MPP protein and activity levels in synovial fluid from patients with joint injury, inflammatory arthritis, and osteoarthritis

Tchetverikov, I; Lohmander, Stefan; Verzijl, N; Huizinga, TWJ; TeKoppele, JM; Hanemaaijer, R; DeGroot, J

Published in: Annals of the Rheumatic Diseases

DOI: 10.1136/ard.2004.022434

2005

Link to publication

Citation for published version (APA):

Total number of authors: 7

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
MMP protein and activity levels in synovial fluid from patients with joint injury, inflammatory arthritis, and osteoarthritis

I Tchetverikov, L S Lohmander, N Verzijl, T W J Huizinga, J M TeKoppele, R Hanemaaijer and J DeGroot

Ann Rheum Dis 2005;64:694-698
doi:10.1136/ard.2004.022434

Updated information and services can be found at:
http://ard.bmjjournals.com/cgi/content/full/64/5/694

These include:

References
This article cites 48 articles, 12 of which can be accessed free at:
http://ard.bmjjournals.com/cgi/content/full/64/5/694#BIBL

Rapid responses
You can respond to this article at:
http://ard.bmjjournals.com/cgi/eletter-submit/64/5/694

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

Other Rheumatology (1591 articles)
Orthopedic and Trauma Surgery (307 articles)
Osteoarthritis (309 articles)

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to Annals of the Rheumatic Diseases go to:
http://www.bmjjournals.com/subscriptions/
MMP protein and activity levels in synovial fluid from patients with joint injury, inflammatory arthritis, and osteoarthritis

I Tchetverikov, L S Lohmander, N Verzijl, T W J Huizinga, J M TeKoppele, R Hanemaaijer, J DeGroot

Objective: To determine protein and activity levels of matrix metalloproteinases 1 and 3 (MMP-1 and MMP-3) in synovial fluid of patients with knee joint injury, primary osteoarthritis, and acute pyrophosphate arthritis (pseudogout).

Methods: Measurements were done on knee synovial fluid obtained in a cross sectional study of cases of injury (n = 283), osteoarthritis (n = 105), and pseudogout (n = 65), and in healthy controls (n = 35). Activity of MMP-1 and MMP-3 in \(\gamma_2 \) macroglobulin complexes was measured using specific low molecular weight fluorescent substrates. ProMMP-1, proMMP-3, and TIMP-1 (tissue inhibitor of metalloproteinase 1) were quantified by immunoassay.

Results: Mean levels of proMMP-1, proMMP-3, and TIMP-1 were increased in injury, osteoarthritis, and pseudogout compared with controls. MMP-1 activity was increased in pseudogout and injury groups over control levels, whereas MMP-3 activity was increased only in the pseudogout group. The increase in MMP-1 activity coincided with a decrease in TIMP-1 levels in the injury group.

Conclusions: Patients with joint injury have a persistent increase in proMMP-1 and proMMP-3 in synovial fluid and an increase in activated MMPs, which are not inhibited by TIMP. The differences in activation and inhibition patterns between the study groups are consistent with disease specific patterns of MMP activation and/or inhibition in joint pathology.

Osteoarthritis is a slowly progressive joint disorder which usually occurs late in life and principally affects the hands and the large weight bearing joints. Joint trauma is one of several known predisposing factors for the development of osteoarthritis. In animal models of osteoarthritis, the development of macroscopic and radiological changes in the joint is preceded by early change in cartilage metabolism. Previous cross sectional marker studies on patients with knee injuries showed that synovial fluid contains increased levels of aggrecan fragments and cartilage oligomeric matrix protein (markers of matrix metabolism) immediately after the initial joint trauma, indicating increased degradation of joint tissue. Moreover, high levels of matrix metalloproteinases (MMPs) were present in synovial fluid of injury patients.

MMPs are a group of \(\text{Zn}^{2+} \) dependent extracellular enzymes that play a key role in normal and pathological tissue remodelling and have the combined ability to degrade all components of the extracellular matrix. Based on domain structure and substrate specificity, MMPs can be divided into subclasses (collagenases, gelatinases, stromelysins, and membrane type MMPs). MMP-3 (stromelysin 1) plays an important role in the MMP cascade owing to its ability to degrade various components of cartilage such as gelatin, aggrecan, and collagen types III, IV, IX, and X, as well as to activate proMMPs 1, 7, 8, 9, and 13. Collagenases (MMP-1, MMP-8, and MMP-13) are capable of degrading intact collagen type II, one of the main components of the articular cartilage, into characteristic 1/4 and 3/4 fragments, which can be further degraded by gelatinases.

Increased MMP production in joint pathology has been demonstrated by high levels of mRNA at tissue level and by increased amounts of proMMPs in synovial fluid. Moreover, previous studies have shown that there is an imbalance between MMPs and tissue inhibitors of MMPs (TIMPs), in favour of the MMPs, in various pathological conditions such as inflammatory joint disease, suggesting that, once activated, MMPs may not be sufficiently counteracted. However, as the extent of activation of the proMMPs remains an unknown variable in vivo, we can only speculate about the levels of activated MMPs. Inactivation of the MMPs involves specific TIMPs and the high molecular weight proteinase inhibitor \(\gamma_2 \) macroglobulin (\(\gamma_2 \)M), which is abundantly present in body fluids and also in synovial fluid during inflammation. TIMP is thought of as a major inhibitor of MMPs at the tissue level; however, determination of specific MMP/TIMP complexes remains a challenge. It is suggested that \(\gamma_2 \)M plays an important role in the inhibition of activated MMPs in body fluids. The active site of the MMPs in \(\gamma_2 \)M/MMP complexes is shielded, which deactivates MMPs towards natural high molecular weight substrates such as collagen. Nevertheless, the quantity of \(\gamma_2 \)M/MMP complexes can be determined using low molecular weight substrates, which can penetrate \(\gamma_2 \)M and reach the “bite region” of the activated MMPs inside \(\gamma_2 \)M.

In the present study, synovial fluid levels of proMMP and TIMP-1 were measured, as well as MMP activity in \(\gamma_2 \)M/MMP complexes (MMP activity). As collagenases and stromelysin may represent different aspects of joint disease—for example, destruction and inflammation—both MMP-1 and MMP-3 were therefore investigated. We made comparisons between joint pathologies with prominent inflammation.

Abbreviations: \(\gamma_2 \)M, \(\gamma_2 \) macroglobulin; MMP, matrix metalloproteinase; proMMP, pro-matrix metalloproteinase; TIMP, tissue inhibitor of metalloproteinases
(pseudogout), primary osteoarthritis, and joint trauma (injury), which predisposes to the development of osteoarthritis.

METHODS

Patients and samples

The study groups were patients with acute pyrophosphate arthritis (pseudogout), anterior cruciate ligament rupture that was either isolated or combined with a tear of the meniscus or collateral ligament (injury), and primary knee osteoarthritis. Diagnosis was made by arthroscopy, radiography, assessment of joint fluid, and clinical examination. The diagnosis of acute pyrophosphate arthritis was based on the acute onset of symptoms consistent with this diagnosis, combined with the presence of pyrophosphate crystals demonstrated by joint fluid microscopy. No patient underwent surgery before joint fluid sampling. Pharmacological treatment before sampling was limited to analgesics or the occasional non-steroidal anti-inflammatory drug. All patients went surgery before joint fluid sampling. Pharmacological treatments were approved by the ethics review board of the Medical Faculty of Lund University.

ProMMP-1, proMMP-3, and TIMP-1

ProMMP-1, proMMP-3, and TIMP-1 concentrations in these samples were previously quantified by immunoassay. In short, collagenase-1, stromelysin-1, and TIMP-1 levels in synovial fluid were determined by a sandwich enzyme linked immunosorbent assay (ELISA) using monoclonal and polyclonal antibodies to the human recombinant proteins. These MMP assays detect the pro-form of the enzymes as well as active forms and the enzymes in complex with TIMP-1, but not the complexes between activated enzymes and α2M. It was shown previously that in synovial fluid samples of this type more than 90% of the MMP-3 detected by ELISA is in form of proenzyme. The assay for TIMP-1 detects only free TIMP-1.

MMP-1 and MMP-3 activity in MMP/α2 macroglobulin complexes

Measurements of MMP activity in α2M complexes were based on methods described previously by Beekman et al. DeGroot et al. and Riley et al. In short, MMP activity in 1/50 diluted synovial fluid samples (all dilutions and concentrations are final) was determined using fluorogenic MMP specific substrates TNO113-F (Dabcyl-Gaba-Pro-Cha-Abu-Smc-His-Ala-Cys(fluorescein)-Gly-Lys-NH2, 5 μM) and TNO003-F (Dabcyl-Gaba-Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg-Cys(fluorescein)-Gly-Lys-NH2, 5 μM) for MMP-1 and MMP-3 assays, respectively. EDTA-free completeTM solution (Roche, Mannheim, Germany; one tablet in 10 ml) was added to all conditions to reduce non-MMP substrate conversion. All incubations and measurements were undertaken in 384-well plates, black with a clear flat bottom (Corning Inc, Corning, NY, USA). The increase in fluorescence which results from enzyme mediated cleavage of the substrates was measured for four hours at 30°C using Cytofluor 4000 (Applied Biosystems, Foster City, California, USA) at 485/530 nm (excitation/emission).

Statistical analysis

The statistical significance of the differences between groups was determined by Kruskal–Wallis one way analysis of variance on ranks. Data was analysed with SPSS software (Chicago, Illinois, USA). All tests were two tailed, and a probability (p) value of <0.05 was considered significant.

RESULTS

Injury patients: MMPs, TIMP-1, and time after injury

Comparison of the MMP and TIMP-1 levels in the injury patients versus the control group showed an increase in proMMP-1 (p = 0.029), proMMP-3 (p<0.001), MMP-1 activity (p<0.001), and TIMP-1 (p<0.001) in the injury group. MMP-3 activity did not differ between the injury patients and the controls (p = 0.189). Although the mean sampling age differed between the study groups (table 1), we have previously reported that neither age nor sex influences the joint fluid concentrations of these markers. MMP and TIMP-1 levels are shown in table 2.

Table 1 Sampling age and time after injury or start of symptoms in the different study groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Age at sampling*</th>
<th>Weeks from injury/onset of symptoms†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n = 35)</td>
<td>27.5 (7.73)</td>
<td>33.5 (4.4, 164)</td>
</tr>
<tr>
<td>Injury (n = 283)</td>
<td>33.0 (13.6)</td>
<td>13.1 (1.1, 85)</td>
</tr>
<tr>
<td>Pseudogout (n = 65)</td>
<td>63.9 (16.3)</td>
<td>0.3 (0.14, 1.1)</td>
</tr>
<tr>
<td>Osteoarthritis (n = 105)</td>
<td>60.5 (9.0)</td>
<td>47.4 (3.9, 103)</td>
</tr>
</tbody>
</table>

Values are *mean* (SD) and †median (25th, 75th centile).

Table 2 ProMMP-1, proMMP-3, TIMP-1, MMP-1, and MMP-3 activity in MMP/α2 macroglobulin complexes in the various study groups

<table>
<thead>
<tr>
<th></th>
<th>ProMMP-3 (ng/mL)</th>
<th>MMP-3 activity (nM)</th>
<th>ProMMP-1 (ng/mL)</th>
<th>MMP-1 activity (nM)</th>
<th>TIMP-1 (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>35</td>
<td>6.7 (3.5, 16.7)</td>
<td>1.99 (1.99, 2.0)</td>
<td>0.12 (0.03, 0.41)</td>
<td>0.57 (0.57, 0.65)</td>
</tr>
<tr>
<td>Injury group*</td>
<td>283</td>
<td>44.7 (18.6, 86.3)</td>
<td>1.99 (1.99, 3.0)</td>
<td>0.81 (0.21, 2.31)</td>
<td>1.23 (0.64, 2.62)</td>
</tr>
<tr>
<td>0 to 0.6</td>
<td>44</td>
<td>50.8 (20.7, 90.4)</td>
<td>1.99 (1.99, 3.5)</td>
<td>1.12 (0.32, 3.04)</td>
<td>0.91 (0.57, 1.89)</td>
</tr>
<tr>
<td>0.6 to 2</td>
<td>58</td>
<td>52.6 (23.5, 102)</td>
<td>1.99 (1.99, 2.0)</td>
<td>1.19 (0.66, 2.7)</td>
<td>1.48 (0.68, 2.88)</td>
</tr>
<tr>
<td>2 to 17</td>
<td>45</td>
<td>78.6 (43.7, 98)</td>
<td>1.99 (1.99, 6.0)</td>
<td>0.56 (0.21, 2.3)</td>
<td>1.96 (1.29, 4.16)</td>
</tr>
<tr>
<td>17 to 57</td>
<td>50</td>
<td>38.7 (15.2, 2.5)</td>
<td>1.99 (1.99, 2.5)</td>
<td>1.06 (0.2, 3.31)</td>
<td>2.77 (14.4, 31.8)</td>
</tr>
<tr>
<td>58 to 170</td>
<td>47</td>
<td>39.1 (15.3, 78.2)</td>
<td>1.99 (1.99, 3.25)</td>
<td>1.06 (0.2, 3.31)</td>
<td>1.05 (0.57, 2.9)</td>
</tr>
<tr>
<td>180 to 1500</td>
<td>39</td>
<td>26.7 (6.6, 56.7)</td>
<td>1.99 (1.99, 3.0)</td>
<td>0.31 (0.17, 1.47)</td>
<td>0.99 (0.62, 1.9)</td>
</tr>
<tr>
<td>Pseudogout</td>
<td>65</td>
<td>56.2 (37.7, 74.4)</td>
<td>20 (3.5, 44.5)</td>
<td>4.13 (1.8, 15)</td>
<td>11.4 (5.7, 16.9)</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>105</td>
<td>31.2 (15.5, 63.9)</td>
<td>1.99 (1.99, 1.99)</td>
<td>0.84 (0.31, 1.54)</td>
<td>0.57 (0.57, 0.63)</td>
</tr>
</tbody>
</table>

Values are medians (25th, 75th centile).

*The injury group is divided into subgroups according to the time elapsed after the injury (weeks) before synovial fluid samples were collected.

MMP, matrix metalloproteinase; proMMP, pro-matrix metalloproteinase; TIMP, tissue inhibitor of metalloproteinases.

www.annrheumdis.com
For further analysis, samples from injury patients were ordered by time after injury and evenly divided into six time “windows” (fig 1). Increased proMMP-1 and proMMP-3 levels, increased MMP-1 activity, and increased TIMP-1 levels were found in synovial fluid from injury patients immediately after the injury. The high levels of TIMP-1 that were found during the first two weeks after injury decreased significantly by the week 17 (p < 0.001) and remained stable for the remainder of the study. MMP levels showed a different time course. Whereas proMMP-1 and proMMP-3 levels remained high throughout the same period, MMP-1 activity was increased (p < 0.001) in the time window when a significant decrease in TIMP-1 levels was found. Later during the study, a significant decrease in proMMP-1 and proMMP-3 levels was found (weeks 17 to 58 and 170 to 1500 for proMMP-1 and proMMP-3, respectively). MMP-3 activity was not increased compared with controls and did not differ between the injury subsets (p = 0.17).
MMP-1, MMP-3, and TIMP-1 levels: osteoarthritis and inflammatory arthritis

Levels of the MMPs and TIMP-1 for the arthritis study groups (osteoarthritis and inflammatory arthritis) v controls are shown in fig 2.

TIMP-1 levels (fig 2C) were increased in pseudogout and osteoarthritis compared with the controls (p<0.001 for both pseudogout and osteoarthritis), whereas levels of TIMP-1 in the injury group were initially at least twofold higher than in the pseudogout or osteoarthritis groups (p<0.001, injury v both pseudogout and osteoarthritis). At later times after joint injury, levels were comparable to the osteoarthritis and pseudogout groups.

ProMMP-1 values were greatly increased in the pseudogout group (detected in 90% of the samples) compared with the other study groups (p<0.001, pseudogout v all other groups). In the injury group, proMMP-1 was detected in 71% of the samples, whereas in the osteoarthritis and control groups it was detected in 26% and 11%, respectively. Active MMP-1 values were increased in the pseudogout and injury groups compared with the osteoarthritis and control groups (p<0.001, both pseudogout and injury v osteoarthritis or control groups).

ProMMP-3 values in joint fluid samples from pseudogout and injury patients were comparable and both were greatly increased compared with the osteoarthritis or control groups. In contrast to MMP-1, MMP-3 activity was increased in the pseudogout group only. No differences were found between injury, osteoarthritis, and control groups.

DISCUSSION

Our study shows the following for the first time:

- increased MMP activity in z2 macroglobulin complexes in synovial fluid from patients with inflammatory arthritis and joint injury, accompanied by a high proMMP/TIMP-1 ratio;
- the co-occurrence of an increase in MMP-1 activity in synovial fluid after joint injury and a significant decrease in TIMP-1 levels;
- a higher degree of activation of MMP-1 compared with MMP-3 in synovial fluid from patients with joint injury.

Osteoarthritis is a slowly progressive joint disease characterised by deterioration in the articular cartilage over a long period. As joint injuries predispose to the development of osteoarthritis at a young age, it is likely that a single incident sets in motion a long lasting process with severe consequences for the joint cartilage. The molecular basis of the osteoarthritic process is not fully understood but studies of events following joint injury may provide clues to the processes that lead to osteoarthritis. Previously, we showed that increased levels of cartilage degradation products—such as aggrecan fragments and COMP—persist in synovial fluid from patients with joint injuries for a long time after the initial injury. Although the levels of both proMMPs and TIMPs are increased in synovial fluid after an injury, the proMMP/TIMP-1 molar ratio is also increased, indicating a shift in favour of the MMPs. However, little is known about the activation of proMMPs in vivo. The results of the present study show that in addition to an increase in the proMMP/TIMP-1 ratio, increased levels of activated MMPs complexed with z2M are present in synovial fluid after joint injury and in joint inflammation. Activated MMPs are inhibited either by specific tissue inhibitors or by complex formation with z2M, a general protease scavenger. TIMP is considered to be a major MMP inhibitor at tissue level because tissue cells produce TIMP and high molecular weight z2M is unlikely to penetrate tissues such as articular cartilage. In body fluids, however, the situation is different, z2M is present in normal synovial fluid and in synovial fluid from patients with inflammatory conditions. It has previously been shown that in the presence of both TIMP and z2M, activated MMPs will be entrapped by z2M. As only activated MMPs will form complexes with z2M, the present findings suggest that pathological changes following joint trauma result not only in the increase of proMMP levels in synovial fluid but also in an increase in the levels of activated MMPs. Following complex formation between activated MMP and z2M, conformational changes occur at the surface of z2M and the proteinase/scavenger complex is rapidly cleared. It remains a challenge to measure MMP complexes with TIMPs, and we are therefore unable to account for low variable in our study. Moreover, the clearance rates of low molecular weight proMMPs and MMP/z2M complexes may differ, which is why no hard conclusions can be drawn from the present data with regard to the relative proportions of activated MMPs and the proMMPs produced.

The increased MMP activity in pseudogout group is in line with previous observations of increased MMP/z2M levels in another inflammatory joint condition, rheumatoid arthritis. This suggests that increased levels of activated MMPs may be a common feature of joint inflammation. Moreover, the results show that increased MMP-1 activity in MMP/z2M complexes is found not only in pseudogout group but also in synovial fluid of injury patients. These findings indicate a similarity between joint inflammation and the initial stages of injury with regard to the changes in the proteolytic system, which may eventually lead to joint cartilage degradation and osteoarthritis. Additional studies are needed to investigate the precise relation between tissue and synovial fluid levels of the MMPs—that is, whether synovial fluid levels of measured MMPs represent the activity of the proteolytic system in joint tissue. Interestingly, an increase in MMP-1 activity was detected in the same time window during which the TIMP-1 levels in synovial fluid of injury patients were significantly decreased (fig 1). These observations support a role of z2M as a scavenger of activated MMPs, and indicate the applicability of MMP activity measurements using small fluorogenic substrates to study joint pathology. It should be noted that only one subclass of TIMPs (TIMP-1) was measured in the present study and that other TIMPs—such as TIMP-2 and TIMP-4—could contribute to the inhibition of MMP-1. Nevertheless, the increased levels of MMP/z2M complexes in synovial fluid of injury patients compared with the control group indicates that the net effect of the upregulation of the proteolytic system is free activated MMPs, despite an increase in TIMP levels following joint trauma.

Whereas significantly increased levels of activated MMP-1 were present in both the pseudogout and the injury groups, high levels of activated MMP-3 in this study were detected only in the pseudogout group. Although several explanations for these findings are possible, it seems most likely that proMMP-3 is not converted into the active form following injury to the same degree as in pseudogout. These results imply that increased proMMP-1 and proMMP-3 production under these conditions may have a different pathophysiological significance. Whereas the presence of proMMP-3 in synovial fluid is associated with synovitis, and activated MMP-3 is thought to activate multiple other proMMPs, activated MMP-1 is believed to play an important role in the degradation of type II collagen, one of the main components of the articular cartilage. Thus, while increased proMMP-3 levels in synovial fluid of injury patients do not result in increased levels of active MMP-3, and the biological significance of high proMMP-3 levels remains unclear, proMMP-1 is converted to its active form, which may contribute to deterioration of the articular cartilage and to the development of osteoarthritis.
REFERENCES

