

Examples of Scale Factors for a Semi-Empirical Tire-Model

Svendenius, Jacob

2006

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Svendenius, J. (2006). Examples of Scale Factors for a Semi-Empirical Tire-Model. (Technical Reports TFRT-7614). Department of Automatic Control, Lund Institute of Technology, Lund University.

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Examples of Scale Factors for a Semi-Empirical Tire-Model

Jacob Svendenius

Department of Automatic Control Lund Institute of Technology May 2006

Department of A	utomatic Control	Document name INTERNAL REPORT	
Lund University		Date of issue May 2006	
Box 118 SE-221 00 Lund S	weden	Document Number ISRN LUTFD2/TFRT70	614SE
Author(s) Jacob Svendenius		Supervisor Björn Wittenmark	
		Sponsoring organisation Haldex Brake Products A	ΔB
Title and subtitle Examples of Scale Factor	s for a Semi-Empirical Tire	e-Model	
Examples of Scale Factor	s for a semi Empirical The	Nicotor	
Abstract			
developed at the Departm	nent of Automatic Control	in a previously published so in Lund. The scale factors a slip for a few different cam	are plotted as 3d surface
Key words Brush model; Camber; Co	ombined slip; Scale factors;	Tire model	
Classification system and/or ind	ex terms (if any)		
Supplementary bibliographical in	nformation		
ISSN and key title 0280–5316			ISBN
<i>Language</i> English	Number of pages 12	Recipient's notes	
Security classification		1	

1. Contents

List of	Figures	5
1.	Introduction	7
2.	Plots of Scale Factors	7
3.	References	12

List of Figures

1	Longitudinal adhesive scale factors. To the right with cam-	
	ber, $\gamma=5$ [deg]	7
2	To the left: Longitudinal adhesive scale factor with camber,	
	γ =10 [deg]. To the right: Lateral adhesive scale factor	8
3	Lateral adhesive scale factors with camber. To the left: $\gamma=5$	
	[deg] and to the right: $\gamma=10$ [deg]	8
4	Longitudinal sliding scale factors. To the right with camber,	
	$\gamma=5$ [deg]	8
5	Longitudinal sliding scale factors. To the left with camber,	
	γ =10 [deg] and to the right, $v/v_0 = 0.5$	9
6	To the left: Longitudinal sliding scale factor, $v/v_0 = 2$. To	
	the right: Lateral sliding scale factor	9
7	Lateral sliding scale factors with camber. To the left: $\gamma=5$	
	[deg] and to the right: $\gamma=10$ [deg]	9
8	Lateral sliding scale factors with velocity dependence. To the	
	left: $v/v_0 = 0.5$ and to the right: $v/v_0 = 2$	10
9	Camber scale factors. To the right with camber, $\gamma=5$ [deg].	10
10	To the left: Camber scale factor with camber, $\gamma=10$ [deg]. To	
	the right: Self-aligning torque force scale-factor	10
11	Self-aligning torque force scale-factors with camber. To the	
	left: $\gamma=5$ [deg] and to the right: $\gamma=10$ [deg]	11
12	Self-aligning torque sliding scale-factors. To the right with	
	camber, $\gamma=5$ [deg]	11
13	To the left: Self-aligning torque sliding scale-factor with cam-	
	ber, γ =10. To the right: Self-aligning torque camber scale-	
	factor	11
14	Self-aligning torque camber scale-factors with camber. To	
	the left: $\gamma=5$ [deg] and to the right: $\gamma=10$ [deg]	12

2. Introduction

This report is written as a complement and refers to a semi-empirical tire model previously described in [2, 5, 7, 6, 4, 3, 8, 9, 10]. The combined slip forces and torque are, in the model, formed from the pure slip forces and torque as

$$\hat{F}_x(\lambda,\alpha,\gamma) = G_{ax}(\lambda,\alpha,\gamma)\hat{F}_{0x}(\lambda_{0a}) + G_{sx}(\lambda,\alpha,\gamma,v)\hat{F}_{0x}(\lambda_{0s})$$
(1a)

$$\begin{split} \hat{F}_{y}(\lambda,\alpha,\gamma) &= G_{ay}(\lambda,\alpha,\gamma) \hat{F}_{0y}(\alpha_{0a}) + G_{sy}(\lambda,\alpha,\gamma,v) \hat{F}_{0y}(\alpha_{0s}) \\ &+ G_{\text{camy}}(\lambda,\alpha,\gamma) \hat{F}_{0\text{cam}}(\gamma) \end{split} \tag{1b}$$

$$M_z(\lambda, \alpha, \gamma) = G_{fz}(\lambda, \alpha, \gamma) \hat{F}_{0y}(\alpha_{0r}) + G_{mz}(\lambda, \alpha, \gamma) \hat{M}_{0z}(\alpha_{0r})$$

$$+ G_{camz}(\lambda, \alpha, \gamma) \hat{F}_{0cam}(\gamma)$$
(2)

The aim of report is to visualize how the scale factors G from (1) - (2), further explained in [3, 8, 9, 10], depend on different input signals.

Respective scale factor is shown for sweeps of the longitudinal slip λ and sweeps of the slip angle α and for $\gamma = [0\,5\,10]$ [deg]. The sliding force scale factors, G_{sx} and G_{sy} are also shown for $v = [0.5\,1\,2] \cdot v_0$. The pure slip tire models used for the computation of the limit slips, λ° and α° and the sliding force angle β' are Magic formula parameterizations presented with parameters in [1] for $f_z = 4$ kN.

3. Plots of Scale Factors

Figure 1 Longitudinal adhesive scale factors. To the right with camber, $\gamma=5$ [deg].

Figure 2 To the left: Longitudinal adhesive scale factor with camber, $\gamma=10$ [deg]. To the right: Lateral adhesive scale factor.

Figure 3 Lateral adhesive scale factors with camber. To the left: γ =5 [deg] and to the right: γ =10 [deg].

Figure 4 Longitudinal sliding scale factors. To the right with camber, $\gamma=5$ [deg].

Figure 5 Longitudinal sliding scale factors. To the left with camber, γ =10 [deg] and to the right, $v/v_0=0.5$.

Figure 6 To the left: Longitudinal sliding scale factor, $v/v_0=2$. To the right: Lateral sliding scale factor.

Figure 7 Lateral sliding scale factors with camber. To the left: γ =5 [deg] and to the right: γ =10 [deg].

Figure 8 Lateral sliding scale factors with velocity dependence. To the left: $v/v_0=0.5$ and to the right: $v/v_0=2$.

Figure 9 Camber scale factors. To the right with camber, γ =5 [deg].

Figure 10 To the left: Camber scale factor with camber, γ =10 [deg]. To the right: Self-aligning torque force scale-factor.

Figure 11 Self-aligning torque force scale-factors with camber. To the left: $\gamma=5$ [deg] and to the right: $\gamma=10$ [deg].

Figure 12 Self-aligning torque sliding scale-factors. To the right with camber, $\gamma=5$ [deg].

Figure 13 To the left: Self-aligning torque sliding scale-factor with camber, γ =10. To the right: Self-aligning torque camber scale-factor.

Figure 14 Self-aligning torque camber scale-factors with camber. To the left: $\gamma=5$ [deg] and to the right: $\gamma=10$ [deg].

4. References

- [1] E. Bakker, L. Nyborg, and H. B. Pacejka. Tyre modelling for use in vehicle dynamics studies. SAE Technical Paper 870421, 1987.
- [2] M. Gäfvert and J. Svendenius. Construction of semi-empirical tire models for combined slip. Technical Report ISRN LUTFD2/TFRT-7606--SE, Department of Automatic Control, Lund Institute of Technology, Sweden, April 2003.
- [3] M. Gäfvert and J. Svendenius. A semi-empirical tire-model including the effects of camber. Technical Report ISRN LUTFD2/TFRT—7611—SE, Department of Automatic Control, LTH, Sweden, Sept 2004.
- [4] M. Gäfvert and J. Svendenius. A novel semi-empirical tire model for combined slip. *Vehicle System Dynamics*, 43(5), May 2005.
- [5] Magnus Gäfvert. Topics in Modeling, Control, and Implementations in Automotive Systems. PhD thesis, LTH, 2003.
- [6] Jacob Svendenius. Tire models for use in braking applications. Licentiate thesis ISRN LUTFD2/TFRT--3232--SE, Department of Automatic Control, Lund Institute of Technology, Sweden, nov 2003.
- [7] Jacob Svendenius and Magnus Gäfvert. A brush-model based semiempirical tire-model for combined slips. In SAE World Congress, March 2004.
- [8] Jacob Svendenius and Magnus Gäfvert. A semi-empirical tire-model for transient combined-slip forces. In *AVEC '04*, August 2004.
- [9] Jacob Svendenius and Magnus Gäfvert. A semi-empirical tire model for combined slips including the effects of cambering. In P. Lugner and M.Plöchl, editors, *Tyre Models For Vehicle Dynamics Analysis*, volume 43, pages 317–328. Taylor & Francis Group, Glasgow, aug 2005.
- [10] Jacob Svendenius and Magnus Gäfvert. A semi-empirical dynamic tire model for combined-slip forces. Vehicle System Dynamics, 44(2):189
 208, February 2006. Special Issue:AVEC '04: 7th International Symposium on Advanced VEhicle Control 23-27 August 2004 HAN University, Arnhem, The Netherlands.