indus-
trial examples at the pulp and paper company Mode Paper, in Husum,
Sweden: temperature control of a starch boiler, and steam pressure control



Figure & A performance validation for set point following and rejection of load
disturbances of the PID centroller for the pressure control in a drying section of a
paper machine,

in a drying section of 4 paper machine.

References

Astrém, K. J, and T. Higglund (1995): PID Controllers: Theory, Design,
and Tuning. Instrument Society of America, Research Triangle Park,
North Carolina,

Astréim, K. J., H. Panagopoulos, and T. Higglund (1898): “Design of
P1 Controllers based on Non-Convex Optimization.” Auptomatica, 345,
pp. 585-601,

Panagopoulos, H., K. J. Astrom, and T. Hagglund (1899): “Design of PID
Controllers based on Constrained Optimization,” In 1999 American
Control Conférence, pp. 3858-3862. San Diego, California.

Panagopoulos, H., K. J. Astrém, and T. Higglund (2000): “Supplement and
Errata to Design of PID Controllers based on Constrained Optimiza-
tion.”

Wallén, A. (1999): “A Tool for Rapid System Identification.” In 1999
Conference on Control Applications, pp. 1556-1560. Kohala Coast
Island of Hawaii, Bawaii.

Ziegler, J. G. and N. B. Nichols (1942): “Optimum settings for automatie
controllers.” Trans. ASME, 64, pp. 759-768.

10









A New Modular Approach to
Active Control of Undamped
Modes

H. Panagopoulos, and T. Higglund

Department of Automatic Control
Lund Institute of Technology
Box 118
8-221 00 Lund, Sweden
Phone: +46-46 2228789, Fax: +46-46 138118
Email: hp@control.lth.se

Abstract In this paper, an active control system is designed to han-
dle processes with undamped modes. A modular approach has been taken,
where an active control system has been designed, which consists of an all-
pass filter and a bandpass filter, To determine the parameters of these two
filters the only information needed is a few characteristics of the process
frequency response.

Keywords Undamped modes. Load disturbance. Oseillations. Vibrations.
Allpass filter. Bandpass filter. Design.

Introduction

Undamped systems oceur in many areas, for example in mechatronics, in
industrial robots, in drive systems as steel mills, in HVDC, in combustion
control, in cranes, in automotive systems, and in ship movements. They
are classified info two cases: those who are intentionally made to contain
undamped modes and those who are not. For example, cranes are inten-
tionally made to have undamped modes on the contrary to motors which
are affected by vibrations. Furthermore, todays’ trends show that future
machines will be faster, lighter, have softer materials and be more flexible.
This implies that future machines will be nnintentionally made to contain
undamped modes. Examples are industrial robots and vehicles.

The standard PID controller have many advantages, but there are cases
when it does not suffice to meet the required control performance. For
example, when the process contains long time delays, undamped meodes,
and nonlinearities. There are two ways to improve the performance of the



closed loop system, by either using a modular/synthetic approach or a
unimodular/analytic one. For example, in the case of processes with long
time delays a modular approach is taken when a Smith predictor is inserted
into the loop to improve the performance of the closed loop system. In this
paper the former approach 1s used to improve the performance of the closed
loop system for processes with undamped modes.

The control structure proposed in this paper has two degrees of free-
dom. A controller C(s) stabilizes the plant, and an active controt system F
rejects harmonic disturbances. In the conventional method the controller
C(s) must simultaneously play both roles, leading to performance limita-
tions.

Background

Due to physical, economical and safety constraints the oscillation and vi-
bration contrel have become a prime consideration in the general manu-
facturing industry. For example, a ships roll motion due to the waves is a
highly resonant system. It is then, necessary for ships carrying passengers
or weapon platforms to control this undesirable motion. Another example
is the use of eranes to move containers, In this case it is required that the
payload does not undergo excessive swing, if not damage to personne] and
carge may occur. Moreover, in the automotive industry recent trends are
towards smaller and lighter vehicles for better fuel economy and market
expansion, see Karkosch and Svaricek (1999). At the same time, there has
been a major increase in eonsumer awareness of long term health impacts
of exposure to high noise and vibration levels.

Due to these physical, economical and safety eonstraints, conventional
techniques such as passive sound absorptive materials, mass tuned dampers,
modification of the system design, etc., by themselves would not satisfy the
requirements of produeing a minimum weight system with an optimal fuel
economy and in those eases needed a high comfort level. Consider for ex-
ample, an engine mount; in order to Hmit engine movement, it is desired to
have a very stiff mount. However, to minimize transmission of engine vibra-
tions inte the passenger compartment, a very soft engine mount is required,
These contradictory requirements have made engine mount manufactures
to design passive vibration absorhers that provide an optimal compromise,
But, passive noise and vibration ireatments at low frequencies are phys-
icaily not realizable. Consequently, active control technologies have heen
investigated for low frequency noise and vibration control. Consequently,
the complete solution to the noise and vibration problems can be obtained
by integration of passive and active systems.

The problem of active control of noise and vibrations has been 3 subject
of much research in recent years, see Karkosch and Svaricek (1999) and
references there in. The main part of the published literature makes use of
adaptive signal processing and filtering techniques. According to Ohmori
et al. (1999), the most popular techniques for harmonic disturbance rejec-
tion are (i) the feedback controller design method based on internal model
principle; and (ii) the feed forward eontroller design method based on ex-
ternal model principle.

In the feedback control structure of (i) approach the requirement is



Figure 1 The use of & notch filter F to handle undesired excitation of undamped
modes of the process P.

an asymptotic disturbance rejection, This can be realized by the insertion
of notch filters. The advantages of this type of algorithin are that it is
linear making analysis easier, and that convergence is very rapid. The
disadvantages are that there are some performance limitations because the
algorithm must satisfy both closed loop stability and disturbance rejection.

On the other hand, in external model controllers of {ii) approach, the
disturbance model is placed outside the basic feedback loop. The distur-
bance medel is adjusted adaptively to match the actual disturbance. The
advantage of this approach is that compensation is like feed forward, then
the effect on the nominal cpen loop gain can be made small. The disad-
vantages are that the analysis and implementation are somewhat more
complex than for the internal model based algorithms.

Notch Filtering Limitations

A classical method to avoid unnecessary excitation of undamped meodes is
illustrated in Figure 1. The process P which consists of undamped modes
is controlled by a controller C. To avoid unnecessary excitation of the un-
damped modes in P a notch filter F is introduced. Unfortunately, the notch
filter F' will not provide any additional damping of these modes, when the
disturbance ! in Figure 1 excites them.The paper will present a new method
to overcome this probler.
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Figure 2 Control with active damping. In the inner feedback loop the active
contrel system F rejects undamped modes of the process P. In the outer control loop
the controller € gives good disturbance refection, robustness to medel uncertainties,
and set point following,
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Figure 3 The reduced block diagram, describing the relation from load distur-
bance ! to measurement oufput y.

The New Approach

Consider the two degree of freedom controller in Figure 2. The controller
consists of an inner feedback loop where the purpese of the active control
system F is to increase the damping of the plant. In the outer control
loop the purpose of controller C is to achieve good disturbanee rejection,
robustness to model uncertainties and set point following. There are no
requirements on the controller structure and design. The objective of the
active control system F is to damp the oscillations in the output y, when
the disturbance ! excites the undamped modes of the process P. Thus, the
design problem of F given in Figure 2 is reduced to the block diagram in
Figure 3.

Assume that the disturbance [ is a sine wave whose frequency corre-
sponds to the one of the undamped modes of the process P. The purpose
of F is then to synthesize a waveform ¥¢ which is identical in magnitude,
phase and frequency to the original signal 1. This is realized if the filter F
is the product of an allpass filter F, with transfer function,

_ 88— 20, @, + 0 1)
52 4+ 2¢8,0,8 + 02’

Fals)

and a bandpass filter F}, with the transfer function,

8

Fs)=Ky—o-uo—"——..
bls) b s + 28 oy + wg

(2)

The allpass filter F, makes it possible to obtain the right amount of phase
lag of the cutput y at a specific frequency without affecting the gain, be-
cause, I, gives only a phase and no gain contribution for all frequencies,
compare with the left figzure of Figure 4.

The bandpass filter F, makes it possible to obtain the right amplitude of
the output y at a specific frequency without affecting the phase, because,
Fy gives only a gain but no phase contribution at a specific frequency,
compare with the right figure of Figure 4. A good overview of different
filters is found in Wie and Byun (1989).

In the next section it is shown how to determine the parameters of the
allpass filter Fo: {,, @,, and of the bandpass filter Fy: Ky, {3, @y based
on a few characteristics of the process frequency response.
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Figure 4 The Bode diagram of the allpass filter F, (left) with o,
0.2,0.4,0.6,0.8, and the bandpass filter F, (right) with @, = 1, K}
0.2,04,0.6,0.8.
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Design of the Active Control System F

For the design of the active control system F it is assumed that the un-
damped process P has the same structure as the flexible shaft system. This
is no severe restriction, since a lot of undamped systems occurring in differ-
ent areas may be modeled as a flexible shaft system. The system consists of
two flywheels which are coupled with a spring, where the spring coefficient
is assumed to be constant. It is driven by a torque input on the driving
fly wheel, and the speed of the load fiywheel is measured. The transfer
function of the system is given by,

a2

P6) = o o Ess T ) (3)

where {, and @, are the damping and the resenance frequency of the
undamped modes of P,

The active control system F is the product of the allpass filter F, in
{1), and the bandpass filter F;, in (2). To determine the parameters of the
two filters the following characteristics of the process frequency response
P(iw) is needed: the resonance frequency w,, and the amplitudes Ppq, and
Pty defined in Figure 5.

The Allpass Filter Design: The purpose of the allpass filter F, is to
shift the phase of the output y at the resonance frequency @, such that,

arg {P(iop)} + arg {Fa(iwy)} = —360°,

which is equal to

§2 — 2l w5 + w2 . o
B ot o }| =g {Pliop)} —860%  (4)

where the damping coefficient ¢, determines the rate of decrease of arg Fy (i),
compare with the left figure of Figure 4. It was noted from simulations that the
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Figure 5 Characteristics of the process frequency response P(iw) needed to de-
sign the active control system F,

choice of {, is quite insensitive to performance. The choice of {; = 0.5 was
made based on Wie and Byun (1989).

If Equation (4) is solved for @, with £, = 0.5 the filter F, will give the
desired phase lag at wp.

The Bandpass Filter Design: ‘The purpose of the bandpass filter is
to change the amplitude of the output' y at the frequency wp, such that
|Piwp)| - |Fy(iwp)! = 1 at @y = @y, that is,

(Pliw,)| - K s

U N 5
bs2 +28pwps + a2 ®)

|s=iup

where Equation (2) have been used. If Equation (5) is solved for K, then

2{;,&);.
K, = R 6
> = P )

gives the right amount of gain reduection at @ = @p.

In the right figure of Figure 4 it is illustrated how the damping coeffi-
cient {j affects the amplitude and phase curve of Fy(iw). In this case, the
effect of [ on the amplitude curve is the interesting one. A small value will
give a narrow width of the notch gain at @p compared to larger values of
{3 It was noted from the simulations that best performance was obtained
by using relative large values of 3. The choice ¢ = 0.9 gave a desirable
performance,

The Characteristics of the Resulting Design To analyze the effects
of the determined active control system F, consider the transfer funetion

Y(s) P(s)
L{s) ~ 1+ P(s)F(s)’
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Figure 6 The gain %, of the bandpass filter F} plotted as a function of the char-
acteristics Pray/Pri: of the process frequency function P(iw).

given by Figure 8. A performance measure of the design of the active filter
F is its damping at the resonance frequency @p, that is,

P(iwp)
‘ 1+ Pliow,) Fliwp)

. ()

To estimate the magnitude of Equation (7), the following results are needed:
|P(iwp)| = Prmax and | Fo(iwp)| = 1. Furthermore, from Equation (1) and (6)
it follows that |F;,(icop)| = K3/2{1, = 1]/ Prgy. Then, Equation (7) gives,

Pliwp)
‘ 1+ Pliop)Fing)

IP(in)i - Pmax
> T4 [Pl |Flmg)| ~ 2 ®

where the triangle inequality has been used. Consequently, the filter F will
reduce the gain at the most with half the magnitude of the process P at
the resonance frequency @,.

The performance of the designed active filter F was evaluated on a test
batch for the process (8) with @y = 1, and different values of @, and {p.
As a performance measure the integrated absolute error TAE, defined in
Astrém and Higglund {1995), was computed for e = r — y with r = 0. The
calculated TAE for the different processes in the test batch showed that
in some cases smaller values could be obtained. In other words, the use
of Kj in Equation (6} will not give the optimal gain reduction at @, for
all processes in the test batch. For some processes K should be larger for
other ones it should be smaller. Consequently, the performance of the active
filter F would improve if its gain K} depends on the process characteristic




Figure 7 The time response for a short pulse on the input of the flexible shaft
system system for the cases with no active contral {left) and with active contrel
{right).

given in Figure 5, Equation (6} should then be refined fo,

28w
Ky = kbm’ﬁ, (9)

where &j is a function of Prg./ Py, The function &y (Pray/ Puin) is obtained
in the following way: for each process in the test batch calculate the TAE
values of the closed loop system in Figure 3 for a set of & and choose the &,
which gives the minimum [ AE. These values of k, have been marked with
a cross (x) in Figure 6 together with corresponding values of Praax! Prin .
A rough approximation of ky{Prqy/Prn) is given by,

ky = —0.46 + 0.33%35, (10)
Pmt'n

which corresponds to the full line drawn in Figure 6.

Concluding Remarks: In this section an active control system F, has

been designed. It rejects the excitation of undamped process modes in the

output y, which are excited by the disturbance / in Figure 3. The active

filter F' is the product of the allpass filter F, in (1), and the bandpass

filter K, in (2). The filter parameters of F,, and F}, are determined in the
following way:

@4 solve Equation (4).

{at {a=0.5

apt @y = Wy

Cpr Lp=0.9

kyt ky = —046 + 0.33 02/ Prin

Example

The proposed active control system has been applied to an example found
in the literature, the flexible shaft system in Farrugio (1998).
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Figure 8 The time responses of the closed loop system when controlling the
flexible shaft system system with a P controller for the cases with no active eontrol
{undamped response) and with active control (well damped response).

The Flexible Shaft System

The flexible shaft system from the paper Farrugio (1998) consists of two
fiywheels which are coupled by a spring and can be approximated by the
transfer funetion,

K
s+ @y )(s? + 20pmps + w3)’

P(s}= 0

The proposed active control system has been tested on the neminal model
in Farrugio (1998), with x = 15.21, Ep = 0.02, w, = 7.66, @ = 0,10, To
determine the active filter F the parameters needed are: Wy = T.66, Ppuy =
0.85, Prin = 0.088, m, = 7.64, and k; = 2.75. In Figure 7 the time response
for a short pulse on the input of the fexible shaft system system is shown
for the eases with no active control in the left figure and with active con-
trol in the right figure, Consequently, the active control system gives an
improvement in performance.

Furthermore, the active control system has heen tested in closed loop
where a PI controller with controller parameters K = 1.0 and T=1251s
used. In Figure 8 the time response of the closed loop system is shown for
the cases with no active control and with active control. The well damped
response is obtained with the active controller which gives an improved
performance of the closed loop system,



Conclusions

In this paper, an active control system is designed to handle processes
with undamped modes. The objective of the active controller is to damp
the oscillations in the process output, when a disturbance excites the un-
damped modes of the process. A modular approach has been taken, where
the active filter consists of an allpass filter and a bandpass filter. The pa-
rameters of the allpass and bandpass filter are determined in a systematic
way, where the only information needed is a few characteristics of the
process frequency response. There are no requirements on the controller
structure and design. The active filter has been applied to a variety of
typical undamped systems, and it works well.
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