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1. Introduction

In this report a nonlinear model for a semi-trailer combination vehicle is
derived. The model is aimed at simulations of handling scenarios with ac-
tive yaw control, using distributed braking and possibly tractor rear wheel
steering. The model describes lateral, longitudinal, and yaw motion of the
vehicle, as well as load transfer due to lateral and longitudinal accelera-
tion. It also includes a fairly detailed model of tire-road contact forces. (An
extension of the model includes roll dynamies.) Similar models are pre-
sented in [E1169, Leu70, El194, CT00]. The model consists of two unsprung
masses, and six wheels. Tire-road contact forces are described with a non-
linear tire model for combined cornering and braking. A Matlab/Simulink
implementation of the model is used for handling simulations. Validation
of the model is performed by comparisons with simulation results from a
multibody model of similar complexity. A linear version of the model for
use in controller synthesis is also derived.

2. Extended Bicycle Model

In this section an extended bicycle model [Mit90] is constructed. Equations
describing planar and yaw motion for the tractor and semi-trailer combi-
nation are derived.

The derivation of the equations of motion will be carried out in the spirit
of [E1194]. The analytical background is described in detail in [FC93].

The vehicle equations of motions are most conveniently expressed in
a vehicle fixed reference system. As a first step the equations of motion
for a rigid vehicle, expressed in vehicle fixed coordinates, is derived. No
notational distinction is made between scalar and vector variables in order
not to clutter the the equations excessively, Similarly, some vector variables
denote the representation of the vector in a certain coordinate system. The
interpretation of the variables should be clear from the context.

2.1 Equations of Motion for a Rigid Vehicle

In the derivation of the equations of motion for the vehicle it is necessary
to have an expression for the acceleration of arbitrary points on the vehicle
body.

Motion of a point in vehicle coordinates Denote with '+’ the earth
fixed inertial reference frame, and with '’ the vehicle fixed non-inertial
reference frame rotating with the angular velocity @ and translating with
the velocity vp, see Figure 1. For any vector it holds that

(@).0= (@) @ e g

In particular the velocity of P with respect to = is expressed as the sum
of the translational velocity of the vehicle reference system, and the time
derivative of the position vector for P, rp:

d d
vp = vg + (—cmiwtw)$r‘p = vg + (E)OI'P + @ Xrp=vog+w@Xrp (2)




It is used that rp is constant in the vehicle fixed reference frame, so that
(d/dt)o e = 0. The acceleration of P is computed by applying (1) on (2):

s (g?)vpz <%>o(”0+a)xr?)+w><(00+G3X"P)

(B () meeriemmron o

Figure 1 Acceleration of a particle in a rotating and translating reference frame,

Scalar expressions are achieved by introducing rp = xel + yeg,), vo =
Uel + Ve? and @ = re?. Then

vp= (U —ryyed +(V +rx) el (4)
and
ap= (U —ry—12x—rV) el + (V+ix—rPy +rU) e (5)

Equations of motion for the vehicle in local coordinates Now
regard a rigid body B (the vehicle) with mass m and center of mass CM
located at royr = % + 5’33, under influence of the external force F and
the external moment Ny around O. The momentum p is

p= f dmpup = mvcy
B

Newton’s second law states that

d
(&),f—f’
d

(8) o=

and with (5) inserted this yields

Thus

m((U_,-y_r%—rV) e + (V+ii—r’y+rU) E?) =F




The angular momentum Lg around 0O is
Lo = / rp X dmpvp
B

Euler’s equation of motion states that

(%) Lo= Mo (6)

and using (1) and (2)

d d : <4 -
(&E>$Lom (E)OLO-[—G)XL()-—[BIPdeP (dt)ovp-w

f rp X d]’np ((—i-) (Uo + @ X ]‘P) =
B dt/ g

d\ d
e () o ((Ge) ) <) -
/ﬁ (xeg + ye?) X dmp ((ffe? + Ve?) +7ed x (xef + ye?)) =

/ (x2 + yz) dmpr"eg + maEVeS —~miUel = Igi'eg + miVed — mj‘/Ueg
B
(7)
where I is the moment of inertia of B with respect to O.
With F = XeQ + Ye? and Ny = Ze? the resulting scalar equations of
motion are
m(U~—iy—r’i—rV)=X
m(V+iz—ry+rU) =Y (8)
Iop +mE(V+Ur)—my(U—-Vr)=2Z
2.2 Equations of Motion for an Articulated Vehicle
Introduce the articulated semi-trailer vehicle combination in Figure 2.
Denote with 1’ the tractor fixed reference system, and with "2’ the semi-
trailer fixed system. The origins of both systems are located in the fifth

wheel. The articulation angle is denoted by "y’. The representation of any
vector g in the systems 1 and 2 is related by the rotational transformation

cosly siny 0O
g2 = Rq1, with R = (— siny cosy O (9)
0 0 1

The vehicle combination is influenced by the tire contact forces Xj, Y1, Xo,
Yy, Xs, Y3, X4, Vi, X5, Y5, Xg, Y5, and the internal reaction forces in the
fifth wheel X, Y}, as in Figure 3. Introduce the shorthand writing
X =X1+Xa+ X35+ X4
V) =Y+ Y+ Y5+ Yy
Zi=yrXi+aYi—yrXo+aiYa+y,- X3 —b1Y3 — 3, X4 — 01V
Xg = X5+ X
Yo = Y5+ Y
Zy = y1X5 — ba¥5 — y:Xe — b2 ¥

(10)
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Figure 2 Geometry of the semi-trailer vehicle combination.

According to (8) the equations of motions for the tractor and semi-trailer

Eﬁfa X
Y3 Y:

erp

¥ :?
X 4 X3
Yy Ys

—_— Yp
—Xp

Figure 3 Forces acting on the semi-trailer vehicle combination,

are

mi (Ul — r%xl — rIVl) = Xl + Xp
ma (V1 + rix1 U1) =Y; + Y,

Iy + mlxl(vl + Uiy} = Z1 a1
msa (Uz +?'s2gx2 — T‘2V2) = Xz — Xpcosy — Y, siny
ma (V2 — Foxg +roUs) = Yo + Xpsiny — Yy cosy

Ity — maxg (Vo + Uprg) = Zo

The CMs are assumed to be located such that ¥ = 0, and the different signs
in the semi-trailer equations are due to the location of the semi-trailer CM
behind the origin in the fifth wheel.

Elimination of semi-trailer variables The motions of the tractor and
the semi-trailer are kinematically constrained by the {ilth wheel, which
enables elimination of Uy, Vy, Uy, Vs, and re. The velocity of the origins
of the reference systems is v, with the representations vy = Ujel + Ve

and vg = Uge? + Vgef, respectively. The velocity vector vepresentations are




related by the rotational transformation as vg = Rv;. Thus

Uz:UlcOSW-I-VlSinI/I (12)
Vy = —Ujsiny + Vicosy

In the following, let @1 = riel and @y = roe? denote the angular veloc-
ities of the tractor and semi-trailer.
Then @; and wq are related to the articulation angle y as

wy — @1 = Yrey” (13)
or
W=re—n (14)
hence
r‘ze}z — r"lei'ﬂ = l,'ﬁei‘z (15)
and
Fg—T1 =Y (16)

The acceleration at the fifth wheel can be expressed in the tractor or
the semi-trailer systems, and are related by (1) as

d d
(a)zv-}-a)ng—(a)lv—l-ah)ﬂi (17)
With local representations
d d 1
(dt)zvz_ (a)lvl+(11—rg)ez><v1 (18)

which may be expanded to
Ugel + Vyed = (U +y Vi) ey + (Vi—yUi) ey (19)
Using the rotational transformation (9) this yields
Uge? + Vgef, = ((Ul + V1) cosyr -+ (V1 —yrUy) sin 1;1) 2 +
(= (@1 + V) siny + (V- Us) cosy )} (20)
Thus

Uy = (U1 + Vi) cosy + (Vl — Uy} siny

. . 21
Vo = — (Uy + Viyr) siny + (Vy — Uryr) cosy 1)

Insertion of (21) and (16) in (11) yields the equations of motion
mi (U1 —_ 1‘%3:1 - I‘1V1) = XI + X, (22a)




mi (V1 +Fix U]) = 1_71 + Yp (22b)

Ly +myx (Vi + Uirt) = 2y (22¢)

my ((Ul — Viri) cosy + (Vl + Uyrq) siny 4 (r1 + l,if)2 :\:2) =
Xo — Xpcosy — Ypsiny (22d)

mo ((Vl + U1ry) cosy — (U1 — Viry) siny — (71 + %) .'Cg) =
Yo + Xpsiny — Y, cosy (22e)

I (1 + l{f) — mzxg((vl + U11"1) cosy — (Ul - V1?‘1) sin I{/) = Zz (22f)

Elimination of internal forces The internal forces X, and Y, may now
be eliminated by combining the above equations as (22d) siny + (223) cosy,
yielding

msa (Vl +Uri +(r1 + )2 &g siny — (71 + §) &2 cos i//) =
Xosiny + Yocosy — Y, (22g)
and (22d) cosy — (22¢) sin y, yielding

nig (U1 — Vir1 + (?‘1 -+ 1/7)2.{:2 cosy + (?"1 -+ l/f) X9 8in Ij/) =
Xocosy — Yysiny — X, (22h)

Now (22a)+(22h), (22b)+(22g), (22¢) and (22f) give the reduced equations
of motion

(m1 4 mg) (Ur — Virt) —marizy +mg (11 + )2 xp cos iy +
mg (F1 + ) xesiny = Xy + Xpcosy — Yasiny
(m1 + ma) (V1 + Urrt) + mifas1 +ma (r1 + )2 g siny —
ma (1 + @) xgcosy = Y1 + Xpsiny + Yacosy
Iiry + mixy (Vl + Upry) = 71
I (71 + W) — maxg (V1 + Urry) cosy — (Uy — Viry) siny) = Zo
With the introduction of the state vector

E=(U, V, r, v, )T (24)

these equations are conveniently written on matrix form as

(23)

dé! = - = o A A
H(g ) 5 =F §I1 Xli Xz) Yl, YQ, ZI:ZZ) (25)
with
H({) =
m 0 magxg sin iy moxgsiny 0
0 m mix] — Maxgcosy  —maoxgcosly 0
0 mixy I 0 0
Mmgxgsinly —mgXz COS Y I Iy 0
0 0 0 0 1
(28)




and

F(&, X1, X9, Y1, Y3, 21, Zg) =
mVr -+ mirfxy — mg (r+ ) xgcosy + X1 + Xacosy — Yasiny
—mUr —mg (r +¥)? Zgsinw + V1 + Xasiny + Yacosy
—mix UrZ,
mgxgr (U cosy + V siny) + Zs

W
(27)

where m = mi+ms, and the indices on U, V and » has been dropped. This
is a suitable form for numerical infegration, where the left hand matrix
has to be inverted in each simulation step.

3. Load Distribution and Load Transfer

The normal force a tire apply on the road greatly influences the lateral and
longitudinal forces that the tire can carry. Therefore it is essential to model
how the normal forces vary with vehicle geometry and driving conditions.
The changing normal forces affect the road/tire contact forces, and thus
have influence on the handling characteristics of the vehicle combination
at certain maneuvers. A crude model of this behaviour is described in this
section,

The normal force distribution at rest only depends on the vehicle geome-
- try. This is denoted the static load distribution. For heavy vehicles inertial
forces due to lateral and longitudinal accelerations result in fairly large
pitch and roll moments, because of the height of the center of mass. These
moments are carried by the normal forces of the tires, and thus result in
normal forces that deviates from the static load distribution. Denote these
normal force variations by load transfer.

In reality the load transfer depends much on suspension and chassis
stiffness, and the roll and pitch behaviour of the vehicle. Since neither
roll nor pitch movements are included in the model in this report, the
load distribution and load transfer are modeled based on simple static
assumptions. The static load distribution is derived in Section 3.1 below,
while the load transfer due to inertial forces is derived in Sections 3.2-3.3.

3.1 Static Load Distribution
It is assumed that wheels mounted on the same axle carry equal load at

rest (symmetry assumption). The lumped normal forces are denoted by
Ny¢, N, and Ny. The fifth wheel normal force is denoted by No. See Figure
4. From the normal force balance

N+ No = mag

and the balance of moments around the fifth wheel

Nibg = magxy




msy

Figure 4 Static load transfer model.

the semi-trailer rear axle normal force N; and the fifth wheel normal force
Np are resolved as

N, = magxa/ba (28}
Nop = mag (52 **"xz) /bg (29)

In the same manner the tractor force balance
N, + Ny =mig + No
and the tractor balance of moments around the front axle
N, (b1+a1) — Noai = mig (ay —x1)
gives the tractor front and rear axle normal forces as

N, = (Noa1 +-mig (a1 — 1,1)) / (bl + al) (30)
Ny = (m1g (b1 +21) + Nob1) / (br+ a1} (31)

3.2 Longitudinal Load Transfer

The longitudinal load transfer is computed by lumping the wheels on the
same axles, as in Figure 5. The Iumped longitudinal load transfer forces

ma, U2
my, U1

| /_*iif?] :

'

2AN; 2AN, 2ANy

Figure 5 Static load transfer model.

are denoted ANy, AN, and AN;. The fifth wheel longitudinal load transfer
force is dencted by ANg. The tractor and semi-trailer CM longitudinal
accelerations are denoted by i and ug respectively. From the semi-trailer
normal force balance

2AN; +ANO = 0

10




and the balance of moments around the fifth wheel
2ANby — malighe = 0

the semi-trailer rear axle normal force AN; and the fifth wheel normal
force AN are resolved as

AN,; = ?ngitghzfzbg (32)
ANg = —matighs /by (33)

In the same manner the tractor force balance
9AN, + 2AN; = ANy
and the tractor balance of moments around the front axle
2AN; (b1 + a1) —ANga; — myt1h; =0
gives the tractor front and rear axle normal forces as

AN, = (ANpai + mllllhl) /2 (bl + al) (34)
ANf = (ANobl - mlﬂlhl) /2 (51 +a1) (35)

3.8 Lateral Load Transfer

The lateral load transfer is derived by assuming that the load transfer
resulting from lateral acceleration of the semi-trailer mass is carried by
the semi-trailer axle and the tractor rear axle, while the load transfer
resulting from the tractor mass is carried by the tractor front axle, This
assumption is based on the roll torque transfer characteristics of the fifth
wheel, the weak frame of the tractor, and the forward position of the tractor
CM.

Denote by AN7 the lateral load transfer of the tractor, and by AN» the
load transfer of the semi-trailer. Introduce 01 and 9 to denote the vertical
accelerations of the tractor and semi-trailer CMs respectively. See Figure
6. Moment balance around the right wheel of the front axle on the tractor

msa, Uz
mi, U1
hl h2
e <
Y1 ¥z

Figure 6 Lateral load transfer model.

gives

AN12y; = mi01hy

11




and moment balance around the right wheel on the tractor rear axle and
the right wheel on the semi-trailer axle gives

2AN22y2 = rnzﬂzhg

Then the lateral load transfer is expressed as

AN, = vtk (36)
2y1
ioh

AN, = 120202 (37)
4y1

3.4 Normal Forces

Now the static Ioad distribution together with the longitudinal and lateral
load transfer gives the resulting normal forces for each individual wheel.
Combining Equations {28)—(37) gives

Ny =Ng+ ANy +AN;
Ny = Ny + ANy — ANy
N3 =N, + AN, + ANy
Ny= N+ AN, — ANy
N5 = N; +AN; + ANy
Ng=N;+AN; — ANy

4. Wheel Forces and Dynamics

The wheels can modeled as rotating masses with driving or braking torques,
and road contact forces determined by a tire model. The tire model gives
road contact forces as a function of relative velocity of the tire and the road,
and the tire slip direction.

The wheel torque T; constitutes the system input

J;a; =T — re,iFi(SR, ) (39)

with i ¢ {1,2,3,4,5,6}, where Fi{SR, &) is the tire road contact force given
by the tire model. The slip ratic SR and the slip angle & are defined by
Equation (40) and Figure 8 below.

5. Tire Model

The tires are modeled with the Slip Circle Model [SPP96], which is closely
related to friction ellipse models, With this model it is possible to obtain
good estimates of combined combined cornering and braking forces from
measurement data of pure cornering and pure braking only, as in Figure
7. The motivation behind this approach is that measured tire character-
istics often are available only for pure braking and cornering, while char-
acteristics for combined braking and cornering are necessary in handling
simulations.

12




Braking Fz = 40 kN Cormaring Fz = 40 kN

1— - — 1 .
o - -
0.6 0.5 .
v &
.
g0 g0
.
_05 ..... _0‘5 ¥
e
N -05 o 05 1w 50 0 100
SR skp angle ()

Figure 7 Measured tire characteristics for pure braking and cornering. The last
data point in the cornering data is taken from pure braking with locked tire (when
the tire acts as solid block of rubber).

Inputs to the model are the slip angle o and the slip ratio

wR —vcosa
max(|v cos |, |@R|)

(SR) = (40)

where R is the wheel radius, @ the rotational velocity of the wheel, and v
the translational velocity of the road-tire contact point, see Figure 8.

Figure 8 Tire.

A dimensionless total slip vector with magnitude s and orientation f is
introduced as

s = \/(SR)z + (sin )2
and

tan i = —-sino/(SR)

13




The tire contact force is assumed to have the same orientation as the
total slip vector, i.e.

tan 8 = F,/F;

Thus S = 0° corresponds to straight line driving, S = 90° to free-rolling
cornering to the right, # = 180° to pure braking, and § = 270° to free-
rolling cornering to the left.

A model for combined cornering and braking is obtained by assuming
a cosinusoidal fit

F = ay(s) + a1(s) cos{2f)
where

ao(s) = 0.5(Fro(s) + Fyo(s))
a1(s) = 0.5(Fyo(s) — Fyo(s))

Fyo(s) and Fyo(s) are the friction force obtained from a model of pure
braking (driving) or cornering respectively.

The model predicted tire forces corresponding to the measured data
in Figure 7 is shown in Figure 9. Figure 10 shows the model predicted

Fz=40kN,a=0 Fz=40kN,8R=0

40 “ﬁ\\_\ i s -
35 / o — ’ . a0r ; . \"*———ﬁ—;m‘
% \- 26 .,‘
'—‘25! ;i: . . '_'20' .’l
N Z !
=20 Tl |
= ." a5
15t | il'
I
; 1ot
1r 0 J.f
i 5*"
B /
i . ‘ . .
GU 02 0.4 0.6 0.8 1 DU 0.2 0.4 0.6 0.8 i
5 s

Figure 9 Model predicted forces for pure braking and cornering,

contact forces for different slip vector magnitudes and orientations. In Fig-
ure 11 the slip circle model is validated against measurements of combined
braking and cornering contact forces. In Figure 12 it is shown how the tire
contact-force vector can be changed by varying SR (braking/driving) or o
(steering). In this plot the slip ratio is restricted to [SR| < 0.2, which cor-
reponds to the working region with ABS functionality on the wheels. With
arbitrary SR and « it is possible to position the force vector anywhere
ingide the ellipse.

6. Brake Model

The brakes are modelled as air disc brakes to be integrated with an Elec-
trical Braking System (EBS), see [Buc98].

14




angle (B) = slip direction, magnltude s = total slip

Fy/Fz

'-f1 -0.5 0 0.5 1
Fx/Fz

Figure 10 Polar plot of tire contact forces as a function of total slip magnitude

and orientation.

Combined slip Fz = 40 kN

0_ ............... *,)_
:*OO —— ¢, 4.7 deg model

—~04F T ................ —— o 9.8 deg model :

¥/ * 0,4.7 deg measurement |:

—0.20 e o ¢ 9.8 deg measurement |

_091 -0.5 0 0.5 1
Ex/Fz

Figure 11
ing and cornering.

Validation of model predictions of tire contact forces in combined brak-

15




Combined slip with ABS + TRC (-0.2 < SR < 0.2)

0
—— o 0 deg
-0.1 o 1deg
)T o 2deg
-0.3 o 8deg
: :: o 12deg |:
= 0. 20 deg |:
0.5 :
-0.6
-0.7
-0.8 :
0% -0.5 0 0.5 1
Fx/Fz

Figare 12 Combined braking and cornering for —0.2 < SR < 0.2 and —20° <
o < 20°,

The basic outline of the disc brake is a C-clamp with friction pads on
both jaws. A wheel mounted rotor passes between the jaws. At brake ac-
tnation a modulation valve lets air with a base pressure pg flow in to a
chamber to build up a pressure p, proportional to the valve control signal
u. A diaphragm with area @ transmits a force N = ap to the brake pads.
With a simple Coulomb friction model the friction surfaces on the brake
pads then generates a braking force F = —uN sgn(w) on the rotor, where
i is the coefficient of friction for the specific brake lining material. The
resulting braking torque on the wheel is T = Fr,, where r, is the effective
radius of the disc rotor, Assuming a linear first order model of the pressure
dynamics p = py/(sT + 1)u, the resulting brake model is

T =

L sgn(w) (41)

with K = par.pg. Typical values are K =9 kNm, and 7' = 0.6 s,

7. Linear Semi-trailer Vehicle Model

The nonlinear mode! of the semi-trailer vehicle may adequately describe
the vehicle in a wide range of operating conditions, However, a linear model
may be sufficient for small deviations from a certain stationary operating
point. A linear model is also much easier to exploit for control synthesis.
Therefore this section is devoted to the derivation of a linear state-space
model of the vehicle,

16




7.1 Linearized Equations of Motion

In this section a linear model for the vehicle dynamics of motion is derived.
Assume a small articulation angle y, such that the coordinate transforma-
tion matrix in (9) can be approximated by the identity matrix, R ~ I, Then
(11) translates to

my (U1 - I%‘bi — r1V1) =X+ X,

mi (Vl + Fixy + 1 U) = Y145,
I+ myx (Vl + Uir) = 2y

ma (Uz + I‘%xg — ?'2V2) = Xg — Xp

ma (Vz —Faxg +ro Ug) = }_72 - Yp
Loy — moxo (Vz -+ Ugr'z) = Zz

(42)

The fifth wheel reaction forces X, and Y, may now easily be eliminated as

M1 (Ul — r%xl - I’1V1) + mgy (Uz + I‘%xz - ?'2V2) = X} +- Xz

mi (Vl + 1+ U;) + ma (Vg — Foxg + 1y Ug) = 1}1 -+ er (43)
Iify + maxy (Vi+ Urry)
)

Ioty — maxg (Vz + Usrg

by DN

1

2

With the small articulation angle assumption the velocity relation (12)
simplifies to

Uy =1

The acceleration relation (21) together with (14) yields

Ul bt V}J‘l = I.fg - V11‘2

. . 45
Vi+ Uiry = Vo + Uirg (45)

Now combining (44) and (45) with (43) gives

(m1 + mg) (U - Vry) - maxir? + mexers = X1 + Xp
(m1 +ma) (V + Ury) + myxiiy — mawaie = Y1 + Yo
Iiry + mixt (V + Url) =7
Isfg — mgxg (V +Ur) =2,

(46)

Regard the stationary operating point in a steady state turn with free
rolling wheelg

U=Uy V=V ri=rqe=rny
£=0 T=¥ Z =2 (47)

=0 T =T Zy= 20
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At this operating point (46) reduces to

— (m1 + PTLQ) Vorg — mlxlrg + mgxzr% =90
(mi+ mz) Upro = }—’? + Yg (48)
mixy Uo!'o = Z(I)

—maxo Ugrp = Zg

For small deviations around the operating point the state and input vari-
ables may be partitioned as

U=U+d8U U=456U

ro=rg+0r 71 =0ry
rg =1ro+0rs Fo = 8rg (49)
X =6Xy X, =6X,

Yy =YY 467, Yo =Y + 87,
21:29—]—621 22=23+522

Inserting (49) in (46), subtracting the corresponding steady state equations
from (48), and removing second order terms results in the linear dynamics

(??11 + mg) (5U — 190V — Voc‘)'rl) — 9mix16r1 + AmaxgOre = 55(1 + 5X2
(m1 =+ Tng) (5V 4 rodlJ + Uo§?’1) +mix16r — maxedrs = 5?1 + 5}}2
1186 + mixy (5V 4+ Ugdri + SUF'Q) = 521

Iodrg + maxy (5V + Usdri + 5Ur0) w2 522
(50)

7.2 Linear Tire Model

Linear expressions for the tire-road contact forces may be used for small
slip angles ¢ and small slip ratios SR, as indicated by Figure 7. The slopes
of the respective slip curves in the initial linear regions are denoted braking
stiffnes, Csgr, and cornering stiffness, Cy.

Regard wheel i, with steering angle s;, lateral velocity V; = Vi0 + 6V,
longitudinal velocity U; = UP+5 U;, angular velocity ; = co? + dw;, radius
R, slip ratio SE;, and normal force N;. The longitudinal contact force for
small slip ratios is

U; — R U? + 8U; — R(a? + S;)
X; = CspNiSR; = CgpN;————" = nd d i 2
i SRV i SRNL Ui CSRNl UP-I-CSU;'
% — Ra? oU; - Réw;
CSRNi—z“["]T“L+CSRNi——*—I—I]‘Q“—[ :Xi0+6Xi (51)

H 2

and the lateral contact force for small slip angles is

Vo ‘
Y = CyN; (Sg— Vi/Ui) = C,N; (S? +5Si— g +5Vt)

Ul +8U;
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CaN; (82 = VP /UD) + CaNi (8si —

The wheel velocities are expressed by

Us=U+ Yrri
Upy=U—yrr1
Us=U+ y:r1
Ug=U —yrr1
Us=U + yire
Usg=U —~ yira

Vi=V4airn
Vo=V t+air;
V3 =V - 51?‘1
V4 =V - b1?'1
V5 =V - bgrz
Vﬁ =V — bgi‘g

SViJUP) = Y? +6Y; (52)

(53)

Inserted into (51) using (49) and identifying 6 X; this gives
CsrNo
Ui

5X1 = ngivl (§U + yf6r1 — Rawl) §X2= (5U — yf5?‘1 — R(S(IJz)

CsxN
5X3 = CSSNs (U + y,6r1 — Réw3) 6X4 = 330 2 (U — yrdr1 — RSws)
CsxN.
5X¢ = wCS§N5 (6U + y,6r2 — R6ws) 86X = —E2(5U — yibr5 — RSa)
)

(54)
It is assumed above that 1/(Up % yr .70} ~ 1/ Up. Accordingly

57, = CaNl (Usdsy — 8V + a16r1) 8 YYo= CaNg (Ugbsg — 8V +a16r1)
CaNg CO:N4

(UgSss— 5V — bidr1)

(5Y3 (U0533—5V 515?1) 5Y4—

Ca N 5 Ca

(U 6sg— OV — badra)
(55)

5Y5 = (U0585 -8V — 5251‘2) 5Y6—

7.3 Complete Linear Vehicle Model

Combining (54), (55) and (10) with (50) gives a complete set of linear equa-
tions for the vehicle, with wheel steering angles ds; and wheel velocities
Sw; as inputs. Introduce the state vector

E=(8U, 8V, 6r1, &r2)7 (56)
and the input vector
—(Sw1, ..., Sws, sy, ... Osg)T (57)

Then the vehicle dynamics in a neighbourhood of the stationary operating
point (47) is described by

EC;—E"; = A + Bu (58)
with
m 0 0 0
T 0 m nmixiy —Msxs
0 HZEAT Il 0
0 maxy 0 Iy
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which is non-singular for mI1J;—mizf L+ m2x21; # 0. The system matrix
A= (a;y),i=1...4,j=1..4 has the elements

20

C,
all=—%~E(N1+N2+N3+N4+N5+N6)=—[%mg

Ug
a1g = mry
.o Csr —N. N;—N
ars = mVo + 2mxy + 537 (N1 — Ng) + 9- (N3 — N4)

~, Csgr
=mVy+ 2mix + —UE-(nyANl + Zy,-ANz)

C C
a4 = —2mgxg + *f)gr—Ry:(sz — Ng) = —2mgaz + 5B 9y ANy
0

Uy
Qg1 = —mMry
Ca Ca
tog = — U(N1+N2+N3+N4+N5+N5) —U—Dmg

azs = mVo + %)-(al (N} + Na) — b1 (Vs + Na)
= mVo + % (201 (N +AN7) 261 (N, + AN,))
ag = —%%bz(Nﬁ + Ng) = ——sz(N: +AN,)
agi = —M1X1ro + — (yf (N1 — N3)+ (N3 — N4))
= —mix1ro + “"% (2yfAN1 + ZyrANz)
agy = f]—z ("al (N1+ Nz)+ b1 (Ns + N4)>
= %"; (—2a1 (N¢+ ANy} + 261 (N; + ANr))

C,
agy = —mix Uy + %(,’Y% (Nl +N2) +yf (NS +N4)) +

Ca (a1 (N1 -+ Nz) + bz (Ng + N4))
Uy
Csr
= —mx1Up -+ F—(Zy}p (Nf + ANf) + 2yjr (N, + AN, ))
Ca
o 72 (23 (Nf + ANy) +2b3 (N, + AN3))
agq = 0
C C
@ = —makaro— gt (N5 — Ng) = —maaaro o 2y ANy
Up Uy
C,
aqy = sz (N5 + Ng) = —252(Nz + ANy)
a43 = —maxa Uy
_ Csr o Caroin. &N
s = (N5+N6)+F 5 (N5 + Ne)

G C
;Rz (Ve + AN + 5 “zb 2(N;: + AN

(69)



The input gain matrix is

—CgpRN1/Uy 0 —CsrRysN1/Ug 0
—~CsrRN2/ Uy 4] CSRRnyQ,/U[) 0
—CggBRNs/Uy 0 —CsgRy,Ns/Up 0
—CsprRN4 /Uy 0 CspRyr-N4fUp 0
—CsgRNs/Uy O 0 —CgpRy:N5/Up
BT _ —CsrRNg/Us 0 0 CsrRy:Ns/Us
0 Co N1 Coa1Ny 0
] Co N2 Cpa1 N2 0
0 CuN3 —Cy b1 N3 0
0 Co Ny —~Crb1 Ny 0
0 C.Nsg 0 —CyboN5
0 Cy Ng 0 —CrbyNg

Partitioning of normal forces according to (38) illustrates the effect of load
transfer on A and B. The load transfer may be regarded as parametric
uncertainties, This is explicitly shown in (59), where certain terms only
appear at load transfer.

Note that the choice of state variables in (58) is different from that of
(25). A simple linear state transformation may be applied on the linear
model to achieve the same state description.

8. Simulink Model

The nonlinear semi-trailer vehicle model with wheel and brake dynamics,
and slip-circle tire-road contact model is implemented in Matlab/Simulink.
Listings of the S-function, and some essential m-files are found in Ap-
pendix B,

8.1 Simulation Example

In this section a simulation scenario for a specific vehicle configuration
is presented. The vehicle geometry and mass distribution is listed in Ta-
bles 1 — 8. The tire characteristics are those of Figure 7. The simulation

ar[m] [ bafm] | 1 [m] | y7 [m] | 9 [(m] | Balm] [ 2 [mn] | 0 (o) |
28 | 07 [ 18 | 10 | 10 | 14 | 70 | 10 |

Table 1 Vehicle geometric configuration

scenario is described in Table 4 below. A trace of the simulation is shown
in Figure 13. A close-up on the vehicle at ¢ ~ 35 8 is shown in Figure 14.
More plots of the simulation are presented in Appendix A.
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[ ml[kg] ‘ mg [kg] l I]_ [kgm2] 12 [kgmz] |
| 7050 | 23500 | 5650 +myaf | 390300 +maxd |

Table 2 Vehicle inertial configuration

[ rlm] [ mlkg] | T [kgm?]
[04 ] 200 [ mr?/2

Table 3 Wheel configuration

t [s] Action
5  apply half braking power on tractor left wheels

10 release brakes

15 steer left 2° with tractor rear wheels
20  straight driving

95  steer right 5° with tractor front wheels
30 steer left 5° with tractor front wheels
35  apply full braking power on all wheels

Table 4 Simulation scenario

9. Validation

To validate the nonlinear model a multi-body system (MBS} model of sim-
ilar complexity has been constructed. Outputs from simulations of the two
models are compared in this section. The MBS tool used is COMPAMM
(COMPuter Analysis of Machines and Mechanisms) from CEIT (Centro de
Estudios e Investigaciones Tecnicas de Guipuzcoa) 1999.

9.1 The Multi-body Simulation Model

In a multi body simulation model a set of rigid bodies are interconnected by
joints. A body is defined by the physical properties: mass, center of gravity
and inertia tensors. Points and vectors on the body can also be defined.
There are several kinds of joints, for example: cylindrical, spherical and
revolute. Joints can be assigned spring and damper characteristics. The
dynamic simulation is driven by forces acting on the multi body system.
Each body uses its local coordinate system. The relative initial placements
of bodies is defined in the global coordinate system attached to the ground.
The bodies are influenced by inertial forces and gravitation and the forces
in the interconnecting joints.

The tractor consists of two bodies: the sprung and unsprung masses,
see Figure 15, The semi-trailer also consists of two bodies: the sprung and
unsprung masses, with the sprung mass connected to the unsprung mass
of the tractor with a spherical joint. The sprung mass can roll relative
to the unsprung mass. The contact with the road is modelled with bodies
without masses interconnected by prismatic joints (a prismatic joint only

22




allows movement in along a straight line) and revolute joints. Thus both the
unsprung mass of the truck and semi-trailer can move freely ina horizontal
plane, The model is a bicycle model with three wheels: two for the truck and
one for the semi-trailer. The setpoint is the front wheel steering angle and
longitudinal brake slip for each wheel. The corresponding force vectors are
calculated as described in Section 5 and applied to the multi body system.

9.2 Comparisions

A scenario with combined braking and cornering has been used for the
validation simulations. The Simulink model uses wheel torques and wheel
angles as system inputs, while the COMPAMM model uses slip ratios and
wheel angles. Therefore the resulting slip ratios from the Simulink simu-
lations have been used as inputs to the COMPAMM model. Results of the
simlations are shown in Figure 16.

Tt is clear that the two models behave qualitatively similar, even though
there are minor discrepances.
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Figure 13 Trace of vehicle path, with tire-road contact force vectors.
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Figure 14 Snapshot of vehicle during front wheel left turn and braking.
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Figure 16 Comparison between Simulink and MBS simulation.
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A. Simulation Example Plots

Figure 17 Vehicle (fifth wheel) longitudinal U and lateral ¥V speed.
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Figure 18 Longitudinal U and lateral V accelerations for fifth wheel, tractor

CM and semi-trailer CM. A rule of thumb is that rollover may occur for lateral
accelerations greater than approximately 0.4 g.
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Figure 19 Wheel speeds W and vehicle longitudinal I/ and lateral V speed at
the wheel positions. Note the front wheel lock at £ ~ 37 s.
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Figure 20 Braking torques T and wheel steering angles §. Note how the braking
torque drops off as the front wheels lock.
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Figure 21 Articulation angle i, and rate of change of articulation angle .

31




32

r [rad/s]

ir [rad]

1

20

0 5 10 15 25 30 35 40
t]s]
Figure 22 Tractor yaw velocity #, and orientation f r.
0.4 T T T T T T

0.2 T T T T 3 T
%
o !
°
‘B
o
e
e

0.2 1 1 1 i 1 L

b 10 15 20 25 30
t[s]

35

40

Figure 23 Tractor yaw acceleration 7, and articulation angle acceleration .
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Figure 24 Tire slip ratio SR, slip vector magnitude s and slip angle orientation
B. The apparent chattering of 8 is due to the value domain of the atan2 function
in Matlab, and corresponds to rounding errors when the slip vectors are aligned
parallell with the wheels. This poses no problems in the simulation, since § only
is used as arguments to trigonometrie functions that still give continous output.
Note the wheel slips as the front wheels lock at £~ 37 s.

Figure 25 Generated tire forces F, and F, in wheel coordinates.
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B. Simulink Model Source

This section lists the Matlab code for some of the routines used for the
simulations.

Matlab S-function

function [sys,x0,str,ts] = truck_sfun(t,x,u,flag,v0,vd,wd,td)
persistent data;

switch flag,

YANNNA N ANA TSN YA

% Initialization %

YAAN YA NAAAN YA

case 0,
[sys,x0,str,ts,datal=mdlInitializeSizes(v0,data);

bttt totote fetstoa

% Derivatives %

YANNA YA YN YA

case 1,
[sys,data]=mdlDerivatives(t,x,u,vd,wd,td,data);

YAYA YA AN

% Update %

YA YINYYYS

case 2,
sys=mdlUpdate(t,x,u);

VAN AN AN

% Qutputs %

I ANAN A A A

case 3,
sys=mdlOutputs{t,x,u,vd,data);

VAN TS AT AN YA

% GetTimeOfNextVarHit %

VNN AN YN YN YNANA

case 4,
sys=mdlGetTimeOfNextVarHit (t,x,u);

[N S ANA NS

% Terminate %

INNAN NN NN Y YA

case 9,
sys=mdlTerminate(t,x,u};

FYAYAN AN SN NS S YA
% Unexpected flags %
Tttt lototo oot tatototoToto o oo
otherwise
error([’Unhandled flag = ’,num2str(flag)]l);
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¢ mdlInitializeSizes

¥ Return the sizes, initial conditions, and sample times for the S-function.
°/°— SS=EoTE==S —mes== == ===
%

function [sys,xO,str,ts,data]=mdlInitia1izeSizes(vO,data)

sizes = simsizes;

data = zeros(108,1);

sizes.NumContStates = 14;
x0 = zeros{l,sizes.NumContStates);
sizes.NumDiscStates = 0;

sizes.NumOutputs 1 +length(data);

sizes.NumInputs = 12;
sizes.DirFeedthrough = O;
gsizes,NumSampleTimes = 1; Y at least one sample time is needed

sys = simgsizes(sizes};
x0(1) = v0/100;

str = [];
+s = [0 0];
Y end mdlInitializeSizes

A

%_——"‘ == === =

% mdiDerivatives
% Return the derivatives for the continucus states.

Y====m==cm=s====s=zss=m== === == === mm=sosm===
A

function [sys,data]=mdlDerivatives(t,x,u,vd,wd,td,data)

) longitudinal velocity at fifth wheel in tractor coordinates

hV lateral velocity at fifth wheel in tractor coordinates

%o yaw rate

% dpsi articulation angular velocity

% ir  yaw

% psi articulation angle

% x0 fifth wheel position in global coordinates

% y0  fifth wheel position in global coordinates
hu wheel velocitites

U = x(1)*100;

Vo= x(2);

r = x(3);
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dpsi = x(4);

ir = x{(B);
psi = x(6);
x0 = x(7);
yo = x(8};

Wi = x(9)*100;

W2 = x(10)*100;
W3 = x(11)*100;
W4 = x(12)%100;
W5 = x(13)%100;
W6 = x(14)%100;

% wheel steering angles
deltal = u(1);

delta? = u(2);
delta3 = u(3);
deltad = u(4);
deltab = u(b);
deltad = u(6);

% wheel torques (negative braking, positive driving)
b = 5O;

Ti = —atan(Wixp)*u(7)*2/pi*1000;
T2 = -atan(W2¥b)*u(8)*2/pi*1000;
T3 = -atan{W3+*b}*u(9)*2/pi*1000;
T4 = —atan(W4*b)*u(10)*2/pi*1000;
T5 = —atan(Woxb)*u(11)*2/pi*1000;
T6 = -atan(W6*b)*u(12)*2/pi*1000;

cospsi = cos(psi);
ginpsi = sin(psi);

cosir = cos(ir);
sinir = sin(ir);

% longitudinal velocities at wheel positions in vehicle coordinates

Ut = (Utvd.yfxr);
U2 = (U-vd.yf*r);
U3 = (U+vd.yr*r);
U4 = (U-vd.yr*r);
U5 = (Ukxcospsi + Visinpsi + vd.yt*(r+tdpsi));
U6 = (Uxcospsi + V*sinpsi - vd.yt*(r+dpsi));

% lateral velocities at wheel positions in vehicle coordinates
Vi = Vevd.alxr;

V2 = V+vd.alsr;

V3 = V-vd.blx*r;

V4 = V-vd.bl*r;

V6 = -Usxsinpsi + V*cospsi - vd.b2*(r+dpsi);

V6 = -Ussinpsi + V*cospsi - vd.b2+*(r+dpsi);

% longitudinal velocities at wheel positions in wheel coordinates
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ul = cos(deltai)*Ul + sin(deltal)=*Vi;
u2 = cos(delta?)*U2 + sin(delta2)*VZ;
u3 = cos(delta3)*U3 + sin(delta3)*V3;
w4 = cos(deltad)*U4 + sin(deltad)*V4;
b = cos{deltad)*U5 + sin(deltab)*Vh;
u6 = cos(deltad)*Us + sin(deltab)*VE;

¥ lateral velocities

at wheel positions in wheel coordinates

vt = -sin(deltal)*Ui + cos(deltal)*Vi;
v2 = —sin(delta2)*U2 + cos(deltal)*V2;
v3 = -sin(delta3)*U3 + cos{delta3)=*V3;
v4 = -sin(deltad)*U4 + cos(deltad)*V4;
v5 = -sin(deltab}*Us + cos(deltab)*V5;
v6 = -sin{delta6)*UB + cos(deltal)*V6;
g =9.8;

% normal forces

mu = 1;

Fzi = vd.mil/4*g*mu;

Fz2 = vd.ml/4*g+mu;

Fz3 = (vd.ml+vd.m2)/4%g+mu;

Fz4 = (vd.ml+vd.m2)}/dkgHmu;

Fzb = vd.m2Z/4*gwmu;

Fz6 = vd.m2/4*gxmu;

% computation of tire slips and tire/road contact forces

t
)
h
i
pA
b

Fx, Fy tire/road contact forces in wheel coordinates

SR slip ratio

g slip vector magnitude

slip direction

mux, muy tire/road friction coefficients in vehicle coordinates

function [Fx,Fy,SR,s,betal combinatormu{vx,vy,vw,Fxmodel,Fymodel,xdata,ydata

[muxt,muyl,SR1,s1,betal] = combinatermu(ui,vi,
wd.r*Wl, td.xmodel,td.ymodel,
td.xdata,td.ydata);

Fxl = muxixFzi;

Fyl = muylsFzl;

X1 = cos(deltal)*Fx1 - sin(deltal)+Fyl,;

¥1 = sin(deltal)*Fxl + cos(deltal)=*Fyi;

[mux2,muy2,SR2,s2,beta2] combinatormu(u2,v2, ..
wd.r*W2,td. xmodel, td.ymodel,
td.xdata,td.ydata};

Fx2 = mux2xFz2;
Fy2 = muy2+Fz2;
%2 = cos(delta2)*Fx2 - sin(deltal2)=*Fy2;
Y2 = sin(delta2)*Fx2 + cos(delta2}*Fy2;

[mux3,muy3,SR3,s3,beta3] combinatormu(u3,v3,
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wd.r*W3,td.xmodel,td.ymodel, ...
td.xdata,td.ydata);
Fx3 = mux3*%Fz3;
Fy3 = muy3*Fz3;
X3 = cos(deltad)*Fx3 - sin(deltald)*Fy3;
¥3 = gin(delta3)*Fx3 + cos(delta3)*Fy3;

[mux4,muy4,SR4,s4,betad] = combinatormu (uéd,vé,
wd.r*W4,td.xmodel,td.ymodel, ...
td.xdata,td.ydata);

Fx4 = muxd*Fz4d;

Fy4 = muy4xFz4;

%4 = cos(deltad)*Fx4 - sin(deltad)*Fy4;

Y4 = sin(deltad)*Fx4 + cos(deltad)*Fy4;

[

{mux5 ,muy5,SR5,s5,betab]l = combinatormu(ub,vs,
wd . r*W5,td. xmodel , td.ymodel, ..
td.xdata,td.ydata);

Fxb = muxb*Fzb;

Fy5 = muyb*Fzb;

X5 = cos{deltab)*Fx5 - sin(deltab)*Fy5;

Y5 = sin(deltab)*Fxb + cos(deltab)*Fy5;

[mux6 ,muy6,SR6,56,betadl = combinatormu(ué,vé,
wd.r*W6,td. xmodel ,td.ymodel,
td.xdata,td.ydata);

Fx6 = mux6*Fz6;

Fy6 = muy6+Fz6;

X6 = cos(deltaB)*Fx6 - sin(deltaB)*Fy6;

Y6 = sin(deltaB)*Fx8 + cos{deltaB)*Fy6;

% Axdx/dt = B

AC1,1) = vd.ml + vd.mZ;
ACL,2) = O

A(1,3) = vd.m2*vd.x2*sinpsi;
A(1,4) = vd.m2%vd,x2%sinpsi;
A(2,1) = 0;

A(2,2) = vdé.m1l + vd.m2Z;
A(2,3) = vd.ml#vd.x1 - vd.m2*vd.x2%cospsi;
A(2,4) = -vd.m2xvd.x2*cospsi;
A{3,1) = 0;

A(3,2) = vd.ml*vd.xi;

A(3,3) = vd.Ii;

A(4,1) = -vd.m2+vd.x2*sinpsi;
A(4,2) = vd.m2+vd.x2%cospsi;
A(4,3) = vd.I2;

Af4,4) = vd.12;

B(1) = (vd.mi+vd.m2)*V*r + vd.mixvd.x1l*xr"2 - vd.m2*vd,x2*(r+dpsi) "2*cospsi ..
+ X1 + X2 + X3 + X4 + (X56+X6)*cospsi - (¥Y5+Y6)*sinpsi;
B(2) = —(vd.ml+vd.m2)*Ukr - vd.m2*vd.x2+(r+dpsi) "2*sinpsi + Y1 + Y2 ...
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+ Y3 + Y4 + (Yb+Y8)*cospsi - (Xb+X6)*sinpsi;
YB(3) = vd.al*(Y1+Y2) - vd.bl¥(Y3+Y4) + vd.yfx(X1-X2) ...
% + vd.yr*(X3-X4);

B(3) = -vd.mixvd.xi*xUsr + vd.al*(¥1+Y2) - vd.b1*{Y3+Y4) + vd.yf*x(X1-X2) ...

+ vd.yr*(X3-X4);
YB(4) = -vd.m2%vd.x2%dpsi* (Uscospsi+V+sinpsi) - vd.b2#(Y6+Y6) + vd.yt* .
h (X5-X6) ;
B(4) = vd.m2¥vd.x2*r*(Uxcospsi+V*sinpsi) - vd.b2x(Y5+Y6) + vd.yt* ...
{X5-X6);

sys = [A\B’; r; dpsi ; cosir¥U - sinirxV; sinir* + cosir*V;
1/wd. I*(T1-wd.r*Fxi); 1/ud.Ix(T2-wd.r*Fx2); 1/wd.I* ...
(T3-wd.r*Fx3); 1/wd.I*(T4-wd.r*Fx4); 1/wd. Ix(T5~ud.r*Fx5) ;
1/wd. I*(T6-wd,.r*Fx6)];

sys(1) = sys(1)/100;
sys(9:14) = sys(9:14)/100;

dU = sys(1)*100;
dv = sys(2);
dr = sys(3);

ddpsi = sys(4);

% CG accelerations

duo = du - r=V;

dv0 = 4av + r=U;

dUi = dU - r~2xvd.xl - r*V;
dvl = dV + dr*vd.x1 + r*U;

dU2 = (dU + Vxdpsi)#*cospsi + (dV - Uxdpsi)*sinpsi + (r + dpsi)"2%vd.x2 ...

- (r + dpsi)*(-Uxsinpsi + V*cospsi);
dv2 = -(dU + Vxdpsi)#sinpsi + (dV - Uxdpsi)#cospsi - (dr + ddpsi)*vd.x2 .
+ (r + dpsi)*(Ukcospsi + V¥sinpsi);

data = [U; V; r; dpsi; ir; psi; =0; yO; W1l; W2; W3; W4; Wb; W6;...
Fx1; Fx2; Fx3; Fx4; Fxb; Fx6; Fyl; Fy2; Fy3; Fy4;
Fy5; Fy6; SR1; SR2; SR3; SR4; SRb5; SRE; sl; 82; 83; s4; sb;
s6; betal; beta2; betad; betad; betab; betad; X1; X2; X3; X4;
X5; X6; Y1; Y2; Y3; Y4; Yb; Y6; Fzl; Fz2; Fz3; Fz4; Fzb;
Fz8; ul; u2; u3; u4; ub; ub; vi; v2; v3; v4; vb; v6;
T1; T2; T3; T4d; Th; T6; deltal; delta2; delta3d; deltad;
deltab; deltas; Ul; U2; U3; U4; UB; Us; Vi; V2; V3; V4; V5;
V6; dU; dV; dr; ddpsi; dUO; 4vO; dul; dvi; du2; dval;

% end mdlDerivatives

% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
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% requirements.

<
%
function sys=mdlUpdate(t,x,u)

sys = [1;
% end mdlUpdate

%
Ymmm===sm===ssssms====== m=m==m== —m==ssosmoom=s=====c=o==
% mdlOutputs

% Return the block outputs.
% SEmoooRESSRE=SSSSRREIS= Co=s=s==ommx e T T L e
A

function sys=mdlOutputs(t,x,u,vd,data)

sys = [t; datal;
% end mdlOutputs

Y
Ymmmmms s=mmm==== m=== R —=====sm====-
% mdlGetTimeOfNextVarHit

¥ Return the time of the next hit for this block. Note that the result is
¥ absolute time. Note that this function is only used when you specify a
¥ variable discrete-time sample time [-2 0] in the sample time array in

% mdlInitializeSizes.

Y=mm=====s==c==s====== == s======c ———comsmmo—oossss=ss=mos=d
%

function sys=md1GetTimeDfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

% mdlTerminate
% Perform any end of simulation tasks.

% —————— == === S=smsEmnoooSTmE o=====

function sys=mdlTerminate(%,x,u)
sys = [1;
% end mdlTerminate

Tire Model

function [mux,muy,SR,s,beta] = combinatormu(vx,vy,vw,xmodel,ymodel,xdata,ydat
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% COMBINATOR Slip Circle Model for tire combined braking and cornering forces

A
t
h
)
h
pA
A
%
h
h
%
2
A
A
h
h
pA
A
h
h
h
h
A
h
pA
%

SR =
v:

[Fx,Fy] = combinator(alpha,SR,tiredata) computes the combined
braking and cornering forces based on models for pure braking and pure
cornering.

Inputs:
alpha - tire slip angle in radians
SR - slip ratio (w¥R-v*cos(alpha)/(v*cos{(alpha)))
Fz - normal force
Fxmodel - Name of function including pure driving/braking tire model
with calling syntax Fx = Fxmodel(SR,Fz,varargin)
Fymodel - Name of function including pure cornering tire model

with calling syntax Fy = Fymodel(sin(alpha),Fz,varargin)
varargin - 2*N optional arguments. Arguments 1:N are passed
to Fxmodel, arguments N+1:2%N are passed to Fymodel.

A note on sign conventions (accordning to SAE standards):
sgn(SR) = sgn(Fx)
sgn{alpha) = -sgn(Fy)
Reference: Schuring et al. "A Model For Combined Tire Cornering and

Braking Forces", SAE Paper 960180, 1996

Magnus G&fvert 2000
DICOSMOS

{(vw-vx) /max (abs(vx),abs{vw));

sqrt (vx~2+vy~2);

sinalpha = vy/v;

Sﬁ
beta

mux0
rnuy0

al
al

<

mu

mux
muy

1]

min(sqrt(SR"2 + sinalpha”2),1);

1

= atan2(-sinalpha,SR};

1l

abs(feval (xmodel,sign(SR)*s,xdata));
abs{feval {ymodel,-sign{sinalpha)*s,ydata));

<

Bx(mux0 + muy0);
Lo* (mux0 - muy0);

a0 + alxcos{(2+beta);

mu*cos (beta);
mursin(betal;

function Fx = fxmodel(s,Fz,table)

Fx =
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interpl(table(:,1),table(:,2),s)*Fz;




function Fy = fymodel(s,Fz,table)

Fy = interpl(table(:,1),table(:,2),s)*Fz;




