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Scattering From Frequency Selective Surfaces:
An Efficient Set of V-Dipole Basis Functions

Sören Poulsen, Member, IEEE

Abstract—In this paper, a novel set of V-dipole basis functions is
introduced. These basis functions are used to approximate the in-
duced surface current density on an infinite, plane frequency selec-
tive surface (FSS). The elements of the FSS are supposed to consist
of straight sections and bends. Two groups of elements which the
present V-dipole basis functions can be applied to are identified,
namely, the center connected elements and the loop-type elements.
Using the established spectral Galerkin method, where the method
of moment (MoM) procedure is carried out in the spectral domain,
we determine the reflection and transmission coefficients of the
FSS. The convergence of the solution is demonstrated both for ex-
isting bases and the present V-dipole basis functions. It is found
that the double infinite Floquet sum diverges when existing, discon-
tinuous, basis functions are used, but that convergence is obtained
for the present basis functions. Therefore, care needs to be exer-
cised, and it would seem discontinuous bases should be avoided.

Index Terms—Continuity of basis functions, frequency selective
surfaces (FSS), relative convergence, spectral Galerkin method.

I. INTRODUCTION

I N this paper, we use an established method, sometimes re-
ferred to as thespectral Galerkin method[1], to calculate the

reflection and transmission coefficients of an infinite, plane fre-
quency selective surface (FSS). In the spectral Galerkin method,
the formulation is carried out in the spectral domain, where the
convolution in the integral equation is reduced to an algebraic
relation. The incident plane wave induces an electric surface
current at the conducting parts of the FSS (magnetic currents
are used for slot FSSs). To determine this current density, it is
expanded in entire domain basis functions, with unknown cur-
rent coefficients. The current coefficients are then determined
from a linear system of equations, and obtained by imposing
the boundary condition at the conducting surface. Once the sur-
face current density is known, the scattered fields are easily ob-
tained. More details on the spectral Galerkin method are found
elsewhere [1]–[3].

In practical FSS applications, such as low observable
radomes, two or more layered FSSs are often needed to obtain
required bandwidth, etc. Moreover, due to mechanical require-
ments, and for scan independence, the FSSs are often embedded
in a dielectric media. Multilayered FSSs are analyzed by either
the scattering matrix method [4]–[7] or a full-wave moment
method [2]. The full-wave moment method determines the
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current distribution on each FSS screen simultaneously. If,
, , are the number of unknowns on screen 1, screen

2, …, and screen , respectively, then the full-wave moment
method solution involves a matrix with
elements. Thus, to get acceptable computer run time, it is
extremely important that only a few number of unknowns on
each FSS screen are required to get adequate results. Hence, it
is reasonable to require that a few number of basis functions
approximate the induced surface current density well, even for
complex element geometries.

The concept of relative convergence was introduced by Mittra
[8] for the particular case of the mode-matching formulation of
a bifurcated waveguide junction problem. Mittra found that un-
less the correct ratio of the number of modes is taken in the two
regions, a correct solution cannot be obtained as the number
of modes approaches infinity [8]. Convergence aspects of the
FSS solutions have many similarities, and the concept of rela-
tive convergence has been used for the FSS analysis as well [9],
[10]. However, Webbet al.[11] found no evidence for the exis-
tence of a relative convergence phenomenon for the FSS anal-
ysis in general. Instead, they showed that one should rely on
absolute convergence, where a sufficiently large number of sat-
isfactory basis functions are used together with a large number
(approaching infinity) included Floquet modes [11].

Webbet al.[11] found that the Floquet sum corresponding to
the pulse function is divergent. Later, it was found that the basis
functions should fulfill a continuity condition [12]; otherwise,
the double infinite sum of Floquet modes corresponding to a dis-
continuous basis function is divergent. Since the Floquet sum is
divergent, the result is strongly dependent of how many Floquet
modes that are included. Therefore, care needs to be exercised
and it would seem discontinuous bases should be avoided.

The main objective of the present V-dipole basis functions
is that absolute convergence is obtained, since the Floquet
sums are convergent. We simply include Floquet modes until
the Floquet sum has converged numerically. To sum up, the
V-dipole basis functions are introduced for two reasons:

Efficiency:Only a few number of basis functions are re-
quired to obtain adequate solutions.
Convergence:They yield convergent Floquet sums, in con-
trast to discontinuous bases.

In Section II, we define the V-dipole basis functions, and
provide tools for the assembly of the FSS element. The ele-
ment, which consists of straight sections and bends, is easily as-
sembled by moving and rotating generic basis functions, called
the straight section and circular current basis functions, respec-
tively. We demonstrate the efficiency of the V-dipole basis func-
tions by considering two FSS arrays, i.e., the tripole and the
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hexagonal loop array. Regarding the tripole array, calculated
transmission and reflection coefficients are compared with mea-
sured ones, and excellent agreement is found. When it comes to
the hexagonal loop element, we compare predicted reflection
with results obtained by the period method of moment (PMM)
program [13]–[15]. PMM was developed at theElectroScience
Laboratory, The Ohio State University.

Finally, we demonstrate the convergence of the solution when
existing and the present basis functions are used.

II. M ETHODS

A. Generic Basis Functions

The element, whether it is a center connected or a loop type
element, is divided into straight sections and bends. In this sec-
tion, we define the generic basis functions that are applied to the
straight sections and the bends of the element. The approach is
to let the amplitude vary at the straight sections, while it is con-
stant at the bends. Therefore, we introduce the length, which
for center connected elements equals the length of the V-dipole,
that is, is the length of the arms. On the other hand, for
loop-type elements, is the total length of the loop. Moreover,
we let and define the start and the end points, respec-
tively, of the straight section. Thus, by making an appropriate
choice of and , the straight section starts and ends at spe-
cific amplitudes.

To this end, the straight section functions are defined as

and

where . Outside the interval ,
the straight section functions vanish. The functionsare ap-
plied to center connected elements, and they are zero at
and (which turns out to be the endpoints of the strip
considered). On the other hand, the functionsare applied to
loop elements. Since the start and end point are equal for loops,

do not necessarily vanish at and . How-
ever, . Notice that is
a complete set on .

We introduce the generic straight section basis functions as

(1)

where . Outside
the region , vanishes. Throughout this paper,

is a point (or vector) in the plane (the plane
of the FSS). We assume that the width of the straight section
is small so that it is a good approximation to assume that the
current is directed along the straight section only. Moreover, the
current is approximated to be constant over the width, that is,
we do not take the edge condition, which says that the current
component parallel to an edge is singular, into account.

At the bends, we apply the circular current basis function de-
fined by

(2)

Fig. 1. Support of the generic straight section basis functions and the circular
current basis function. The dots at the origins are the insertion points.

where
, where . Here, is the angle of the bend. The

support of the generic straight section basis functions and the
circular current basis function is shown in Fig. 1, where also the
current lines of the basis functions are illustrated. Notice that
the circular current basis function easily can be generalized to
cover a circular ring rather than a disk.

B. Tools for the Assembly

By moving, reflecting, and rotating the generic basis func-
tions, i.e., the generic straight section basis functions and the
circular current basis function, the element is assembled. The
translation, reflection, and rotation is performed by dyadics in
the spatial domain but may as well be performed in the spec-
tral domain. In fact, it is most efficient to compute the Fourier
transform of the generic basis functions and then translate, re-
flect, and rotate the basis functions in the spectral domain.

The basis function is simply moved unit lengths in
the direction and unit lengths in the direction by sub-
tracting from its argument as .
The dyadic performs a rotation by
an angle in the right-hand direction around theaxis. Here,
is the unit dyadic, while is the two-dimensional
(2-D) unit dyadic. The dyadic is defined as .
We have , and moreover, , where
and denote the transpose and inverse of the dyadic,
respectively. The basis function is rotated by an angle in
the right-hand direction around theaxis as

(3)

Finally, we introduce the dyadic , which performs
a reflection in the plane. We have , and

moreover, . The basis function is reflected
in the plane as

C. Center-Connected Elements

Generally, it is not sufficient that the center-connected ele-
ment is covered by basis functions, since it is also necessary
that the basis functions used are able to approximate the induced
current in the frequency range considered. This is not all bad
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Fig. 2. Open setsS , S andS , and the current lines of the V-dipole basis
functions.

since the one who is forced to define the basis function struc-
ture will gain physical insight into how the scatterers operate.
In this paper, we consider the tripole to show how the V-dipole
basis functions are adapted to a center connected element. How-
ever, the V-dipole basis functions can be adapted to any center
connected element; see [16] for a general approach, where the
key is to recognize the tree structure of the element.

The tripole considered here is divided into V-dipoles. Each
V-dipole consists of two linear arms (straight sections) and a
bend (circular current). TheV-dipole basis functions
are defined on the open sets (defined below) as

(4)
where , and

, . The open sets are illustrated
in Fig. 2. Specifically, we have

and

The angle of the V-dipole basis functions is in the interval
. The V-dipole basis functions can be adapted to a spe-

cific element geometry by moving and rotating the basis func-
tions in the plane and, of course, by adjusting the angle.

The V-dipole basis functions,(4), can easily be generalized to
have more than one bend, which is necessary for more advanced
element geometries, e.g., the anchor element. To illustrate the
approach, the V-dipole basis functions are now adapted to the
tripole geometry given by Fig. 3. First, we set . The
tripole is divided into three V-dipoles, where each V-dipole con-
sists of two tripole arms, connected at the center of the tripole.

Fig. 3. Geometry of the tripole.

The V-dipole basis functions for the tripole geometry are de-
fined as

where is the rotation dyadic defined above, and the shift of
origin is defined as . The
shift of origin is necessary because the tripole element is cen-
tered about the origin, while the generic V-dipole basis func-
tions are not. So far, one of the tripole arms are parallel to the
axis, that is, the angle of Fig. 3 has not been introduced yet.
Hence, as a last step, we rotate the tripole element by an angle
in the right-hand direction around theaxis. Moreover, we use
the following enumeration of the basis functions, i.e., the index
is mod 3:

where the angle of rotation is illustrated in Fig. 3.
At the arms of the tripole, i.e., at , the basis func-

tions for 1,2,3 are identical with the standard cosine basis
functions, e.g., given by Vardaxoglou and Parker [17]. These
basis functions approximate the surface current at the first reso-
nance. However, at , the V-dipole basis functions correspond
to circular currents of constant amplitude, like the wedge basis
functions given by Imbraile, Galindo–Israel, and Rahmat–Samii
[18]. The basis functions , for 4, 5, and 6, are intended
to approximate the surface current at the second resonance, and
these basis functions are identical with the standard sine basis
functions [17], [19]. Higher values of give repeatedly three
even (cosine) and three odd (sine) basis functions of higher and
higher order.

D. Elements of Loop Type

In Section II-C, the approach for center-connected elements
was to divide the element into several V-dipoles and locate one
basis function, or several basis functions, on each V-dipole, by
moving and rotating the basis function in theplane. However,
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Fig. 4. Coordinatè , measuring the distance around the loop, is illustrated to
the left, while the insertion points��� are depicted to the right.

when analyzing the loop-type elements our approach is slightly
different. We follow the idea of Auet al. [19], but in this paper
the current is bent continuously at the corners, by the circular
current basis function (2).

In the master’s thesis of Åkerberg [20], the V-dipole basis
functions were applied to the tripole loop. Without loss of gen-
erality, we demonstrate the approach on the hexagonal loop ele-
ment. The hexagonal element is divided into straight sections
and bends according to Fig. 4. We introduce a coordinate
along the loop, measuring the distance around the loop from an
origin taken at the point in Fig. 4. Hence, is in the interval

, where is the total length of the loop, i.e., theinner
circumference of the loop. We introduce the coordinates

around the loop. As before, we move and rotate the generic
straight section basis functions (1) so that they are adapted to
the geometry of the loop. The generic straight section basis
function is divided into six parts as ,
where . Each of these parts are then rotated and
moved to their location on the loop. First, we define the trans-
lated straight section basis functions as

These basis functions have support in the region ,
. The basis functions are then easily ro-

tated by (3). Since the rotation is performed around theaxis,
one corner of the straight section remains at the origin. This
corner is called the insertion point. After an appropriate rota-
tion by (3), the straight section is translated in the plane
so that the insertion point is located at the point, where the
points are defined as

. Here, is the radius of the circle
which circumscribes the inner hexagon; see Fig. 4. The straight
section basis function which is inserted at is rotated

in the right-hand direction around theaxis. To sum
up, at the straight sections, we apply

(5)

At the bends, we apply the circular current basis function
(2). The circular current basis function at is rotated

in the right-hand direction around theaxis. More-
over, to obtain continuity of current from one segment to the
next segment, the amplitude of the circular current basis func-
tion at is . This requirement of continuity is
necessary, else the double infinite sum of Floquet modes, oc-
curring as matrix elements in the spectral Galerkin method [1],
will not converge [11], [12]. If the requirement of continuity is
not provided, the current along the strip senses a termination of
the conductor [18]. To sum up, at the bends, we apply

Notice that the amplitude is constant at the bends and that the
amplitude and direction of the current at the bends are given
by the factor , which can be either negative, zero,
or positive. Hence, for the hexagonal loop we use the V-dipole
basis functions

(6)

E. Spatial Fourier Transform

The Fourier transform operator is defined as

where is the spectral variable. The basis function is
moved unit lengths in the direction and unit lengths
in the direction by subtracting from its
argument as . The Fourier transform of the translated
basis function is easily obtained as

(7)

Moreover, we have also seen that it is convenient to rotate the
basis functions. According to (3), the basis function is ro-
tated by an angle in the right-hand direction around theaxis

as . It is straightforward to show that the Fourier
transform of the rotated basis function is given as

(8)

Notice that (8) is also valid for reflection dyadics as well. The
Fourier transform of the generic straight section and the circular
current basis functions are given in the Appendix.

III. RESULTS

The spectral Galerkin method [1], the presented V-dipole
basis functions, and the rotation dyadic were implemented
in Fortran 90. The numerical integrations (see the Appendix)
were performed by theIMSL Math/Library, using the adaptive
general routine QDAG. All computations were made in double
precision.

A. Tripole Array

FSSs comprised of tripoles have been studied extensively in
the last two decades [17], [19], [21]–[23]. The basis functions
used have the standard cosinusoidal and sinusoidal forms, with
the requirement that the current should be zero at the ends of the
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Fig. 5. Current lines of the different types of tripole bases intended to
approximate the induced surface current density at the first resonance. In all
three cases, the current is zero at the ends of the tripole arms and has unit
amplitude at the center of the tripole.

tripole arms. The sine basis functions, introduced to approxi-
mate the surface current density at the second resonance, vanish
also at the center of the tripole. The cosine basis functions are
intended to approximate the current at the first fundamental res-
onance. The cosine basis function of Vardaxoglou and Parker
[17] covers one arm of the tripole, and has unit amplitude at the
center. On the other hand, the cosine basis function of Auet al.
[19] covers two arms of the tripole (i.e., it covers a V-dipole),
and the current changes direction on a line at the center of the
tripole; see Fig. 5.

Riggs and Smith [24] use a singular expansion method (SEM)
on a single tripole to obtain a set of very efficient basis functions.
However, the drawback of their method is that they have to re-
calculate the SEM modes for each set of parameters (the length
of the tripole arms, etc.). Since this recalculation is rather time
consuming, the SEM is not practical in all applications.

The existing cosine basis functions do not apply to the
necessary continuity condition of entire domain basis functions
[12], and thus, the cosine basis functions are unsuitable with
the spectral Galerkin method. Numerically, this shows up when
we try to find an appropriate truncation of the double infinite
sum of Floquet modes corresponding to a cosine basis function,
since this sum is divergent. Therefore, the result is strongly
dependent of how many Floquet modes that are included (see
Section III-C).

We consider an FSS comprised of an infinite array of tripoles,
where the arms of the tripoles have the lengths mm,
and the widths mm. The tripoles are arranged on an
equilateral triangular lattice, with the side 4.6 mm; see Fig. 6.
The angle of rotation is , see Fig. 3. Moreover, the
tripoles are printed on a substrate, 0.037 mm thick, with .

This geometry has also been studied by Vardaxoglou and
Parker [17], and they have measured the transmission at a
number of frequencies at the Ku, K, and Ka band (12.4–
40 GHz). The transmission is measured for parallel polariza-
tion, and the angles of incidence are given by and

, where is measured from the normal of the FSS, i.e.,
the axis, such that corresponds to normal incidence.
Furthermore, the angle is measured from the axis toward
the axis.

We calculate the transmission and compare our computed re-
sults with Vardaxoglou and Parker’s measured ones. The com-
putations are performed with the spectral Galerkin method [1]
and with 2 V-dipole basis functions taken into account, namely,

and . Hence, the matrix in the linear system of equa-
tions, for the induced surface current, has the size 22. The

Fig. 6. Eequilateral triangular lattice. The length and width of the tripole arms
areL = 2:5 andW = 0:15 mm, respectively.

effect of including more basis functions has been investigated,
but no significant change of the results was found. However, if
a larger frequency band is considered, e.g., a frequency band
including the second resonance, more basis functions have to
be included in order to get adequate results. Moreover, 33Flo-
quet modes are included, i.e., the double infinite sums of Floquet
modes (occurring as matrix entries) are truncated over a square,
i.e.,

is truncated as (9)

where . This truncation is determined by adding Floquet
modes until the result does not change, see also Fig. 11. Notice
that the approach is to find out when the matrix elements con-
verge, rather than determining an optimal truncation according
to the phenomenon of relative convergence [11]. The substrate
is taken into account by a full wave approach [25], [26]. The
result is shown in Fig. 7. The dashed curve is calculated by the
PMM program [13], with five PWS current modes (piecewise
sinusoidal) taken into account. With five modes, PMM predicts
also the second resonance, although it is not included in the fre-
quency range considered. Essentially the same result was ob-
tained when including only two current modes in PMM (two
PWS modes bended at the center of the tripole). From Fig. 7
it is concluded that the agreement between the results obtained
by the V-dipole basis functions and PMM is extremely good.
Fig. 7 shows that adequate results can be obtained with afew
goodbasis functions. However, generally, more basis functions
should be included.

B. Hexagonal Loop Array

As a second example, we consider an array of hexagonal loop
elements. The inner radius and the width of the loop are
illustrated in Fig. 4. The radius mm, and the width of
the loop is mm. The loops are arranged on an equi-
lateral triangular lattice with the side 12 mm; see Fig. 6 for a
similar lattice.

The angles of incidence are chosen as and .
The incident field is parallel polarized. Moreover,
Floquet modes and 10 V-dipole basis functions for the hexag-
onal loop (6) were included. This truncation was achieved so
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Fig. 7. Predicted and measured transmission for parallel polarization. The dots correspond to measured transmission [17], while the dashed curve iscomputed
by the PMM program [13]. The solid curve is computed with 2 V-dipole basis functions. The angle of incidence is� = 45 .

that inclusion of more modes (Floquet and current) will only
have a negligeable impact on the result. The result is shown
in Fig. 8, where the black dots are computed by the hybrid
FEM/MoM approach [27]. As depicted in the figure, the FSS
is in resonance at approximately 10 GHz. At this frequency, the
total length of the loop is one wavelength, that is, , where

is the free space wavelength. The resonance at 10 GHz is the
first fundamental resonance of the FSS.

We compare the predicted reflection with the results obtained
by a different approach [27], based on a hybrid FEM/MoM for-
mulation for thick screens. The small deviation in the results,
showing up as a small shift in frequency (0.1 GHz), can be due
to the fact that transversal current is neglected in the V-dipole
basis functions, while in the hybrid method, a complete set of
modes is used [27]. Moreover, the V-dipole basis functions do
not satisfy the edge condition which requires that the current
component parallel to an edge is singular. The effect of reducing
the width of the loop to mm, while the radius is
unaltered, has been investigated. It was found that the deviation,
seen as a frequency shift of 0.1 GHz, still remained.

The dashed curve in Fig. 8 is computed by the PMM program
[13], with 12 current modes (piecewise sinusoidal). In general,
not only for the elements considered here, good agreement is
found between results obtained by PMM and the V-dipole basis
functions.

C. Convergence of the Solution

In Section III-A, we noticed that the discontinuous cosine
basis functions proposed by other authors [17], [19] (see Fig. 5),
do not apply to the necessary continuity condition of entire do-

Fig. 8. Predicted reflection of hexagonal loop array for parallel polarization.
The dotted curve corresponds to reflection coefficients computed by a hybrid
MoM/FEM method [27], while the dashed curve is computed by PMM [13]. The
solid curve is computed by 10 V-dipole basis functions. The angle of incidence
is 30 .

main basis functions [12]. The main drawback of discontinuous
basis is that the resonance frequency obtained from the MoM
procedure is strongly dependent on how many Floquet modes
are taken into account. The main objective of this section is to
illustrate this fact. Therefore, we consider the tripole array of
Fig. 6. We calculate the reflection coefficient for parallel po-
larization (see Fig. 7 where the transmission coefficient is de-
picted) using the present V-dipole basis functions and existing
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Fig. 9. Resonance frequency versus the number of Floquet modes included
for the tripole array of Fig. 6 but without the dielectric substrate. The angles of
incidence are� = 45 and� = 90 .

bases [17], [19], see Fig. 5. In all cases, three basis functions are
used. We include more and more Floquet modes and examine
how the result converges. First, we examine the convergence
for a free standing FSS without substrate. In Fig. 9, the reso-
nance frequency of the tripole array is plotted as a function of
the number of Floquet modes included, i.e., as a function of,
see (9). It is concluded that convergence is obtained when the
present V-dipole basis functions are used, since the resonance
frequency does not change for . Generally, when contin-
uous bases are used, we simply include Floquet modes until the
result does not change [12], which means that in this case we
chose . On the other hand, when discontinuous bases are
used, we are forced to include an optimal number of Floquet
modes, that is, not too many and not too few Floquet modes.
For instance, when using the cosine base of [19], from Fig. 9,
it is concluded that it is necessary to include about
Floquet modes, where , otherwise the obtained results
will not be adequate. This means that when discontinuous bases
are used, we need a rule of thumb in order to adequately estab-
lish the truncation parameter.

We now investigate the convergence when the FSS is sup-
ported by a substrate. In Fig. 10, the substrate is taken into ac-
count by the scattering matrix approach [4]. We include Floquet
waves (plane waves) up to order 4, i.e., the size of the scat-
tering matrices is 162 162. Again, absolute convergence is
found for the present base. In fact, the convergence results are
similar to the ones obtained for the free standing FSS. This is
not surprising, since in the scattering matrix approach, we first
calculate the scattering matrices for the free-standing FSS and
substrate, respectively, and then the scattering matrix of the cas-
caded structure is obtained by simple matrix algebra. However,
when using the full wave method [25], [26], the current distri-
bution found by the method of moments is calculated with the
substrate present. Hence, the convergence of the double infinite
Floquet sums is affected by the actual substrate. In Fig. 11, the
convergence is shown when the full wave method is used. Con-
vergence is found for the present base, and the resonance fre-

Fig. 10. Same case as in Fig. 9, but here the FSS is supported by a dielectric
substrate. The effect of the substrate is computed by the scattering matrix
approach [4].

Fig. 11. Same case as in Fig. 10, but here the effect of the substrate is computed
by the full wave approach [25].

quency converges to GHz as the number of Floquet
modes approaches infinity. Hence, the resonance frequency is
reduced 8.5% when the substrate is introduced; see Fig. 9. When
using the scattering matrix approach (see Fig. 10) the resonance
frequency was reduced 3% only. It is found that the discrep-
ancy, 8.5% compared to 3% reduction, is reduced when more
Floquet waves (plane waves) are included. However, that would
require larger scattering matrices, and due to computer limi-
tations, we have not been able to investigate the effect of in-
cluding more Floquet waves. The size of the scattering matrices
is , where is the index of the
highest order Floquet wave included. This poor convergence of
the scattering matrix approach can be avoided by letting a part
of the substrate support the FSS, such that the evanescent waves
radiated from the FSS are suppressed in the supporting substrate
[7].

Numerous methods have been used to analyze FSSs. It is im-
portant to notice that the convergence results given here is valid
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for the spectral Galerkin method [1] and that they are not neces-
sarily true for other methods, for instance the equivalent circuit
method.

IV. CONCLUSION

In this paper, an efficient set of V-dipole basis functions was
introduced. Their application to center connected and loop-type
elements was demonstrated. The elements of these two groups
are the far most interesting when it comes to practical applica-
tions. Combinations, e.g., a tripole inside a hexagonal loop, can
be treated as well. The element was divided into straight sections
and bends, and by simple translation and rotation, the so-called
generic straight section basis functions and the circular current
basis function were positioned to cover the element. The trans-
lation and rotation can be performed either in the spatial domain
or in the spectral domain.

First, we considered the tripole element, which was divided
into three V-dipoles. Excellent agreement between predicted
and measured transmission was found, even when only two of
the present V-dipole basis functions were taken into account.
Regarding the hexagonal loop element, we compared our pre-
dicted results with results obtained by PMM [13] and a hybrid
FEM/MoM approach [27].

The present basis functions do not satisfy the edge condition
which requires that the current component parallel to an edge is
singular. One reason for why this edge condition was not intro-
duced is that in the case of center connected elements, the sin-
gular edge would occur at the interior of the element, i.e., at the
edge of the circular current basis function, since the nonstraight
boundary of the set is not located at an edge of the element;
see Fig. 2. However, for loop-type elements, the edge condition
does not cause such problems, and it is expected that basis func-
tions with correct edge behavior improve the convergence [28].

Finally, we noticed that absolute convergence of the MoM so-
lution was obtained when continuous bases are used. However,
when discontinuous bases are used, the MoM solution does not
converge as the number of Floquet modes are increased. In fact,
we found that the double infinite Floquet sum diverges when
discontinuous bases are used. Therefore, care needs to be exer-
cised, and it would seem discontinuous bases should be avoided.

APPENDIX

V. FOURIER TRANSFORM

The Fourier transform of the circular current basis function is
given by

In polar coordinates and , this integral can be written

where . We substitute and
notice that

The result is

where and . Two
integrals, and can be identified, such that

The integral can be performed in closed form

where . The integral
is defined as

We perform the integration overand get

This integral is performed by numerical integration. Notice that
the Fourier transform of the basis functions can be computed
and stored once in the beginning of the computation. Finally, the
Fourier transform of the generic straight section basis functions

[see (1)] is easily expressed in closed form.
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