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MATHEMATICAL METHODS OF A PULP AND PAPER MILL SCHEDULING PROBLEM .

B. Pettersson
Billeruds AB, Sdffle

ABSTRACT

Mathematical methods for production scheduling of a complex
integrated pulp and paper mill are discussed. The scheduling
problem is formulated as an optimal control problem for a
multivariable deterministic system. A method of solution for
the problem, using optimal control theory, is derived. The
method developed is suitable for an on-1ine process control
computer.

x This work has been carried out as part of a process computer
project at the Gruvdn mill of Billeruds AB.
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1. INTRODUCTION

A production co-ordination problem of the Gruvon pulp and paper
mill of Billeruds AB has been described in [7] and in further
detail in [8] and [10]. In this report, the mathematical methods
developed to solve the problem are discussed.

A mathematical model of the mill is presented in ch 2. In ch 3,
scheduling objectives are discussed and formulated mathematically.
When formulating the problem, computational aspects are discussed,
bearing in mind that the problem must be solved on a process computer
(IMB 1800) with a computing time not exceeding 1-2 hours.

The scheduling problem has been attacked using simulation and
optimization methods. The simulation and its results are

described in ch 4. The simulation technique is not really useful
during operating conditions, since the manual work required is too
great. However, it is a very valuable aid when studying the problem.

The first optimization attempt was linear programming, as described
in ch 5. The size of the problem turned out to be far beyond the
capacity of a process computer. Thus, the execution time for a
typical problem was about 40 minutes on an IBM 7044. Looking into
other methods, a formulation based upon the Pontryagin maximum
principle turned out to be successful. In ch 6, the maximum
principle is applied to the planning problem. In ch 7, a method
of solution for the problem is derived. The work is carried out
using a simple two-dimensional model. The results are then
generalized to the model of Gruvdn and the final formulation of
the problem is presented, ch. 8.



The solution technique developed, as described in ch 8, can be
characterized as a successive solution of a number of small linear
programming problems (about 50 rows and 40 columns) defined and
linked together by means of the maximum principle., The result can
also be interpreted as a decomposition algorithm of a linear
programming problem,

To carry out the calculations, FORTRAN programs are written for
the IBM 1800, The programs cover about 15,000 words and the
execution time during time-sharing is about one hour, assuming
50% load of priority programs.

In order to illustrate the structure of the solutions obtained
by the optimization method developed, some planning examples
are given in ch 9,



2. MATHEMATICAL MODEL

In order to handle the co-ordination problem, a mathematical model
of the mill has been developed. The modeling and the approximations
made are discussed in [7] and in further detail in (8] -

The model is illustrated in figure 2.1. It consists of

3 paper machines, the production of which is assumed to be known as a
function of time during a period of 2-3 days (the
planning period)

9 process units, the production of which during the period is to be
determined

10 storage tanks, the contents of which are assumed to be known at the
beginning of the planning period.

The model flows are of pulp, liquors and steam. Concentrations of
chemicals are assumed to be constant. The dynamics of individual
processes is neglected. The ratio between flows around a process unit
is assumed to be constant.

The model is described mathematically in the following way (cf fig. 2.1).
The state of the system is described by the storage tank levels SPRRP ST
components of the state vector x(t). As controls uy,...,uUqg (components

of the control vector u(t) the productions of the processes are chosen.

One of the flows entering or leaving a process is regarded as a

measure of the production of that process. Since all flows around a

process are assumed to be proportional, the choice is arbitrary from

a mathematical point of view. The actual choice of controls (cf fig. 2.1)
is motivated by practical reasons (agreement with mill practice,
possibility of measurement).

The given paper production is regarded as a disturbance to the system,
denoted by the disturbance vector v(t) with 3 components. Since the
steam flow of the system has no storage tank, a scalar, S, is introduced
in order to describe the steam balance of the system.
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Fig 2.1 todel of the Gruvdn mill. The model consists of 3 naper
machines, 9 process units and 10 storage tanxs, inter-
connected by flows of pulp, liquors and steam. The ratio
between flows around a process is assuned to be constant.

The relations between the state vector x(t), the control vector u(t),
the disturbance vector v(t) and the steam variable S(t) are described

by
d_z;{i) =B - u(t) +C - v(t) (2.1)
S(t) =D - u(t) +E - v(t) (2.2)

B, C, D and E are coefficient matrices describing relations between
flows of the model. The matrix sizes are 10 x 9, 10 x 3, 1 x 9 and
1 x 3 respectively.



Since most tanks have one input and one output only, most elements

of B and C are equal to zero. The structure of the B- and C-matrices

is illustrated

x x 0 x 0 0 ©
0 0 X 0 0 0 O
0 0 0 X X 0 O
0O 0 0 0 X 0 O
X X 0 0 0 X O
B=|lo o o o0 0 X X
0 0 0 0 0 0 X
X X 0 0 0 0 O
0 0 X 0 0 0 O
Lo X X 0 0 0 O
Fig. 2.2

not identically zero are marked with x.

The variables of the model are constrained by capacity limits,

described by

Numerical values of relations between flows of the system are
derived in [8] . Numerical values of matrix elements and capacity

limits are given in [10]

0O O X X O O O O ©o ©O

in figure 2.2.

—d

O X O X ©0 o o ©o o o

Structure of B- and C- matrices. Elements

i=1,...,10

i=1,...,9

O O O 0O 0O O X O o

—
o

O 0o O o O 0o O X x ©O

O O ©O O O 0O X O O o

(2.3)

(2.8)

(2.5)



From a control point of view the system as described by (2.1)-(2.5)
has the following properties:

the system is not controllable

the disturbance is deterministic

the right member of (2.1) does not depend on the state vector x
the control space is constrained to a convex hyperpolyhedron
the state space is constrained to a hyperparallelepiped

The model is a rather rough approximation of the real plant. The
accuracy of the model has been tested by simulations, based upon
measurements performed during normal operating conditions. This
is reported in [7] . Despite the approximations made, the model
describes the plant in a satisfactory manner [7] .



3. FORMULATION OF THE PROBLEM

Scheduling objectives

The planning must obviously fulfil the following requirements:

- pulp production must satisfy the demand from the planned paper
production

- the storage tanks of the system must not be empty or overflowing

- production and consumption of steam must balance

In addition to this, however, it is desirable [7] , [10] to make
production schemes involving

(i) few changes in the production rates of the processes
(ii) possibility of indirect storage of steam
(iii) acceptable tank levels at the end of the planning period

Since any change in production rate introduces a disturbance in the
system, it is desirable to keep each process production as even as
possible. The steam supply of the system is barely sufficient and
there is no real possibility of storing steam directly [7] . It would,
therefore, be desirable to store steam indirectly. This can be done
by filling up pulp buffers and the thick liquor tank [10] during a
period of low steam consumption. After this period, the high levels
of these tanks (No. 2,3,6) enable us to run the paper machines harder
because there will be less demand for steam to digesters and eva-
porators. Condition (iii) implies that tank levels at the end of

the planning period must give a good position before the next period
commences. This means, that final tank levels should usually be

about 50 %.

As initial data, planned paper production v(t) during the planning
period 0=t =T and initial tank levels x(0) are assumed to be given.

The scheduling problem can now be formulated as follows:

given x(0) and v(t), 0=t<T, determine u(t), 0=t =T without
violating the restrictions (2.3)-(2.5) and while satisfying conditions
(i) - (iii) as well as possible.



Computational aspects

From practical reasons, once a production planning problem is

stated, a solution must be obtained within one or at the most

two hours [11]. This fact, together with the computer capacity
available (IBM 1800), naturally has considerable influence on

the choice of solution methods.

In principle, there are two ways of attacking the problem:

1. "Standard" planning problems are defined and solved on a large
computer. These solutions are then stored on the process computer
disk. When a planning problem arises a similar standard case
is looked for on the disk and used as a solution of the current
problem.

2. Each planning problem is regarded as unique and solved when it
arises.

The first method is attractive since we can use a large computer

for the calculations. However, the number of standard cases which
must be solved turns out to be enormous. Assume that there are 100
different planning problems. However, how to run the processes depends
also on buffer tank levels at the beginning of the planning period.
Consider five different initial levels in each tank, i.e. 0, 25, 50,
75 and 100 %. Since we have 10 tanks the number of standard cases to
be solved is

100 . 50 10

9

Even if the time needed to solve each problem is as short as 1 sec.
the total time required would be at least 30 years. Hence, this method
is impossible.

Now, let us regard each problem as unique. In this case the most
attractive method would be the following. Collect initial data and
define the problem by means of a process control computer. Then solve
the problem on a large computer using a teleprocessing terminal or

by manual delivery of the problem. Because of the geographical position
of the mill, the latter method was not possible and nor was the tele-
processing technique available. Hence, the problem had to be solved
using the process computer. This fact implies great demands on the
solution technique, which has to be chosen with due allowance for



short execution time and limited core storage capacity.

Optimality criteria

In this section the planning problem is formulated as an
optimization problem and the mathematical formulation of
the scheduling objectives is discussed.

The scheduling objective (i) (few production changes) is expressed
by the performance functional. Objectives (i) and (iii) (indirect
storage of steam and acceptable final tank levels) are expressed
by establishing a suitable boundary value x(T).

The performance functional is of the form

-
J(u) = /“u(t) - a(t)]| dt
(o)

where a(t) is a vector that can be physically interpreted as a
desired mean value of the production vector u(t) during the
planning period. The loss function has the following properties:
- it depends only on the control u(t)
- it is non-linear
- it is a continuous approximation to a minimization of the
number of production rate changes
- different a(t) can give the same number of production rate
changes

The production scheduling problem can be formulated as an optimi-
zation problem in the following way:

Given the system eq.

%% = B . u(t) +C . v(t) (3.1)
S(t)= D - u(t) +E - v(t) (3.2)

the constraints
min

X; & xg(t) £ XX i=1,...,10 (3.3)
u?‘"ﬁ ug(t) = 3 i=1,...,9 (3.4)

sMing gp) = s (3.5)
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the planned paper production
v(t), 0=t=T

and the initial tank levels
x(0),

calculate a control strategy u(t), O=t=T, minimizing the
performance functional

¥
J(u) = -/b(x,u,s)ds + Go(x(T)) (3.6)
0

Proper mathematical formulation of the functions G and Go is

very important, since the structure of the optimal solution is
determined by the optimality criteria. However, the formulation

of an objective function is not obvious. Usually, an optimization
problem is formulated as a cost-minimizing or profit-maximizing
problem. In this case, however, there is no basis for a specification
in dollars and cents of the cost of a production change or of a
divergence from the desired final tank level. Moreover, criteria

(i) and (iii) are contradictory. Thus, it is often possible to

obtain fewer production rate changes if the requirement of acceptable
final tank levels is waived. It would be very difficult, however,

to weigh a production rate change against a certain divergence from
the desired end point.

When formulating the scheduling objectives mathematically we must
also take the computational aspects into account. Since the problem
has to be solved on a process computer, the optimization problem
must be rather small and the objective function must be simple.

The state variables (tank levels) of the system are constrained. When
a tank is run empty, one of the surrounding processes must be shut
down. This will probably result in production drop-out. Tank overflow
is also out of the question. Hence, the restrictions of x(t) are
essential from a practical point of view. However, constrained state
variables are difficult to handle in most optimization methods and

it would be desirable to express them via the criteria. This can

be done in the following way:



1.

Assume that the constraints of the state variable x are expressed by

Dzx=l

This can be formulated in the objective function as

0 if 0=x=1
G(x) =
oo otherwise

A continuous approximation to this function is
G(x) = (2x - ])Zn n integer

A good approximation requires n»1. This gives a complicated
objective function and difficulties when solving the problem
numerically will occur. For n=1 (linear-quadratic optimization)
numerical methods are available [6] . However, n=1 will give
great disadvantages:

- the function is not sharp enough = the tanks can run
empty or flow over
- the control algorithm will try to keep the tanks half-full,
i.e. the storage capacities are level controlled
- the solution will be
u(t) = L(x(t))
where L is a linear function, i.e. u(t) will be changed
permanently in opposition to condition (i)

Hence, no attempts have been made to include the constraints of the
state variables in the objective function.

Criterion (i) requires as few production rate changes as possible.
This can be expressed mathematically by the following formulation
of G(x,u,t) in eq. (3.6)

G(X,u,t) = Z lsgn<dui(t))l (7
; dt '

i.e. the objective function is given the value 0 if no production

rate has changed and is increased by 1 each time a change occurs.
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Formulation of (3.7) in discrete time gives

G(x,u,t) =:E:|sgn (u () - ug(t -A )| (3.8)
i

whereAt is a suitably chosen time interval.

For the one-dimensional case we will get the following

function:

— u(t)-u(t-A1)

Fig 3.1 Objective function minimizing the number of
production rate changes. The function is

discontinuous and integervalued.

However, (3.8) is discontinuous and integer-valued. A

continuous, real-valued approximation is

BlR 1, ) = Z lug () = uy (& - A D) (3.9)
i

For the one-dimensional case we get:

» ult)-ul(t-atl)

Fig 3.2 A continuous, real-valued approximation to the

objective function of figure 3.1.
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Put At =1 (the time unit). Hence

6(x,ust) =) fug(t) - ug(t-1)] (3.10)
;

This objective function can be linearized (by introducing
auxiliary variables) and has been utilized in the linear
programming attempts reported in ch. 5. However, the formulation
(3.10) has a disadvantage. Once a production rate change has been
made, eq. (3.10) tends to keep the production at the new value.
This will often result in unacceptable tank levels at the end of
the planning period. The following formulation of (i) has been
found to be better in this respect:

G(x,u,t) = Z|ui(t) - a,(t)] (3.11)
<

where a; are components of a vector a that can be physically inter-
preted as a desired average of u(t) during the time T.

As an illustration of the calculation of a, consider the model of
fig. 3.3. Assume that the output v(t) of the storage tank in figure
3.3 is given, as well as the initial tank level x(0) and the final
tank level x(T).

( Storage
uit tank s
x (t)

Fig 3.3 A process unit and a storage tank. A value of the vector
a can be calculated from a material balance over the
storage tank.

A material balance over the tank gives:

T T

x(T) = x(0) + Juttyat - /v(t)dt (3.12)

o 0
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Thus -
. x(T) - x(0) + [ v(t)dt
[ u(t)dt = 2

0o

=I
i

(3.13)

— |

T

is determined. Now, assume that the storage capacity of x is
very great. Then a good control strategy (i.e. a strategy
giving few production changes) whould be to run the process u
at the rate

u(t) =u

during the whole planning period. This strategy will give no
production change and we will reach the desired final levels.

In the actual problem, the tank capacities are limited. Besides,
the demand for steam balance further complicates the problem,
However, in ch. 7 we will show that by putting

a=u
and minimizing
lu - aj

i.e. by minimizing the deviations from an "jdeal" trajectory we
will obtain production schedules with few production rate changes.
The solution technique developed implies an jteration over the
vector a.

The criteria (ii) and (iii) (indirect storage of steam and
acceptable final tank levels) can be expressed either as a specified
boundary value

x(T) given (3.14)

or via G (x(T)), for example as

6,(x(T) = |x(T) - x*(T)] (3.15)

where x*(T) is a fixed value. We have chosen the formulation (3.14)
implying

6,(x(T)) = 0

in order to simplify the loss function.
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However, it is not essential from a practical point of view

to reach the fixed final levels exactly (cf the scheduling
objectives). Besides, a fixed boundary value x(T) implies a

risk that the problem will be too rigidly structured. In order
to avoid this, the following property of the solution technique
has been developed: if the restrictions do not permit the tanks
to reach the desired values, we will obtain tank levels as close
to the fixed ones as possible.



16.

4. SIMULATION

Twodifferent approaches have been used when trying to solve the
planning problem

- simulation

- optimization

The simulations have been performed in the following way. Given
the planned paper production v(t),0=t=T, and the initial tank
levels, x(0), guess how to run the processes during the planning
period, i.e. guess the control u(t), 0=t=T, Integrate the system
equation (2.1) and calculate the steam demand as described by
(2.2). If all restrictions are fulfilled, the problem is solved.
If not, try new functions u(t) until the restrictions are ful-
filled.

This technique does of course, guarantee short solution times on

a computer. Even on an IBM 1800 the total time required for inte-
grating the system equations and checking the restrictions will

be some few seconds. However, the manual work for problem specifi-
cation, stating a suitable control function u(t) and changing it
is so much more. Thus this method is not really useful during
operating conditions. Besides, even if we have found a solution
satisfying the restrictions, it is probably not the best one in
respect of criteria (i) - (iii). To be able to choose between two
or more permitted solutions, a quantitative formulation of the
criteria is necessary. However, the simulation technique has been
found to be a very valuable aid when studying the behaviour of the
model and in order to gain insight into the problem.

As an illustration of the results obtained by the simulation technique,
consider the following planning problem. Assume the planning period

to be 48 hours, divided into 6 intervals of 8 hours each. The

initial tank levels are fixed at 50% and we wish to return to
approximately the same levels. Planned paper production is shown by
fig. 4.1 A, illustrating a wire change on a large kraft paper machine
during interval No. 2 and a wire change on the fluting machine during
interval No. 4. The task is to determine a production schedule for

all the processes.

The schedule obtained by simulations is shown in figure 4.1.B and the
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resultant tank levels in figure 4.1.C. The total number of production
rate changes during the planning period is 10.

Attempts have been made to systemize the simulations by defining
"standard" functions ui(t) for each process and then combining the
functions by combinatorial means, checking if the restrictions are
fulfilled [10]. Computer programs have been written in order to

carry out the combinations and calculations. For the example above,
288 different combinations were tested by the computer. 96 turned

out to fulfil the restrictions. The schedule illustrated in figure 4.1
is one of these.
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5. LINEAR PROGRAMMING

In this chapter, the scheduling problem is formulated as a linear
programming problem [5] and the results of some tests are discussed.

The magnitude of the LP problems obtained is about 750 rows and

400 columns. The density of the LP matrix (i.e. the relative number
of elements # 0) is very low (< 0.5%). The LP programs have been
yun on an IBM 7044 and the execution time for a typical problem was
about 40 minutes. Thus, the size of the LP problems is far beyond
the capacity of the 1800 computer with regard to both execution time
and memory capacity.

The optimization problem is given by eq. (3.1)-(3.6). Divide the
planning period into N intervals of length‘rk:

N
T = Z T
k=1

During each interval the production rates ui(k), i=1,...,9 k

TsenasN
are assumed to be constant. The sequence

N
{“i(k)} i % Dyewnsd
=]

is to be calculated. The initial state

x;(0) i=1,..,10

and the sequence

N
v;(k) i=1,..,3
k=1

are considered to be known.

We have used two different objective functions. The first one
minimizes the production rate changes:
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9 N
V= Z Iuj(k) - uj(k-1)| (5.1)
j=1 k=1

The other objective function minimizes the deviation from specified
final tank levels:

10

V- Z %00 - % ()] (5.2)

i=1
ui(O) of eq. (5.1) and x{* (N) of eq. (5.2) are given.

(5.1) and (5.2) are non-linear, but can be linearized by introducing
auxiliary variables. To linearize (5.1), introduce the variables

g#k),h#k) i=1,..,9 k=1,...,N g, h=20
defined by
us;(k) = u;(k-1) + g;(k) - hi(k)
and minimize
V=) (g5(k) #+ (k)
ik

0f course, (5.2) is linearized in a similar way.

If we choose (5.1) as an objective function we get the following
linear programming problem:

Minimize
9 N
ve ) ) {9;(K) + hy ()}
121 k=l
subject to
dMN 2w (k) = U™ i=1,...,9 k=1,..,N
. ] 5
1 1
min 2 3 max
gl . _Zdjuj(k) + Zejvj(k)ﬁs k=1,..,N
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. 9 3
mi .
xj & xg(ke1) + tk{ 2. bygts(k) + 21 c-ijvj(k)}-‘-x?ax i=1,,,,10 k=1,..
Ju i
Ui(k) = ug(k-1) + g;(k) - hy(k) i=1,..,9 k=l,..
us(k)s g;(k), hy(k) =0 i=1,..,9 kal,..

43(0)5 12150059, X4(0) i=1,..,10 and {vj(k)}N j=1,..,3 are given.

bij’ cijs
respectively.

dj and ej are elements of the matrices B, C, D and E,

The size of this LP problem is:

49-N restrictions
27.N variables (not including slack variables and artificial
variables)

For a realistic problem we must have
N=x15

giving an LP problem for about 400 variables and 750 restrictions.

An LP problem of this size is relatively large. Analysis of the
problem shows, however, that the density (i.e. the relative number of
elements not identically zero) of the LP matrix is very low and

that the matrix has a particular structure, illustrated by figure 5.1.
Due to the low density and simple structure of the LP matrix,

rather short execution times for the LP program would be expected.
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400 var. + slack var. + artific. var.

750 l{/1
restr. =
////2
/k=
%

NN

%

k=15

/.

Cost
vector

W77 777 7 77 7 7 7 7 7 L

Fig 5.1 The LP matrix. Shaded areas contain elements
not identically zero.

Tests of the LP technique have been performed, utilizing an
IBM 7044 and‘the IBM standard program LP 40. Despite the low
density (<0.5%) a problem consisting of about 600 rows gave
an execution time of about 40 minutes. It is not possible to
solve problems of this size in a process computer.

A detailed description of the LP tests is given in [9]. To
i1lustrate the structure of the solutions obtained and to show
the difficulty in formulating a proper objective function, two
of these examples are presented here.
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LP example 1

The planning problem is identical to the problem discussed in

the simulation chapter. The planning period is 44 hours, divided
into 11 intervals of 4 hours each. Wire changes are to be made

on PN UNBL during 8-16 h and on PM 6 during 24-32 h (cf fig 5.2 A).
The initial tank levels are assumed to be 50%. As an objective
function, eq. (5.2) has been used. xi* (N) are fixed to different
numbers, about 50% for most of the tanks.

The production schedule as calculated by the LP program is illu-
strated in fig. 5.2.B and the resultant tank levels in fig 5.2.C.
The target defined has been reached for all tanks except for No. 6
and No. 8. No target had been defined for tank No. 3.

As illustrated by figure 5,28 the production rates have been changed
very often. Further, the production often changes from the Tower

1imit to the upper and vice versa. One reason for this is the absence
of terms punishing production changes. Another reason is that the
solution of an LP problem always lies on the boundary of the permitted
region. From a practical point of view it is very disadvantageous to
stop and start processes frequently. Hence, a solution as illustrated
by this example has no practical value.

LP example 2

In this example, the objective function (5.1) has been used. The
planning problem is identical to the problem above. However, in
order to reduce the computational time required, the planning period
of 48 hours has been divided into 4 intervals of 12 hours each.

For this reason, adjustments of the wire changes have been necessary
(cf fig. 5.3 A)

The calculated production schedule is illustrated by figure 5.3.B and
the resultant tank levels by figure 5.3.C. The production rates for
all the processes except one (the recovery boiler) have remained
unchanged during the period. However the storage tanks are

made full use of and at the end of the period most of them are empty
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Fig 5.2 Optimal solution of LP example 1 (minimization of the deviation
from specified final tank levels). Figures A show the planned
paper production, figures B the production schedule as obtained
by linear programming and figures C the resultant tank levels.
Dotted lines are capacity restrictions. The desired final tank
levels are marked by arrows. '
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capacity restrictions.
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or completely filled up. This means that the position before
the next planning period is very bad. Hence, the solution is
not applicable in practice.

Theoretically, the two objective functions (5.1) and (5.2) can be
combined. This implies that it must be possible to weigh the cost
of a production change against a divergence from the desired end
point. As mentioned above, no data were available for such a
specification.

Another possible way of solving this problem is to define the
wish for acceptable final tank levels as a restriction:

Xy (N) = x; (N) = x; o i=1,..,10

However, the LP demand of computational speed and core storage
capacity is far beyond the capacity of a process computer. Hence,
the technique described in this section was judged to be impractical
for the Gruvon problem.
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6. CALCULUS OF VARIATIONS - THE MAXIMUM PRINCIPLE

Neither simulation technique nor linear programming satisfies the
requirements on a suitable solution method. Hence, the possibilities
of applying the methods developed by Bellman and Pontryagin and based
upon calculus of variations were investigated [1].

Dynamic programming [3] , [4] was judged to be unrealistic owing
to the requirements of core storage capacity. However, a formulation
based upon the theory of the maximum principle [2], [12] turned out
to be successful.

In this chapter we will apply the Pontryagin maximum principle to
the scheduling problem. A physical interpretation of the adjoint
variables will also be given.

We will find that the adjoint vector p(t) of the maximum principle

is constant as long as no tank limit is reached. When reaching a

tank 1imit, the corresponding component of p makes a jump to a new
constant value, while the other components remain unchanged. Physically,
this implies that an input or output flow to the tank must be changed.

It is shown that only a finite number of p-values influence the optimal
solution. A vector A, defined by

A=p*B
where B is the system matrix, is introduced. It is shown that in principle
only 3 values of each component Ai influence the optimal solution, namely

|A1.|<1, A1.>l, A1.<-1

Physically, A has the following properties
the productions of all processes remain un-

A 1< Vi . .
changed (if the restrictions permit)

the production of the process u; is reduced,

A;> 1, IAj|< 1 j#1i .
the other productions remain unchanged.

A% =15 |Aj|< 1 j# i the production of u, is increased
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Application of the maximum principle to the scheduling problem

Our system is described by (cf ch. 2)

) _ gLty + - ov(t)
dt
where
x(t) is an n-vector of state variables (n=10)
u(t) is an m-vector of control variables (m=9)
v(t) is a given vector function
t is the time
B and C are time-independent matrices

Both the control space and the state space are constrained
u(t) € N, CE", x(t) € N, CE"

n y 1s a convex hyperpolyhedron described by

in max .
TP ui(t) = u; i=1.,,,9
i

"M 2 D . ou(t) + E-v(t) = S
where D and E are time-independent row vectors
17.x is a hyperparallelepiped, described by

max .
x1' éx.i(t)éx,i 1-‘]....,]0

The initial state x(0) is known.

(6.1)

Consider the system during a fixed time-interval 02t =T and assume

that x(T) is fixed. Thus our problem is a fixed-time, fixed-endpoint

problem.
Problem: find a control strategy u(t), O=t=T, u(t) € £2,
minimizing the performance functional (cf chapter 3)
T
0w = [l - al] ot
o

where||y|| is the norm

(6.2)
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Nyl = 2 1y
1

and a(t) is a vector function, that can be calculated from x(0),
x(T) and v(t), 0=t=T, and physically interpreted as a desired
average of the production vector u(t).

Solution: Introduce the Hamiltonian function

H(x,u,pst) = lu(t) - a(t)ll + {p(t), Bu(t) + Cv(t)) (6.3)

where ~ {a,b) denotes the scalar product of the vectors a and b
and p(t), the adjoint vector, is a new vector function, not
identically zero and satisfying the ordinary differential equation

dp(t) _ _ _dH(x,u,p,t) |
dt x ' (6.4)

if the optimal trajectory of the system lies in the interior of
0 ¥ and the ordinary differential equation

dt) . . M, ) . 20006u) : (6.5)
dt dx ox

if the optimal trajectory lies on the boundary of .flx.

The boundary condition of the differential equations is:

x(T) given (6.6)

In (6.5) X(t) are certain Lagrange multipliers N2 . ¢ is
defined by

@ (x,u) = {grad g(x), Bu(t) + Cv(t)) (6.7)

where

g(x) =0 (6.8)

describes the boundary of () X" g(x) must have continuous second
partial derivatives [12] . This condition is not fulfilled on the
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edges and corners of the box 0 X However, this difficulty can be
avoided by smoothing the edges and corners.

When reaching a boundary of .flx, the vector p(t) makes a
jump [12] . Assume that the optimal trajectory of the system
during the time t < t  lies in the interior of N and during
t > t, on the boundary of Q i+ Introduce

p(t)
p(t)

p-vector for t < to

p-vector for t > to

The following relationship between p  and p+ is valid (the
"jump condition", [12] )

+ -
P (ty) = p (ty) + a - grad g(X(ty)) (6.9)
where /u is real and not identically zero.

Since ().x is a hyperparallelepiped with edges parallel to the
co-ordinate axes, the gradient of g is parallel to the unit vector

ey if X5 is the state variable that has reached its upper or lower

1imit:

grad g(x(to)) ~ (0,...0,1,0,....,0) (6.10)
T

component No. i

Hence

p;T(ty) = Py (L) if §# (6.11)

pit(t) = by (E) + o puED (6.12)

This means the following. When a storage tank has reached its

limit, the corresponding element of p makes a jump to a new value,
while the other components remain unchanged. Physically, this implies
that an input or output flow of the tank must be changed.

From (6.7) and (6.10) we find that (x,u) is a piecewise constant
function of x. Hence

i
=x =0 (6.13)
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( 6.5) together with (6.13) now give that the relation (6.4) remains
unchanged, i.e.

dp(t) _ _ _oH
(6.14)
dt dX
is valid also on the boundary of IW.X.
Thus we find from (6.3) and (6.14)
de(t) . ¢ (6.15)
dt
in every point where it is defined. (6.15) together with (2.11)
and (2.12) now imply
p(t) = piecewise constant (6.16)

during the planning period 0 =t = T. The discontinuities appear
when a tank reaches its limit.

The Pontryagin maximum principle (MP) states that a necessary
condition for minimum of the performance functional J(u) is that

H(x,u,p,t) is minimized as a function of u

The maximum principle is valid if the system is controllable and
if certain regularity conditions (continuity, derivability), [2]
are fulfilled. Except for the conditions on g(x) discussed above,
the regularity conditions are fulfilled here.

However, our system as described by (2.1) is not controllable.
(This fact is due to the approximations made when building the
model. The model can be made controllable by introducing more
variables (cf the planning example of Ref [7] ). However, we

have chosen to introduce as few variables as possible in order
to reduce the size of the model).

Since v(t), 0=t=T, is given, the maximum principle now dictates
that a necessary condition for minimum of the performance functional
(2.2) is that

lu(t)-a(t)l  + <p(t), B-u(t)) (6.17)
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is minimized as a function of u. The vector p(t) is a piece-
wise constant function of t, satisfying the boundary condition

x(T) given

We will now give a physical interpretation of the adjoint vector
p(t).

Physical interpretation of adjoint variables

It follows from the maximum principle that the function

llu(t) - a(t)i + p*-Bru(t) (6.18)

is to be minimized. p;* is the transpose of the piecewise
constant adjoint vector Po B, the system matrix, is given.
Introduce a vector A, defined by

A = pa*-B (6.19)

To illustrate the influence of the vector A on the optimal
solution, consider the following 2-dimensional problem.

Minimize

V=luyl + Iu2| + Ay o+ Aou, (6.20)
subject to

luyl= 1, Juyl=l (6.21)

We find that if

|A2|< 1

the optimal solution is
Uy = u, = 0 ifIA]I <1

= -] u2=0 if A]> 1

u,e[-l,o] uy=0 if A,

o
—
i

1

u]e[O,l] u,=0 if Ay = -1

Since the problem is symmetric in uy and U, similar conditions are

valid for A2.
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Curves of equal V for some values of A] and A2 are shown in
figures 6.1 and 6.2. The optimal point (or 1ine) minimizing
V is also marked in the figures.

However, from a numerical point of view, the degenerated cases

+
e Ag == )
are not of interest. If we disregard these cases, we find that
the two-dimensional problem, defined by (6.20) and (6.21) has

only 9 distinct optimal points, namely

A

- the corners of the square (correspond to the result of
an LP optimization)

- the intersections between the square and the co-ordinate
axes

- the origin

depending on the nine combinations of
IAil<1, A1>1 and Ai < -1, i=1,2

This is illustrated in figure 6.3

2
A
O—O- O
<> C) d; bU‘
Qu
O 2% O

Fig 6.3 Distinct optimal points (encircled)
to the objective function
V= Iu]|+ luzr + A]u] + A2u2

Generalizing this result to an n-dimensional problem with () y as

a convex hyperpolyhedron, we find that in principle only 3™ A-vectors
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influence the solution. This means that only a finite number, 3m,
of values of the constant vector Po must be taken into account

as long as no tank has reached its 1imits. Each time a tank reaches
its 1imit, new 3" values must be considered.

If .f).u is a hyperpolyhedron the only possible points minimizing

m
V= z (lug - a;l + Asu)
i=1

are
- the corners of the hyperpolyhedron
- the intersection between a boundary surface of_()u and a line
through the point a, parallel to one of the co-ordinate axes
- the point a

Physically, the different A-values and the corresponding points of
I)u mean the following:

If max lAil<<1 and a e Ilu we try to keep the productions of all
1
processes u; at the level as.

if Aj<<-1 andIAik<1, i#] the production of process uj will
be increased until some constraint
is reached. The productions of the
other processes are kept at the level
ass if possible.

if Aj>> 1 andIA1|<<1, i#d the production of uj will be reduced.

These properties of the A-vector will be utilized when solving the
problem numerically in the next chapter.
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7. SOLUTION METHODS ILLUSTRATED BY A TWO-DIMENSIONAL EXAMPLE

In the preceding chapter, the planning problem has been given

a formulation based upon the maximum principle and consequences
of the formulation have been discussed. In this chapter we will
discuss the solution of the problem, especially

- determination of the a-vector

- utilization of the physical interpretation of
the A-vector

- numerical solution of the problem

There is no direct way of solving the optimization problem. Thus,
some iterative technique must be used. An immediate method is

the following: guess the A-vector, solve the optimization problem
and iterate until the désired boundary value is reached. It will

be shown that this method leads to excessive computations. Instead,
a technique using iteration over the a-vector and utilizing the
physical interpretation of the A-vector is derived. This method
does not ensure convergence to the true minimum (in terms of
production rate changes). However, it has been demonstrated to give
solutions close to the optimal one, and the computational time

is drastically reduced.

The iteration technique is developed in two numerical examples,
based upon a simple two-dimensional model. In the first example,

a systematic way of finding an jnitial a-value is derived and

two different iteration techniques are i1lustrated. The ability
of IAl<1 to keep the production at the level a is utilized. It

is shown that the minimum number of production rate changes in
this example is 2 and that there is an infinite number of solutions
with two production rate changes. The influence of the sampling
interval on the solution is also discussed. In the second example,
the ability of IA1>1 to reduce or increase the production is
illustrated.

The optimization problems of this chapter are easily solved
graphically or by manual calculations. This, of course, is not
possible for the real 9-dimensional planning problem. However,

the calculations described can be performed using a sequence of

LP programs. Since the planning problem can be solved sequentially,
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each LP problem will be relatively small. This is further discussed
in the next chapter.

Model

The two-dimensional model, illustrated in figure 7.1, consists of

1 paper machine (v)
2 process units (u],uz)
3 storage tanks (x], Xns x3)

b3y Yy
I'e.v
o )
Tank 1
dqu c.v
Al na———t :__:_—9 PM m
X
b1y
Tank 1 @ - Tank 111
Xz X3
dyvy i
’},:::—:.-/ d1U1 + ev
sfﬁ
@ "'paper”’ —& "liguor”
$ npulpu —_—— llstecmu

Fig 7.1 A two-dimensional model consisting of 1 paper machine,
2 process units and 3 storage tanks.
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One flow of the system has no storage tank (the "steam") and

the steam balance of the system is maintained by an extra steam
producer, S. In agreement with the model of the Gruvon mill, this
simplified model is not controllable.

The model is described by the following equations, expressing
material balances over the tanks and the demand for steam balance
of the system:

X-l = u~| ed C'V

X = byquy = Uy

Xg = = bajuy * baliy
S = d,u

¥ - d2u2 + eV

In matrix form we get

e
]

Beu + C+v

w
]

Deu + Eov

Put

b2]=b3]=b32=d]=]‘ d2=e=2, c=1

and we get the system matrices

1 0
B = 1 -1
-1 1

-1

C= 0

m
i
—
~N
—

(7.01)
(7.02)
(7.03)
(7.08)

(7.05)
(7.06)
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The capacity restrictions of the system are assumed to be

given by
0.5= uy =1 (7.7)
0.2=u, =1 (7.8)
0= S =2 (7.9)
0= x; = 1 i=1,2,3 (7.10)

The planned paper production and the initial tank levels are given.
The length of the planning period is assumed to be 5 time units. When
solving the problem numerically this period is divided into 5 intervals
of equal length. The production of the processes, i.e.

ui(l),...,ui(S) i=1,2

is to be calculated.

For each time interval k we can now define the following
optimization problem:

Minimize
Vk = Iu](k) - a]I + qu(k) - A+ Alu](k) + Azuz(k) (7.11)
subject to
0.5 su](k)sl (7.12)
O.Zéuz(k)sl (7.13)
0=D-u(k) + E-v(k) =2 (7.14)
Oéxi(k-l) + (Bu(k) + Cv(k))isl (7.15)
where
A P, +p, -p
1 * 1 2 3
A= =PB=[P]p2P3]'B=
A2 - Pp t Ps

xi(O) i=1,2,3 and v(k) k = 1,...,5 are given.

The vector p is to be chosen in a manner satisfying the boundary
condition

x(5) given
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In chapter 6 it was shown that only a finite number of p-vectors
influences the optimal solutions. In this case, only 32 = 9 different
values of A = p* B must be checked if the consequences of the con-
strained state variables are disregarded. However, each time a tank
reaches a limit, the p-vector makes a jump and a new A-vector has to
be taken into account. For the real case (m=9) this implies the following:
for each of the 37 = 19683 original A-vectors, 3° = 19683 new ones
must be checked each time a tank reaches its limits. Hence, an
iteration technique, using iteration over the p-vector, is not
realistic. Instead, we will derive an iteration over the a-vector
utilizing the ability of A to keep the production at the level a
(IA1<1), to increase the production (A<=-1) or to reduce it (A>1)
(cf the physical interpretation of the A-vector of the preceding
chapter). We will derive the iteration in two numerical examples.

Example 1

In this example we will use the ability of IAI<1 to keep the
production at a certain level a. A systematic manner of finding an
initial a-value is derived. It is shown that the planning problem
of this example has no solution with 0 or 1 production rate change
and that there is an infinite number of solutions with 2 changes.
Two different techniques, using iteration over the a-vector and
giving two of these solutions, are derived. The influence of the
choice of sampling interval is illustrated.

Consider the following planning problem.
Planned paper production:

v(1) = v(2) = v(4) = v(5) =0.9 v(3) =0
v(3) = 0 can be interpreted as a "wire change".

Initial state:

Desired final state:
x1(5) = x2(5) = 0.5

{Since the system is not controllable, all final tank levels cannot
be fixed).

Calculate ui(1),...,ui(5) i=1,2
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Calculation of an initial a=-value

- D e O S D WP R O M P S W D D W e 0P W S e e e e

An initial a-value can be calculated from the planned paper
production, the initial tank levels and the final tank levels,
The a-value can be physically interpreted as a desired mean
value of the productions of the processes during the planning
period (cf chapter 3).

The total paper production is given:

.
5
fuyat = 5 v(i) (7.16)

% i=1

The initial and the final levels of tank No. 1 are known, i.e,
x](O) and x](5) given

Thus, the total flow
T 5

/u](t)dt= S (i)

o} i=1
is determined by the material balance
T T

J(ﬁ](t)dt = x](T) - x](O) +C j{ v(t)dt (7.17)
0 (o]

An average production
T

. /u](t)dt (7.18)
0

U] =

— =

can thus be calculated, Now, assume that the storage capacity
of X is very great. Then a good control strategy would be to
run process I at the rate of

up(t) =10y
during the whole planning period. Thus, by putting A]=O and
choosing a1£U; we would reach the desired end point and no

production rate change would be required. However, even when
the capacity of X is limited, we have found that

a]z-J}
is a useful initial value.
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In the same way, put

8y = Uy
where
T
LA u,(t)dt
2 3 2
)

is calculated from

:
X,(0), X,(5) and Juy(t)dt
(o]

Now, we have no possibility of controlling the final level of Xg.

Numerically we get in this example

-
fv(t)dt = 4:0.9 = 3.6
0 2 =a2=0.72
x(0) = x(5) = 0.5

Putting

A, =A, =0

1 2
our optimization problem is the following:

For k=1,2,..,5 minimize

V= lug(k) - 0.72| + luy(k) - 0.72]
subject to

0.5 2 u](k) <1

0.2 £ uy(k) £1

0 2 S(k)£2

0 £ xi(k)él

The result of the optimization is illustrated in figure 1.2,

(7.19)
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Fig 7.2 Optimal solution of the two-dimensional example using the

objective function
V= 1uy-0.72] + |u,-0.72]

Planning period: 5 time units divided into 5 equal intervals.
Dotted lines are capacity restrictions. Desired final tank
levels are marked by arrows. Since the production of process
I1 has been reduced during interval No. 3, the desired level
of tank II has not been reached.

No production change of Uy has been necessary and X has reached
the desired value. However, the production of u, has been reduced
during interval No. 3, since the S-variable has reached its lower
limit. In consequence of the production change, the final level
of Xs is incorrect.

Iteration over the a-vector, method I

An iteration over the a-vector can be performed in the following

way. The problem is first solved using the above values of 2, and a,.
No correction of 2 is necessary, since the desired final level of Xy
is reached. A better value of a, can be calculated if the production
reduction of U, during interval 3 is taken into account. Thus, put

T« u, - u,(3) B
_ 2 2 _ 3.6 - 0.36 _ 0.81

T =1 4
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Thus, the new objective function is
V= |uy - 0.72] + up - 0.81]

This criterion gives a production schedule as illustrated in
figure 7.3. The correct final levels are now reached.

PLANNED PAPER 11
PRODUCTION

PRODUCTION OF

PROCESS UNITS |7~~~ l_-l

LEVELS OF
STORAGE TANKS

Fig 7.3 Optimal solution of the two-dimensional example using the
objective function
V= Iu]-0.72| + |u2-0.81I
The desired final tank levels have been reached.

The iteration technique implies, however, that the complete
optimization problem must be solved many times. This is dis-
advantageous if the computational time is critical. Besides,
this method is an iteration "by inspection” that will be

very difficult to systemize for the real case with 9 processes
and 10 storage tanks.
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The following technique will utilize the production and storage
capacities more and will sometimes increase the number of
production changes. However, it is systematic and the saving

of computational time is considerable since the problem need

be solved only once.

The problem is solved with the original a-values until, during
a certain interval k, some production change is obtained. Then,
for intervals >k, the a-vector is recalculated with regard to
the production change during interval k. Thus, the change is
compensated for during the remaining intervals only.

In our example, 8y =2 = 0.72 is used during the intervals No. 1,
2,3. During interval No 3,

u, = 0.36

i.e. we have got a production drop-out of

0.72 - 0.36 = 0.36

units. To compensate for this drop-out, the production during intervals
No 4 and 5 must be

2 - 0,72 + 0.36
2

= 0.90

If the problem is solved using this technique we will get results
according to figure 7.4. The desired tank levels have been reached.

By different choices of the vector a(t), we have found two different
solutions to the problem, both with two production rate changes. We

will now prove that the minimum number of production rate changes in
this example is 2 and that there is an infinite number of solutions

with two changes.

First we will show that there is no solution with 0 or 1 production change.



PLANNED PAPER
PRODUCTION

PRODUCTION OF
PROCESS UNITS

LEVELS OF
STORAGE TANKS

v

B s s e o
R e e
0 $
3
0 5

Fig 7.4 Optimal solution of the two-dimensional example using the
objective function

V= lu]-0.72l + |u2-0.721 during intervals No. 1,2,3
V= Iu]-0.72| + |uy=0.90| during intervals No. 4,5

The desired final tank levels have been reached. Compared
to figure 7.3, the production and storage capacities are
utilized harder.

Zero production changes require that the productions of both

process I and process II are constant during the whole period.

If u](t) is assumed to be constant, a material balance over

tank I gives (eq. 7.17 and 7.18):

%(U =0.72 0«teT

Now, assuming that u2(t) is constant, a material balance over

tank II gives

uy(t) = 0.72 O=teT

Eq. (7.4) gives during interval 3

5(3) =

i.e. S

- 0.72

is out of the limits given by (7.9).
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This means, in mill terms, that we are "blowing steam on the roof",
a very uneconomical way of running a mill. Thus the problem has no
solution with zero production changes.

Now, let us consider one change. First, assume zero changes of u](t)
and one of uz(t). The steam balance (7.4) requires

Uy = 0.36

during interval 3. One production change of process II implies

one of the following shapes of uz(t) (Fig. 7.5).

U'z 7]
A i
= === = = = == 1 U U
0o "
U2 02
T - - - - - __ __ “l_ - . - - - -
0 T T T — t 0 T T T T —
0 1 2 3 4 0 1 2 3 4 5

Fig 7.5 Shape of uz(t) if only one production rate change is per-
mitted and steam balance during interval No. 3 is required.

Since
5
X,(0) = x,(5) = 0.5 and 2 uy(i) = 3.6
a material balance over tank II gives
] ]
3 Uo + 2 Uy = 3.6 §
L, = 0.36 =2 g = 1.2

i.e. u, 1is out of the limits.
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Now, assume one change on uy and zero on u,. Zero changes on u,
implies

uﬂt)= 0.72 0=t=T

Steam balance during interval 3 gives
S(3) = u](3) - 1.44
The constraint (7.09) now gives

1.44 < uj(3) =3.44

i.e. Uy is beyond the limits.

Thus, the problem has no solution with zero or one production change.

We will now derive an infinite number of changes of a form,
illustrated by figure 7.6.

We require zero changes on u](t), implying

uﬂt)=OJ2 DeteT

L
A
1{ — = = = = = = = = =~
u‘2‘ -
) e N
0 T T » t
0 1 2 3 4 5

Fig 7.6 Shape of uz(t) with two production rate changes
and requiring steam balance during interval No. 3.
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Put
up(1) = up(2) = up
uy(3) = 0.36
up(4) = up(5) = u3

After some calculations we find that each pair of numbers ué, uss
satisfying

us + ué = 1.62
0.47 = u'z, us = 0.97

will fulfil all system constraints and will give the desired final
tank levels.

, = 0.8l

u, = 0.81 (fig. 7.3) and ué = 0.72, uy = 0.90 (fig. 7.4)

us 2

are two of these solutions.

The solution region is illustrated in figure 7.7.

o
A
1 :\\\\\\\MA
B
°3 a < "

Fig 7.7 The two-dimensional example has an infinite number of
solutions, all giving two production rate changes.
Each pair of numbers ué and u,' lying on the line
segment A-B gives two production rate changes.
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The extreme cases

iz

, = 0.97

0.65, U,

and

us

0.97, u", = 0.65

2

are illustrated in figure 7.8.

Subcriteria

We have now got an infinite number of solutions, all optimal
in respect of the criteria. In order to choose between these
solutions we can define subcriteria.

From a practical point of view, the solution of fig. 7.3 is better
than the extreme cases of fig. 7.8. The reason is that the schedule
of fig. 7.3 gives a certain safety margin against unforeseen events,
since the production and storage capacities are not utilized so hard.
Thus, one possible subcriterion is to look for solutions that do not
utilize the capacities too hard.

Another possibility is to consider the production changes at t = 0.
It is not probable that the calculated production during the be-
ginning of the planning period, i.e. u(t= + 0) will coincide with
the production u(t=-0) at the end of the preceding planning period.
Thus we will as a general rule get production changes at t = 0. This
gives us the possibility of choosing the conditions

u(t=+0) = u(t=-0)

as a subcriterion. However, this criterion will often utilize the
capacities rather hard, thus contradicting the subcriterion discussed
above. '

For the real problem with 9 process units, the computational time
is critical. Hence, no attempts have been made to improve the solutions
by defining subcriteria.
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0 t +—e t
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S
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Optimal solution of the two-dimensional example,
using the objective function
V= |u1-0.72| + |u2-0.65| during intervals 1,2,3
V= Iu]-0.72I + Iu2-0.97l during intervals 4,5
The solution corresponds to point A in fig 7.7.

Optimal solution of the two-dimensional example,
using the objective function
V= |u1-0.72[ + |u,-0.97| during intervals 1,2,3
V= |u]-0.72| + |u2-0.65| during intervals 4,5
The solution corresponds to point B in fig 7.7.
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Consider one of the solutions obtained for our 2-dimensional example.
When solving the problem numerically we divided the planning period
into 5 intervals of equal length. However, we will get exactly the
same solution with every time quantization that does not have t=2
and t=3 in the interior of an interval. The reason is that the steam
balance is the critical constraint of this example. Thus for every
quantization of the time interval

2= t=e3

the optimal solution lies on the steam constraint. For
N=t=?

and
3=et=5

the optimal point 1ies in the interior of the permitted region,
independent of the time quantization. However, if a tank restriction
is the critical constraint of the problem, the solution is not inde-
pendant of the sampling of the planning period. As an illustration
of this, assume that the capacity limits of tank I are given by

0.2 = x(t)=0.8

i.e. the capacity of x, is reduced by 40 %.

e have solved the planning problem for 3 different time quantizations
(using recalculation of a-values according to method II):

A) ty=ty=..=tg =]
B) £ =2 ty=1 ty=2
5 1 1 1 3 '
C) T T N L T M
175 2, 3, 5, 6

The results are illustrated in figure 7.9.

As can be seen from the figures, the choice of sampling intervals
is important in this case. Thus, an ideal iteration method should
iterate also on the sampling intervals. However, since the
computational time is critical no attempts have been made to
iterate on the quantization of the planning period.



A

PLANNED PAPER
PRODUCTION !

® :
U‘ U2 2 S e
I 4
R 14— — — g 1
PRODUCTION OF  l—— ,—— T T —
PROCESS UNITS Foe=— -
0 t Qv 1Tt 0 bt
0 5 0 5 0 5
l1 x2 X3
] ! :
LEVELS OF R TR d D
STORAGE TANKS L\:,,g%jf?j: .
Q71— Or—r—— 0 T
0 5 0 5 0
s
Y
Uy T =
" ——p— .
PRODUCTION OF ——_r—— —
PROCESS UNITS ;
01 i T —» t 0 +—t
0 5 0 5
% Kg x5
A ¢
LEVELS OF ‘:;:::;;2;;1 y SR
STORAGE TANKS
0+ —4== 0 1
0 5 0

© | 3

" s v m—
: $ b
T e e 1}
PRODUCTION OF r——Jl_J———— ] I PR
PROCESS UNITS T . S
04’* e e o"‘h F F ¥ > t 0 i v
0 5 0 5 0
X ) *3

LEVELS OF '{——~ < L_/\ '
STORA GE TANKS -:>\,{ffi7:: , T
i_ } 0 - 1

Fig 7.9 Optimal solution of the two-dimensional example (reduced size
of tank II) for three different time quantizations of the
planning period:

A) 5 intervals, 1 time unit each

B) 3 intervals, 2, 1, and 2 time units respectively

C) 6 intervals, 5/3, 1/3, 1/2, 1/2, 3/2, and 1/2 time
units respectively.
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V= Z lu; - ] (7.20)
is an approximation to the mathematically ideal one
V = }: | sgn(u; - a;) | (7.21)
i

To illustrate the accuracy of the approximation, figure 7.10 shows
curves of equal V and permitted control regions 1, for example 1
using the criterion

V = [u] - 0.72] + |u2 - 0.72] (7.22)
It is immediately seen from the figures, that the criterion
V= |sgn(uy - 0.72)] + Isgn(u, - 0.72) | (7.23)

will give the same optimal points for intervals No, 1, 2, 4 and 5.

During interval No. 3, there will be a difference as illustrated
by figure 7.11.

0 —+ Uy
0 1

Fig 7.11 Permitted control region .flu and curves of equal V
during interval No. 3, using the objective function
V= Isgn(u]-0.72)| + |sgn(u2-0.72)|
A1l points on the dotted line minimize V.
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Fig 7.10 Permitted control region !f)u and curves of equal V using

the objective function

V= Iu‘-0.72l + lu2-0,72|
Planning period: 5 time units, divided into 5 equal intervals.
The optimal points are encirled.
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For this interval, all points on the dotted line are optimal
points to the criterion (7.23). However, in this specific case,
the solutions in the interior of I).u are inferior to the boundary
solution, since they will utilize the capacity of Xo harder (cf
the discussion of subcriteria).

Example 2

In this example, the ability of [AI>1 to reduce or increase the
production is utilized.

The planning problem is identical to the problem of example 1,

but in addition we want to run process II at the lowest possible
rate during interval No. 3 ("maintenance"). This can be formulated
as a constraint

u2(3) = 0.2

However, this formulation implies a risk that the problem is so
rigidly structured that no feasible solution exists. To avoid this,
the production reducing properties of A2> 1 can be utilized. If

the restrictions permit, u, will be reduced to its lower limit. Other-

wise, we will get the smallest possible production.

When calculating 255 the planned reduction of Us must be taken into
account. In figure 7.12 the result, using

-
1]

Iu]-0.72l + |u2-0.85l + Auy + Aou,

>
]

1 A2 = 0 during intervals 1, 2, 4, 5

=)
]

0 A2 = 2 during interval No 3

is illustrated.
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Fig 7.12 Optimal solution of the two-dimensional example using
the objective function
V= [u-0.72| + |u,-0.85] + Ay + Ay,
with A] = A2 = 0 during intervals No. 1,2,4,5
and A] = 0, A2 = 2 during interval No. 3.
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8. FINAL PROBLEM FORMULATION AND SOLUTION TECHNIQUE

In this chapter, the final formulation of the Gruvon scheduling
problem is given.

The mathematical model of the mill (ch 2) has been obtained as

a combination of analysis, simulation and experimental verifi-
cation [7] . The number of state variables of the model is 10

and the number of control variables 9. The scheduling problem
has been formulated as an optimal control problem for a multi-
variable deterministic system (ch. 6). The scheduling objectives:
few production rate changes, indirect storage of steam and
acceptable final tank levels, have been formulated mathematically
(ch. 3). The solution technique developed (ch. 7) is a fusion

of methods and ideas taken from the maximum principle, linear
programming,heuristic argumentation, and physical interpretation
of the mathematical relations. Thus, the formulation of the
scheduling problem and the solution method developed is no strict
application of any existing theory.

The solution technique implies that the planning period is

divided into a number of time intervals, not necessarily of

equal length. During each interval, the productionsof the processes
are assumed to be constant. For each LP problem, the objective
function has the form

Z Lug-ag 1+ Aguy

i
A are parameters, related to the adjoint variables of the Pontry-
ag1n theory. a; are components of a vector a, that can be physi-
cally 1nterpreted as a desired average of the production vector
u(t). An initial a-value can be calculated from the planned paper
production, initial tank levels, and final tank levels. The solution
technique implies an iteration over a. The LP problems are solved
sequentially. The transfer of information between the LP programs
is handled partly by the vector a(t), partly by the adjoint vector.
The execution time on an IBM 1800 of a typical problem is expected
to be about one hour on-line and during time-sharing (50% load of
priority programs).
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Problem formulation

Given the system equations

dx(t
_iif) = B-u(t) + C-v(t)

S(t) = D-u(t) + E-v(t)

the constraints

min
J

max

u
J

< u.(t)=
uJ( V£ u

i x ()X i=1,...,10

Sminé S(t) = gmax

the initial state
x(0)
and the function

vit), 0=2t=T

Calculate

u(t), 0=t=T

satisfying the restrictions and the scheduling objectives of ch. 3.

Problem solution

Suitable boundary values x(T) are fixed. The planning period T
is divided into a number of intervals Tk (not necessarily of equal
length):

For k=1,2,...,N, the following optimization problems are solved
successively:
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Minimize

9
v, = ;{gj(k) +hy(k) + Ajuj(k)}

subject to
u‘g‘”‘é uj(k)éu?ax §=1,..,9 k=1,..,N
min_ < y max
S e ) d.u.(k V. =1,..,H
j%: JuJ( ) + ;4;83"3(") < S k=1,..,N
min T 9 2 max
Xy £ xi(k—]) * Ry e Z bijuj(k) + Z cijvj(k)} £ X5
J=1 .
j=1
1=1,..,10 k=1,,.,N
uj(k) = aj(k) + 9j(k) - hj(k) j=1,..,9  k=1,..,N

uj(k)s g5(k)s hylk) =0

dj and e. are elements of the matrices B, C, D and E

bij» Cije j

respectively.
aj(l) are calculated from x(0), x(T) and v(t), 0=t =T

aj(k) k=2,...,N are calculated from the result of the optimization
for interval No. k-1.

Aj are components of a vector A, related to the adjoint vector p of the
Pontryagin theory by

A=p*-B

Usually, A = 0. The numbers Ai influence the optimal solution in the
following manner:

IAiI<£ 1 the production of u; is kept at the rate a, (if possible)
Ai>> 1 the production of uj is reduced

Ai<< -1 the production of U is increased

Each time interval gives rise to a linear programming problem with
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27 variables (excluding slack variables and artificial variables)
and 49 restrictions,

A computer program written in Basic FORTRAN IV has been developed
to carry out the scheduling calculations., Fig. 8.1 shows a simplified
flow chart of the program,

The program size is about 15,000 words on an IBM 1800 (software
floating point, single precision) and the execution time for a

problem with 15 time intervals is about 30 minutes (off-line execution
4 Jus cycle time),

In the practical implementation, the program will be executed as a
non=-process program during time-sharing., The total execution time

is expected to be about 1 hour assuming 50% load of priority programs.
Initial data to the program will be received partly from analog

inputs to the computer (tank levels), partly from a card reader
(planned production).

Comparison with simulation and linear programming

As can be seen from the examples in the next chapter, the optimization
technique developed gives production schedules which are superior

to the results of simulation and linear programming. Compared to
simulations the solutions are qualitatively better, the method is
systematic and the manual work required is insignificant.

In comparison with linear programming, the solutions are superior

and the demand on computational speed and core storage capacity is
much less., The execution time of an LP problem is approximately
proportional to the cube of the number of restrictions. Thus, compared
to LP as described in ch. 5 the execution time has been reduced by a
factor

15(23-)%0.005

The core storage required for an LP problem is approximately pro-
portional to the square of the restrictions. This implies a reduction
by a factor

2
50
—] =~ 0,005
(750 )
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( START)

READ planned paper prod.,
planned shut-downs, initial
and desired final tank
levels

Calc. a; and Ai for
interval No. k

Define, build and
k = k+l solve LP problem
) for interval k

No

PRINT

production
schedule

Fig 8.1 Simplified flow chart of the computer program.
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The solution technique has been achieved on the basis of the
maximum principle. However, it can also be interpreted as a
decomposition of the LP problem defined in ch. 5. The solution
technique implies that the interconnection between the time
intervals has been broken (cf fig. 5.1) and the small LP
problems are solved sequentially, as illustrated in fig. 8.2.

o VO 7

INT 1. — INT 2 — s — INT N.
N v v
ZZ7Z772 eZzZzzrx] zzz724

Fig 8.2 Interpretatfdn of the solution method as a decom-
position of the large LP problem illustrated in
fig 5.1. The small LP problems are solved sequentially.

The transfer of information between the separated problems is

handled partly by the vector a, partly by the adjoint vector (i.e.
the vector A).
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v

The solution technique hes been achieved on the basis of the
maxinum principle. However, it can also be interpreted as &
decomposition of the LP problem defined in ch., 5. The solution
technique implies that the interconnection between the time
intervals has been broken (cf fig. 5.1) and the small LP

problems are solved sequentially, as illustrated in fig. 2.2,

/B )

o wd

vzzzza 020 eZZZZ2 rzz7z724

Fig 8.2 Interpretation of the solution method as a decom-
position of the large LP problem illustrated in
fig 5.1. The small LP problems are solved sequentially.

The transfer of information between the scparated problems is
nardled partly by the vector a, partly by the adjoint vector (i.e.
the vector A).
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9. SOME PLANNING EXAMPLES
The solution technique has been tested on a number of planning
examples. Three of these examples are discussed in this section.

Further examples are given in [11].

Planning example 1

This example is identical to the simulation example of ch. 4 and

the LP examples of ch. 5. The planning period is 48 hours, divided
into 6 intervals of 8 hours each. Planned paper production according
to fig. 9.1A. Initial tank levels: 50%, desired final tank levels:50%.

The schedule calculated by the optimization program is shown in
figure 9.1B (dotted lines are capacity restrictions). Only two
changes of production rate during the planning period have been
necessary (recovery boilers, interval 4). The corresponding number
obtained by simulation is 10 (cf fig. 4.1).

The variations of the steam consumption are firstly compensated for
by changing the oil feed to the bark burning boiler. As this variable,
S, has reached its lower 1imit during interval No. 4 the steam
production of the recovery boilers has also been reduced.

The resultant tank levels are shown in figure 9.1C. Upper (85%) and
lower (15%) limits are marked by dotted lines. Most of the tanks
have reached the desired final values, 50%. However, since the
system is not controllable, fixed end points for all ten tanks
cannot be handled (cf ch. 7). This is the reason why x;, differs
from 50% at the end of the period.

As can been seen in figure 9.1C, the solution technique has the
intuitively correct ability to reduce the pulp buffers before the

shut-down of the paper machines.

Planning example 2

The problem is the same as in example 1. However, we will reach

the more offensive goal of storing steam indirectly, i.e. the levels
of tanks No. 2, 3 and 6 shall be high at the end of the period.

The following desired final tank levels are chosen:
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80% for tanks No. 2, 3 and 6
50% for the other tanks

The schedule obtained is illustrated by fig. 9.2B and 9.2C.

The production of the recovery boiler is changed during interval
No. 4 to obtain steam balance in the system. The NSSC digester
is changed during the same interval to prevent Xo from flowing
over. The desired final levels have been reached.

Planning example 3.

No wire changes are planned in this example (fig. 9.3A). However,
the evaporators must be stopped for cleaning during interval No. 3.
Initial levels: 50%, desired final levels:50%.

The result of the optimization is shown in fig. 9.3B and 9.4C.

The shut-down of the evaporators causes changes in the surrounding
processes (batch digesters, recovery boilers). The final levels
were set at 50%. However, if the restrictions do not permit the
tanks to reach the desired values, we obtain levels as close to
the fixed ones as possible. Thus, the upper limitation of the
evaporators has caused final levels of Xg and X6 that differ from 50%.

An additional planning example (a combination of ex. 1 and 3) is
given in [7].
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Planning example 1. Figures A show the planned paper production,

figures B the production schedule as calculated by the optimi-
zation program and figures C the resultant tank levels. Dotted

lines are capacity restrictions.
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Fig 9.3 Planning example 3. Figures A show the planned paper production,
figures B the production schedule as calculated by the optimi-
zation program and figures C the resultant tank levels. Dotted

lines are capacity restrictions.
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