

Dynamiska modeller för ett rum

Del 2

Jensen, Lars

1973

Document Version: Förlagets slutgiltiga version

Link to publication

Citation for published version (APA): Jensen, L. (1973). Dynamiska modeller för ett rum: Del 2. (Research Reports TFRT-3066). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or recognise.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

DYNAMISKA MODELLER FÖR ETT RUM[↑] Del II

L.H. Jensen

[†] Denna rapport avser anslag nr D 698 från Statens råd för byggnadsforskning till Institutionerna för byggnadskonstruktionslära och reglerteknik vid LTH.

Innehållsförteckning	<u>Sid</u> .
Inledning	3
Experiment	
Försöksrummet	5
Mätutrustning	6
Mätpunkter	7
Val av försökstyper	9
Försök	11
Maximum Likelhood-identifiering	•
Metoden	12
Mätbrus	14
Modelltyper	15
Identifieringar	16
Resultat model1typ 1	18
Resultat modelityp 2	20
Resultat model1typ 3	22
Referenser	24
Figurer	25
Bilagor	27
Diagrambilagor	76

INLEDNING.

I en tidigare rapport [1] drogs slutsatsen att för att kunna beskriva rumsdynamiken i tidsområdet några minuter krävdes nya försök för nya modeller. För reglering är modeller i detta tidsområde nödvändiga.

Med rumsdynamik avses här i första hand hur rumslufttemperaturen påverkas av uppvärmningssystemets använda effekt eller temperatur. Rumsdynamiken kan grovt delas upp i en snabb och en långsam del, som motsvaras av värmeutbyte mellan rumsluft, uppvärmningssystem och väggytor resp. värmeutbyte mellan väggytor och väggmassor. Den långsamma delen påverkar endast regleringen vid börvärdesändringar. Avsikten med försöken var att få bra modeller för den snabbare delen av dynamiken.

I de gamla försöken [2] skedde datainsamling var 20:e minut, medan i de här redovisade försöken har detta skett var 20:e sekund eller varje minut. För att vara jämförbara med de tidigare försöken har samma typer av uppvärmningssystem och utförande på rummet använts. Totalt gjordes 18 försök under maj och juni 1971.

Linjära tidinvarianta modeller har bestämts med Maximum Likelihood-metoden [3, 4]. Tre olika insignal-utsignal-samband, nämligen effekt-rumslufttemperatur, elementtemperatur-rumslufttemperatur och effekt och rumslufttemperatur-elementtemperatur har undersökts. De två förstnämnda insignal-utsignal-sambanden har endast en insignal medan det sista har två. Identifieringarna har utförts med data från sex olika försök (två från varje uppvärmningssystem).

Genomgående har 2:a ordningens insignal-utsignal-samband erhållits. Vidare har modeller från de konvektiva försöken den snabbaste dynamiken, därefter kommer strålnings-

försöken och långsammast är försöken med elradiatorer. Tidskonstanterna som förekommer i modellernas kontinuerliga motsvarigheter varierar från 2 minuter till 30 minuter.

EXPERIMENT.

Försöksrummet.

Rummet, som användes vid försöken, finns vid Institutionen för Byggnadskonstruktionslära [5]. Tre olika uppvärmningsystem har använts vid försöken och de har varit identiska med de i de tidigare gjorda försöken [1, 2].

Strålningsuppvärmning skedde genom en i taken monterad motståndsfolie, vilken täckte hela takytan. En 10 cm tjock styrolitisolering skilde folie och själva taket åt.

Konvektiv uppvärmning skedde med ett elektriskt varmluftsbatteri. Rumsluften blåstes av en fläkt förbi varmluftsbatteriet och ut intill fasadfönstret i tre punkter.

Som tredje uppvärmningsystem användes två elradiatorer på vardera 1000 W placerade intill fönsterbröstningen. Elradiatorernas termostat var givetvis bortkopplade.

Mätutrustning.

Som datainsamlingsutrustning användes en datalogger med hålremsstans. Temperaturer mättes med termoelement av kopparkonstantan. Om effekten var till-eller frånslagen avgjordes med en spänningsdelare som påverkades av en kontaktor, som samtidigt styrde effekten. En signalgenerator styrde kontaktorn och därmed effekten. Dataloggerns mätningar startades också av signalgeneratorn. För att kunna variera effektuttaget var en transformator inkopplad mellan nätet och kontaktorn. Transformatorn skyddade också dataloggern från störningar eftersom belastningsändringarna skedde på transformators sekundärsida. Hela mätutrustningsuppställningen redovisas i figur nr 1. Samplingshastigheten var 4 mätkanaler per sek. och antalet var högst 34. Alltså tog ett scan 8,5 sek.

Mätpunkter.

Med termoelement omgivna av tunn aluminiumfolie uppmättes rumsluftens temperatur i 8 punkter. Folien användes för att eliminera strålningens inverkan. Om rummet delas med tre snitt mitt i längd-, bredd- och höjdled, fås 8 lika stora luftvolymer, i vilkas mitt de 8 termoelementen var placerade.

Temperaturen hos uppvärmningsanordningen uppmättes på ytan av densamma före både strålning- och radiatoruppvärmning. Fyra mätpunkter användes, placerade så att ett bra medelvärde kunde erhållas.

Vid konvektiv uppvärmning uppmättes istället temperaturen hos luften före och efter uppvärmningen av densamma. Placeringen var sådan att någon strålning från värmespiralerna ej kunde träffa termoelementen.

Ytterluftens temperatur mättes i två punkter, nämligen utanför fönsterfasaden mot öster 1400 mm över rummets golvnivå eller 2250 mm över marknivån på 50 och 170 mm från fönsterfasaden och 1200 mm från fasadens norra kant.

Korridorluftens temperatur mättes i två punkter, en på 750 mm och en på 2250 mm höjd över golvet. Båda var placerade 1500 mm söder om korridordörren och på ett avstånd av 300 mm från väggen.

Väggyttemperatur mättes i norr- och söderväggarna mitt för motsvarande rumslufttemperaturpunkter. Ingen temperaturmätning i rummets västvägg.

Golv- och taktemperaturer mättes på samma sätt som väggyttemperaturer. Någon taktemperatur uppmättes ej vid strålningsförsöken, då hela takytan var täckt av strålningsfolien. En mätteknisk referens användes för att möjliggöra kontroll av dataloggernas långtidsstabilitet. Ett termoelement placerades i ett temperaturstabiliserat bad med en noggrannhet på $\pm 0.1^{\circ}$ C.

Placering av rumsluft-, vägg-, golv- och taktemperaturgivare framgår i figur nr 2. Endast norra halvan av rummet är medtagen. I södra halvan sitter givarna speglade jämfört med norra halvan.

I bilaga nr 7 finns en sammanställning gjord över alla mätpunkterna.

Val av försökstyper.

Avsikten med försöken var att erhålla modeller för dimensionering av regulatorer. Vid tidigare mätningar hade samplingsintervallet varit 20 minuter. För att bestämma insignal-utsignal-samband mellan tillförd effekt och rumslufttemperatur, mellan uppvärmningsanordningens temperatur och rumsluften och mellan tillförd effekt, rumslufttemperatur och uppvärmningsanordningens temperatur beslöts att använda samplingsintervall på 20 sek. och 1 minut. Detta val gjordes för att vara säker att kunna bestämma dynamiken hos uppvärmningssystemen, vilken är snabb. Samtidigt var det önskvärt att försök med olika uppvärmningssystem gjordes så lika som möjligt. Detta för att lättare kunna behandla materialet och att kunna göra direkta jämförelser.

Identifieringsmetoden kräver att systemet exciteras för att identifieringen skall ge bra resultat. Det förutsätts att denna excitation av systemet sker i rätt frekvensområde.

En signalsekvens, som har denna egenskap, kan erhållas med en PRBS-generator (Pseudo Random Binary Signal). Signalsekvensen antar bara två värden, t.ex. 0 och 1, vilket underlättar implementeringen. Vidare karakteriseras PRBS-sekvensen av sin grundperiod T och ordning n. Grundperioden T anger den kortaste tiden, som signalsekvensen är på en och samma nivå (0 eller 1). Den längsta tiden detta kan ske anges av n·T. Hela signalsekvensens längd är (2ⁿ-1)·T och signalgenerator upprepar signalsekvensen periodiskt. Ett försök bör omfatta minsten hel period.

Efter kompromisser beroende på begränsade inställningsmöjligheter på PRBS-generator och begränsad försökslängd valdes två PRBS-sekvenser med grundperioderna 2 min. resp. 10 min. och av ordningen 5 resp. 4. Periodlängden blev då 62 min. resp. 150 min. Den kortare sekvensen skulle använvändas vid den snabbare datainsamlingen (var 20:e sek.).

Som tredje försökstyp valdes ett stegsvar med datainsamling (var 20:e sek.).

För samtliga uppvärmningssystem beslöts att försök skulle göras med två olika maxeffektnivåer (mineffektnivån var 0 W), vilket med ovan nämnda försökstyper blir totalt 18 försök.

Försök.

I bilaga nr 8 redovisas när de olika försöken utfördes. Alla försök utfördes efter kl. 12.00 för att direkt solstrålning ej skulle kunna störa försöken (fönsterfasaden vetter åt öster). Före försöken var uppvärmningen frånslagen. Vid de konvektiva försöken var fläkten i gång även före och efter försöken.

Försöken har betecknats på två sätt: dels med nummer från l till 18 och dels med beteckningar från Sl-S6, Kl-K6 till Rl-R6. Försök nr 7 är alltså ekvivalent med försök Kl.

I bilaga nr 9 redogörs för mätdatabearbetning. Vid identifiering har genomgående medelvärden använts.

Differenser mellan mätpunkter och medelvärdet har studerats. De enskilda mätpunkterna uppvisar i stort sett samma dynamik som medelvärdet.

Någon registrering av den verkliga effektförbrukningen under försöken har ej skett. Vid enkla manuella mätningar befanns att effekten ej varierade nämnvärt. MAXIMUM LIKELIHOOD IDENTIFIERING.

Metoden.

Vid identifieringarna anpassades en linjär tidsinvariant modell till mätdata. Störningarna antas kunna beskrivas med stationär normalprocess med rationellt spektrum. Modellen är

$$A^*(q^{-1})y(t) = B^*(q^{-1})u(t-k) + \lambda C^*(q^{-1})e(t)$$

{u(t), y(t) | t = 1,...,N}

är insignal-utsingal följden medan

$$\{e(t) \mid t = 1,...,N\}$$

är en följd av oberoende N(0,1) fördelade slumpvariabler. q betecknar skiftoperatorn qx(t) = x(t+1), k är en ren fördröjning i modellen, $A^*(q^{-1})$, $B^*(q^{-1})$ och $C^*(q^{-1})$ är polynom.

$$A^*(q^{-1}) = 1 + a_1q^{-1} + \dots + a_nq^{-n}$$

$$B^*(q^{-1}) = b_0 + b_1q^{-1} + \dots + b_nq^{-1}$$

$$C^*(q^{-1}) = 1 + c_1q^{-1} + \dots + c_nq^{-1}$$

Metoden är ingående beskriven i [3]. Programpaket för metoden, som har använts, har skrivits av Ivar Gustavsson [4]. De sökta parametrarna i polynomen $A^*(q^{-1})$, $B^*(q^{-1})$ och $C^*(q^{-1})$ fås efter att ha minimerat följande förlustfunktion V:

$$V = \frac{1}{2} \sum_{t=1}^{N} \varepsilon^{2}(t)$$

där residualen ε(t) bestäms av:

$$C^*(q^{-1}) \epsilon(t) = A^*(q^{-1}) \gamma(t) - B^*(q^{-1}) u(t-k)$$

Med ett statistiskt F-test kan man bestämma ordningstal genom att jämföra förlustfunktioner för olika ordningstal enligt följande testkvantitet.

$$TQ = \frac{(V_1 - V_2) (N - n_2)}{V_2 (n_2 - n_1)}$$

Här är $\rm V_1$ förlustfunktionen för $\rm n_1$ identifierade parametrar, $\rm V_2$ på motsvarande sätt för $\rm n_2$, och N är totala antalet tidpunkter som försöket omfattar.

Om en modell är av ordning n+1 testar man mot en modell av ordning n på en risknivå av 5%. Testgränsen är $F(n_2-n_1, N-n_2)$. För en insignal – en utsignal är $n_2-n_1=3$ och med två insignaler är $n_2-n_1=4$, och för olika N fås följande testgränser:

$$F(3,100) = 2,70$$

 $F(3,\infty) = 2,60$
 $F(4,100) = 2,46$
 $F(4,\infty) = 2,37$

Är testkvantiteten TQ mindre än testgränsen då kan modeller av högre ordningstal förkastas.

Mätbrus.

Storleken hos prediktionsfelet λ för modellerna anger också hur bra modellerna är. Något som påverkar prediktionsfelet är mätfel och diskretisering.

Den aktuella dataloggern har en upplösning av 0,025 grader. Vid ett enkelt test med dataloggern bestämdes dess standardavvikelse till 0,035 grader för 1000 mätpunkter. För att kunna jämföra detta med prediktionsfelet måste först prediktionsfelet korrigeras från att gälla ett medelvärde till ett enskilt mätvärde. Om medelvärdet utgörs av n st mätpunkter och om mätfelen är oberoende, skall prediktionsfelet λ multipliceras med \sqrt{n} för att få prediktionsfelet för en enskild mätpunkt. Om mätfelen är helt beroende, är preditionsfelet oberoende av medelvärdesbildning.

Detta ger också en möjlighet att bedöma modeller genom att jämföra prediktionsfelet med den uppskattade undre gränsen. Denna kan beräknas till 0,013, 0,018 och 0,025 för de använda utsignalerna rumslufttemperatur, elementtemperatur (S- och R-försök) resp. lufttemperatur efter varmluftsbatteri (K-försök), vilka är medelvärden av 8, 4 resp. 2 mätpunkter.

Modelltyper.

Avsikten med försöken och identifiering var att få fram modeller lämpade för att användas vid dimensionering av reglersystem och simulering av hela system. Vilka modelltyper eller insignal-utsignal-samband är då intressanta ur reglersynpunkt med avseende på att styra rumslufttemperaturen.

Det första sambandet som har studerats är mellan tillförd effekt som insignal och rumslufttemperatur som utsignal. Denna modell innefattar både uppvärmningssystemets dynamik och dynamiken mellan denna och rumslufttemperaturen.

Det andra sambandet, som är av intresse, är mellan uppvärmningssystemets temperatur som insignal och rumslufttemperatur som utsignal. I de konvektiva försöken är insignalen inblåsningsluftens temperatur. Denna modelltyp omfattar alltså ej uppvärmningsystemets dynamik.

Slutligen har ett tredje insignal-utsignal-samband undersökts mellan tillförd effekt som insignal 1 och rumslufttemperatur som insignal 2 och uppvärmningssystemets temperatur som utsignal. För de konvektiva försöken har insignal 2 varit lufttemperaturen före varmluftbatteriet och utsignalen lufttemperaturen efter.

Identifieringar.

De tidigare nämnda modelltyperna har identifierats för försöken S2, S5, K2, K5, R2 och R5. Samtliga försök har gjorts som försökstyp 2. Försöksbeteckningar med tvåor avser försök med en högsta effekt på 1000 W medan femmor avser 2000 W. Identifieringarna gjordes med dessa två tilleffekter för att se om modellerna skulle bero av insignalens storlek eller skillnaden mellan tilleffekten och fråneffekten (fråneffekten var noll för samtliga försök). Om dynamiken är kraftigt olinjär blir modellernas parametrar olika för de två olika effekterna.

Genomgående har modeller identifierats fram med ordningstal upp till tredje ordningen och olika antal tidsfördröjningar har använts.

I bilagorna 1, 2 och 3 finns resultatet redovisat för modelltyperna 1, 2 och 3.

Vidare finns simuleringar av de olika modelltyperna 1, 2 och 3 redovisade i diagrambilagorna 1, 2 och 3. Här har endast de bästa modellserierna (m.a.p. ordningstal) för en och samma tidsfördröjning redovisats för varje modelltyp och försök som har identifierats. Ett krav har också varit att de samplade modellerna skulle ha en stabil kontinuerlig motsvarighet för att kunna godtas.

Samtliga kontinuerliga modeller finns redovisade i bilagor nr 4, 5 och 6 för modelltyperna 1, 2 resp. 3.

I bilagor 1, 2 och 3 framgår det att testkvantiteten TQ för att bestämma ordningstal, ofta är långt större än testgränserna (~2,5) och modellerna skulle då vara av högre ordningstal än två. Jämför man däremot simuleringar kan man ofta ej se någon nämnvärd skillnad mellan 2:a och 3:e ordningens modell. Dessutom är prediktionsfelen bara en

faktor 2 - 3 större än den tidigare nämnda gränsen. Med hänsyn till dessa faktorer finner man att samtliga modeller kan anses väl beskrivas av högst 2:a ordningens modeller.

Resultat modelltyp 1 - Effekt-rumslufttemperatur.

Samtliga modeller är av 2:a ordningen men med olika tidsfördröjningar, nämligen ingen för S2 och S5, 1 minut för
K2 och K5 och 2 minuter för R2 och R5. Genomgående för
samtliga 2:a ordningens modeller med reella poler är att
den snabba noden har negativförstärkning, medan den långsammare noden har större förstärkning så att stegsvaret
är ständigt ökande.

Den snabbaste dynamiken uppvisar försöken K2 och K5 säkert beroende på att allt värmet först tillföres rumsluften. Försöken S2 och S5 kommer sedan eftersom själva motståndsfolien har en snabb dynamik jämfört med elradiatorerna. Förstärkningen hos överföringsfunktionerna avser grader/kW för S2, K2 och R2 medan grader/2 kW för S5, K5 och R5. Tidsenheten är l minut. De bästa överföringsfunktionerna är följande:

Försök S2

$$G(s) = \frac{-0,12139}{s \cdot 1,2858 + 1} + \frac{1,8531}{s \cdot 16,351 + 1}$$

Försök S5

$$G(s) = \frac{-0.25384}{s + 1.4642 + 1} + \frac{3.0181}{s \cdot 14.272 + 1}$$

Försök K2

$$G(s) = \begin{vmatrix} -0.36399 \\ s \cdot 1,1714 + 1 \end{vmatrix} + \frac{3,2689}{s \cdot 9,4243 + 1} e^{-s}$$

Försök K5

$$G(s) = \begin{vmatrix} -0.77854 \\ s \cdot 1.1531 + 1 \end{vmatrix} + \frac{6.2694}{s \cdot 8.6059 + 1} e^{-s}$$

Försök R2

$$G(s) = \frac{s \cdot 0,00960 + 0,04528}{(s+0,11901)^2 + 0,06698^2} \cdot e^{-2s}$$

Försök R5

$$G(s) = \begin{vmatrix} -2,6601 \\ s \cdot 3,9396 + 1 \end{vmatrix} + \frac{8,6372}{s \cdot 12,355 + 1} e^{-2s}$$

Resultat modelltyp 2 - Uppvärmningstemperatur - rumsluft-temperatur.

Samtliga modeller är av 2:a ordningen och någon tidsfördröjning finns ej i modellerna. Alla överföringsfunktionerna har reella poler och båda noderna har positiv förstärkning. Återigen har försöken K2 och K5 den snabbaste dynamiken, därefter kommer R2 och R5, och långsammast är S2 och S5, vilket är naturligt, då elradiatorerna avger en del värme direkt till rumsluften medan takfolien överför värmet till rumsluften via väggarna. Förstärkningen för de olika modellerna är omkring 0,1, 0,5 och 0,1 för S-, K- resp. R-försöken och avser grader/grader. De bästa modellerna är följande:

Försök S2

$$G(s) = \frac{0,00882}{s \cdot 0,40097 + 1} + \frac{0,10640}{s \cdot 12,739 + 1}$$

Försök S5

$$G(s) = \frac{0.05711}{s \cdot 5.9983 + 1} + \frac{0.070331}{s \cdot 29.499 + 1}$$

Försök K2

$$G(s) = \frac{0,33306}{s \cdot 3,0614 + 1} + \frac{0,18054}{s \cdot 42,843 + 1}$$

Försök K5

$$G(s) = \frac{0,33249}{s \cdot 3,3032 + 1} + \frac{0,14711}{s \cdot 43,211 + 1}$$

Försök R2

$$G(s) = \frac{0,062752}{s \cdot 2,8117 + 1} + \frac{0,032389}{s \cdot 59,91 + 1}$$

Försök R5

$$G(s) = \frac{0,04708}{s \cdot 1,5804 + 1} + \frac{0,05235}{s \cdot 20,651 + 1}$$

Resultat modelltyp 3 - Effekt och rumslufttemperatur--uppvärmningstemperatur.

Här och i bilaga nr 6 redovisas endast den intressanta delen av överföringsfunktionen från effekt till uppvärmningstemperatur. Inqa fördröjningar erhölls. Den snabbaste dynamiken har motståndsfolien i försöken S2 och S5 med tidskonstanter under 2 minuter. Varmluftsbatteriet i försöken K2 och K5 kommer sedan med tidskonstanter under 3 minuter. Överföringsfunktionen för elradiatorerna är instabil för 1:a ordningen och komplex för 2:a ordningen med poler motsvarande tidskonstanter på 9 minuter. Någon 2:a ordningens modell existerar ej för försöket S2. I 2:a ordningens modeller för försöken S5, K2 och K5 har överföringsfunktionen reella poler och den snabbare noden har negativ förstärkning, men inte större än att stegsvaret är ständigt växande. Förstärkningen avser grader/kW för försöken S2, K2 och R2 och grader/2 kW för försöken S5, K5 och R5. Vidare kan förstärkningarna ej jämföras, då de hänför sig till uppvärmningssystemets temperaturer som är mycket beroende på just systemet. De bästa modellerna är följande:

Försök S2

$$G(s) = \frac{11,383}{s \cdot 1,8136 + 1}$$

Försök S5

$$G(s) = -\frac{4,5405}{s \cdot 0,54528 + 1} + \frac{22,778}{s \cdot 1,4349 + 1}$$

Försök K2

$$G(s) = \frac{-2,4052}{s \cdot 0,74946 + 1} + \frac{6,8224}{s \cdot 1,6834 + 1}$$

Försök K5

$$G(s) = \frac{-6,9871}{s \cdot 0,88558 + 1} + \frac{16,175}{s \cdot 1,5873 + 1}$$

Försök R2

$$G(s) = \frac{-s \cdot 0,10477 + 0,99680}{(s+0,11883)^2 + 0,12460^2}$$

Försök R5

$$G(s) = \frac{-s \cdot 0,27679 + 2,2363}{(s+0,11637)^2 + 0,16351^2}$$

REFERENSER

- (1) Jensen, L.H.: "Dynamiska modeller för ett rum. Del 1." Institutionerna för byggnadskonstruktionslära och reglerteknik, LIH. Arbetsrapport 1973:5.
- (2) Frick, B.: "Rumsmätningar och identifiering av rummets dynamik med maximum-likelihoodmetodik". Rapport RE-89. LTH. Institutionen för reglerteknik. 1970.
- (3) Åström, K.J. and Bohlin, T.: "Numerical Identification of Linear Dynamic System from Normal Operating Records". Proceedings of the IFAC Conference on Self-Adaptive Control Systems. Teddington 1965.
- (4) Gustavsson, I.: "Parametric Identification of Multiple Input Single Output Linear Dynamic Systems". Report 6907, July 1969. LTH. Institutionen för reglerteknik.
- (5) Adamson, B.: "Program för studier av utomhusförhållandens inverkan på rumsklimatet". LTH. Institutionen för byggnadskonstruktionslära. 1969.

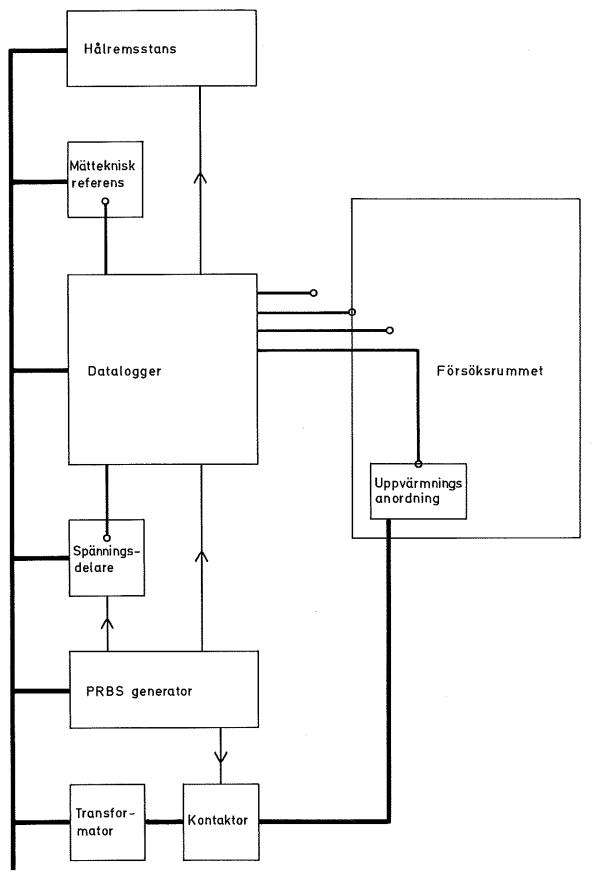


FIG. 1 Försöksutrustning.

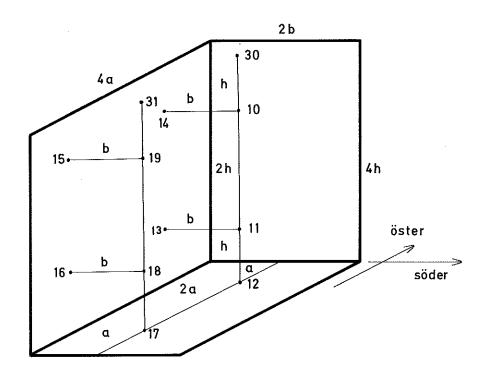


FIG. 2 Placering av temperaturgivare i rummets norra halva.

Förord till resultatbilagor 1, 2 och 3.

För ett visst försök och en viss modelltyp har samtliga identifieringsresultat sammanställts för olika ordningstal och tidsfördröjningar. Längst till vänster finns modellernas parameterbeteckningar och andra använda storheter angivna. Antalet tidsfördröjningar i modellerna ökar från vänster mot höger och ordningstalet ökar uppifrån och neråt. Som A-, B- och C-polynomens parameterbeteckningar har stora bokstäver använts. Resterande parametrar är lamda, V och TQ motsvarande prediktionsfelet, förlustfunktionen och testkvantiteten. Testkvantiteten avser test mellan aktuell modell och modell med närmast högre ordningstal. Samplingsintervallet är l minut för alla modeller.

BILAGA nr 1

Resultat från Maximum Likelihood-identifiering. Modelltyp 1 Effekt - rumslufttemperatur.

2

MAXIMUM LIKELIHOOD IDENTICATION ON EXPERIMENT

INPUT-OUTPUTMODEL

HEATINGEFFECT TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 298

NUMBER OF INPUTS 1

0	1
960532	946630
•000000	.000000
• 083830	.091259
•123441	068947
482418	-,478786
•009560	008916
• 054	.047
	5.901
	-1.378482
•432200	.412208
	.000000
	.075792
-	021623
	450105
	.041934
	480115
· · · · · · · · · · · · · · · · · · ·	.217067
_	•008657
	.045
-	19.800
	-2.154463
•	1.375904
	220770
*	.000000
	.091555
	101748
	.012004
	-1.508013
•	.335004
	.211803
_	481542
	•590409
	104168
	.007885
•023	.037
	960532 .000000 .083830 .123441 482418 .009560 .054 70.743 -1.400132

5

MAXIMUM LIKELIHOOD IDENTICATION ON EXPERIMENT

INPUT-OUTPUTMODEL

HEATINGEFFECT TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 292

NUMBER OF INPUTS i

```
Ü
A(1)
              ··· 959363
                            -.943580
               .000000
                             .000000
B(1:0)
               .136655
                             .158106
8(1:1)
                             .107139
C(1)
               .520971
0(1)
              -.712348
                            -.598027
               .01440I
                             .015160
 LAMDA
                                .134
                  .125
 VLOSS
                              21.239
                77.449
   13
             -1.437451
                          -1.241884
\Lambda(1)
A(2)
               .470939
                             .289478
B(1,0)
               .000000
                             .000000
8(1/1)
               .078613
                             ,094952
               .013957
                             .023785
B(1,2)
              -.081824
                             .082517
C(1)
C(2)
              -.147697
                             .018888
0(1)
              -.676771
                            -.595537
               .384203
                             .168847
0(2)
               .010779
                             .013709
 LAMDA
                                 .110
                  .070
 VL05S
                 3.370
                               5,462
   To
A(1)
             -1.161962
                            -. 164670
                            -.895897
               .120925
A(5)
A(3)
               .086408
                             .167694
               .000000
                             .000000
B(1,0)
8(1:1)
                             .097953
               .078417
               .032487
                             .125927
8(1,2)
               .014683
                             .047182
B(1+3)
               .172008
                            1.192740
C(1)
              -.162450
                             .248423
C(5)
C(3)
               .136896
                             .048628
D(1)
              -.679557
                            -.748550
               .188447
                            -.317051
0(2)
               .077695
                            -.057160
0(3)
                             •013329
               .010598
 LAMOA
 VLOSS
                  .068
                                .104
```

INPUT~OUTPUTMODEL

HEATINGEFFECT TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 273

NUMBER OF INPUTS 1

	U	1	2
A(1)	955664	~.933390	912095
B(1,0)	•000000	.000000	•000000
B(1,1)	•178493	.228133	•249301
C(1)	•496732	.270508	•138892
D(1)	-1.273645	-1.277304	-1.288365
LAMDA	•027609	.021378	•022268
VLOSS	•416	.250	.271
TQ	217.703	94.529	22,780
A(1)	-1.459682	-1.325188	-1.339995
A(2)	•505512	•382988	•401682
B(1:0)	•000000	.000000	.000000
8(1:1)	•027661	.120113	• 143430
8(1,2)	•107619	.047793	.007483
C(1)	~•2 68645	156430	•062761
C(2)	•093807	.118173	•113574
D(1)	-1.266055	-1.273670	-1.293343
0(2)	•593593	.456184	• 489661
LAMDA	.014873	.014887	.019870
VLOSS	•121	.121	.216
TQ	44.952	44.703	16.028
A(1)	-2.444846	-2.349369	-2.212362
A(2)	1.983597	1.796037	1.562380
A(3)	536304	444774	346655
B(1,0)	•000000	•000000	•000000
B(1,1)	.020123	•124559	•181048
B(1,2)	• 093376	080971	160909
B(1.3)	103942	036025	010684
C(1)	-1.584904	-1.499148	-1.102741
C(2)	• 605663	.462735	•019392
C(3)	• 069228	.117698	.231521
D(1)	-1.267364	-1.275413	-1.284589
0(2)	1.832281	1.764096	1.627293
D(3)	623244	 539323	434868
LAMDA	.012100	.012123	•018275
VLOSS	.080	.080	.182

INPUT-OUTPUTMODEL

HEATINGEFFECT TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 273

NUMBER OF INPUTS 1

	Û	1.	2
A(1)	 955652	930101	90395 7
8(1,0)	.000000	.000000	.000000
8(1/1)	.328997	.451597	•516972
¢(1)	•585260	.359711	• 090435
Ð(I)	-2.512709	-2.492154	-2.524220
LAMOA	•053186	.038254	.039141
VL05S	1.573	.799	.836
Τä	421.849	196.420	30.024
A(1)	-1.463144	-1.310426	-1.561155
A(2)	•5132 7 8	·374039	•604103
8(1,0)	.000000	•000000	•000000
B(1,1)	.020499	•236312	•310827
B(1+2)	. 250395	. 112978	125291
C(I)	128318	014896	213188
C(5)	.098873	.114382	•200676
D(1)	-2.501354	-2.493010	-2.512441
0(5)	1.150264	.866147	1.565160
LAMDA	.022370	.021361	• 033846
VL055	· 278	* 5(t)	,625
ΤQ	55,453	59.111	19.204
A(1)	-2.403566	-2.292817	-2.295144
A(2)	1.926813	1.699437	1.732663
A(3)	518880	403753	431992
8(1+4)	.000000	.000000	•000000
B(1+1)	.019611	.238103	.344832
8(1+2)	.233121	112578	384398
B(1,3)	223617	105882	.059094
C(1)	-1.420992	-1.351760	-1.114071
C(5)	.397851	.311390	• 248956
0(3)	.187377	.173485	• 256368
0(1)	-2.592539	-2.491191	-2.526000
0(2)	3.420507	3.308226	3.429345
0(3)	-1.248012	-,939206	-1.126325
A GIM A.J	.017584	.016521	• 030665
VL055	•172	.149	_* 513

INPUT-OUTPUTMODEL

HEATINGEFFECT TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 269

NUMBER OF INPUTS 1

	0	1	2	3
A(1)	989139	986062	979787	971444
B(1+0)	•000000	.000000	•000000	•000000
8(1,1)	•067839	.078484	•100029	•112866
C(1)	•672929	.575212	•553727	.423488
D(1)	732548	724482	746721	709620
LAMDA	•022982	.022462	.020131	.019194
VL05S	•284	.271	.218	•198
TQ	240.509	253,255	185.994	136.259
A(1)	-1.834535	-1.799047	-1.771606	-1.734356
A(2)	•848375	.814344	•788178	•753310
B(1,0)	•000000	.000000	•000000	.000000
B(1,1)	~• 006514	.007330	•029431	• 043497
B(1,2)	·038572	.029603	•010798	000455
C(1)	- ∙689922	702291	-•683465	597322
C(2)	•182530	.198576	•198824	•176473
D(1)	721135	724741	 721057	707283
D(2)	•607269	•596462	•584718	•538436
LAMDA	•011878	.011390	•011394	.012010
VLOSS	•076	.070	.070	•078
TQ	13.894	5.520	3.865	2 • 666
A(1)	-2.376062	-2.364069	-2.242848	826552
A(2)	1.881236	1.859931	1.653491	809936
A(3)	497782	488272	400637	•673241
B(1,0)	•000000	.000000	•000000	.000000
B(1,1)	•005707	•013389	•035075	•047451
B(1,2)	•001584	.004305	021798	.029218
B(1,3)	•012573	.002339	.012323	•007195
C(1)	-1.285307	-1.283216	-1.162157	•329748
C(2)	•590951	•587353	• 495964	384263
C(3)	011327	011073	.032262	.202907
D(1)	717544	721430	724736	707387
D(2)	.983141	•988053	•917028	105989
D(3)	345045	340410	- • 287156	•483326
LAMDA	.011027	.011044	.011148	.011829
VLOSS	•065	• 066	•067	• 075

INPUT-OUTPUTMODEL

HEATINGEFFECT TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 270

NUMBER OF INPUTS 1

	0	1	2	3
A(1)	~. 986693	981844	974927	965543
8(1)0)	.000000	•000000	•000000	•000000
8(1/1)	.136299	• 170341	.216787	.258089
C(1)	.790363	•712786	•629302	•445871
D(1)	-2.8 7 5098	-2.770175	-2.824017	-2.834276
LAMDA	.038622	•036222	.031719	,028677
VL055	.820	• 709	•543	,444
T 🤄	572.468	651.935	475.147	227.875
A(1)	-1.806900	-1.744756	-1.698069	-1.663578
A(2)	.819567	.760085	•715499	•683347
8(1,0)	.000000	•000000	.000000	.000000
3(1,1)	.001457	/·024747	.075209	.097611
8(1,2)	.073412	.067881	.028973	.008435
C(1)	269067	~. 354599	-,312933	090801
C(2)	.116388	•188 7 34	•186053	•140301
D(1)	-2.820565	-2.776849	-2.813703	-2.833599
D(5)	2.299960	2.058764	1.993511	1.920819
AGMAJ	.614213	• 612492	•012538	•015136
VL055	.111	• 034	.085	.124
1.0	45.101	16.462	10,330	7.532
A(1)	-2,258286	-2,435881	-2.615709	-2.638226
A(5)	1.694215	2.004086	2.297581	2.332849
A(3)	427186	~. 562296	 679586	692952
8(1+0)	•000000	•000000	•000000	•000000
8(1/1)	.007549	•027888	.075920	•095660
8(1,2)	.018239	• 025849	 049640	095592
B(1+3)	.030675	014818	011569	•008302
C(1)	 916793	-1.118636	-1.291592	-1.115047
C(5)	.424089	•504117	•507756	.307812
C(3)	• 053959	014444	 038255	.001068
D(1)	-5.858400	-2.772634	-2.815019	-2.831313
0(2)	3 . 5 7 2608	3.978369	4.580194	4.686330
D(3)	-1.242060	-1.527359	-1.910854	-1.974561
LAMDA	.011571	.011455	.011854	.014521
VL055	.074	• 071	.076	.114

BILAGA nr 2

Resultat från Maximum Likelihood-identifiering. Modelltyp 2.

Elementtemperatur - rumslufttemperatur.

INPUT-OUTPUTMODEL

HEATINGELEMENTTEMPERATURE TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 298

NUMBER OF INPUTS 1

0	1
904976	897079
•000000	.000000
•009839	•009539
·280105	•487700
 484530	~. 483355
•009170	.011494
•050	.079
17.073	12,729
	-1.657677
• 076349	.672614
	.000000
	.012010
	010506
	311409
	-,256334
	479671
·=	.390792
	.010809
	.070
	1.771
	735449
	898275
	.659700
*	.000000
	.013481
	002800
	008062
	•591478
	-,585986
	232065
	481584
	045141
	.376140
•	.010711
+032	• 068
	904976 .000000 .009839 .280105484530 .009170 .050 17.073

INPUT-OUTPUTHODEL

HEATINGELEMENTTEMPERATURE TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 292

NUMBER OF INPUTS 1

	0	1
A(1)	~ . 905348	 895889
8(1)0)	.000000	.000000
B(1/1)	.010094	.010131
C(1)	•470476	.721799
	711147	 610524
D(1)	.013992	.016621
LAMDA		.010021 .161
VLOSS TO	,118 19,454	17.072
TQ		-1.769966
A(1)	~1.813112	.776887
A(2)	.818230	
B(1+3)	.000000	.000000
8(1:1)	.011114	.009743
8(1,2)	010462	009202
C(1)	527720	~.060562
C(2)	~. 260569	-, 367338
0(1)	684852	~.601609
D(2)	.701467	.545033
LAMUA	.012788	.015307
VLOSS	.099	.137
T .3	2.812	•578
A(1)	-2.047628	-1.524667
A(2)	1.206000	.310158
A(3)	~. 156372	.221833
8(1,0)	.000000	.000000
B(1:1)	.013507	.010264
B(1,2)	018290	008924
8(1:3)	.005050	000898
C(1)	867274	.174214
C(2)	128322	392513
C(3)	.099077	~. 049142
0(1)	 678720	595658
u(2)	.897834	.401649
0(3)	 196658	.121091
LAMDA	.012607	.015260
VL055	.096	.136

INPUT-OUTPUTMODEL

HEATED AIRTEMPERATURE TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 273

NUMBER OF INPUTS 1

	0	1
A(1)	792489	751824
B(1,0)	•000000	.000000
B(1+1)	• 083936	.093889
C(1)	•446326	.674501
D(1)	-1.265035	-1.272673
LAMDA	•016736	.023137
VLOSS	•153	.292
TQ	73.359	47.120
A(1)	-1.698268	-1.543596
A(2)	•704697	•558846
B(1:0)	$\bullet 000000$.000000
B(1,1)	•096978	.124229
B(1,2)	 093675	117758
C(1)	• 937586	324685
C(2)	.061752	367324
D(1)	-1.267280	-1.278331
D(2)	1.188233	1,071449
LAMDA	•012391	.018709
VLOSS	• 084	•191
TQ	4.531	3.100
A(1)	-1.920468	686194
A(2)	1.086294	780344
A(3)	160335	.493734
B(1,0)	•000000	.000000
B(1,1)	•097662	•127746
B(1,2)	116192	-,022023
B(1+3)	•021315	094325
C(1)	-1.166774	•536734
C(2)	.072030	674529
C(3)	•209633	263065
D(1)	-1.268424	-1.273236
0(2)	1.464610	010017
0(3)	262436	•902608
LAMDA	.012084	.018388
VLOSS	+080	•185

INPUT-OUTPUTHODEL

HEATED AIRTEMPERATURE TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 273

NUMBER OF INPUTS 1

0 A(1)790957 B(1,0) .000000 B(1,1) .081626 C(1) .502788 D(1) -2.500578 LAMDA .024163 VLOSS .325 TO .84.873 A(1) -1.715914 A(2) .721890 B(1,0) .000000 B(1,1) .090214 B(1,2)087348 C(1)853395 C(2) .008376 D(1) -2.502001	1 738917 .000000 .094061
B(1,0) .000000 B(1,1) .081626 C(1) .502788 D(1) -2.500578 LAMJA .024163 VLOSS .325 TO 84.873 A(1) -1.715914 A(2) .721890 B(1,0) .000000 B(1,1) .090214 B(1,2)087348 C(1)853395 C(2) .008376	.000000
3(1,1) .081626 C(1) .502788 U(1) -2.500578 LAMDA .024163 VLOSS .325 TO 84.873 A(1) -1.715914 A(2) .721890 B(1,0) .000000 B(1,1) .090214 C(1)087348 C(1)853395 C(2) .008376	.000000
3(1,1) .081626 C(1) .502788 U(1) -2.500578 LAMDA .024163 VLOSS .325 TO 84.873 A(1) -1.715914 A(2) .721890 B(1,0) .000000 B(1,1) .090214 C(1)087348 C(1)853395 C(2) .008376	
C(1) .502788 D(1) -2.500578 LAMDA .024163 VLOSS .325 TO 84.873 A(1) -1.715914 A(2) .721890 B(1,0) .000000 B(1,1) .090214 B(1,2)087348 C(1)853395 C(2) .008376	
D(1) -2.500578 LAMDA .024163 VLOSS .325 TO 84.873 A(1) -1.715914 A(2) .721890 B(1,0) .000000 B(1,1) .090214 B(1,2)087348 C(1)853395 C(2) .008376	.675444
LAMDA .024163 VLOSS .325 T0 84.873 A(1) -1.715914 A(2) .721890 B(1,0) .000000 B(1,1) .090214 B(1,2)087348 C(1)853395 C(2) .008376	-2,466038
VLOSS .325 T0 84.873 A(1) -1.715914 A(2) .721890 B(1,0) .000000 B(1,1) .090214 B(1,2)087348 C(1)853395 C(2) .008376	.041222
T0 84.873 A(1) -1.715914 A(2) .721890 B(1,0) .000000 B(1,1) .090214 B(1,2)087348 C(1)853395 C(2) .008376	.928
A(1) -1.715914 A(2) .721890 B(1,0) .000000 B(1,1) .090214 B(1,2) 087348 C(1) 853395 C(2) .008376	51.412
A(2) .721890 B(1,0) .000000 B(1,1) .090214 B(1,2) 087348 C(1) 853395 C(2) .008376	-1.570344
8(1,0) .000000 8(1,1) .090214 8(1,2) 087348 C(1) 853395 C(2) .008376	.584534
8(1,1) .090214 5(1,2)087348 C(1)853395 C(2) .008376	.000000
5(1,2) 087348 C(1) 853395 C(2) .008376	.108722
C(1)853395 C(2) .008376	103797
	208487
0(1) ~2.502001	~,269040
	-2,493427
0(2) 2.374847	2.092808
LAMUA .017365	.032819
VL0SS .168	<u>, 588</u>
TQ 10.631	1.618
A(1) -1.481187	-1.629331
A(2) .360733	•576191
A(3) .131817	.055571
8(1,0) .000000	.000000
B(1,1) .076567	. 114794
8(1,2)034658	-,143244
B(1,3)036711	.027900
C(1)564220	~.333160
C(2)292204	180480
C(3) .129890	.147902
D(1) -2.504653	-2.489047
D(2) 1.689564	2.283661
0(3) .578248	11 to 1 1 1 Ω
LAMDA .016419	051118
VLOSS .150	.032521

INPUT-OUTPUTMODEL

HEATINGELEMENTTEMPERATURE TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 269

NUMBER OF INPUTS 1

	0	1
A(1)	814456	792107
B(1,0)	•000000	.000000
B(1/1)	•012508	.013478
C(1)	•566670	.640468
D(1)	739173	733094
LAMDA	•017331	.019461
VL055	•162	.204
TQ	132.975	150.597
A(1)	-1.684157	-1.502246
A(2)	•689111	.514291
B(1:0)	•000000	•000000
日(1,1)	.019317	.026745
8(1,2)	 018846	025788
C(1)	~. 672649	359160
C(2)	.221501	.188335
0(1)	721951	~. 725581
D(2)	• 785339	•769659
LAMDA	.010924	.011804
VLOSS	• 064	.075
TQ	6.186	13.566
A(1)	-1.861628	-1.464145
A(2)	•923114	•158 7 88
A(3)	056866	•314526
8(1,0)	.000000	.000000
B(1,1)	•028748	.054400
B(1,2)	043895	093691
B(1,3)	•015531	.039899
C(1)	894041	434519
C(2)	•210711	261455
C(3)	• 086581	.162468
D(1)	~. 719281	720368
0(2)	1.038011	1.134039
D(3)	250260	335128
LAMDA	•010554	•010977
VLOSS	•060	• 065

INPUT-OUTPUTMODEL

HEATINGELEMENTTEMPERATURE TO ROOMAIRTEMPERATURE

NUMBER OF DATAPOINTS 270

NUMBER OF IMPUTS 1

	0	1
A(1)	841175	836716
8(1,0)	.000000	.000000
B(1,1)	.013435	.013177
C(1)	.744974	.816378
D(1)	-2.841792	-2.733536
LAMUA	.025347	.032057
VLOSS	. 347	• 555
T ②	388.092	470.374
A(1)	~1. 483869	~. 633973
A(2)	•506032	288944
B(1+0)	.000000	.000000
8(1+1)	• 024550	.059921
8(1,2)	022346	052541
C(1)	~. 326889	<u>.680168</u>
C(2)	. 153360	.264273
0(1)	-2.821113	-2.774164
D(2)	2.130750	.747811
LAMDA	*010897	.012726
VL.055	.064	.087
T 3	28.746	18,659
A(1)	-1.747516	-1.244609
V(5)	.680438	334825
A(3)	.069197	•580343
8(1,0)	.000000	.000000
8(1,1)	.036219	.068745
8(1,2)	058938	~.123637
8(1,3)	.022964	,054971
C(1)	849235	105510
C(2)	•004056	-, 604466
C(3)	• 065657	086418 -2.773394
D(1)	-2.827539	2.709887
D(2) D(3)	3.240531 526729	023187
	.009448	·011548
LAMDA	.009448	.072
VL055	* 048	• U / K

BILAGA nr 3

Resultat från Maximum Likelihood-identifiering. Modelltyp 3.

Effekt och rumslufttemperatur - rumslufttemperatur.

INPUT-OUTPUTMODEL

HEATINGEFFECT AND ROOMAIRTEMPERATURE TO HEATINGELEMENTTEMPETURE

NUMBER OF DATAPOINTS 298

NUMBER OF INPUTS 2

	0	1
A(1)	-+576154	#1.322479
B(1.0)	.00000	.000000
8(1)1)	4.824813	-2.976752
B(2,0)	.000000	• 000000
B(2,1)	+662491	-2.538403
c(1)	** 071173	∗ 954633
D(1)	→6 • 411575	₩5 409896
LAMDA	.085116	+465179
VLOSS	4.318	128.969
TQ	41.452	93.696
A(1)	-+456105	-5.631739
A(2)	# • O50684	2.611296
B(1,0)	.000000	.000000
B(1+1)	4.434438	-19.531280
B(1;2)	1.146999	=3+359367
8(2,0)	.000000	.000000 .281868
B(2,1) B(2,2)	**048924 *836604	#4.476890
C(1)	•490594	.484449
C(2)	•215823	•D86378
0(1)	=6.382637	=6.427967
D(2)	-1.401364	20.394115
LAMDA	071280	.332048
VLOSS	3.028	65.712
TQ	11.390	15.419
ALL	#1.154970	-6.873335
A(2)	+117412	7 • 218547
A(3)	+107391	-1.888727
B(1+0)	•000000	.000000
8(171)	4 * 476243	-21.969479
B(1,2)	-1.984231	11:357953
B(1,3)	≈1 • 562574	4.170297
B(2:0)	•000000	•000000
B(2,1)	•128771	-1.431708
B(2,2)	675621	-2.305044
B(2,3)	+565457	2.845044
C(1)	-,322525	= .283697
c(2)	* • 300498	= 129012
c(3)	003141	.028495
D(1)	#6.399135	-6.394745
D(2)	3 1 1 9 4 5 2	26.515530
D(3)	1.183005	-15.162865
LAMDA	• 067407	•308291
VL055	2,708	56.646

INPUT-OUTPUTMODEL

HEATINGEFFECT AND ROOMAIRTEMPERATURE TO HEATINGELEMENTTEMPETURE

NUMBER OF DATAPOINTS 292

NUMBER OF INPUTS 2

	0	1
A(1)	-,560272	-1+374114
8(1,0)	•000000	•000000
B(1,1)	8.466250	-5.886296
B(2.0)	•000000	•000000
B(2:1)	+491861	m2 · 498616
C(1)	.155413	•927074
D(1)	-10.401976	-10+206129
LAMDA	• 160846	+803069
VLOSS	15.109	376.634
TQ	62.650	180.046
A(1)	- • 657912	m6 • 176948
A(2)	• 079594	2.585525
B(1.0)	•000000	•000000
B(1,1)	7 + 6 1 6 6 6 4	#41.711381
B(1,2)	•073722	⇔8 •046462
B(2:0)	•000000	•000000
B(2,1)	1.394694	3 • 455219
B(2,2)	785332	⇔7 • 788857
C(1)	•739676	•982302
C(2)	•509247	• 386922
D(1)	-10.306518	-10.463819
D(2) LAMDA	1 • 177029 • 124948	36.358505
VLOSS	9.117	•472509 130•387
TQ	11.870	62.475
A(1)	#1.457999	=7.521224
A(2)	454437	8 • 283491
A(3)	.008707	#2·139207
8(1,0)	.000000	•000000
B(1,1)	7.894085	=46.672448
B(1,2)	-6.325114	27.790069
B(1,3)	-1.489021	9.443221
B(2:0)	.000000	•000000
B(2,1)	1,811051	6.223152
B(2,2)	-2.773497	#8 • 930766
8(2,3)	.961044	2 • 907955
C(1)	353468	•111094
c(2)	# · 223521	031366
c(3)	-+289831	•041451
D(1)	-10.435273	⇒10•438909
D(2)	9 • 625551	50.078730
D(3)	.060643	=29 • 155815
LAMDA	+117758	• 366486
VLOSS	8.098	78.438

8

INPUT-OUTPUTMODEL

NUMBER OF DATAPOINTS 273

NUMBER OF INPUTS 2

	Ó	1 .
A(1)	m + 719671	551539
B(1,0)	.000000	•000000
B(1:1)	1.424263	1.890487
8(2,0)	.000000	.000000
B(2,1)	165164	+367626
c(1)	.065578	- 132450
D(1)	#3.068972	=3.086159
LAMDA	.044563	•148059
VLOSS	1.084	11.969
ΤQ	87 • 101	3.837
A(I)	815429	.321708
A(2)	.145388	456394
B(1,0)	•000000	.000000
B(1,1)	1.284053	1.853428
B(1+2)	.173453	1.773843
B(2+0)	•000000	•000000
B(2,1)	·157711	•364110
B(2+2)	•124644	• 359389
c(1)	# · 115326	.809833
c(2)	•187942	■ • 190167
D(1)	#3. 065004	m3.103655
D(2)	.202289	-2.801362
LAMDA	·031681	•144966
VLOSS	•548	11.474
TQ	26.481	14.618
A(1)	-1.762066	*1.579532
A(2)	.844575	•932784
A(3)	088450	- 152291
B(1,0)	•000000	•000000
B(1,1)	1+276695	2 • 306934
B(1,2)	#1+017074	#3+061079
B(1,3)	-+271772	1.436618
B(2,0)	•000000	•000000
B(2+1)	•110009	•954544
B(2+2)	+ • 005693	=1.458689
B(2+3)	-+113168 -1•241871	•685463
C(1)	*1 * 2 * 1 8 / 1 * 2 8 9 1 3 4	-1.668145
C(2)	# # 041683	1 • 1 1 9 2 0 3
C(3) D(1)	=3.068545	074814 -3.058528
D(2)	3+034844	4.029978
D(3)	,033323	*1.963759
LAMDA	•027776	•134244
VLOSS	•421	9.840
A F () 2 2	1261	7 # 4 7 W

INPUT #OUTPUTMODEL

NUMBER OF DATAPOINTS 273

NUMBER OF INPUTS 2

	0	•
A	0 ++712247	1
A(1)		•000000
B(1.0)	•000000 3•017504	
B(1,1)		3.960075
B(2,0)	,000000	•000000
B(2.1)	•160793	1374454
c(1)	•151919	= 114248
D(1)	#6.332679	≈6.369653
LAMDA	.078231	•321354
VLOSS	3+342	56.385
TQ	98,600 - 855005	1,998
A(1)	*• 855885	= +920034
A(2)	+172182 +000000	• 295305
B(1:0)	2.831973	.000000 3.405031
B(1,1)	•074119	*1.013314
B(1:2) B(2:0)	.000000	*000000
B(211)	•159342	1 • 497797
8(2,2)	,108031	-1.044519
C(1)	-,058775	=.332412
C(2)	• 253871	.020053
0(1)	-6.338851	-6.335095
D(2)	•763675	4.600394
LAMDA	.053884	•317806
VLOSS	1.585	55.146
TQ	29.965	5.692
A(1)	-1.569426	,028942
A(2)	521531	*• 768555
A(3)	045115	•313820
B([+0)	• 000000	.000000
B(1+1)	2.802244	4.267806
B(1,2)	-1.837208	1.043092
B(1:3)	- 861955	#1.926376
8(2,0)	•000000	•000000
B(2,1)	.052143	1.616781
B(2,2)	061602	.302867
B(2,3)	012532	=1+190696
c(1)	907880	.363047
C(2)	•160786	413446
C(3)	.065851	.223510
D(1)	-6.339221	+6.260002
D(2)	5,000625	767225
D(3)	.700977	5 • 631116
LAMDA	•046540	•308000
VLOSS	1.183	51.796

INPUT-OUTPUTMODEL

HEATINGEFFECT AND ROOMAIRTEMPERATURE TO HEATINGELEMENTTEMPETURE

NUMBER OF DATAPOINTS 269

NUMBER OF INPUTS 2

	0	1
A(1)	-1.098900	-1.054819
B(1.0)	•000000	•000000
B(1,1)	1.027717	1 • 6 2 9 8 1 3
8(2,0)	•000000	•000000
B(2,1)	±2.231041	-1.701578
c(1)	.828497	•545626
D(1)	=14.765228	-14.752134
LAMDA	.202927	+181744
VLOSS	22.154	17,771
ΤQ	1620.263	674.823
A(1)	#1.762151	-1 • 749977
A(2)	.788471	•773864
B(1.0)	•000000	•000000
B(1:1)	•367240	•734315
B(1+2)	•517769	+132819
B(2.0)	,000000	•000000
B(2,1)	#1 - 189417	-1.531567
B(2,2)	1,226917	1.502580
c(1)	+280982	• 235563
C(2)	•340873	+231376
D(1)	-14+712106	-14.699581
D(2)	10.415051	10 • 158109
LAMDA	.045975	D61625
VLOSS	1 • 1 3 7	2.043
T Q	6 • 254	3.275
A(1)	-1.963574	-2-319591
A(2)	1.190831	1.820489
A(3)	-• 206784	
B(1.0)	•000000	•000000
B(1+1)	•370312	•732424
B(1+2)	.407090	 339826
8(1.3)	•007940	•072714
B(2,0)	•000000	•000000
B(2,1)	++905419	-1.115702
B(2,2)	1 1 1 2 1 9 0 7	1.700563
B(2,3)	- 228995	- •634677
C(1)	• D54638	*•354316
c(2)	.293564	•207878
C(3)	068816	- 148317
D(1)	-14.686938	-14.690961
D(2)	13.603095	18.842442
D(3)	-2.780995	=6.692067
LAMDA	.044401	•060493
VLOSS	1.061	1.969

INPUT - OUTPUTMODEL

HEATINGEFFECT AND ROOMAIRTEMPERATURE TO HEATINGELEMENTTEMPETURE

NUMBER OF DATAPOINTS 270

NUMBER OF INPUTS 2

	O	
A(1)	0 -1.072051	1
B(1,0)	•000000	*1 * 024702
B(1,1)	2.915190	+000000 4+133377
8(2,0)	.000000	
B(2,1)	#1.532462	•000000
C(1)	•755343	-1-124118
D(1)	*29.411655	•567773
LAMDA	•504619	~29.566145
VL05S	137.506	+433134
TQ	2644.709	101.307
A(1)	#1.756553	The state of the s
A(2)	•792365	=1.750921
B(1:0)	•000000	•790289
B(1,1)	•787525	•000000
B(1.2)	1.200951	1 • 354388
B(2,0)	•000000	•554801 000000
8(2.1)	#1.353587	.000000 -1.460333
B(2,2)	1.429698	1.552750
C(1)	•892919	+825850
C(2)	.362023	• 270096
D(1)	~29.772268	+270076 +29+755820
D(2)	19.090353	18+924989
LAMDA	•090554	122020
VLOSS	4.428	8.040
TQ	12.068	4.738
A(1)	-2.170600	-2.466854
A(2)	1.626451	2+133506
A(3)	-+426147	- • 647804
B(1,0)	000000	•000000
8(1,1)	•744964	1 • 298106
B(1,2)	•937818	388991
B(1,3)	-,249637	- 098342
B(2,0)	.000000	•000000
B(2,1)	213829	= +497.008
B(2,2)	1 - 174582	1.691591
8(2,3)	871415	-1.137215
c(1)	• 448548	120542
C(2)	•074540	- 218595
C(3)	- •089284	- 184798
D(1)	-29.757028	m29.767645
D(2)	34.609437	42.856380
D(3)	-10.179220	#16.159256
LAMDA	.084860	•118827
VLOSS	3.889	7.625

Förord till resultatbilagor 4, 5 och 6.

De i de tidigare bilagorna, 1, 2 och 3, redovisade samplade insignal-utsignal-sambanden har transformerats till sina kontinuerliga motsvarigheter, om de existerar. Tidsenheten är 1 minut.

I bilaga nr 6 anges endast överföringsfunktionen mellan effekt och uppvärmningstemperatur.

De erhållna tidsfördröjningarna har ej multiplicerats in i de redovisade överföringsfunktionerna. Tidsfördröjningarna anges.

BILAGA nr 4

Överföringsfunktioner till modelltyp 1. Effekt - rumslufttemperatur.

Försök S2. (0 min. tidsfördröjning)

$$G_1(s) = \frac{2,1240}{s \cdot 24,834 + 1}$$

$$G_2(s) = \frac{-0,12139}{s \cdot 1,2858 + 1} + \frac{1,8531}{s \cdot 16,31 + 1}$$

$$G_{3}(s) = \frac{-0,12638}{s \cdot 1,1866 + 1} + \frac{1,3280}{s \cdot 13,099 + 1} + \frac{5,1479}{s \cdot 271,43 + 1}$$

Försök S2 (1 min. tidsfördröjning)

$$G_1(s) = \frac{1,7099}{s \cdot 18.233 + 1}$$

$$G_2(s) = \frac{-0.041265}{s \cdot 1.2132 + 1} + \frac{1.6475}{s \cdot 16.143 + 1}$$

$$G_3(s) = \frac{-0.018709}{s \cdot 0.70402 + 1} + \frac{1.1609}{s \cdot 12.757 + 1} + \frac{1.1609}{s \cdot 12.757 + 1}$$

$$+\frac{1,5523}{s \cdot 84,581 + 1}$$

Försök S5 (0 min. tidsfördröjning)

$$G_1(s) = \frac{3,3628}{s \cdot 24,105 + 1}$$

$$G_2(s) = \frac{-0.25384}{s \cdot 1.4642 + 1} + \frac{3.0181}{s \cdot 14.272 + 1}$$

Försök S5 (1 min. tidsfördröjning)

$$G_1(s) = \frac{2,8023}{s \cdot 17,219 + 1}$$

$$G_2(s) = \frac{-0.12479}{s \cdot 0.85609 + 1} + \frac{2.6196}{s \cdot 13.972 + 1}$$

Försök K2 (0 min. tidsfördröjning)

$$G_1(s) = \frac{4,0260}{s \cdot 22,051 + 1}$$

$$G_2(s) = \frac{-0.85976}{s \cdot 1.7518 + 1} + \frac{3.8116}{s \cdot 8.9813 + 1}$$

$$G_3(s) = \frac{0,088008}{s + 0,032157} + \frac{-s \cdot 0,15646 + 0,12073}{(s + 0,29545)^2 + 0,12656^2}$$

Försök K2 (1 min. tidsfördröjning)

$$G_1(s) = \frac{3,4249}{s \cdot 14,507 + 1}$$

$$G_2(s) = \frac{-0.36399}{s \cdot 1.714 + 1} + \frac{3.2689}{s \cdot 9.4243}$$

$$G_3(s) = \frac{-0.92763}{s \cdot 1.7317 + 1} + \frac{0.25206}{s \cdot 4.7703 + 1} + \frac{2.3989}{s \cdot 43.277 + 1}$$

Försök K2 (2 min. tidsfördröjning)

$$G_1(s) = \frac{2,8360}{s \cdot 10,868 + 1}$$

$$G_2(s) = \frac{-0.30446}{s \cdot 1.2618 + 1} + \frac{2.7509}{s \cdot 8.3621 + 1}$$

$$G_3(s) = \frac{-0.48669}{s \cdot 1.2615 + 1} + \frac{1.9307}{s \cdot 4.2161 + 1} + \frac{1.3672}{s \cdot 33.860 + 1}$$

Försök K5 (0 min. tidsfördröjning)

$$G_1(s) = \frac{7,4186}{s \cdot 22,045 + 1}$$

$$G_2(s) = \frac{-2.1274}{s \cdot 1,8564 + 1} + \frac{7,5308}{s \cdot 7,7966 + 1}$$

$$G_3(s) = \frac{0.2390}{s + 0.04789} + \frac{-s \cdot 0.4070 + 0.2076}{(s + 0.3043)^2 + 0.1856^2}$$

Försök K5 (1 min. tidsfördröjning)

$$G_1(s) = \frac{6,4607}{s+13,800+1}$$

$$G_2(s) = \frac{0,77854}{s \cdot 1.1531 + 1} + \frac{6,2694}{s \cdot 8,6059 + 1}$$

$$G_3(s) = \frac{-1,5644}{s \cdot 1,5091 + 1} + \frac{4,5746}{s \cdot 4,6952 + 1} + \frac{3,8430}{s \cdot 31,920 + 1}$$

Försök K5 (2 min. tidsfördröjning)

$$G_1(s) = \frac{5,3827}{s \cdot 9,9036 + 1}$$

$$G_2(s) = \frac{-2,2581}{s \cdot 2,9016 + 1} + \frac{6,5781}{s \cdot 6,2745 + 1}$$

$$G_3(s) = \frac{0.06477}{s + 0.05190} + \frac{s \cdot 0.2085 + 0.3656}{(s + 0.3937)^2 + 0.0706^2}$$

Försök R2 (0 min. tidsfördröjning)

$$G_1(s) = \frac{6,2463}{s \cdot 91,573 + 1}$$

$$G_2(s) = \frac{-s \cdot 0,024986 + 0,034809}{(s+0,082217)^2 + 0,090929^2}$$

$$G_3(s) = \frac{0,49802}{s + 0,096952} + \frac{-s \cdot 0,48908 - 0,26300}{(s + 0,30032)^2 + 0,13105^2}$$

Försök R2 (1 min. tidsfördröjning)

$$G_1(s) = \frac{5,6309}{5 \cdot 71,245 + 1}$$

$$G_2(s) = \frac{-s \cdot 0.013055 + 0.040912}{(s+0.10267)^2 + 0.08000^2}$$

$$G_3(s) = \frac{0,46484}{s + 0.098416} + \frac{-s \cdot 0,45921 - 0,22829}{(s + 0,30923)^2 + 0.11807}$$

Försök R2 (2 min. tidsfördröjning)

$$G_1(s) = \frac{4,9487}{s \cdot 48.971 + 1}$$

$$G_2(s) = \frac{s \cdot 0,0096030 + 0,045277}{(s+0,11901)^2 + 0,066980^2}$$

$$G_3(s) = \frac{0,69209}{s \cdot 1,9528 + 1} + \frac{-2,5558}{s \cdot 3,3125 + 1} + \frac{4,4223}{s \cdot 9,9284 + 1}$$

Försök R2 (3 min. tidsfördröjning)

$$G_1(s) = \frac{3,9524}{s \cdot 34,516 + 1}$$

$$G_2(s) = \frac{s \cdot 0,024157 + 0,049515}{(s+0,14164)^2 + 0,041753^2}$$

Försök R5 (0 min. tidsfördröjning)

$$G_1(s) = \frac{10,242}{s \cdot 74,646 + 1}$$

$$G_2(s) = \frac{-s \cdot 0,04114 + 0,08266}{(s+0,09949)^2 + 0,06393^2}$$

$$G_3(s) = \frac{0,6024}{s + 0,06784} + \frac{-s \cdot 0,5846 - 0,4729}{(s + 0,3913)^2 + 0,2054^2}$$

Försök R5 (1 min. tidsfördröjning)

$$G_1(s) = \frac{9,3819}{s \cdot 54,576 + 1}$$

$$G_2(s) = \frac{-9,0344}{s \cdot 5,7916 + 1} + \frac{15,077}{s \cdot 9,8366 + 1}$$

$$G_3(s) = \frac{0,4556}{s + 0,05889} + \frac{-s \cdot 0,4583 - 0,1541}{(s + 0,2584)^2 + 0,2589^2}$$

Försök R5 (2 min. tidsfördröjning)

$$G_1(s) = \frac{8,6462}{s \cdot 39.381 + 1}$$

$$G_2(s) = \frac{-2,6601}{s \cdot 3,9396 + 1} + \frac{8,6372}{s \cdot 12,355 + 1}$$

$$G_3(s) = \frac{0.2788}{s + 0.04593} + \frac{-s \cdot 0.2459 + 0.02198}{(s + 0.1702)^2 + 0.1773^2}$$

Försök R5 (3 min. tidsfördröjning)

$$G_1(s) = \frac{7,4901}{s \cdot 28,519 + 1}$$

$$G_2(s) = \frac{-1,6755}{s \cdot 3,3130 + 1} + \frac{7,0397}{s \cdot 12,673 + 1}$$

$$G_3(s) = \frac{0.1495}{s + 0.03860} + \frac{-s \cdot 0.09160 + 0.05910}{(s + 0.1641)^2 + 0.1583^2}$$

BILAGA nr 5

Överföringsfunktioner till modelltyp 2. Elementtemperatur - rumslufttemperatur.

Försök S2 (0 min. tidsfördröjning)

$$G_1(s) = \frac{0,10354}{s \cdot 10,015 + 1}$$

$$G_2(s) = \frac{0,0088161}{s \cdot 0,40097 + 1} + \frac{0,10640}{s \cdot 12,739 + 1}$$

G₃(s) existerar ej

Försök S2 (1 min. tidsfördröjning)

$$G_1(s) = \frac{0.092682}{s \cdot 9.2072 + 1}$$

$$G_2(s) = \frac{0.028545}{s \cdot 2.9079 + 1} + \frac{0.072158}{s \cdot 18.977 + 1}$$

Försök S5 (0 min. tidsfördröjning)

$$G_1(s) = \frac{0,10664}{s \cdot 10,057 + 1}$$

$$G_2(s) = \frac{0.057112}{s \cdot 5.9983 + 1} + \frac{0.070331}{s \cdot 29.499 + 1}$$

$$G_3(s) = \frac{0,0047283}{s \cdot 0,58250 + 1} + \frac{0,077300}{s \cdot 8,5957 + 1} + \frac{0,051422}{s \cdot 44,542 + 1}$$

Försök S5 (1 min tidsfördröjning)

$$G_1(s) = \frac{0.097309}{s \cdot 9.0959 + 1}$$

$$G_2(s) = \frac{0.04382}{s \cdot 4.6251 + 1} + \frac{0.034341}{s \cdot 27.589 + 1}$$

G3(s) existerar ej

Försök K2 (0 min. tidsfördröjning)

$$G_1(s) = \frac{0,40449}{s \cdot 4,2996 + 1}$$

$$G_2(s) = \frac{0,33306}{s \cdot 3,0614 + 1} + \frac{0,18054}{s \cdot 42,843 + 1}$$

$$G_3(s) = \frac{-0,00080928}{s \cdot 0,67994 + 1} + \frac{0,33010}{s \cdot 2,9907 + 1} + \frac{0,17812}{s \cdot 39,369 + 1}$$

Försök K2 (1 min. tidsfördröjning)

$$G_1(s) = \frac{0,37831}{s \cdot 3,5057 + 1}$$

$$G_2(s) = \frac{0.28355}{s \cdot 1.8352 + 1} + \frac{0.14076}{s \cdot 27.045 + 1}$$

Försök K5 (0 min. tidsfördröjning)

$$G_1(s) = \frac{0.39048}{s \cdot 4.2642 + 1}$$

$$G_2(s) = \frac{0,33249}{s \cdot 3,3032 + 1} + \frac{0,14711}{s \cdot 43,211 + 1}$$

G₃(s) existerar ej

Försök K5 (1 min. tidsfördröjning)

$$G_1(s) = \frac{0.36027}{s \cdot 3.305 + 1}$$

$$G_2(s) = \frac{0,26908}{s \cdot 1,9991 + 1} + \frac{0,077997}{s \cdot 27,235 + 1}$$

Försök R2 (0 min. tidsfördröjning)

$$G_1(s) = \frac{0.067415}{s \cdot 4.8725 + 1}$$

$$G_2(s) = \frac{0.062752}{s \cdot 2.8117 + 1} + \frac{0.032389}{s \cdot 59.91 + 1}$$

$$G_3(s) = \frac{0.020091}{s \cdot 0.37911 + 1} + \frac{0.053898}{s \cdot 4.9581 + 1} + \frac{0.0092488}{s \cdot 36.204 + 1}$$

Försök R2 (1 min. tidsfördröjning)

$$G_1(s) = \frac{0.064834}{s \cdot 4.2908 + 1}$$

$$G_2(s) = \frac{0.055333}{s \cdot 1.5646 + 1} + \frac{0.024066}{s \cdot 38.704 + 1}$$

Försök R5 (0 min. tidsfördröjning)

$$G_1(s) = \frac{0.084588}{s \cdot 5.7818 + 1}$$

$$G_2(s) = \frac{0.047083}{s \cdot 1.5804 + 1} + \frac{0.052346}{s \cdot 20.651 + 1}$$

G₃(s) existerar ej

Försök R5 (1 min. tidsfördröjning)

$$G_1(s) = \frac{0,08070}{s \cdot 5,6095 + 1}$$

- G₂(s) existerar ej
- G₃(s) existerar ej

BILAGA nr 6

överföringsfunktioner till modelltyp 3. Effekt - elementtemperatur.

Försök S2 (0 min. tidsfördröjning)

$$G_1(s) = \frac{11,383}{s \cdot 1,8136 + 1}$$

G₂(s) existerar ej

G₃(s) existerar ej

Försök S2 (1 min. tidsfördröjning)

$$G_1(s) = \frac{9,2308}{-3,5777s + 1}$$

$$G_2(s) = \frac{5,8906}{1,4844s+1} + \frac{5,4389}{-0,6122s+1}$$

$$G_3(s) = \frac{4!3617}{1,1453s+1} + \frac{5,3558}{-0,5771s+1} + \frac{2,1337}{4,4703s+1}$$

Försök S5 (0 min. tidsfördröjning)

$$G_1(s) = \frac{19,253}{s \cdot 1,7261 + 1}$$

$$G_2(s) = \frac{-4,5405}{s \cdot 0.54528 + 1} + \frac{22,778}{s \cdot 1.4349 + 1}$$

G₃(s) existerar ej

Försök S5 (1 min. tidsfördröjning)

$$G_1(s) = \frac{15,734}{-3,1465s+1}$$

$$G_2(s) = \frac{9,2951}{1,2579s+1} + \frac{9,9059}{-0.5731s+1}$$

$$G_3(s) = \frac{7,4279}{1,0553s+1} + \frac{9,9265}{-0,5456s+1} + \frac{7,6874}{8,0192s+1}$$

Försök K2 (0 min. tidsfördröjning)

$$G_1(s) = \frac{5,0807}{s \cdot 3,0399 + 1}$$

$$G_2(s) = \frac{-2,4052}{s \cdot 0,74946 + 1} + \frac{6,8224}{s \cdot 1,6834 + 1}$$

$$G_{3}(s) = \frac{-1,1567}{s \cdot 0,51779 + 1} + \frac{5,5584}{s \cdot 1,9560} + \frac{-2,3502}{-s \cdot 58,108 + 1}$$
 (instabil)

Försök K2 (1 min. tidsfördröjning)

$$G_1(s) = \frac{4,2155}{1,6806s + 1}$$

$$G_3(s) = \frac{-0.48081 \cdot s + 0.068796}{(s+0.26947)^2 + 0.50285^2} + \frac{4.7812}{s + 1.34302}$$

Försök K5 (0 min. tidsfördröjning)

$$G_1(s) = \frac{10,486}{s \cdot 2,9470 + 1}$$

$$G_2(s) = \frac{-6,9871}{s \cdot 0,88558 + 1} + \frac{16,175}{s \cdot 1,5873 + 1}$$

Försök K5 (1 min. tidsfördröjning)

$$G_1(s) = \frac{8,5967}{1,6197s + 1}$$

$$G_2(s) = \frac{3,8162s + 4,3790}{(s+0,60987)^2 + 0,56138^2}$$

Försök R2 (0 min. tidsfördröjning)

$$G_1(s) = \frac{-10,391}{-s \cdot 10,603 + 1}$$
 (instabil)

$$G_2(s) = \frac{-s \cdot 0,10477 + 0,99680}{(s+0,11883)^2 + 0,12460^2}$$

$$G_3(s) = \frac{0,96857}{s+1,2127} + \frac{-s \cdot 0,92517 + 1,3092}{(s+0,18169)^2 + 0,042927^2}$$

Försök R2 (1 min. tidsfördröjning)

$$G_1(s) = \frac{-29,731}{-18,737s+1}$$

$$G_2(s) = \frac{0,32140s + 0,98525}{(s+0,12818)^2 + 0,10349^2}$$

$$G_3(s) = \frac{-3,8834 \cdot s - 1,4869}{(s+0,31504)^2 + 0,28916^2} + \frac{4,3002}{s + 0,082655}$$

Försök R5 (0 min. tidsfördröjning)

$$G_1(s) = \frac{-40,460}{-s \cdot 14,373 + 1}$$
 (instabil)

$$G_2(s) = \frac{-s \cdot 0,27679 + 2,2363}{(s+0,11637)^2 + 0,16351^2}$$

$$G_3(s) = \frac{12,910}{s + 0,18996} + \frac{-s \cdot 13,003 - 4,7229}{(s + 0,33151)^2 + 0,36009^2}$$

Försök R5 (1 min. tidsfördröjning)

$$G_1(s) = \frac{-167,33}{-40,98s+1}$$
 (instabil)

$$G_2(s) = \frac{0,40966s + 2,1506}{(s+0,11768)^2 + 0,17464^2}$$

$$G_3(s) = \frac{-4,6999s + 0,79727}{(s+0,14905)^2 + 0,38938^2} + \frac{5,2291}{s + 0,13607}$$

Strålningsfoliens temperatur uppmättes med kanalerna 0 - 3 och var placerade över följande rumslufttemperaturer: 10, 20, 29 och 19.

Södra radiatorns temperatur mättes med kanal 2 och 3 och den norra med kanal 4 och 5.

När taktemperaturen uppmättes med kanalerna 30 - 33 var de placerade över 10, 19, 20 och 29.

Första ytterluftgivaren är placerad innerst (50 mm).

Första korridorluftgivaren är placerad nederst (750 mm).

BILAGA nr 8 Försökssammanställning.

Försöks- typ	r - 1	7	m	Н	7	ო	러	7	т	H	71	ო	H	7	m	H	7	ო
Effekt W	1000	1000	1000	1800	1800	1800	1060	1060	1060	2070	2070	2070	1030	1030	1030	2000	2000	2000
Uppvärmningstyp	strålning	 - 	 = 	1 = 1	 = 	1 2 1	konvektion	1 = 1	1 E 1	1 5 1	1 = 1	1 = 	radiator	1 = 1	1 = 1	1 2 1	! = 1	 =
Klockslag	20-22	23-04	15-17	14-16	18-23	12-14	13-15	20-01	16-18	13-15	20-01	16-18	13-15	13-18	16-18	13-15	22-03	16-18
Datum	18.5.71	18.5.71	19*5271	24.5.71	24.5.71	25.5.71	7.6.71	7.6.71	7.6.71	8.6.71	8.6.71	8.6.71	9.6.71	11.6.71	9.6.71	10.6.71	10.6.71	10.6.71
Försöks- beteckning	S1	S2	ဗ	S.4	S5	98	KI	K2	Ж3	K4	K5	K6	Rl	R2	R3	R4	R5	R6
Försök nr	Н	7	ო	4	ហ	9	1.7	∞	σı	10	T T	12	13	1,4	15	16	17	18

BILAGA nr 9 Mätdata bearbetning.

Efter enklare kontroller av rådata har dessa lagts upp på magnetband dels som rådata och dels som findata. Skillnaden är att findata är medelvärden av rådata, som omfattar alla mätpunkterna. Till findata har även tiden lagts i tidsenheten minuter. Spänningsdelare, som användes för att avgöra om effekten var från eller till, har fått värden 0 eller l motsvarande PRBS-signalen. Medelvärden har bildats på samtliga temperaturer i den tidigare upptagna förteckningen. Den mättekniska referensen har ej medtagits i findata. Alla mätdata har korrigerats för tidsförskjutning vid datainsamlingen genom interpolation. Försöken är skrivna i en fil och i nummerordning på magnetbanden.

Rådata har skrivits med följande statement:

READ(LUN, 99) NFR, IANT, JKAN, ((T(I,J), J=3,JKAN), I=1, IANT), 99 FORMAT(22^{A6})

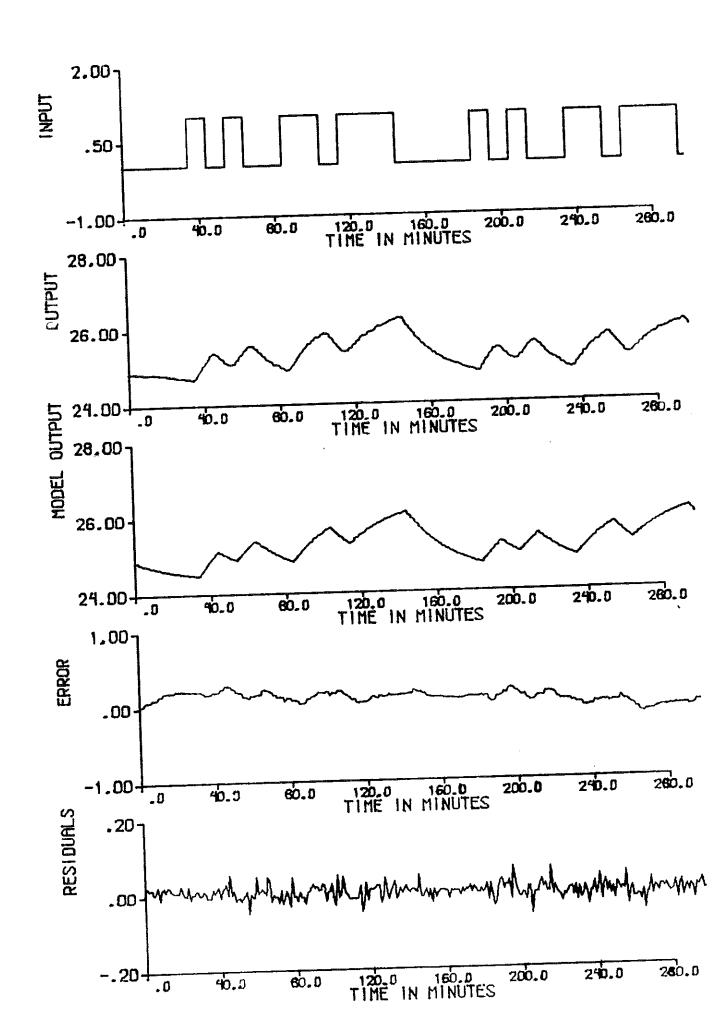
Findata har skrivits med följande statement:

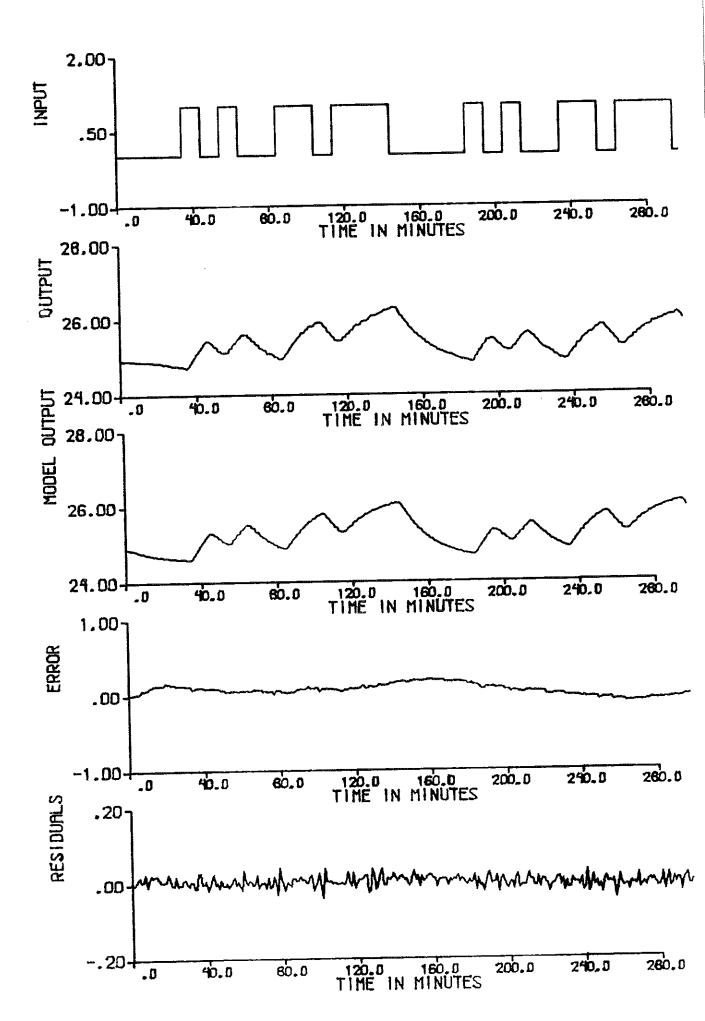
READ(LUN,99) NFR, NT, NP, NVAR, (DAT(I), I=1, NT), 99 FOR-MAT(22^{A6})

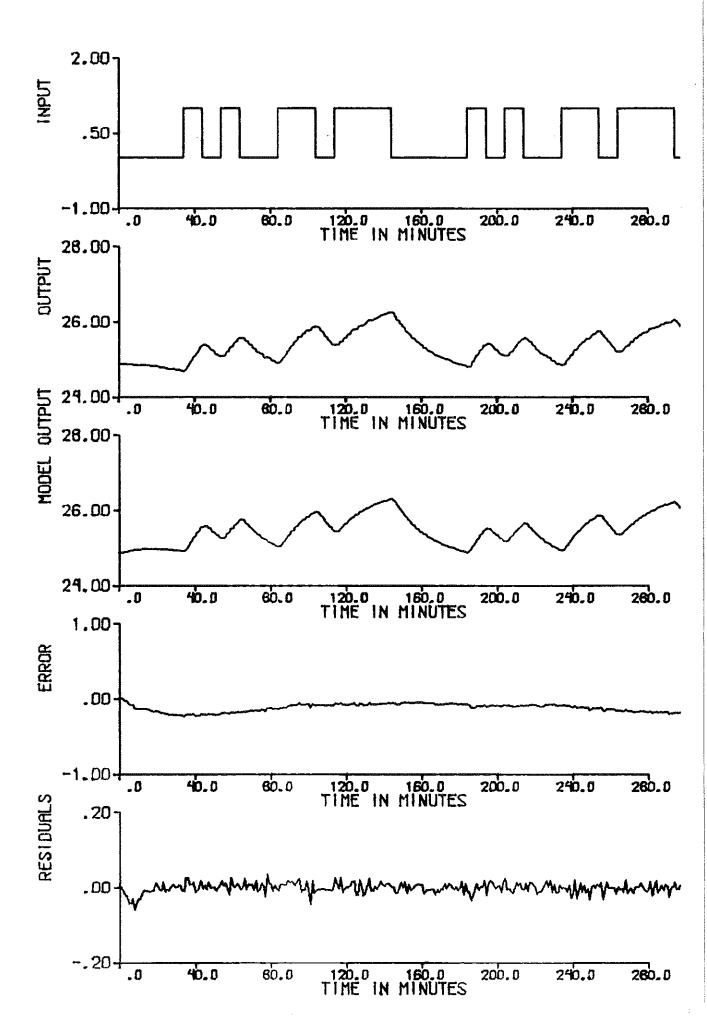
I findata är data lagrade tidsnivå för tidsnivå på följande sätt för de olika försökstyperna, där index anger antalet signaler som medelvärdet är bildat på. Använda förkortning-ar se bilaga nr 7.

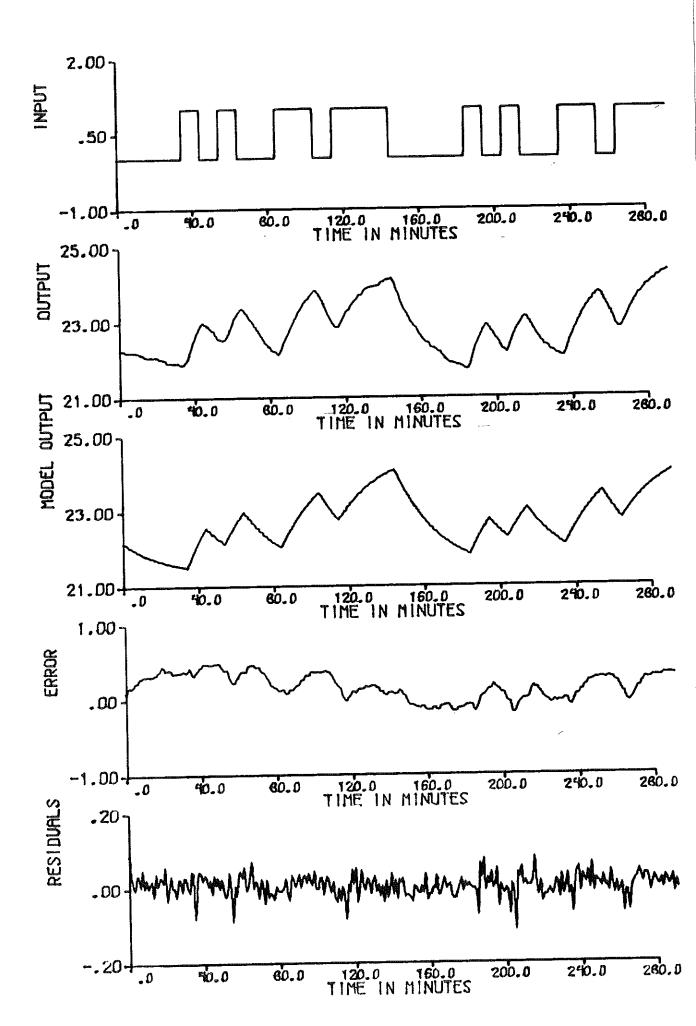
Strålning	Konvektion	Radiator
tiden	tiden	tiden
PRBS ₁	PRBS	PRBS
$^{ m ET}_4$	LTF ₂	$^{\mathrm{ET}}{}_{4}$
\mathtt{YL}_2	LTE ₂	\mathtt{YL}_2
KT ₂	YL ₂	KT ₂
RT ₈	KT ₂	RT ₈
VT ₈	RT ₈	VT ₈
${ m GT}_4$	VT ₈	\mathtt{GT}_4
	GT ₄	${\tt TT}_{4}$
	\mathtt{TT}_{4}	

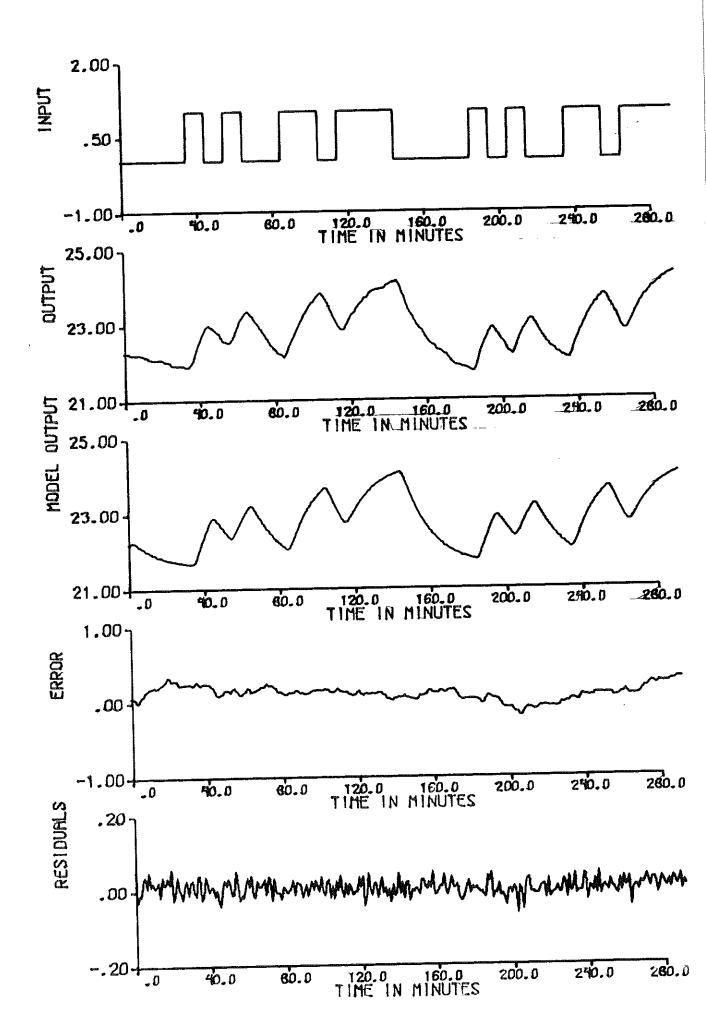
FÖRORD TILL DIAGRAMBILAGORNA NR 1-3.

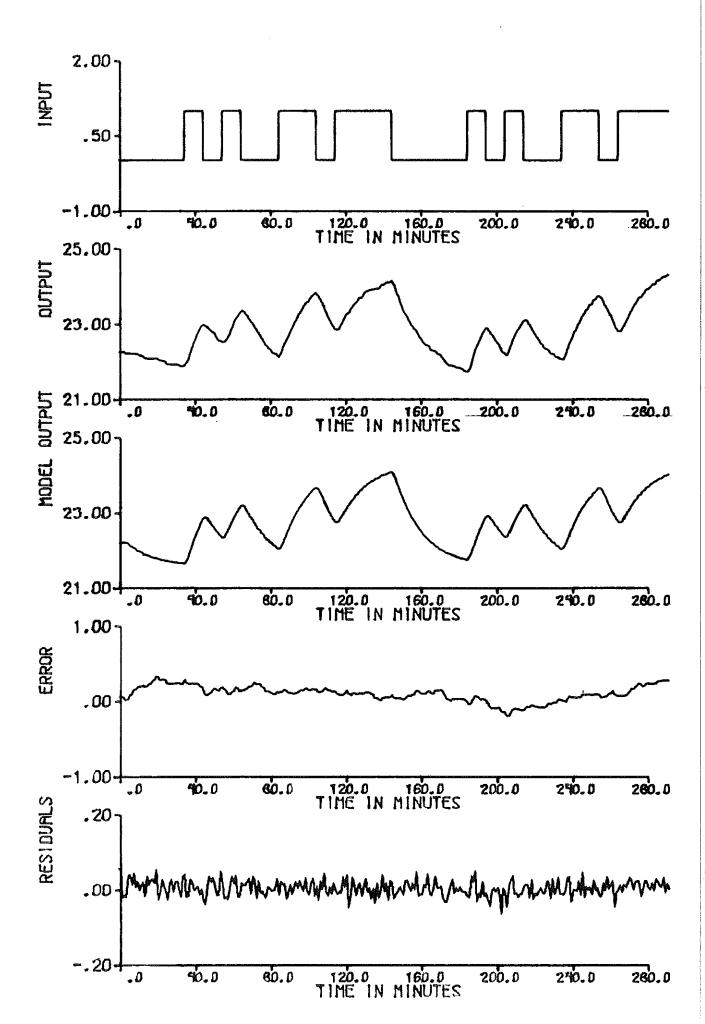

I de olika bilagorna redovisas simuleringar av de bästa modellerna för modelltyperna 1, 2 och 3 i bilagorna 1, 2 resp. 3. Axelbeteckningar är generella och får återföras beroende på modelltyp och om S-, K- eller R-försök. I diagrambilaga nr 3 har de två insignalerna utelämnats. I diagrambilaga nr 1 och 2 finns de redovisade tillsammans med modellens utsignal.

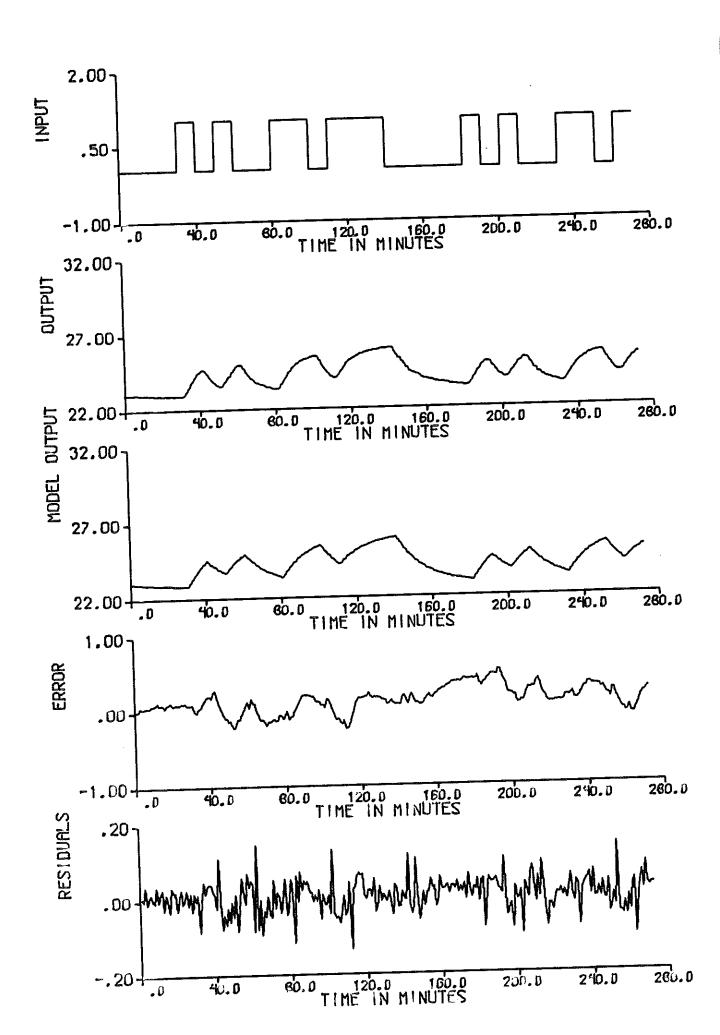

DIAGRAMBILAGA 1

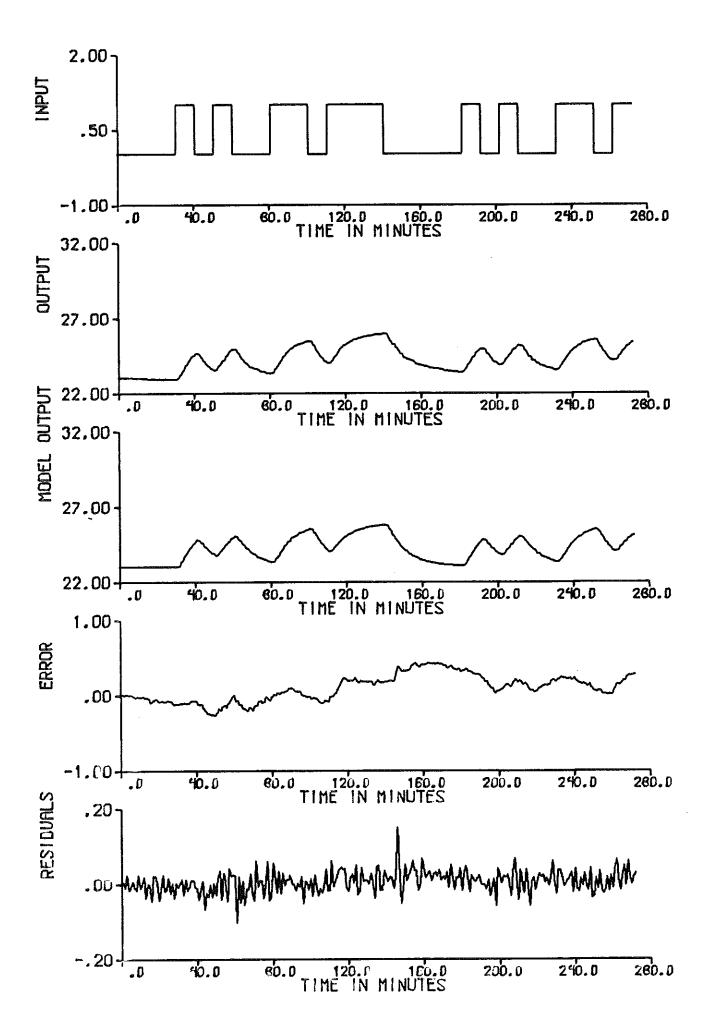

Simularing av modelltyp 1.

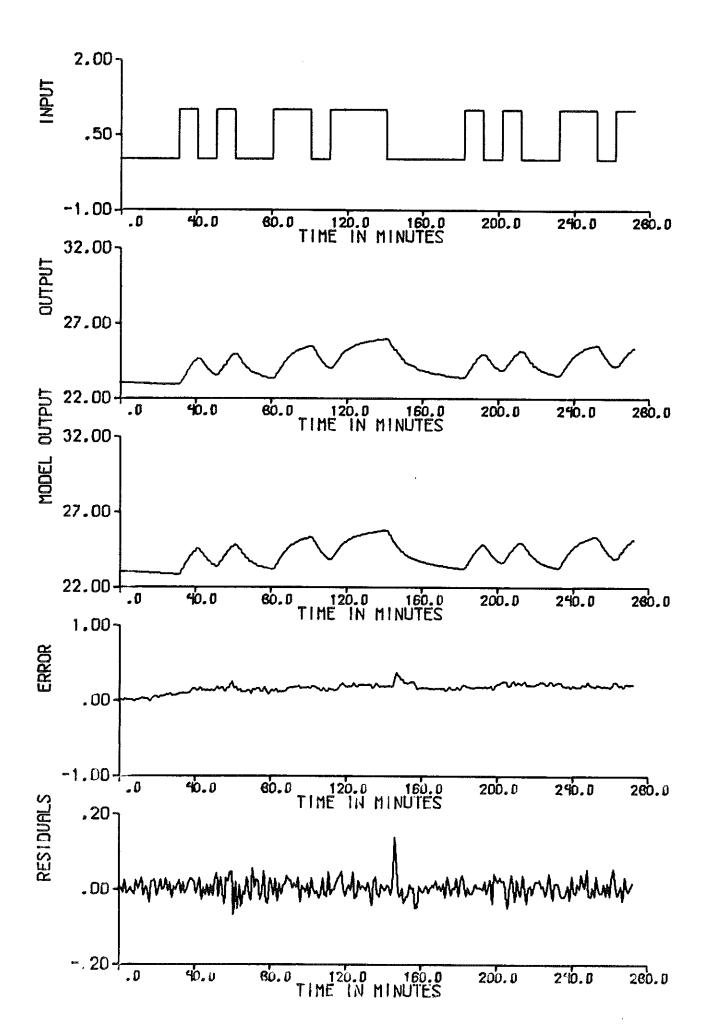

Effekt-rumslufttemperatur.


diagram	försöks-	modell-	delay
nr	beteckning	ordn.	
1	S2	1.	0
2	S2	2	0
3	S2	3	0
4	S5	1.	0
5	S5	2	0
6	S5	3	0
7	K2	1	1
8	K2	2	1
9	K2	3	1
10	K5	1	1
11	K5	2	1
12	K5	3	1
13	R2	1	2
1.4	R2	2	2
15	R2	3	2
16	R5	1	2
17	R5	2	2
18	R5	3	2

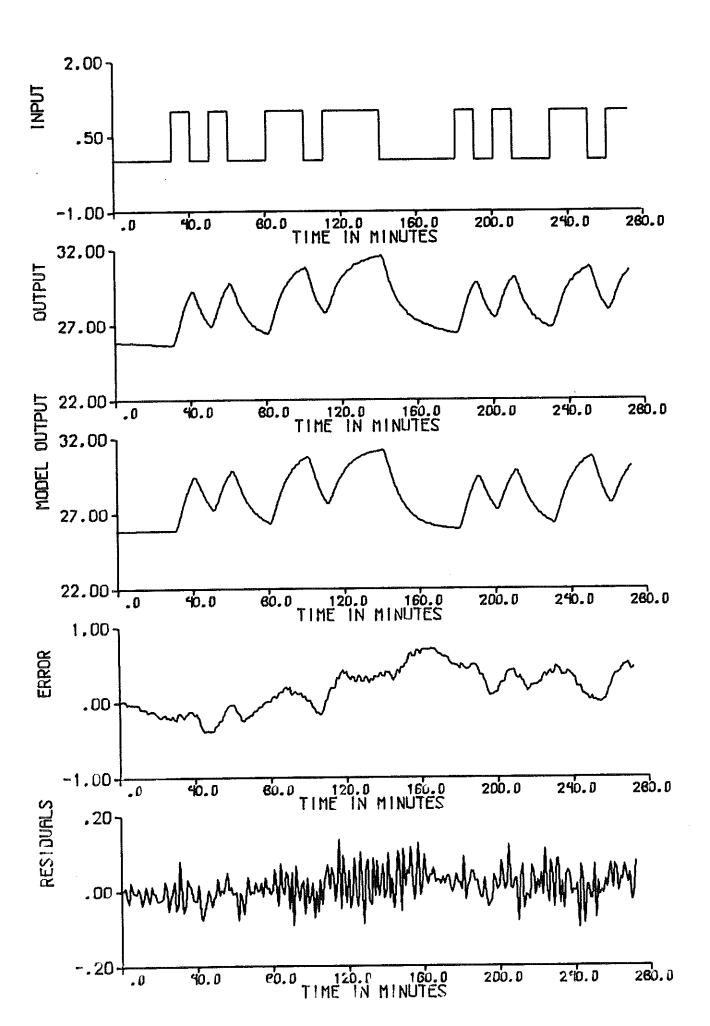


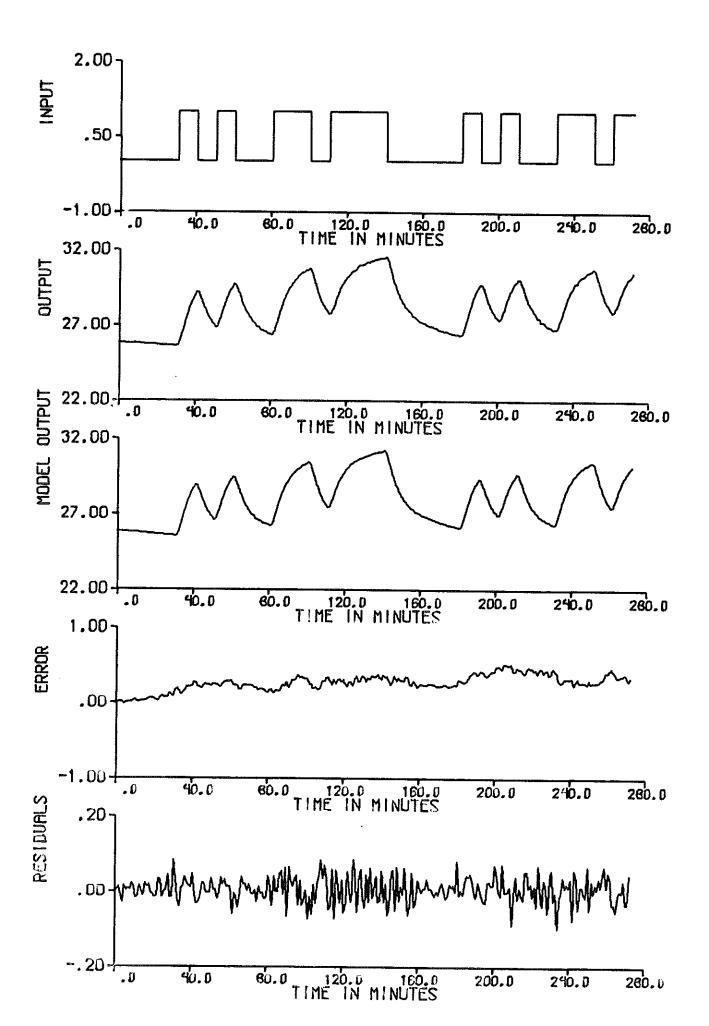


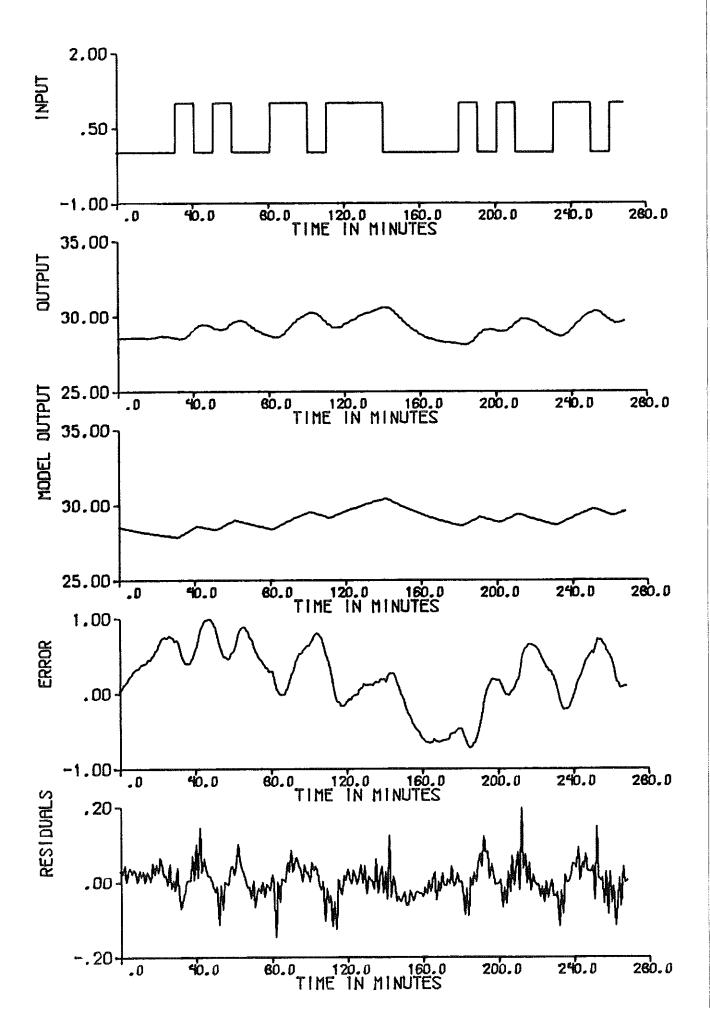


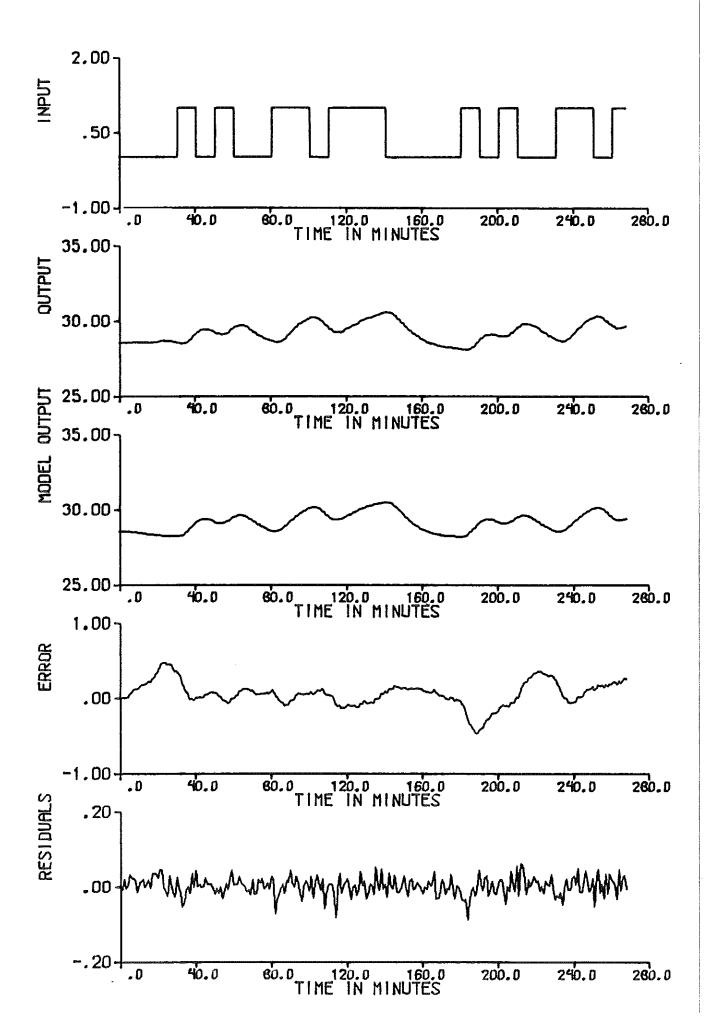


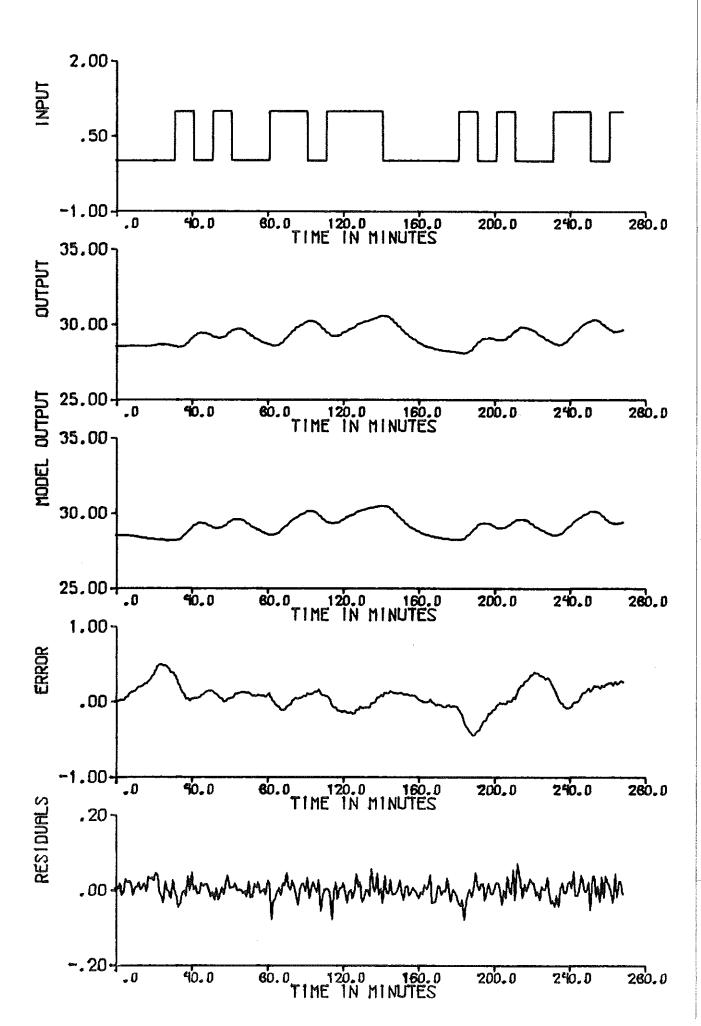


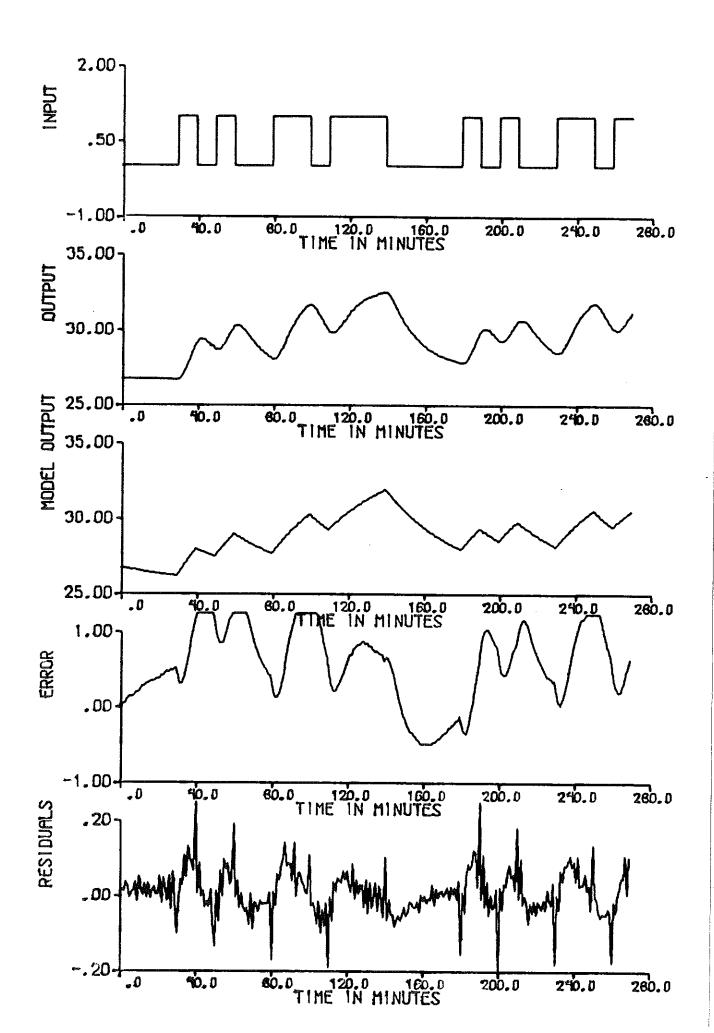


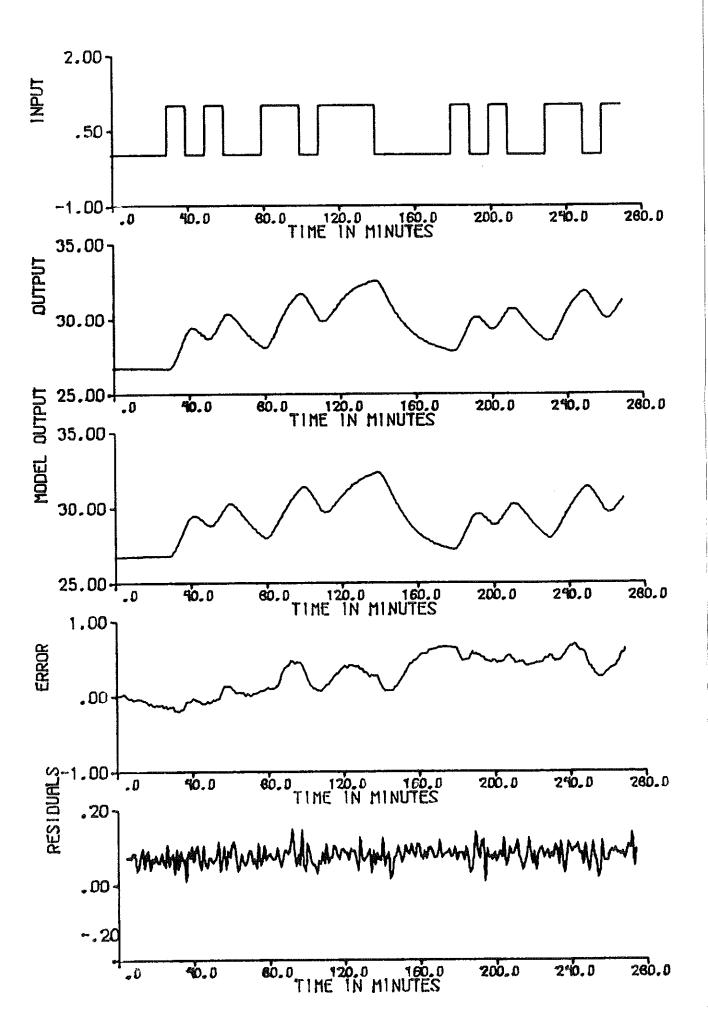


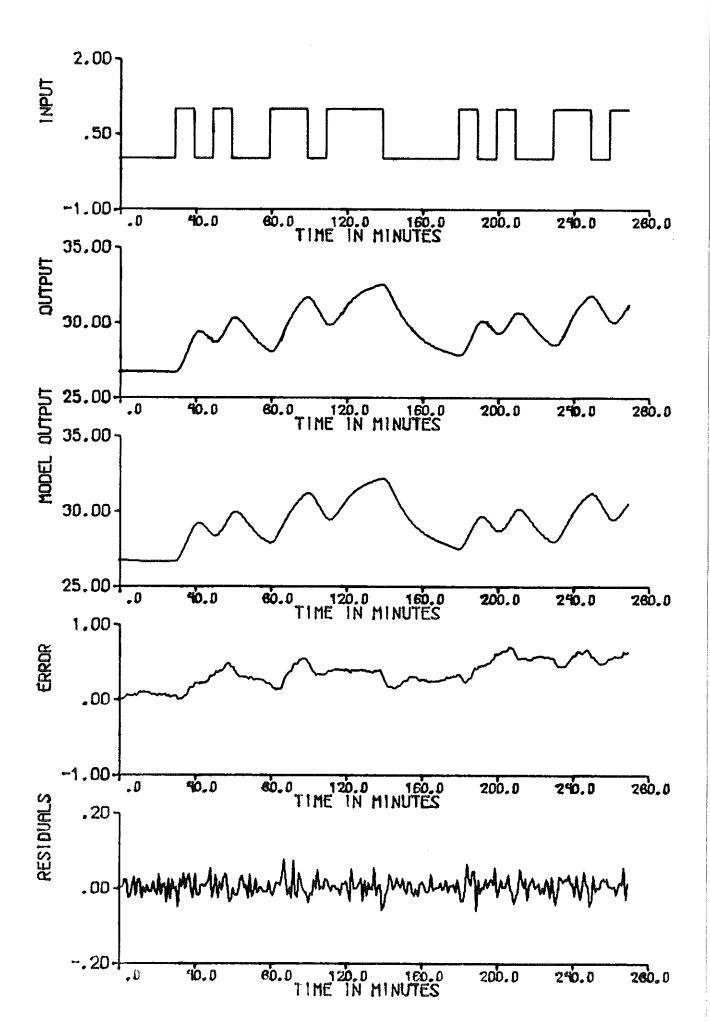


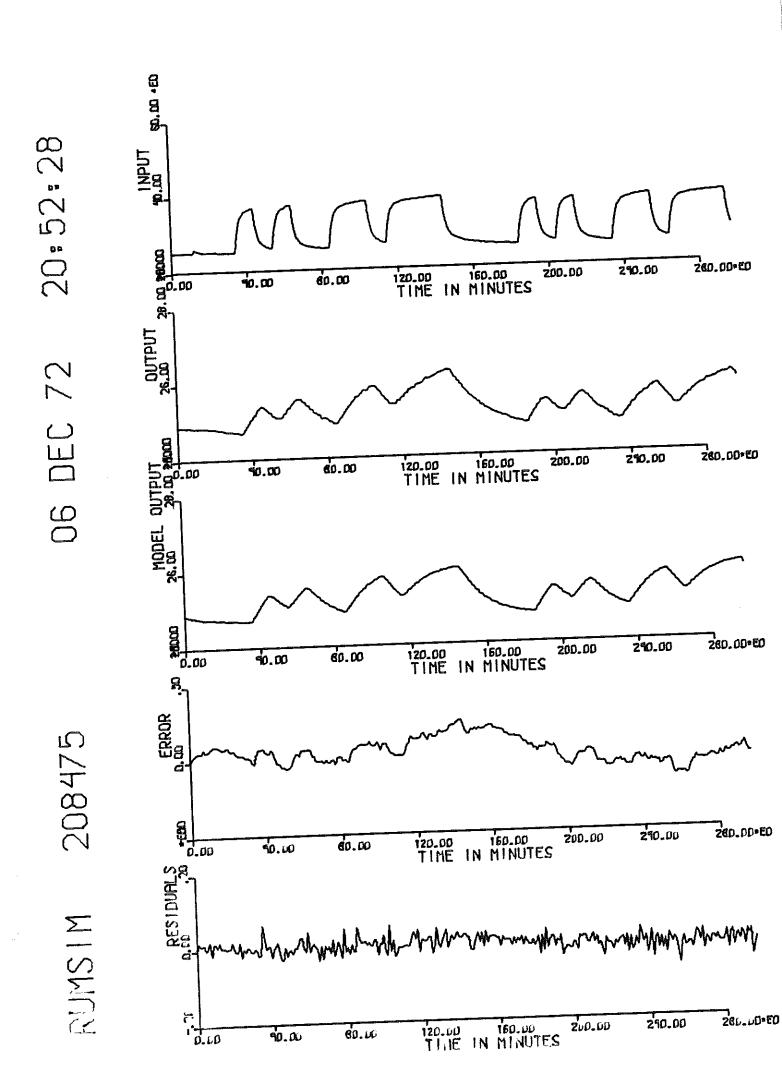


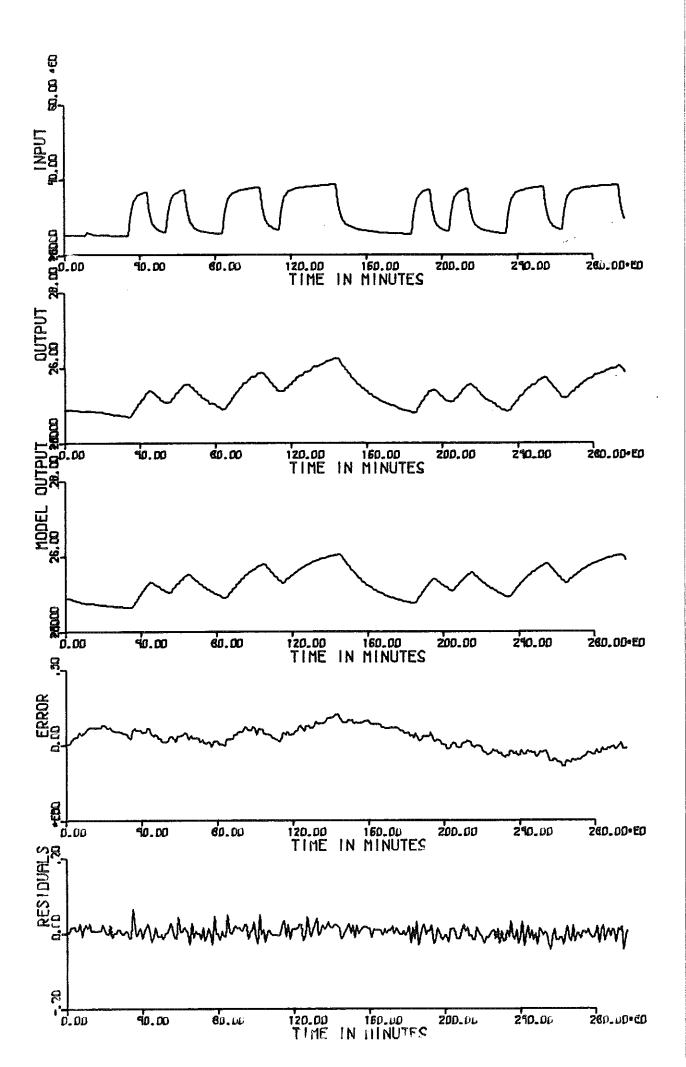


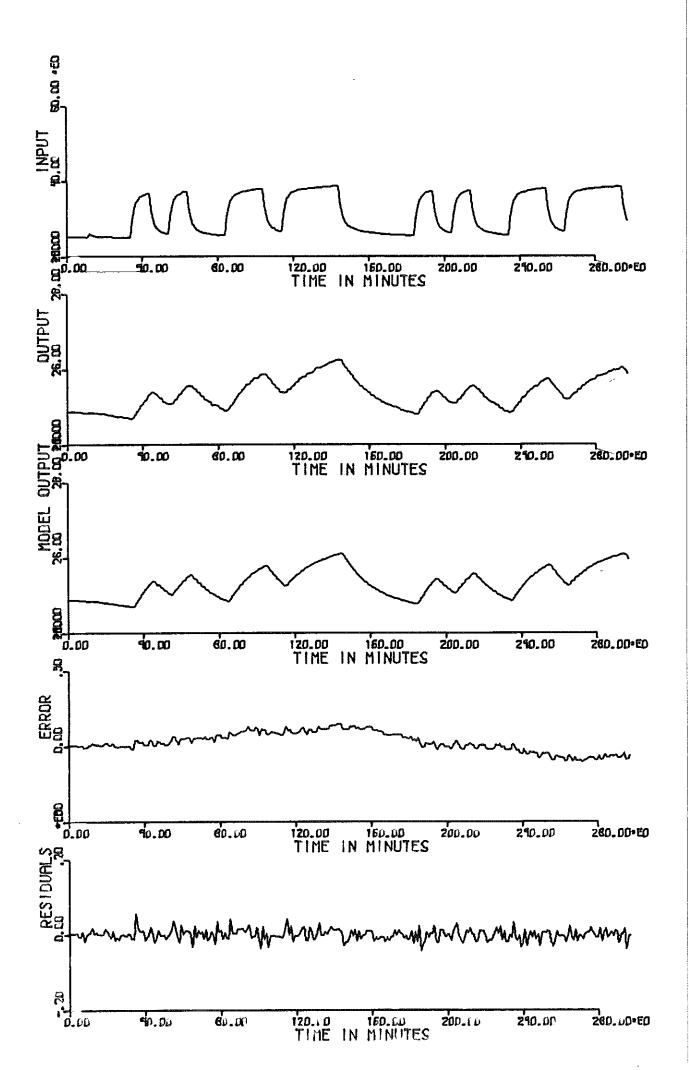


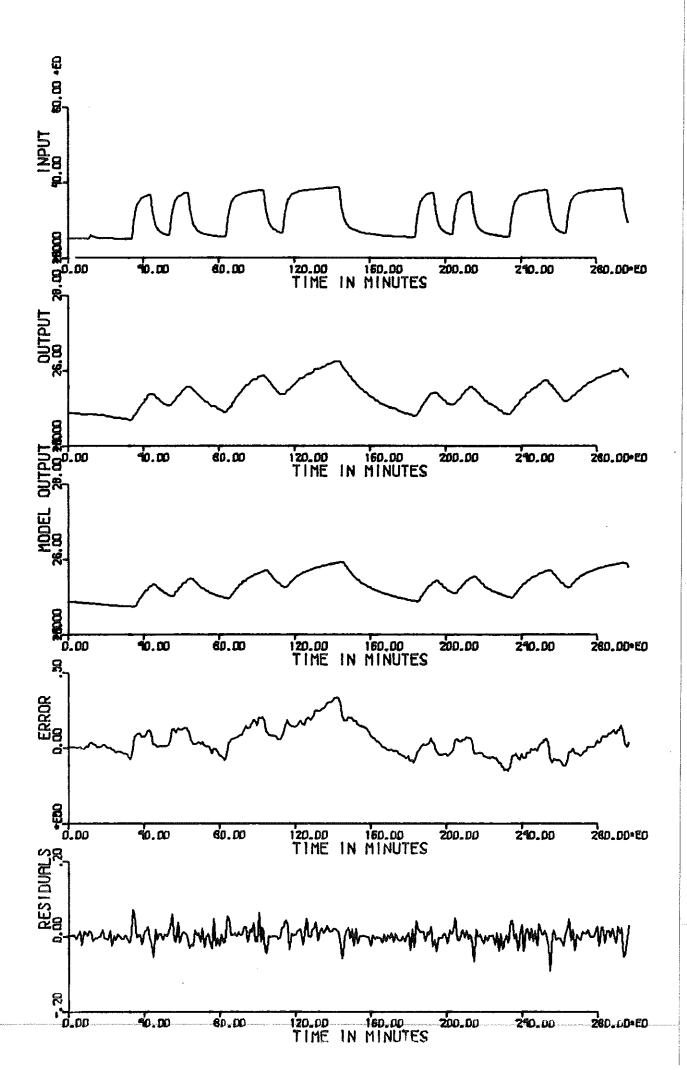


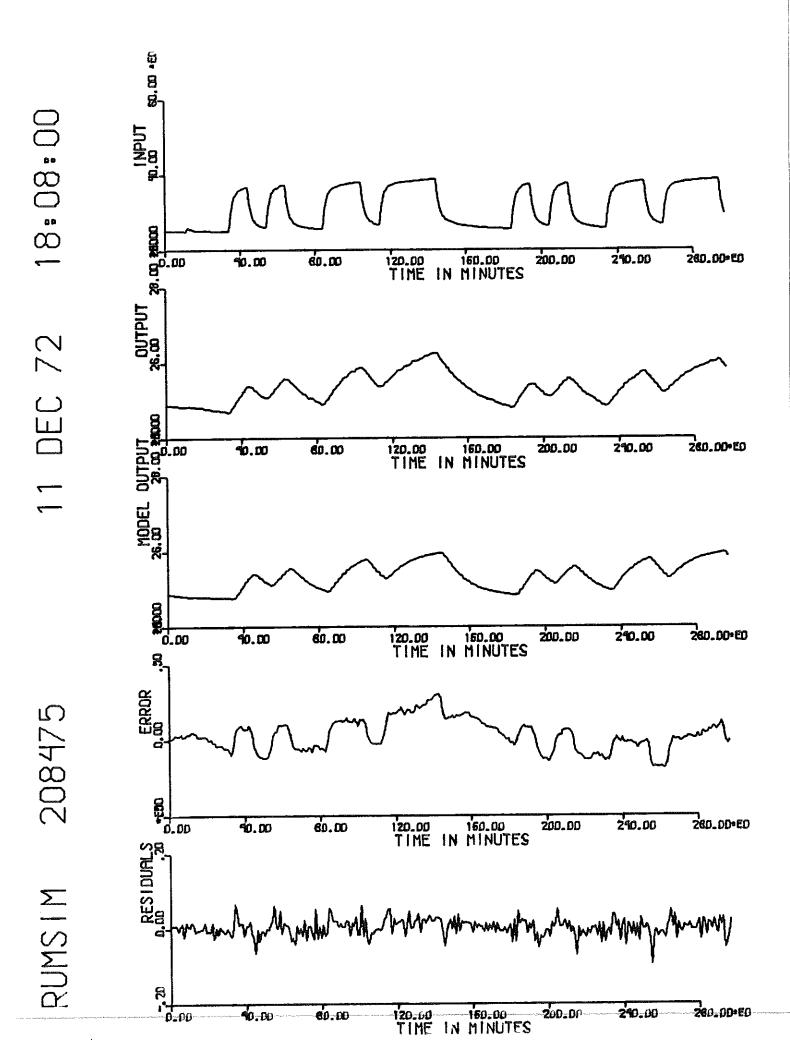


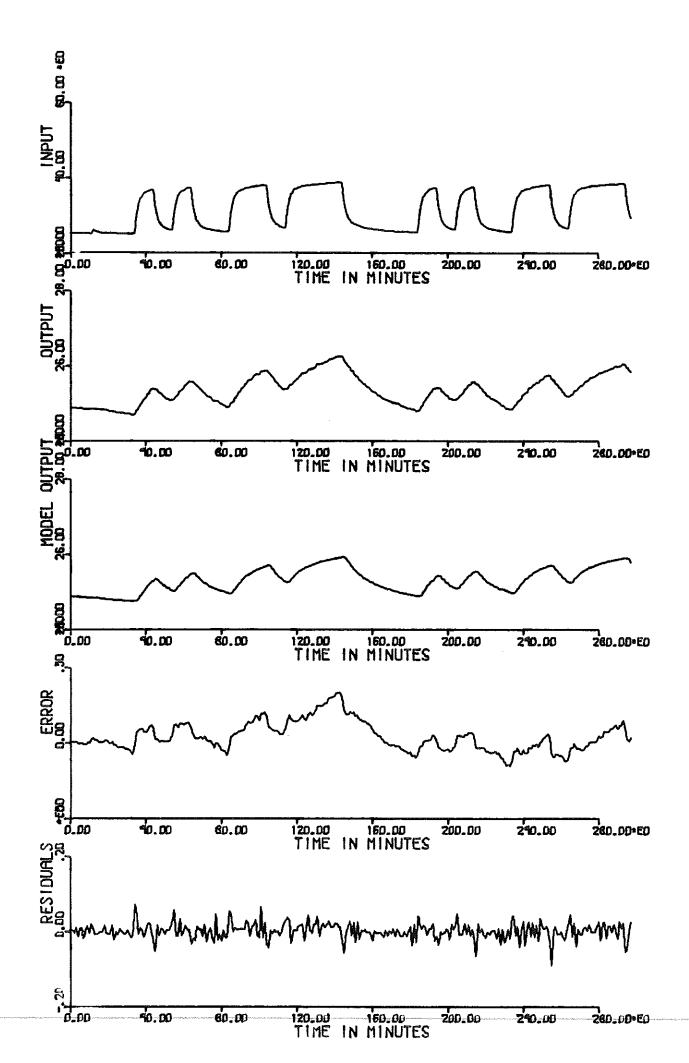


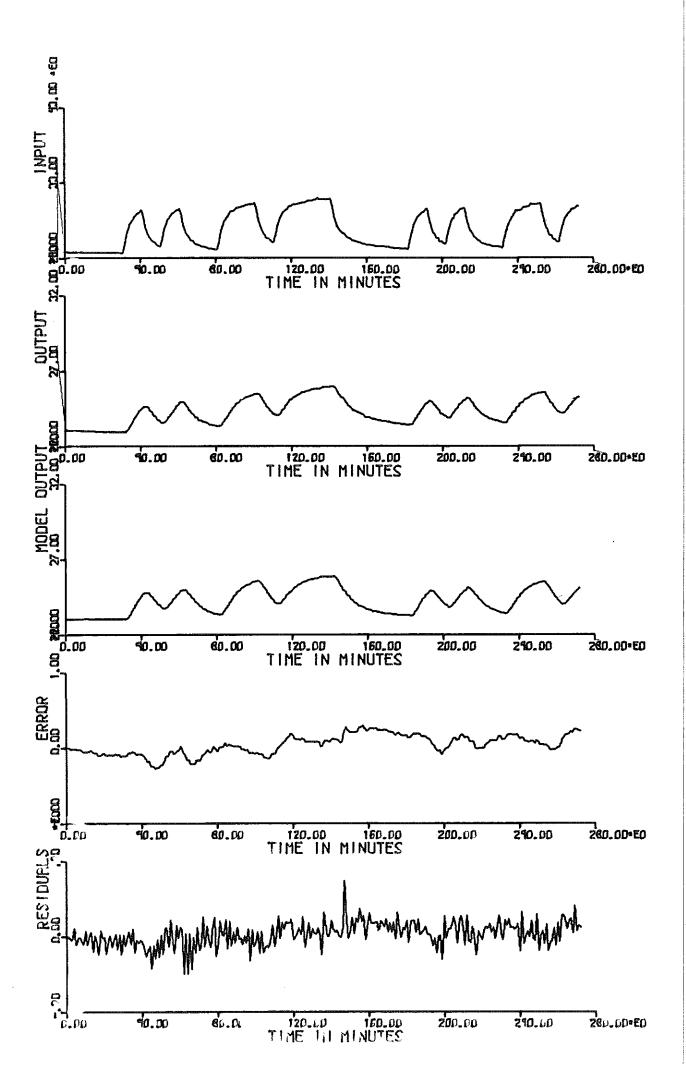

DIAGRAMBILAGA 2

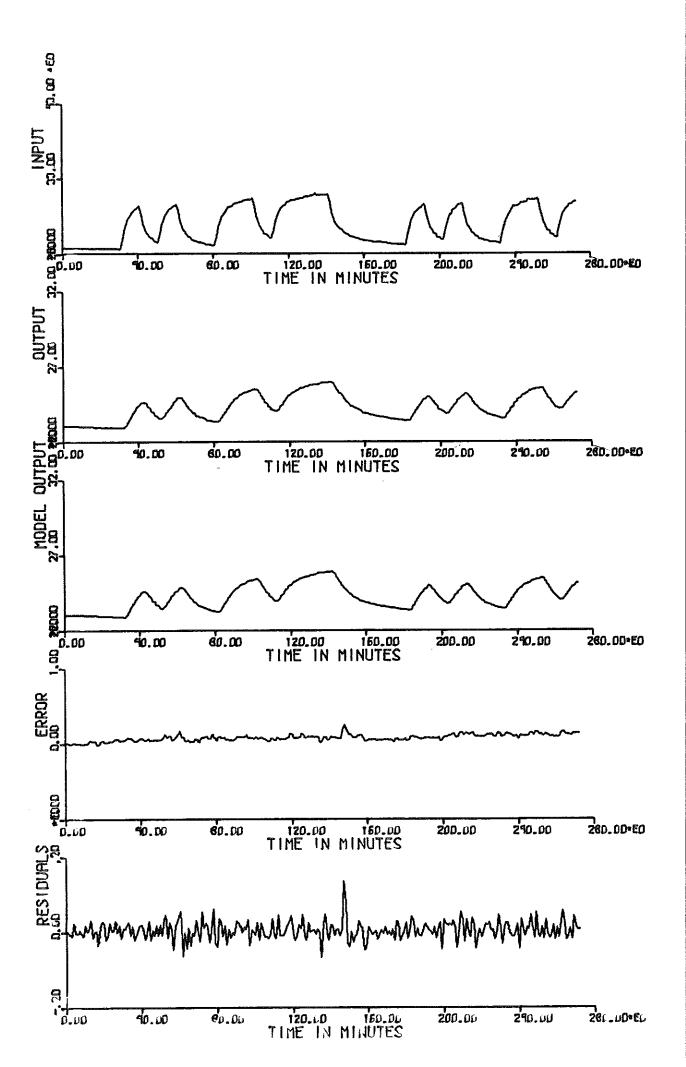

Simulering av modelltyp 2

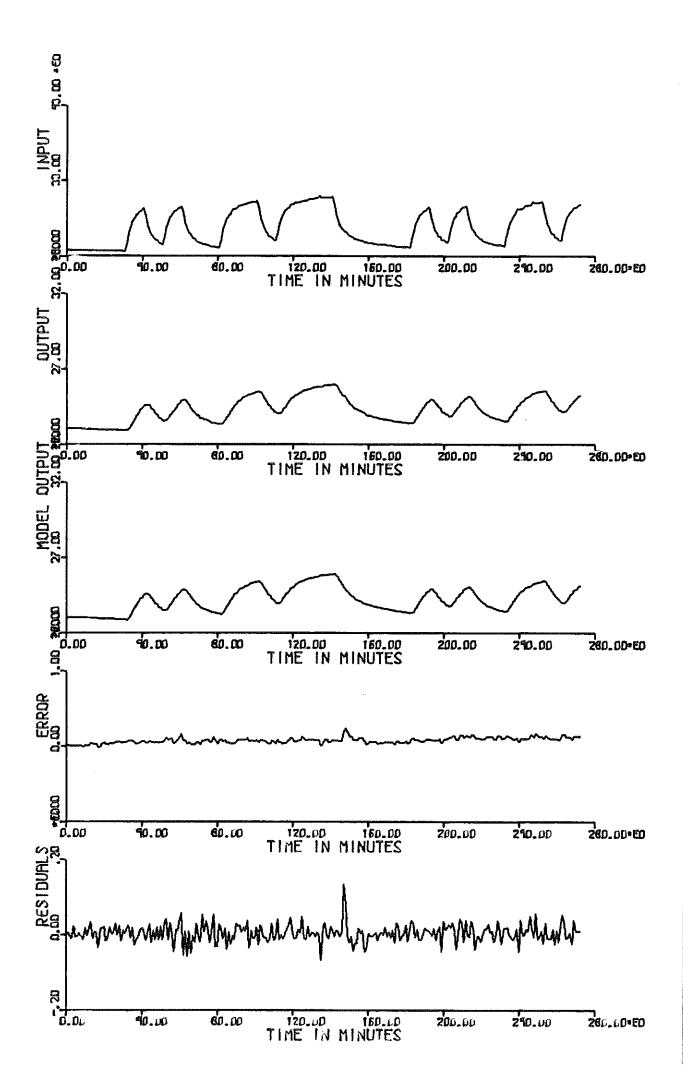

Elementtemperatur-rumslufttemperatur.

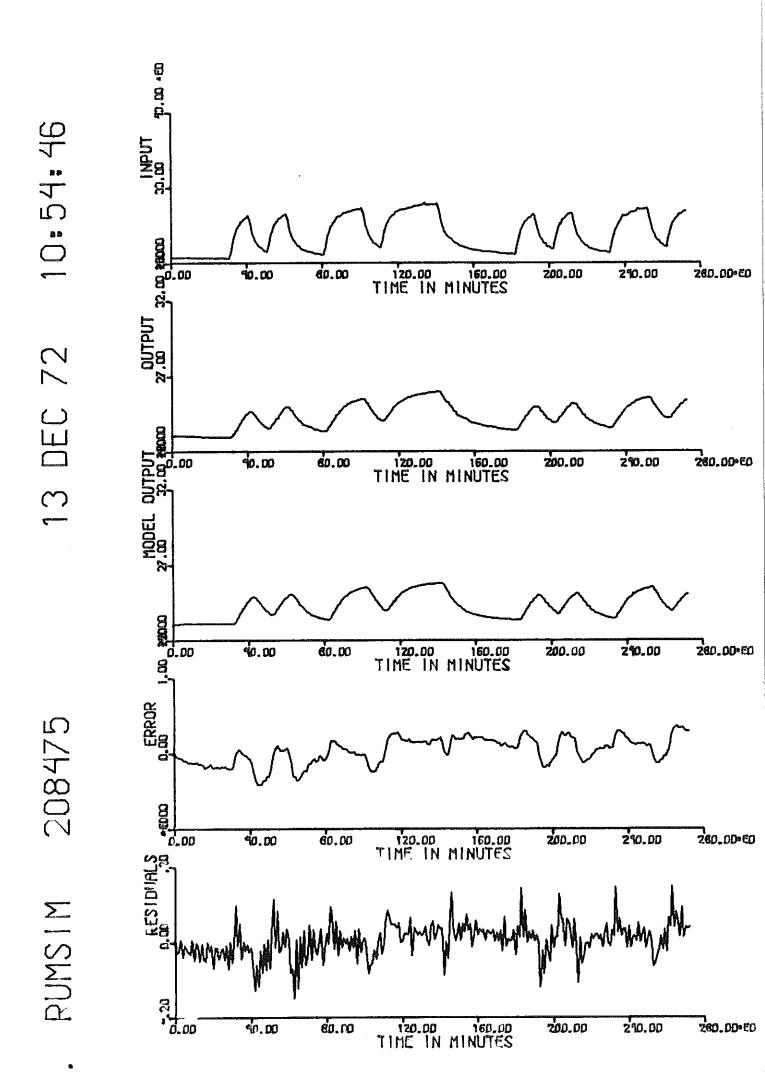

diagram	försöks	modell-	delay
nr	beteckning	ordn.	
1	S2	1	0
2	S2	2	0
3	S2	3	0
14	S5	1	0
5	S5	2	0
6	S5	3	0
7	K2	1	0
8	K2	2	0
9	К2	3	0
10	K5	1	0
11	К5	2	0
12	K5	3	0
13	R2	1	0
14	R2	2	0
15	R2	3	0
16	R5	1	0
17	R5	2	0
18	R5	3	0

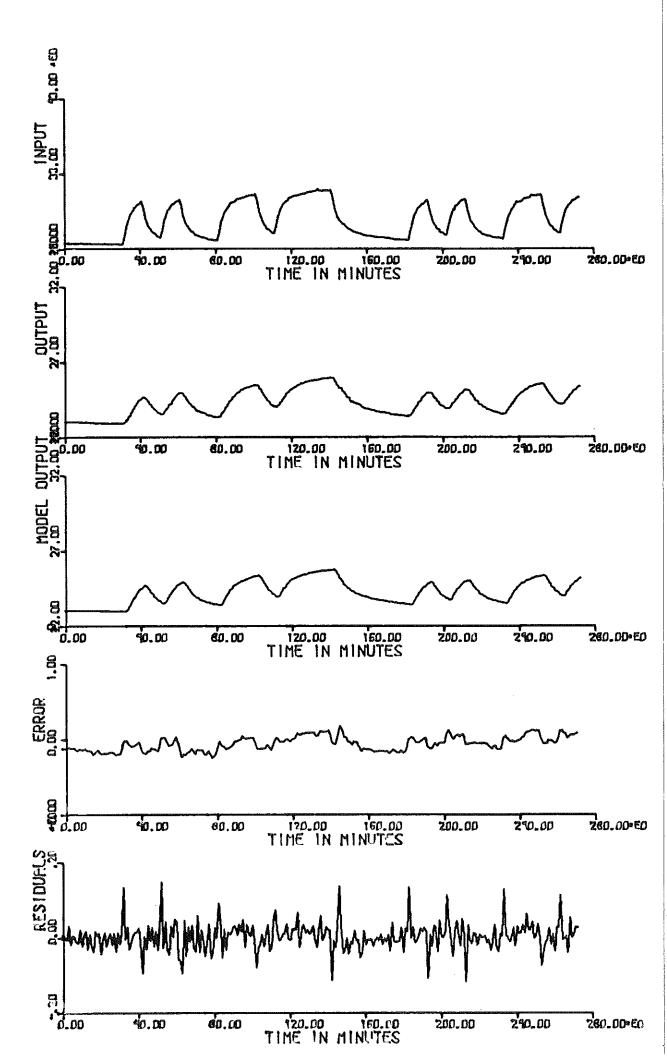


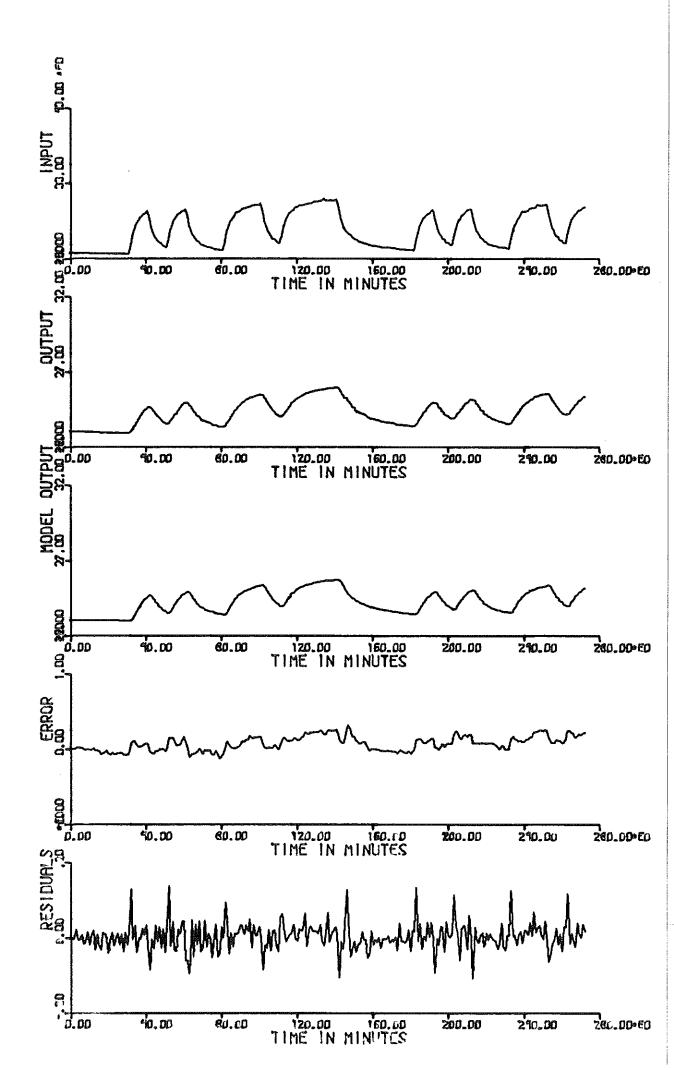


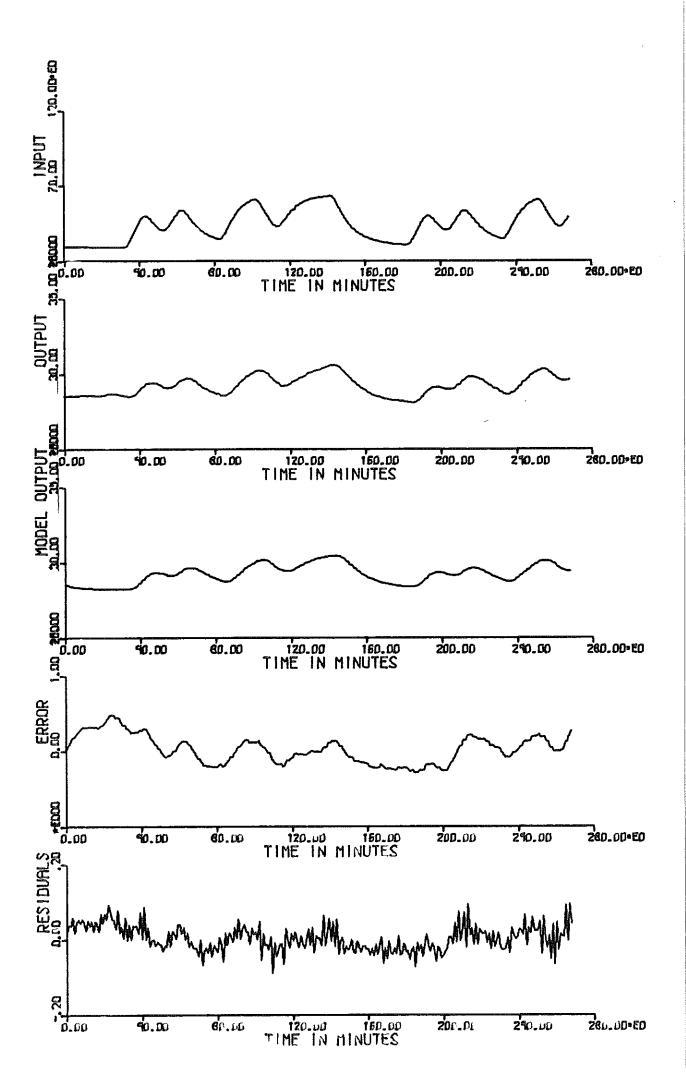


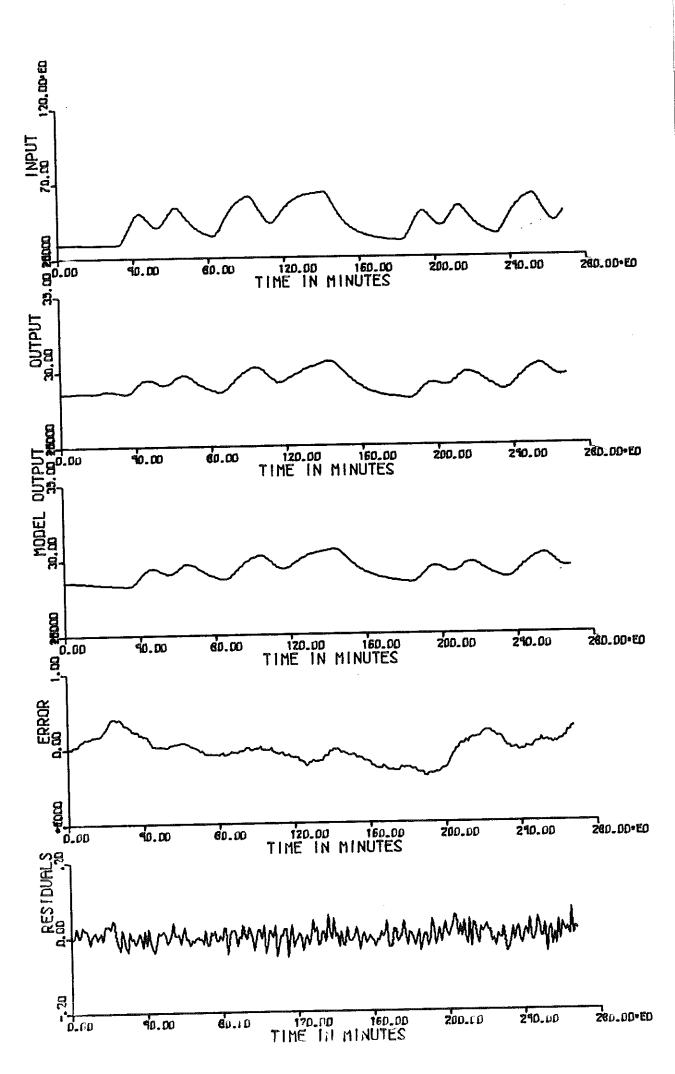


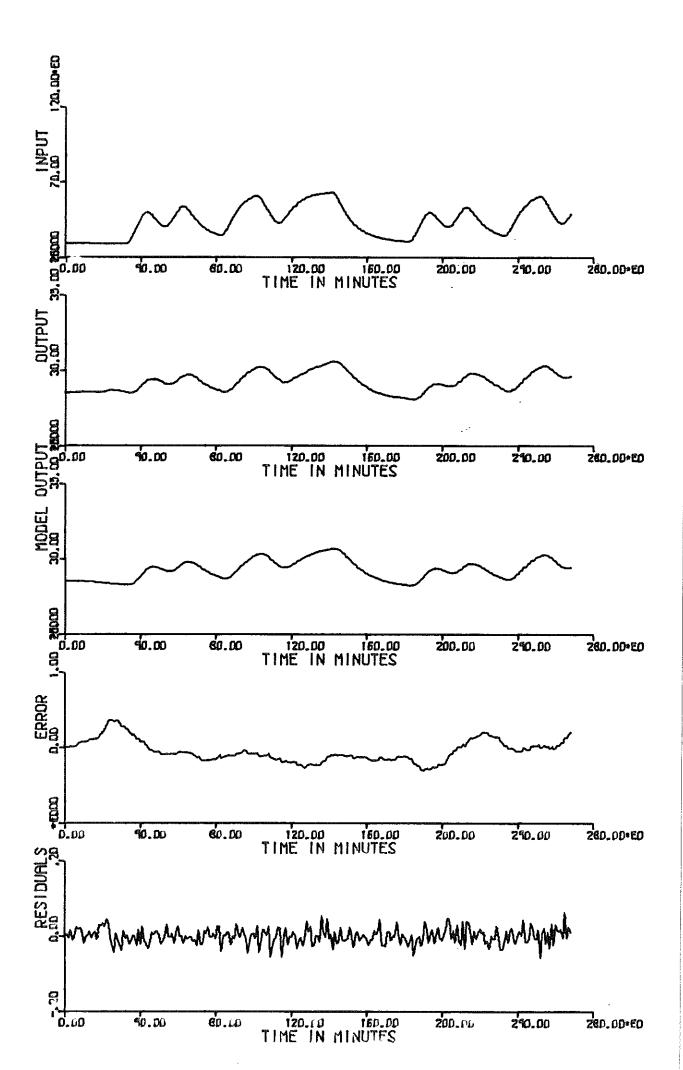


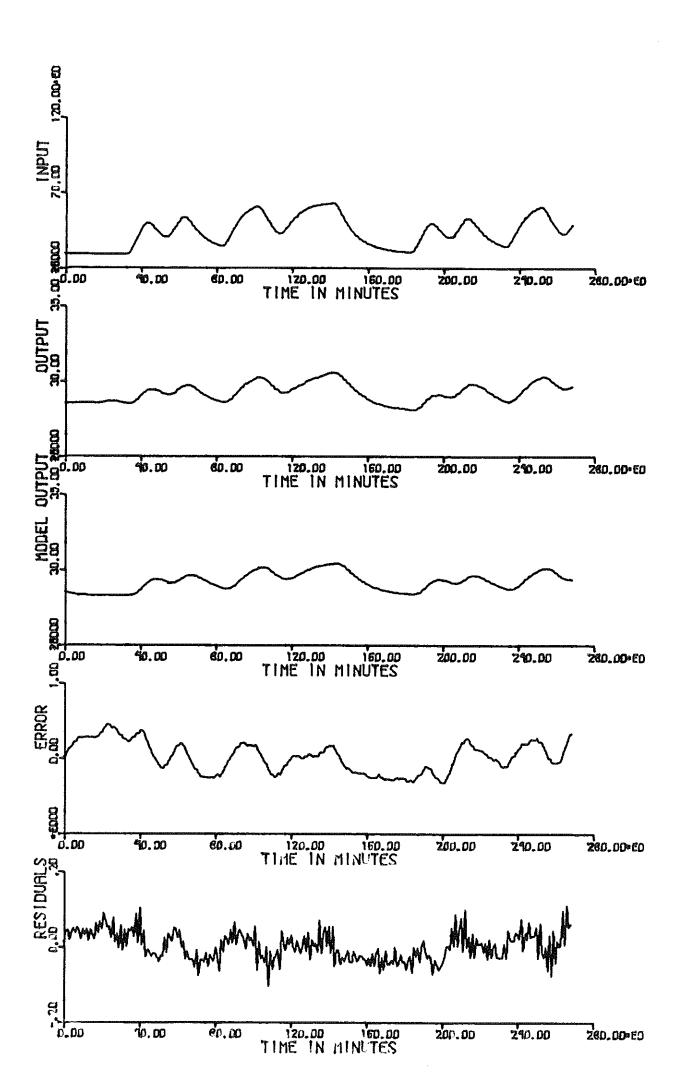


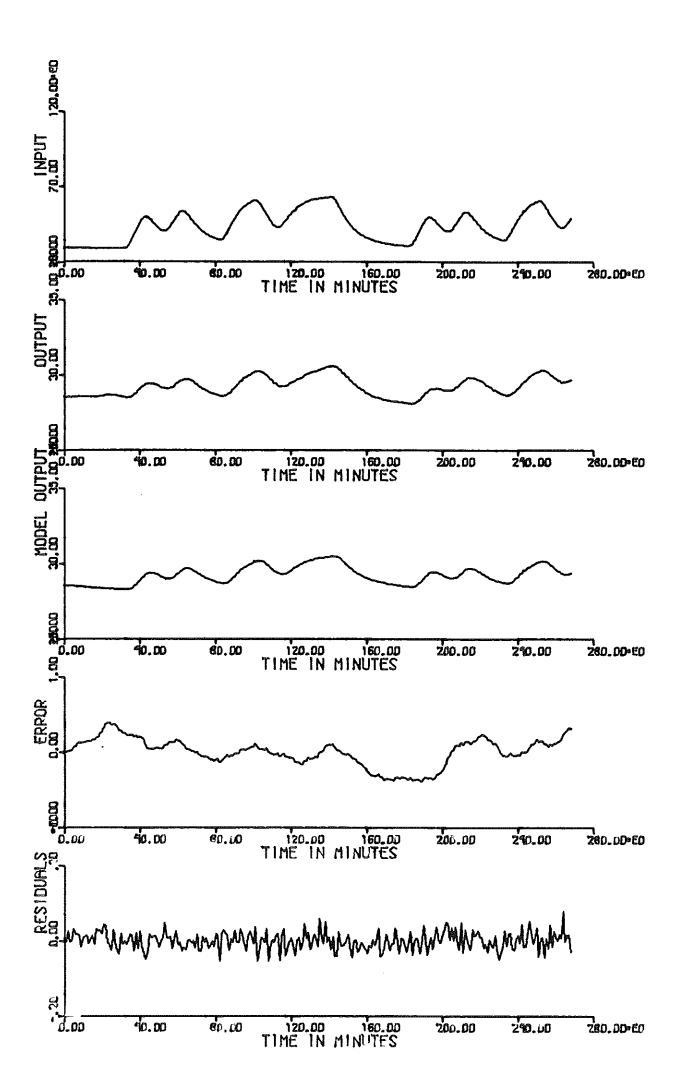


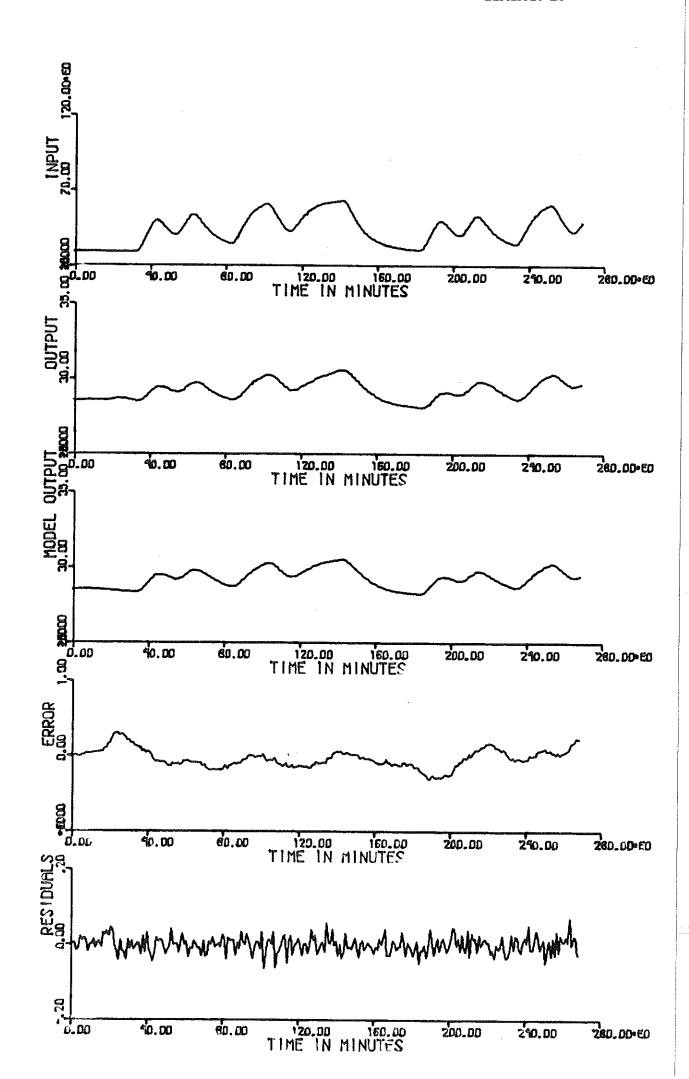


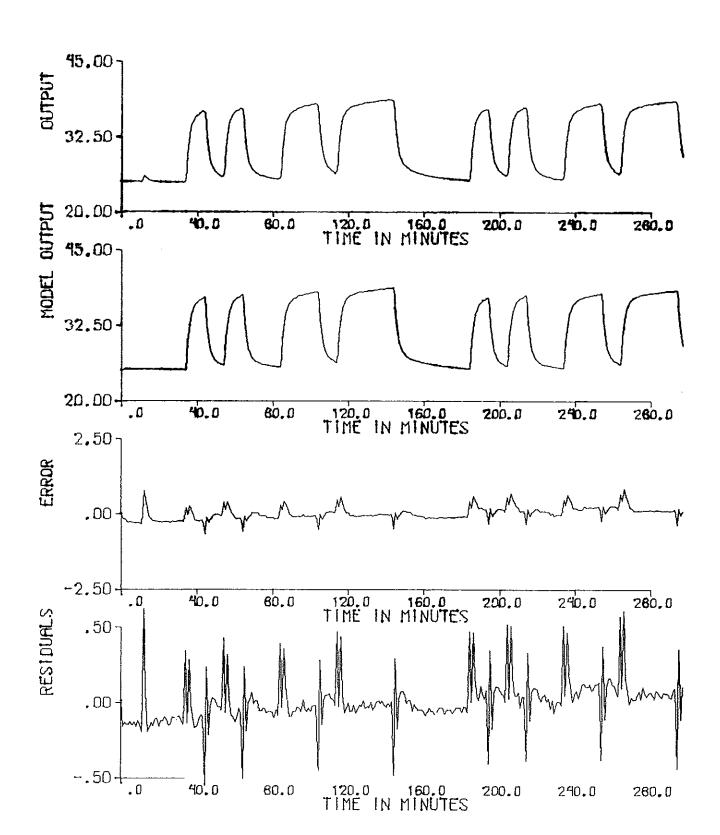


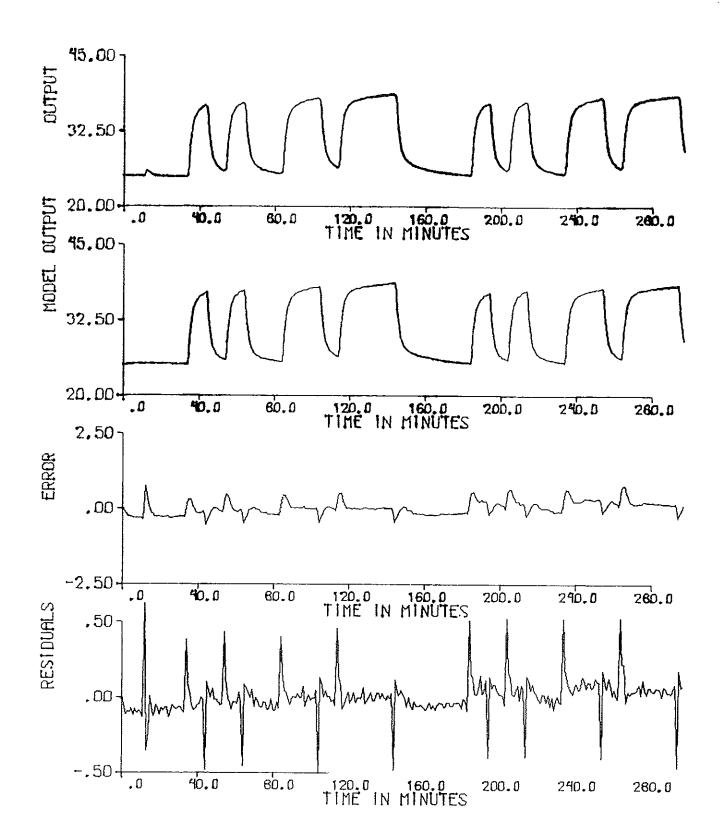


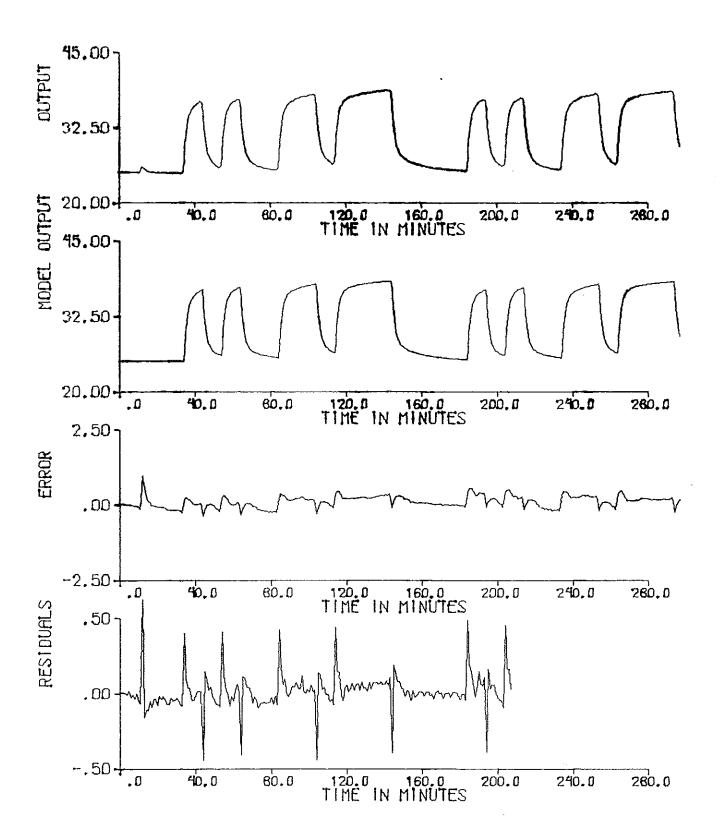


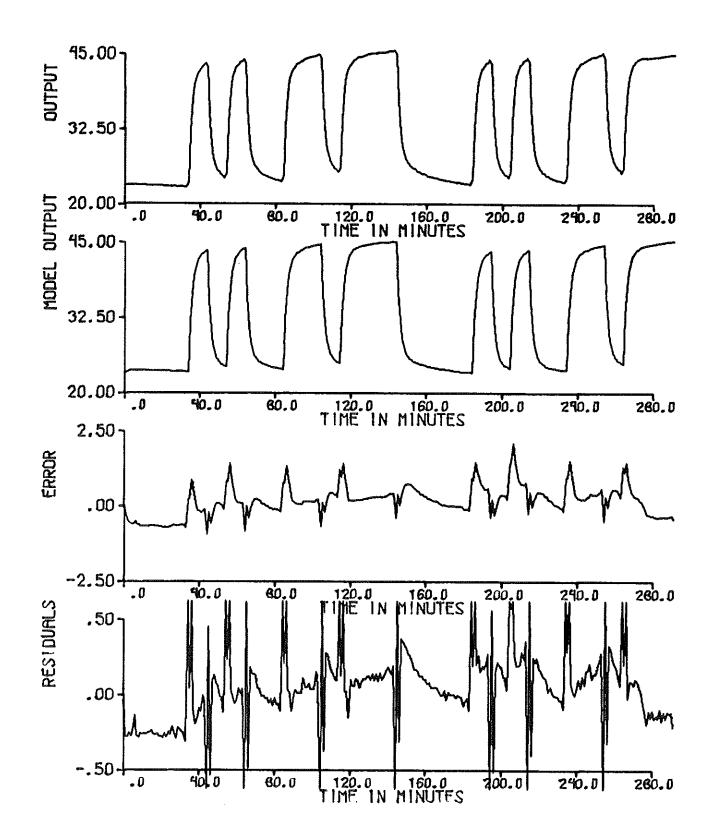


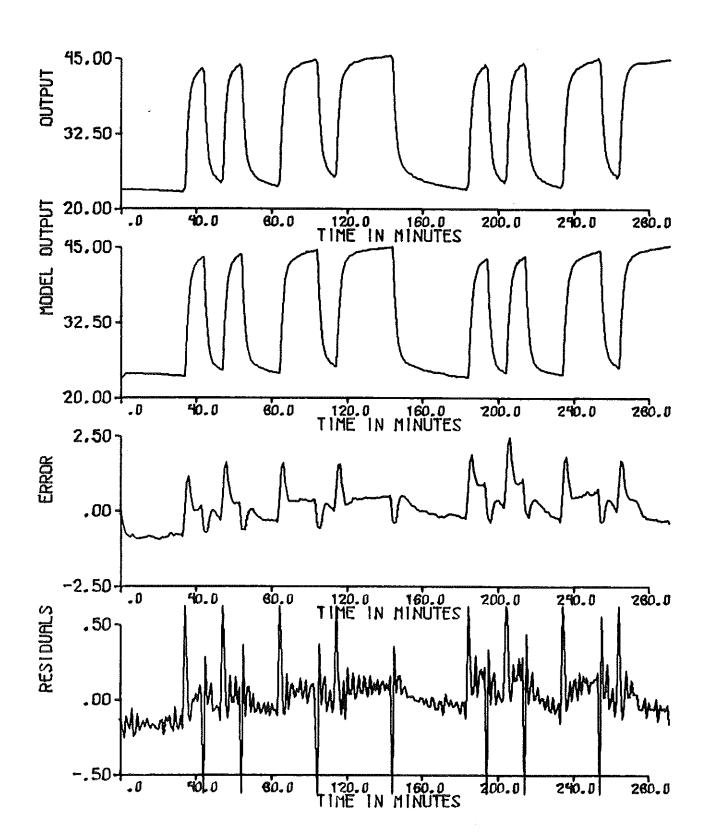





DIAGRAMBILAGA 3


Simulering av modelltyp 3


Effekt och rumslufttemperatur-elementtemperatur


diagram	försöks-	modell-	delay
nr	beteckning	ordn.	
1	S2	1	0
2	S2	2	0
3	S2	3	0
Ц	S5	1	0
5	S5	2	0
6	S5	3	0
7	K2	1	0
8	K2	2	0
9	K2	3	0
10	К5	1	0
11	K5	2	0
12	K5	3	0
13	R2	1	0
14	R2	2	0
15	R2	3	0
16	R5	1	0
17	R5	2	0
18	R5	3	0

