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Abstract

A compilation of available test results relating to the strength of glulam beams with
holes is presented. A total of 182 individual tests from 8 different sources are de-
scribed concerning material, test setup and recorded crack loads and failure loads.
A brief description of some available methods for strength analysis of timber is given
and specific calculation approaches for the strength of glulam beams with holes are
compiled. Design rules according to some European codes are reviewed and com-
pared to experimental test results. Fundamentally different design approaches are
found among the reviewed codes and the comparison reveals significant discrepan-
cies between the predicted strengths according to the different codes.
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Notations

Loads
P Point load

Cross sectional forces
Vc0 Shear force at hole center at crack initiation
Vc Shear force at hole center at crack through entire beam width
Vf Shear force at hole center at failure
Mc0 Bending moment at hole center at crack initiation
Mc Bending moment at hole center crack through entire beam width
Mf Bending moment at hole center at failure

Parameters describing beam and hole geometry
L Length of span
Ltot Total length of beam
H Beam height
T Beam width
l Distance to center of hole from closest support
φ Hole diameter of circular hole
a Hole length of rectangular hole
b Hole height of rectangular hole
c, d, e, f Distances
gP Length of steel plate at point load
gS Length of steel plate at support
r Radius of corners of rectangular holes
rm Radius of curvature for curved beams
n Total number of tests in a beam series
i Specific test number in a test series

Location of cracks
lb Left bottom
lt Left top
rb Right bottom
rt Right top
m Failure due to bending (not at hole)

v
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Material strength parameters
fm Bending strength
ft,0 Tensile strength parallel to grain
ft,90 Tensile strength perpendicular to grain
fc,0 Compressive strength parallel to grain
fc,90 Compressive strength perpendicular to grain
fv Shear strength
fR Rolling shear strength
f∗,∗,k Characteristic strength
f∗,∗,d Design strength

Material stiffness parameters
E‖ Young’s modulus parallel to grain
E⊥ Young’s modulus perpendicular to grain
G Shear modulus
GR Rolling shear modulus
ν Poison’s ratio

Fracture mechanics parameters
Gf Fracture energy
Ki Stress intensity factor
Kic Critical stress intensity factor (Fracture toughness)
Gi Energy release rate (Crack driving force)
Gic Critical energy release rate (Crack resistance)

i=I, II, III depending on mode of loading
J J-integral
Jc Critical value of J-integral
xm Integration length for mean stress method
a0 Length of fictitious crack for initial crack method
k Mixed mode ratio
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Chapter 1

Introduction

1.1 Background

The mechanical properties of wood are very different for different type and orienta-
tion of stresses. Wood is very weak when exposed to tensile stress perpendicular to
grain. Hence, special attention should be given when designing a timber structure
in order to avoid these stresses but this is however not always possible. It is for
example many times necessary, or at least desirable, to make holes through glulam
beams. Introducing a hole in a glulam beam significantly changes the distribution
of stresses in the vicinity of the hole. Tensile stresses perpendicular to grain appear
and the capacity of the beam can accordingly be decreased. The perpendicular to
grain tensile type of fracture is moreover commonly very brittle which means that
safe strength design is of outmost importance. Two examples of constructions with
glulam beams with holes are shown in Figure 1.1.

1.2 Aim and scope

The aim of this report is first and foremost to compile as many as possible of the
performed full scale tests of the capacity of glulam beams with a hole. The com-
pilation deals almost exclusively with unreinforced holes but extensive testing has
also been carried out on glulam beams with holes reinforced in different ways. An
example of the test setup for a full scale test is shown in Figure 1.2.

A secondary aim is to give an overview of available methods for tensile frac-
ture analysis of wooden structural elements and in particular a brief summary of
approaches presently and previously used to estimate the load bearing capacity for
glulam beams with holes. A review of design recommendations concerning glulam
beams with holes according to different European codes is also presented as well as
a comparison of these recommendations with test results.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of constructions with glulam beams with holes. Top: Restau-
rant Ideon, Lund, Sweden. Bottom: Indoor swimming pool, Väster̊as, Sweden (with
permission from Martinsons Trä AB).
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Figure 1.2: Full scale test glulam beam with holes, MPA Stuttgart [32]

1.3 Disposition

This report is organized as follows. A short introduction to the topic is given in
Chapter 1. Then, in Chapter 2, test results relating to the strength of glulam beams
with one or more holes found in literature are presented and summarized. Chapters
3, 4 and 5 deals with methods for of calculation; methods of tensile fracture of wood
analysis in general (Chapter 3), methods used for calculating the strength of glulam
beams with holes (Chapter 4) and design rules according to some European codes
(Chapter 5). Some concluding remarks are presented in Chapter 6.
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Chapter 2

Experimental tests

2.1 General remarks

A compilation of tests on glulam beams with circular or rectangular holes is presented
with a total of 182 tests from 8 different sources. The tests from each source are
described in separate sections concerning material, test setup and results. All test
results are also summarized in the end of this chapter. The materials are described
in terms of strength class, moisture content and sometimes additional information
depending on what is specified in the original source.

The test setups used can all be narrowed down to five setups according to Figures
2.1, 2.2, 2.3, 2.4 and 2.5. In order to present all tests in a convenient and consistent
way, two types of tables are used; Beam geometry and test setup-tables and Hole
design and test result-tables.

A Beam geometry and test setup-table of principle is shown in Table 2.1. The
tests are divided into Beam series which is a series of beams with identical beam
geometry; L, Ltot, H, T , c, d, e, f , gP and gS. They are given names corresponding
to the first three letters in the author’s name or one of the authors’ names and
sometimes followed by letters a - f when there are several series from the same
author/authors. The number n in the table is the number of tests performed in the
Beam series (i.e. on the same beam geometry). Several different hole designs are
often tested within the same beam series. The design of the holes and results of the
tests are presented in the Hole design and test result-tables which looks like Table
2.2. The first column of these tables holds the Test series notation, which is the
name of the Beam series followed by a number where all tests with the same number
are identical with respect to test setup, beam geometry and also hole design. The
notation from the original source (if there is one) is given in the second column. The
third column holds parameters describing the design of the tested hole according to
Figure 2.6. The distance from closest support to center of hole l and the bending
moment to shear force ratio M/(V H) at hole center are presented in the fourth and
fifth columns respectively. The specific test number i is given in the sixth column.
Columns 7-9 hold values of the shear force or the bending moment and the last
column shows the location of cracks (LoC) which are defined in Figure 2.6.

5
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Figure 2.6: Notations for hole dimensions and location of cracks.

Table 2.1: Beam geometry and test setup, Author’s name or Authors’ names, Year.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
XXX(x) 1, 2, 3 Geometry parameters according to Figure 2.1, 2.2 or 2.3

4 or 5

Table 2.2: Hole design and test results, Author’s name or Authors’ names, Year.
For holes placed in shear force dominated regions

Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
XXX(x)-N 1

2...
mean
std

For holes placed in pure moment regions
Test Original Hole design l M i Mc0 Mc Mf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kNm] [kNm] [kNm]
XXX(x)-N ∞ 1

2...
mean
std



8 CHAPTER 2. EXPERIMENTAL TESTS

The extent of presented test data vary significantly between the various sources.
Some of the authors present only the ultimate loads or the loads when cracks start
to appear, while others present several levels of the load during the test procedure.
The authors of the sources used in the compilation have further not used exactly the
same definitions of the different load levels and sometimes the definitions are rather
unclear. Hence, some simplifications are almost inevitable in order to compile all
test in a convenient way. In this report, three different load levels denoted Vc0, Vc

and Vf are defined according to Figure 2.7. The shear force at crack initiation Vc0

is defined as the shear force at hole center when a crack opens up but does not yet
spread across the entire beam width. Vc is defined as the shear force at hole center
when the crack has propagated over the entire beam width and Vf is defined as the
shear force at failure. Failure can be due to crack propagation to the very end of
the beam or global bending failure. For hole placed in pure moment regions, the
corresponding definitions of bending moments Mc0, Mc and Mf are used. When the
definitions used in the original source are unclear or do not quite agree with the
definitions stated above, the test results are compiled in what is thought to be the
best possible way. The values of the cross sectional forces are presented as reported
in the original sources. No corrections due to influence of the dead-weight of the
beams are added in this compilation.

Vc0 Vc Vf

Figure 2.7: Illustration of crack patterns for crack location lb at load levels Vc0, Vc

and Vf . The same crack patterns are valid for crack locations lt, rb and rt.

Some tests are very closely described concerning beam geometry, material and test
setup while others are described in a more brief manner. In the case when some
parameters are not specified in the original source, a question mark (?) is used in
the tables. Furthermore, the tests have been performed at different locations by
different personnel which means that there might be a significant variation in the
test procedures. These are some important remarks to keep in mind when reading
this report. Material strength- and stiffness properties of glulam strength classes
as defined in various codes are presented in Table 2.3. The glulam strength classes
included in the table presented are those used in the tests.
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Table 2.3: Material properties of used glulam strength classes.
BKR SS-EN 1194 DIN 1052 SIA 1645

[35] [40] [33] [37]
L40 GL32h GL32h Klasse B

Characteristic strengths [MPa]

fm 331 321 321 12
ft,0 231 22.51 22.5 10
ft,90 0.5 0.5 0.5 0.15
fc,0 36 29 29 10
fc,90 8 3.3 3.3 ?
fv 42 3.8 3.5 1.2
fR 2 1.0 1
Stiffness properties [MPa]

E‖ 13000 137003 137004 10000
E⊥ 450 4603 4604 300
G 850 8503 8504 500
GR 85

1 = For beams with height ≥ 600 mm.
2 = For beams with rectangular cross section
3 = Mean value.
4 = Mean value, characteristic value = 5/6 · mean value
5 = Allowable stress according to SIA 164.
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2.2 Bengtsson and Dahl, 1971

Bengtsson and Dahl performed tests on glulam beams with holes within their mas-
ter’s dissertation Inverkan av h̊al nära upplag p̊a h̊allfastheten hos limträbalkar (In-
fluence of holes near support on the strength of glulam beams) [4] from 1971. Re-
inforced and unreinforced holes of different sizes and shapes were tested. The rein-
forcement consisted of 10 mm thick plywood boards which were glue-nailed to both
sides of the beams.

Material

All beams were delivered by AB Fribärande Konstruktioner Töreboda, of strength
class L40 and made of spruce. The beams where kept at constant climate for six
weeks prior to testing and the average moisture content at testing was 9-10 %.

Test Setup

A total of six beams with two symmetrically placed holes each were tested. The
beams where tested in a three-point-bending test according to Figure 2.1. The
dimensions of the used glulam beams are presented in Table 2.4. Both circular and
rectangular holes were investigated. For the rectangular holes, the corners were not
rounded but were instead sharp. The beams were all stabilized in the weak direction
at the two supports and also at the middle where the point load acted. Strains were
measured at one of the two holes of each beam. If failure occurred at the hole where
strains were not measured, the beam was mended at this hole and then loaded again.
This procedure resulted in two values of the failure load for some of the beams.

Table 2.4: Beam geometry and test setup, Bengtsson and Dahl, 1971.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
BEN 1 9 5300 5000 500× 90 2500 2500 - - ? ?

Results

The hole designs and test results are shown in Table 2.5. Bengtsson and Dahl
recorded and presented the ”failure loads” for all beams but there is no explicit
definition of this load. It is also stated that cracks appeared at load levels of 70-90
% of the ”failure loads” in most of the tests. The recorded loads are thus assumed
to correspond to the definition of Vf in this report.
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Table 2.5: Hole design and test results, Bengtsson and Dahl, 1971.
Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
BEN-1 A1 φ250 600 1.20 1 37.5 lb,rt

2 39.2 lb,rt
mean 38.4
std 1.2

BEN-2 B1 300× 150, 0 600 1.20 1 38.8 lb,rt
2 39.2 lb,rt

mean 39.0
std 0.3

BEN-3 C φ150 600 1.20 1 52.5 m
BEN-4 D 200× 100, 0 600 1.20 1 48.8 lb,rt

2 50.3 lb,rt
mean 49.6
std 1.1

BEN-51 A2 φ250 600 1.20 1 55.0 m
BEN-61 B2 300× 150, 0 600 1.20 1 78.5 lb,rt

1 = Reinforced hole

2.3 Kolb and Frech, 1977

Tests on glulam beams with holes are presented in Untersuchungen an durchbroch-
enen Bindern aus Brettschichtholz (Analyses of glulam beams with holes) [20] by
Kolb and Frech from 1977. Both reinforced holes and unreinforced holes were tested
but the tests on reinforced holes are not included in this compilation.

Material

The lamellae thickness was 29 mm and the moisture content at the time of testing
was 10 %. The properties of the glulam is not further specified.

Test setup

A total of six different configurations concerning hole geometry and placement for
unreinforced holes were tested. Each configuration was applied to two beams result-
ing in a total of 12 test as can be seen in Table 2.6. The tests were all performed
as four-point-bending test according to Figure 2.2 with the hole placed in a shear
force dominated region or placed in a region with pure bending moment. The holes
seem to have had rounded corners but the radius is not to be found in the paper.
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Table 2.6: Beam geometry and test setup, Kolb and Frech, 1977.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
FRE 2 12 8400 8000 550× 80 2000 2000 4000 - ? ?

Results

The hole designs and the results are presented in Table 2.7. The recorded loads are
maximum loads. For the beams with holes placed in shear force dominated region,
the maximum load corresponds to crack growth from hole to end of beam. For the
beams with a hole placed in pure moment region the capacities were limited by
bending failure at midspan.

Table 2.7: Hole design and test results, Kolb and Frech, 1977.
Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
FRE-1 II-D 250× 250, ? 500 0.91 1 31.2 lb,rt

2 34.2 lb,rt
mean 32.7
std 2.1

FRE-2 II-G 250× 150, ? 500 0.91 1 42.0 lb,rt
2 46.0 lb,rt

mean 44.0
std 2.8

FRE-3 II-E 250× 250, ? 1000 1.82 1 33.0 lb,rt
2 34.6 lb,rt

mean 33.8
std 1.1

FRE-4 II-H 250× 150, ? 1000 1.82 1 38.2 lb,rt
2 32.6 lb,rt

mean 35.4
std 4.0

Test Original Hole design l M i Mc0 Mc Mf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kNm] [kNm] [kNm]
FRE-5 III-C φ300 4000 ∞ 1 140.0 m

2 140.0 m
mean 140.0
std 0.0

FRE-6 III-D 300× 300, ? 4000 ∞ 1 133.6 m
2 140.0 m

mean 136.8
std 4.5
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2.4 Penttala, 1980

Tests on glulam beams with holes have been carried out at Helsinki University of
Technology. The results are presented by Penttala in the report Reiällinen liimapuu-
palkki (Glulam beams with holes) [21] from 1980.

Material

The material used for the glulam beams are of quality L40D with 33 mm thick
lamellae. The beams were kept in indoor climate three weeks prior to the tests
resulting in a moisture content of 8.2 % (std 0.3 %). The mean density for the
beams was 457.8 kg/m3 (std 36.2 kg/m3).

Test setup

The test series consists of tests on two different beam geometries concerning cross
section and length and also on circular as well as on rectangular holes. A total
of ten tests were carried out. All tests were performed as three-point-bending test
according to Figure 2.1 with the hole located in a region subjected to both shear
force and bending moment. The geometries of the beams are presented in Table 2.8.
The corners of the rectangular holes seem to have been rounded but the radius is
not specified in the report.

Table 2.8: Beam geometry and test setup, Penttala, 1980.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
PENa 1 6 4300 4000 500× 90 2000 2000 - - ? ?
PENb 1 4 5400 5000 800× 115 2500 2500 - - ? ?

Results

The hole designs and test results are presented in Table 2.9. Two load levels were
defined; load at first visible crack and load at failure which here corresponds to the
definitions of Vc0 and Vf .
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Table 2.9: Hole design and test results, Penttala, 1980.
Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
PENa-1 P-1 φ255 600 1.20 1 33.8 lb,rt
PENa-2 P-2 φ250 1050 2.10 1 31.6 lb,rt
PENa-3 P-3 φ150 600 1.20 1 51.3 lb,rt
PENa-4 P-6 200× 200, ? 800 1.60 1 33.8 lb,rt
PENa-5 P-7 400× 200, ? 800 1.60 1 25.0 31.3 lb,rt
PENa-6 P-8 600× 200, ? 600 1.60 1 20.8 30.0 lb,rt
PENb-1 P-4 φ400 820 1.03 1 57.1 65.91 lb,rt
PENb-2 P-5 φ300 1600 2.00 1 89.5 lb,rt
PENb-3 P-9 400× 200, ? 1000 1.25 1 69.1 lb,rt
PENb-4 P-10 200× 200, ? 1000 1.25 1 52.5 84.4 lb,rt

1 = Failure by crack propagation due to poor glue line bonding.

2.5 Johannesson, 1983

Johannesson has performed several series of tests on glulam beams with holes which
are presented in the doctoral thesis Design problems for glulam beams with holes [14]
from 1983. A total of 45 unreinforced glulam beams with varying cross section, hole
types and hole placement were tested. Out of these 45 tests, one test in long term
loading is excluded but the remaining 44 test are included in this compilation. Five
papers are appended to the doctoral thesis, three of which concerns tests performed
by Johannesson, one concerning tests presented by other authors and one concerning
calculation methods for glulam beams with holes.

2.5.1 Paper I

Paper I is titled Holes in Plywood Beams and Glued Laminated Timber Beams [15]
and presents 13 tests on glulam beams with circular and rectangular holes.

Material

All beams were of strength class L40, made of Swedish spruce (Lat. Picea Abies)
and glued with a phenol-resorcinol glue. Two different lamellae thicknesses were
used, 33 1/3 mm and 45 mm. The placements of the holes were made in order to
avoid big knots where cracks were expected to appear. The beams were prior to
testing kept in an environment of 20-22 ◦C and RH 60-70 % which resulted in a
moisture content of 11-15 % in the beams at the time of testing.

Test Setup

The tests were performed on six different beams with a total of 13 holes. For five
out of the six beams, two holes were tested for each beam. These beams were loaded
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with a single point load at midspan and the holes were all placed in the shear force
dominated region of the beam. The beams were made with a total length greater
than the span which made it possible to test two holes for each beam but still having
only one hole in the stressed part of the beam for each test. In the sixth beam, a
third hole was also made. This hole was placed at midspan and the beam was
subjected to one point load on each side of the hole which means the hole is placed
in an almost pure moment region of the beam. This test arrangement thus results in
13 separate tests, according to Table 2.10. The test setups and notations are shown
in Figures 2.1 and 2.2. The corners of the rectangular holes were rounded with a
radius of 25 mm and all hole surfaces were smoothed with sandpaper.

Table 2.10: Beam geometry and test setup, Johannesson I, 1983.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
JOHa 1 12 - 5000 500× 90 2500 2500 - - ? ?
JOHb 2 1 - 5000 500× 90 2000 2000 1000 - ? ?

Results

The hole designs and the results of these beam series are presented in Table 2.11.
The definitions used by Johannesson in Paper I do not correspond exactly to the
definitions used in this report in the sense that there is no distinction between Vc0

and Vc. The loads presented in the original source as ”load at first visible crack” are
here viewed as Vc. The loads here presented as failure loads Vf are in the original
source defined as the load when it was impossible to further increase the load due
to beam deflection. Location of cracks are not specified for each individual test but
are given as principal locations.
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Table 2.11: Hole design and test results, Johannesson I, 1983.
Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
JOHa-1 L1 φ250 650 1.30 1 25.7 39.5 lb,rt

2 33.4 33.4 lb,rt
mean 29.6 36.5
std 5.4 4.3

JOHa-2 L2 250× 250, 25 650 1.30 1 27.1 30.5 lb,rt
2 26.4 26.5 lb,rt

mean 26.8 28.5
std 0.5 2.8

JOHa-3 L3 φ250 1400 2.80 1 35.0 35.0 lb,rt
2 31.3 39.9 lb,rt

mean 33.2 37.5
std 2.6 3.5

JOHa-4 L4 250× 250, 25 1400 2.80 1 23.8 26.0 lb,rt
2 20.5 25.2 lb,rt

mean 22.2 25.6
std 2.3 0.6

JOHa-5 L5 φ250 300 0.60 1 28.8 44.61 lb,rt
2 38.8 38.81 lb,rt

mean 33.8 41.7
std 7.1 4.1

JOHa-6 L6 φ125 300 0.60 1 -2 40.21 lb,rt
2 -2 40.01 lb,rt

mean - 40.1
std - 0.1

Test Original Hole design l M i Mc0 Mc Mf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kNm] [kNm] [kNm]
JOHb-1 L5-3 φ250 2500 ∞ 1 114.0 122.71 lt,rt

1 = Maximum load.
2 = No cracks.

2.5.2 Paper II

Paper II is titled On the Design of Glued Laminated Timber Beams with Holes [16]
and deals with prior test performed by Dahl and Bengtsson, Kolb and Frech and
the tests from Paper I. These tests are in this report presented in Sections 2.2, 2.3
and 2.5.1.

2.5.3 Paper III

Paper III, Tests on Two Glued Laminated Timber Beams [17], deals with the testing
of two different beams. One beam, denoted Beam 1 in the original source, was first
subjected to dead-weight loading for 2 days and strains at various positions were
measured. The beam was after that loaded by a single point load of 30 kN at
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midspan and strains were recorded during a time period of two months. A short
term test was thereafter performed. The other of the two beams, denoted Beam 2
in the original source, was only tested in short term loading. The tests on Beam
1 are excluded from this compilation and the following sections hence only concern
Beam 2.

Material

The tested beam was delivered by Töreboda Limträ AB and made of Swedish spruce
(Lat. Picea Abies). It was of strength class L40 and glued with a phenol-resorcinol
glue with a lamellae thickness of 33 mm. Special attention was not given to climate
conditioning of the beam. Since it was kept in a dry laboratory hall, the moisture
content was believed to be 8-10 % but this was not controlled by measurements.

Test Setup

The beam was tested in a three-point-bending test according to Figure 2.1 and the
beam geometry is presented in Table 2.12. The hole was rectangular and the corners
of the hole were rounded with a radius of 25 mm.

Table 2.12: Beam geometry and test setup, Johannesson III, 1983.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
JOHc 1 1 4000 3800 400× 140 1900 1900 - - ? ?

Results

The hole design and the result of this test are presented in Table 2.13. It is in the
original source stated that the beam was ”severely cracked” at the hole at a load of
30 kN which here is considered as Vc. The load was thereafter increased to 37 kN
before unloading but whether the reason for unloading was failure is unclear.

Table 2.13: Hole design and test results, Johannesson III, 1983.
Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
JOHc-1 Beam 2 600× 200, 25 900 1.58 1 30 371 lb

1 = Maximum load.

2.5.4 Paper IV

Paper IV, Spänningsberäkning av anisotropa skivor (Stress calculation of anisotropic
plates) [18], deals with theory concerning calculation methods.



18 CHAPTER 2. EXPERIMENTAL TESTS

2.5.5 Paper V

This paper, Limträbalkar med h̊al (Glulam beams with holes) [19], holds the most
extensive of Johannesson’s beam series with a total of 30 separate tests.

Material

The beams used for the tests presented in Paper V were supplied by two separate
Swedish producers, Töreboda Limträ AB and Martinsons Trävaru AB. They were
all of strength class L40, made of Swedish spruce (Lat. Picea Abies) and glued with
a phenol-resorcinol glue. The moisture content of the beams at testing was 11-15 %.

Test setup

The tests were performed on 16 glulam beams with circular or rectangular holes. In
14 out of the 16 beams, circular or rectangular holes were made at a distance of 1/4
of the span length L from each support. The second hole was made after testing the
first hole for each beam. When testing the second hole, the beam was reinforced at
the first hole using a steel box. Since these holes were placed at a distance from the
supports of 1/4 of the span length, they were placed in a region subjected to both
shear forces and bending moment. Notations and test setup for these 14 beams are
shown in Figure 2.1. For the remaining two beams, a hole was placed at midspan
where the beams were subjected to (almost) pure bending moment achieved by one
point load on each side of the hole, according to Figure 2.2. This test arrangement
thus results in a total of 30 separate tests according to Table 2.14. The corners of
the rectangular holes were rounded with a radius of 25 mm and all hole surfaces
were smoothed with sandpaper.

Table 2.14: Beam geometry and test setup, Johannesson V, 1983.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
JOHd 1 28 ? 5000 495× 88 2500 2500 - - ? ?
JOHe 2 2 ? 5000 495× 88 1500 1500 2000 - ? ?

Results

The hole designs and the results of the tests from Paper V are presented in Tables
2.15 and 2.16. The definition of the crack load used by Johannesson for these tests
is the same as the definition of Vc used in this compilation.
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Table 2.15: Hole design and test results (JOHd), Johannesson V, 1983.
Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
JOHd-1 T2H2 φ125 1250 2.53 1 46.9 lb,rt

T7H2 2 56.4 rt
M2H2 3 >55.2 rt
M7H2 4 49.2 rt,m

mean 51.9
std 4.6

JOHd-2 T1H1 φ396 1250 2.53 1 17.7 rt
T5H2 2 16.6 lb,rt
M1H1 3 14.2 lb,rt
M5H2 4 16.0 lb,rt

mean 16.1
std 1.5

JOHd-3 T4H2 125× 125, 25 1250 2.53 1 24.4 lb,rt
T6H2 2 45.0 lb,rt
M4H2 3 50.0 lb,rt
M6H2 4 42.0 lb

mean 40.4
std 11.1

JOHd-4 T4H1 375× 125, 25 1250 2.53 1 47.2 lb,rt
T7H1 2 35.2 lb,rt
M4H1 3 33.2 lb,rt
M7H1 4 35.0 rt

mean 37.7
std 6.4

JOHd-5 T1H2 370× 370, 25 1250 2.53 1 9.0 rt
T3H2 2 6.3 rt
M1H2 3 9.8 lb
M3H2 4 11.2 lb,rt

mean 9.1
std 2.1

JOHd-6 T2H1 735× 245, 25 1250 2.53 1 11.7 lb,rt
T6H1 2 13.5 lb,rt
M2H1 3 13.4 lb,rt
M6H1 4 11.4 lb,rt

mean 12.5
std 1.1

JOHd-7 T3H1 1110× 370, 25 1250 2.53 1 4.5 rt
T5H1 2 3.8 rt
M3H1 3 4.0 rt
M5H1 4 4.4 lb

mean 4.2
std 0.3

T = Töreboda, M = Martinsons.
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Table 2.16: Hole design and test results (JOHe), Johannesson V, 1983.
Test Original Hole design l M i Mc0 Mc Mf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kNm] [kNm] [kNm]
JOHe-1 T8 1110× 370, 25 2500 ∞ 1 38.6 lt,rt
JOHe-2 M8 φ396 2500 ∞ 1 50.0 lt,rt

T = Töreboda, M = Martinsons.

2.6 Pizio, 1991

Pizio has performed tests on glulam beams with rectangular holes and these are
reported in Die Anwendung der Bruchmechanik zur Bemessung von Holzbauteilen,
untersucht am durchbrochen und am ausgeklinkten Träger (The use of fracture me-
chanics in design of timber structures, analysed on beams with holes and notched
beams) [23] from 1991. Some beams were reinforced with bolts in the vicinity of the
holes but these beams are however not included in this compilation.

Material

The beams were all of strength class B (Ger. Klasse B) according to the Swiss
timber code SIA. The moisture content at the time of testing was 10-14 % for all
beams.

Test setup

The beams were subjected to a three-point-bending test according to Figure 2.1. The
geometry and test setups for the unreiforced beams included in this compilation are
presented in Table 2.17. All rectangular holes seem to have had sharp corners.

Table 2.17: Beam geometry and test setup, Pizio, 1991.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
PIZa 1 6 1800 1620 400× 120 910 710 - - 250 180
PIZb 1 1 2000 1820 400× 120 910 910 - - 250 180
PIZc 1 1 2500 2320 400× 120 910 1410 - - 250 180
PIZd 1 3 2300 2120 400× 120 1410 710 - - 250 180
PIZe 1 6 2500 2320 400× 120 1410 910 - - 250 180
PIZf 1 2 2000 1420 400× 120 910 510 - - 250 180
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Results

The hole designs and the results of the tests are presented in Table 2.18. Pizio
defined and recorded three load levels when analysing the tests; the shear force at
crack initiation, the shear force at a sudden and significant crack propagation and
the maximum shear force. These three load levels are here assumed to correspond
to Vc0, Vc and Vf respectively.

Table 2.18: Hole design and test results, Pizio, 1991.
Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
PIZa-1 TR1 180× 180, 0 420 1.05 1 15.3 28.4 60.4 lb,rt

TR1A 2 32.8 32.8 66.9 lb,rt
mean 24.1 30.6 63.7
std 12.4 3.1 4.6

PIZa-2 TR2 180× 90, 0 420 1.05 1 26.3 52.5 76.6 rt
TR2A 2 48.1 57.3 74.4 rt

mean 37.2 54.9 75.5
std 15.4 3.4 1.6

PIZa-3 TR3 180× 10, 0 420 1.05 1 113.8 113.8 113.8 lb,rt
TR3A 2 76.6 92.8 92.8 lb,rt

mean 95.2 103.3 103.3
std 26.3 14.8 14.8

PIZb-1 TR2B 180× 90, 0 420 1.05 1 56.6 71.0 84.5 lb,rt
PIZc-1 TR3B 180× 10, 0 420 1.05 1 110.1 110.1 110.1 lb,rt
PIZd-1 TR8 360× 180, 0 700 1.75 1 20.0 23.3 26.3 lb,rt

TR8A 2 23.3 23.3 23.3 lb,rt
mean 21.7 23.3 24.8
std 2.3 0 2.1

PIZd-2 TR9 10× 180, 0 700 1.75 1 34.0 34.0 34.0 lb,rt
PIZe-1 TR8B 360× 180, 0 700 1.75 1 19.2 21.1 28.8 lb,rt
PIZe-2 TR9A 10× 180, 0 700 1.75 1 29.2 33.8 33.8 lb,rt

TR9B 2 30.8 33.8 33.8 lb,rt
mean 30.0 33.8 33.8
std 1.1 0 0

PIZe-3 TR11 180× 90, 0 700 1.75 1 44.2 46.2 46.2 lb,rt
TR11A 2 35.4 58.8 58.8 lb,rt
TR11B 3 57.7 57.7 57.7 lb,rt

mean 45.8 54.2 54.2
std 11.2 7.0 7.0

PIZf-1 TR 4 180× 180, 0 420 1.05 1 24.1 29.5 62.1 lb,rt
TR 4A 2 17.1 24.1 77.9 lb,rt

mean 20.6 26.8 70.0
std 4.9 3.8 11.2
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2.7 Hallström, 1995

Hallström’s reports Glass fibre reinforcemed laminated timber beams with holes [8]
and Glass fibre reinforcement around holes in laminated timber beams [9] from 1995
deal with investigations on reinforcement of glulam beams with circular or rect-
angular holes by glass fibre. Tests were carried out on both reinforced holes and
unreiforced holes and the latter are included in this compilation.

Material

The glulam beams used for the tests were made of Swedish spruce (Lat. Picea
Abies) and glued with phenol-resorcinol resin glue. No special attention was given
to climate conditioning of the beams but since they were kept at normal indoor
climate for a month prior to testing, the moisture content was assumed to be 6-13
%. The density of the beams varied between 350-550 kg/m3.

Test setup

The tests were all performed as three-point-bending test according to Figure 2.1
where the holes were all placed in a region subjected to both shear force and bending
moment. The geometries of the beams are presented in Table 2.19. For beams with
rectangular holes, both rounded and sharp corners were tested.

Table 2.19: Beam geometry and test setup, Hallström, 1995.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
HALa 1 15 4500 4000 315× 90 2000 2000 - - 340 170
HALb 1 5 3500 3000 315× 90 1500 1500 - - 340 170
HALc 1 1 3500 3000 315× 90 1500 1500 - - ? ?
HALd 1 4 7000 6000 585× 165 3000 3000 - - ? ?
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Results

Hallström defined the ”failure load”as the maximum load before the first visible load
decrease in the load-deflection curve. This decrease in the load-deflection curve is
most likely due to crack opening in the entire beam width and Hallström’s ”failure
loads” are thus considered correspond to the definition of Vc used in this report.
Only mean values and standard deviations are presented in Table 2.20 since the
results for the individual tests are not to be found in [8] or [9].

Table 2.20: Hole design and test results, Hallström, 1995.
Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
HALa-1 - 400× 150, 25 875 2.78 1 ?

2 ?
3 ?
4 ?
5 ?

mean 11.9 lb,rt
std 1.5

HALa-2 - 400× 150, 0 875 2.78 1 ?
2 ?
3 ?
4 ?
5 ?

mean 12.2 lb,rt
std 1.1

HALa-3 - φ150 875 2.78 1 ?
2 ?
3 ?
4 ?
5 ?

mean 24.5 lb,rt
std 3.5

HALb-1 - 400× 150, 25 875 2.78 1 ?
2 ?
3 ?
4 ?
5 ?

mean 12.2 lb,rt
std 0.5

HALc-1 - 400× 150, 25 ? ? 1 12.2 lb,rt
HALd-1 - 600× 295, 25 ? ? 1 ?

2 ?
3 ?
4 ?

mean 27.1 lb,rt
std 1.9
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2.8 Höfflin, 2005

Höfflin’s doctoral thesis Runde Durchbrüche in Brettschichtholzträger – Experiment-
elle und theoretische Untersuchungen (Round holes in glulam beams – Experimental
and theoretical analyses) [12] from 2005 deals with the capacity of glulam beams
with round holes and includes extensive experimental testing on different beam and
hole geometries.

Material

All tested beams were made of spruce (Ger. fichte) with a mean density of 488
kg/m3 and of strength class GL32h (BS 16h). No special attention was given to
knots, cracks or other minor defects when placing the holes. The lamellae thickness
was 40 mm or 32 mm and the moisture content at the time of testing was 10.4±1.5
%.

Test setup

Four different beam geometries and test setups were used in order to achieve the
desired ratio of cross sectional forces at the holes. The used test setups are presented
in Figures 2.1, 2.2 and 2.3 while the used beam geometries are found in Table 2.21.

Table 2.21: Beam geometry and test setup, Höfflin, 2005.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
HOFa 1 15 3375 3150 450× 120 1575 1575 - - 300 225
HOFb 2 17 6750 6300 900× 120 2700 2700 900 - 450 450
HOFc 3 5 5045 4675 450× 120 788 788 400 1350 225 370
HOFd 3 5 9950 9450 900× 120 1575 1575 900 2700 450 500

Results

The hole designs and the results of the tests are presented in Tables 2.22 and 2.23.
The definitions of the different load levels used by Höfflin correspond well to the
definitions of Vc0, Vc and Vf used in this compilation. The loads for crack initiation
and crack propagation across the entire beam width are in [12] presented separately
for the different corners. For some beams, cracks open up simultaneously while the
cracks open up at different load levels for other beams. For the cases when cracks
did not open up simultaneously in two corners of the hole, the lower of the two
values are used in this compilation.
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Table 2.22: Hole design and test results (HOFa and HOFb), Höfflin, 2005.
Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
HOFa-1 450 φ90 675 1.50 1 82.5 85.5 85.5 lb,rt

1.5h 0.2 2 77.0 91.1 91.1 lb,rt
3 51.0 74.6 74.6 lb,rt
4 53.5 77.6 85.4 lb,rt
5 50.2 55.1 73.8 lb,rt

mean 62.8 76.8 82.1
std 15.6 13.8 7.6

HOFa-2 450 φ135 675 1.50 1 41.0 52.5 59.3 lb,rt
1.5h 0.3 2 45.2 75.0 75.0 lb,rt

3 38.1 69.4 77.2 lb,rt
4 62.61 62.6 62.6 lb,rt
5 66.71 66.7 66.7 lb,rt
6 30.9 66.5 66.5 lb,rt

mean 47.4 65.5 67.9
std 14.2 7.6 7.0

HOFa-3 450 φ180 675 1.50 1 30.3 38.3 44.5 lb,rt
1.5h 0.4 2 27.0 45.0 53.4 lb,rt

3 38.0 48.3 50.6 lb,rt
4 43.3 58.7 58.7 lb,rt

mean 34.6 47.6 51.8
std 7.4 8.5 5.9

HOFb-1 900 φ180 1350 1.50 1 62.5 88.0 119.2 lb,rt
1.5h 0.2 2 66.6 86.1 110.0 lb,rt

3 53.0 90.0 114.2 lb,rt
4 109.5 117.0 144.8 lb,rt
5 54.3 150.7 152.5 lb,rt

mean 69.2 106.4 128.1
std 23.2 27.8 19.2

HOFb-2 900 φ270 1350 1.50 1 78.8 96.0 115.8 lb,rt
1.5h 0.3 2 55.1 112.0 116.0 lb,rt

3 66.4 90.5 100.9 lb,rt
4 26.4 81.0 102.6 lb,rt
5 76.9 90.9 104.9 lb,rt
6 88.0 108.2 112.1 lb,rt

mean 65.3 96.4 108.7
std 22.1 11.7 6.7

HOFb-3 900 φ360 1350 1.50 1 -2 -2 81.9 lb,rt
1.5h 0.4 2 52.0 67.5 72.4 lb,rt

3 84.01 84.0 117.3 lb,rt
4 60.01 60.0 85.4 lb,rt
5 38.3 69.0 79.3 lb,rt
6 53.6 65.3 88.8 lb,rt

mean 57.6 69.2 87.5
std 16.8 9.0 15.6

1 = Not included in [12] but found in [2].
2 = Vc0 and Vc not recorded for this test.
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Table 2.23: Hole design and test results (HOFc and HOFd), Höfflin, 2005.
Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
HOFc-1 450 φ135 1463 5.00 1 42.0 58.5 58.5 lb,rt

5h 0.3 2 59.8 70.0 70.0 lb,rt
3 12.7 52.4 68.1 lb,rt
4 36.9 54.8 54.8 lb,rt
5 22.1 54.1 65.6 lb,rt

mean 34.7 58.0 63.4
std 18.2 7.1 6.5

HOFd-1 900 φ270 2925 5.00 1 35.5 48.0 95.6 lb,rt
5h 0.3 2 46.3 50.9 74.1 lb,rt

3 38.0 50.0 93.8 lb,rt
4 39.5 69.2 100.1 lb,rt
5 56.0 57.5 57.5 lb,rt

mean 43.1 55.1 84.2
std 8.3 8.6 18.0
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2.9 Aicher and Höfflin, 2006

In the rapport Tragfähigkeit und Bemessung von Brettschichtholzträgern mit runden
Durchbrüchen – Sicherheitsrelevante Modifikationen der Bemessungsverfahren nach
Eurocode 5 und DIN 1052 (Load capacity and design of glulam beams with round
holes – Safety relevant modifications of design methods according to Eurocode 5 and
DIN 1052) [2] from 2006 the tests presented in [12] (Section 2.8) and some additional
tests are presented. These additional tests consists of 15 tests on straight glulam
beams and six tests on curved glulam beams with holes.

Material

The beams used in these tests were all of quality class GL 32h (BS 16h) and made
of spruce (Ger. fichte). No special attention was given to knots or other defects
when placing the holes. The moisture content in the beams at the time of testing
was 10.9±1.5 %. The density at a moisture content of 12 % was 471±38 kg/m3.

Test setup

Beam series AICa and AICb consist of straight beams which were tested using test
setup 3 according to Figure 2.3. Beam series AICc and AICd consist of curved
beams with H/rm = 0.03 which means that the curvature radius rm = 15 m for
beam series AICc and rm = 30 m for beam series AICd. The test setups for these
beam series are presented in Figures 2.4 and 2.5. The beam geometries for the four
beam series are presented in Table 2.24.

Table 2.24: Beam geometry and test setup, Aicher and Höfflin, 2006.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
AICa 3 6 5045 4675 450× 120 788 788 400 1350 225 370
AICb 3 9 9950 9450 900× 120 1575 1575 900 2700 450 500
AICc 4 3 4725 4500 450× 120 2925 1575 - - 360 250
AICd 5 3 9450 9000 900× 120 5850 2150 1000 - 600 450
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Results

The hole designs and the results of the tests are presented in Tables 2.25. The
same definitions of the different load levels are used in this report as in [12] and
these definitions correspond well with the definitions used in this compilation. The
loads for crack initiation and crack propagation across the entire beam width are in
[2] presented separately for the different corners. For some beams, cracks open up
simultaneously while the cracks open up at different load levels for other beams. For
the cases when cracks did not open up simultaneously in two corners of the hole,
the lower of the two values are used in this compilation.

Table 2.25: Hole design and test results, Aicher and Höfflin, 2006.
Test Original Hole design l M i Vc0 Vc Vf LoC
series test φ or a× b, r V H
notation notation [mm] [mm] [-] [kN] [kN] [kN]
AICa-1 450 φ180 1263 5.00 1 45.8 50.0 61.0 lb,rt

5h 0.4 2 57.8 63.5 63.5 lb,rt
3 40.1 43.8 44.0 lb,rt
4 35.8 46.7 48.0 lb,rt
5 45.0 46.7 57.5 lb,rt
6 29.8 42.0 48.0 lb,rt

mean 42.4 48.8 53.7
std 9.6 7.7 8.0

AICb-1 900 φ180 2925 5.00 1 62.7 107.1 107.1 rt
5h 0.2 2 - 101.4 101.4 ?

3 89.5 126.4 126.4 rt
4 47.0 90.6 -1 lb,rt

mean 66.4 106.4 111.6
std 21.5 15.0 13.1

AICb-2 900 φ360 2925 5.00 1 60.8 62.6 82.7 lb,rt
5h 0.4 2 62.0 77.2 77.2 lb,rt

3 42.5 68.5 82.7 lb,rt
4 43.0 62.5 -1 lb,rt
5 25.0 37.0 77.0 lb,rt

mean 46.7 61.6 79.9
std 15.3 15.0 3.2

AICc-1 G450 φ180 2250 5.00 1 14.7 44.5 46.9 lb,rt
5h 0.4 2 18.7 38.4 45.5 lb,rt

3 12.7 30.9 42.0 lb,rt
mean 15.4 37.9 44.8
std 3.1 6.8 2.5

AICd-1 G900 φ360 4500 5.00 1 18.0 36.0 71.9 lb,rt
5h 0.4 2 43.7 43.7 58.8 lb,rt

3 38.8 69.2 69.2 rt
mean 33.5 49.6 66.6
std 13.6 17.4 6.9

1 = Value not included in [2] since failure was partially or completely caused by bending.
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2.10 Summary of experimental tests

A summary of the beam series are presented in Table 2.26. The test results for holes
place in shear force dominated region are presented in Table 2.27 and Figure 2.8 for
circular holes and in Table 2.28 and Figure 2.9 for rectangular holes. The test results
for holes placed in a pure moment region are presented in Table 2.29 and Figure 2.10.
The hole design are in these figures represented by the ratio D/H where H is the
beam height and D = φ for circular holes and D =

√
a2 + b2 for rectangular holes.

The test results for beams with holes in shear force dominated region are presented
as mean shear stress V/Anet where Anet is the net cross section area according to
Equation (2.1) for circular holes and Equation (2.2) for rectangular holes. For beams
with holes in pure moment region, the bending moment M is normalized with respect
to the elastic section modulus of the net cross section Wnet according to Equation
(2.3). Comments on whether the definitions of the different load levels from the
original source correspond well or not with the definitions used in this report are
not stated here but found in the previous sections on this chapter.

Table 2.26: Summary of beam series.
Beam Test n Ltot L H × T c d e f gP gS

series setup [mm] [mm] [mm2] [mm] [mm] [mm] [mm] [mm] [mm]
BEN 1 7 5300 5000 500× 90 2500 2500 - - ? ?
FRE 2 12 8400 8000 550× 80 2000 2000 4000 - ? ?
PENa 1 6 4300 4000 500× 90 2000 2000 - - ? ?
PENb 1 4 5400 5000 800× 115 2500 2500 - - ? ?
JOHa 1 12 - 5000 500× 90 2500 2500 - - ? ?
JOHb 2 1 - 5000 500× 90 2000 2000 1000 - ? ?
JOHc 1 1 4000 3800 400× 140 1900 1900 - - ? ?
JOHd 1 28 ? 5000 495× 88 2500 2500 - - ? ?
JOHe 2 2 ? 5000 495× 88 1500 1500 2000 - ? ?
PIZa 1 6 1800 1620 400× 120 910 710 - - 250 180
PIZb 1 1 2000 1820 400× 120 910 910 - - 250 180
PIZc 1 1 2500 2320 400× 120 910 1410 - - 250 180
PIZd 1 3 2300 2120 400× 120 1410 710 - - 250 180
PIZe 1 6 2500 2320 400× 120 1410 910 - - 250 180
PIZf 1 2 2000 1420 400× 120 910 510 - - 250 180
HALa 1 15 4500 4000 315× 90 2000 2000 - - 340 170
HALb 1 5 3500 3000 315× 90 1500 1500 - - 340 170
HALc 1 1 3500 3000 315× 90 1500 1500 - - ? ?
HALd 1 4 7000 6000 585× 165 3000 3000 - - ? ?
HOFa 1 15 3375 3150 450× 120 1575 1575 - - 300 225
HOFb 2 17 6750 6300 900× 120 2700 2700 900 - 450 450
HOFc 3 5 5045 4675 450× 120 788 788 400 1350 225 370
HOFd 3 5 9950 9450 900× 120 1575 1575 900 2700 450 500
AICa 3 6 5045 4675 450× 120 788 788 400 1350 225 370
AICb 3 9 9950 9450 900× 120 1575 1575 900 2700 450 500
AICc 4 3 4725 4500 450× 120 2925 1575 - - 360 250
AICd 5 3 9450 9000 900× 120 5850 2150 1000 - 600 450
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Table 2.27: Summary of test results for beams with circular holes in shear force
dominated region.
Test Hole design M n Vc0 Vc Vf

series φ V H Mean (Std) Mean (Std) Mean (Std)
notation [mm] [-] [kN] [kN] [kN]
BEN-1 φ250 1.20 2 38.4 (1.2)
BEN-3 φ150 1.20 1 52.5
PENa-1 φ255 1.20 1 33.8
PENa-2 φ250 2.10 1 31.6
PENa-3 φ150 1.20 1 51.3
PENb-1 φ400 1.03 1 57.1 65.9
PENb-2 φ300 2.00 1 89.5
JOHa-1 φ250 1.30 2 29.6 (5.4) 36.5 (4.3)
JOHa-3 φ250 2.80 2 33.2 (2.6) 37.5 (3.5)
JOHa-5 φ250 0.60 2 33.8 (7.1) 41.7 (4.1)
JOHa-6 φ125 0.60 2 - 40.1 (0.1)
JOHd-1 φ125 2.53 4 51.9 (4.6)
JOHd-2 φ396 2.53 4 16.1 (1.5)
HALa-3 φ150 2.78 5 24.5 (3.5)
HOFa-1 φ90 1.50 5 62.8 (15.6) 76.8 (13.8) 82.1 (7.6)
HOFa-2 φ135 1.50 6 38.8 (6.0) 65.5 (7.6) 67.9 (7.0)
HOFa-3 φ180 1.50 4 34.6 (7.4) 47.6 (8.5) 51.8 (5.9)
HOFb-1 φ180 1.50 5 69.2 (23.2) 106.4 (27.8) 128.1 (19.2)
HOFb-2 φ270 1.50 6 65.3 (22.1) 96.4 (11.7) 108.7 (6.7)
HOFb-3 φ360 1.50 6 48.0 (8.4) 69.2 (9.0) 87.5 (15.6)
HOFc-1 φ135 5.00 5 34.7 (18.2) 58.0 (7.1) 63.4 (6.5)
HOFd-1 φ270 5.00 5 43.1 (8.3) 55.1 (8.6) 84.2 (18.0)
AICa-1 φ180 5.00 6 42.4 (9.6) 48.8 (7.7) 53.7 (8.0)
AICb-1 φ180 5.00 4 66.4 (21.5) 106.4 (15.0) 111.6 (13.1)
AICb-2 φ360 5.00 5 46.7 (15.3) 61.6 (15.0) 79.9 (3.2)
AICc-1 φ180 5.00 3 15.4 (3.1) 37.9 (6.8) 44.8 (2.5)
AICd-1 φ360 5.00 3 33.5 (13.6) 49.6 (17.4) 66.6 (6.9)

Anet = T (H − φ) (2.1)
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Figure 2.8: Mean shear stress V/Anet for load levels Vc0 (top), Vc (middle) and Vf

(bottom) for circular holes in shear force dominated region. D = φ.
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Table 2.28: Summary of test results for beams with rectangular holes in shear force
dominated region.
Test Hole design M n Vc0 Vc Vf

series a × b r V H Mean (Std) Mean (Std) Mean (Std)
notation [mm2] [mm] [-] [kN] [kN] [kN]
BEN-2 300 × 150 0 1.20 2 39.0 (0.3)
BEN-4 200 × 100 0 1.20 2 49.6 (1.1)
FRE-1 250 × 250 ? 0.91 2 32.7 (2.1)
FRE-2 250 × 150 ? 0.91 2 44.0 (2.8)
FRE-3 250 × 250 ? 1.82 2 33.8 (1.1)
FRE-4 250 × 150 ? 1.82 2 35.4 (4.0)
PENa-4 200 × 200 ? 1.60 1 33.8
PENa-5 400 × 200 ? 1.60 1 25.0 31.3
PENa-6 600 × 200 ? 1.60 1 20.8 30.0
PENb-3 400 × 200 ? 1.25 1 69.1
PENb-4 200 × 200 ? 1.25 1 52.5 84.4
JOHa-2 250 × 250 25 1.30 2 26.8 (0.5) 28.5 (2.8)
JOHa-4 250 × 250 25 2.80 2 22.2 (2.3) 25.6 (0.6)
JOHc-1 600 × 200 25 2.25 1 30.0 37.0
JOHd-3 125 × 125 25 2.53 4 40.4 (11.1)
JOHd-4 375 × 125 25 2.53 4 37.7 (6.4)
JOHd-5 370 × 370 25 2.53 4 9.1 (2.1)
JOHd-6 735 × 245 25 2.53 4 12.5 (1.1)
JOHd-7 1110 × 370 25 2.53 4 4.2 (0.3)
PIZa-1 180 × 180 0 1.05 2 24.1 (12.4) 30.6 (3.1) 63.7 (4.6)
PIZa-2 180 × 90 0 1.05 2 37.2 (15.4) 54.9 (3.4) 75.5 (1.6)
PIZa-3 180 × 10 0 1.05 2 95.2 (26.3) 103.3 (14.8) 103.3 (14.8)
PIZb-1 180 × 90 0 1.05 1 56.6 71.0 84.5
PIZc-1 180 × 10 0 1.05 1 110.1 110.1 110.1
PIZd-1 360 × 180 0 1.75 2 21.7 (2.3) 23.3 (0.0) 24.8 (2.1)
PIZd-2 10 × 180 0 1.75 1 34.0 34.0 34.0
PIZe-1 360 × 180 0 1.75 1 19.2 21.1 28.8
PIZe-2 10 × 180 0 1.75 2 30.0 (1.1) 33.8 (0.0) 33.8 (0.0)
PIZe-3 180 × 90 0 1.75 3 45.8 (11.2) 54.2 (7.0) 54.2 (7.0)
PIZf-1 180 × 180 0 1.05 2 20.6 (4.9) 26.8 (3.8) 70.0 (11.2)
HALa-1 400 × 150 25 2.78 5 11.9 (1.5)
HALa-2 400 × 150 0 2.78 5 12.2 (1.1)
HALb-1 400 × 150 25 2.78 5 12.2 (0.5)
HALc-1 400 × 150 25 ? 1 12.2
HALd-1 600 × 295 25 ? 4 27.1 (1.9)

Anet = T (H − b) (2.2)
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Figure 2.9: Mean shear stress V/Anet for load levels Vc0 (top), Vc (middle) and Vf

(bottom) for rectangular holes in shear force dominated region. D =
√

a2 + b2.
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Table 2.29: Summary of test results for beams with holes in pure moment region.
Test Hole design l M n Mc0 Mc Mf

series φ or a× b, r V H mean (std) mean (std) mean (std)
notation [mm] [m] [-] [kNm] [kNm] [kNm]
FRE-5 φ300 4000 ∞ 2 140.0 (0.0)
FRE-6 300× 300, ? 4000 ∞ 2 136.8 (4.5)
JOHb-1 φ250 2500 ∞ 1 114.0 122.7
JOHe-1 1110× 370, 25 2500 ∞ 1 38.6
JOHe-2 φ396 2500 ∞ 1 50.0

Wnet =
T

6H
(H3 − x3) x = b for rectangular holes and φ for circular holes (2.3)
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Chapter 3

Methods for theoretical strength
analysis

There are several available methods for strength analysis when it comes to timber
engineering. Timber is in many aspects a more complex construction material com-
pared to for example steel. This is partly due to the anisotropic properties and the
large differences in strength between loading modes. Assumptions and simplifica-
tions for a certain material model may be acceptable for some applications but may
for other cases lead to unreliable results if the analysis is possible to perform at all.

A distinction can be made between deterministic and stochastic material mod-
els. In the deterministic models, wood is viewed as a homogeneous material with
the same material properties in all points. In the stochastic models, the natural het-
erogeneity due to knots and other defects is considered by some type of statistical
measure. Distinctions between different models can also be made based on whether
the material is considered to be ideally brittle or if the material has fracture ductil-
ity. The various kind of rational methods for strength analysis of timber elements
can be categorized as in Table 3.1. They are all more or less briefly described in this
chapter.

Table 3.1: Models for timber engineering strength analysis [29].

Deterministic Stochastic
(homogeneous) (heterogenous)

Brittle Conventional Weibull weakest
Gf = 0 stress analysis link theory

Linear elastic Probabilistic
fracture mechanics fracture mechanics

With fracture ductility Generalized linear elastic
Gf 6= 0 fracture mechanics

Nonlinear
fracture mechanics

35
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3.1 Conventional stress analysis

The most common approach when designing timber structures is a conventional
stress analysis with a stress-based failure criterion. The state of stresses is com-
monly determined at the assumption of a linear elastic material which is continuous,
homogeneous, transversely isotropic and brittle with deterministic properties. This
method is in many cases insufficient, since the assumptions are too inaccurate for
many applications. Larger timber elements and wooden products such as glulam
have heterogeneous properties due to knots, initial cracks and other defects which
appear stochastically in the material. Assuming transversely isotropic and homoge-
neous material properties means that two simplifications are introduced. There is
no distinction made between material properties in radial and tangential direction
and the material directions and properties are assumed to be identical in the entire
body. These simplifications may have a large impact on the results of a stress analy-
sis since the material properties vary significantly with the orientation of the annual
rings. Wood is further not ideally brittle. The fracture toughness also varies with
the type of fracture (tension or compression, perpendicular or parallel to grain etc.).
The differences between the material assumptions and reality is often treated by the
use of correction factors and limitations based on equations derived from empirical
observations. [29]

Failure criteria

In conventional stress analysis, failure is assumed to occur as soon as any point in
the stressed body fulfills a certain criterion. A commonly used failure criterion for
the case of a plane state of stress is Norris’ criterion according to Equation (3.1)
where σ90 and σ0 are stresses perpendicular and parallel to grain respectively and τ
is the shear stress. The material strengths f90 and f0 are assigned different values
for tensile or compressive stresses. The shear strength of the material is denoted fv.
Hence, five material parameters are here involved.

(
σ90

f90

)2

+

(
σ0

f0

)2

+

(
τ

fv

)2

= 1 (3.1)

Norris’ criterion in three dimensions for an orthotropic material is stated in Equa-
tions (3.2), (3.3) and (3.4) where the indexes 1, 2 and 3 corresponds to the three
material directions; longitudinal, radial and tangential.

(
σ1

f1

)2

+

(
σ2

f2

)2

+

(
τ12

fv12

)2

− σ1σ2

f1f2

= 1 (3.2)

(
σ1

f1

)2

+

(
σ3

f3

)2

+

(
τ13

fv13

)2

− σ1σ3

f1f3

= 1 (3.3)

(
σ3

f3

)2

+

(
σ2

f2

)2

+

(
τ32

fv32

)2

− σ3σ2

f3f2

= 1 (3.4)
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For the case of uniaxial loading at an angle α to grain, Hankinsons’s expression
according to Equation (3.5) is well used. The equation holds for both tensile and
compressive stresses when the corresponding strength parameters are used. In liter-
ature, the value of n is commonly stated as 2.

σα =
f90f0

f90 cosn α + f0 sinn α
(3.5)

Stress components can sometimes be considered separately yielding the following
rather simple failure criteria for the case of plane stress.





σ90 = f90

σ0 = f0

τ = fv

(3.6)

3.2 Linear elastic fracture mechanics – LEFM

Linear elastic fracture mechanics (LEFM) deals with analysis of cracks and propa-
gation of cracks. The theory is based on the assumption of an ideally linear elastic
behaviour of the material and the existence of a crack (or a sharp notch). Although
stresses and strains may be very large in the vicinity of the tip of the crack, the
theory of small strains is used. LEFM can not be used to determine where one can
expect a crack in a stressed body to arise but it can be used for analysis of whether
an existing crack will propagate or not. Crack propagations analysis can be done
by considering the energy balance of the system, by considering the so called stress
intensity factors or by some other similar method.

A consequence of the assumption of an ideally linear elastic material is that
stresses at the tip of a crack theoretically are infinite, see Figure 3.1. This rules out
the use of a stress-based failure criterion but is however accepted in LEFM as long as
the fracture process region, i.e. the area exposed to large stresses, is small compared
to the length of the crack and also compared to the distance to loads and supports.
For wood, the fracture process region is approximately one to a few centimeters.

σ

r

σ ~ 1/r
1/2

Figure 3.1: Linear elastic stress distribution at the tip of a crack.
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For a certain plane of fracture, there are three possible types of relative displacements
which can be referred to as modes of loading, modes of deformation, modes of
cracking or modes of fracture. They are presented in Figure 3.2 and are denoted
mode I, mode II and mode III. Mode I represent fracture due to pure tensile stress
perpendicular to the plane of fracture, while mode II and III represents fracture
due to in-plane shear stresses and transverse shear stress respectively. The general
case consists of a mixture of the three modes but for most applications, the most
common cases are modes I and II. Hence, the term mixed mode is often used to refer
to a mixture of mode I and mode II only. [3] [11] [28] [29]

Mode I Mode II Mode III

Figure 3.2: Loading modes I, II and III.

Energy release rate

One approach when analysing crack propagation is to consider the energy balance
and how a virtual extension of the crack will effect the energy of the system. The en-
ergy release rate (sometimes also called the crack driving force) is defined according
to Equation (3.7) as the decrease in potential energy U of the system at an infinitely
small increase of the crack area A.

G = −∂U

∂A
(3.7)

The potential energy U of the system consists of elastic strain energy and the poten-
tial energy of the loads acting on the structure. The value of the energy release rate G
is dependent on the geometry of the structure, the geometry of the crack, boundary
conditions and applied loads. The dimension of G is energy/length2 and the value
can for some applications be determined analytically but is generally determined
with numerical methods such as the finite element method. In order to determine
whether a crack will propagate or not, the energy release rate is compared to the
critical energy release rate Gc (sometimes also called the crack resistance) which is
a material property. The general crack propagation criterion can thus be expressed
as stated in Equation (3.8) which says that a crack is just about to propagate when
the crack driving force equals the crack resistance or in other terms when the energy
release rate equals its critical value.

G = Gc (3.8)
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As mentioned earlier, there are three possible modes of cracking and the critical
energy release rate may have different values for the different modes. It is also
possible to separate the energy release rate G into the three modes and obtaining GI ,
GII and GIII . The total energy release rate Gtot is then the sum of the contributions
from GI , GII and GIII .

There are three possible scenarios when the crack is just about to propagate;
stable, semistable and unstable crack growth. Unstable crack growth corresponds to
the common case of increasing G with increasing crack area and hence an unstable
crack growth. It is however also possible that G decreases with increasing crack
area and if the value of G falls below the critical energy release rate Gc, the crack
propagation will stop and the crack growth is termed stable. Semistable crack growth
corresponds to the case when G is constant with increasing crack area. [3]

Stress intensity factor

Another approach for analysis of crack propagation is to consider the distribution of
stresses in the vicinity of the tip of the crack by consideration of the stress intensity
factors KI , KII and KIII . The definitions of these stress intensity factors are for the
three modes of fracture given in Equations (3.9), (3.10) and (3.11) where stresses
and coordinate system are defined in Figure 3.3. [31]

y

x

z

σ

τ

θ

r

yy

yx

σxx

σzz

τyz

τzy

τzx

τxy

τxz

Figure 3.3: Stresses used in definition of stress intensity factors.

KI = lim
r→0

σyy(r)
√

2πr for θ = 0 (3.9)

KII = lim
r→0

τxy(r)
√

2πr for θ = 0 (3.10)

KIII = lim
r→0

τyz(r)
√

2πr for θ = 0 (3.11)

The values of the stress intensity factors are governed by the geometry of the struc-
ture, the geometry of the crack, boundary conditions and the applied load. The
dimension of K is stress·length1/2 or force·length3/2. A crack will propagate when
the stress intensity exceeds the critical stress intensity Kc (also known as the frac-
ture toughness) according to Equation (3.12). Due to the linear elastic assumption,
stresses and thereby also the stress intensity factors are proportional to the applied
load.

K = Kc (3.12)
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For the case of mixed mode loading (Mode I and II), the crack propagation criterion
according to Equation (3.13) purposed by Wu [30] has been verified by experimental
tests and is frequently used with values m = 1 and n = 2.

(
KI

KIc

)m

+
(

KII

KIIc

)n

= 1 (3.13)

Relation between G and K

The relationship between Gi and Ki for mode I and II for an orthotropic material
considering a plane state of stress and a fracture plane which is oriented parallel to
the direction of grain are as stated in the following equations. [3]

KI =
√

EIGI (3.14)

KII =
√

EIIGII (3.15)

where

EI =

√√√√√√
2ExEy√

Ex

Ey

+
Ex

2Gxy

− νyx
Ex

Ey

(3.16)

EII =

√√√√√√
2E2

x√
Ex

Ey

+
Ex

2Gxy

− νyx
Ex

Ey

(3.17)

In the above stated equations, Ex is Young’s modulus parallel to grain, Ey is Young’s
modulus perpendicular to grain, Gxy is the shear modulus and νyx is Poisson’s ratio.

J-integral method

The J-integral method, also known as Rice’s integral method, is another com-
monly used method for crack propagation analysis. Considering a crack in a two-
dimensional body as shown in Figure 3.4, the J-integral is calculated by integration
of elastic strain energy density and stresses along a path Γ according to

J =
∫

Γ

(
Wdy − σijnj

∂ui

∂x
ds

)
(3.18)

where W is the elastic strain energy density, σij are stresses, nj the normal vector
along the path of integration, ui the displacement vector and s is the length of the
path. The value of J is equal to the value of G and is also independent on the
chosen path of integration as long as it starts and ends at opposite sides of the crack



3.3. GENERALIZED LINEAR ELASTIC FRACTURE MECHANICS 41

surface and encloses the tip of the crack. In the same manner as the energy release
rate approach and the stress intensity factor approach, the value of J can for crack
propagation analysis be compared to a critical value Jc. [3] [10]

y

x

n

Γ
ds

Figure 3.4: Notations used in J-integral method.

Other methods

There are also several other methods used in LEFM, for example the Crack closure
integral method and Park’s method. These methods are however not described here.

3.3 Generalized linear elastic fracture mechanics

The theory concerning linear elastic fracture mechanics presented in the previous
section suffers from some obvious limitations. The theory is based on the assumption
of an existing crack or a sharp notch giving rise to a square root stress singularity.
Conventional stress analysis is on the other hand not applicable in the presence of
a stress singularity. The LEFM-theory can be modified (generalized) in order to
overcome this limitation and make it valid for more general cases. Two separate
methods are presented here, the mean stress method and the initial crack method.
These methods can be regarded as a combination of a conventional stress analysis
and LEFM and have many features in common. Both methods yield the same results
for a large body as LEFM if a large crack is present. For a large body in homogenous
stress, they both yield the same results as a conventional analysis with a stress-based
failure criterion. [6]

Mean stress method

The idea of the mean stress method is to consider the mean stresses acting on a
possible fracture area and using them in a conventional stress-based failure criterion.
The method can be used both for the case of a present stress singularity and the case
of no stress singularity. For timber applications, the fracture plane is here assumed
to coincide with the direction of grain due to the strength in tension perpendicular
to grain being very low. For a mixed mode loading case, Norris’ failure criterion
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according to Equation (3.19) can be used where σ90 and τ are mean stresses.

(
σ90

ft

)2

+

(
τ

fv

)2

= 1 (3.19)

The size of the mean stress area is determined under the condition that the strength
prediction will be the same as for Wu’s crack propagation criterion according to
Equation (3.13) and is hence governed by the stiffness, fracture energy and strength
of the material. If only two dimensions are considered, the stress fields can be
expressed according to the following expressions using the definitions of the stress
intensity factors KI and KII according to Equations (3.9) and Equation (3.10).

σ90(x) =
KI√
2πx

+ . . . (3.20)

τ(x) =
KII√
2πx

+ . . . (3.21)

The first term in these series is dominating for small values of x. Denoting the length
of which the mean stresses are calculated xm and assuming only small values of x
yields the following expressions for the mean stresses σ90 and τ .

σ90 =

∫ xm

0
σ90(x)dx

xm

=

√
2K 2

I

πxm

(3.22)

τ =

∫ xm

0
τ(x)dx

xm

=

√
2K 2

II

πxm

(3.23)

Inserting σ90 and τ in Equation (3.19), a general but rather complicated expression
for xm as a function of material properties (stiffness, critical energy release rates,
tensile- and shear strengths) and the mixed mode ratio k = τ/σ = KII/KI can
be obtained. The expression can however be simplified for pure mode I or mode II
loading where the EI and EII are stated in Equations (3.16) and (3.17) respectively.

xm = xm(E‖, E⊥, G, ν⊥‖, Gic, ft,90, fv, k) (3.24)

where

xm =
2

π

EIGIc

f 2
t

for pure mode I, k = 0 (3.25)

xm =
2

π

EIIGIIc

f 2
v

for pure mode II, k →∞ (3.26)

Determination of the length xm is an iterative process. A first guess of the length is
needed and from this initial value the mean values σ90 and τ are calculated which
then results in a new mixed mode ratio from which the new length xm is determined.
[3] [6]
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Initial crack method

The initial crack method is, as the name suggests, a way to overcome the prerequisite
of a existing crack in LEFM. The procedure is such that a fictitious crack of length
a0 is added to the body where one would expect a crack to open up. The method can
also be used for the case of an existing crack, then this crack is given a additional
fictitious length a0. The length a0 is derived under the condition that the strength
prediction for a large body without any stress singularity will be the same if using
the initial crack method as if using the corresponding conventional stress criterion.
Using this condition, derivation of a0 is carried out in a similar manner as the
derivation of xm in the mean stress method which results in the following.

a0 =
xm

2
=⇒ (3.27)

a0 =
EIGIc

πf 2
t

for pure mode I, k = 0 (3.28)

a0 =
EIIGIIc

πf 2
v

for pure mode II, k →∞ (3.29)

The strength is calculated by a linear elastic fracture mechanics crack propagation
criterion, for example by Wu’s criterion according to Equation (3.13). [3]

3.4 Nonlinear fracture mechanics – NLFM

The term nonlinear fracture mechanics is ambiguous. In general, it refers to either
analysis where a nonlinear stress-strain relationship of the material is considered
or analysis where nonlinear fracture softening deformations in the fracture process
region are taken into account. [6]

Fictitious crack model

The fictitious crack model was developed by Hillerborg et al at Lund University in
the 1970’s and takes the strain softening of the material into account. The theory
is founded on the use of a conventional stress-strain relationship for stresses up
to maximum stress and a stress-deformation relationship for the strain softening
of the material. The deformation that determine the stress is the local additional
deformation due to the gradual fracture of the material. A fracture zone is modeled
as a fictitious crack which however can transfer stresses. The width w of the fictitious
crack governs the stress distribution in the fracture zone while stresses outside of the
fracture zone is determined from the general stress-strain relationship. The stress-
deformation relationship can be approximated by piecewise linear polynomials. The
finite element method is a suitable tool for FCM-analyses and can be performed on
a body without initial cracks. The first step is to find the node that first reaches the
maximum stress and hence is the place where the fracture zone develops. This node
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is separated into two nodes on opposite sides of the crack with a width w between
them. The stress distribution in the fracture zone is then governed by the stress-
deformation relationship. The next step is to increase the load to the point where
maximum stress is reached in the next node along the path of the fracture zone
and separating the next two nodes. The use of FCM is rather complex for timber
applications since a propagating crack generally follows the direction of grain. This
means that the direction of the crack is known but also that both shear stresses and
normal stresses in the fracture zone needs to be taken into account. [11]

Fictitious

  crack

 Real

crack

σ (w)
σ (ε)

σ

w

σ = ft

Figure 3.5: Illustration of stresses in FCM [11].

Quasi-nonlinear fracture mechanics

The term quasi-nonlinear fracture mechanics refers to analysis where a simplified
stress-deformation relationship is derived from strength and fracture energy of the
material is used. The shape of the true stress-deformation curve is assumed to have
no influence and a linear relationship is instead used, which is derived in such way
that the true strength is used and the slope is adjusted so that the area beneath
the curve equals the fracture energy Gf . An illustration of a true and a simplified
stress-deformation relationship is shown in Figure 3.6. [7]

True behaviour

Simplified behaviour

A1 A2 A1 = A  = G2 f

σ

w

Figure 3.6: Illustration of true and simplified stress-deformation relationship [7].



3.5. WEIBULL WEAKEST LINK THEORY 45

3.5 Weibull weakest link theory

The Weibull weakest link theory enables a probabilistic based approach to strength
analysis. This means that the probability of failure at a certain state of stresses for a
certain volume of a material can be determined with knowledge of the strength and
the scatter of the strength of the material. The strength perpendicular to grain is for
wood strongly dependent on the size of the stress volume, the larger the volume the
more likely it is that severe defects are present in the volume and thereby reducing
the strength. This makes the theory very useful for timber applications considering
the heterogeneity of the material due to annual rings, knots and other defects. The
material is assumed to be ideally brittle and since fracture due to normal stresses
perpendicular to grain or shear stresses parallel to grain are the most brittle fractures
(although not ideally brittle) the theory applies well to these types of failure.

i=1 i=2 i=3 i=n

σσ . . .

σ
σ

V

Figure 3.7: Chain consisting of n discrete links (top) and volume V consisting of
V/dV unit volumes dV (bottom).

Consider a chain according to Figure 3.7 with n number of links loaded with a tensile
stress σ. The nature of the structure is such that the chain will break as soon as one
of the links break. The probability of failure of a link can be expressed according
to Equation (3.30) where f(σ) is a function of stress. The same equation can be
used to describe the probability of failure in a unit volume dV of the volume V also
shown in Figure 3.7.

S = 1− e−f(σ) (3.30)

The probability of failure for a volume V exposed to a homogeneous or heterogeneous
stress σ can be described by Equation (3.31). There are two purposed models for
the function f(σ), the 2-parameter model and the 3-parameter model according to
Equations (3.32) and (3.33) respectively. The 2-parameter is the most used of the
two models.
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S = 1− e
−

∫

V
f(σ)dV

(3.31)

f(σ) =
(

σ

σ0

)m

2-parameter model (3.32)

f(σ) =
(

σ − σu

σ0

)m

3-parameter model (3.33)

In the above stated equations, σ0, σu and m are material parameters where the latter
describes the scatter of the strength of the material. In order to be able to compare
the probability of failure between different structures, a value called the effective
Weibull stress, equivalent Weibull stress or Weibull stress is defined according to
Equation (3.34).

σwei =
(

1

V

∫

V
σm(x, y, z)dV

)1/m

(3.34)

The effective Weibull stress is a fictive homogeneous stress that yields the same
probability of failure as the the actual heterogenous state of stress. The influence
of a heterogeneous stress distribution on the strength is described by the factor
kdis which is the ratio between the maximum value of the heterogeneous stress
distribution and the Weibull stress.

kdis =
σmax

σwei

(3.35)

The fictive strength f of a material with the volume V can be determined according
to Equation (3.36) where fref is the strength of the material with the volume Vref .

f = fref kdis

(
Vref

V

)1/m

(3.36)

[12] [13] [29]

3.6 Probabilistic fracture mechanics – PFM

In probabilistic fracture mechanics (PFM), both the heterogeneity of the material
and the fracture ductility is considered. The heterogeneity of the material due to
cracks, knots and other discontinuities can be treated by using for example Weibull
theory or some other statistical method while the fracture ductility can be taken into
account by the use of linear elastic-, generalized linear elastic- or nonlinear fracture
mechanics. [29]



Chapter 4

Calculation approaches for beam
with hole

This chapter presents brief summaries of some of the previously used calculation
methods for strength analysis of glulam beams with holes.

4.1 Kolb and Frech, 1977

Kolb and Frech [20] determined the maximum normal stress due to bending and the
maximum shear stress in the beam by Bernoulli-Euler beam theory. If the parts of
the beam to the left and to the right of the hole are assumed to be stiff and the
hole is placed centrically with respect to the height of the beam, the shear force is
divided evenly between the upper and the lower part. They further tried to find
a method where the tension force perpendicular to grain at the hole is taken into
consideration. This was done by comparison to the case of an end-notched beam.
An empirical expression based on a reduction of the shear force capacity with a
factor determined by the relationship of the total height of the beam and the height
of the upper or lower part of the beam at the hole was here used. This procedure
resulted in an heavy underestimation of the capacity of the beams compared to the
test results for all beams within the study.

4.2 Penttala, 1980

Penttala [21] used the plate theory with complex functions proposed by Kolosov and
Muskhelishvili to analytically determine the state of stresses. For the beams with
circular holes, both isotropic and anisotropic material models were used while for
beams with rectangular holes, only isotropic material models were used. The stress
at the edge of the hole was compared to the material strength in tension which was
determined by Hankinson’s formula as a function of grain angle.
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4.3 Johannesson, 1983

Johannesson [14] used three separate methods when analysing the strength of the
tested beams.

”Shear-stress” method

This is an empirically based method which formally reads as a comparison between
shear stress and a fictive shear strength determined from experimental tests. The
fictive shear strength was determined by calculation of the shear stresses at cracking
with the assumption of a parabolic stress distribution. A relationship between ge-
ometric parameter D/H and the fictive shear strength was established, where D is
the diagonal of a rectangular hole or the diameter in the case of a circular hole while
H is the height of the beam. Among other simplifications, the effects of bending
moment are not taken into account using this method which hence must be con-
sidered merely as a tool for rough estimations. One of the methods suggested for
design of glulam beams with holes in the Swedish code of practise, Limträhandbok,
presented in Chapter 5 is based on this method.

”Navier-beam” method

The ”Navier-beam”method was developed to enable hand calculations that are more
reliable compared to the ”Shear-stress” method. Cross sectional forces are deter-
mined from equilibrium conditions and a linear stress distribution in a stress plane
at the corners where the beam is exposed to tension perpendicular to grain are
assumed according to Navier’s theory. The maximum hoop stress in this plane is
compared to a corresponding strength parameter determined from material tests.

”Exact-stress” method

Three separate methods were used within the so called ”Exact-stress” method when
determining the perpendicular to grain stresses for holes with rounded corners;
closed form analytical solution, the finite element method and the boundary ele-
ment method. Some assumptions were made in order to simplify the analyses. A
linear elastic material model was used for all analyses and a plane state of stress
was assumed based on the fact that the beam width was small in comparison to
the height and the length of the beam. Thus, the influence of the cylindrical shape
of annual rings was ignored and a two-dimensional orthotropic material model was
instead used. Further, the deformations were assumed to be small, the beam is as-
sumed to be in equilibrium and the failure criterion according to Equation (3.2) was
used. Johannesson found that this criterion could be simplified for the applications
in mind by ignoring all terms but the second one. The problems is then decreased
to finding the stress σ2 and the strength parameter f2 perpendicular to grain.
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4.4 Pizio, 1991

Pizio [23] used a linear elastic fracture mechanics approach and determined stress
intensity factors numerically by using finite elements. Three different methods were
used; Park’s method, the Rice Integral method and the Crack Closure Integral
method. Initial cracks were modeled at the corners exposed to tensile stresses per-
pendicular to grain which then grew in the length direction of the beam (parallel to
grain). The beams were modeled as a homogeneous and orthotropic material with
a plane state of stress. It was further assumed that the fractures were of mixed
modes, mode I and mode II. Experimental material testing was carried out in order
to determine fracture mechanics material properties.

4.5 Hallström, 1995

Hallström [8] [9] investigated the stress distribution and stress intensity factors for
unreiforced and reinforced glulam beams with holes. The stress distribution at the
vicinity of the corners of the holes was analytically determined in two dimensions
using an orthotropic material model. Finite element analyses where also carried out
in three dimensions using transversely isotropic material model. Linear elastic frac-
ture mechanics analyses were also performed with initial cracks of various lengths at
critical locations which for rectangular holes with sharp corners are the corners. For
rectangular holes with rounded corners and circular holes respectively, calculation
were first made in order determine where cracks were to expect. These initial cracks
were modeled in the complete beam width and parallel to grain direction.

4.6 Höfflin, 2005

Höfflin [12] performed several different numerical analyses in order to examine the
state of stresses in the hole vicinity of the glulam beams. Both 2D and 3D finite
element analyses were carried out.

Conventional stress analysis - 2D FEM

The analyses were in two dimensions performed assuming plane state of stress and
an orthotropic material model. The distribution of the stress components σx, σy

and τxy along the hole perimeter was first investigated and the value and location
of the maximum tensile stress perpendicular to grain were then determined from
the three stress components. This procedure results in knowledge of where along
the hole perimeter the largest stresses perpendicular to grain appear and thus also
where to expect a crack to open up.
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Conventional stress analysis - 3D FEM

Depending on the orientation of the annual rings in the lamellae, the stress per-
pendicular to grain can vary significantly across the beam width. This variation is
disregarded when assuming plane stress conditions. Three dimensional models of
the beams make it possible to more accurately model the material properties of the
glulam. This can be done by modeling each lamella as a cylindrically anisotropic ma-
terial. Modeling a complete beam geometry this way is rather demanding and results
in large computational cost. Höfflin instead used a combination of two- and three
dimensional models using the so called Submodel technique. The complete beam was
modeled in two dimensions and only a small part of the beam (1/2 of beam height)
near the hole was modeled in three dimensions. The 2D model of the complete
geometry was used to determine the appropriate boundary conditions to use for the
3D model. The 3D model was also simplified by assigning cylindrical anisotropic
properties only to the lamellae crossed by the hole and assigning orthotropic prop-
erties to the other lamellae. This procedure is more complex compared to the 2D
analysis but should also give more realistic results since the orientation of annual
rings can be taken into account. There is however a long list of parameters to adjust.

Weibull weakest link theory

Höfflin also used Weibull theory and determined the ratio between the maximum
stress at an uneven stress distribution and the equivalent Weibull stress correspond-
ing to the same probability of failure. This ratio is a form factor which represents
the level of heterogeneity in the material and the stress distribution. The calcula-
tions are to a great extent dependent on the stressed area chosen for integration.
Several different shear force to moment ratios were also investigated. A method for
design of glulam beams with circular holes based on Weibull weakest link theory is
proposed.

4.7 Riipola, 1995

Riipola [24] [25] analysed timber beams and glulam beams with holes with a linear
elastic fracture mechanics approach and considering the energy balance. Analytical
expressions for the strain energy release rates for mode I and mode II type of fracture
were derived separately and the stress intensity factors were then determined from
these expressions. By comparison of the stress intensity factors and experimentally
determined critical stress intensity factors according to Wu’s fracture criterion stated
in Equation (3.13), the load bearing capacities were evaluated. The method is valid
for holes which are placed in a shear force dominated area. For holes placed close
to support, an extra correction factor was used.
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4.8 Aicher, Schmidt and Brunhold, 1995

Aicher, Schmidt and Brunhold [1] used linear elastic fracture mechanics and the
finite element method to calculate stress intensity factors Ki and energy release
rates Gi. Two separate methods were used. The stress intensity factors Ki were
determined by substitution of the displacements at the crack tip into closed form
expressions. The energy release rates Gi were determined using a method based on a
virtual crack closure integral. A two dimensional model was used for all calculations
and mixed mode I and mode II fracture was considered. Wu’s interaction criterion
according to Equation (3.13) was used when analysing the load bearing capacity.

4.9 Petersson, 1995

Petersson [22] analysed wooden beams where fracture due to tension perpendicular
to grain are common. He used linear elastic fracture mechanics and an energy based
approach. Finite element calculations were performed in two dimensions under the
assumption of a plane state of stress and with linear elastic, orthotropic material
properties. Dynamic and nonlinear geometric effects were not taken into considera-
tion. In order to determine the mixed mode crack state and the appropriate value of
the material parameter Gc, nodal forces in the elements close to the crack tip were
studied.

4.10 Gustafsson, Peterson and Stefansson, 1996

Gustafsson, Peterson and Stefansson [5] used the initial crack method and the mean
stress method, both generalized linear elastic fracture mechanics methods, to pre-
dict load bearing capacity for timber beams. Another method was also used, which
basically is an engineering estimation of the load bearing capacity based on the
relationship between crack propagation load and crack length. Plane stress and lin-
ear elastic orthotropic material properties were assumed for all analyses. Gustafsson
also presents these generalized linear elastic fracture mechanics methods in [3] where
also examples of application to beams with a hole are indicated.

4.11 Scheer and Haase, 2000

Scheer and Haase [26] used analytical formulations according to Lekhnitskii and
Savin to determine stress concentrations near elliptical holes in glulam beams. The
finite element method was also used in order to verify the analytical solutions. For
the analytical calculations, the beam was model as a plate with a plane state of
stress and orthotropic material properties.

Scheer and Haase [27] also used a fracture mechanics approach and determined
stress intensity factors at fictitious cracks with the finite element method and the
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Rice integral. The beam was modeled in two dimensions as an orthotropic material
and the two existing symmetry planes were used in order to decrease the size and
thereby the calculation cost. The fictitious cracks were modeled parallel to grain
with independently varying length (1-10 mm) and location along the hole periphery.
Varying load cases were investigated and the stress intensity factors for mode I and
mode II type of failure were calculated for all different lengths and locations of the
fictitious crack. Wu’s failure criterion according to Equation (3.13) was used.

4.12 Stefansson, 2001

Stefansson [28] performed strength analyses on timber beams with circular and quad-
ratic holes using linear elstic fracture mechanics and nonlinear fracture mechanics
in finite element analyses. In the LEFM analyses, a crack was modeled in a critical
region and strength was analysed for various lengths of this crack using the energy
release rate approach. A plane state of stress was assumed and a linear elastic
and orthotropic material model was used. The NLFM analyses are based on the
fictitious crack model and applied by means of interface elements with a piecewise
linear stress-deformation relationship on a prescribed crack path.



Chapter 5

Design codes

Determination of the load bearing capacity of glulam beams with holes is by no
means a trivial task which is also reflected the guidelines from different contemporary
and previous design codes. The design rules vary significantly between different
codes, where some design rules are empirically based and others are more rationally
based. This chapter presents the rules for design according to some European codes
and also a comparison of experimental test results with strengths according to codes.

5.1 Swedish code of practise – Limträhandbok

The Swedish Limträhandbok (Glulam handbook) [41] is not an official Swedish norm
but rather a tool for recommendations concerning design of glued laminated timber.
Two possible methods are presented for design of glulam beams with holes, one is
empirically based and the other is based on estimation by means of comparison with
fracture mechanics analysis of end-notched beams.

For both methods, there are some basic recommendations concerning size and
placement of the hole. First and foremost, all holes in glulam beams should as far as
possible be avoided. If a hole can not be avoided, it should be placed with its center
in the neutral axis of the beam. A discrepancy of no more than 10 % of the beam
height H is tolerable. Furthermore, the hole height b (or φ) may not exceed H/2
and the hole length a may not exceed 3b. If two holes are placed in the same beam,
the distance between hole edges must be at least the same as the height H of the
beam. The corners of rectangular holes must have a radius r ≥ 25 mm. Measures
should be taken in order to decrease the risk of cracks in the hole surface due to a
varying moisture content in the beam.
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Method 1 – Empirically based design

The capacity with respect to bending moment and shear force should be controlled
separately for the net cross section at the hole, see Figure 5.1. The shear force
criterion is formulated to compare the shear stress τ to the reduced shear strength
fv,red of the cross section through the hole according to Equation (5.1). Both the
upper and the lower part need to be controlled, index i represents the upper (u)
or lower (l) part of the beam at the hole. The shear force may be assumed to be
divided between the upper and the lower part according to the relation of stiffness
between the two parts but no further instructions are given on how to divide the
force between the two parts. The shear strength is reduced depending on the size
and shape of the hole by the factor khole while a beam width dependent volume
effect is taken into account by the factor kvol. Beams where the width T is less than
90 mm where not included in the study on which the design method is based.

For rectangular holes, the additional bending moment caused by the shear force
should also be considered. If there is less then four lamellae in the upper or the
lower part, the design strength with respect to bending should be decrease 25 %.
No further instructions are given on how the bending capacity should be checked.

τ =
1.5 · Vi

T · hi

≤ fv,red where index i = u or l (5.1)

fv,red = kvol · khole · fv (5.2)

kvol =
(

90

T

)0.2

for 90 ≤ T ≤ 215 mm (5.3)

khole =





1− 555(D/H)3 for D/H ≤ 0.1

1.62

(1.8 + D/H)2
for D/H > 0.1

(5.4)

where D =

{ √
b2 + a2 for rectangular hole

φ for circular hole
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Vl
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M/d
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φ/2

d φ

hu

hl

H

M/d
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d
r

Figure 5.1: Notations for design according Method 1, Swedish Limträhandbok.
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Method 2 – ”End-notched beam” analogy

Limträhandbok suggests an alternative design method for holes placed in a shear
force dominated region. The stress distribution in the vicinity of a hole is considered
to be rather alike that at an end-notched beam and the design recommendations are
hence based on the method for design of an end-notched beam.

As for method 1, the design criterion is formulated to compare the shear stress
τ to the reduced shear strength fv,red according to Equation (5.5). Since the hole is
assumed to be placed in a shear force dominated region, the effects of any bending
moment are disregarded. For a hole placed centrically in the beam, the shear forces
Vu and Vl are equal to V/2.

The shear strength is reduced depending on whether the considered part is ex-
posed to tensile or compressive stresses perpendicular to grain. The factor kv,i is
equal to 1 for the lower parts in Figure 5.2 but ≤ 1 for the upper parts since they
are exposed to tensile stresses perpendicular to grain. What is considered to be the
upper or lower part is hence dependent on the direction of the shear force V .

τ =
1.5 · Vi

T · hi

≤ fv,red where index i = u or l (5.5)

fv,red = kv,i · fv (5.6)

kv,l = 1.0 (5.7)

kv,u = min





1.0

6.5

(
1 +

1.1i1.5

√
h

)

√
h


√α− α2 + 0.8

e

h

√
1

α
− α2




(5.8)

where for holes placed centrically in the beam height

h = H/2 [mm]

α = hu/h

i =

{
0 for rectangular hole
1.0 for circular hole

e =

{
a/2 for rectangular hole
0 for circular hole
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Figure 5.2: Notations for design according Method 2, Swedish Limträhandbok.

5.2 German code – DIN 1052

DIN 1052:2004-08

The design rules concerning the capacity of glulam beams with holes are treated
rather differently in the German code DIN 1052 [33] compared to the two methods
in Limträhandbok. The German code states that special attention must be given
when designing a glulam beam with a hole. A hole is defined as an opening with√

a2 + b2 − r(
√

2− 1) or φ greater than 50 mm for rectangular or circular openings
respectively. Other openings should however be designed as a reduced cross section
(Ger. Querschnittsschwächung).

The general requirements concerning hole geometry and placement are similar to
the requirements in Limträhandbok. The hole must be placed with a distance from
hole edge to end of beam equal to or greater than the beam height H. The distance
from hole edge to center of support must be greater or equal to H/2. If two holes are
placed in the same beam, the distance between them must be at least the same as
the height H but also never shorter than 300 mm. The length of the hole a should
be less or equal to the height H of the beam and the height of the hole b or φ may
not exceed 0.4H. The height of remaining parts of the beam (hu and hl) must be at
least H/4. The corners of rectangular holes must be rounded with a corner radius
r ≥ 15 mm.

Holes that fulfill the above given requirements may be used in the service class
(Ger. Nutzungsklasse) 1 and 2 but the hole must however be reinforced for use in
service class 3. The capacity of the beam at the hole is determined by Equation (5.9)
where Ft,90,d is the design tension force perpendicular to grain and lt,90 the assumed
length of the triangular shaped normal stresses perpendicular to grain. The design
tension force is determined from contributions by the design shear force Vd and the
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design bending moment Md. Both sections 1 and 2 according to Figure 5.3 should
be controlled.

Ft,90,d ≤ 0.5 · lt,90 · T · ft,90,d (5.9)

lt,90 =

{
0.5(b + H) for rectangular hole
0.353φ + 0.5H for circular hole

Ft,90,d = Ft,V,d + Ft,M,d (5.10)

Ft,V,d =
Vd · x
4 ·H

(
3− x2

H2

)
(5.11)

Vd = Design value of shear force section 1 or 2

x =

{
b for rectangular hole
0.7φ for circular hole

Ft,M,d = 0.008 · Md

hr

(5.12)

Md = Design value of bending moment at section 1 or 2

For rectangular holes

hr = min

{
hu

hl

For circular holes

hr = min

{
hu + 0.15φ
hl + 0.15φ

V b

hu

hl

H

a

M

1 2

V φ

hu

hl

H

φ

M

1 2

45˚

45˚

r

Figure 5.3: Notations for rectangular and circular holes for design according to DIN
1052:2004-08.
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DIN 1052:1999

An older version of the German code, DIN 1052:1999 [34], differs somewhat from the
contemporary version. The difference lies in the contribution from the shear force
to the design tension force perpendicular to grain where the older version states a
more complex expression. For beams with rectangular holes which are centrically
placed with respect to the beam height, Equation (5.14) reduces to Equation (5.11)
stated in contemporary version DIN 1052:2004. The parameter x is for circular holes
different compared to the contemporary code.

Ft,90,d = Ft,V,d + Ft,M,d (5.13)

Ft,V,d = Vd

[
3 · h2

r

(
1

(H − x)2
− 1

H2

)
− 2 · h3

r

(
1

(H − x)3
− 1

H3

)]
(5.14)

Vd = Design value of shear force at hole edge

x =

{
b for rectangular hole
φ for circular hole

For rectangular holes

hr = min

{
hu

hl

For circular holes

hr = min

{
hu + 0.15φ
hl + 0.15φ

5.3 European code – Eurocode 5

EN 1995-1-1:2004

Design of glulam beams with holes are not explicitly stated in latest version of
Eurocode 5, EN 1995-1-1:2004 (E) [38]. There is however a section on design of
notched members and end-notched beams. The design procedures for these cases
are identical to those stated in Limträhandbok concerning end-notched beams, see
Section 5.1.

prEN 1995-1-1:Final Draft 2002-10-09

A previous version of Eurocode 5, prEN 1995-1-1:Final Draft 2002-10-09 [39], had a
section on design of glulam beams with holes. The analogy with end-notched beams
was used in the same manner as described in Method 2 from Limträhandbok. The
design rules are identical although the shear force for the upper and lower parts are
specified explicitly according to Equations (5.15) and (5.16).

Vu = V
hu

hu + hl

(5.15)
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Vl = V
hl

hu + hl

(5.16)

The capacity with respect to axial loads and bending moment should be evaluated
for the reduced cross section at the hole. Holes with

√
a2 + b2 − r(

√
2− 1) or φ less

than 50 mm and less than 0.1H may be disregarded. The regulations concerning
hole geometry and placement are identical to those stated for the German code DIN
1052.

5.4 Swiss code – SIA 265

The Swiss code for timber structures, SIA 265 [36], states that holes exposed to a
large shear force (holes placed close to support) may be approximately designed in
the same manner as an end-notched beam. The analogy is shown in Figure 5.4. The
following design rules are stated for an end-notched beam where fv is the allowed
shear stress. It seems as if the length of a rectangular hole is in no way considered
using this approach.

τ =
1.5 · Vd

T · hef

≤ fv,red (5.17)

fv,red = kred · fv

kred =





√
hef

h

∆h0

∆hef

≤ 1 for tension perpendicular to grain

1 for compression perpendicular to grain

∆h0 = 45 mm

Vdh
h

∆h

ef

ef

h
ef

Vd

Vd

Vd

h

Figure 5.4: Notations for design according to SIA, tension perpendicular to grain
(left) and compression perpendicular to grain (right).
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5.5 Comparison between tests and design codes

The previous sections of this chapter reveals fundamental differences concerning de-
sign methods between the codes. In order to make some evaluation of the presented
design codes, the characteristic shear force capacity Vk according to the different
methods was calculated for all beams with a hole in a shear force dominated region.
The characteristic shear strength fv,k = 4 MPa was used for calculations according
to method 1 and 2 according to Limträhandbok and calculations according to SIA
265 while characteristic tension perpendicular to grain strength ft,90,k = 0.5 MPa
was used for calculations according to German code DIN 1052. These results and
the mean values of the experimental test results for all test series with holes placed
in shear force dominated region are presented in Table 5.2 for beams with circular
holes and in Table 5.3 for beams with rectangular holes.

Graphical comparison of the codes and comparison of the results of the exper-
imental tests and the codes are presented in Figures 5.6-5.23. The characteristic
capacity according to codes and the experimental test results are presented as the
mean shear stress V/Anet where Anet is the net cross section area at the vertical
section through the center of hole. The test results are in these figures represented
by the crack load Vc for the individual tests. The hole design is described by the
ratio D/H where D = φ for circular holes and D =

√
a2 + b2 for rectangular holes.

In the figures, solid lines represent hole dimensions which are within the regulations
stated in the code. Since all test series have holes which are centrically placed with
respect to the beam height, all graphs describing capacities according to codes are
also based on this assumption.

The same shear strength fv,k (4.0 MPa) are used for all calculations although
the value differs between the strength classes found among the test series, see Table
2.3. The value of the perpendicular to grain tensile strength ft,90 is the same for all
glulam strength classes except Klasse B depending on the SIA 265 using allowable
stress and not characteristic material strengths.

Since the capacities according to codes here are determined from the character-
istic strengths, the ratio Vc/Vk should be somewhat greater than 1.0 for satisfactory
design. Although, the terms overestimation and underestimation are here simply
used to described whether the characteristic capacity according to code are higher or
lower than the mean values or the individual values of the experimental test results.
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Some specific observations from the presented tables and figures are worth pointing
out:

• Many of the test series, especially test series with rectangular holes, have hole
sizes and/or hole placements and/or corner radii which are not within the
allowed boundaries stated in the different codes.

• Method 1 according to Limträhandbok underestimates the capacity for all test
series except for two series with circular holes. Common for these exceptions
are that large beams (H = 900 mm) are used in both series and the holes are
subjected to comparatively large bending moment (M/(V H) = 5.0).

• Method 2 according to Limträhandbok overestimates the capacity for all test
series with circular holes and for the majority of the test series with rectangular
holes. For test series with circular holes, the ratio Vc/Vk varies within a narrow
range compared to the Method 1 and to the other codes.

• DIN 1052:2004 overestimates the capacity for five of the test series with circular
holes. Four out of these five are test series with large beams (H = 900 mm)
and the fifth test series has a hole twice the maximum acceptable size stated
in the code.

• Only two test series with rectangular holes have a hole size, placement and
corner radius in accordance with the regulations in DIN 1052. The ratios
Vc/Vk are for these test series 1.38 and 1.31 while the same ratio varies within
the range 0.29 ≤ Vc/Vk ≤ 1.86 for the other test series.

• In method 1 according to Limträhandbok, there is a beam width size effect
taken into account but no beam height size effect.

• There is no size effect taken into account in DIN 1052.

• The Swiss code SIA 265 overestimates the capacity for most of the test series
with circular holes and for all but two test series with rectangular holes. The
shear force capacity according to SIA is independent of the hole side length a
of a rectangular hole.

• All test series with rectangular holes and recorded crack loads Vc have a beam
height H ≤ 585 mm.
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The regulations concerning hole size, corner radius and hole placement in relation
to support, to other holes and to the neutral axis differ between the codes. The
regulations in the older version of Eurocode 5 (prEN 1995-1-1:Final Draft) are iden-
tical to the ones in the German code DIN 1052 (both the contemporary and the
older version) but these differs somewhat from the regulations in Limträhandbok.
A comparison is presented in Table 5.1 and the notations are found in Figure 5.5.
There are no explicit rules concerning hole geometry or placement stated in the the
Swiss code SIA 265.

b,φ

hu

hl

H

a alzla

d

lv

T φ φlz l a

vl

r

Figure 5.5: Notations for regulations concerning hole geometry and placement.

Table 5.1: Regulations concerning hole geometry and placement.
Limträhandbok [41] DIN 1052:2004 [33]

DIN 1052:1999 [34]
prEN 1995-1-1 [39]

la - ≥ 0.5H
lv - ≥ H
lz ≥ H ≥ H and ≥ 300mm
hu ≥ 0.15H ≥ 0.25H
hl ≥ 0.15H ≥ 0.25H
a ≤ 3b ≤ H
b or φ ≤ 0.5H ≤ 0.4H
r ≥ 25 mm ≥ 15 mm
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Table 5.2: Experimental test results of beams with circular holes.

Test Beam Hole design
D

H

M

V H
n Vc0 Vc Vf

series H × T φ Mean Mean Mean

notation [mm2] [mm] [-] [-] [kN] [kN] [kN]

BEN-1 500 × 90 φ250 0.50 1.20 2 38.4
BEN-3 500 × 90 φ150 0.30 1.20 1 52.5
PENa-1 500 × 90 φ255 0.51 1.20 1 33.8
PENa-2 500 × 90 φ250 0.50 2.10 1 31.6
PENa-3 500 × 90 φ150 0.30 1.20 1 51.3
PENb-1 800 × 115 φ400 0.50 1.03 1 57.1 65.9
PENb-2 800 × 115 φ300 0.38 2.00 1 89.5
JOHa-1 500 × 90 φ250 0.50 1.30 2 29.6 36.5
JOHa-3 500 × 90 φ250 0.50 2.80 2 33.2 37.5
JOHa-5 500 × 90 φ250 0.50 0.60 2 33.8 41.7
JOHa-6 500 × 90 φ125 0.25 0.60 2 - 40.1
JOHd-1 495 × 88 φ125 0.25 2.53 4 51.9
JOHd-2 495 × 88 φ396 0.80 2.53 4 16.1
HALa-3 315 × 90 φ150 0.48 2.78 5 24.5
HOFa-1 450 × 120 φ90 0.20 1.50 5 62.8 76.8 82.1
HOFa-2 450 × 120 φ135 0.30 1.50 6 38.8 65.5 67.9
HOFa-3 450 × 120 φ180 0.40 1.50 4 34.6 47.6 51.8
HOFb-1 900 × 120 φ180 0.20 1.50 5 69.2 106.4 128.1
HOFb-2 900 × 120 φ270 0.30 1.50 6 65.3 96.4 108.7
HOFb-3 900 × 120 φ360 0.40 1.50 6 48.0 69.2 87.5
HOFc-1 450 × 120 φ135 0.30 5.00 5 34.7 58.0 63.4
HOFd-1 900 × 120 φ270 0.30 5.00 5 43.1 55.1 84.2
AICa-1 450 × 120 φ180 0.40 5.00 6 42.4 48.8 53.7
AICb-1 900 × 120 φ180 0.20 5.00 4 66.4 106.4 111.6
AICb-2 900 × 120 φ360 0.40 5.00 5 46.7 61.6 79.9
AICc-1 450 × 120 φ180 0.40 5.00 3 15.4 37.9 44.8
AICd-1 900 × 120 φ360 0.40 5.00 3 33.5 49.6 66.6
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Limträhandbok Limträhandbok DIN 1052 DIN 1052 SIA 265

Test Method 1 Method 2 2004 1999

series Vk Vc/Vk Vk Vc/Vk Vk Vc/Vk Vk Vc/Vk Vk Vc/Vk

notation [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-]

BEN-1 18.4 52.8 26.6 1 15.0 1 25.5
BEN-3 30.9 80.6 37.5 24.5 54.4
PENa-1 17.9 1 51.7 1 26.3 1 14.7 1 24.5
PENa-2 18.4 52.8 24.7 1 14.4 1 25.5
PENa-3 30.9 80.6 37.5 24.5 54.4
PENb-1 35.8 84.1 55.3 1 31.0 1 41.1
PENb-2 50.0 108.6 61.0 39.0 66.4
JOHa-1 18.4 1.61 52.8 0.56 26.4 1 1.12 15.0 1 1.91 25.5 1.16
JOHa-3 18.4 1.81 52.8 0.63 23.4 1 1.42 14.0 1 2.38 25.5 1.30
JOHa-5 18.4 1.84 52.8 0.64 28.1 1,2 1.20 15.5 1,2 2.18 25.5 1.33
JOHa-6 34.7 90.0 46.2 2 30.3 2 66.1
JOHd-1 34.1 1.52 86.8 0.60 35.3 1.47 24.8 2.09 63.7 0.81
JOHd-2 5.7 1 2.83 23.2 1 0.69 17.8 1 0.90 9.0 1 1.80 5.0 3.28
HALa-3 12.4 1.98 39.6 0.62 15.2 1 1.61 9.2 1 2.65 22.2 1.10
HOFa-1 44.0 1.74 115.2 0.67 57.7 1.33 40.5 1.90 103.0 0.75
HOFa-2 35.0 1.87 100.8 0.65 43.6 1.50 28.8 2.27 68.9 0.95
HOFa-3 27.3 1.74 82.0 0.58 35.9 1.33 22.2 2.15 47.3 1.01
HOFb-1 88.1 1.21 185.6 0.57 115.4 0.92 81.0 1.31 145.7 0.73
HOFb-2 69.9 1.38 141.8 0.68 87.2 1.11 57.5 1.68 97.4 0.99
HOFb-3 54.6 1.27 113.7 0.61 71.8 0.96 44.4 1.56 66.9 1.03
HOFc-1 35.0 1.66 100.8 0.58 31.6 1.83 23.0 2.52 68.9 0.84
HOFd-1 69.9 0.79 141.8 0.39 63.3 0.87 46.0 1.20 97.4 0.57
AICa-1 27.3 1.79 82.0 0.59 27.2 1.80 18.5 2.64 47.3 1.03
AICb-1 88.1 1.21 185.6 0.57 86.5 1.37 57.6 1.76 145.7 0.73
AICb-2 54.6 1.13 113.7 0.54 54.3 1.13 37.0 1.67 66.9 0.92
AICc-1 27.3 1.39 82.0 0.46 27.1 1.40 18.5 2.05 47.3 0.80
AICd-1 54.6 0.91 113.7 0.44 54.3 0.91 37.0 1.34 66.9 0.74

1 = Size of hole not within regulations.
2 = Placement of hole not within regulations.
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Table 5.3: Experimental test results of beams with rectangular holes.

Test Beam Hole design
D

H

M

V H
n Vc0 Vc Vf

series H × T a × b r Mean Mean Mean

notation [mm2] [mm2] [mm] [-] [-] [kN] [kN] [kN]

BEN-2 500 × 90 300 × 150 0 0.67 1.20 2 39.0
BEN-4 500 × 90 200 × 100 0 0.45 1.20 2 49.6
FRE-1 550 × 80 250 × 250 ? 0.64 0.91 2 32.7
FRE-2 550 × 80 250 × 150 ? 0.53 0.91 2 44.0
FRE-3 550 × 80 250 × 250 ? 0.64 1.82 2 33.8
FRE-4 550 × 80 250 × 150 ? 0.53 1.82 2 35.4
PENa-4 500 × 90 200 × 200 ? 0.57 1.60 1 33.8
PENa-5 500 × 90 400 × 200 ? 0.89 1.60 1 25.0 31.3
PENa-6 500 × 90 600 × 200 ? 1.26 1.60 1 20.8 30.0
PENb-3 800 × 115 400 × 200 ? 0.56 1.25 1 69.1
PENb-4 800 × 115 200 × 200 ? 0.35 1.25 1 52.5 84.4
JOHa-2 500 × 90 250 × 250 25 0.71 1.30 2 26.8 28.5
JOHa-4 500 × 90 250 × 250 25 0.71 2.80 2 22.2 25.6
JOHc-1 400 × 140 600 × 200 25 1.58 2.25 1 30.0 37.0
JOHd-3 495 × 88 125 × 125 25 0.36 2.53 4 40.4
JOHd-4 495 × 88 375 × 125 25 0.80 2.53 4 37.7
JOHd-5 495 × 88 370 × 370 25 1.06 2.53 4 9.1
JOHd-6 495 × 88 735 × 245 25 1.57 2.53 4 12.5
JOHd-7 495 × 88 1110 × 370 25 2.36 2.53 4 4.2
PIZa-1 400 × 120 180 × 180 0 0.64 1.05 2 24.1 30.6 63.7
PIZa-2 400 × 120 180 × 90 0 0.50 1.05 2 37.2 54.9 75.5
PIZa-3 400 × 120 180 × 10 0 0.45 1.05 2 95.2 103.3 103.3
PIZb-1 400 × 120 180 × 90 0 0.50 1.05 1 56.6 71.0 84.5
PIZc-1 400 × 120 180 × 10 0 0.45 1.05 1 110.1 110.1 110.1
PIZd-1 400 × 120 360 × 180 0 1.01 1.75 2 21.7 23.3 24.8
PIZd-2 400 × 120 10 × 180 0 0.45 1.75 1 34.0 34.0 34.0
PIZe-1 400 × 120 360 × 180 0 1.01 1.75 1 19.2 21.1 28.8
PIZe-2 400 × 120 10 × 180 0 0.45 1.75 2 30.0 33.8 33.8
PIZe-3 400 × 120 180 × 90 0 0.50 1.75 3 45.8 54.2 54.2
PIZf-1 400 × 120 180 × 180 0 0.64 1.05 2 20.6 26.8 70.0
HALa-1 315 × 90 400 × 150 25 1.36 2.78 5 11.9
HALa-2 315 × 90 400 × 150 0 1.36 2.78 5 12.2
HALb-1 315 × 90 400 × 150 25 1.36 2.78 5 12.2
HALc-1 315 × 90 400 × 150 25 1.36 ? 1 12.2
HALd-1 585 × 165 600 × 295 25 1.14 ? 4 27.1
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Limträhandbok Limträhandbok DIN 1052 DIN 1052 SIA 265

Test Method 1 Method 2 2004 1999

series Vk Vc/Vk Vk Vc/Vk Vk Vc/Vk Vk Vc/Vk Vk Vc/Vk

notation [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-]

BEN-2 22.3 3 37.4 3 29.0 3 29.0 3 54.4
BEN-4 30.8 3 60.7 3 38.4 3 38.4 3 81.5
FRE-1 19.5 26.4 22.8 1 22.8 1 28.4
FRE-2 28.6 42.9 31.2 31.2 56.4
FRE-3 19.5 26.4 21.2 1 21.2 1 28.4
FRE-4 28.6 42.9 28.6 28.6 56.4
PENa-4 20.8 34.6 23.8 23.8 37.4
PENa-5 16.1 24.2 23.3 23.3 37.4
PENa-6 12.4 18.6 23.0 1 23.0 1 37.4
PENb-3 51.0 76.3 66.7 66.7 106.9
PENb-4 61.2 98.3 67.5 67.5 106.9
JOHa-2 15.5 1.73 24.0 1.12 21.5 1 1.25 21.5 1 1.25 25.5 1.05
JOHa-4 15.5 1.43 24.0 0.93 19.1 1 1.16 19.1 1 1.16 25.5 0.87
JOHc-1 9.7 3.09 16.4 1.83 23.9 1 1.26 23.9 1 1.26 35.4 0.85
JOHd-3 31.4 1.29 60.8 0.66 29.3 1.38 29.3 1.38 66.1 0.61
JOHd-4 21.7 1.73 38.5 0.98 28.7 1.31 28.7 1.31 66.1 0.57
JOHd-5 6.2 1 1.47 8.1 1 1.12 15.5 1 0.59 15.5 1 0.59 7.8 1.17
JOHd-6 8.8 1.42 12.4 1.01 19.1 1 0.65 19.1 1 0.65 26.5 0.47
JOHd-7 2.9 1 1.45 3.3 1 1.27 14.5 1 0.29 14.5 1 0.29 7.8 0.54
PIZa-1 18.1 3 1.69 34.4 3 0.89 24.7 1,3 1.24 24.7 1,3 1.24 36.9 0.83
PIZa-2 28.6 3 1.92 63.6 3 0.86 38.2 3 1.44 38.2 3 1.44 87.3 0.63
PIZa-3 37.7 1,3 2.74 124.8 1,3 0.83 155.0 3 0.67 155.0 3 0.67 124.8 0.83
PIZb-1 28.6 3 2.48 63.6 3 1.12 38.2 3 1.86 38.2 3 1.86 87.3 0.81
PIZc-1 37.7 1,3 2.92 124.8 1,3 0.88 155.0 3 0.71 155.0 3 0.71 124.8 0.88
PIZd-1 13.7 3 1.70 23.4 3 1.00 23.0 1,2,3 1.01 23.0 1,2,3 1.01 36.9 0.63
PIZd-2 21.3 3 1.60 62.0 3 0.55 23.8 1,3 1.43 23.8 1,3 1.43 36.9 0.92
PIZe-1 13.7 3 1.54 23.4 3 0.90 23.0 1,2,3 0.92 23.0 1,2,3 0.92 36.9 0.57
PIZe-2 21.3 3 1.59 62.0 3 0.55 23.7 1,3 1.43 23.7 1,3 1.43 36.9 0.92
PIZe-3 28.6 3 1.90 63.6 3 0.53 35.6 3 0.95 35.6 3 0.95 87.3 0.39
PIZf-1 18.1 3 1.48 34.4 3 0.78 24.7 1,3 1.09 24.7 1,3 1.09 36.9 0.73
HALa-1 6.4 1.86 11.4 1.04 12.0 1 0.99 12.0 1 0.99 22.2 0.54
HALa-2 6.4 3 1.91 11.4 3 1.07 12.0 1,3 1.02 12.0 1,3 1.02 22.2 0.55
HALb-1 6.4 1.91 11.4 1.07 12.0 1 1.02 12.0 1 1.02 22.2 0.55
HALc-1 6.4 1.91 11.4 1.07 - 1,4 - 1,4 22.2 0.55
HALd-1 21.1 1 1.28 30.5 1 0.89 - 1,4 - 1,4 49.6 0.55

1 = Size of hole not within regulations.
2 = Placement of hole not within regulations.
3 = Radius of corner not within regulations.
4 = Vital test data missing.
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Figure 5.6: Ratio between mean crack load Vc from experimental tests on test series
with circular holes and characteristic capacity Vk according to codes.
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Figure 5.8: Characteristic capacity Vk/Anet according to codes for beams with cross
section H × T = 500 × 90 mm2 and with circular holes (D = φ). The curves for
DIN 1052 are based on M/(V H) = 2.0.
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Figure 5.9: Characteristic capacity Vk/Anet according to codes for beams with cross
section H × T = 500 × 90 mm2 and with quadratic holes (D =

√
a2 + b2, a = b).

The curves for DIN 1052 are based on M/(V H) = 2.0.
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Figure 5.10: Characteristic capacity Vk/Anet according to Limträhandbok method 1
compared to Vc/Anet for experimental tests on circular holes (D = φ). Vk/Anet valid
for all beam heights H and based on beam width T = 90 mm.
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Figure 5.11: Characteristic capacity Vk/Anet according to Limträhandbok method 1
for different beam widths T compared to Vc/Anet for experimental tests on circular
holes (D = φ).
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Figure 5.12: Characteristic capacity Vk/Anet according to Limträhandbok method 1
compared to Vc/Anet for experimental tests on rectangular holes (D =

√
a2 + b2).

Vk/Anet valid for all beam heights H and based on beam width T = 90 mm.
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Figure 5.13: Characteristic capacity Vk/Anet according to Limträhandbok method 1
for different beam widths T compared to Vc/Anet for experimental tests on rectangular
holes (D =

√
a2 + b2).
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Figure 5.14: Characteristic capacity Vk/Anet according to Limträhandbok method 2
for different beam heights compared to Vc/Anet for experimental tests on circular
holes (D = φ).
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Figure 5.15: Characteristic capacity Vk/Anet according to Limträhandbok method 2
for different beam heights compared to Vc/Anet for experimental tests on rectangular
holes (D =

√
a2 + b2). Vk/Anet based on hole side length ratio a/b = 2.0.
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Figure 5.16: Characteristic capacity Vk/Anet according to DIN 1052:2004 compared
to Vc/Anet for experimental tests on circular holes (D = φ). Vk/Anet valid for all
beam heights H and based on bending moment to shear force ratio M/(V H) = 2.0.
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Figure 5.17: Characteristic capacity Vk/Anet according to DIN 1052:2004 for differ-
ent bending moment to shear force ratio M/(V H) compared to Vc/Anet for experi-
mental tests on circular holes (D = φ). Vk/Anet valid for all beam heights H.
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Figure 5.18: Characteristic capacity Vk/Anet according to DIN 1052:1999 compared
to Vc/Anet for experimental tests on circular holes (D = φ). Vk/Anet valid for all
beam heights H and based on bending moment to shear force ratio M/(V H) = 2.0.
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Figure 5.19: Characteristic capacity Vk/Anet according to DIN 1052:1999 for differ-
ent bending moment to shear force ratio M/(V H) compared to Vc/Anet for experi-
mental tests on circular holes (D = φ). Vk/Anet valid for all beam heights H.
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Figure 5.20: Characteristic capacity Vk/Anet according to DIN 1052:2004 and DIN
1052:1999 compared to Vc/Anet for experimental tests on rectangular holes (D =√

a2 + b2). Vk/Anet valid for all beam heights H and based on bending moment to
shear force ratio M/(V H) = 2.0 and on hole side length ratio a/b = 2.0.
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Figure 5.21: Characteristic capacity Vk/Anet according to DIN 1052:2004 and DIN
1052:1999 for different bending moment to shear force ratio M/(V H) compared to
Vc/Anet for experimental tests on rectangular holes (D =

√
a2 + b2). Vk/Anet valid

for all beam heights H and based on hole side length ratio a/b = 2.0.
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Figure 5.22: Characteristic capacity Vk/Anet according to DIN 1052:2004 and DIN
1052:1999 for different hole side ratios a/b compared to Vc/Anet for experimental
tests on rectangular holes (D =

√
a2 + b2). Vk/Anet valid for all beam heights H and

based on bending moment to shear force ratio M/(V H) = 2.0.
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Figure 5.23: Characteristic capacity Vk/Anet according to SIA 265 for different beam
heights compared to Vc/Anet for experimental tests on circular holes (D = φ).



Chapter 6

Concluding remarks

Several experimental and theoretical investigations have been carried out on the load
bearing capacity of glulam beams with a hole. This can be explained by the need
for reliable strength design methods and perhaps also by beams with a hole serving
as a vehicle in relation to more general research on strength analysis of wooden
structural elements.

Concluding remarks concerning experimental tests

A vast majority of the tests results presented in literature concern straight beams
with constant height (176 out of 182). The cross section of all beams vary within
the ranges of 80 ≤ T ≤ 165 mm and 315 ≤ H ≤ 900 mm. All tested beams had
holes which were centrically placed with respect to the height of the beam and most
holes were placed in parts of the beams that are dominated by shear force but there
are also tests on holes subjected to pure bending. Minor differences between test
setups, test procedures and material are of course a weak point in the comparison of
different test series. There are also some investigations of beams with reinforcement
but these are however in general not included in this compilation since it focuses on
unreiforced holes.

From the mean values of the crack initiation load, the crack load and the failure
load presented in Tables 2.27 and 2.28 it may seem like failures in general are not
very sudden since the for most cases Vc0 < Vc < Vf . However, looking at the
individual tests it can be seen that for a number of beams the difference between
the crack initiation load and the failure load is small and for some beams there is
no difference.

Concluding remarks concerning calculations approaches

Most of the theoretical strength analysis methods applied to beams with a hole are
simplified by using a linear elastic two dimensional model assuming a plane state of
stress. The calculated perpendicular to grain stresses are then to be considered as
a mean stress over the beam width. Höfflin’s [12] three dimensional finite element
calculations however shows that the perpendicular to grain stresses vary significantly
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across the beam width. Fracture criteria based on stress and on linear elastic fracture
mechanics parameters have been applied.

Concluding remarks concerning design codes

The design rules presented in Chapter 5 show fundamental dissimilarities concerning
the design approaches. The analogy between a hole and an end-notched beam is
used in some of the codes presented although the state of stresses differs in many
ways. Other presented procedures are instead empirically based. As can be seen
in Tables 5.2 and 5.3, also the computed characteristic strengths Vk for beams with
holes in shear force dominated region varies significantly between the different codes
and the ratio Vc/Vk also varies within rather wide ranges for most of the codes.
One exception is design of circular holes according method 2 in Limträhandbok.
This method, based on design of end-notched beams, in general predicts the highest
shear force capacity of the presented codes but the variation of Vc/Vk between the
test series is comparatively small. Method 1 according to Limträhandbok, which is
empirically based, seems to predict values on the safe side (Vc < Vk) for all but two
test series. These exceptions are test series with large beams (H = 900 mm) with
comparatively high bending moment to shear force ratio (M/(V H) = 5). There
is no beam height size effect taken into account in method 1 from Limträhandbok
or in DIN 1052. The contemporary version of the German code overestimates the
capacity for five test series with circular holes, four of these are test series with large
beams (H = 900 mm) while the fifth test series has a hole twice the allowed size.
In a majority of the test series with rectangular holes, the hole size or corner radius
are not within regulations stated in the code.

Concluding remarks concerning lack of knowledge

Although the investigations all in all represent much work, it seems that this work
essentially has been concentrated on a narrow field restricted by quantities related
to:

• Beam geometry
The investigations consists predominantly of straight beams with constant
height and with centrically placed holes. A few curved beams have been tested
but it seem as tapered beams with holes have not been investigated. Neither
has small beams (H < 315 mm) or large beams (H > 900 mm) been tested.

• Mode of loading
Only in-plane shear and bending have been studied. Thus, little is known
about hole induced strength reduction for a beam in tension, compression,
torsion and out of plane (flatwise) shear and/or bending.

• Moisture effects
It is very likely that drying significantly decreases the cracking load and most
probably also the failure load of a beam with a hole. It is obvious that moisture
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gradients in the vicinity of the hole can give additional stresses. A homoge-
neous change in moisture level can also give such parasite stresses due to the
heterogenous character of wood. In spite of this, it seems that no tests have
been carried out on influence of moisture change.

• Duration of load
It seems like very few tests have been carried out on duration of load effects
and it also seems like the possible influence of cyclic loading, i.e. fatigue, is
yet to be investigated.

Further development of simulation tools and strength modeling methods are also
needed in order to increase the possibilities to understand and predict the strength
of beams with holes. The most comprehensive recent advanced theoretical study
is probably the study of beams with circular holes by means of Weibull-modeling
and finite elements presented by Höfflin [12]. Further modeling development should
aim for consideration of the influence of the fracture toughness or fracture energy of
the wood, the influence of moisture effects and the desire for a unified approach for
modeling of both circular and rectangular holes with more or less sharp corners.
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Tragfähigkeit und Bemessung von Brettschichtholzträgern mit runden Durch-
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[13] Höfflin L., Aicher S.
Weibull based design approach of round holes in glulam.
CIB-W18/36-12-2, Colorado, USA, 2003.

[14] Johannesson B.
Design problems for glulam beams with holes.
Dissertation, Division of Steel and Timber structures,
Chalmers University of Technology, Göteborg, 1983.
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