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NOTES ON PSEUDOINVERSES. APPLICATION TO IDENTIFICATION.

T. S&derstrdm

ABSTRACT

In this report we will discuss possibilities of defining a "good

solution" of a system of linear equations

Ax = b

where A is not necessarily quadratic. Especially the least squares
problem will be treated. The concepts of pseudoinverses are intro-
duced and its application to the least squares problem is shown.
Geometrical interpretation of the solution in different cases is
given. Different algorithms for computing the pseudoinverse are
briefly discussed. One is programmed and compared with another

program, given by Golub-Reinsch. Numerical examples are given.

The concepts of least squares problem are applied to identification
of a linear time-invariant, discrete, single input, single output
system. Some recursive equations are given. The consequences of
using a model of too high an order for systems with and systems

without noise are discussed.

The results in chapter 10 and the last half of chapter 1l are be-

lieved to be new.
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1. INTRODUCTION.

In this chapter we will consider systems of linear equations, which
may not have a solution in the ordinary sense. Some possibilities

of defining a "best" solution will be discussed.

Let us consider the system
Ax = b (1.1)

where A is an m x n matrix, x an unknown n vector to be determined,

and b is an m vector.

In identification problems one usually has an overdetermined system,
i.e. m is greater than or equal to n, but we will not limit ourselves
to that case now. If i) m = n and ii) A+ exists, then it is known,
that the (exact) solution, which is unique, exists and is x = A b,

When A'l does not exist, the least squares solution, introduced al-
ready by Gauss, is very often used. This means that we search an x,
such that

|| Ax - b |2 (1.2)

is minimized. In this report we mostly use the Frobenius norm,

| A ||E=\/tr al = \he aTa =\ ;a2

ik

This norm coincides with the usual Euclidian norm in R, when app-
lied to vectors. It is, however, not in general equal to the opera-
tor norm, defined by

|| Al = Sup I Ax ]
IR
with || x || as the Euclidian norm of x.

When A™+ exists, we will get x = A-lb, which is the solution in the
ordinary sense to (1.1). When rank A = n (Or equivalently (ATA)-J‘



exists), it is shown in |28| by completing the squares, that the

least squares solution is
x = (ATA)1aTp

When rank A is less than n, there is no unique x, which minimizes
(1.2). Further conditions on x must be added. We will already now
point out, that this case should be handled with care. This case
means, that the number of linear independent equations is less than
the number of unknown ones.

A usual way to handle this case is to add the condition, that among
all x, which minimize (1.2), we search for that one of least norm,
"the least squares solution of minimum length". In chapter 3 we will
introduce the pseudoinverse AT of a matrix A. In chapter 5 it will
be shown that x = A'b is the solution of the least squares problem
in the sense just described.

Ancther condition is given in |24|, where Rosen defines ¥ as a ba-
sic approximate solution to (1.1) by i) X minimizes (1.2), ii) Xy
has a most r nonzero component, with r = rank A. This solution is

not unique.

A generalized least squares solution to (1.1) is given in |13|. For
this solution it is assumed that rank A = n. The problem, previously
discussed, can be regarded as follows. Disturb the vector b to

b + Ab, so that an exact solution exists. Of all possible Ab deter-
mine the one, for which || ab ||2 is minimized. The solution to

Ax = b + Ab is then the least squares solution. In the generalized
least squares solution also A is allowed to be disturbed. The prob-
lem is now the following: Disturb A and b so that (A + AA)x = (b + Ab)
has a solution. Of all possible AA and Ab, choose those which satisfy
K|| 2A |]2 + || ab ||2 is minimum, where K is a given weight. This
problem is solved in |13|, which also gives ALGOL programs, which can
be used for computing the solution.

Bjérck |7| considers least squares problems with linear constraints.
The problem is to determine a vector X, which satisfy Ajx = bl exactly,
and such that || Ax - b, ||2 is minimum. The solution of this problem
and ALGOL programs are given in |7].



2. STATEMENT OF THE PROBLEM.

Now we give the exact statement of the problem after the introducing
discussion.

Given the system of linear equations Ax = b, we search for the x = Xy

which satisfies:

. 2 2

1) || Axg-b [|7 <[] Ax-Db ] ¥x ¥ %,
or

o4 2 2

ii) || A%y - b 1« || &x -b || ¥x and

2 2
[xg 1< 1l x 1 ¥xs || Ay -Dd |7 =]] &x-b[]% x$x

The solution of this problem exists and is given in chapter 5.



3. PSEUDOINVERSE. DEFINITION AND BASIC PROPERTIES.

In this chapter we want to introduce the pseudoinverse of a matrix.
Before starting with the definition we give some concepts of linear

transformations.

Let A be an m x n matrix. In the following we will not distinguish
between the matrix A and the corresponding linear transformation
A: R » R", which maps the vectors of R" into R.

We start with

Definition 3.1

The nullspace of A, written N(A), is the set of vectors in Rn,
transformed by A to the origin in R" or N(A) = {x|Ax = 0}.

Definition 3.2

The range of A, written R(A), is the subset of R", described by
R(A) = {y|3x; y = Ax}. Loosely speaking, R(A) consists of all
vectors y = Ax, which are obtained when x is varied in R™.

Definition 3.3

Rank A = dim R(A).

We also use the following partition of R" and K"

R™ = N(A) & Nt (3.1)
R® = R(A) & RCAYE (3.2)

ML means the orthogonal complement of the set M. ® means direct sum.
27|, it is shown that

In several sources, e.g.

Nyt = real) (3.3)

N(AT) = rRea)L (3.4)



We have also (see e.g. |27]):

Theorem 3.1

A is a one-one mapping

T
R(A™) » R(A) (3.5)
Now, let us turn to the pseudoinverse. There are several ways of de-
fining the pseudoinverse of a matrix. Here we have chosen to follow

Zadeh-Desoer |27].

Definition 3.4

A" is the pseudoinverse of A if

i) atax = x ¥x€R(AT) (3.6)
i) atz =0 YZeN(AT) (3.7)
s i L . o T

iii) A'(ytz) = A'y + A'z Vy€ER(A), VzeN(A™) (3.8)

The following picture is instructive to explain the pseudoinverse.

A




When dim N(A) and dim N(AT) are not both equal to zero, the ordinary
inverse AT does not exist. As pointed out in (3.5) the restriction
of A to A: R(AT) + R(A) is a one-one mapping. A good substitution to
inverse ought to map Ax back to x, when xeR(AT)‘ The pseudoinverse
has this property.

Penrose has an alternative definition which could be shown to be equi-
valent to def. 3.u.

Definition 3.4'

+

A" is the pseudoinverse of A if A’ satisfies

i) AaA=A (3.9)
ii) A'aa’ = Af (3.10)
iii) aat symmetric (3.11)
iv) A'a symmetric (3.12)

This definition requires a proof to show that At always exists and is
unique. For some purposes, e.g. making proofs,def.3.4' may be as good
as def. 3.4.

Other ways of defining A can be found in |4|, |10|, |15|, |16|. For
example the solution of the problem stated in chapter 2 can be used
for making a definition.

Some simple properties of the pseudoinverse can be found e.g. in |18],
|27].

Corr

At is a linear transformation.

Corr

raH) = raD), neaty = neal)
Especially we have A" is n x m, if A is m x n.



Theorem 3.2

i)  A'A is the orthogonal projection of R" on R(AT) (3.13)
ii) AT is the orthogonal projection of R™ on R(A) (3.14)
iii) aH'T = A (3.15)
iv) AATA = A (3.16)
EVYURYY (3.17)

(A") = (A) (3.18)

At = a1, if a1 exists (3.19)

Theorem 3.5

Def. 3.4' is equivalent to

i T

ATaal = a (3.20)

aatahT = ahHT (3.21)

Most of the results can easily be carried out from definition 1 or

from figure 3.1. Strict proofs are found in |19] and |27].

We conclude this chapter by pointing out that the transformation
A » A" is discontinuous. Let



Then AL exists and

i 1+e -1
A'r = A’l = %- }
-1 1

However, if € = 0 we get
. /% 1/4 |
A =
1/4 1/4
which cannot be obtained as a limit of the previous result.

This, in some cases "bad", property depends on the change in rank
of A.

If we restrict to matrices of a fixed type and fixed rank, then the

pseudoinverse is continuous.

Note, that this may cause numerical difficulties, since two matrices
may have different rank but still be very close to another in norm.
The determination of the correct rank is in fact the critical point

in every algorithm for computing the pseudoinverse.



4. FURTHER PROPERTIES OF THE PSEUDOINVERSE.

In this chapter we will give same more formulas concerning pseudo-
inverses. Some references containing rather difficult, but interesting,

expressions will be menticned.

As mentioned in the introduction in the special case rank A = n we

have
At = aTa) 1Al (4.1)
which is easily verified. More generally we have (see [19])

Theorem 4.1

At = (aTa)TaT (4.2)

At = aTcanTy? (4.3)

In |19| Kalman and Englar give a recursive formula for the pseudoinverse.
. The result in |19| is the

Other references of this topic are |8, |16
following:

Let A be an m x n matrix with a known pseudoinverse At. Add a colum
vector a of dimension m to form the m x (n+1) matrix [A :’ a) . Express
the pseudoinverse [A E a]+ making use of a'.

We will have to separate two cases:

i)  if adR(A) <= rank [A E a] > rank [A] <=> (I - aaMa ¢ 0
|, aa(1-aah)
AN - 5
a (I-AA)a
- | ~+ _
|A ! al = | -=-=-=--==--- (4.4)
a (1-aa")
L al(1-aaha
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i1) if a€R(A) <=> (I - AAD)a = 0

aaT ( A+ )TA)r
T

l+aTA* A+a

(A E al LA (4.5)
aTA-rTA*
T

L l+aTA+ A*a

1.

In |8| Cline goes further and studies the pseudoinverse of a par-
tioned matrix, i.e. A = |:U V]. He also gives some formulas for
U" in terms of submatrices of A*.

In |9| Cline gives representations for the pseudoinverse of sums

of matrices.

Greville |17| has given conditions on A and B so that

(AB

yt = BTaT

This equality is not always true. For example A = |1 0f, B = l%‘

implies (AB)" = 1 and B'A" = 0.5.

Some general theory of the pseudoinverse can be found in |2].

Note, that if U and V are orthogonal matrices then

T+ T

wanyt = viaTut = viaty (4.6)

This fact is used in several algorithms for computing the pseudoinverse

as mentioned in chapter 7.



i

5. SOLUTION OF THE PROBLEM.

In this chapter we want to show that the use of pseudoinverse will
give the solution of the problem stated in chapter 2. We will also
give some results about the modified problem and the solution in the
ordinary sense of Ax = b when it exists. '

We start with

Theorem 5.1

Let x, = A™b. Then

D || axy-b 1% < || Ax-b | ¥x § %,
or
; & 2 2
i) || Axg - b ||® s || Ax - b || ¥x # x; and
% Il <1l xl ¥x$xp; || Axg-Db|]=]]Ax-Db]|

The proof of this theorem is well-known (see e.g. |19], [27]). We
give a proof of the theorem here on account of its central part in
this report.

Proof

Let the vector b be decomposed b = b, + b, where b, is in N(AT) and

b2 is in R(A). Let the arbitrary x be written as x = X, + Xy + Xy

where x; is an arbitrary vector in N(A) and X, an arbitrary vector
. T
in R(A™).

We have

2 .
1t A%y =Dy -by ||" =

2
|| Ax = b [|" = || Axy + Ax

2 2
||Ax0+Ax2—b2|| +||b1|l

since Ax; = 0, and further N(AT) and R(A) are orthogonal complements.
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We also have

- aati o aaf - AkTH
AXG--AAb-AA(bl*'b2)-AAb2-b2

(cf. (3.7), (3.14)). Hence
2 2
[l ax-b 2= |1 axy 112+ 115y |l

We can conclude that the minimum of

2 2
|l Ax - b [[® =] b |l

and is obtained with Xy = 0, Xq arbitrary.

Let us now separate two cases.

i) rank A = n (A is as before an m x n matrix). This implies

dim N(A) = 0 and x; = 0. Thus we have a unique minimum.

ii) rank A < n, and dim N(A) > 0. || Ax - b ||? is minimized by
all x = xj * x;. The first part of ii) is proved. The second
relation follows from

2 2 2
= 7= 1= 17+ 1] % |
and hence || x || > || x5 || if x # x,- Q.E.D.

The problem can be modified to minimize || Ax - b | |123, where P is
a positive definite matrix. (]| y2 ||p means y“Py.) Since P can be

decamposed as P = Pl/ 2Pl/z, Pl/2 symmetric we can write

2 1/2 1/2, 1,2
|| Ax - Db ||p= || P Ax - P"7D ||

The result from theorem 5.1 is then easily modified and the cor-
responding least squares solution is

1/2

xy = (P AyTpt/ 2
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It can be shown, see |19|, that

xq 2 alpaytaTep

1/2

In a computation P must not necessarily be computed.

In |19| Kalman and Englar show some further results, e.g. minimizing

m
Z ||Ai1-c--bi

113
i=1 i

It is also interesting to know when the system Ax = b has any solu-
tion in the ordinary sense, i.e. when exists a vector x, satisfying
Ax = b exactly. The answer is given by the following theorem. Although

the proof is well-known it is thought valuable to include.

Theorem 5.2

Consider the system Ax = b, where A is an m x n matrix.
i) If b€R(A) then
x = A'b + (I - ATA)z

z arbitrary vector in R" is the general solution (in the ordinary

sense).
ii) If bR(A) there is no exact solution (in the ordinary sense).
Proof
i) The given x is a solution for

Ax = A'b + AT - ATA)z = b

where (3.9) and (3.14) are used. With figure 1 in mind it is
easy to be convinced that the general solution must be of the

form
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><=A'l'b'0'xl

where x; is an arbitrary vector in N(A). Now instead of Xy
we take z€R" arbitrary and project z on to N(A). Then (3.13)

gives the relation
- +
xl-(I-AA)z
ii) As
i 2 2
min || Ax - b [[® = || by [|" 0

with notations fram theorem 5.1 there cannot be any solution

in the ordinary sense.
Q.E.D.

Remark

The criterion bER(A) is indeed easy to understand. Ax = b has solu-
tion is just equivalent to that there is at least some x satisfying
this relation. By definition of R(A) this is always true if bé&R(A),
and always false if bER(A).
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6. GEOMETRICAL INTERPRETATION.

Now we will point out the geometrical interpretation of theorem 5.1.
We will also show how the result of this theorem works in some fi-

gures illustrating simple examples.

Consider again the system of equations Ax = b and define Xy = A+b.

Xg is obtained as:

i) Make an orthogonal projection of b on to R(A). This projection
is Axg.

ii) Take the shortest vector x, that satisfies Ax = this projection.
We once again note that step i) is a very natural one when try-
ing to get some "solution". We know from theorem 5.2 that on
exact solution requires b€ER(A). In the least squares sense step
i) is the best way we have to produce such an bER(A).

Now, let us turn to the examples.

Example 1

1

m=n=2, A exists andwegetx=A—lbor

Xl i

X, 1

The graphic solution to this example is shown in fig. 6.1
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Fig. 6.1 - Graphic solution of example 1.
P is the obtained solution.

Example 2

1 1 1
X

1 2 11212
X

2 1 |L72. 2

m= 3, n = 2. We have an overdetermined system with rank A = n = 2,
Then we use
At = (ala) 1Al

to get the result

Graphic solution in fig. 6.2.



.
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%

Fig. 6.2 - Graphic solution of example 2.

P is the obtained least squares solution.

The solution has the property that the sum of the squares of the
distances to the equation lines is minimum.

Example 3

m =1, n = 2. We have too few equations to get an exact solution.
The formula

at = aTaal)™?
gives the least squares solution

A'b

»
]

or
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Applying theorem 5.2 we get the general solution

1
x=A*b+(1-A*A)z=[ },,

/2 -1/2
z
1

- -1/2 172

Shifting z to 2z we get

x;=1+[1 -1]z

x=1-[1 -1]z

The graphic solution is given in figure 6.3.

Fig. 6.3 - Graphic solution of example 3.

P is the least squares solution.
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The exact solution we obtained is just the whole line, and the point

of least norm on the line is P.

Example 4

m=2,n= 2. Here rank A = 1, and the two equations are linear de-

pendent. The least squares solution is

X = A*b

or

xl 1.5

X, 1.5

Since b§R(A) there is no exact solution.

The graphic solution is shown in figure 6.h4.

Fig. 6.4 - Graphic solution of example k4.
P is the obtained least squares solution.
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To get the correct x we first minimize || Ax - b ]|2 and get the
whole dotted line. (No unique minimum since rank A < n.) The point
nearest to the origin on that line is P. This example illustrates
case ii) of theorem 5.1.

In connection with the last example we return to the fact that N

is not continuous. Consider the system

1 1 x »a

with the solution (in the ordinary sense)

—24’25‘

2

Fig. 6.5 - Graphic solution of

o]

P is the obtained solution.
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When ¢ + 0 the lines become parallel and P goes to infinity, which does

not coincide with the previous solution

| 1.5
105
In this case it seems that the pseudoinverse means: the intersection

between two parallel lines is the line halfway between them.

With risk of being tedious we note again that a change of rank A,
which may easily be done numerically, can change the result drastically.
Further it is not sure that the second condition (minimizing || % |[)

has any physical meaning in an actual problem.
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7. ALGORITHMES.

Several algorithmes for computing the pseudoinverse of a matrix have
been developed. For the camputation of numerical examples we have
chosen two algorithmes, given by Mayne in |21| and by Golub - Reinsch
|13|. The reason for this choice is mainly that they seem to be simple
and straightforward. The first one is, however, not without disadvan-
. In the last part of this chapter we
briefly discuss some other algorithmes.

tages, as pointed out in |13

In |21| Mayne considers an mxn matrix A with m € n. The algorithm

can be outlined as follows:

i) By elementary row operations, or equivalently by premultiplying
A with a square matrix P, a new matrix A1 of type ¢ x n is re-

ceived.

The rows of A should be linear independent.
ii) Campute C = AlAT (C is a g x m matrix)

iii) Compute Af = A'{(CCT)-]'C (a! is an n x m matrix). Then A’ is the

pseudoinverse of A.

In | 21| Mayne makes a proof of the algorithm. First he shows that cct

is invertible and then that A" fulfils def. 4 of chapter 3. Here we
give an alternative proof, which gives same more understanding of the

geometrical meaning of the different matrices involved.

Consider the system Ax = b. We want Xy = A™b. Then we will i) project
b on R(A) and get b, ii) take X, (uniquely determined) in R(AT), sa-
tisfying Ax; = b,.

The rows of A span the set R(AT). Let us pick up linearly independent
row vectors of A, and take as many as possible. The number of them
will be q = rank A. We call the result e{, i5Es eg, and we form the

matrix
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A = - (7.1

Now fi = Aei, i=1, ..., q, are a base for R(A), since A:R(AT) -+ R(A)
is a one-one mapping (theorem 3.1). Introduce the matrix

T
5

cC=]. (7.2)
i

f
q

L .

The relation fi e Aei gives us

T _ T _ T
C -AAl or C-AlA (7.3)

Introduce the vectors fq+1’ P fm as a base in R(A) = N(AT). We
can now write b with components in R", with the use of the base

fl, * e 0 ’ fm.
q m
b= ] 4f, + [ df; (7.%)
i=1 i=q+l

The first sum is just bl' Now the components dl’ “ %54 dq are wanted.
Let us form the inner products

q
<fj|b> = z di<fj|fi> with 1g<jsgq

i=1l

We get the following system of linear equations:

<f1|fl> ..... <fllfq> dl <fl|b>
: 3 = ' (7.5)
<fq fl> e <fq] fq> dq <fq|b>
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which we equivalently write:

Fd = B (7.6)

We have

(7.7)

B=|: {[b] =c0Cb (7.8)

Rank C = q implies rank F = q and we conclude that F is a positive
definite matrix and hence F_l exists. The solution of (7.6) then is:

d=rB = cchH ™t (7.9)
Now assume
q
Xy = ) x;e. (7.10)
i=1

We search for the components X;, ..., xq. The relation Axg = bl implies

q q q q

Axg=A ] xe = | xhe, = ] xf b= I q;f;

i=1 i=1 i=1 i=1
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We then have
X; = di i=1, ..., q (7.11)

9
- - L] - T - T T "l
Xg = I diei z [?1 b ed] : = Ad = Al(CC )" "Cb (7.12)
d
q

= A'b combined with the fact that (7.12) holds for all b

Finally Xg
gives
at = A{(CCT)‘IC (7.13)

The other way of calculating the pseudoinverse in the numerical
examples is the following, described in |13|. To a given matrix
m x n matrix A with m 3 n there exists U (of type m x n) and V
(of type n x n) satisfying

A = UV’ (7.1%)
U = 1_ (7.15)
wh =1 (7.16)
z = diag (o) +-+ o) (7.17)
The pseudoinverse then is

at = vifu? (7.18)

with

Z'r = diag (0{, seey Or.:) (7.19)
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of = i (7.20)

The numbers o 1 which are nonnegative, are called the singular values.
The number of non-zero o, equals rank A. An advantage of this method

is that it is possible to make a more adequate determination of rank

A using the singular values. Moreover, the smallest non-zero singular
value gives a measure of how critical this determination is. The spectral

norm of A is defined by

[l A [l = sup || Ax || = o
2 1= |l =1 :

o, = the greatest singular value, and the condition number
- . t -

cond A = || A ||Z [l A ”z’ oy/0.,

G is the smallest non-zero singular value. These two numbers are
thus easily obtained from the algorithm.

Similar methods (e.g. orthogonal triangularizations) are used in |12],
|19(, [22], |25/, |26

In |4| an algorithm similar to the one used is given. As shown in |21]
this algorithm can be derived from Mayne's algorithm.

In |6| iterative refinement of least squares solution is considered.
(rank A = n is assumed). In |7| Bjdrck treats the constrained least
squares problem and also the case rank A < n. ALGOL programs, which
also consider the case with a constrained problem, are listed in this

reference.

Some other methods of probably less interest will now be shortly com-

mented.

In |20| Mayne gives an algorithm, which uses Gram-Schmidt orthogonali-

zation.

A modified Gram-Schmidt orthogonalization is used in |5|, |6|, where
rank A = n is assumed.

Bauer seems to consider the case rank A = n in |1|. An ALGOL program

is given.
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An iterative computation scheme is given in |3|. Let o satisfy

0 <a <

T
Al(A A)

Al(ATA) is the greatest eigenvalue of ATA. It is shown that the

sequence

(7.21)

Y41

= Yk(ZI - AYk)

converges to AT as k » =, The convergence is given by

t % 2
[ AT =y [l e [ATl« [l AT-Y ||

This method seems to be instable in some sense. Introduce

.
X =A - Y
and let
1 1
A =
1 1
We have

| % |12

[ Xepy 11 11 4|

Let
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Then

Xk+l = 2Xk + 06(e)

and Yk+l is not better than Yk. The algorithm cannot be used for

refinements of previously received results.

In [18]| the following method is suggested. Let A be hermitian (no
restriction, see (4.1), (4.2)). Then solve a%T = A. There is in
general no unique solution, but any of them may be used to get

At = xaxl,

We finish this chapter by pointing out some references, which con-
tain error analysis of the computations of the pseudoinverse. Such
references are |5|, |6], |14], |22].
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8. PROGRAMS AND NUMERICAL EXAMPLES.

As mentioned in chapter 7 two different algorithmes have been used
for the numerical examples. Below we will discuss how some details
of the algorithm by Mayne have been programmed. After that some nu-
merical exémples will be given.

The algorithm by Golub-Reinsch is fully discussed in |13|, which
also contains an ALGOL program. A FORTRAN versicn of this program
is used in the examples. This subroutine is called SVD (Singular
Value Decomposition).

The program, using the algorithm by Mayne, consists of two subrou-
tines, called PSINV and SOLVEl. They are written in FORTRAN and have
been used partly on a CD 3600 (machine accuracy '\J.O_lo), partly on
a Univac 1108 (machine accuracy «,10"7) . SVD is used only on the Uni-
vac 1108, according to the rearrangement of Lunds Datacentral.

Now we will describe the subroutines PSINV and SOLVEl. The descrip-
tion is illustrated by two flow-charts.

Subroutine PSINV (EPS, A, APSINV, IRANK, IA, IB, NA, NB, ITMAX)

Parameters:

A - input matrix of order NB- NA, NA < NB

APSINV - at output equals Af

IRANK - rank A. If rank A is known = NA, it is possible
to put IRANK = NA on entry to simplify the computa-
tions.

EPS - value to be used as a tolerance for acceptance of
small vectors

IA, IB - dimension parameters

NA, NB - parameters determining the order of A

ITMAX - max number of iterations in SOLVEL.

Since in the algorithm m ¢ n, while here the corresponding relation
is NB 3 NA, some transposition of matrices must be done. The reason
for m ¢ n is probably numerical accuracy. The reason for the choice
NB > NA is that this case is the most common one, at least in appli-

cations to identification.
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A matrix A0 is computed by column pivoting from A. A slight modifica-
tion of the subroutine DECOM in |11| is used. A vector is regarded as
zero if all components are less than EPS in magnitude. In this manner
we find linearly independent columns of A. The matrix Al in the algo-
rithm has row vectors equal to the found linearly independent column
vectors of A. (The vectors received after the elimination procedure

are not used in order not to increase the errors.) Simultaneously rank
A is obtained as the number of linearly independent column vectors of A.

If now IRANK = NA then SOLVEL is used directly to give the result A',
using (4.1). To a given matrix S SOLVEL computes (SST)™%s = sTt, 1f
IRANK < NA then C in the algorithm is first computed. SOLVEl is then
used to get (CCT)™IC and finally APSINV is computed from (7.13).

Subroutine SOLVEl (D, C, ITMAX, NM, NIQ, IA, IB)

Parameters:

C - input matrix of order NIQ~ NM, Rank C = NIQ, NIQ s NM
D - output matrix, = cchH1e

ITMAX - greatest number of iterations

IA, IB - dimension parameters

NM, NIQ - parameters, determining the order of C

D is computed as the solution of (CCT)D = C. It is easier to solve
this equation than to compute the inverse e explicitely. First
C1 cct is computed. Cl is positive definite. Cl is then factorized
Cl

for this computation is found in |11|. The system

GGT, where G is a lower triangular matrix. A simple algorithm

(65D = C (8.1)
is then solved by introducing Y as the solution of

GY = C (8.2)
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Then we have

elp=y (8.3)

(8.2) and (8.3) are easily solved recursively since G is a triangular
matrix.

The solution to (8.1) is easy to iterate to machine accuracy as shown
in |11|. Suppose D is not an exact solution, while D + D1 is. Then
(6eT)(D + D1) = € and (ccTIDL = C - (@GT)D. We get the correction mat-
rix fram (8.2) and (8.3) if in (8.2) C is substituted with

c'=C-Cl1-D (8.4)

The iteration is repeated until either ITMAX stops the procedure or

|| D1 || is smaller than some test quantity. In (8.4) double precision
is used, since it is a difference between two great, almost equal, mat-
rices.

A subroutine PART has been written, which computes and refines the
G matrix iteratively. When C is ill-conditioned this procedure will
make the result better. Maybe, in these cases, it is easier to use
double precision.
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NO
START ™1 IRANK=NA?
1] el ¥ vES
80=AT Aq=(A0TA0) TAO
Ag=AT using SOLVEL
YES
TRANK=NA? i — ITMAX=-17? 3~y
Yo | 8
TRANK=NA APSINV=A4
Is any rowvector o) '
of AO zero? Transfer the
found linearly
YES independent co-
- ' lumn vectors of
Decrease IRANK with A to row vectors of A4
the number of zero
row vectors of AO L]
| = C=Aq A
L=0, K=1 .|  K=K+1 f v
_naT A -1
Determine BIG= great- K< NB? R, using SOLVEL
est absolute element o '
in column K of AO. YES
Let BIG=|AO(I,K)| T —
Y Yo
BIG<EPS? R T
o ‘ APSINV=D" +Aq
¥ no
Eliminate! +*
L=L+1
Is any row vector of NO
AO zero after —
eliminating?
¥ ves
Decrease IRANK with
the number of zero-
row vectors
NO
L=IRANK? —{—

+ YES

YES

Fig. 8.1 - Flow chart for PSINV.
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Cl:CCT

?

Compute G from c1-667T

Y
NO

Does the partition suc- ——

seeded?
Y YES

co=Cc, IT=0, D=0
PRINT FATLURE

]

Solve GY=CO ’ +

Y ITMAX = -1

Solve GTDle i

D=D+D1; IT=IT+1

Y

IT=(ITMAX + 1)? —>

¥ vo

D1 << EPS? —
Compute

¥ o +
CO=C-C1°D

using double precision

9 |

STOP

Fig. 8.2 - Flow chart for SOLVEL
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Now we turn to some numerical examples.

Example 1

This example is a simple test example.

Consider the matrix A, given by

1 0 2
A=1|1 & 1
0 -1 1

2 b =2

L S -
AT =35 |-1 7 8
5 1 4

The subroutines PSINV and SOLVEl were used on the CD 3600. The para-
=9 and ITMAX = 0. The received result differs
from the exact solution with just one unit in the last significant

meters were EPS = 10

digit (the relative error is ~10710).,

Example 2
Consider the linear system Ax = b, where

1 1 1 1 10
1 1 1 -1 2
kel IF1 s, 1 1| P 10426 (8.5
1 1 s, -1 |, 2436,

The system is constructed such that Ax = b with

(8.6)

£ w N
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Thus if &, 0,6, # 0 then x. given by (8.6) is the solution of
minimizing || Ax - b ||%.

§, =0or é, = 0 then AL does not exist and there is
no unique minimum. After some computations the following (theore-

tical) result is obtained for x = A'rb.

If, however,

. ‘ | - —
- 4 0 = 0
] 62 3 z $0 =0
rank A Y 3 3 2
X 1 2 1.5 2
X, 2 | 2 1.5 2
X 3 | 2 | 3 2
X, Y 4 Y Y

]
Table 1 - Theoretical solution x = Afb, with A and

b given fram (8.5).

The similarity of the second column to the fourth is due to the spe-
cial feature of the system. The system is treated in two separate ways.

a) EPS varied with §, and 8, fixed, PSINV used.

1
This example will illustrate the influence of EPS on the result. Intui-
tively, a great EPS may cause that the rank of A will be too small and
then the result can be everything. The simulations were made on the
CD 3600. The parameter ITMAX was 0. At a first simulation we chose

Solution computed on the CD 3600.

6, = 107° and 6, = 107°. The result is given in table 2.
[. s | 1 10 102, 1003 107, 1078 1078, 107 j
rank A 0 2 3 4
x| 0 2.00025 1.99990 14.549
% 0 2.00026 1.99991 -11.553
X4 0 1.99975 2.00044 3.004
ox, 0 3.99975 3.99975 4.000
Table 2 - Result from example 2 with 6, = 107°, &, = 107°.
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With EPS = 1 all elements are regarded as zero.

The results with EPS = 10°%, 1072, 10™° are expected. Rank A is

considered as 2 (or equivalently 6, = 0, &, = 0) and the theoreti-
cal result from table 1 is x' = [2, 2, 2, 4].

when EPS = 10’”, 10™° rank A is regarded as 3. Fram table 1 we ex-
pect the result x! = [1.5, 1.5, 3, 4]. Also the smallest EPS will
give a result, which differs from the theoretical one.

In the last case the reason for this discrepancy is that A is too
ill-conditioned. From b) we have cond A = 106. Since we invert cct
in SOLVEl we have to square this quantity. When the condition number
x the machine accuracy is greater than 1 we cannot expect to get

12

any correct result. Since the actual condition number is 10™" and

the machine accuracy ~10710

the result should not be astonishing.
Note that the x given in the last column of table 4 will make
|{ Ax - b || very small.

At a second simulation we chose 8, = 10-2 and §, = 10°3. Then cond A

is «.10'* so we hope to get correct results for small values of EPS.

s | 1| 1071, 1072 1073 107%, 1078 |

" renk A 0 2 3 | Y

B %) 0 1.99 2.016  1.000 079

B %, 0 2.010 1.969  1.999 995

x 0 1.995 2.015  2.999 926
x, | 0 | 14.000 4,000  4.000 000

Table 3 - Result from example 2 with &, = 1072, §, = 107°,

Solution computed on the CD 3600.

In this simulation the obtained results coincide very well with the
expected values of x from table 1.
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b) é. and 8o varied. PSINV and SVD compared.

In this case the simulations were made on the Univac 1108. In PSINV
we used EPS = 10_7, ITMAX = 0. 51 and 62 were varied and the results

from PSINV and SVD were compared. The accuracy is measured as

ldxil

max
i x,

ll
where the component x. is taken from table 1, and 8% is the devia-
tion of X .

From table 4 it is obvious that in this example SVD will give results
with higher accuracy than PSINV. It could be noted that 61 = 0,

8, = 1073 will give oL = [2s 2, 2, 4| when PSINV is used. The same
deviation fram the expected result was obtained in table 2 when

EPS = 107, 107°.
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10~
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107°

-2

10
10

1073
107"
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1071
1072
1073
1074
-1
-2
-3
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10
10
10
10

1071
-2

10
1073
107"

1071
-2

10
1073
107"

10
10
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-3
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PSINV

Accuracy

1072
-4

10
0.12
FAILED

107"

10
1072
FAILED

10”
0.2
0.2
FAILED
FAILED
"
"

"

FAILED

"
"

1073

FATLED
0.5
FAILED

Table 4 - Result from example 2.
Solutions are computed on the Univac 1108.
Comparison between PSINV and SVD.

rank A

F F F ¥ ¥F¥ F F ¥ F £F F F ¥ F ¥F F

F F £ F

w W w w

SVD

Accuracy

107°
-5

10
107"
107"

107°
-4

10
107"
1073

107"
-4

10
10~
107"
1073
1073
1073
1073

1072

0.05
1073
0.02
10”
107°
10"
10"

| cond A ;

10°

108
10"
10°
10
10
10
10

g Fw w.

10
10
10
10

o F F F

10
10
10
10

oy v o O»n

10
10
10
10

o OO O

10
10
10
10

o F o ow N
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Example 3

In this example Hilbert matrices were used. It is well-known, |11],
that they are very ill-conditioned. A subroutine, given in |11|
was used to generate the inverses of the Hilbert matrices. The in-
verses Tn (n denctes the order) were inverted with PSINV and with
SVD to get H_. Aftervards the result 171 vas compared with HA_,
which was generated as

(HA D, 4 = FLOAT (1/(I + J -1))

The computations were made partly on the Univac 1108 (PSINV and
SVD used), partly on the CD 3600 (only PSINV used).

The result from computations on the CD 3600 are given in table 5.

T |
i n T |cond(Tn)|2 1 TTMAX | iﬁ:@gigogg | ?a?|(T;l - HAn)i,j j
;__1#““ 1. 10° . ] 0
2 4+ 10° : : 0 %0_10
EREP R R
vz 108 g,, 2 2 %O-u
. 2+ 107 10 10 2. ig:io
{4~gwmﬁ 2 . 10% 10 | FATLED -
L | | | | ]

Table 5 - Results from example 3.
Computed on the CD 3600.

The result is good. The failure when n = 6 depends on the accuracy
of the machine (~10710).

Table 6 gives the result from the computations on the Univac 1108.



n
0
1 10
2 0
10
3 0
10
4 0
10
5 0
10
6 0
10
7 0
10
8 0
- 10

ol

!
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PSINV
Number of max (T;;:L - HAn)’ )
iterations 1i,j 13»
0
1 0
. 1077
. 1078
1.10°
1. 1078
0 . 1072
y .+ 1070
FAILED
FAILED
FAILED
FAILED

l

Table 6 ~ Results from example 3.

cond A X (T;ll
i3
1

20 1.
5 « 10° 6 -
2 « 10" g
5 » 10° 7 s
107 8 -
2. 108 7 .

(10%)

Solutions are camputed on the Univac 1108.

Camparison between PSINV and SVD.

107

-7

10

107

107

107

1071
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From table 6 we conclude that using PSINV we can calculate Hn with
n up to 4. When a suitable number of iterations is used the result

is brought to machine accuracy.

The subroutine SVD will give result forn =1, ..., 7. Whenn = 8
the inverse Tgl differs very much from the trueHilbert matrix Hg.
The failure is also shown in the obtained value of cond A. The cor-
rect result is 1.53 - 1010. It is also shown in the table that with
low values of n, PSINV with iteration will give the best accuracy.
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9. APPLICATION TO IDENTIFICATION I. INTRODUCTION.

In this and the following three chapters we will consider an iden-
tification problem. First we give some preliminaries and a statement
of the problem. It will also be shown that it turns out to be an or-
dinary least squares problem. In the next chapter we give some recur-
sive formulas which allow the parameter estimates to be computed re-
cursively as the data are obtained. Finally, in chapter 1l we discuss
what happens when our model of the process is of wrong order. Chapter
12 contains some numerical examples.

Now consider a linear, time-invariant, discrete, single input, single
output system. Let the input signal u be piece-wise constant over the
sampling intervals, which are of constant length. Then the system can
be represented by

y(t) + aly(t-l) L TR any(t-n) = blu(t—l) + soe ¥ bnu(t—n) + e(t)

(9.1)
e(t) is assumed to be a sequence of independent, equally distributed
random variables with zero mean and finite variance.

The coefficients aps +ees @0, bl’ on iy bn are assumed to be unknown
and the problem is to find them. We then perform experiments on the
systems by changing the input u and observing the output y. Let us

introduce a matrix notation for the problem.

[ y(n+1) ] [ =y(n) coveee =y(D) ulnd c.e.e.. u(l)

| y(n+N) | | ~y(n#N-1)... -y(N) u(n*N-1) ... u(N) |
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—al | " e(n+l) |
a .
n
g = e = * (9.2)
b1 .
_bn_ | e(n*N) |

It is worth pointing out that in most cases the number of measure-
ments (n+N) is much greater than n.

The system equation (9.1) implies
Y =¢6+te (9.3)

A usual way of determining an estimate 6 of 6 is to do it in such a
way that the loss function

Vzele=||Y-¢6 || (9.4

is minimized, see |28|. Fram the previous chapters we know that the
solution of this problem is given by

- +
e =9%Y (9.5)

If rank ¢ = 2n, then there is just this 6, which minimizes (9.4).
Further we have in this case

T -1.T
N O
If, however, rank ¢ < 2n then there is no unique minimum and it is
not trivially true (in fact it is not true) that we will get a correct
result, or a result as good as possible. We note that, if possible,
rank ¢ should be = 2n, that is at least that the input signal should

be chosen irregularly enough. In other cases the last n columns of ¢
may be linearly dependent.
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Anticipating the result in chapter 11 we mention that with e = 0
(noisefree system) ¢T¢ will not be invertible if the model is of
too high order.
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10. APPLICATION TO IDENTIFICATION II. RECURSIVE FORMULAS.

Now we will give some recursive formulas for the computation of 6.
In practice it often happens that the observations are obtained re-

cursively. The formulas are to handle this fact.

It could also be pointed out that with rank ¢ = 2n the given formu-
las coincide exactly with those in |28|. Astrdm, however, uses

e (¢T¢)-1¢T and consequently must have some approximate initial
conditions. This fact is the essential difference between Astrém's

formulas and those given here.

For this case (rank ¢ = 2n) it is known from practical computations

that the method converges.

Let eN be the estlmate based on the N first equations. We then want
to get 6,4 from eN without finding the pseudoinverse of a matrix of
order (N+1) x 2n.

The matrices introduced in (9.2) we now call YN, ¢N’ 8 and ey respec-
tively. Further we introduce

oY, oy
YN+1 = e 0 0 0 ¢N+l : .i.l' (lo.l)
YN+ |, J N+l
We have
... = ol Y (10.2)
N+1 = On+1YNe1 .

The formulas (4.4) and (4.5) are easily transposed to get the following
relations. Making it comfortable we sometimes drop the index of &y and

Pre1e
i) & L "
veee| = | o7 - (I - ¢ QW;"L (I -9 4>)4’ } (10.3)
T | I ¢(I-¢¢)‘P cp(I-¢¢)<f>
i) [e 17 71 T T
veee = | 6T - “’*J""TJT s ‘fi, (10.4)
T
9" 1L 1+¢ToTeT @' ¢ToTeT
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Case i) is equlvalently to rank One1 > rank oNe This condition can
be written (I - ¢N¢NWN+1 $ 0.

It is natural to introduce the matrices

_ +
Py = I - ooy (10.5)
T
R
By = ontn (10.6)
Both PN and BN are of constant type 2n x 2n.
Equations (10.1) to (10.6) now give
oo + P 4’{% ' Py P Yy
8 = ¢ AN
bd T P ¢ ‘-PTP P Yo
+ ch T +
¢ Yyt 2Tp? [YN+1 -7 YN]
5 . ¢
°N+1 = N ¢T %[YN*']. 7 eN] (10.7)
ii) ot B g B
8 - ¢+ - BN ' BN K
N+l 14978, %1 1 +‘7°TBN‘/’ y
N+1

6 B, + ¥ [ T ] (10.8)
%) =9 .. S - 8 R
N+1 T BN </3TBN‘P Ynve1 =7 Oy
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As a summary we get

L

2 P T 3
o1 = Oy * KM (ypyq - N+ 10N (10.9)

The temq’ﬁﬂeN is the value of yy,, if the model was perfect and the
system was without noise. The brackets are just the difference between
the measured and the predicted value of y,,-

The weighting factor K(N) is given by (10.7) or (10.8) according to
the actual case.

If the described method should be of any value we need recursive formu-
las for Py and BN. Such equations are derived in Appendix A, and the

result is:
Py = I (10.10)
%
case 1) PN+1 PN -4].1. (10.11)
N+1°N
T
case ii) P, = P - Nn, (10.12)
N1 TN T T LT L 4 :
N+1 n
By = 0 (10.13)
T T
d
case i) BN+1 = BN - ngN - ¥CN +
Pne1on PNe1n
%
N T
0 ( v (L +,00 (10.14)
N+1°N
dydy
cass 15  Bo. = B, - bl
N+1 - °N (10.15)
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where
o = Pfes
dy = By

With these notations we also have

case 1) K(N) = —T—CN—-—
P n+1%n
case ii)  K(N) = -————f‘%———
1 +P\ady

(10.16)

(10.17)

(10.18)

(10.19)

We repeat the criterion of cases is that case i) is equivalently

Pyfep ¥ 0

We also note that if rank ¢ = 2n then P

(10.20)

= 0 and as this is the maxi-

mum of rank ¢, Py is not needed in the future. The rank of ¢ is ob-

tained as the number of times case i) is used.

Finally we summarize. The equations (10.9) - (10.20) are the recursive

formulas.
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11. APPLICATION TO IDENTIFICATION III. IDENTIFICATION WITH MODEL
OF TOO HIGH ORDER.

In practical cases the exact order of the system is not known. There-
fore a fundamental question is what happens when the order of the mo-
del differs from the order of the system. When the order of the model
is too low, we will get estimates of the parameters of a system, which
is an approximation of the true system to a system of this lower order.
In this chapter we discuss what happens when the order of the meodel is
too high.

It could be mentioned that Astrdm gives some interesting results in
|28
crease of the loss function, when the order of model is increased, is

. He states a theorem by which it is possible to test if the de-

of statistical significance. Here we will consider the problem from
another point of view. It turns out to be necessary to distinguish bet-

ween systems with noise and noise-free ones.

We need some results about the rank ¢ as preliminaries. Unfortunately
we are not able to give strict proofs to all of them.

In the following we first deal with systems with noise. The essential

result is theorem 11.2.

The same discussion cannot be applied to systems without noise. As
shown in theorem 11.6 a noiseless system will almost always give quite
other results, when the order of the model is too high.

Before starting we will point out, that the next chapter contains nu-
merical examples, illustrating the results from this chapter.

System with Noise.

Now consider the system
y(t) + ajy(t-1) + ... + apy(t-p) =

= blu(t-l) + o0 t bru(t-r) + e(t) (11.1)
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As before e(t) is a sequence of independent, equally distributed

random variables with zero mean and finite covariance.

Let the model be

y(t) + ay(t-1) + ... + a y(t-n) =

= bpu(t-1) + ... + bu(t-n) (11.2)
where the case n > max(p,r) is allowed. Then we have fram Appendix 3

Theorem 11.1

With the assumptions above and ¢ defined by (9.2) rank ¢ = 2n with
probability one, if

" u(n) ... u(l)

rank . . =n

. .

u(N-1) ... u(N-n) _

Remark
The conclusion of the theorem is:

A system with noise and an input signal, which varies irregularly

enough,has the pseudoinverse
of = (T Lot

The minimum of

Vel y-ee||f

is unique.
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Introduce
a; 1
ag | P
0
0y = | * (11.3)
0 n
bl n+l
br n+r
0
I 0 | 2n

which contains the correct values of the parameters. Let us put

6 = 60 + el. We get

2

V=] Y-, +e;) | (11.4)
According to the equation of the system (9.3) we have
Y = ¢60 + e
and

- 2
Velle-o9op |l (11.5)
When V is minimized we get
6y = ¢ ©

We have the following
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Theorem 11.2

A system with noise and with rank ¢ = 2n will give the estimates
0 + ¢ e (11.6)

Remark

For a noisefree system (e = 0) there is perhaps no unique 6, since
rank ¢ = 2n may be impossible.

An essential question is the behaviour of the term ¢+e. It is clear
that it decreases when the variance of the errors is decreased. In
|28| Astrém states a theorem which shows that with suitable assump-
tions on the input signal u(t),¢+e -+ 0 in mean square as N » ». We
note that it can be shown that || o || » 0, N> = with use of
(10.15). This is, however, not enough since E || e ||2 = No? + =,

N —’ m.

System without Noise.

Now we want to consider a noisefree system

y(t) + aly(t—l) $ e ® apy(t—p)
= blu(t-l) * sus ¥ bru(t-r) (11.7)

and the model

y(t) + ély<t-1) PO ;ny(t-n>

= Blu<t-1) b+ Bnu<t-n) (11.8)



and

53.

From Appendix B we have

Theorem 11.3

Given the system (11.7) and the model (11.8). Let n = max(p,r),
k = n - min(p,r). Assume that u(t) is white noise, rank %00 © ptr,
where

y(n) ... y(n-p+l) un) . .. u(n-r+l)

¢g = p . : :

| y(n#N-1-k) ... y(n-ptN-k)  u(n#N-1-k) ... u(n-r+N-k)
and that rank ¢ = rank qk¢, where q is the forward shift operator

working on all the elements of ¢. Then rank ¢ = 2p with probability
one.

Theorem 11.4

Given the system (11.7) and the model (11.8). Let k = n - max(p,r) > 0,
k+%. Assume that u(t) is white noise,

rank ¢. Here ¢l denotes the matrix

m = min(p,r), ¢ = |p—r|,.j
rank ¢, = ptr and rank qj¢

y(n) ... y(n-p+l) u(n) . . . u(n-r+l)

* g E : :
| y(n#N-1-m) ... y(n-p+N-m)  u(n+N-1-m) ... u(n-r+N-m)

q is the forward shift operator working on all the elements of ¢.
Then rank ¢ = 2n-k = n + max(p,r) with probability one.

Since rank ¢ < 2n if the order of the model is too high, the result
for systems with noise is not applicable. Further we cannot expect
that an assumption as g = 6y + 0 will give 8, = 0. What we can hope
is to get common factors in the pulse transfer function.

bffl+ e +bﬁfr
) = = = (11.9)
1+ a;q + .00t apq

H(qt




S4,

where q is the forward shift operator. In theorem 11.6 we show that

this in fact occurs.

At first we consider the case when n = max(p,r). We have

Theorem 11.5

Given a noisefree system described by (11.7), a model described by
(11.9) with n = max(p,r), rank ¢ = 2n. Then the model will give the
estimates 6 = 6g+

Proof

Since rank ¢ = 2n there is a unique minimum of the loss function
2

VelY-oee |

Now using & = 6, we have

Y = 98 (11.10)

according to (9.3) and (11.3). Then V(eo) = 0. Naturally V is mini-
mized and the existence of a unique minimumn completes the argumenta-
tion.

Q.E.D.

Now we turn to the case n > max(p,r). With use of theorem 11.5 there
is no restriction in assuming the system to be (p=r).

y(t) + aly(t-l) + ... ¥ apy(t—p)
= blu(t-l)  JENPR bpu(t-p) (11.11)

We have the model

y(t) + ay(t-1) + ... + a_y(t-n)
= Blu(t-l) Foo.. 4 Bnu(t-n) (11.12)

with n > p.
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Theorem 11.6

Given the system (11.11), the model (11.12), the relations n > p,
rank ¢ = n+p. Then the least squares identification will give esti-
mated parameters, which physically means that the pulse transfer

function contains factors in common.

Proof.

In the proof we will first assume that the pulse transfer function
will get common factors. Then we will derive some formulas, expres-
sing what this means to the solution 6. The last part of the proof
is to show that this 6 must be solution ¢+Y.

Now let us assume that we will get common factors in the pulse trans-

fer function. This can be written:

s =1 - =n -1 -p
blq + .00t 4 : blq + .00 bpq .
- -l R ¢ -1 -p
1+ a;q + ... ¢t aq 1+ a,9 + ...t apq
1+ xlq’l + oun ¥ Akq“k
. T - (11.13)

1+ A4 t...o v M9

where n = ptk. The constants A;, ..., Ak are arbitrary.

(11.13) determinates
~ - T
6 = @5 eees an, bl’ sy bé]

as a function of ays eeeo ap, bl’ ceey bp, Al’ R Ak' This rela-

tion is now to be expressed explicitly.
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The polynomials shall be identical which gives us:

By = By

b2 = blhl + b2

bi=§bﬁk+brkﬂh@1+"'%. 1=k+l, ... p

botk-1 = Ppri-1 * Ppoak

bp+k = bpxk

A (11.14)
al = al + Al

a2 = a, + alxl + A2

a; =ay + ai-1A1 + ... 1 ai—kAk 1 =K, «eey P
ap+k—l - apxk—l ¥ ap—l}‘k
ap+k apxk

If we define AO = 1 all the formulas could be written in the form

bi= z bj)‘i_j, ai= z ak)\i_k (11.15)
{3} {k}

Now let us change the elements in 6 to

[ a;
by
8 = | = (11.16)
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This implies

[ -y(n) un) . . . -y(1)  u(l) |

6 = : : : ; (11.17)

-y(n+N-1) u(n+N-1) ... -y(N) u(N)

Introduce
- a, .
by
Xy = E (11.18)
a
p
b
| P
and Oi = [0, “vs O]T of dimension i. Further introduce the vectors
219
[ X | 1
60 = —— ei = | = i = l,noo, k (ll-lg)
X
0
R S R -
| O2x-21 |

This definition of 89 coincides with (11.3), i.e. 60 contains the

correct parameters.

The equations (11.14) can now be written in the compact form

6 = 8 + Alel + ...+ Akek (11.20)

It is rather easy to see that (11.11) implies

¢6; = 0 i=1, «..y k (11.21)
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Summarizing we note that common factors in the pulse transfer func-
tion mean that we have the estimate (11.20), where the vectors 6.
are defined by (11.19). They satisfy (11.21). It is also obvious
from (11.19) that the vectors 8> i=1, ..., k, are linearly inde-
pendent.

What we now have to do is to show that 6, given by (11.20), in fact

~

is the solution, i.e. 6 = ¢+Y.

It was given rank ¢ = n+p. Thus dim N(¢) = 2n - (n*p) = k. Using
(11.21) we conclude that the vectors ei, i=1l, ..., k are a base
of the set N(¢).

Introduce the notation o = ¢+Y. Let us show é* = é.

6 can be fully defined by the properties (see the proof of theorem

5.1):

. 2 5 s s s #
i) v(e) = || ¢6 - Y ||° is minimized when & = 6 .
i) 6%eN(e) = RGO

We have
k
4 2
vee) = || o8y + ] ey - Y [[7 =
i=1

since Y = $6, (11.10) and 98, = 0 (11.21).

In general 8y has a component in N(¢). Since ei, i=1, ¢eey ky, are

bases of N(¢), we can subtract this component from 6, to obtain 6 in
(11.20) if the coefficients Ais sees Ay are chosen suitable.

Hence with "suitable" values of . 3 1 2 eue Ky 6 is a vector in
R(¢ ). We have shown that 8 fulflls the uniquely definition of e
and then 6 = g%,
Q.E.D.

It could be of some value to have a more explicit formula, from which
the constants Al, aveini g Ak can be determined. The derivation of such

a formula is now given.
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The problem is: given 6, the base 6, ««.s 8 of N(¢) then express
the component of 8 in N(¢) as a linear combination of el, cees ek.
Introduce 66 = the component of 8, in N(¢YL. Then we have

o 1
0 == L 2385 * 9 (11.22)

which is similar to (11.20). Forming inner products <ejl60> with
j =1, ..., k we get the system

_ o1 r
<0,[8y> +-- <el|ek> A <el|eo>7

. : 5 - f (11.23)
] <ek|el> eee <0y |0y > il Ak‘ L<ek|eg> |

Compare with (7.5). Since By cves 8y is a base and thus linearly in-
dependent the inverse exists. Introducing

@=|: (11.24)

-
1]
)

= - (@ODH e, (11.25)

*y
e:eo+[el . ek] .

A
=90+@TA

=0, - @T® OH @, (11.26)
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6= [1- @ @le, (11.27)

Geometrically this means that 6 is the orfthogonal projection of 6,
on N( @ ). An al‘cematlve characterization of 6 is then the following:
6 minimizes || o - 0, || with the constraints (ele Y20y 1 B Xy eeny Ke



61.

12. APPLICATION TO IDENTIFICATION IV: NUMERICAL EXAMPLES.

The main intention with this chapter is to give some computational
results illustrating the theory developed in chapter 11l. All the
computations are made on the CD 3600.

In the first example a first order system is treated. Identifications
are made with models of order 1, 2, 3. In the second example the or-
der of the system was 3. The orders of the models were 1, 2, 3, k.
The third example differs from the others. Theoretically we will have
quite different results when there is noise in the system compared
with a noisefree system. What will happen in a computation, if the
noise is small? Will there be a smooth change from one result to an-
other? When will this change occur? By varying EPS compared with the
variance ¢ of the noise the third example is intended to illustrate
these questions and to give some insight of how the program treats

these cases.

In all the examples the input signal was a PRBS (Pseudo Random Binary
Signal). The actual period was 83. The noise signal was a sequence
of normal N(0,0) variables. The number N was 96.

Example 1

The system was

y(t) + 0.5y(t-1) = u(t-1) + e(t)
The parameter o was 1, 10_1, yax g 10" and 0. The system was identi-
fied with models of order one, two and three. The value of EPS was

1078, The result is listed in tables 1 - 3.

The loss function decreases just a little when the order of the mo-
del is increased, as it should since the true order of the system is

one.

When the order of the model is one, table 1 shows that the estimated
parameters become better when ¢ is decreased. '

The effect is not always true with models of higher order. For in-

3 we have rather great differences between estima-

stance when o = 10~
ted and true parameters. The reason is maybe the following: The er-

rors from the estimation is ¢*e (11.6). If o is great then e is great
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and the error vector ¢Te also. When o is smaller, e becomes smaller,
but ¢ becomes more ill-conditioned, and thus ¢Te may increase. It
is not impossible the balancing between small e and ill-conditioned

¢ causes the phenomena when ¢ = 1073,

Table 2 shows that we get right values of the parameters when a

model of right order is used (no noise).

In Table 3 expected and computed values of the parameters are shown.
In the case ¢ = 0, n = 2, 3. The expected parameters are calculated
from (11.26). The accordance is very good.

In some other simulations of the same system (¢ = 0, n = 2, 3) we
did not get these parameter estimates. Nevertheless, we obtained app-
roximate -factors in common. Further we obtained rank ¢ = 2n. This si-
tuation can be geometrically understood in the following way.

We will minimize
2
V=||ee-Yl[|

If rank ¢ < 2n we know that there is no unique minimum. Geometrically
this means a horizontal valley, where all the points in the bottom mi-
nimizes V. With the pseudoinverse ¢+ we pick up the one of them, which
is nearest to the "origin". Now if computational round-off error dis-
turbs V a little, it may cause, that the disturbed V has a unique mi-
nimum. If the disturbance is small, this new minimum is approximately
in the bottom of the original valley, but it may very well differ from
the first point we obtained.
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Table 2 - Identified parameters from example 1.

No noise. Correct order of the model.

n True parameters Estimated parameters

a4

by

8y

1.0 El 1.00000 00000

0.5 0.50000 00000

Table 3 - Identified parameters from example 1.

n Expected parameters Estimated parameters
a,  0.27777 T7777... ;1 0.27777 77777
a, -0.11111 11111... ;2 -0.11111 11111
2 .
b, 1.0 b,  1.00000 00000
b, -0.22222 22222... b, -0.22222 22222
a,  0.26623 37662 3 ;1 0.26623 37662
a, -0.06493 50643 35 32 -0.06433 50649
a,  0.02597 40259 74 ;3 0.02597 40259
3 .
b, 1.0 b,  1.00000 00000
b, -0.23376 62337 7 b, -0.23376 62337
b,  0.05194 80519 kg 53 0.05194% 80519

No noise. Too high an order of the model.

S

2

1

35

78

46
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Example 2

The system was

y(t) + 0.5y(t-1) = u(t-1) - 1.lu(t-1) + 0.24u(t-2) + e(t)

The parameter ¢ was 1.0, 10—2, 10™* and 0, and the value of EPS was
10-8. Identifications were made with models of orders one to four.

The results are given in tables 4 - 6.

When ¢ ¥ 1 it is very evident that the loss function does not decrease
very much when n is increased from 3 to 4. Looking on the loss func-
tions in the case o = 1 one would believe that the order of the sys-
tem is two. When n = 2 we have also very good estimates of the para-
meters.

It is also remarkable that the estimates when ¢ = 10_2, 107 and 0

for models with n = 1, n = 2 are nearly just the same.

In table 5 it is shown that o = 0, n = 3 will give us the correct va-
lues of the parameters. The errors are now approx. 10-8 and greater

than in example 1, when n was 1.

Expected and computed values of parameters when ¢ = 0, n = 4 are gi-
ven in table 6. The expected parametersare calculated from (11.26).
The differences between expected and computed values are m10—8, which
is a quite acceptable result.
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Table 5 - Identified parameters from example 2.

Table 6 -

No noise. Correct order of the model.

True parameters

a, 0.5
a, 0.0
a, 0.0
bl 1.0
b2 -1.1
b3 0.24

Estimated parameters

él 0.493899 99786
52 0.00000 00155
33 -0.00000 00029
Bl 0.99999 99999
b2 -1.10000 00215
b3 0.24000 00187

Identified parameters from example 2.
No noise. Too high an order of the model.

Expected parameters

a 0.74562 20150
a 0.12281 10075
a 0.0
a 0.0

1.0

-0.85437 79850
-0.03018 42165
0.05894 92836

o oo o o
F W N E W N

Estimated parameters

él 0.74562 19990
a, 0.12281 10925
ag  -0.00000 00593
a,  -0.00000 00131
by 0.99999 99991
b,  -0.85437 80029
by  -0.03018 42743
by, 0.05894 93409
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Example 3

This example was intended to illustrate the influence of EPS. If
EPS is greater than ¢ then maybe the result is approximately as
expected for a noiseless system.

The system was the same as in example 1

y(t) + 0.5y(t-1) = u(t-1) + e(t)

The parameter o was 1072(1072)107°

every value of o. Models of orders one, two and three were used.

and EPS was o/5, o and 50 for

The result is shown in table 7.

For all used ¢ rank ¢ = 2n if EPS is less than o , while rank ¢ =

= n + max(p,r) = n+l when EPS is greater than ¢. The loss functions
are a little greater with the greatest values of EPS. However, the
accuracy (unfortunately defined in different ways) is better with
the great values of EPS.

In the table it is shown that the greatest values of EPS results in
estimates which are approximately those which would be got with o = O.
A quantitative reason for this fact is the following:

Consider the matrix ¢. Let ng =n + max(p,r). When EPS is great then
rank ¢ is considered as ng- This means that Al in the program con-
tains ng column vectors from ¢. Let 99 be the limit of ¢ when ¢ - 0.
(The noise is e(t) = oe,(t), where e, (t)EN(0,1) are assumed not to be
changed.) Rank ¢, = n; according to theorem (11.4). The matrices A
and Al in the algorithm are denoted ¢ and 991 in this case, (limit
when ¢ -+ 0), resp. ¢, = ¢ and 17 with EPS great. Let us assume o
small. Then 95 = ¢l. If ¢21 = ¢ll then it is clear from the algorithm
that ¢; = ¢I which implies 62 = 61. One expects that the accordance

@2 = él grows with decreasing o.

The different models have been compared with the noisefree system
(0 = 0) in the following way:

A new PRBS signal has been used as input, and the outputs have been
compared. The loss function 2 is used as a measure of the accordance.
It is computed as the sum of the squares of the differences between
the outputs from the system and from the model.
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50
Loss function 2 = J ’ySYST(t) - YyopeL(t? 2
t=1

When o = 10"2 the new loss function indicates that small values of
EPS will give the best result. When ¢ = ig~6
the smallest values of EPS fail. Probably ¢ is too ill-conditioned

in this case, since the factorization GGT = ¢T¢ fails. In such a

s, N =2, 3, however,

case it seems to be a good solution to choose EPS great enough to
give a well-conditioned matrix of lower rank. In another simulation
of the same systems with the same values of o and EPS the procedure

succeeded, but the accuracy was just 0.3.
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Table 7 - Identified parameters from example 3.

o EPS n rank ¢ Loss function Accuracy Loss function 2
o/5 1 2 8.56 . 107° 1073 2.9 « 1070
o 2 4 8.ul.107° 0.1 5.4« 107°
1072 3 6  8.35 . 107° 0.1 5.2 « 107°
56 1 2  8.56 . 1073 1073 2.9 . 107°
2 8.54 . 10‘3 10’2 7.1 10'5
3 n 8.62 10'3 10‘2 8.0 « 10'5
o/5 1 2  6.63 . 1077 107° 2.3 . 1070
s 2 4 6.59 . 107/ 1072 2.0 » 1078
» 3 6 6.7 . 107 107t 2.4 . 107°
10 -7 -5 -8
56 1 2 6.63 + 10 10 2.3 « 10
2 7.13 « 1077 1074 1.8 « 1078
3 4 7.04 . 1077 1073 2.1 . 1078
o/5 1 9.17 - 107 1077 4.7 + 107
s 2 m FATLED - -
3 FATLED - _
1070
56 1 2 9.17 - 107H 1077 4.7 « 1071
2 3 9.67 . 10711 55~ 6.3 . 10712
3 4 9.68 » 1071 107° 7.3 « 10712
Accurac
1. Rank ¢ = 2n Accuracy = max(lal-al|, cees |bn-bnl)
a;-a, bn-bn
2. Rank ¢ < 2n Accuracy = - 5 wwesy 5
al Bn

where 51, cees bn are expected estimates for a

noiseless system (see table 3).
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APPENDIX A

RECURSIVE EQUATIONS FOR PN AND BN.

Now we want to derive recursive equations for P and By. First we
repeat some equations from chapter 10. Sometimes we will drop the

indexes of P, BN, LNT and N+1 to simplify the expressions.

_ +
PN =I- NN (A.1)
G
By = ¢]’;¢§ (A.2)
Case i)
o 11
+_ o Rt pe
N v B 5 (A.3)
¢T ¢ PP '¢ PP
Case_ii)
o |7 T
.1.
|t BW;F‘» - _BY
g1 = |l = (A.4)

o7 b 1918y 144 BY)|

Introduce the vectors

By = P r (A.5)
dy = BN~/’N+1 (A.6)
Now we get
Case_ i)
§ ey .

¢ 1 C
P = T = ¢‘i‘ _ °N : N
N+1 T, | (/,Tc 7

N N L/J
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Lol of
Sl-eer— g — " T
Sy Py
) Cﬁér +
Py = = (I-¢¢)
¢ ey
cTPN
=Py -7
¢ ey
CCT
_ N°N
PN+1 = PN - T (A.7)
P N+1°N

We have used the fact that P, is symmetric, which follows from (3.7).

N
Case_ii)
t ]
R PR VA
N+1 T. !
17 1 1407 T
R, T dI\?fT¢+¢ quDT
= - ¢ ¢ - T
iy 1
1«/’dN +<PdN
(PT
S PN - dN 0 (I - ¢+¢)
1+<PdN
T
b dy Py
= By -
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T
P = P. - _idN_cN__
N+1 N
1+ 19y

Now we calculate the corresponding formulas for BN

Case 1)
T (cN(PTq,)
1-1 ¢+_
- + CNLPT¢ ' cN (PTCN
Buer T ¢ T T | T
°N ‘¢°N _______________
T
N
T
| P
T T
T + + $ +°5 T
CaqT oouete  ete foy
=¢¢ " TIT T
LPCN CPCN

i
T T T
CN‘P ¢+¢+ ‘fCN C\CN
o7 T T 2
(7 ey) (f ey

"By Bfey . o Byfey R a

"N ‘-PTCN i “PTCN (‘chN)2 (FCN)2

Since C{)TBNKP is a scalar we get

T T T
ok * 4EN . o
T 2
¢ N+1°N MIFHICN)

Bye1 = By -

(1 +‘f§+ldN)

(A.8)

(A.9)



AL,

Case_ii)
—TT (@D’
N RO S
*d 1+7a 1#fla || i
1+41a, |

£ 47 ¢*¢*r€/’d£ ) st01‘¢+ akd ¢dN
v 1'ay wla, ey’ 1+$/’Td )

T

S Bfdy  ddy deN L JT
" 144%a, 1+‘deN (+fa, ) Q@ +f

.5, - deN deN
1+‘frdN 14"
T
Buep = By - —l;iz-dﬁgN— (A.10)
+1

The initial values P0 and B0 remain to be determined. We will show
that

PO =1 (A.11)
BO =0 (A.]‘.Z)
a) Ql-f_g

(A.7) gives
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A direct computation gives

¢"I'
+ _ T T.-1 _ 1
1%1

and the use of (A.1l) will give

(A.9) gives

T T
%% . %1%
B 7

1=
(¢lc0)

<¢l¢'{)2

The direct computation gives

T T T T
g o= t%l %%
1 T T T2
0167 4197 (6197)
b) ¢, =0

(A.8) gives P Is

l:

¢, = 0 implies ¢{ = 0. Thus a direct computation gives the same
result Pl = I.(A.10) gives Bl = 0 in accordance with the direct
computation
T
S R B
By 2t#y =0
Summary

The equations (A.5) to (A.1l1l) are the iterative formulas for Py

and BN.
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APPENDIX B.

SOME THEOREMS ABOUT RANK ¢.

In this appendix we will derive some theorems about rank ¢, which

are used in chapter 11.

After repeating some notations we start with two lemmas. Then sys-
tems with noise are treated and finally we take systems without

noise in consideration.

Let us introduce the system:
y(t) + aly(t-l) * gae * apy(t—p) =

= blu(t—l) L J bru(t-—r) + e(t) (B.1)

and a corresponding noisefree system:
y(t) + a;y(t-1) + ... + apy(t—p) E

blu(t-l) + ... ¢ bru(t-r) (B.2)

We will have use of the following two models:

“0 ~0
y(t) + aly(t-l) * sus ¥ apy(t—p)

= Bgu(t-l) b4 Bgu(t-r> (B.3)

y(t) + ay(t-1) + ... + a_y(t-n)

It is assumed that n > max(p,r).

The ¢ matrix, which corresponds to the model (B.3), will be denoted
by ¢0.
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“y(n) . . . y(n-ptl) u(n) . . . uln-r+l)
9 = . . . . (B.5)

| y(n+N-1) ... y(n-p*N) u(n+N-1) ... u(n-r+N)

In the following ¢ will mean the ¢ matrix, which corresponds to the
model (B.4). |

Now let us start with two lemmas, which are useful later.

Lemma B.1

Let £ and n be continuocus, independent random variables with finite
distribution functions. Then the probability P(£=n) is zero.

Proof

The proof is a straightforward computation.

P(g=n) = [f £, [ (x,y)dxdy = ] fE(x)fn(y)dxdy
X2y Xzy

This is an integral over a domain of measure zero. Since the integrand
is finite the integral must be zero.
Q.E.D.

Remark

If £ or n is quite or partly discrete then fg(x) resp. fn(y) contain
dirac distributions and are not finite. If such a dirac distribution
gives contributions in the domain of integration the proof above is
not valid. Such a situation may also occur if the variables are depen-
dent.

To simplify the expressions in the following we will introduce the
concept "backwards independent". Note that this is not a general con-

cept, but it will be used here for practical reasons.



B 3.

Definition B.1l

Let the vector ¢ and the matrix A be given by:

& "3 ~** Mgy
E=] A= : . (B.6)
-gn_ _“nl"'nnm

where all components are random variables. We will say that g is back-
wards independent of A if £y is independent of Ej’ 3 21y vees 3-1,
and of njk’ j =1, eeey iy k =1, ..., m. This must be true for is=

=1, ..., N.

Now we have:

Lemma 2

Given £ and A by (B.6), where all the random variables are assumed to

be continuous with finite distribution functions. The matrix A0 given
by

Ay = . . (B.7)

"-1,1 **° "n-1,m
is obtained from A by dropping the last row. Now assume that g is
backwards independent of A and that rank A0 = m. Then g does not be-

long to the range of A (g¢R(A)) with probability one or equivalently
rank of [ ¢ i A ] = m+l with probability one.

Proof

We will compute the probability of the complemeht (¢ does belong to
the range of A)

P(g€R(A)) = PAX; £ = AX)

where A is an m vector. If ¢ belongs to R(A) there must be such a \.
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Among the (n-1) rows of Ay there are m linearly independent ones
according to the assumptions. These rows determine the vector

A uniquely. We then have:

A
P(£€R(A)) < P(g = [nnl nm] x )

Introduce

"% [y

>’ o o >

According to the construction & and n are independent. Since Lemma 1
can be used we conclude that P(£€R(A)) = 0 and then the lemma is pro-

ved.
QE.D.

Systems with Noise.

Consider the system (B.l) where as before e(t) is a sequence of inde-
pendent, equally distributed random variables with zero mean and fi-
nite covariance.

Let the model be (B.4) where the case n > max(p,r) is allowed.

Before stating the theorem we repeat the definition of ¢.

-y(n) . . . -y(1) u(n) . . . u(l)

¢ = . : . s (B.8)

_-y(n+N-1) ... -y{N) u(n+N-1) ... u(N) _
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Introduce the matrix A.

u(n) . . . u(l)
A= . - (B.9)

u(N-1) ... u(N-n)
which is a part of the ¢ matrix.

Theorem B,1

With the assumptions of the system and model above the following is
true. If rank A = n the rank ¢ = 2n with probability one.

Proof

Let us introduce the vector

-y(1)
1% :
-y(N-n+1)

which we partition as Y1 =Y te Y10 is the part of Yy which de-
pends on earlier values of y and u. According to (B.1) Y1 consists of
these two parts, although we cannot partition Yy numerically, if the

noise is not known.

Introduce the matrix B of order (N-n+l) x (n+l) by

A

u(N) ... u(N-n+l)

We will also use the matrix A0 of order (N-n+l) x n

- -

| u(N) ... u(N-n+l) _
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Thus we have

1
|

5= [y |4 |

Since rank A = n we have rank A0 = n.

Note that also B is a part of ¢. We can obtain it from A by "adding"
a column and a row. We will first show that rank B = n+l with proba-
bility one. The argumentation can then be repeated, "adding" a column
and a row each time. By this procedure the whole ¢ matrix will be con-
sidered at last.

P(rank B = n+1) = P(y,§R(A))) =

= P(y,, + efR(A))) s P(eé{R(A.) ® R(y, )}
0 0 10

Y10

The inequality holds since we introduce further restrictions of e.

Let us separate two cases.

R(ylo) is not a subset of R(AO). Then let us form the matrix (of or-
der (N-n+l) x (n+l))

We have in this case rank Ay = ntl. Now e is backwards independent
of A;. By use of lemma 2 we conclude that the probability

P(e¢R(A))) = P(rank B = n+l) = 1

—— v s v

R(ylo) is a subset of R(AO)' We have

P(rank B = n+l) = P(eQR(AO)]
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but rank A0 = n and e is backwards independent of Aj. Consequently

we have P(rank B = n+l) = 1.
Hence in both cases we have P(rank B = n+l) = 1. Since the proce-
dure can be repeated in totally n steps as outlined above the theo-
rem is proved,

Q.E.D.

Systems without Noise.

Now we will consider the case with a system without noise (B.2).
Three cases will be treated:

i) model 1 used,

ii) model 2 used n = max(p,r)
iii) model 2 used n > max(p,r)
Case i)

We want to have sufficient conditions on u(t) so that rank ¢5 = ptr.
We immediately see that it is necessary that the last r column vec-
tors of %0 should be linearly independent. In many practical cases
this condition seems to be sufficient. We now state the following

theorem, which is not proved.

Theorem B.2

Given the system (B.2) and the model (B.3). Then there exist input
signals u(t), such that rank ¢, = ptr. Further, if the input signal
is white noise this holds with probability one.

Case ii)

In this case and in the following we will sometimes assume that a
time translation does not change rank ¢. lLet a°¢ (s a given integer)
means that the argument is shifted s steps forward in all the compo-
nents of ¢. The relation pank ¢ = rank qs¢ will then sometimes be
assumed. This will always be denoted explicitely as well as the in-

teger s will be given. This relation can be motivated in two ways.
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Physically, this is a consequence of stationarity. Secondly, we note
that qs¢ mathematically means shifting the column vectors of ¢ s steps
upwards. If now N >> n we can hope that if s is small compared with N
this operation does not change rank ¢. We have many (N) rows. A small
number of them (s) will be removed and substituted with another s rows.

Further, introduce the vectors:

y(i) u(i)
yi = | u; = |l (B.10)
| y(i#N-1) |, | u(itN-1)
Then
¢0 = [yn o o0 n—p+l Un e e 0 n—rd-l] (B.ll)
The equation of the system (B.2) implies
(B.12)

V¢ * 41 Fooee t aYton © blut—l ¥ oons ® brut—r

Introduce k = n - min(p,r) and the abbreviated % matrix of order
(N-k)x (ptr).

y(n) ... y(n-p+1) u(n) . . . u(n-r+l)
%00 = E E (B.13)
| y(ntN-1-k) ... y(n-ptN-k) u(n*N-1-k) ... u(n-r+N-k)

We have

Theorem B.3
Given the system (B.2) and the model (B.4). Let n = max(p,r).

Assume that u(t) is white noise, rank ¢00 = ptr, rank qk¢ = rank ¢.
Then rank ¢ = 2n with probability one.
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Proof

Let us first consider the case when p > r. Then p = n, k = n-r

are valid. We have

rank ¢

rank[yn...ylun...ul] = _—

rank [yn_'_k cro Y94 Ynex cc ul+k]

where we have used the time translation, which was assumed to be

allowed.

Now yn +K

All these vectors except y, are included in q ¢. Thus we

is a linear combination of Ytk-1° **°° Yk Ynap-1> c00?

u .
n+k-r
can substitute . with Y in (B.14). This procedure can be repea-

ted (k-1) times to get

rank ¢ = rank [yk e Y Yy e Yo Yne ot ul+k]

rank [u ooeee Uy Vpoeee Vg Uy e uk+1;|

rank [un+k cee Uy { ¢0:|

The rest of the argumentation is similar to the one in the proof of

theorem B.1l. The vector

" u(n+l)
Uner 5| ¢
u(n+N-k)

is backwards independent of %00° By lemma 2 we conclude that rank
' ! = - : -

un+l'. ¢00] = 1 + rank ¢g0 = 1 +n + r. In this way we get rank ¢

= k + rank ¢., =k +n +r = 2n by "adding" a column and a row each

time.

The case p < r (k = n-p, r = n) is analogous, so the comments are

omitted.
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rank ¢ = rank Tyn+k o Vi1 Ynec o uk+1]
p— :pk son Wy Vi #o» Fiewd Yo == uk+1]
= rank iun‘l»k Y41 Yn ot Yier Y o ul]
= ypank ;Fn+k ees Uiy ; % ]

2n

k + (ptr) = n-ptptn

Thus we have shown that rank ¢ = 2n with probability one.
Q.E.D.

Case iii)
Now we have n > max(p,r).

Let us define k = n - max(p,r), £ = |p-r|, m = min(p,r), j = &+k.
Further define the matrix 61 of order (N-m) x (ptr).

y(n) ... y(n-p+1) un) . .. u(n-r+l)

| y(ntN-1-m) ... y(n-ptN-m) u(n+N-1-m) ... u(n-r+N-m)

The matrix 9 is a shortened 9 matrix, which could be compared with
%00 (B.13). In fact, they play the same roles in the proofs.

Theorem B.4

Given the system (B.2) and the model (B.4). Let k = n - max(p,r) > O,
L = |p—r|,.j = k+%. Assume that u(t) is white noise, rank ¢, = P*r,
and rank qJ¢ = rank ¢. Then rank ¢ = 2n - k = n + max(p,r) with proba-
bility one.

Proof

Let us first consider the case p 3 r. We have k = n-p, & = p-r,
j = &+k = n-r. Using rank q3¢ = rank ¢ we get

rank ¢ = rank Eyn+j TN PR SRS ul+j]
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Re-

Now y is a linear combination of yn+j—l'

n+j n+j-p’ Yn+i-1

which all are included in ¢. Thus we can just drop y

u .0
nt+j

n+j-r
peating we get:

rank ¢ = rank [yp'*j o Y143 Uney o u1+jJ

We have the inequality rank ¢ < ptn. Now we want to show that with
the given assumptions we in fact have an equality.

Just as in theorem B.3 we can substitute yp+j with yj. Repeat this
procedure (2-1) times to obtain

rank ¢ = rank [yj “o Yiagog Yptiep vt Y1y Uney o ul+j]

= rank Uik o0 Uotlegog Tptieg *0° Yiejop Uptgey *°° u1+j]

:

n+j e 00 p+1+k yp+k oo yl+k up+k LI ] Ul+£+k:|

é

n+j *°° “ntl Ip #4e yn—p+l Yp oo n—r+lJ

rank un+j cee Uy ¢0J

Quite analogous to the proof of theorem B.3 we get rank ¢ = j + (ptr)
by successive use of lemma B.2. Thus rank ¢ = n-r+p+r = n+p = n +
+ max(p,r).

The case p ¢ r is analogous, so the comments are omitted. We have in

this case

ry k =n-r, ¢ =r-p, j = ktg = n-p

o)
A

rank ¢ = rank [yn+j “er Y143 Upgs eee ul+j]

rank [yr‘i-j o0 Va5 Uneg oo ul+j]

Note that rank ¢ ¢ r+n = n + max(p,r).
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rank ¢ = rank [Uneg oo Upage Ypeg oo Y145 Upey oo ul+j]
= rank ;Pn*j cor Upngagg Uy ees Upasg Ypeg ooc Yiag Ypag oo ul+i]
= rank :Pn+j cor Upgseg Upad ot Upasogel Ypbg ot Y149 Upesog
§is ul+j-£]
= rank un+j cee Uy Y e yl+n—p U, ... u1+n_£]
= rank [Pn+j cee Uy E % ]

The repeated use of lemma B.2 gives us rank ¢ = jJ + p+r =n + r.
Thus we have shown that rank ¢ = n + max(p,r) with probability one.

Q.E.D.

Remark

As pointed out in the proof we have an inequality rank ¢ < n + max(p,r)
which was easily established. The theorem gives conditions so that the

equality sign holds.

Remark

The case ii), which was considered in theorem B.3, is a special case
of case iii). The only differences in the assumptions are that k in
theorem B.3 is substituted with m in (B.15) and with j in the time

translation relation.

Remark

The weakness of all this appendix is the lack of a proof of theorem

B.2, since the rest of the appendix uses this theorem.
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Remark

The conclusions of the theorems are mostly valid with milder assump-
tions. For the numerical examples in chapter 11 a PRBS was used and

the results of this appendix were fulfilled.



