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IDENTIFICATION AND MODELLING OF SHIP DYNAMICS

K.J. Astrdtm
C. Killstrdm

ABSTRACT,

This report describes the application of identifica-
tion and modelling techniques to the determination

of ship dynamics. The analysis is based on data ob-
tained from an experiment on MS Atlantic Song in col-
laboration with Wallenius Lines. The results indicate
that identification techniques can be profitably ex-
ploited to determine Hydrodynamic derivatives. The
analysis also illustrate several features of the maxi-

mum likelihood identification method.

This work has been supported by the Swedish Board for
Technical Development under Contract 71-50/U33.
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1. INTRODUCTION,

This report applies modelling and identification tech-
niques to the problem of determining ship dynamics. A
summary of physical models is given in Section 2 where
it is found that ship dynamics can be characterized as
a third order system where the rudder is the input and
the heading the output. The state variables are arbit-
rarily chosen as the component of ship velocity ortho-
gonal to theship's center line, v, the heading angle,
¢, and its derivative. It is also shown in Section 2
that it is not possible to determine the hydrodynamic
derivatives from measurements of input (rudder angle)
and output (heading) alone. However, if the velocity
component v is also measured e.g. by a doppler radar
it is shown that the hydrodynamic derivatives can in
fact be determined from an experiment where the rudder
is perturbed in an arbitrary fashion and the heading ¢
and the across ship velocity component are measured.
Hence a new technique to determine hydrodynamic deri-
vatives! An experiment aimed at analysing the feasibi-
lity of the proposed scheme is discussed in Section 3.
The experiment was performed by two students, Mr. ULf
Ekwall and Mr. Anders Edvardsson, as part of their MS
thesis. The experiment was done on MS Atlantic Song in
collaboration with the Wallenius Line of Stockholm,
Sweden. The experiment lasted for about 30 minutes and
was done in bad sea conditions. In the experiment the
input signal was generated manually and the outputs

were also read manually.

Section 4 presents an application of the maximum like-
lihood identification technique to the data obtained
in the experiment. The analysis shows that the data is
not perfect and that part of it has to be discarded.
An analysis of a data set of 1500 seconds indicates
that a third order model is compatible with the data.




Accuracy estimates also indicate that the parameters

are reasonably accurate. Typical examples are

- 2.18 £ 0.04

“1
b1 = 0.14% % 0,01

In Section 5 the parameters of a physical model are
estimated from the input-output data. The results are

compatible with those of Section 4,
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2. SHIP DYNAMICS.

The equations describing ship dynamics are well=-known.
See e.g. Abkowitz [1], Goclowski and Celb [6]1 and Zuid-
weg [71. They are obtained directly from Newton's laws
expressing conservation of linear and angular momentum.
The essential difficulty in obtaining the equations is
to describe the hydrodynamic forces acting on the hull.
These forces are in general complicated functions of
the ship's motion (velocity and angular velocity) and
the rudder position. The equations can, however, be 1i-
nearized around a straight 1ine motion with constant
velocity. In that case the hydrodynamic forces can be
characterized by a linear function of the velocities,
accelerations, angular velocities and angular accele-
rations. The coefficients of the linear function are
called the hydrodynamic derivatives which are usually
determined by model tests in tanks. The equations of
motion can be somewhat simplified if they are expressed

in a reference frame fixed to the ship. See Fig. 2.1.

z
CFig. 2.1 - Definition of coordinates fixed to the ship.
Rotation around the X, V¥ and z axes are

called roll, pitch and yaw respectively.



The symmetry of the hull
rodynamical forces will
out that for a

sides the yaw motion can

ship with

implies that some of the hyd-
vanish. In particular it turns
symmetric port and starboard

be separated from the roll and

pitch motions. See e.g. Abkowitz [1, p. 21l.

State Equations.

To give the equations for the yaw motion let v be the
velocity component in the y-direction and w the compo=
nent of the angular velocity on the z-axis. Abkowitz
[1] has shown that the equations for the yaw motion

1inearized about a straight line motion with constant

velocity is given by the equation

- Y, - Y[
m mxg 5 \Y/
T - N, - N. 3
mxg o I o] w
YV Yw - m v YG
- + $ (2.1)
Nv Nw - mxg L@ NG

where m is the mass of the ship, I its moment of iner-
tia about the z-axis, Y the component of the hydrody-
namic force on the y-axis, N the z-component of the
torque due to the hydrodynamic forces, X the x-coor-
dinate of the center of mass, and & the rudder deflec-
+ion. The hydrodynamic force Y is a complicated func-

tion of the motion, i.e.

Y o= Y(v, wy 65 Vo W) (2.2)



and analogous for N.

The quantities Y, Y N., N N, and N denote

\’/9 }\jv5 iv3 (.L)’
the hydrodynamic derivatives. The derivative Y. is

defined by

Y = E.Z_ (2.3)
X .
IX

and evaluated at the nominal motion. The other deri-
vatives are defined analogously. The linearized equa-
tions for the yaw motion can be simplified further if

equation (2.1) is solved for ¥ and &. This gives

v a11 a12 Ol |v b1
d
e | ) = a a 0 [0} + b § (2.'4)
at 21 22 2

P 0 1 0 (¥ 0

where the heading ¢ defined by ® = w» has also been

introduced as an extra state variable. See Fig. 2.2.

Nominal heading

/]
~&
Total velocity
\
L7
6
Fig. 2.2 - Quantities used to describe the linearized

yaw motion of a ship.




The linearized yaw motion of a ship can thus be desc-
ribed as a third order dynamical system where the

state variables can be chosen as

\ the component of the ship velocity on the y=axis

of the ship fixed coordinate system,
) the deviation in heading,

w the ship's angular velocity about the z-axis.

Other state variables are sometimes chosen. The angle
of attack i.e. a in Fig 2.2 is for example sometimes

used instead of the velocity component v.

The model contains six parameters &, , &40, 8595 899
b, and b,
rivatives, the ship's mass and its moment of inertia.

which are functions of the hydrodynamic de-

It is customary to normalize the equations by expres-

sing all quantities in nondimensional units. We have

agq = (V2o a19 = V%9,

- s 2 - =

ayy = (/e 8, = (V/1)a,y, (2.5)
b, o= (V2/3)8 b, = (V/2)2%8

1 1 2 2

Choosing the length % of the ship as the length unit
and the time unit as &/V where V is the ship velocity
the linearized equation of motion (2.4) can then be

written as

1 t
\Y %qq %y Oii{v 61
d ] - 1
—w = |a o 0l lw + 1B,|6 (2.8)
21 22 2
dat!
P 0 1 R 0

where all parameters and variables are dimension free.




The dimension free parameters o

Input-Output Relations. Identifiability.

ijﬂ Bi?

i,j = 1, 2 are

different ships.

Consider the rudder angl
heading angle ¢ ¢
of the dyn

by the following transfer function

G(s)

,‘.,b1

.S;+vb2

2
s(s +a18+a2)

remarkably similar for different ships as is seen from
Table 2.1,
Ship Minesweeper | Freighter | Tanker
Length 60 160 310
(m)
Speed V b 7.8 8.5
(m/sec)
%49 -0.863 -0.89 -0. 466
040 -0.482 -0.286 -0.226
% oq -5,25 ~4,39 -3.08
%50 -2.45 -2.72 ~1.66
81 +0.175 +0.108 +0.139
82 -1.38 ~0.93 -1.00
Ref. 11 [7] Lu)
Table 2.1 - Examples of dimensionless parameters for

e & to be the input and the
he output. The input-output relation

amical system (2.6) can then be represented

(2.7)




a, = = 0O - O
1

11 22

dn T Ogq09n T %q009q
(2.8)

8o

2 F 7 9qqBy F g Py

In an experiment where the rudder angle is perturbed
and the heading observed we thus find that the para-
meter £, is identifiable but the parameters %,4, %49,
Uoqs %oo and B, are not identifiable., We can thus im-
mediately conclude that in order to determine all six
parameters of the model (2.6) it is necessary to mea-
sure not only the heading angle but also some other

system variable.

Assume, however, that the velocity component v is al-
so measured. The transfer function from rudder angle

to v is given by

C1S + C2

G,(s) = —5 N ) (2.9)
S aqs + a,

where

HI
fo]

€4
(2.10)

cy = 7 Bqogp * Bo%q2
Hence if both v and ¢ are considered as outputs the

parameters B4 and B, can be determined directly from

an input-output experiment. The coefficients o 4, @495



G o and a,, are related to the parameters of the in-
put-output relation through nonlinear equations. The
possibilities to determine these will, of course, de-
pend on the actual parameter values. For the values

of Table 2.1 the nonlinear equations will have a so-
lution and we can thus conclude that the system (2.6)
or (2.4) is identifiable if both heading angle ¢ and
crosstrack velocity v are measured. In practice it
would be more realistic to assume that the crosstrack

deviation is measured instead of v.
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3, THE EXPERIMENT.

The experiment was performed on Sunday, Dec. 21, 1869,
with the MS Atlantic Song of the Wallenius Lines. At-
lantic Song is a freighter of 15000 tons, 197 m length
with @ maximum speed of 21 knots. The measurements were
done east of the coast of Denmark. They were started
at Lat. N 54°17' Long 49511, course 217°, See Fig. 3.1.
The experiment lasted for about half an hour. The wind
was about 8 Beaufort (17-20 m/sec, fresh gale!). The
wave height was estimated to 3.5 - 4 meters. The sight
was poor due to heavy snow-fall. During the experiment
both wind and waves were on the port. The ship has a
juffing tendency which means that & wind gust will
cause a port yaw. The impact of the waves on the bow

induced sudden and violent starboard yaws.

In the beginning of the experiment the speed was 18.5
knots. Towards the end of the experiment the speed
was, however, reduced to 18 knots due to the large

rudder angles.

The experiment was carried out by two students, Mr.
Fkwall and Mr. Edvardsson. The experimental arrange-
ment is shown in Fig. 3.2. Mr. Ekwall was on the bridge
together with the captain, Mr. Tirnsjd, the second mate,
Mp. Hakansson, and the helmsman, Mr. Brand. Mr. Edvards-
son was at the rudder servo. Mr. Ekwall who acted as a
coordinator was coordinating the experiment. He ordered
the rudder angle to be read by Mr. Edvardsson every 15
seconds. He read the heading angle from the gyro-com-
pass simultaneously. Edvardsson also ordered the chan-
ges in the rudder angle to be performed by the helms-
man. After a command the rudder was found to settle in

less than 2.5 seconds.

The rudder angle was measured using the arrangement

shown in Fig. 3.3. The length of the scale was about



1.

Drammen

Wallhamn
)
Harwic
Ghent
Fig. 3.1 - The route of the ship. The experiments were

performed at the position marked X.
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Timer,"Heading transducer” Ekwall

Helm Helmsman Sailor, Helmuth Brand
Compass

\ Captain Tdrnsjo
\
Chart tabl
o r e ® Pl

2:nd mate IIHH
S.E. H&kanssc{

"Rudderangle transducer”

Edvardsson \\; N -
@ d]% -
N

Telephone line
~] Rudder machine
— ﬂ ~ room

" Fig. 3.2 -~ Outline of experimental arrangement.
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30 em corresponding to a rudder angle of 20°. The
rudder angle could conveniently be read with an error

less than 0.1°.

— [ s—|
Hydraulic
A B motor
| 9 e it 1 == N )
(~ _RUDDER - -]
—l— — — -~ _ _
I T
_____ Jot
L | B B R ||
_INDICATOR L F
| aaa e At SCALE
-0 “® " Fixed to fundament
Fig., 3.3 - Arrangement for measuring rudder angle.

The input signal was chosen as two periods of a PRBS
signal with a period of N = 64. Mr. Ekwall had the
signal recorded on & table. The amplitude changed some=
what during the experiment. The peak-to-peak amplitude
was between 10° and 15°, Before the experiment was
started the "null position", i.e. the rudder position
which gave a straight line course, was determined.
This was done by steering the ship for constant head-
ing observations. A copy of the heading recording ob-
tained before and during the experiment is shown in

Fig. 3.k4.

A list of the input-output data obtained in the expe-
riment is shown in Table 3.1. A few readings of the

heading and rudder angles were somewhat uncertain as
is always the case when manual recording is used. These

readings are underlined in Table 3.1. The input-output




Heading Angle

14,

data obtained in the experiment is graphed in Fig.

3.5.

Manual Control Experiment
A v~ ‘b.._‘

N
3
——

MWMWWMMMVAVm“

| ——
|

5}:;

200

8 Time Hours

Fig. 3.4 - Recorded heading before, during and after

the experiment.
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Rudder Angle

Heading Angley

16,

500 1000 1500, 2000 Time sec

500 1000 1500 2000 Time sec

Fig. 3.5.- Input (rudder angle) and output (heading

angle) signals obtained in the experiment.
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4, MAXIMUM LIKELIHOOD IDENTIFICATION.

Tn a first attempt to obtain a parametric model we
will neglect all physical knowledge about the system
and simply determine a sampled input-output model gi-
ven by

y(t) + a1y(t—1) + ...t any(t—n) =

= b1u(t-1) + ... + b u(t-n) +
n

+ Ale(t) + cqe(t"1) + ... + cne(t~n)] (4.1

from the measured input-output sequences using the
method of maximum likelihood [21, [51.

A Straightforward Approach.

Tn order to estimate the order n of the system (4.1)
the identification is repeated for different values
of n. Table 4.1 gives the minimal value of the loss

function versus n.

n vn Fn/n-—’l
1 677.82
2 232.83 76
3 226.28 1.1
'y ..208.,31 . 3.2
" Table M;l - Minimal value of loss function Vn and test

quantities for models of different orders
based on original data without fitting ini-

tial conditions.
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In the table is also given the statistics defined by

F = LN n R n>m (4.2)

where Vn is the minimal loss function for a model of
order n, N the number of input-output pairs, kn the

number of parameters in a model of N:th order.

Under the assumption that the input-output data was
actually generated by a model of type (4.1) where
{e(t)} is a sequence of normal random variables and
some other regularity conditions it can be shown that

Fn/m
At a risk level of 5% we have F(100,3) = 3,

for large N has an F(Nmkn, kn—km) distribution.

If the assumption is satisfied we can then conclude
from Table 4.1 that the reduction in the loss func-
tion is significant when n is increased from 1 to 2.
The reduction obtained when increasing the order from
2 to 3 does not give a significant reduction in the

loss function. Similarly we find F = 2,21, Hence

b/2
a reduction of the system order from 2 to 4 is not

significant either.

An analysis of the test quantities thus indicates that
a second order model is consistent with the data if

the assumption required for the tests are fulfilled.

The successive iterates of the estimates for the se-
cond order model are given in Table 4.2, This gives
an indication of the convergence of the maximum like-
lihood estimate. The least squares estimate is taken

as the initial estimate.
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- N a,l v azv, ‘b,], .b2
0| =-1.372 0.378 0.142 0.256
17-1.783 0.777 0.182 0.215
2 | =1.745 0.750 0.180 0.198
3| -1.737 0.7u43 0.187 0.182
4 | =1.730 0.735 0.191 0.179
51| -1.7296 0.73518 0.19108 0.17862
6 | =1.729574 0.735193 0.191070 0.1784k42
7 | -1.729580 0.735199 0.191072 0.178440
N 4 Cy A
0 0.000 0.000 2.50
11-0.785 -0.126
2 | ~-0.849 0.160
3 1=-1.004 0.u400
4 | -1.005 0.393
51 -1.00u498 0.39303
6 | -1.006647 0.3988059
7 | -1.006679 0.398070
Table 4.2 - Successive iterates of the maximum like-

A straightforward application of the maximum likeli-

lihood estimate for the second order mo-

del.

hood method thus leads to the following model:

=-1,730 =

+

0.191

i+

1.007 =

0.033
0.024

0.090

a, = 0.735
b2 = 0,178
c,y = 0.398

i+

0.0289

I+

0.034

0.080

(4.3)
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The estimated parameter accuracies are obtained from
the estimate of the covariances given by the second

derivatives of the loss function.

Since the data-set is fairly short N = 125 the initi-
al conditions may influence the results. To investi=-
gate this the initial conditions are introduced as
parameters and fitted to the data. The values of the
loss function obtained in this case are shown in
Table 4.3,

n Vn Fn/n~1
1 651.0u
2 201.45 65.5
3 192.08
Ly 170.92 3.4
Table 4,3 - Minimal values of the loss function Vn

and test quantities for models of diffe-
rent orders based on original data with

initial conditions fitted.

It is &also found that FM/Z = 2.4, The coefficients

of the second order model are

a; = - 1.729 + 0.031 &, = 0.735 + 0.032
b1 = 0.1790 + 0.022 b2 = 0,176 = 0.027 (4.4)
cq = - 1.043 = 0.086 c, = 0.456 + 0.076

T+ is found that the coefficients do not deviate sig-
nificantly from those obtained when initial conditions

are put equal to zero.

The results of the identification of the second order

model are illustrated in Fig. 4.71. In this figure we



Rudder Angle

Model error Model output Heading Angle y

Residuals

21.

mmmmwmmmmmmh

1000 1500 2000 Time sec
250
2oo—\\\/F/\\\\\/W“J//\\\//A\\”*«/“”“L\Vw/rﬁJ
500 1000 1500 2000 Time sec
250-
200-
500 1000 1500 2000 Time sec
50-
0- l
- 50~ T . ] l
500 1000 1500 2000 Time sec
‘VJ

500 1000 1500 2000 Time sec

Fig. 4.1 - Illustration of the results of the identi-

fication of & second order model when the

initial conditions are not fitted.
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Table 4.4 - Input-output data for the adjusted data set. The changed data are underlined.
(The adjusted data set.)
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n '"Vn"‘ . Pn/an
1 362.59

2 55.11 163

3 47.91 4,25
U 46.96 0.55

Teble 4.5 - Minimal values of the loss function Vn
and the test quantities L for models
of different order based on the adjusted

data set. The initial state is also fitted.

the loss functions and the test quantities are sensi-

tive,

The coefficients of the third order model are given

below:

aqg = - 2.28 + 0.10
&y = 1.65 + 0.18

ay = - 0.36 £ 0.07
b1 = 0.153 + 0.012
b2 = 0,156 * 0.024
b3 = - 0,195 £ 0.024
cq = - 0.99 + 0.15
c, = 0.29 + 0.16
P 0.017 + 0.10

The results of the identification of a third order
model are illustrated in Fig. 4.2. A comparison bet-
ween the Figures 4.1 and 4.2 shows a significant im-

provement in the residuals.
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" Fig. 4.2 - Results of identification of a third order

model from the adjusted input-output data.

The initial state of the model i1s also es-

timated.
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Computations Based on 100 Data Points.

Notice that in Fig.

- 1700 are still

4.2 the residuals at time 1500 -

somewhat large. One explanation may

be that the speed was reduced to 18 knots at time

1485, For this purpose we will also carry out the

jdentification for a data set that is truncated. Four

cases labelled A,

A, Original data.
B. Original data.
C. Adjusted data.

D. Adjusted data.

B, C and D will be considered:

Initial state set equal zero.

Initial state is estimated.
Initiel state set equal zero.

Initizl stete is estimated.

The loss functions and the test quantities are shown

in Table &.6. It
is a significant
when the initial
not. This is not

an integrator.

is clear from this table that there
difference in the loss functions
state is estimated and when it is

surprising since the system contains

Case A Case B

n
vn Fn/n-1 Vn Fn/nm’l

1 462.59 371.40
2 180.17 L5 102.36 61
3 179.14 1.8 91.02 2.7
5 175.61 0.6 88,06 0.7

C ase C Cawse D
1 336.01 207.79
2 112 .01 63 24,98 18
3 101.78 3.0 18.01 8.6
Loy 101,10 0.2 16,49 1.8

'zablé'H.B - Loss

functions and test quantities for

models of different orders in the cases

A, B,

C and D.
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It is also clear from Table 4.6 that the loss function
is decreased significantly when the data is adjusted.
Compare cases A and B with C and D respectively. Assu-
ming that the order test can be applied, it then fol-
lows that a second order model would be selected in

all cases except case D where a third order model

would be preferred. The coefficients of the second or-
der model are summarized in Table 4.7 and those of the
third order models in Table 4.8. Analysing the numbers
in Table 4.7 and Table 4.8 we find that even if there
are significant differences in the loss functions (V)
in the different cases the model parameters as and bi
do not change significantly. The parameters cs do, how-
ever, differ significantly. This is quite natural since
these parameters are used to describe the disturbances.
In Fig. 4.3 we illustrate the results of the identifi-
cation in case D. An analysis of the covariance of the
residuals in this case shows that the largest norma-
lized covariance is 0.12 which is well inside the 5%
confidence band (-0.20, -0.20).

Case A Case B Cagse C Cese D

ay -1.681+0.044 |~1,671£0.,028 |-1.632+0.049 |-1.586%0.025

2, 0.710+0.0u44 | 0.699+0.028| 0.661+0.050| 0.610£0.026
b1 0.100£0.034| 0.118+0,025| 0.131+0.026| 0.,141+0.013
b2 0.260x0.041 | 0.248+0,029| 0.270+0.031| 0.28420.013

Cq -0.942+0.117 |-1.127+0.106 |-0.607+0.124 |~-0.316+0.128
Cy 0.175+0.113| 0.450+0.109| 0.027+0.109| 0.159+0.112

A 1.95 1.43 T.43 0.707
v.| .190.2 .. | 102.4 . L. 112.0 S 25.0 .

tained in the cases A, B, C and D.
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- Case A . Case B .. Case C = Case D
ay -2.104+0.475(~2.258+0,067 |-2.162+0,242|~2.184%0.041
&y 1.365£0.821| 1.632£0.120| 1.459+0.417| 1.493%0.071
&g |~0.24420,.361(-0.361+0,055|-0.281+0,183(~0.294%0.032
b1 0.099+0.032| 0.113£0.024| 0,133%0.024] 0.142+0,011
b2 0.258£0.078| 0.224£0.042] 0.218%0.050| 0.214%0,016
b3 ~0.189+0.105|-0.213+0,028{-0,204+0,057|~0.212+0,015
cy -1.387+0.501|~-1,775%£0,134({-1,192+0.265|-1.080%0.111
Co| 0.523£0.540) 1.104+0.229| 0.311£0.238| 0,288+0,147
Cz|~0.048%0.150}-0.248+0.120|-0.022%0.101| 0.062+0.114
A 1.89 1.35 1.43 0.60
v 179.1 81.0 101.8 18.0

Teble 4.8 - Coefficients of the third order models ob-

tained in the cases A, B, C and D.




Rudder Angle

Model output Heading Angle y

Model error

Residuals

P
o (=]
re R

1

AN
?

29.

250

1 1 J 1 1 i _J

500 1000 1500

200:\\V/JN\\\\JP*//P_\\//\\\—\“A/\ng./rﬁ

250 1

1 L i 1 ]

500 1000 1500

200

500 1000 = 1500

500 1000 1500

VAW ATt g

500 1000 1500

Time sec

Time sec

Time sec

Time sec

Time sec

Fig. 4.3 - Illustrates the results of the identifica-

tion of a third order model based on the
tpuncated (0 - 1500) part of the adjusted

daeta set.
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5. EXPLOITING PHYSICAL KNOWLEDGE.

A direct application of the maximum likelihood method
indicates that a model of second or third order is
consistent with the data. Notice, however, that the
technique used in Chapter 4 is a "plack-box" method
in the sense that only inputs and outputs are consi-
depred and that no physical knowledge about the system
is exploited. Comparing with the physical models dis-
cussed in Chapter 2 we find that they eare of third or-
der. The physical model contains a pure integrator.
An analysis of the models obtained by the maximum
1ikelihood method shows that the corresponding pulse
tpansfer functions have poles close to one. Hence
there are at least some similarities between the phy-
sical models and the models obtained from the identi-~

fication procedure.

T+ seems feasible to try to combine physical models

and identification techniques. One way to do this is

to try to fit a model of the form (2.4) to the observed
input-output data. As was shown in Section 2 it 1is,
however, not possible to determine all the parameters
of the model from input-output data. We will therefore
first change the coordinates in state space sO that we
get a model such that all parameters can be determined

from input-output data. Introduce the transformation

X4 0 1 0 (v
XZ = a21 "&11 0 W (5;1)
Xq 0 0 1119

The equation (2.4) is then transformed to
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I | ]
w a1 1 d} ) b1
dix| = |-ap o of |x| + |bils (5.2)
at
¢ 1 0 0] e Lo
where

1]

o
1
o

o
i

If we consider the rudder angle § to be the input and
the heading angle ¥ the output, the input-output re-
lation of the dynamical system (5.2) can be represen-

ted by the transfer function

blg + b}
a(s) = — 2 (5.3)

5(82+a%s+aé)

and we conclude that all the parameters a%, aé, b{

and bé of the system (5.2) are identifiable.

The Structural Identification Computer Program.

Consider the time invariant, linear, stochastic state

model

( dx = Axdt + Budt + Kde
, (5.4)
dy® = Cxdt + Dudt + de
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with initial state x(to), where u is an m-vector,

x an n-vector, y¥ an r-vector and {e(t)} an r-dimen-
sional Wiener-process. Suppose that we measure the
output vector y(t) = dy*/dt only at the times t = t,,

Ty + T, Tyt 2T, e, where 1 is the sampling inter-

0
val, and suppose that the control variables are cons-
tant over the sampling intervals, then the system
(5.4) can be described at the sampling instants by

the following stochastic difference equations

x(t+1) = Ax(t) + Bu(t) + KE(t)
(5.5)
y(t) = Cx(t) + Dult) + a(t)
where {g(t), to= oy, ty + T, ...} is & sequence of

independent Gaussian vectors with zero mean value.

If the system (5.5) is assumed to contain no state

variable noise, then put the matrix K equal to zero.

Now, let the elements of the matrices A, B, C, D, K

and the initial state vector x(to) depend on parame-

ters % i=1, ..., & and define a loss function (See
ref. [31).
(N-1 T
V(o,, ooy 0,) = det]{ ) e(t +itde (t +it1) (5.6)
1 2 120 0 0

N is the number of sample events and the residuals

g(t) are defined as
S(t) = y(t) - Cx(t) - Dult) (5.7)

where y(t) is the recorded output vector.

The computer program now tries to fit the parameters
Oy i=1, .., & in such a way that the loss function

V becomes as small as possible.
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The computer program is provided with the following
model (cf. (5.2)):

- o — o - - 2 5 - -
v v
dw 7 %1 1 0 lw {z} o 5 o
\Y 2 v 3
dx = "'[}i‘} 0&2 0 0 xjdt + [E) OLL,' §dt + 066 de
_d“i I 1 0 o_ M |0 | &
w
dy* = [0 0 1]|x{dt + de (5.8)
)
w(to) 0
x(to) = 0
@(to) 217.3
2 = length of the ship = 197 m
V = the ship velocity = 9.26 m/s

The sampling interval Tt is 15 s. The normalizing fac-
tors are chosen in such a way that the parameters %y
a,, ay and o) are dimensionfree (cf. (2.5)). The value
of ¢ (t,) is picked up so the residual at the time tys
g(to), is equal to zero. Only the adjusted date set is

used.

The structural identification leads to the following

model
Gy = 0.443Yy a, = D.0365

(5.9)
Ay = 0.89u4Yy a, = - 0.02698
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163.0607
K = | -2.81u5
1.0522]

with minimum value of the loss function

V . = 60.65
min

The value Vmin = 60.65 is comparable with the value

Vg = 47.91 of Table 4.5. The difference is due to the
fact that vmin is obtained from a system with less
freedom degrees caused by the special structure of

the system.

In Fig. 5.1 the results of the identification are il-
lustrated. In this figure we show the recorded input
(rudder angle), the recorded output (heading angle),
the mode% output Ya» the model error Y=Yq and the re-
siduals e(t). The model output is the response of the

system
- - - A 2 -
B (v
2 3
d x| = -{-\—]‘] o 0 O x| + [y*] oy |6
dt L L
A |1 0 0] (¥ 0 i
[}
y = L0 0 171}|x (5.10)
P
w(tD) r 0
x(to) = 0

@ (t,) 217.3
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" Fig. 5.1 = Results of fitting a model ( 68 ) to the
adjusted input-output set.
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with the parameter values (5.9) to the rudder angle

input.

An estimate of the variance of the residuals is ob-
tained by dividing Vmin with the number of sample

events, i.e. 125:

var{e(t)} = 0.97

The transfer function of the system (5.10) is obtained

quite analogous to (5.2):

G(s) = (5.11)

The fact that G(s) has a zero in the right half plane
indicates that the system (5.10) is not a minimum

phase system.

The eigenvalues of the system (5.10) are obtained as

the roots of the equation

2
2 v V) “ _
s{s + zfa1s + [3] az] = 0 (5.12)

We get the eigenvalues

N T -
54 = [£}0.33u = - 0.115
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- '[%)0.109 = - 0.00517
S3

and the two time constants

t, = = ’I/s1 63.7 s

194.8 s

t, = - 1/82




38.

6. ACKNOWLEDGEMENTS.

We would like to express our gratitude to the Walle-
nius Lines for their positive attitude towards re-
search of this type and their willingness to allow
experiments to be performed on their ship. We are al-
so grateful to Mpr. Ulf Ekwall and Mr. Anders Edvards-

son who made the experiment.

The programs used for the MLE identification were

written by Gustavsson {5].

The report has been expertly typed by Mrs. G. Chris-

tensen and the figures are drawn by Miss M. Steinertz.




39.

7. REFERENCES.

[1] Abkowitz, M.A.: Lectures on Ship Hydrodynamics =
Steering and Manoeuvrability, Report No. Hy-5,

May, 1964, Hydro og Aerodynamisk Laboratorium,

Lyngby, Denmark.

{2] Astrdm, K.J., and Bohlin, T.: Numerical Identifi-

cation of Linear Dynamic Systems from Normal
Operating Records, Proc. IFAC Conference on

Self-Adaptive Control Systems, Teddington,

1965,

[3] Astrdm, K.J., and Eykhoff, P.: System Identifica-

tion - A Survey, Automatica 7 (1971), 123 -

’]62'

4] Ekdahl, K., and Henriksson, I.: Om regulatorer for

maximelekonomisk styrning av fertyg, MS Thesis
Report RE-83, Div. of Automatic Control, Lund

Institute of Technology, August, 1970.

[51 Gustavsson, I.: Parametric Identification of Mul-
tiple Input, Single Output Linear Dynamic Sys-
tems, Report 6907, July, 1969, Div. of Auto-

matic Control, Lund Institute of Technology.

Goclowski, J., and Gelb, A.: Dynamics of an Auto-

L6]
matic Ship Steering System, Preprints, JACC

1966, pp. 294 - 30u,
{71 “Zuidweg, J.K.: Automatic Guidance of Ships as a
Control Problem, Thesis, Technische Hogeschool,

Delft, June, 1970.




