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REAL TIME COMPUTING I
IMPLEMENTING LINEAR FILTERS,

P. Hagander
C. Killstrdm
K.J. Astrdm

ABSTRACT.

When implementing control and filtering algorithms
on a small digital computer or with special hardware
it is important to know the trade offs between accu-
racy, sampling interval, computing time and storage.
When planning process control systems it is also of
interest to know orders of magnitude for storage and
computing time for various tasks. This report, which
is a first in a series will give some aspects on
these problems, it does not contain any new results.

It is rather a compilation of a few useful facts.
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1. INTRODUCTION.

The problem of implementing a linear filtering algo-
rithm occurs frequently when a digital computer is
used for on-line control. Since a finite dimensio-

nal discrete time system has the realization

x(t+1) = Ax(t) + Bu(t)
(1)
y(t) = Cx(t) + Du(t)

the implementation simply consists of an algorithm
for (1). If the system is specified by a continuous
time realization there is also the additional prob-
lem of choosing a suitable sampling interval so that
(1) is a good approximation of the continuous time

system.

In practice there are several problems which have

to be considered, i.e.

o accuracy required,
o computing time,
o storage requirements,

o programming convenience.

There is a certain amount of arbitrariness since the
input-output relation is invariant to linear trans-
formations of x. It turns out that all factors lis-
ted above are also influenced by the choice of state

~variables in (1),




2. STORAGE AND COMPUTING TIME.
It will first be investigated how storage and compu-

ting time are influenced by the choice of coordi-

nates in the realization (1).

2.1. The General Case.

Let n, be the number of states, n, the number of in-
puts and ny the number of outputs. In the general

case the model (1) then requires

Ny= nx(nX +n, 4 ny) + NNy
parameters to represent the elementé of the matrices
A, B, C and D. To construct an algorithm it is fur-
thermore necessary to have 2nX + n, + ny storage
cells for the vectors x(t+1), x(t), u(t) and y(t).
To implement a code for (1) it is thus necessary to

have a data area of

N2 = nx(nX +n, ot ny + 2) + nuny + n, + ny

cells.

To get a crude estimate of the computing time we can
just count the number of additions and multiplica-
tions in (1). We find that N, additions and N4y mul-
tiplications are required. Notice, however, that
this estimate does not include the computations re-
quired to evaluate the indices of vectors and matri-

ces.

A FTORTRAN subroutine GLISY, which implements (1), is

given in appendix. This code is organized in such a




way that savings are obtained when D = 0 or when it
is not necessary to compute the output. The subrou-
tine has been compiled on PDP-15 and requires 177
cells. The actual computing time on PDP 15-30 as
well as crude estimates computed as 2N1 « 200 s
where 200 us is the average addition and multiplica-
tion time are listed in Table 1.

Table 1 - Computing time for GLISY on PDP 15-30,.

Execution Crude

n, n, n, Remark time estimate Eziigséin
(msec) (msec)
4 3 2 13.82 16.8 0.33
4 3 2 D=2 11.49 4.4
4 3 0 9.23 11.2
5 1 1 12.4 4.4 0.34
10 1 1 32.1 48.4 0.27
20 1 1 97.6 176.4 0.22
ug 1 1 331.9 672.4 0.20
10 5 1 39.8 66.0 0.24
i0 1 5 Ly ,0 66.0 0.27
10 5 5 54.6 90.0 0.24
40 3 2 354.8 _ 722.4 0.20




2.2. Systems on Diagonal Form.

If the matrix A has distinct eigenvalues it can al-

ways be transformed to diagonal form

z(t+1) = z(t) + u(t) (2)
y(t) = z(t) + Du(t)

where all Bij or all Yij can be set to arbitrary va-
lues. In this case the system can be represented by

N3 = nx(nu + ny + 1) + nuny

parameters. To construct an algorithm it is also ne-
cessary to have 2nx + n, + ny storage cells for
x(t+1), x(t), ult) and y(t). To implement a code for
(2) it is thus necessary to have a data area with

N, = nx(nu + n, + 3) + n,ny *n, +n

4 y

cells.

The formula (2) requires

Na = nx(nu + ny) + nuny

additions and

Nm = nx(nu + ny + 1) + nymu

multiplications.

A comparison with section 2.1 thus shows that it is
possible to reduce both storage and computations sig=-
nificantly by transforming (1) to diagonal form if
this is possible.




2.3, Companion Forms.

Completely observable systems with one output and
completely controllable systems with one input can
always be transformed to companion form. In these
cases the storage requirements and the crude esti-
mates of computing times are the same as for systems
on diagonal form, if B or y in (2) is set to (1, 1,
vy DT

Two subroutines, OBSY (OBservable SYstem) and COSY
(COntrollable SYstem), which implements (1) in the
observable and controllable cases are given in ap-
pendices B and C. The code OBSY requires 131 cells
and COSY requires 122 cells. The actual computing
times as well as the crude estimates are given in
Table 2 and Table 3. Notice that COSY is shorter and
considerably faster. For single input single output
systems this algorithm should therefore be preferred.
The fact that COSY is faster is that the multiplica-
tion Zaixi(t) is done by the efficient scalar pro-
duct algorithm, while in OBSY the computation of a;x;

all requires separate index evaluation.

Table 2 - Execution time for OBSY on PDP 15-30.

Estimated
n, n, Execution time execution time
(msec) (msec)

4 3 8.72 7.6
40 3 79.17 65.2

5 1 8.63 4.4

10 1 16.67 8.4

20 1 32.55 16.4
40 1 64.32 32.4




Table 3 - Execution time for COSY on PDP 15-30.

Estimated
n, ny Execution time execution time
(msec) (msec)

4 3 6.8 7.6
40 3 32.1 65.2

5 1 3.84 . b

10 1 5.68 8.4

20 1 9.33 16.4

uo0 1 16.69 32.4




3. ACCURACY.

The analysis of section 2 indicates that the diago-

nal and the companion forms have distinct advantages
in terms of both storage and computing time. The pa-
rameter accuracy required for the different algo-

rithms will now be considered.

It is not obvious how the parameter accuracy should
be defined. The ultimate measure is, of course, the
degradation of the performance of the control sys-
tem. This is, however, very difficult to evaluate,
and therefore we might instead investigate the ac-
curacy of the transfer function or the time response

of the system,

We will first discuss the effect of the parameter
accuracy on the stability of the system. This is, of
course, quite crude because it corresponds to dras-
tic changes in the system. We will later briefly dis-

cuss other measures of accuracy.

3.1. Stability Considerations.

We will first consider a few examples,

Example 1 - Diagonal systems.

Consider first a first order system
x(t+1) = ax(t) 0 < a <1

Let 8a denote the absolute error in a. In order to

assume stability we must require

|sal < 1-a




If the discrete system is a sampling of a continuous

system

X = - ax a = exp(-ah)

it is obvious that the accuracy requirement becomes
more and more stringent with shorter sampling inter-

val. Approximately we get

| sal

A

oh

This simple stability analysis easily extends to the
general real valued diagonal system, giving corres-

ponding criteria for all diagonal elements.

Example 2 - Companion form.

Consider a n-th order system in companion form. Let
it have equal eigenvalues a. The characteristic

equation is
(z-a)" = 0

Now assume that the characteristic equation is per-
turbed by § then

(z=a)? + 6 = 0
The roots of this equation are on a circle around

4 = a with radius /S, If we require that no root

could possibly fall outside the unit circle we get
|s] <« (1-a)"
Hence if a = 0.99 and n = 4 we require

6] < 1078




which is rather surprising.

This corresponds to errors only in the last coeffi-

cient.

Considering the coefficients of the characteristic
equation one at a time the effect on the root spread
can be examined, for instance the effect on the co-
efficient in the middle.

Example 3.

Let n = 2m and perturb the m-th coefficient with ¢

(z-a)2M - §gM

0t
[aw)

(z-a)2

eZ

might be complex

1/m  i2e/E
e = |6] . e k =0, +o0y m-1
. . v+1 .
Make the substitution z = - o7 and set v = 1w to

obtain the limit of stability.
(+ 2a + ¢ + a2 + 1)v2 + 2(1 = a2)v +
+ (1 - 2a - ¢ + a2) = 0

e, (1+u?) (a+1)%0? + (a-1)?  (Real part)

52(1+m2) - 2(a2—1)m (Imaginary part)




10.

2
2 2. 2 (a+1)2w? + (a=1)?
lel® = eq *+ 5 = 7
1+w
Ble! - ba
Bm2 (1+w2)2
thus w = 0, €, = 0, means most dangerous case and

2
we must require

le| < (’l-a)2 and
8] < (1-a)"

just as in the previous case!

However, when implementing digital filters usually
all the coefficients are perturbed at the same time.
A natural way to restrict the errors in each coeffi-

cient would be

ls] < 1 (1-a)" (3)
n

to assure stability in the worst case.

The described effects are, however, highly nonlinear
and the different errors tend to eliminate each
other, so even for the worst case the above crite-

ria is too conservative.




1.

3.2, Floating Point Arithmetic.

Realisation of digital filters on computers is usual-

ly done in floating point arithmetic.

When doing so the introduced errors are almost equal
in all stored coefficients, if regarded as relative

errors. This figure 6rel is dependent on the word
length of the computer, and is for PDP-15 c. 107 .

This means by example 1

1-a
{ . ] > 801 (%)
a

in the diagonal case, by example 2

i=a )V (s)
rel

for the last coefficient of a companion form, and
by example 3

n
(1-a) . 1 . 5 (6)

an/2 { n J rel

n/?2

for the coefficient in the middle of a companion

form.

Again we see that too fast sampling leads to consi-

derable simulation problems!

Even a moderate sampling interval is difficult when
the system order is high and the system has equal

or almost equal eigenvalues.

If n =6 and §,,; = 1077 we must require at least
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4 - a > &920.10770a% = 0.1 or a < 0.9

only to assure stability. The "summation" effect from

many errors is then neglected and would require even

further restrictions.

Jordan form:

We have found that digital filters on companion form
might be dangerous. The Jordan form seems to be the
best alternative, since no diagonal matrix is simi-
lar to a companion matrix with equal eigenvalues. The
stability requirements on a Jordan matrix are easily

verified to be the same as for a diagonal matrix.

To illustrate that the crude estimates given above
are useful we will give a numerical example. Consider
a fourth order system with the pulse transfer func-

tion

-8
H(z) = — 0 7)

(z-0.99)"

This system has the Jordan form realization.

0.99 1.00 O 0 0

x(t+1) = 0 0.99 1.00 0 x(t) + 0 u(t)
0 0 0.99 1.00 0
0 0 0 0.99 1078 |

y(t) = [ 1 0 0 0 ] x(t)
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The step response of the system computed in floating
point arithmetic on PDP 15-30 using this realization

is shown in Fig. 1. (Curve A)

1.0 — A
D
C
0.5 -
B
0 T L 1 N4 I
\\)ﬁify 1000 2000

-0.5

The controllable canonical form of the system is

3.96 -5.8806 3.881196 =-0.96059601
ity = |1 0 0 0 i
0 1 0 0
0 0 1 0

1
e x(e) + | 0 ey (9)
0
0
gty = [ 0o o o 107871 «x

The step response of this realization is shown in
Fig. 1. (Curve B)
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The realization above is stable but its step response

is vastly different from that of Curve A.

Now perturb the a,, coefficient with one unit in the

eighth place:

aqy = T 0.96059602 (instead of -0.96059601)

and we get the step response in Fig. 1 (Curve C).

The response is clearly unstable.

If the coefficient ayg is perturbed with one unit in
the eighth place (to ajg = 3.8811959). The realiza-
tion then becomes unstable. The step response is

shown in Fig, 1. (Curve D)

The results obtained above are well in accordance
with the estimates given previously. The relative

accuracy of a floating point number on PDP 15-30 is
L =26 _ . . -8
Srel = 2 = 2 10 ~. Hence

6r'el

4

(1-0.99)"

which was the stability limit found according to
relation (5).

3.3. Other Criterias.

The companion form is unsuitable also when the ei-

genvalues are almost equal. The A matrix

a 1
(10)
0 b
is better. Although a transformation to diagonal form

from the companion form is possible it is ill-condi-

tioned for almost equal eigenvalues.
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The simple stability calculations above give no in-
formation of these difficulties. The whole system

must be considered or at least the uncontrolled sys-

tem.
Examgle
a 1 0
x(t+1) = x(t) x(0) =
0 b 1
LY(t) = [ 1 0 1

which is easily represented on diagonal form:

a 0 -1/(a~b)
z(t+1) = %(t) 2(0) =

0 b 1
y:[’] .__1__}2‘

a=-b

Thus an error in the two diagonal elements will be
multiplied by a factor E;B in the diagonal form,
which for almost equal eigenvalues spoils every so-

lution.

Of course, there are systems which are well suited
for representation in diagonal form. Originally un-
coupled modes are for instance easily modelled in dia-
gonal form. We have a sum of first order pulse trans-
fer functions. The difficulties do not occur until
we try to model a signal as the difference between

two almost equal signals.

These signals should be modelled with the modified

Jordan matrix (10).
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3.4, Complex Eigenvalues.

Oscillating systems and oscillating subsystems are
more difficult to model. Naturally we try to circum-
vent complex arithmetic and storage. The smallest
subsystem to consider must be second order contai-

ning two complex conjugate poles, say
o * iB

Then the forms

are the most common alternatives.

The differences between A1 and A2 cannot be seen on-
ly from the simple stability reasoning, and are main-
ly due to different B and C magnifying the errors in
different ways. Bspecially when B is small there is
the question whether the form should be almost a dia-

gonal form or almost a Jordan form.

The difference between A2 and A3 is small consider-
ing the stability; the change in the absolute value
of the poles are almost the same. A2, however, re-

produces the oscillator frequence much better.
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3.5, Comparison with the Continuous Case.

It has been shown that large sampled systems are dif-
ficult to represent on the companion form. The stabi-

lity is easily affected.

For continuous system the companion form is a better
alternative, still not very good, however. The para-
meters are disturbed and the roots are changed in the
same way, but the stability criteria is quite diffe-

rent and the roots have another meaning!

It can be shown that relative errors less than one
in the last coefficient never cause instability. The
relative error in the worst coefficient can be as
large as 10-3 for n = 20, equal eigenvalues, and the

system is still stable.

A sampled system with the same state variables as a
continuous system in companion form is more insensi-
tive than the corresponding sampled system in compa-
nion form. The advantage of few coefficients other

than one or zero is, however, lost.
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4, CONCLUSIONS.

We can conclude that the choice of coordinates in
the state space representation of a dynamic system
will have a drastic influence on computing time,
storage and accuracy. Diagonal forms and companion
forms all require short computing and small storage.
A general linear system of order 40 with one input
and one output will for example require an execu-
tion time of 332 msec, while a representation on an
observable companion form requires 64 msec, and a
controllable companion form 17 msec. The difference
between the observable and controllable companion
form representations is due to the fact that the
controllable representation can be coded more effi-
ciently by using the scalar product subroutine. The
companion form is, however, often extremely sensi-
tive to parameter variations. This is particularly
the case when the system has equal eigenvalues which
are close to the unit circle. A situation like this
will typically arise when a continuous time system
is sampled with a short sampling interval. These
facts have been illustrated by examples. Other im-
portant numerical aspects are not discussed in this
report. It is for example most often best to choose
as many parameters equal to natural numbers, which

are represented exactly in the computer.




SUBROUTINE GLISYC(AB,CyDs X, U, Y, NX, NU,NY,NOD)

COMPUTES THE NEW STATE X(T+1) AND THE NEW QUTPUT Y(T) FROM
XCT)Y AND UCT) FOR THE SYSTEM

XKET+L)=A=X (T +B=U(CT)

Y(T)=CxX(T)+D#U(T)

AUTHOR KJ ASTROM 1970-10-20

A- MATRIX OF ORDER NX#NX

B~ MATRIX OF ORDER NX=NU

C~ MATRIX OF ORDER NY#NX

D~ MATRIX OF ORDER NY=NU ,

X= STATE VECTOR X(T) OF DIMENSION NX, RETURNED AS X(T+1)

U= INPUT VECTOR U(T) OF DIMENSION NU

Y- QUTPUT VECTOR Y(T) OF DIMENSION NY

NX~-NUMBER OF STATES (MAX 64 SEE SECOND DIMENSION STATEMENT)
NU=-NUMBER OF INPUTS (NO MAX)

NY-NUMBER OF OUTPUTS (NO MAX). PUT NY=0 |F COMPUTATION OF Y(T)

SHOULD BE SKIPPED.
NOD-PUT NOD=0 IF D=0 ELSE NOD=1

XO-DUMMY VECTOR OF DIMENSION NX CONTAINING THE

THE NEW STATE VFCTOR X(T+1). STORED IN DUMB OF

"THE COMMON BLOCK /SLASK/. THE FIRST 896 CELLS OF /SLASK/
ARE NOT USED.

SUBROUTINES REQUIRED
NONE

DIMENSTON AC1,3),B(1,1),C(1,1),D(1,1),%X(1),U(1),Y(1)
DIMENSITON X0(64),DUMY(448)

?

COMMON /SLASK/ DUMY, X0
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SUBROUTINE COSY(A,C,D,X,U,Y,NX,NY)

COMPUTES THE NEW STATE X(T+1) AND THE NEW OUTPUT Y(T) FROM
XETY AND UCT) FOR A SINGLE INPUT DYNAMICAL SYSTEM ON THE
CONTROLLABLE CANONICAL FORM : :

SACL) =ACD) vy =ACNX=1) =ACNY)

1
1 0 ... 0 0o 0
X(T+1)= . . - .OX(Tre . oU(T)
0 0 ... 1 0 0
CCL,1) C(1,2) «v. L, NX) D(1)
Y(T)= . . - X(TY+ . U(T)
CONY, 1)CUNY,2) . CINY,NX) DINY)

AUTHOR KJ ASTROM 1970-10-20

A= VECTOR OF DIMENSION NX

o= MATRIX OF ORDER NY#NX

D- VECTOR OF DIMENSION NY : ' :

X~ STATE VECTOR OF DIMENSION NX, RETURNED CONTAINING X{T+1)
U~ SCALAR INPUT :

Y- OUTPUT VECTOR OF DIMENSION NY

NX-NUMRER OF STATES (NO MAX)

NY-NUMBER OF OUTPUTS (NO MAX)

SUBROUTINE REQUIRED
NONR

DIMENSION A€1),C(1,1),D(1),X(1),Y(1)
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SURROUTINE ORSY(A,B,D,X%X,U, Y NX,NU)

XCT) AND U(T) FOR A SINGLE
OBSERVABLE CANONICAL FORM

~AC1) 1
~A(2) 0
X(T+1)= . .
~A(NX=1) 0
~A(NX) 0
Y(T) = 1 0

0
1

0
0

0

v .

AUTHOR KJ ASTROM 1970-10-20

A- VECTOR OF DIMENSION NX
B~ MATRIX OF DIMENSION NX#NU
D~ VECTOR OF DIMENSION NU

X- STATE VECTOR OF DIMENSION
U= INPUT VECTOR OF DIMENSION NU

Y~ SCALAR QUTPUT

NX-NUMRBRER OF STATES
NU-NUMRER OF |NPUTS

SUBROUTINES REQUIRED

NONE

COMPUTES THE NEW STATE X(T+1) AND THE NEW OUTPUT Y(T) FROM

QUTPUT LINEAR SYSTEM ON THE

B(1,1)

.0
.0 \
COXCTY+
.1 .
0 B(NX,1).

0 X(TY +.D(1) ..

(NO MAX)
(NO MAX)

DIMENSION AC1),BC(1,1),D(1),X(1),U(1)

—

L)

L

3

B(1,NU)

.

. UueT)

BONX,NU)

DONUY UCT)

NX, RETURNED CONTAINING X(T+1)




