

# Identification in the Presence of Drift

Banyasz, Csilla

1973

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Banyasz, C. (1973). Identification in the Presence of Drift. (Research Reports TFRT-3065). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or recognise.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
   You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

# IDENTIFICATION IN THE PRESENCE OF DRIFT

CSILLA BANYASZ

Report 7343 December 1973 Lund Institute of Technology Division of Automatic Control

TILLHÖR REFERENSBIBLIOTEKET
UTLÅNAS EJ

IDENTIFICATION IN THE PRESENCE OF DRIFT

Ca.Banyasz

### ABSTRACT

In this report the influence of drift of different types and magnitude on the ML and LS identification is examined. The drift effects are simulated, after identifying the results are analysed. It can be seen from the results that the presence of drift depending on the magnitude and type of it can have a significant influence on the parameter estimates. This means that it is necessary to analyse the measurements before the identification, in many cases more exact demands have to be created on the measuring conditions or prefiltering strategies must be applied.

| <u> 11 / 1</u> | ARLE OF CONTENES                         | Page |
|----------------|------------------------------------------|------|
| 1.             | Introduction                             | **   |
| 2.             | Measuring errors in the output signal in |      |
|                | one or several points                    | 6    |
| 3.             | Constant level on the output             | 11   |
| 4.             | Linear drift                             | 30   |
| 5.             | Sinusoidal drift                         | . 36 |
| б.             | Summary and conclusions                  | 40   |
| 7.             | References                               | 41   |
| 8.             | Acknowledgements                         | 41   |

#### 1. INTRODUCTION

During the identification from industrial data the problem appears usually whether the measurements correspond to the real values of signals or not, fulfil the requirements of the identification methods, otherwise what is the influence of inadequate data for the estimation.

Starting from these ideas the problem was approached in the following way: the input signals were PRBS and the output signals of the process were computed by simulation (supposing correlated noise at the output). Then different types of modifications were performed on the output data and after the identification of the inputand the modified values of output it was possible to draw some conclusions about the influence of drift of different character and magnitude on the identification.

We use the term drift in a very extended meaning, i.e. the following cases were considered:

- 1./ The values of output were changed in one or several points
- 2./ A constant level was added to the values of output
- 3./ A level changing linearly was added to the values of output
- 4./ A sinusoidal signal was added to the output.

The cases 1./ and 2./ are used as typical situations for industrial measurements and our aim is to examine the influence of the appearance measurements on the estimates i.e. we do not filter the data before the Henvirication.

The third case is generally considered as a typical drift effect. The fourth situation can appear in practice in the case of superposed signals.

In this paper we restrict ourselves to the examination of influence of drift in the output since we have used the off-line maximum likelihood method (ML) [1] for the identification and the input signal PRES was given to the process by us. In the first step this method produces the least-squares (LS) estimates of process parameters so we can compare them with the ML ones for the different types of the drift effects. (I used the ML identification program in the program library of UNIVAC 1108 made by I.Gustavssor [2].)

The simulation model was the following:

$$y_{m}(t) = \frac{B(z^{-1})}{A(z^{-1})} u(t) + \lambda \frac{C(z^{-1})}{A(z^{-1})} e(t) + k \delta_{y} \gamma(t)$$

See Fig. 1.

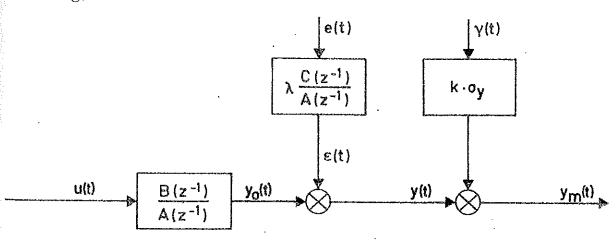



Fig.1. Structure for the simulation model

First we computed the values y(t) and after this modified them. The notations on the Fig.1. are:

$$A(z^{-1}) = 1 + a_1 z^{-1} + a_2 z^{-2} = 1 - 1.5 z^{-1} + 0.7 z^{-2}$$

$$B(z^{-1}) = b_1 z^{-1} + b_2 z^{-2} = 1.0 z^{-1} + 0.5 z^{-2}$$

$$C(z^{-1}) = 1 + c_1 z^{-1} + c_2 z^{-2} = 1 - 1.0 z^{-1} + 0.2 z^{-2}$$
(1)

e(t) - white noise,  $N(0, \lambda)$ ;  $\lambda = 0.4$ 

 $G_y$  - the standard deviation of y(t)

 $\gamma(t)$  - means the time function of drift of different types

( in the 1<sup>st</sup> case  $\gamma(t)$  is a sequence of impulse functions in the 2<sup>nd</sup> case  $\gamma(t)$  is a step function

in the 3<sup>rd</sup> case  $\gamma(t)$  is a linear function

in the 4<sup>th</sup> case  $\gamma(t)$  is a sinusoidal function).

k - is a relative number; the value of k $\delta_y$  characterizes the amplitude of  $\gamma(t)$ . (In the 3<sup>rd</sup> case k $\delta_y$  means the slope of the linear function ).

The number of samples was N = 500.

The results obtained by identification for the case without drift can be seen in Table I. and the time functions of the input, output, model output, model error, residual are shown on Fig.2.

| 1                |                |        | ri talangan di Printerio di salah kacamin da mendalah dalam kacamin da penganan mendam mendam melanggan dalam di Arri |
|------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------|
| parameters       | True<br>values | 1      | ML                                                                                                                    |
| a <sub>1</sub>   | -1.5           | -1.449 | -1.502                                                                                                                |
| a <sub>2</sub>   | 0.7            | 0.653  | 0.702                                                                                                                 |
| b <sub>1</sub>   | 1.0            | 1.011  | 1.024                                                                                                                 |
| b <sub>2</sub>   | 0.5            | 0.523  | 0.473                                                                                                                 |
| e,               | -1.0           | , o    | -1.014                                                                                                                |
| e <sub>2</sub>   | 0.2            | , 0    | 0.268                                                                                                                 |
| λ                | 0.4            | 0.552  | 0.391                                                                                                                 |
| v(ô)             | Dec            | 76.144 | 38.146                                                                                                                |
| ÿ                | 0.6            | tona 5 |                                                                                                                       |
| Gy               | 4.5            |        |                                                                                                                       |
| y <sub>max</sub> | 10.7           | **     | -th-fit-                                                                                                              |
| y <sub>min</sub> | -12.6          |        | jān.                                                                                                                  |
|                  |                |        |                                                                                                                       |

Table I. Estimations from the data without drift.
N=500

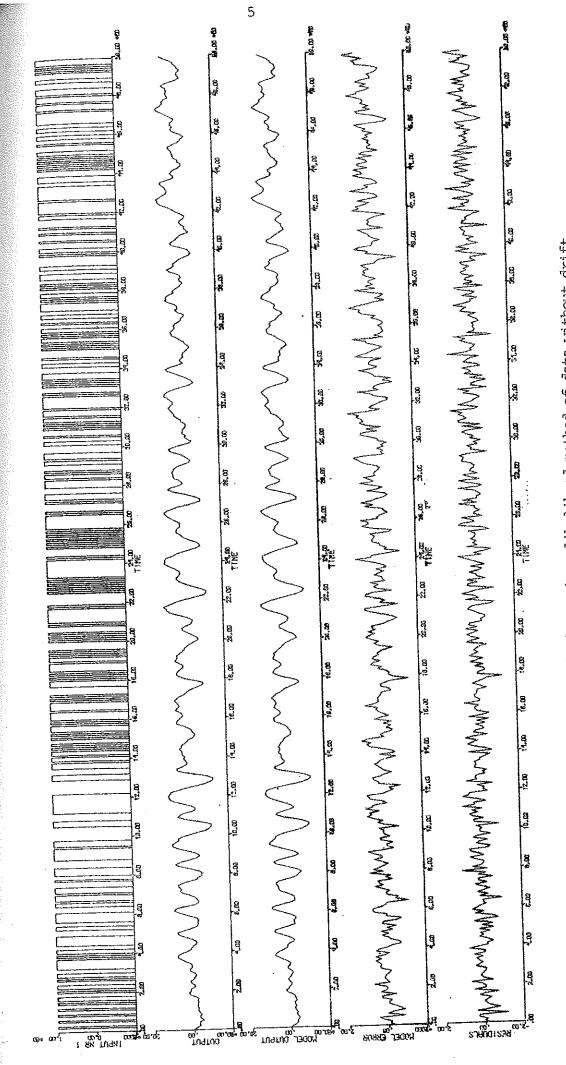



Fig.2. Results of the identification with the maximum likelihood method of data without drift

# 2. MEASURING ERRORS IN THE CUTPUT SIGNAL IN ONE ON SEVERAL POTHES

During the simulation of this situation we changed one or more output values in the following way:

$$y_{m}(\tau) = y(\tau) + k \mathcal{O}_{V} \gamma(\tau)$$
 (2)

where now  $\gamma(t)$  is an impulse function series, i.e.

$$\gamma(t) = \begin{cases} 1 & \text{if } t = 25,75,125,...,475. \text{ (or } t=250 \text{ )} \\ 0 & \text{otherwise} \end{cases}$$

See Fig. 3.

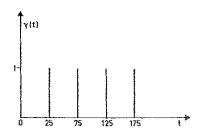



Fig. 3. Measurement errors  $\gamma(t)$ 

The identification was performed from the input and the modified output values. The ML estimates obtained in this way are shown in the Table II. together with the least-squares estimates. It can be seen from Table II. that the estimates of  $a_i$ ,  $b_i$  are reasonably good but the estimates of  $c_i$  are increasingly worse if the k is increasing and the values of  $c_i$  tend to the values of the corresponding  $a_i$  when the number of the changed points is 1 and 10, as well. The reason for this can be seen easily because in this case the noise by the side of the signal  $a_i$  and  $a_i$  appearing in discrete time points (or only in one point) at the output is negligible and this situation can be identified only by such an identification model in which  $a_i$  and  $a_i$  and  $a_i$  are reasonably good.

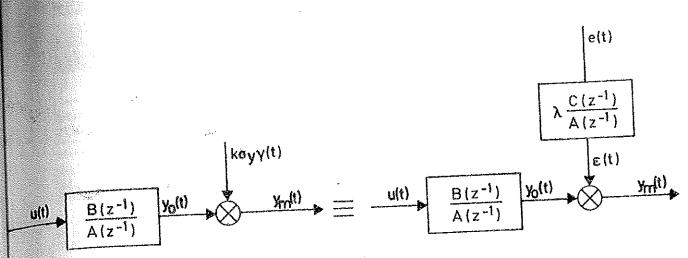



Fig.4. Resulting model structure,  $C(z^{-1})=A(z^{-1})$ , when measurement errors on data

It can also be seen from Table II. that these statements are not valid for the least-squares estimation because resulting from the behaviour of LS method it tries to smooth over the high jumpings in the output so the LS estimates of a and b are also spoiled. These establishments can also be observed on the time functions on Figs. 5. and 6. both for the ML and LS estimations.

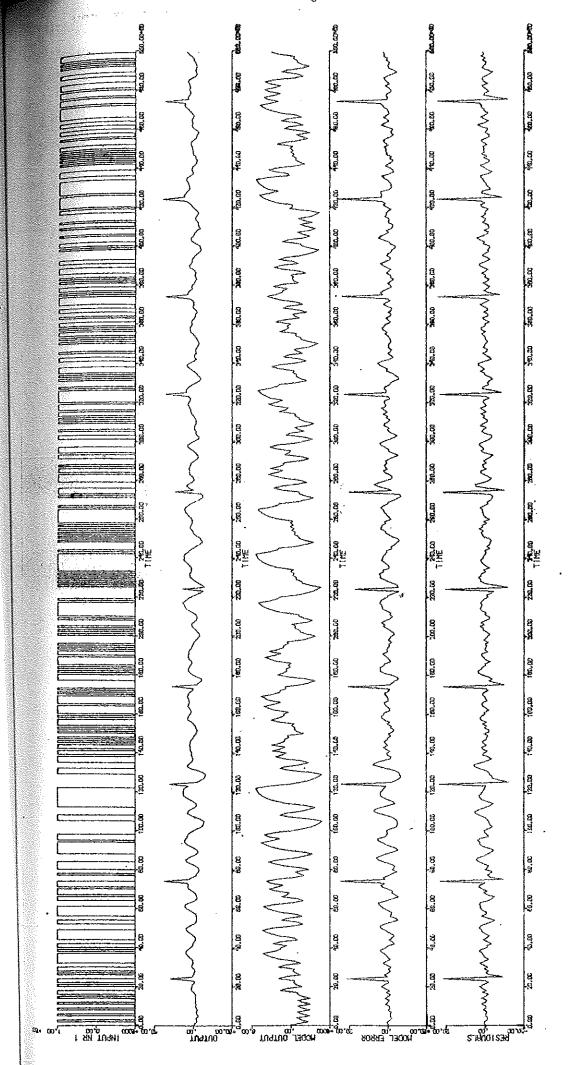



Fig.5. Results of identification with the least squares method on data with measurement errors

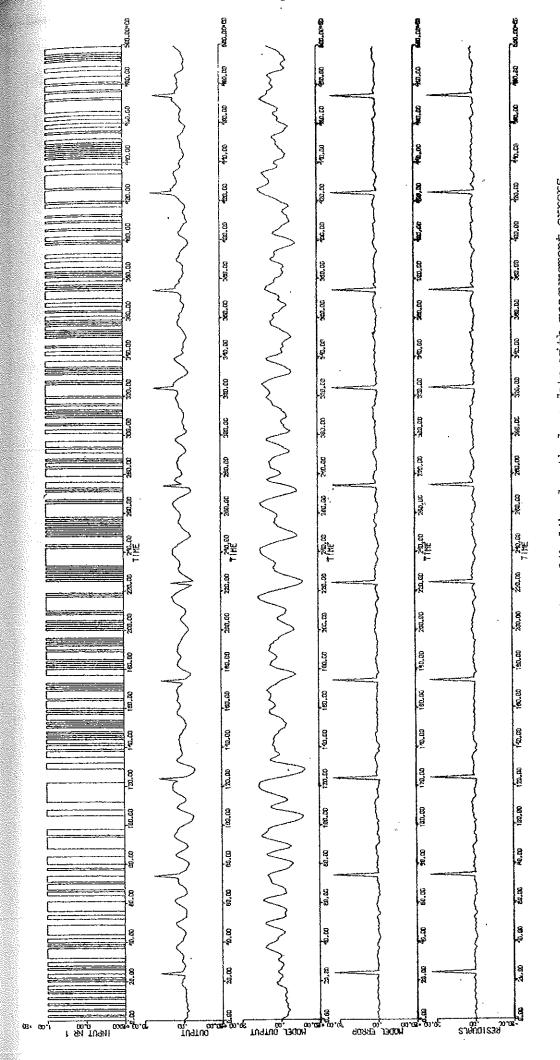



Fig.6. Results of identification with the maximum likelihood method on data with measurement errors

|                |           | estimation    | estimation from data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | number o                                                         | f the chang                                                         | number of the changed points: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | rechance | marber of the changed points: 10 | nged points |        |
|----------------|-----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------------------------------|-------------|--------|
| Para-          | True      | without drift | 4.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed () .<br>We although the production and the second states      | C1.                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | C        |                                  |             |        |
| : 0.4040       | GOLD STE  | ŭ.            | MT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>×</b>                                                         | <b>^</b>                                                            | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | О        |                                  | V           | n      |
|                | A CITTLES |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ST                                                               | Ä                                                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ML     | ES       | ME                               | LS          | ME     |
| 6              |           | 94.5          | -1.502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.232                                                           | 568                                                                 | 0.880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.497 | -0.645   | 1.491                            | -0.429      | -1,481 |
| 22             | 0.7       | 0,653         | 0.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.45.0<br>0.00                                                   | 0,00                                                                | 0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.697  | 0.058    | 0.088                            | -0.180      | 0,670  |
| , P1           | 1,0       | 1.0.1         | - NO. H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *0T                                                              | 1.048                                                               | 15 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,054  | 1,230    | 1.106                            | 1,323       | 157    |
| a<br>D         | 0<br>0    | 0.523         | 0,473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.674                                                            | 6.43                                                                | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.422  | 1,353    | 0.442                            | 1.636       | 0,440  |
| 5              | 0.1       | o             | -1.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ö                                                                | C                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1,424 | Ö        |                                  | · ·         | -1,480 |
| 200            | 0         | ó             | 0.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ó                                                                | 0.531                                                               | <b>C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,615  | Ö        | 0.677                            | Ċ           | 0.672  |
| <b>~</b>       | 0,4       | 0.552         | ri<br>on<br>o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 800                                                              | 0.749                                                               | 1,718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 011    | 2,736    | щ<br>60<br>го                    | 4,002       | 3.243  |
| ( <u>6</u> ) > |           | 76.144        | 38,146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 359.07                                                           | 740.14                                                              | 737.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 308,23 | 1871.3   | 985,39                           | 4003.7      | 2628.9 |
| 1>             | 0.63      | 0.63          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9°0                                                              | 5                                                                   | 1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4      | 06.0     | 0                                | 1,08        | φ.     |
| A<br>>>        | 4.54      | 4.54          | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4<br>60<br>60                                                    | <u></u>                                                             | 4.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7      | 4.99     | <u>ڻ</u>                         |             | ស្     |
| y max          | 10.68     | 10.68         | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.68                                                            | \$                                                                  | 14.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 21.99    | <b>ූ</b> ා                       | 31.07       | 7      |
| Ymin           | -12.58    | -12.58        | ĕŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -12.58                                                           | φ                                                                   | -12.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ø      | -12,58   | 64<br>                           | -12.58      | 83     |
|                | -         | -             | والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراج | and second to the second of the second and second as a second as | ما استقالها الما المستقالة المارسية المارسة المارسة المارسة المارسة | A LANGUAGE OF THE STREET OF TH |        | -        |                                  |             |        |

Table II Estimates in the case of measuring errors, N=500.

# 3. CONSTANT LEVEL ON THE OUTPUT

The simulated output is generated by the following equation:

$$y_{m}(t) = y(t) + k\delta_{y} \gamma(t)$$
 (3)

where now  $\gamma(t)$  is a unit step signal. See Fig. 7.

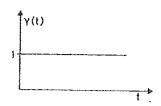



Fig.7. Disturbance  $\gamma(t)$ 

The identified values of parameters can be seen in Table III. for different values of k. It is striking that the increasing value of k has the biggest influence for  $\hat{a}_i$  and  $\hat{c}_i$ . Analysing the results we can establish that the values of  $\hat{a}_1$ ,  $\hat{a}_2$  are formed in such way that the sum  $1+\hat{a}_1+\hat{a}_2$  tends to 0, the values of  $\hat{c}_i$  and the roots of the polynomial  $\hat{c}(z^{-1})$  are in Figs.8/a and 8./b for different values of k where the roots seem to be moving to a certain point.

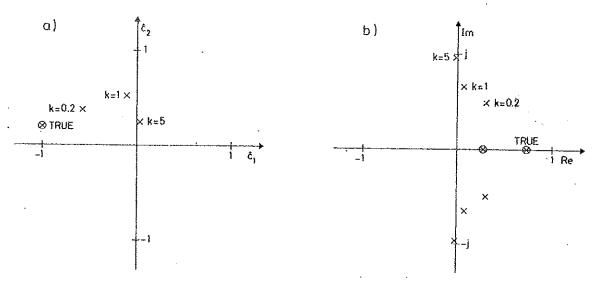



Fig.8. a)Estimates of  $\hat{c}_1$  and  $\hat{c}_2$  for different values of k b)Estimates of the roots of  $\hat{C}(z^{-1})$  for different values of k

|                          |                |                    |                         | ·      |        |        | ,           | <u> </u> | <del>Piliray Talifa</del> |
|--------------------------|----------------|--------------------|-------------------------|--------|--------|--------|-------------|----------|---------------------------|
|                          | True<br>values | estimat<br>data wi | ions from<br>thout dris | k=(    | ),2    | k=     | 1,0         |          | k=5.0                     |
| ters                     |                | LS                 | Mi                      | 1.53   | ML     | LS     | WL          | LS       | MI.                       |
| a,                       | -1.5           | -1.449             | -1.502                  | -1.454 | -1,494 | -1.509 | -1.486      | -1.442   | -1.388                    |
| 82                       | 0.7            | 0.653              | 0.702                   | 0.645  | 0.686  | 0.609  | 0.596       | 0.454    | 0.403                     |
| ), 6<br>  v <sub>1</sub> | 1.0            | 1.011              | 1.024                   | 1.024  | 1.021  | 1.034  | 1.028       | 1.029    | 1.039                     |
| 0,                       | 0.5            | 0.523              | 0.473                   | 0.529  | 0,499  | 0.473  | 0.557       | 0.511    | 0.639                     |
| v <sub>1</sub>           | -1.0           | 0                  | -1.014                  | o      | -0.587 | i<br>O | ·<br>-0.125 | 0        | 0.014                     |
| c,                       | 0.2            | 0                  | 0,268                   | 0      | 0.371  | 0      | 0.453       | . 0      | 0.241                     |
| اً اُ                    | 0.4            | 0.552              | 0.391                   | 0.581  | 0,506  | 0.845  | 0.774       | 1.512    | 1.469                     |
| γ(ê)                     | _              | 76,144             | 38,146                  | 84.487 | 63.978 | 167.76 | 149.85      | 571.69   | 539.52                    |
| Ţ                        | 0.63           | 0                  | .63                     | 1.5    | 54     | 5.     | 17          | 25       | •34                       |
| 6 <sub>y</sub>           | 4.54           | 4.                 | .54                     | 4.0    | 54     | 4.     | .54         | 4        | •54                       |
| 1 "                      | 10.68          | 10                 | ,68                     | 11.5   | 59     | 15.    | .22         | 37       | •39                       |
|                          | 12 <b>.</b> 58 | -12                | .58                     | -11.1  | 67     | -8,    | .04         | 10       | .14                       |
| 1                        |                | · majorina de      |                         |        |        |        |             | ,        |                           |

Table III. Estimates in the case of constant drift.

In order to interpret this effect we have examined some different cases.

3.1.

First let us consider a simple case when the process model is:

$$y_{m}(t) = C(z^{-1}) e(t) + k \delta_{y} \gamma(t)$$
 (4)

which is identified by the model:

$$y_{m}(t) = \hat{C}(z^{-1}) \epsilon(t)$$
 (5)

where it is assumed that e(t) is white noise.

Then

$$\mathcal{E}(t) = \frac{1}{\hat{C}(z^{-1})} y_{m}(t) = \frac{1}{\hat{C}(z^{-1})} (C(z^{-1}) e(t) + kG_{y} \gamma(t) = \frac{C(z^{-1})}{\hat{C}(z^{-1})} e(t) + \frac{1}{\hat{C}(z^{-1})} kG_{y} \gamma(t)$$
(6)

Let us write down the loss function for a first order system:

$$F = E\left\{\varepsilon^{2}(t)\right\} = \frac{1}{2\pi j} \oint \frac{(1+cz^{-1})}{(1+\hat{c}z^{-1})} \frac{(1+cz)}{(1+\hat{c}z)} \frac{dz}{z} + \frac{1}{(1+\hat{c})^{2}} k^{2} 6_{y}^{2} = \frac{1+c^{2}-2c\hat{c}}{1-\hat{c}^{2}} + k^{2} 6_{y}^{2} \frac{1}{(1+\hat{c})^{2}}$$
(7)

The necessary condition for the extremum is:

$$\frac{\partial F}{\partial \hat{c}} = \frac{-2c(1-\hat{c}^2) - (1+c^2-2c\hat{c})(-2\hat{c})}{(1-\hat{c}^2)^2} - \frac{2k^2G^2}{(1+\hat{c})^3} = 0$$
 (8)

Exact analytical solution can not be given because of the complexity of this equation. Two special cases are examined, k=0 and  $k\to\infty$ .

In the case of k=0 we have

$$\frac{-2e + 2e\hat{c}^2 + 2\hat{c} + 2e^2\hat{c} - 4e\hat{c}^2}{(1-\hat{c}^2)^2} = 0 \tag{9}$$

We get the equation

$$-c^{2} + c(1 + c^{2}) - c = 0$$
 (10)

if 6 +11

Solutions of (10) are  $\hat{c}=c$ ,  $\hat{c}=\frac{1}{c}$  where the first one is admissible for the stable system in case without drift.

In the case of k- the equality

$$-\frac{26\hat{v}}{(1+\hat{c})^3} = 0 \tag{11}$$

must be fulfilled and this is possible only in the case when  $\hat{c}\to\infty$  but under the restrictions of stability  $\hat{c}=1$ . (During the identification the ML method allows only stable polynomial  $\hat{C}(z^{-1})$ .)

The solution  $\hat{c}=1$  can also be obtained from (8) because if  $\frac{\partial F}{\partial \hat{c}}=0$  is fulfilled then we can write that:

$$\frac{-2c(1-\hat{c}^2)-(1+c^2-2c\hat{c})(-2\hat{c})}{(1-\hat{c}^2)^2} = \frac{2k^2G_y^2}{(1+\hat{c})^3}$$
 (12)

For k-- this can be true only when c=1.

3,2.

Now let us consider a second order system for this simple model. Then the loss function is:

$$F=E\left\{\mathcal{E}^{2}(t)\right\} = \frac{1}{2\pi j} \oint \frac{(1+c_{1}z^{-1}+c_{2}z^{-2})(1+c_{1}z+c_{2}z^{2})}{(1+\hat{c}_{1}z^{-1}+\hat{c}_{2}z^{-2})(1+\hat{c}_{1}z+\hat{c}_{2}z^{2})} \frac{dz}{z} + \frac{k^{2}G_{y}^{2}}{(1+\hat{c}_{1}+\hat{c}_{2}z^{2})^{2}}$$

$$= \frac{(1+c_{1}^{2}+c_{2}^{2})(1+\hat{c}_{2}^{2})-2\hat{c}_{1}^{2}(1+c_{2}^{2})-2c_{2}(\hat{c}_{1}^{2}-\hat{c}_{2}^{2}-\hat{c}_{2}^{2})}{(1-\hat{c}_{2}^{2})((1+\hat{c}_{2}^{2})^{2}-\hat{c}_{1}^{2})} + \frac{k^{2}G_{y}^{2}}{(1+\hat{c}_{1}+\hat{c}_{2}^{2})^{2}}$$

$$(13)$$

Equating the derivatives to zero we get the following equations:

$$\frac{\partial F}{\partial \hat{c}_{1}} = \frac{\left[-2c_{1}(1+c_{2})+4c_{2}\hat{c}_{1}\right]\left[(1-\hat{c}_{2})((1+\hat{c}_{2})^{2}-\hat{c}_{1}^{2})\right]}{\left\{(1-\hat{c}_{2})\left[(1+\hat{c}_{2})^{2}-\hat{c}_{1}^{2}\right]\right\}^{2}} \\
= \frac{\left[(1+c_{1}^{2}+c_{2}^{2})(1+\hat{c}_{2})-2\hat{c}_{1}c_{1}(1+c_{2})-2c_{2}(\hat{c}_{1}^{2}-\hat{c}_{2}-\hat{c}_{2}^{2})\right]\left[-2\hat{c}_{1}(1-\hat{c}_{2})\right]}{\left\{(1-\hat{c}_{2})\left[(1+\hat{c}_{2})^{2}-\hat{c}_{1}^{2}\right]\right\}^{2}} \\
= \frac{2k^{2}G_{y}^{2}}{(1+\hat{c}_{1}+\hat{c}_{2})^{3}} = 0$$
(14)

$$\frac{\partial F}{\partial \hat{c}_{2}} = \frac{\left[ (1+c_{1}^{2}+c_{2}^{2})-2c_{2}-4c_{2}\hat{c}_{2} \right] \left[ (1-\hat{c}_{2})((1+\hat{c}_{2})^{2}-\hat{c}_{1}^{2}) \right]}{\left\{ (1-\hat{c}_{2})\left[ (1+\hat{c}_{2})^{2}-\hat{c}_{1}^{2} \right] \right\}^{2}} \\
= \frac{\left[ (1+c_{1}^{2}+c_{2}^{2})(1+\hat{c}_{2})^{2}-\hat{c}_{1}^{2} \right] \right]^{2}}{\left\{ (1+c_{1}^{2}+c_{2}^{2})(1+\hat{c}_{2})-2\hat{c}_{1}c_{1}(1+c_{2})+2c_{2}(\hat{c}_{1}^{2}-\hat{c}_{2}-\hat{c}_{2}^{2}) \right] \left[ -(1+\hat{c}_{2})^{2}+2(1-\hat{c}_{2})(1+\hat{c}_{2}) \right]} \\
= \frac{2k^{2}6^{\frac{2}{y}}}{(1+\hat{c}_{1}+\hat{c}_{2})^{3}} 0 \tag{15}$$

These are complicated functions of  $\hat{c}_1$  and  $\hat{c}_2$  and can not be handled analytically.

Examining the case k-- the equality

$$-\frac{26^{2}_{y}}{(1+\hat{c}_{1}+\hat{c}_{2})^{3}} = 0 \tag{16}$$

must be fulfilled. (this is valid both for (14) and (15)) which is true only if  $\hat{c}_1$  and  $\hat{c}_2 \rightarrow \infty$ . But under the stability conditions the admissible domain for  $\hat{c}_1, \hat{c}_2$  can be seen on Fig.9. (striped domain) so only the values  $\hat{c}_1=2$ ,  $\hat{c}_2=1$  are attainable as a maximum. On the other hand this solution makes it possible to fulfil the conditions  $\frac{\partial F}{\partial \hat{c}_1} = 0$  and  $\frac{\partial F}{\partial \hat{c}_2} = 0$  in the case of k----, i.e. the first term of (14) and (15) is made infinite. This solution concerning the roots of the polynomial  $\hat{c}(z^{-1})$  means a double root on the z-plane in the point -1.

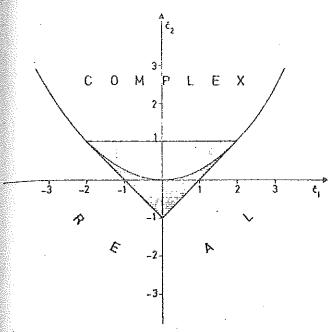



Fig.9. Admissible region for  $\hat{c}_1$  and  $\hat{c}_2$  (striped domain)

The parameter values obtained by the simulation and identification of model (4) can be seen in Table III./a for second order system. The changing of  $\hat{c}_1$  and  $\hat{c}_2$  and the roots of  $\hat{C}(z^{-1})$  are also represented for different k on Fig.10. and these figures are similar to Fig.8/a and Fig.8./b.

| Para-            | True   | ML                                      |         |
|------------------|--------|-----------------------------------------|---------|
| met <b>er</b> s  | values | k=1                                     | k=5     |
| a                | 0      | ica -                                   | glive   |
| a <sub>2</sub> . | 0      | o-a                                     | esh.    |
| b <sub>1</sub>   | 0      | g.s                                     | to-i    |
| b <sub>2</sub>   | 0      | , , , , , , , , , , , , , , , , , , , , |         |
| c <sub>1</sub>   | -1.Ô   | -0.218                                  | 0.657   |
| c <sub>2</sub>   | 0.2    | 0.513                                   | 0.622   |
| λ                | 0.4    | 0.700                                   | 1.571   |
| <b>v</b> (ê)     |        | 124.786                                 | 619.113 |
| ÿ                | 0.008  | 0.568                                   | 2.814   |
| 6 A              | 0.563  | 0.563                                   | 0.563   |
| y <sub>max</sub> | - mai  | 2.23                                    | 4.47    |
| y <sub>min</sub> | !      | -1.25                                   | 0.98    |

Table III./a. N=500

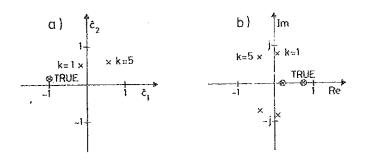



Fig.10. a) Estimates of  $\hat{c}_1$  and  $\hat{c}_2$  for different values of k b) Estimates of the roots of  $\hat{C}(z^{-1})$  for different values of k

But on the basis of previous examinations we can not conclude that these statements are also valid for the general case because the model (4) does not include the parameters  $a_i$ .

#### 3.3

Let us consider the following model:

$$y_{m}(t) = \frac{C(z^{-1})}{A(z^{-1})} e(t) + k \delta_{y} \gamma(t)$$
 (17)

which is identified by the model:

$$y_{m}(t) = \frac{\hat{c}(z^{-1})}{\hat{A}(z^{-1})} \mathcal{E}(t)$$
(18)

Then

$$\mathcal{E}(t) = \frac{\hat{A}(z^{-1}) \, \sigma(z^{-1})}{\hat{C}(z^{-1}) \, A(z^{-1})} \, e(t) + \frac{\hat{A}(z^{-1})}{\hat{C}(z^{-1})} \, k \, G_y \, \gamma(t)$$
 (19)

and assuming that e(t) is white noise the loss function for a first order system is:

$$F=E\{\varepsilon^{2}(t)\} = \frac{1}{2\pi j} \oint \frac{(1+\hat{a}z^{-1})(1+cz^{-1})(1+\hat{a}z)(1+cz)}{(1+az^{-1})(1+\hat{c}z^{-1})(1+az)(1+\hat{c}z)} \frac{dz}{z} + \frac{k^{2} 6 \frac{2}{y}(1+\hat{a})^{2}}{(1+\hat{c})^{2}} = \frac{(1+\hat{a}z^{-1})(1+cz^{-1})(1+az)(1+cz)}{(1+\hat{c}z^{-1})^{2}}$$

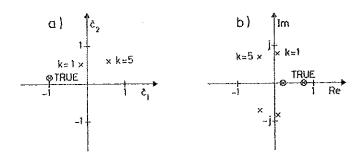



Fig.10. a) Estimates of  $\hat{c}_1$  and  $\hat{c}_2$  for different values of k b) Estimates of the roots of  $\hat{C}(z^{-1})$  for different values of k

But on the basis of previous examinations we can not conclude that these statements are also valid for the general case because the model (4) does not include the parameters  $a_i$ .

#### 3.3

Let us consider the following model:

$$y_{m}(t) = \frac{C(z^{-1})}{A(z^{-1})} e(t) + k \delta_{y} \gamma(t)$$
 (17)

which is identified by the model:

$$y_{m}(t) = \frac{\hat{C}(z^{-1})}{\hat{A}(z^{-1})} \mathcal{E}(t)$$
(18)

Then

$$\mathcal{E}(t) = \frac{\hat{A}(z^{-1}) \ \sigma(z^{-1})}{\hat{C}(z^{-1}) \ A(z^{-1})} \ e(t) + \frac{\hat{A}(z^{-1})}{\hat{C}(z^{-1})} \ k G_y \gamma(t)$$
 (19)

and assuming that e(t) is white noise the loss function for a first order system is:

$$F=E\{\epsilon^{2}(t)\} = \frac{1}{2\pi i} \oint \frac{(1+\hat{a}z^{-1})(1+cz^{-1})(1+\hat{a}z)(1+cz)}{(1+az^{-1})(1+\hat{c}z^{-1})(1+az)(1+\hat{c}z)} \frac{dz}{z} + \frac{e^{2}6\frac{2}{y}(1+\hat{a})^{2}}{(1+\hat{c})^{2}} =$$

$$=\frac{(1+\hat{a}^2+2\hat{a}c+c^2+\hat{a}^2c^2)(1+\hat{a}^2c^2)-2(a+\hat{c})(\hat{a}+c)(1+\hat{a}c)+2\hat{a}c(a^2+2a\hat{c}+\hat{c}^2-a\hat{c}-a^2\hat{c}^2)}{(1-a\hat{c})(1+a^2\hat{c}^2-a^2-\hat{c}^2)}$$

$$+\frac{(1+8)^2}{(1+8)^2} \times {}^26^{\frac{2}{y}} \tag{20}$$

Rewriting the equation (20) so that the numerator of the first term is marked by N, the denominator by D, i.e.

$$F = \frac{N}{D} + \frac{(1+\hat{a})^2}{(1+\hat{b})^2} k^2 6y^2$$
 (21)

we can write the necessary conditions for the derivatives:

$$\frac{\partial F}{\partial \hat{a}} = \frac{N_{\hat{a}}^{1} D - N D_{\hat{a}}^{0}}{D^{2}} + \frac{2(1+\hat{a})}{(1+\hat{c})^{2}} k^{2} \delta_{y}^{2} = 0$$
 (22)

$$\frac{\partial F}{\partial \hat{c}} = \frac{N_{c}^{1} D - N D_{c}^{1}}{D^{2}} - \frac{2(1+\hat{c})^{2}}{(1+\hat{c})^{3}} \kappa^{2} G_{y}^{2} = 0$$
 (22a)

where  $N_{\hat{a}}^{i}$  and  $D_{\hat{a}}^{i}$  mean the derivatives with respect to  $\hat{a}$  of numerator and denominator,  $N_{\hat{c}}^{i}$ ,  $D_{\hat{c}}^{i}$  the derivatives of N and D with respect to  $\hat{c}$ . These equations are so complicated functions of  $\hat{a}$  and  $\hat{c}$  that they can not be handled analytically.

Let us take the case  $k \rightarrow \infty$ . Now there are two possibilities for satisfying equations (22),(22a) for  $k \rightarrow \infty$ . One of them is that  $\hat{a} = 1$ , the other one is that  $\hat{c} = 1$ ; this latter is equal to the previous one obtained for first order system taking account only stable solutions.

Examining the two terms of equations (22), (22a) the following equalities must be fulfilled:

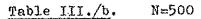
$$\frac{\frac{N D_{\hat{\mathbf{a}}}^1 - N_{\hat{\mathbf{a}}}^1 D}{D^2} = \frac{2(1+\hat{\mathbf{a}})}{(1+\hat{\mathbf{c}})^2} k^2 \delta_{\mathbf{y}}^2$$
 (23)

and

$$\frac{N_{\hat{c}} D - N D_{\hat{c}}^{1}}{D^{2}} = \frac{2(1+\hat{a})^{2}}{(1+\hat{c})^{3}} k^{2} G_{y}^{2}$$
(24)

from which we get that D must be O if k--- .

Mriting D in detail:


$$(1-ac)(1+a^2c^2-a^2-c^2) = 0$$
 (25)

After rearranging we get:

$$(1-ac)(1-a^2)(1-c^2) = 0 (26)$$

The solution  $\hat{c}=-1$  must be excluded because this value would make the right sides of equations (23),(24) infinite even in the case of a small k. From the solutions  $\hat{c}=1$ ,  $\hat{c}=\frac{1}{a}$  the solution  $\hat{c}=1$  is admissible taking account only stable solutions and this is justified by simulation, too. See Table III./b, Table III./c. and Figs: 11.,12. At the same time this value minimizes the right side terms of equations (23),(24).

| Para-            | True   |                | ML             |           |
|------------------|--------|----------------|----------------|-----------|
| meters           | values | k=0.2          | k=1.0          | k=5.0     |
| a <sub>1</sub> : | -0.6   | -0.926         | -0.997         | ⊶1.Q00    |
| b                | 0      | - 9<br>6 4     | - dendo        | . <b></b> |
| c <sub>1</sub>   | -0.5   | <b>-0.7</b> 92 | -0.897         | -0.758    |
| λ                | 0.4    | 0.395          | 0.399          | 0.424     |
| (ê)v             |        | 39.152         | <b>39.</b> 981 | 45.103    |
| ÿ                | 0,05   | 0.127          | 0.446          | 2.039     |
| Q <sup>A</sup>   | 0,39   | 0.398          | 0.398          | 0.398     |
| y <sub>max</sub> | _      | 1.395          | 1.714          | 3.307     |
| y <sub>min</sub> | -      | -1.202         | -0.883         | 0.709     |



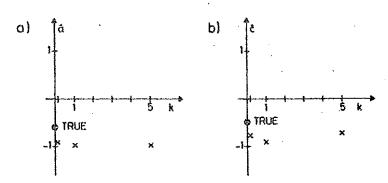



Fig.11. a) Estimates of  $\hat{c}$  for different values of k b) Estimates of  $\hat{c}$  for different values of k

| Bittis-          | l lrue ; | ,        | ML       |
|------------------|----------|----------|----------|
| ng ters          | velues * | k=1.0    | k=5.0    |
| a <sub>1</sub>   | 0.5      | -1.00050 | -1,00048 |
| ò 4              | · ()     | **       |          |
| c <sub>1</sub>   | -0.5     | -0.9683  | -0.8566  |
| λ                | 0.4      | 0.605    | 0.678    |
| v(Å)             | , page   | 91.643   | 115.144  |
| ÿ                | 0.0127   | 0.600    | 2,952    |
| б <sub>у</sub>   | 0.58     | 0.58     | 0.58     |
| a <sup>nox</sup> |          | 2,227    | 4.578    |
| ,<br>min         | #45 ·    | -1.232   | 1.119    |

Table III./c. N=500

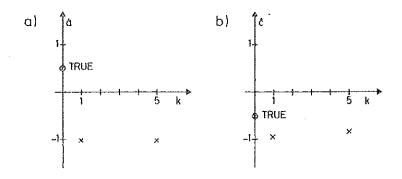



Fig.12. a) Estimates of  $\hat{a}$  for different values of k

b) Estimates of  $\hat{\mathbf{c}}$  for different values of k

But these statements may still not be true in general case.

3.4.

Now let us consider the general case and try to develop the idea. The simulation model:

$$y_{m}(t) = \frac{B(z^{-1})}{A(z^{-1})} u(t) + \frac{C(z^{-1})}{A(z^{-1})} e(t) + k \delta_{y} \gamma(t)$$
 (27)

The identification model is:

$$y_{m}(t) = \frac{\hat{A}(z^{-1})}{\hat{A}(z^{-1})} u(t) + \frac{\hat{C}(z^{-1})}{\hat{A}(z^{-1})} \mathcal{E}(t)$$
 (28)

Then

$$\mathcal{E}(t) = \frac{A(z^{-1}) \hat{B}(z^{-1}) - \hat{A}(z^{-1}) B(z^{-1})}{A(z^{-1}) \hat{C}(z^{-1})} u(t) + \frac{\hat{A}(z^{-1}) C(z^{-1})}{A(z^{-1}) \hat{C}(z^{-1})} e(t) + \frac{\hat{A}(z^{-1}) \hat{C}(z^{-1})}{A(z^{-1}) \hat{C}(z^{-1})} e(t) + \frac{\hat{A}(z^{-1}) \hat{C}(z^{-1})}{A(z^{-$$

$$+\frac{\hat{\Lambda}(z^{-1})}{\hat{C}(z^{-1})} k G_y \gamma(t)$$
 (29)

The loss function can be written easily for first order system (assuming that u(t) is white noise; for Table III. u(t) was PRBS) but this simple case would not give new results. For higher order system, however, the relations would become too difficult. But it can be pursued that writing down the loss function and derivating it with respect to  $\hat{a}_i$ ,  $\hat{c}_i$  we get the following terms next to k:

$$\frac{\partial}{\partial \hat{\mathbf{a}}_{\mathbf{i}}} \longrightarrow \frac{2(1+\hat{\mathbf{a}}_{1}+\ldots+\hat{\mathbf{a}}_{n})\mathbf{G}_{\mathbf{y}}^{2}}{(1+\hat{\mathbf{c}}_{1}+\ldots+\hat{\mathbf{c}}_{n})^{2}}$$
(30)

$$\frac{2}{2\hat{c}_{i}} - \frac{2(1+\hat{a}_{1}+\ldots+\hat{a}_{n})^{2}\hat{c}_{y}^{2}}{(1+\hat{c}_{1}+\ldots+\hat{c}_{n})^{3}}$$
(31)

(The derivatives with respect to  $b_i$  do not contain k.)

In the case  $k \rightarrow \infty$  the conditions are similar to the previous ones, i.e.

$$1 + \hat{a}_1 + \dots + \hat{a}_n = 0 \tag{32}$$

and values of  $\hat{c}_i$  are unconcerned.

Writing down the loss function symbolically on the basis of (29)
$$F = \frac{N_{1}(a_{i},b_{i},\hat{a}_{i},\hat{b}_{i},\hat{c}_{i})}{D_{1}(a_{i},\hat{c}_{i})} + \frac{N_{2}(a_{i},c_{i},\hat{a}_{i},\hat{c}_{i})}{D_{2}(a_{i},\hat{c}_{i})} + \frac{(1+\hat{a}_{1}+...+\hat{a}_{n})^{2} k^{2}6\frac{2}{y}}{(1+\hat{c}_{1}+...+\hat{c}_{n})^{2}}$$
(33)

and derivating it:

$$\frac{\partial F}{\partial \hat{a}_{i}} = \frac{N_{1}^{i} \hat{a}_{i} D_{1} - N_{1} D_{1}^{i} \hat{a}_{i}}{D_{1}^{2}} + \frac{N_{2}^{i} \hat{a}_{i} D_{2} - N_{2} D_{2}^{i} \hat{a}_{i}}{D_{2}^{2}} + \frac{2(1+\hat{a}_{1}^{2}+...+\hat{a}_{n}^{2})k^{2} G_{y}^{2}}{(1+\hat{c}_{1}^{2}+...+\hat{c}_{n}^{2})^{2}}$$
(34)

$$\frac{\partial F}{\partial \hat{b}_{i}} = \frac{N_{1}^{i} \hat{b}_{i}^{D_{1}} - N_{1}^{D_{1}^{i}} \hat{b}_{i}}{D_{1}^{2}} + \frac{N_{2}^{i} \hat{b}_{i}^{D_{2}} - N_{2}^{D_{2}} \hat{b}_{i}^{2}}{D_{2}^{2}}$$
(35)

$$\frac{\partial_{F}}{\partial \hat{c}_{i}} = \frac{\frac{N_{1}^{2} \hat{c}_{i}}{D_{1}^{2} - N_{1} D_{1}^{2} \hat{c}_{i}}{D_{1}^{2}} + \frac{\frac{N_{2}^{2} \hat{c}_{i}}{D_{2}^{2} - N_{2} D_{2}^{2} \hat{c}_{i}}{D_{2}^{2}} - \frac{2(1+\hat{a}_{1}+...+\hat{a}_{n})^{2} k^{2} G_{y}^{2}}{(1+\hat{c}_{1}+...+\hat{c}_{n})^{3}}$$
(36)

Summarizing we can say that if an undesirable constant level is in the output values y(t) the  $\hat{a}_i$  will be performed on such way that the sum  $(1+\hat{a}_1+\ldots+\hat{a}_n)$  tends to 0, the estimates of  $c_i$  depend on  $a_i$  but their values can not be expressed exactly from the equations. Naturally the smaller k, the less the influence.

The time functions for the case in Table III., for k=1 are shown on Fig. 16. where the form of residuals is significantly different from the usual one.

| Para             | True   | k=      | 1,0    | k=5.0   | )       |
|------------------|--------|---------|--------|---------|---------|
| meters           | values | LS      | MI.    | LS      | ML      |
| a <sub>1</sub>   | -1.0   | -0.878  | -0.978 | -1.007  | -0.927  |
| a <sub>2</sub>   | 0.2    | -Q.015  | 0.089  | 0.022   | -0.056  |
| b <sub>1</sub>   | 1.0    | 1.033   | 1.041  | 1.014   | 1.033   |
| b <sub>2</sub>   | 0.5    | 0.604   | 0.534  | 0.457   | 0,586   |
| c <sub>1</sub>   | -1.0   | 0       | -0.251 | 0       | 0.091   |
| °2               | 0.2    | 0       | 0.332  | . 0     | 0.155   |
| λ                | 0.4    | 0.656   | 0.626  | 0.963   | 0.944   |
| v(ô)             | 1      | 107.477 | 98.234 | 231,772 | 223.224 |
| ; ÿ              | 0.63   | . 3.3   | 75     | 14.     | . 367   |
| G <sub>y</sub>   | 2.75   | 2.7     | 45     | 2.      | .745    |
| y <sub>mex</sub> |        | 9.8     | 01     | 20      | .784    |
| y <sub>min</sub> | ,      | -3.1    | 41     | 7       | .842    |

Table III./d.

n=500

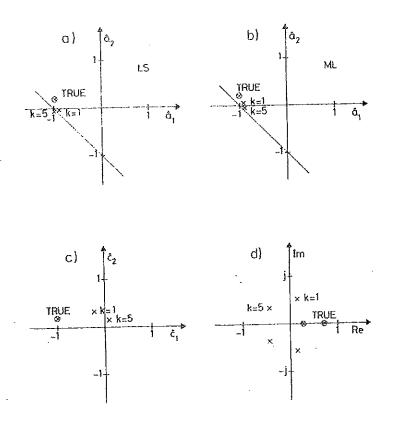
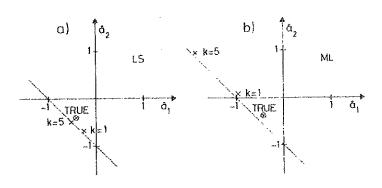




Fig.13. a) Estimates of  $\hat{a}_1$  and  $\hat{a}_2$  using the LS method and for different k b) Estimates of  $\hat{a}_1$  and  $\hat{a}_2$  using the ML method and for different k c) Estimates of  $\hat{c}_1$  and  $\hat{c}_2$  for different k d) Estimates of the roots of  $\hat{C}(z^{-1})$  for different k

| Para             | True   |        | k=1.0  | k=5     | .0             |
|------------------|--------|--------|--------|---------|----------------|
| meters           | values | LS     | ML     | 1.5     | ML             |
| a <sub>1</sub>   | -0.4   | -0.254 | -0.953 | -0.503  | -1.864         |
| a <sub>2</sub>   | -0.4   | -0.642 | 0.022  | -0.481  | 0.864          |
| b <sub>1</sub>   | 1.0    | 1.032  | 1.051  | 1,005   | 0,996          |
| b <sub>2</sub>   | 0.5    | 0.634  | -0.107 | 0.372   | <b>-0.</b> 995 |
| c <sub>1</sub>   | -1.0   | 0      | -0,906 | 0       | <b>-1.</b> 396 |
| c <sub>2</sub>   | 0.2    | 0      | 0.583  | 0       | 0.491          |
| λ                | 0.4    | 0.604  | 0.551  | 0.841   | 0.788          |
| v(ô)             |        | 91.259 | 75.673 | 176.744 | 155.432        |
| · ÿ              | 0.63   | 2.     | 65     | 10      | .72            |
| ্<br>তি,y        | 2.01   | 2.     | 02     | 2       | •02            |
| y <sub>max</sub> |        | 7.     | 55     | 15      | <b>.</b> 62    |
| y <sub>min</sub> | -      | -2.    | 65     | 5       | .42            |
|                  |        | :      |        |         |                |

Table III./e.

N=500



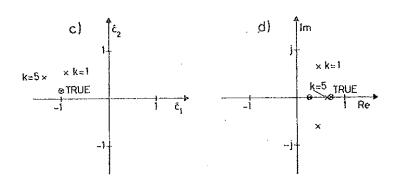



Fig.14. a) Estimates of  $\hat{a}_1$  and  $\hat{a}_2$  using the LS method and for different k b) Estimates of  $\hat{a}_1$  and  $\hat{a}_2$  using the ML method and for different k c) Estimates of  $\hat{c}_1$  and  $\hat{c}_2$  for different k

d) Estimates of the roots of  $\hat{C}(z^{-1})$  for different k

| Para           | True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | k=1.0          | k        | =5.0    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------|---------|
| meters         | values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LS       | ML             | LS       | ML      |
| 8,1            | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.083   | -0,179         | -0.161   | -0.237  |
| a <sub>2</sub> | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.786   | <b>~0,8</b> 19 | -0.834   | -0.763  |
| b <sub>1</sub> | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.923    | 0.841          | 0.872    | 0.794   |
| b <sub>2</sub> | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.984   | -0,896         | -1.082   | -0.991  |
| c <sub>1</sub> | -1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0        | -1.309         | 0        | -0.604  |
| e <sub>2</sub> | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0        | 0.676          | 0        | 0.424   |
| 7              | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.042    | 0.963          | 2.240    | 1,714   |
| v(ô)           | ,<br>p-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1042.737 | 232.241        | 1253.847 | 736.554 |
| ÿ              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.       | 93             | 14.      | ,501    |
| 6 <sub>y</sub> | 2,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.       | .89            | 2.       | .89     |
| ymax           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.       | ,98            | 21.      | .55     |
| ymin           | e de de constituir de la constituir de l | -4.      | ,49            | 7.       | .07     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                | į<br>į   |         |

Table III./f.

N=500

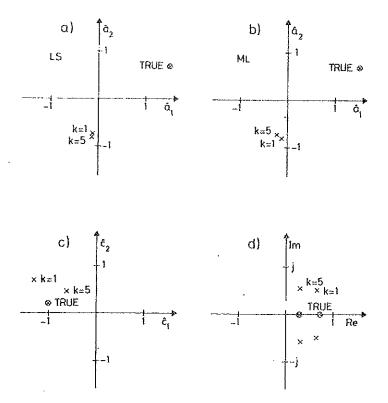



Fig.15. a) Estimates of  $\hat{a}_1$  and  $\hat{a}_2$  using the LS method and for different k b) Estimates of  $\hat{c}_1$  and  $\hat{c}_2$  using the ML method and for different k c) Estimates of  $\hat{c}_1$  and  $\hat{c}_2$  for different k d) Estimates of the roots of  $\hat{C}(z^{-1})$  for different k

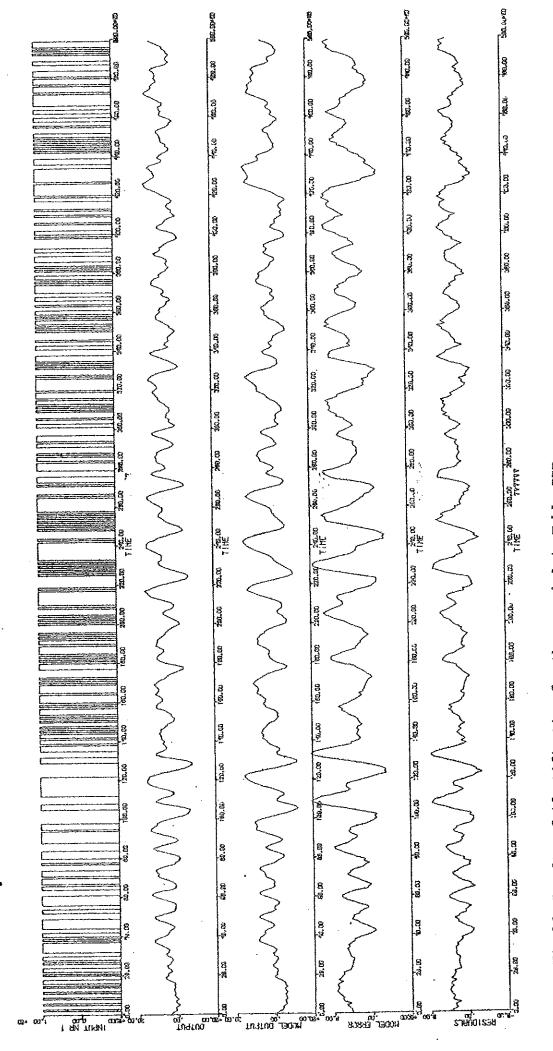



Fig.16. Results of identification for the case k=1 in Table III

#### 4. DIMEAR DRIFT

The simulation equation:

$$y_{m}(t) = y(t) + (t-1) - \frac{k}{N-1} - 6 y \gamma'(t) = y(t) + k 6 \gamma \gamma(t)$$
 (37)

i.e. the slope of the line was determined as a function of  $\mathbb{G}_{y}$  so after N samples there is a k $\mathbb{G}_{y}$  deformation of the value  $y(\mathbb{N})$ . See Fig.17.

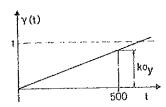



Fig.17. Disturbance  $\gamma(t)$ 

The identification results are shown in Table IV. The estimates are getting worse for increasing k. The tendency in the moving of estimates  $c_i^{\lambda}$  for different values of k is similar to the case of constant drift. (See Fig. 18.)

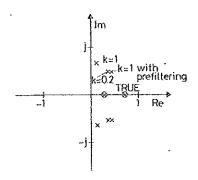



Fig.18. The estimates of the roots of  $C(z^{-1})$  with and without prefiltering

A simple strategy can be offered for the improvement of the entities tion.

Let us fit a line to the output values and estimate the slope of it and the constant term, i.e.

$$y_{e}(t) = k_{0} + k_{1} t \tag{38}$$

Introducing the following vectors:

$$\underline{\underline{f}}(t) = [1, t]$$

$$\underline{k} = [k_0, k_1]$$
(39)

$$\underline{Y} = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix} 
\underline{F} = \begin{bmatrix} \underline{f}(1) \\ \vdots \\ \underline{f}(N) \end{bmatrix}$$
(40)

the well-known least-squares estimation for  $\underline{k}$  is:

$$\frac{A}{k} = \left( \underbrace{F}^{T} F \right)^{-1} \underbrace{F} \underline{y} = \underline{G}^{-1} \underline{w} \tag{41}$$

where

$$\underline{\underline{G}} = \sum_{t=1}^{N} \underline{\underline{f}}(t) \underline{\underline{f}}^{T}(t)$$
 (42)

$$\underline{\mathbf{w}} = \sum_{t=1}^{N} \underline{\mathbf{f}}(t) \mathbf{y}(t) \tag{43}$$

Writing it in detail:

$$\underline{G} = \begin{bmatrix} \sum_{t=1}^{N} & 1 & \sum_{t=1}^{N} & t \\ \sum_{t=1}^{N} & t & \sum_{t=1}^{N} & t^2 \end{bmatrix} = \begin{bmatrix} N & \frac{N(N+1)}{2} \\ \frac{N(N+1)}{2} & \frac{N(N+1)(2N+1)}{6} \end{bmatrix}$$
(44)

$$\underline{G}^{-1} = \begin{bmatrix} \frac{4N^2 + 6N + 2}{N(N^2 - 1)} & \frac{6(N+1)}{N(N^2 - 1)} \\ \frac{6(N+1)}{N(N^2 - 1)} & \frac{12}{N(N^2 - 1)} \end{bmatrix}$$
(45)

$$\underline{\mathbf{w}} = \begin{bmatrix} \frac{N}{t-1} & \mathbf{y(t)} \\ \frac{N}{t-1} & \mathbf{t} & \mathbf{y(t)} \end{bmatrix}$$

$$(46)$$

hence the estimates of parameters of the line are the followings:

$$\hat{k}_{0} = \frac{4N^{2} + 6N + 2}{N(N^{2} - 1)} \sum_{t=1}^{N} y(t) - \frac{5N + 6}{N(N^{2} - 1)} \sum_{t=1}^{N} t y(t)$$
(47)

$$k_1 = -\frac{6N+6}{N(3^2-1)} \sum_{t=1}^{N} y(t) + \frac{12}{N(N^2-1)} \sum_{t=1}^{N} t y(t)$$
 (48)

The values  $k_0$ ,  $k_1$  can be estimated easily and their standard deviations are proportional to the diagonal elements of matrix  $\underline{\underline{G}}^{-1}$ . After estimating the parameters  $k_0$ ,  $k_1$  the following filtering strategy can be applied before the identification:

$$y^{\mathcal{P}}(t) = y_{m}(t) - k_{o} - k_{1} t \tag{49}$$

then performing the identification from the values  $u(t), y^F(t)$  there are a significant improvement in the estimates, mostly in  $\hat{a}_i$  and  $\hat{b}_i$ , are also shown in Table IV.

The Figs. 19., 20. represent the time functions for the case without prefiltering and with prefiltering, respectively.

| Para<br>meters   | True<br>values | estimat<br>data wi | ions from thout drift | X=C    | 2      | k=1    | .0     | k=1.   | 0<br>filtering |
|------------------|----------------|--------------------|-----------------------|--------|--------|--------|--------|--------|----------------|
|                  |                | LS                 | ML                    | LS     | MT     | LS     | MI     | LS     | ML             |
| a <sub>1</sub>   | -1.5           | -1.449             | -1.502                | -1.451 | -1.497 | -1.484 | -1.489 | -1.452 | -1.501         |
| a <sub>2</sub>   | 0.7            | 0.653              | 0.702                 | 0.649  | 0.694  | 0.630  | 0.644  | 0,656  | 0.703          |
| b <sub>1</sub>   | 1.0            | 1.011              | 1.024                 | 1.018  | 1.019  | 1.028  | 1.019  | 0.999  | 0.998          |
| <sub>p</sub> 3   | 0.5            | 0.523              | 0.473                 | 0.527  | 0.490  | 0.501  | 0.526  | 0.509  | 0.469          |
| c <sub>1</sub>   | -1.0           | 0                  | -1.014                | 0      | -0.735 | 0      | -0.273 | 0      | -0.753         |
| c <sub>2</sub>   | 0,2            | 0 -                | 0.268                 | 0      | 0.337  | 0      | 0.460  | 0      | 0.365          |
| λ                | 0.4            | 0.552              | 0.391                 | 0.563  | 0.461  | 0.707  | 0.652  | 0.566  | 0.464          |
| ⊽(🏠)             | #<br>-<br>#### | 76.144             | 38.146                | 79.200 | 53.056 | 125.11 | 106.35 | 80.207 | 53.923         |
| ÿ                | 0.63           | 0.                 | 63                    | 1.     | 08     | 2.8    | 39     | 2,8    | 39             |
| e <sup>à</sup>   | 4.54           | 4.                 | 54                    | 4.     | 55     | 4.     | 73     | 4.7    | 73             |
| y <sub>max</sub> | 10.68          | 10.                | 68                    | 11.    | .07    | 13.    | 36     | 13.3   | i6 .           |
| y <sub>min</sub> | -12.58         | -12.               | 58                    | 12.    | 34     | -11.   | 41     | -11.4  | 1              |

rable IV.

N=500  $k_0 = 0.637$ ;  $k_1 = 5.153$ 

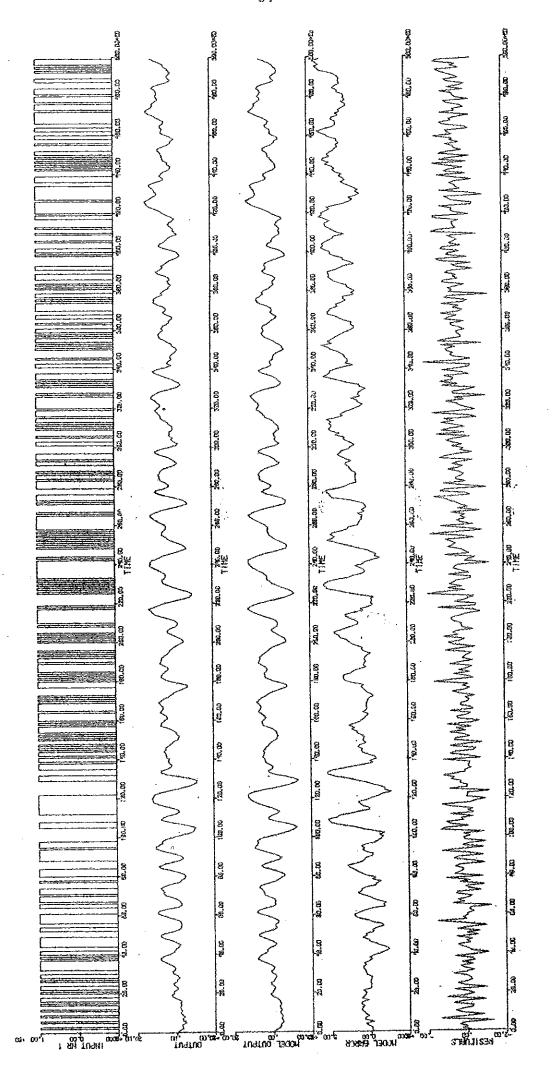



Fig.19. Results of identification for data without prefiltering

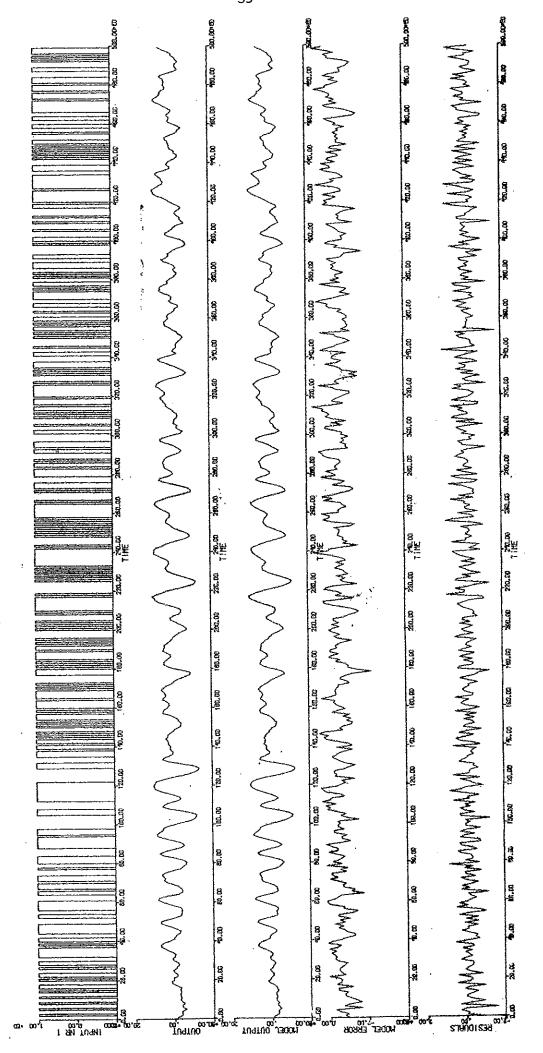



Fig. 20. Results of identification of data with prefiltering

5.SINUSOIDAL DRIFT

The simulation was performed according to the equation:

$$y_{m}(t) = y(t) + k \, \mathbf{S}_{y} \sin \mathbf{w} \, t = y(t) + k \, \mathbf{S}_{y} \mathbf{\gamma}(t)$$
 (50)

where

$$\omega = \frac{2\pi}{T}$$

and T means the number of samplings during a total sinusoidal period.

The identification results are represented in Table V. It can be established from the Table V. that the results are similar to the case 2.,3. for large values of T. The roots of the polynomial  $\hat{C}(z^{-1})$  are shown on Figs. 21.,22.

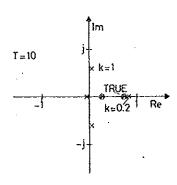



Fig.21. Estimates of the roots of  $C(z^{-1})$ , T=10

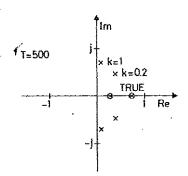
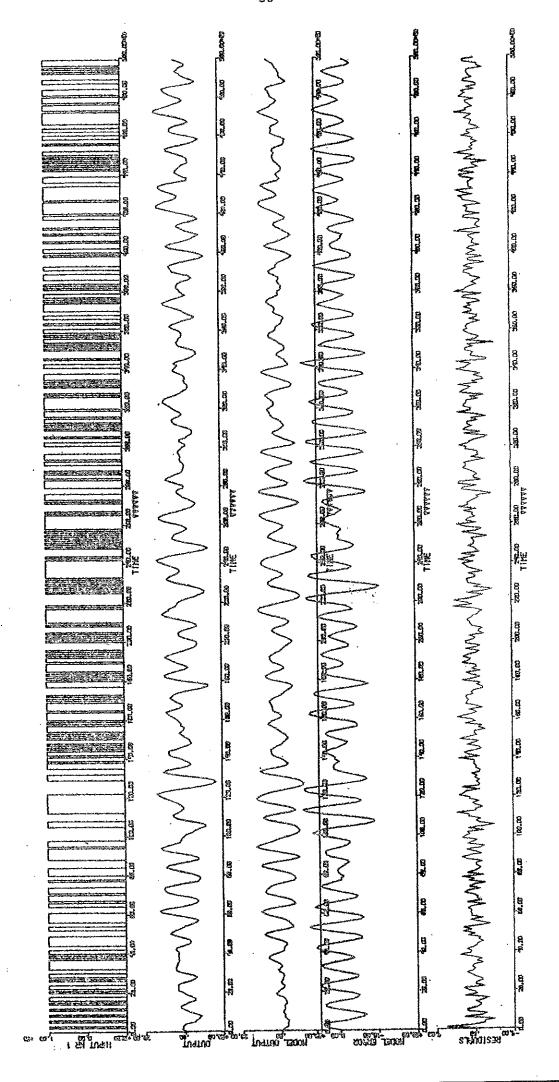




Fig.22. Estimates of the roots of  $C(z^{-1})$ , T=500

For small values of T the estimates are much worse. The time functions for k=1, T=10 are shown on Fig.23., for k=1, T=500 on Fig.24.

|                      |                         | -           | 4,     |         |        |        | the community of the second supplemental supplemental publication of the second supplemental sup | A ANDERS OF HERBORY STATES STATES STATES OF THE STATES OF | i depute displace e cinditali de la constitució | Melitika tama e perime ulitera terena kataman Menan |
|----------------------|-------------------------|-------------|--------|---------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| True Estimation from | r from                  |             |        | T=10    | 10     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T=500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
| data without drift   | out drift               |             | ×      | k=0.2   | k=1.0  | .0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k=0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X=1,0                                               |
| TS MT                | W                       |             | IS     | ME      | SI     | ML     | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                                                   |
| -1.5 -1.449 -1.502   | eri idea incipienti     | •           | -1,453 | -1.499  | -1.549 | -1.537 | -1.451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.485                                              |
| 0.7 0.653 .0.702     | ****                    |             | 099.0  | 0.701   | 0.808  | 0.807  | 0.649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.628                                               |
| 1.6 1.011 1.024 1    | - Barbary (Consumply in | <b>-</b> -1 | 1.012  | 1.031   | 1.010  | 1.010  | 1,015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E COLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.010                                               |
| 0.5 0.523 0.473 0    | property and an         | 0           | 0.518  | 0.      | 0.429  | 0.412  | 0,523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.531                                               |
| -1.0 01.014 0.       | and the second          | ó           |        | -0.774  | o o    | -0.064 | o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 669.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.202                                              |
| 0.2 0.0.268 0.       | <del></del>             | ó           |        | 0.030   | Ċ      | 0.399  | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.476                                               |
| 0.4 0.552 0.391 0.   | nantine kengara         | 0           | 0.567  | 0,455   | 0.799  | 0,759  | 0.567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,690                                               |
| - 76.144 38.146 80.  |                         | 80.         | 80.504 | 51,783  | 159.79 | 144.23 | 80.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 142.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119,01                                              |
| 0.63 0.63            | 63                      |             | 0      | 0.63    | 0      | 0,63   | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.63                                                |
| 4.54                 | 10<br>24                |             | **     | 558     | in.    | 5.52   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.73                                                |
| 10.68 10.68          | 89                      |             | 10.51  | rd<br>M | 13.53  | 53     | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80                                                  |
| -12.58 -12.58        | 58                      |             | -13,32 | 32      | -16.82 | 82     | -11,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -12.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                                  |

Table V Estimates in the case of sinusoidal drift, N=500.



ig.23 Results of identification, K=1, 1=10

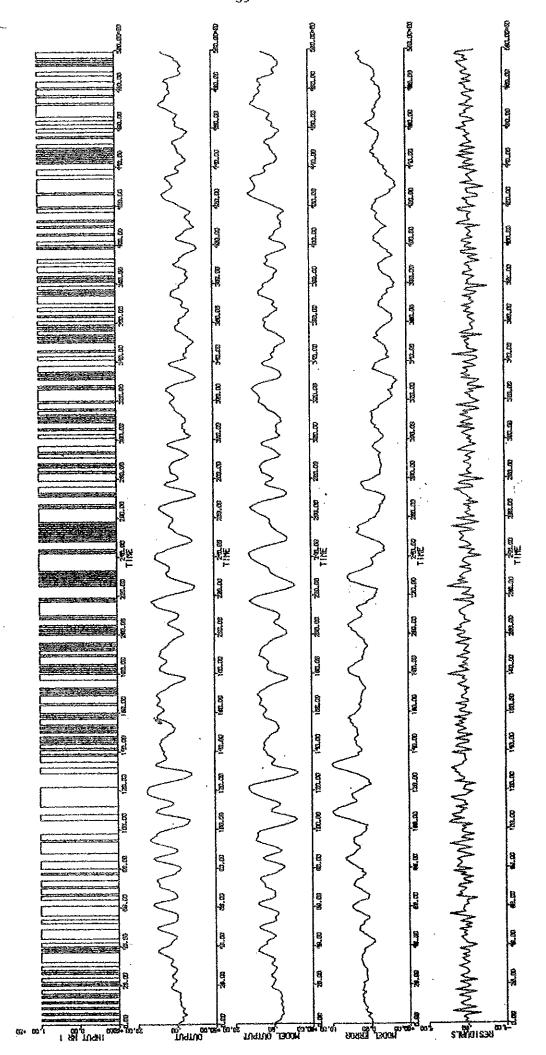



Fig.24. Results of identification, k=1, T=500

#### 6. SUMMARY AND CONCLUSIONS

On the basis of these examinations it can be said that the drift of different character and magnitude can have significant influence on the identification results. Thorough knowledge of the process and technology can help us to form an opinion of existence and character of drift but in spite of this it is worth examining the data.

First of all I suggest to perform a linear regression for the output signal and if it is necessary to filter the data according to the equation (49). After identifying the parameters and plotting the time functions the bad projecting measurements are noticable immediately in the time function of residuals and in this case the estimates  $\hat{c}_i$  are unreliable.

The influence of constant drift arises in a complicated way in the estimates. It can be recognized by that the sum  $1+\hat{a}_1+\ldots+\hat{a}_n$  tends to 0. But in this case the estimates  $\hat{c}_i$  and often  $\hat{b}_i$ , too, are unreliable. Perhaps a prefiltering would be effective in this situation, too.

Referring to the elimination of the influence of drift more exact demands can be created on the measuring conditions or in some cases filtering strategies can be carried out.

The purpose of this paper was not to work out these filtering methods, only to examine the influences of drifts of different types and to interpret the reason of that physically.

#### 7. REFERENCES

- [1] Aström K. J. and Bohlin T.: "Numerical Identification of Linear Dynamic System from Normal Operating Records".

  Proceedings of the IFAC Conference on Self-Adaptive Control Systems, Teddington (1965).
- [2] Gustavsson I.: Parametric Identification of Multiple Input, Single
  Output Linear Dynamic Systems. Report 6907. July 1969.
  Lund Institute of Technology, Division of Automatic
  Control.
- [3] Åström K. J. and Eykhoff P.: System Identification A Survey.

  IFAC, Prague, 1970.

## 8. ACKNOWLEDGEMENTS

The author wishes to express her gratitude to professor K.J. Astrom and I. Gustavsson, for initiating the problem and for valuable suggestions and discussions.