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FOR SOME LARGE DENSE RANDOM

ELECTROSTATIC INTERACTION MATRICES ∗
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Abstract.

A sparse mesh-neighbour based approximate inverse preconditioner is proposed for

a type of dense matrices whose entries come from the evaluation of a slowly decaying

free space Green’s function at randomly placed points in a unit cell. By approximat-

ing distant potential fields originating at closely spaced sources in a certain way, the

preconditioner is given properties similar to, or better than, those of a standard least

squares approximate inverse preconditioner while its setup cost is only that of a di-

agonal block approximate inverse preconditioner. Numerical experiments on iterative

solutions of linear systems with up to four million unknowns illustrate how the new

preconditioner drastically outperforms standard approximate inverse preconditioners

of otherwise similar construction, and especially so when the preconditioners are very

sparse.

AMS subject classification (2000): 65F10,65R20,65F35,78A30.

Key words: dense matrices, integral equations, preconditioners, sparse approximate

inverses, iterative methods, potential theory.

1 Introduction.

The purpose of this paper is to construct an efficient sparse approximate in-
verse preconditioner M to a n × n matrix A whose entries are given by

Aij =

{

− log |zi − zj | , i 6= j ,
− log |ri| , i = j ,

(1.1)

where zi are n somehow randomly placed points in a unit square centered at the
origin in the complex plane and where each ri is a number in (0, di] with di being
the distance between the point zi and its nearest neighbour. We observe that
computing an off-diagonal entry Aij corresponds, up to a factor of −1/2π, to
evaluating the free space Green’s function for the Laplacian in two dimensions
with argument zi − zj .
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Interaction matrices of the form (1.1), with the Green’s function possibly re-
placed with its three dimensional analogue, may occur as system matrices in a
variety of situations in materials science and electrical engineering, for example,
particle coarsening and capacitance extraction [14, 15, 18, 19]. The particular
application which drives this work concerns Laplace’s equation and the Dirichlet-
Neumann map in domains exterior to a number n of closed contours – a problem
which, in turn, has relevance for microstructural evolution, see Ref. [13] and ref-
erences therein. Here, the ill-conditioning of the system matrix becomes a serious
problem when solving linear systems iteratively as n grows large. In a typical
example, without preconditioning, the number of iterations needed to meet a
certain relative residual grows approximately as O(n0.3). See Figure 2.2 below,
uppermost curves.

We shall construct a sparse inverse preconditioner for matrices of the form (1.1)
which, together with the full, that is, not restarted, GMRES iterative solver [21]
and the fast multipole method (FMM) [10], has good asymptotic properties in
the limit of large n. A similar quest, for a system matrix originating from the
discretization of an integral equation for Laplace’s equation in three dimensions,
was mentioned as an interesting open problem in an influential paper by Vavasis
in 1992 [22]. To our knowledge it has only received scattered attention. Reasons
for this may include that the problems at large n could be most pronounced in
two dimensions. Should the Greens’ function in (1.1) be replaced with a more
rapidly decaying one, established preconditioners are reported to work satisfac-
torily [15, 18, 20, 23]. Furthermore, efficient linear solvers for large systems
involve other key components besides preconditioners. The choice of iterative
method, here for example SQMR in conjunction with a symmetrized precondi-
tioner rather than GMRES, could be equally important [4]. Yet an option, when
zi are somehow ordered, is to avoid iterations completely and to use a fast direct
solver. Among papers that, more broadly, investigate rapidly applicable inverse
preconditioners or inverses for large dense symmetric matrices coming from dis-
cretized integral equations with possibly slowly decaying kernels we particularly
mention references [9, 12, 17]. These papers discuss preconditioners/inverses
which are not sparse in a classical sense, but could be considered as data-sparse.
Hackbusch [12] constructs rapidly invertible approximations of dense matrices
in terms of hierarchical, so called, H-matrices, and works out some details for
a one-dimensional example involving the logarithmic kernel. Ford and Tyrtysh-
nikov [9] use a single inverse Kronecker product preconditioner and construct a
fast scheme based on Kronecker product approximation, wavelet compression,
and conjugate gradients or GMRES for the special case of zi being placed on a
grid that is logically equivalent to the Cartesian product of some one-dimensional
grids. Martinsson and Rokhlin [17] go one step further and, at a cost of roughly
20 FMM matrix-vector multiplications, construct a compressed factorization of
the inverse which can be applied at a minimal cost and with high relative accu-
racy to any right-hand side for the special case of zi being placed on a smooth
one-dimensional contour in the plane.

The inverse preconditioner we propose, for zi randomly placed, is denoted
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WBAI(k) in general and MWBAI when reference is made to the actual matrix.
The only user specified parameter is its bandwidth k. The setup cost is O(nk3).
The cost of storage and application is O(nk). We show, experimentally, that for
A of (1.1) with zi completely randomly placed in the unit square, ri randomly
selected in (0, 0.5di], n ≤ 4000000, k = 20, and a random right-hand side b,
the number of full GMRES iterations needed to solve AMWBAIu = b and to
compute x = MWBAIu to a given relative accuracy increases only as O(log(n)),
or slower. This is often a substantial improvement over the only other competitor
with similar applicability and setup cost we have found in the literature – the
DBAI(k) preconditioner. We also test our new preconditioner WBAI(k) on some
other matrices of the form (1.1) where the points zi are placed in a random, but
to a certain degree mutually repulsive, manner and where the numbers ri are
chosen differently. The results here are equally encouraging.

2 Sparse approximate inverses.

2.1 General ideas and the sparsity patterns Sneig and Sdom.

Sparse approximate inverse preconditioners are matrices M that are sparse and
make either of the compositions MA or AM in some sense close to the identity
matrix I. This may mean that the composition is close to I in Frobenius norm,
or is close to I plus a low rank perturbation, or has a small cluster radius.
The matrix A could, in general, be almost any large matrix stemming from
some discretization of a partial differential equation or an integral equation. See
Benzi [2] for an excellent general review of the field and Chen [6] for details
pertaining to dense linear systems, such as ours.

We construct right unsymmetric preconditioners M . The sparsity pattern S
of M is the set of all index pairs (i, j) for which the entries Mij are nonzero.
There are numerous ways to determine sparsity patterns: statically, that is a
priori, or dynamically, that is, during the course of construction of M . See,
further [2, 3, 6, 7, 22] and references therein. In this paper we will chiefly take a
local geometric approach and define the mesh-neighbour sparsity pattern Sneig

associated with A of (1.1) as follows: Let j = 1, 2, . . . , n; for a given j, let
Sneig contain the k index pairs (i, j) corresponding to the k smallest values of
the distance |zi − zj|, i = 1, 2, . . . , n. We say that an M based on Sneig has
bandwidth k. The columns of M each have k nonzero entries. The rows of M
on average have k nonzero entries. We also define the dominant sparsity pattern
Sdom associated with A of (1.1) as follows: Let j = 1, 2, . . . , n; for a given j, let
Sdom contain the k index pairs (i, j) corresponding to the k largest entries in
column j of A−1.

The sparsity pattern Sdom appears to be more efficient than Sneig, once con-
structed. Its setup cost O(n3), however, greatly limits its applicability in large-
scale computations. The setup cost for Sneig is only O(n).
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2.2 Properties of the matrix A and a particular choice.

The off-diagonal entries Aij of (1.1) come from the evaluation of the free space
Green’s function for the Laplacian in two dimensions. We shall often talk about
the distance between an off-diagonal entry Aij and the diagonal. An entry Aij

is said to be far away from the diagonal when the distance |zi − zj| is large.
An entry Aij is said to be close to the diagonal when the distance |zi − zj | is
small. The entries Aij with indices in Sneig are, thus, close to the diagonal.
While entries Aij of (1.1) with indices in Sneig are large in modulus, one cannot
generally say that the entries decay as the distance to the diagonal increases,
unless the unit square is scaled with a factor of 1/

√
2, in which case the decay

is slow. Matrices of the form (1.1) are symmetric, but not necessarily positive
definite for general choices of ri.

In our development of an efficient sparse approximate inverse preconditioner
for matrices of the form (1.1) we shall rely on a class of realizations where the
points zi are independent of each other with uniform density in the unit square
and the numbers ri are randomly chosen in (0, 0.5di] with uniform density. We
denote any matrix with these characteristics “the matrix AI”. In the numerical
examples at the end of Section 3 we shall also investigate two other classes of
matrices of the form (1.1) which do not share the characteristics of AI. We
denote any matrix in these classes “the matrix AII” or “the matrix AIII”.

The spectrum of the matrix AI shows a close resemblance to the reciprocal
of that of minus the Laplacian on the unit square. For p being an integer, the
eigenvalues corresponding to the p2 eigenvectors of lowest frequencies for the
Laplacian are

λ(∆) =
{

−π2(i2 + j2)
}

i,j=1,2,...,p
.(2.1)

Numerical experiments suggest that the spectrum of AI, with n = p2, is approx-
imately given by

λ(AI) ≈
{

1.2p2

i2 + j2

}

i,j=1,2,...,p

.(2.2)

If we were to multiply each entry of AI with a factor −1/(2πp2), as to make
the off-diagonal entries of AI resemble those in a discretization of the free-space
Green’s function for the Laplacian where quadrature weights wij = 1/p2 are
used, the spectral approximation (2.2) would change accordingly and the con-
nection between the two spectra is further elucidated.

2.3 Submatrices of the matrix A.

Before venturing into the construction of various sparse approximate inverses
M with sparsity patterns S we shall define some useful submatrices of A of (1.1).

For this, first let the set of m indices S(0)
m be given by S(0)

m = {i : 1 ≤ i ≤ m} and
let the set of k indices S(j) be given by S(j) = {i : (i, j) ∈ S}. Now let Â(j) be a
k × k symmetric submatrix of A containing entries of A which are close to Ajj

and arranged in a particular order. More precisely, define a one-to-one mapping
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q from S(0)
k onto S(j) in such a way that

q(i) = j , i = 1 ,
|zq(i) − zj| ≥ |zq(i−1) − zj | , i = 2, 3 . . . , k .

(2.3)

Then let
Â

(j)
il = Aq(i)q(l) , i, l ∈ S(0)

k .(2.4)

The matrix Â(j) contains k entries from each of k different columns of A. Let
A

(j)
0 be a rectangular (n − k) × k submatrix of A containing the remainder of

the entries in the k columns of A from which the entries of Â(j) were collected.
More precisely, let r be a one-to-one mapping from S(0)

n−k onto S(0)
n −S(j). Then

let
A

(j)
0 il = Ar(i)q(l) , i ∈ S(0)

n−k , l ∈ S(0)
k .(2.5)

We remark that the particular ordering of the rows and columns of Â(j), given
by the mapping q, is not essential for the construction of the preconditioners
LSAI(k) and DBAI(k) of Sections 2.4 and 2.5 below. It simplifies, however, the
construction of our new preconditioner WBAI(k) in Section 3.

2.4 Mesh-neighbour based least squares approximate inverse (LSAI).

When the entries of M are chosen as to minimize the Frobenius norm of AM−I
one speaks of a least squares approximate inverse preconditioner, here denoted
LSAI(k) in general and MLSAI when reference is made to the actual matrix. The
k nonzero entries in column j of MLSAI can be obtained by solving the n × k
overdetermined linear system

[

Â(j)

A
(j)
0

]

m̂(j) =

[

e

0

]

,(2.6)

in least squares sense. Here e is a column vector with k entries all equal to zero
except for the first entry, which is one. The correspondence between the index
of a particular entry in the vector m̂(j) and its row index in column j of MLSAI

is given by the mapping q of of (2.3).
The left images of Figure 2.1 show the spectra of AIMLSAI with k = 20 and

n = 7569 for Sneig and for Sdom. The spectra are rather similar and clustered
around unity. Note the difference in scales on the x- and y-axes. A series of
experiments show that the spectra grow slowly towards the left with increasing
n. A drawback with LSAI(k) is its setup cost. For a dense matrix and a general
sparsity pattern this cost is O(n2k2), making LSAI(k) extremely expensive to
use in large-scale computations even though, of course, it could be amortized if
many right-hand sides are to be solved. For a sparsity pattern such as Sneig,
where the normal equations corresponding to different columns of MLSAI may
have system matrices with many entries in common, it is possible to achieve a
setup cost of O(n2k + nk3). This cost is, however, also high.

The left image of Figure 2.2 illustrates the efficiency of using LSAI(k), once
MLSAI has been constructed, when iteratively solving linear systems involving
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Figure 2.1: Eigenvalues λ(AIM) for compositions of the matrix AI with different sparse
approximate inverse preconditioners and sparsity patterns. The system size n, correspond-
ing to the number of random points zi, is n = 7569 and the bandwidth is k = 20. All four
spectra remain essentially unchanged if the unit square is scaled with a factor of 1/

√
2.

the matrix AI. This figure is presented for the purpose of comparison with other
preconditioners. The high setup cost makes computations involving LSAI(k)
even more time consuming than using no preconditioner at all. Anyhow, one
can see that a larger bandwidth k gives fewer iterations for a fixed n, although
the improvement with increasing k gets progressively smaller.

2.5 Mesh-neighbour based diagonal block approximate inverse (DBAI).

When the entries of M are chosen by requiring that (AM)ij = Iij hold for all
index pairs in S one speaks of a diagonal block approximate inverse precondi-
tioner, here denoted DBAI(k) in general and MDBAI when reference is made to
the actual matrix. The DBAI(k) preconditioner could, equivalently, be viewed

as a modification of the LSAI(k) preconditioner where the matrix A
(j)
0 of (2.6)

is replaced by a matrix of zeros. The k nonzero entries in column j of MDBAI
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Figure 2.2: Left, number of full GMRES iterations needed to solve systems AIx = b with
a stopping criterion threshold of 10−8 in the relative residual, with and without LSAI(k)
preconditioning. The components of the right-hand side vectors b are chosen randomly in
[−1, 1]. The sparsity pattern is Sneig. Right, the same thing with DBAI(k) preconditioning.

can thus be obtained by solving the k × k linear system

Â(j)m̂(j) = e .(2.7)

The right images of Figure 2.1 show the spectra of AIMDBAI with k = 20
and n = 7569 for Sneig and for Sdom. These spectra are not as well clustered
as those of AIMLSAI. A series of experiments show that they grow towards the
right with increasing n. The setup cost for DBAI(k) is only O(nk3), making
some version of it a reasonably popular choice in various applications. See, for
example, [1, 16, 19, 20, 24]

The right image of Figure 2.2 illustrates the asymptotic efficiency of using
DBAI(k) when iteratively solving linear systems involving the matrix AI. A
comparison to the results with LSAI(k) in the left image shows that, once MLSAI

and MDBAI are constructed, LSAI(k) seems more efficient than DBAI(k).
Remark 2.1. The terminology in this field has not yet crystallized. The name

DBAI(k), used also in [1, 6, 16], may be misleading. The approximate inverse
is not block diagonal. An alternative name is MN(k), meaning mesh neighbour,
used in [22, 24], and referring more to how S is constructed than to how the
entries of M are computed. We stick to the acronym DBAI(k) which reflects the
fact that the entries of MDBAI are computed by solving the linear systems (2.7)
whose system matrices Â(j) of (2.4) could be thought of as diagonal blocks of A.

3 A new preconditioner WBAI, in between LSAI and DBAI.

The spectra of Figure 2.1 and the comparison of the images of Figure 2.2
indicate that the LSAI(k) preconditioner, once constructed, should be more
efficient than the DBAI(k) preconditioner. The DBAI(k), on the other hand,
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has a much lower setup cost. A natural idea would be to find something in
between these preconditioners, capturing the best features of the two. This
idea is by no means new. Carpentieri, Duff, Giraud, Made, and Sylvand [4, 5],
for example, describe a scheme where a dense matrix A is sparsified prior to
the construction of a LSAI type preconditioner. In this way, the bulk of the

entries of A
(j)
0 are set to zero. The setup cost is reduced. When the off-diagonal

entries of A come from a rapidly decaying Green’s function such a truncated
Green’s function LSAI approach could work well. Unfortunately, matrices of the
form (1.1) have an underlying Green’s function which is not rapidly decaying.
A truncated LSAI approach does, therefore, not seem very promising if one has
good asymptotics for large n in mind. The right image of Figure 2.2 illustrates
this point further. Irrespective of the bandwidth k, the number of iterations
eventually grows as a power law in system size n.

3.1 Approximation of the far field.

The truncated Green’s function LSAI approach tries to make the approximate
inverse M efficient by keeping the correct values for a few of the entries of the

submatrices A
(j)
0 while setting the bulk of the entries to zero. Here we shall

do something different. We shall neither keep nor zero individual entries of

A
(j)
0 , but instead approximate entire matrices A

(j)
0 with something simple which

makes the setup cost for a LSAI type preconditioner the same as for a DBAI
type preconditioner. The key observation is that the Green’s function, for large
arguments, is a harmonic function which is approximately constant at small

scales. Therefore a submatrix A
(j)
0 , which contains entries far away from the

diagonal in the sense described in Section 2.2, has low rank. In particular, the

entries on a given row of A
(j)
0 tend to be similar.

If we explicitly form the normal equations corresponding to the LSAI equa-
tion (2.6) we get

[

Â(j)Â(j) + A
(j)T
0 A

(j)
0

]

m̂(j) = Â(j)e ,(3.1)

where we have used that Â(j) is symmetric. We argued, in the preceding para-

graph, that the matrix A
(j)
0 has low rank and approximately constant rows. We

now approximate A
(j)
0 using the rank-one approximation

A
(j)
0 ≈ auT ,(3.2)

where u is a column vector with k entries all equal to one and a is a column
vector with n−k unknown entries. Substituting (3.2) into (3.1) and multiplying
with Â(j)−1 from the left we arrive at

[

Â(j) + ||a||22Â(j)−1uuT
]

m̂(j) = e .(3.3)

This equation is just a simple rank-one modification of the DBAI equation (2.7).
Once Â(j) is constructed and the scalar ||a||2 is determined, the cost of solv-
ing (3.3) using a direct method and the Sherman-Morrison formula is the same
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as the cost of solving the DBAI equation (2.7) to leading order in k. For good
performance one can use LDLT or Cholesky factorization for Â(j), depending
on the situation. In our numerical examples we settle for LU -factorization.

We have already observed a close connection between the LSAI(k) and the

DBAI(k) preconditioners; if one replaces the matrix A
(j)
0 with zeros in the LSAI

equation (2.6) one recovers the DBAI equation (2.7). The DBAI(k) can, thus,
be viewed as a special case of a generalized LSAI(k) where the 2-norm, entering
the definition of the Frobenius norm if written in terms of individual matrix
columns, is replaced by a weighted 2-norm where the k first weights are set to
one and the remaining weights are set to zero. Perhaps the most efficient norm
is somewhere in between these two extremes – more weight should be given to
the upper equations of (2.6), corresponding to entries of AM that are close to
the diagonal in the sense described in Section 2.2, and less weight should be
given to the lower equations of (2.6)?

3.2 A weighted 2-norm.

Now define the weighted norm

||x||W =
√

xTWTWx ,(3.4)

Wij =







0 , i 6= j,
1/i , i = j ≤ k ,
1/k , i = j > k ,

(3.5)

and let WLSAI(k) denote a weighted LSAI(k) preconditioner obtained by min-
imizing the residual of (2.6) in the norm given by (3.4). The left images of Fig-
ure 3.1 show the spectra of AIMWLSAI, where AI is the same as in Figure 2.1.
A comparison with the left images of Figure 2.1 indicates that WLSAI(k) does
achieve somewhat better clustering of the eigenvalues than does LSAI(k). This
is particularly apparent for the lower left images involving Sdom.

We now proceed to modify the preconditioner implied by (3.3) as to incorpo-
rate the weighted norm. Starting with (2.6), using || · ||W for minimizing the
residual, and repeating the steps of Section 3.1 we arrive at

[

Â(j) + ||a||22Ŵ−2k−2Â(j)−1uuT
]

m̂(j) = e ,(3.6)

where Ŵ is the k × k submatrix given by Wij , i, j ≤ k. Equation (3.6) will be
used for computing the nonzero entries of our new sparse approximate inverse
preconditioner, denoted WBAI(k). As for choosing the scalar ||a||2, experiments
showed that it should be a rapidly decaying function of k. We settled for

||a||22 = 4 · (n − k) · 10
− k

4 log10(n) ,(3.7)

which is used in all examples involving WBAI(k) in this paper. The second
image of Figure 3.1 shows the spectrum of AIMWBAI, where AI is the same as in
Figure 2.1. The spectrum of AIMWBAI stretches further out into the imaginary
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Figure 3.1: Same as in Figure 2.1, except for that the sparse approximate inverses of
Section 3.2 are used. Note the difference in scales on the x- and y-axes.

plane than the other spectra, but the real parts of the eigenvalues are well clus-
tered. Furthermore, a series of experiments show that the spectrum grows only
slowly with increasing n. A comparison of the second image of Figure 3.1 with
the first images of Figure 2.1 and Figure 3.1 shows that the clustering achieved
by WBAI(k) is rather similar to those achieved by LSAI(k) and WLSAI(k). A
comparison with the second image of Figure 2.1 shows that WBAI(k) achieves
a much better clustering than does its chief competitor DBAI(k).

At this point we wish to make four remarks:

• The matrix W of (3.5), which gives most weight to the first equation and
progressively less weight to the following equations of (2.6), is the same for
all Â(j). This is so since the ordering of the rows of all Â(j) is the same
with respect to the distances |zq(i) − zj |, see Section 2.3.

• The determination of the matrix W and the determination of the scalar
||a||2 have to be done in tandem. We experimented with several weight
matrices similar to W of (3.5), including such that took the distances
|zq(i) − zj | into account in a more elaborate fashion, in combination with
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other expressions for the scalar ||a||2, without observing any significant
changes in performance. A simultaneously optimal choice for W and ||a||2
would depend on both the particular system matrix and the strategy for
determining S. We settled for the choices (3.5) and (3.7) since they are
reasonably simple and gave good performance for several classes of system
matrices of the form (1.1), see Section 3.3.

• Minor changes in S have larger effect on the performance of WBAI(k) than
minor changes in W and ||a||2, see Section 3.4.

• The derivation of WBAI(k) involves the rank-one approximation (3.2).
The unknown vector a is never determined entry-wise, but enters into the
scheme only via its Euclidean norm. Constant block approximation of
off-diagonal matrix-blocks that minimize the distance for the energy norm
to an associated discrete nonoscillatory Green’s functions have been used
in the quite opposite context of finding full block-constant approximate
inverses to certain sparse matrices. See Guillaume, Huard, and Calvez [11]
for such an example where the number of iterations needed to meet a given
residual, after preconditioning, increases as O(n0.25).

3.3 Further numerical examples.

Figure 3.2 illustrates the asymptotic efficiency of using our new preconditioner
WBAI(k) when iteratively solving linear systems involving the matrix AI. The
left image should be compared to the results with LSAI(k) and DBAI(k) of Fig-
ure 2.2. The difference between WBAI(k) and DBAI(k) is striking. Especially
for k ≥ 20. The number of full GMRES iterations with WBAI(k) grows as
O(log(n)), or slower. For k = 20 and n = 1358104, the number of full GMRES
iterations decreases from 72 to 17 as we switch from DBAI(k) to WBAI(k), while
the setup cost, the computational cost per iteration, and the achieved accuracy
are unchanged. The difference between WBAI(k) and LSAI(k), on the other
hand, is smaller. That is, for all n where LSAI data are available. Upon close
comparison of the left image of Figure 3.2 and the left image of Figure 2.2 one
can see a tendency for WBAI(k) to perform better than LSAI(k) at large n. It
thus seems as if we have succeeded in making a new preconditioner combining,
or even improving on, the best features of LSAI(k) and DBAI(k).

The right image of Figure 3.2 contains error estimates: reference solutions xref

for various system sizes n are obtained by iteratively solving unpreconditioned
systems AIx = b with a stopping criterion threshold of 10−13 in the relative
residual. Restarts are used whenever the GMRES solver stagnates. The so-
lution xref , for a given n, is then used as “exact” solution for the purpose of
computing error estimates for the other five solutions, obtained with a stopping
criterion threshold of 10−8 and no restarts. Given the approximate spectral in-
formation of (2.2) and considering that b is random, one could, perhaps, make
the assumption that xref has better quality than the other five solutions for a
given n. If this holds, then the right image of Figure 3.2 indicates that the
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Figure 3.2: Left, same as in Figure 2.2 except for that WBAI(k) preconditioning is used.
Right, estimated relative errors in the computed solutions x. Reference solutions for x are
obtained by solving unpreconditioned systems with a stopping criterion threshold of 10−13.

quality of the solutions obtained from the preconditioned systems is at least as
good as that of the solutions obtained from the unpreconditioned system.

We now compare the DBAI(k) and the WBAI(k) preconditioners on two other
classes of system matrices of the form (1.1). One class of matrices is obtained by
letting the points zi no longer be completely randomly placed in the unit square,
but taken as the centers of ellipses in a certain polydisperse suspension. The
ellipses vary in relative size and eccentricity within certain limits. See Section 7
of Ref. [13] for details on how the polydisperse suspension is generated. The
numbers ri are still randomly selected in (0, 0.5di]. We denote a matrix with
these characteristics AII. The other class of matrices is obtained by keeping the
same strategy for placing the points zi as for AII, but changing the mechanism for
determining the numbers ri. These numbers now lie in an interval approximately
given by [0.12di, 0.59di] and they are no longer independent random variables,
but exhibit a complicated type of dependence. See Section 5.3 of Ref. [13] for
details on how ri are computed. We denote a matrix with these characteristics
AIII. The matrix AIII is the matrix denoted F in eq. (36) of Ref. [13], multiplied
with minus one.

It is hard to say which of the matrices AI, AII, and AIII is the most difficult
to precondition. As we shall see, when used as system matrices and without
preconditioning, they all behave similarly in our test. Still, there are major
differences in their characteristics: The diagonal entries in AI and AII can be
arbitrarily large while the diagonal entries in AIII are bounded for a fixed n.
Entries close to the diagonal in AI can be arbitrarily large while entries close to
the diagonal in AII and AIII are bounded for a fixed n. Numerical experiments
suggest that the matrices AI and AII are positive definite while the matrix AIII

is indefinite. Jou, Leo, and Lowengrub in Section 2.1.1 of Ref. [14] comment on
the conditioning of a system of linear equations where, in a sense, a matrix of the
form (1.1) is the leading matrix. These authors report that small ri and small
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Figure 3.3: Number of full GMRES iterations needed to solve systems AIIx = b with
a stopping criterion threshold of 10−8 in the relative residual. The components of the
right-hand side vectors b are chosen randomly in [−1, 1]. The sparsity pattern is Sneig.
Left, DBAI(k) preconditioning. Right, WBAI(k) preconditioning.
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Figure 3.4: Same as in Figure 3.3, except for that AII is replaced with AIII.

distances between some points zi increase the condition number of their entire
system matrix for a fixed n. Perhaps then the matrix AI is the most difficult to
deal with and the matrix AIII is the easiest.

Figure 3.3 compares the asymptotic efficiency of using DBAI(k) to that of
using WBAI(k) when iteratively solving linear systems involving the matrix AII.
We note that DBAI(k) runs into great difficulties with AII for large n and k ≤ 20,
much greater than with AI. Our new preconditioner WBAI(k), on the other
hand, performs slightly better than with AI, for which it was constructed. This
seems very promising since our objective is to find an efficient sparse approximate
inverse for a general matrix of the form (1.1).

Figure 3.4 compares the asymptotic efficiency of using DBAI(k) to that of
using WBAI(k) when iteratively solving linear systems involving the matrix AIII.
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Figure 3.5: Same as in Figure 3.2, left image, and Figure 3.4, right image, except for that
the modified Sneig of Section 3.4 is used.

The left image shows that the number of iterations for DBAI(k) depends on k in
an irregular way. The right image shows, yet again, that our new preconditioner
WBAI(k) is more efficient than DBAI(k) for large n and especially so for small
k, which are of greatest interest in applications.

3.4 Minor changes in the sparsity pattern Sneig.

The sparsity pattern Sneig associated with matrices of the form (1.1) is not
optimal. We would rather use the dominant sparsity pattern Sdom, could it only
be constructed in reasonable time for large systems. A close inspection of Sdom

for various realizations of AI reveals that, for a given j, index pairs (i, j) of Sdom

correspond to the points zi with smallest distances |zi − zj | subjected in some
sense to a condition that zi are evenly distributed around zj.

In order to construct a sparsity pattern with a low setup cost which better
mimics the observed Sdom we made a mild modification of Sneig. In brevity,
among the k index pairs (i, j) for a given j we scrutinized those five pairs corre-
sponding to the largest values of the distance |zi − zj |. Under certain conditions
we replaced some of these pairs with new pairs corresponding to points zi with
slightly larger values of |zi−zj| so that the total number of index pairs for a given
j still was k and so that that the points zi corresponding to these pairs were
more evenly distributed around zj. We omit the details of this ad hoc procedure
and turn our attention to Figure 3.5 which displays results from test involving
this modification of Sneig, the preconditioner WBAI(k), and the matrices AI

and AIII. Comparison with the left image of Figure 3.2 and the right image of
Figure 3.4 shows a decrease in the number of iterations needed for convergence
for the smallest bandwidth k = 10. The improvement is particularly large for
the matrix AI. The number of necessary iterations here seems to decrease with
a factor of three for system sizes n ≥ 106.
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3.5 Notes on the implementation.

All numerical experiments in this paper were performed on a regular Sun Blade
100 workstation. The experiments involving spectra were done in Matlab.
The other experiments were done with codes implemented in Fortran 77. See
Section 4.6 of Ref. [8] for some details of the implementation of the FMM [10].
The internal tolerance in the FMM was set to 10−13 in all experiments.

4 Discussion.

We set out to find an efficient right sparse approximate inverse preconditioner
of bandwidth k for dense n×n matrices A of the form (1.1) with good asymptotic
properties in the limit of large n. The preconditioner should be broadly useful,
that is, it should be efficient for a wide range of choices of the points zi and the
numbers ri. The preconditioner should be simple to use and free from any user
specified parameter apart from k. We chose to develop the preconditioner in
a GMRES setting, well aware of that for particular system matrices SQMR or
conjugate gradients might be more efficient iterative solvers. See [3] for details
on the extra work that has to be invested in the preconditioner to make it
compatible with a symmetric Krylov solver.

The idea was to construct a mesh-neighbour based LSAI type preconditioner
at a small setup cost. For this, we took advantage of the special structure of
matrices of the form (1.1). Inner products of various vectors corresponding to
distant potential fields originating at closely spaced sources were approximated
by identical constants, determined by a number ||a||2, thus reducing the setup
cost to that of a DBAI type preconditioner. We also observed that all equations
entering into the overdetermined linear systems used for computing the columns
of the preconditioner were not equally important. As a consequence we used a
weighted norm for minimization of the residuals.

During the development of our preconditioner we relied on a class of matri-
ces where the points zi were completely randomly placed in the unit cell and
where the numbers ri were independent random variables with uniform density
in (0, 0.5di]. Based on a large set of experiments, not presented in the paper, we
arrived at the formula (3.7) for ||a||2. We named our preconditioner WBAI(k)
and tested it on three classes of matrices with various strategies for choosing zi

and ri, and compared with results using DBAI(k). In all cases, huge improve-
ment over DBAI(k) was found and especially so for large n and small k, which
is the situation most relevant for large-scale applications. The numerical exper-
iments showed that for k ≥ 20, or even k ≥ 10 together with a modified sparsity
pattern, the number of full, that is, not restarted, GMRES iterations needed to
reach an estimated relative error in 2-norm of less than 10−8 in the solution x

to a system Ax = b, where b is random, often grew as O(log(n)). In some cases
the number of iterations grew even slower, making the properties of the system
Ax = b, after preconditioning, resemble those of a discretized Fredholm second
kind integral equation. If A of the form (1.1) is a system matrix originating from
the discretization of a Fredholm first kind equation (with singular kernel) one
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could say that we have found an affordable way of regularizing that equation
numerically.

There exists a rich literature on experimental results regarding the efficiency
of various sparse approximate inverse preconditioners and iterative solvers for
various dense linear systems. A particular feature of the present work is that
it presents systematic and highly resolved studies of the dependence of speed
and estimated accuracy on system size n. Sometimes the differences between
preconditioners become pronounced only at large n. Their behaviour for small
n may not be indicative of their large-scale behaviour. Our examples involve
system matrices with dimensions up to n = 4055271. As for further work, it
would be interesting to study the effect of approximating the far field in LSAI
type preconditioners in some three dimensional, or other, context where the
Green’s function decays more rapidly than in the present study.
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